Sample records for texture sedimentary structures

  1. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  2. Sedimentary textures formed by aqueous processes, Erebus crater Meridiani Planum, Mars

    USGS Publications Warehouse

    Grotzinger, J.; Bell, J.; Herkenhoff, K.; Johnson, J.; Knoll, A.; McCartney, E.; McLennan, S.; Metz, J.; Moore, J.; Squyres, S.; Sullivan, R.; Ahronson, O.; Arvidson, R.; Joliff, B.; Golombek, M.; Lewis, K.; Parker, T.; Soderblom, J.

    2006-01-01

    New observations at Erebus crater (Olympia outcrop) by the Mars Exploration Rover Opportunity between sols 671 and 735 (a sol is a martian day) indicate that a diverse suite of primary and penecontemporaneous sedimentary structures is preserved in sulfate-rich bedrock. Centimeter-scale trough (festoon) cross-lamination is abundant, and is better expressed and thicker than previously described examples. Postdepositional shrinkage cracks in the same outcrop are interpreted to have formed in response to desiccation. Considered collectively, this suite of sedimentary structures provides strong support for the involvement of liquid water during accumulation of sedimentary rocks at Meridiani Planum. ?? 2006 Geological Society of America.

  3. Quantifying Channelized Submarine Depositional Systems From Bed to Basin Scale

    DTIC Science & Technology

    2004-09-01

    Union of South Africa and South West Africa . Memoirs of the Geological Survey of South Africa , 39:177, 1944. C.D. Winker and J.R. Booth. Sedimentary ...overbank locations. Sedimentary structures, textures and facies preserved in core recovered from the Late Pliocene section of Fisk Basin are consistent...France or Tanqua, Karoo Basin, South Africa in Pickering et al. (1995)) falling well short of the desirable continuous regional exposure. As a result of

  4. Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data

    NASA Astrophysics Data System (ADS)

    Tunwal, M.; Mulchrone, K. F.; Meere, P. A.

    2017-12-01

    Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)

  5. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the reflections, but not dip direction, was an important discriminator between radar facies at the William River delta. To extend the use of radar texture beyond the identification of radar facies to sedimentary facies we are investigating how sedimentary features are encoded in GPR data at Borden, Ontario, Canada. At this site, we have collected extensive sedimentary and hydrologic data over the area imaged by GPR. Analysis of this data coupled with synthetic modeling of the radar signal has allowed us to develop insight into the generation of radar texture in complex geologic environments.

  6. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; Cousin, A.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Wiens, R. C.

    2017-03-01

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. In contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.

  7. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE PAGES

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.; ...

    2016-11-05

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. Finally, in contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.« less

  8. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. Finally, in contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.« less

  9. Biosignatures in modern sulfates: texture, composition and depositional environments of gypsum deposits at Guerrero Negro, Baja, Mexico

    NASA Astrophysics Data System (ADS)

    Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Turk, K.; Kubo, M.

    2007-12-01

    Gypsum (CaSO4·H2O) is an important phase in biogeochemistry and sedimentology as a mineral sink for sulfur, a paleoclimatic indicator, and an endolithic niche for phototrophic and chemotrophic bacteria. Sulfate deposits are also important targets of exploration for evidence of habitable environments and life on Mars. Gypsum deposits from a range of sedimentary environments at the Guerrero Negro crystallizer ponds and sabkha settings were investigated for microscale structure and composition to differentiate fabrics formed under microbial influence from those formed under abiogenic conditions. Sub-sedimentary gypsum forms in sabkha environments as mm to cm scale selenite discs (termed bird beak gypsum; Warren, 2006) and selenite disc aggregates. Selenite discs and other sub-sedimentary gypsum are characterized by a sinuous axial microtexture and poikilitically enclosed detrital particles. Sub-aqueous gypsum forms as cements, granules (termed gypsooids), and massive botryoidal crusts that line the sediment water interface and margins of managed crystallizer ponds and natural anchialine pools. Sub-aqueous gypsum exhibits a wide range of textures and mineral/biofilm associations that include amorphous to euhedral, tabular, needle and lensoidal morphologies. Elemental sulfur forms rinds on prismatic, growth aligned gypsum twins and reticulate magnesian carbonate is interspersed with both twinned crystals and rosette aggregates in stratified sub-aqueous environments. Intracrystalline biofilms and cell material was observed in association with nearly all sub-aqueous morphologies but only scarce evidence has been found for intercrystalline microbial communities. Columnar microbial communities living in anchialine pools were found to host precipitation of mm scale gypsum granules in their EPS matrix. Fine scale gypsum textures are unlikely to persist through diagenetic alteration, but understanding their primary associations with sulfur and carbonates is necessary for interpreting sulfates or their replacement phases in the ancient record.

  10. Interpreting Biosignatures in the Context of Marine Evaporitic Environments

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Vogel, M. B.

    2008-12-01

    A biosignature is an object, substance and/or pattern whose origin specifically requires a biological agent. The usefulness of a biosignature is determined, not only by the probability of life creating it, but also by the improbability of nonbiological processes producing it. So what sets life apart from the rest? Life as we know it is the harnessing of free energy to sustain and perpetuate, by molecular replication and evolution, a high density of information in the form of functional complex molecules and functionally-related larger structures. Accordingly, biosignatures can arise from key attributes such as converting solar to chemical energy, exploiting the versatility of organic chemistry to sustain metabolic processes and preserve information, and maintaining microenvironments that enhance these functions. The external environment affects such functions and so it must be defined in order to interpret effectively the biosignatures that emerge from them. Hypersaline benthic cyanobacterial communities at Guerrero Negro, Baja California Sur, Mexico provide illustrative examples of biosignatures research that is relevant to our early biosphere and to Mars. Where brines are undersaturated with respect to gypsum, filamentous cyanobacteria dominate over unicellular cyanobacteria and can trap and bind sedimentary grains more effectively, thus altering their response to sedimentary processes and creating laminated fabrics. Biofilms in gypsiferrous sediments also can alter the response of the clastic or crystal matrix to chemical and physical sedimentary processes such as erosion or precipitate accumulation. Gypsum precipitating within biofilms offers compelling evidence of biological influences on crystal textures and habits. Such gypsum exhibits dissolution textures, accessory mineral precipitation and unique crystal form aspect ratios. Irregular textures include conchoidal and globular features associated with both dissolution and nucleation that are likely affected by biofilm pore water compositions. The accessory phases forming in association with gypsum-hosted biofilms (Sº, Ca-carbonate, and Sr/Ca-sulfate) are known byproducts of bacterially mediated sulfate reduction. Light penetrates the relatively transparent gypsum to sustain discretely layered successions of orange-, green-, purple-, pink-, and black-pigmented endoevaporitic biofilms. Lipid biosignatures include carotenoids, tricyclic terpenoids, benzothiophenes, thiacycloalkanes and methylhopanoids. These represent the aggregate effects of light regimes and hypersaline conditions. Features that could be preserved over geological timescales therefore include sedimentary textures, minerals, crystal forms, and lipids. Collectively these features can serve both as biosignatures and paleoenvironmental indicators on early Earth and on Mars.

  11. Sedimentary control of volcanic debris-avalanche structures and transformation into lahars

    NASA Astrophysics Data System (ADS)

    Bernard, Karine; van Wyk de Vries, Benjamin; Thouret, Jean-Claude; Roche, Olivier; Samaniego Eguiguren, Pablo

    2017-04-01

    Volcanic debris avalanche structures and related transformations into lahars have been extensively analysed in order to establish a sedimentary classification of the deposits. Textural and structural variations of eight debris-avalanche deposits (DADs) have been correlated with Shape Preferred Orientation of 30,000 clasts together with grain-size distributions and statistical parameters from 156 sieved matrix samples. Granular segregation patterns have been observed with structural fault controls: proximal granular-segregation structures of the Tutupaca DAD ridges in Peru, basal sheared bands along overthrust lateral levee (Mt. Dore, France), mixing and cataclasis of fault-controlled deposits in half-graben during lateral spreading of distal thrust lobe (Pichu-Pichu, Peru), neo-cataclasis at the frontal thrust lobe (Meager, Canada and Mt. Dore, France). A logarithmic regression characterises the % matrix vs. matrix/gravels showing proximal and primary cataclasis, hybrid DADs with polymodal matrix and mixed facies up to transformations into lahar (Misti, Mt Dore). The sequential fragmentation helps to distinguish DAD that belong to Andean and Cascade Volcanic arcs (Tutupaca and Misti, Peru; Meager, Canada) to the hybrid DADs, before distal transformation into lahars (Pichu-Pichu); and hydrovolcanic fragmentation characterises the transformed lahar deposits (Misti). The fractal values of 150 sieved samples range between 2.3 and 2.7, implying extensional fractures with granular disaggregation. Skewness vs. kurtosis values help to distinguish the proximal mass wasting deposits and the transformed deposits by dilution. The sorting vs. median values enable us to differentiate the hybrid DADs with the transformed deposits by dilution. The sedimentological statistical parameters with Shape Preferred Orientation analysis that have been correlated with textural and structural observations show textural fabrics resulting from kinematic processes: cataclasis, hybrid matrix facies and transformations. Inherited fractures from tectono-volcanic structures contribute to the particle size distributions of DAD and associated deposits such as pyroclastic and lahar deposits (Misti, Mt Dore, Tutupaca). The statistical results highlight granular structure and kinematic process of DAD transformations into lahars and associated deposits, which would contribute to understand the rheological process behind the excess DAD run-out and to test granular models for DAD transformations. Key words: volcanic debris-avalanche deposits, lahar transformation, structure, sedimentology, hazard

  12. Mineral texture based seismic properties of meta-sedimentary and meta-igneous rocks in the orogenic wedge of the Central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Almqvist, B. S. G.; Czaplinska, D.; Piazolo, S.

    2015-12-01

    Progress in seismic methods offers the possibility to visualize in ever greater detail the structure and composition of middle to lower continental crust. Ideally, the seismic parameters, including compressional (Vp) and shear (Vs) wave velocities, anisotropy and Vp/Vs-ratio, allow the inference of detailed and quantitative information on the deformation conditions, chemical composition, temperature and the amount and geometry of fluids and melts in the crust. However, such inferences regarding the crust should be calibrated with known mineral and rock physical properties. Seismic properties calculated from the crystallographic preferred orientation (CPO) and laboratory measurements on representative core material allow us to quantify the interpretations from seismic data. The challenge of such calibrations lies in the non-unique interpretation of seismic data. A large catalogue of physical rock properties is therefore useful, with as many constraining geophysical parameters as possible (including anisotropy and Vp/Vs ratio). We present new CPO data and modelled seismic properties for amphibolite and greenschist grade rocks representing the orogenic wedge in the Central Scandinavian Caledonides. Samples were collected from outcrops in the field and from a 2.5 km long drill core, which penetrated an amphibolite-grade allochthonous unit composed of meta-sedimentary and meta-igneous rocks, as well as mica and chlorite-rich mylonites. The textural data was acquired using large area electron backscatter diffraction (EBSD) maps, and the chemical composition of minerals obtained by energy dispersive x-ray (EDS). Based on the texture data, we compare and evaluate some of the existing methods to calculate texture-based seismic properties of rocks. The suite of samples consists of weakly anisotropic rocks such as felsic gneiss and calc-silicates, and more anisotropic amphibolite, metagabbro, mica-schist. The newly acquired dataset provides a range of seismic properties that improves compositional and structural characterization of deformed middle and lower crust.

  13. Diverse microbially induced sedimentary structures from 1 Ga lakes of the Diabaig Formation, Torridon Group, northwest Scotland

    NASA Astrophysics Data System (ADS)

    Callow, Richard H. T.; Battison, Leila; Brasier, Martin D.

    2011-08-01

    The siliciclastic lacustrine rocks of the ~ 1000 Ma Diabaig Formation, northwest Scotland, contain a remarkable diversity of macroscopic structures on bedding planes that can be compared with various kinds of microbially induced sedimentary structures (MISS). Field sedimentological investigations, combined with laboratory analysis of bedding planes and petrographic study of thin sections have allowed us to characterise a range of depositional environments and document the spectrum of biological structures. MISS are reported from frequently subaerial environments, through commonly submerged facies, and down to permanently sub-wavebase settings. Palaeoenvironmental conditions (water depth, exposure, hydrodynamic energy) control the distribution of MISS within these facies. This demonstrates that mat-forming microbial communities were arguably well adapted to low light levels or periodic exposure. Some MISS from the Diabaig Formation are typical of Precambrian microbial mats, including reticulate fabrics and 'old elephant skin' textures. In addition to these, a number of new and unusual fabrics of putative microbial origin are described, including linear arrays of ridges and grooves (cf. 'Arumberia') and discoidal structures that are comparable with younger Ediacaran fossils such as Beltanelliformis. These observations indicate that benthic microbial ecosystems were thriving in freshwater lake systems ~ 1000 Ma, and indicate how microbially induced sedimentary structures may be applied as facies indicators for Proterozoic lacustrine environments. The discovery of structures closely resembling Ediacaran fossils (cf. Beltanelliformis) also serves to highlight the difficulty of interpreting simple discoidal bedding plane structures as metazoan fossils.

  14. Maps and diagrams showing acoustic and textural characteristics and distribution of bottom sedimentary environments, Boston Harbor and Massachusetts Bay

    USGS Publications Warehouse

    Knebel, Harley J.; Circe, Ronald C.

    1995-01-01

    This report illustrates, describes, and briefly discusses the acoustic and textural characteristics and the distribution of bottom sedimentary environments in Boston Harbor and Massachusetts Bay. The study is an outgrowth of a larger research program designed to understand the regional processes that distribute sediments and related contaminants in the area. The report highlights the major findings presented in recent papers by Knebel and others (1991), Knebel, (1993), and Knebel and Circe (1995). The reader is urged to consult the full text of these earlier papers for a more definitive treatment of the data and for appropriate supporting references.

  15. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by tectonic domes or shear zones and also suggest syndeformational ore deposition, possibly related to the Youjiang fault system. Several sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area also are of the red earth-type and Au grades have been concentrated and enhanced during episodes of deep weathering. ?? 2006 Elsevier B.V. All rights reserved.

  16. Resolving structural influences on water-retention properties of alluvial deposits

    USGS Publications Warehouse

    Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.

    2006-01-01

    With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.

  17. Stratigraphy of the Morrison and related formations, Colorado Plateau region, a preliminary report

    USGS Publications Warehouse

    Craig, Lawrence C.; ,

    1955-01-01

    Three subdivisions of the Jurassic rocks of the Colorado Plateau region are: the Glen Canyon group, mainly eolian and fluvial sedimentary rocks; the San Rafael group, marine and marginal marine sedimentary rocks; and the Morrison formation, fluvial and lacustrine sedimentary rocks. In central and eastern Colorado the Morrison formation has not been differ- entiated into members. In eastern Utah, northeastern Arizona, northwestern New Mexico, and in part of western Colorado, the Morrison may be divided into a lower part and an upper part; each part has two members which are di1Ierentiated on a lithologic basis. Where differentiated, the lower part of the Morrison consists either of the Salt Wash member or the Recapture member or both; these are equivalent in age and inter tongue and intergrade over a broad area in the vicinity of the Four Corners area of New Mexico, Colorado, Arizona, and Utah. The Salt Wash member is present in eastern Utah and parts of western Colorado, north- eastern Arizona, and northwestern New Mexico. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams diverging to the north and east from an apex in south-central Utah. The major source area of the Salt Wash was to the southwest of south-central Utah, probably in west-central Arizona and southeastern California. The member was derived mainly from sedimentary rocks. The Salt Wash deposits grade from predomi- nantly coarse texture at the apex of the 'fan' to predominantly flne texture at the margin of the 'fan'. The Salt Wash member has been arbitrarily divided into four facies: a con- glomera tic sandstone facies, a sandstone and mudstone facies, a claystone and lenticular sandstone facies, and a claystone and limestone facies. The Recapture member of the Morrison formation is present in northeastern Arizona, northwestern New Mexico, and small areas of southeastern Utah and southwestern Colorado near the Four Corners. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Recap- ture deposits grade from predominantly coarse texture sedimentary rocks to predominantly fine texture and have been arbitrarily divided into three facies: a conglomeratic sandstone facies, a sandstone facies, and a claystone and sandstone facies. The distribution of the facies indicates that the major source area of the Recapture was south of Gallup, N. Mex., probably in west-central New Mexico. The Recapture was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The upper part of the Morrison formation consists of the Westwater Canyon member and the Brushy Basin member. The Westwater Canyon member forms the lower portion of the upper part of the Morrison in northeastern Arizona, northwestern New Mexico, and places in southeastern Utah and southwestern Colorade near the Four Corners, and it intertongues and intergrades northward into the Brushy Basin member. The Westwater Canyon member was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Westwater deposits grade from predominantly coarse-textured sedimentary rocks to somewhat finer textured sedimentary rocks, and have been arbitrarily divided into two facies: a conglomeratic sandstone facies and a sandstone facies. The distribution of the facies indicates that the major source area of the Westwater was south of Gallup, N. Mex., probably in west-central New Mexico. The Westwater was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The similarity of the distribution and composition of the Westwater to the Recapture indicates that the Westwater represents essentially a continuation of deposition on the Recapture 'fan'; the Westwater contains, however, considerably coarser materials. Whereas the S

  18. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  19. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; hide

    2014-01-01

    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  20. Sedimentary Geology Context and Challenges for Cyberinfrastructure Data Management

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Budd, D. A.

    2014-12-01

    A cyberinfrastructure data management system for sedimentary geology is crucial to multiple facets of interdisciplinary Earth science research, as sedimentary systems form the deep-time framework for many geoscience communities. The breadth and depth of the sedimentary field spans research on the processes that form, shape and affect the Earth's sedimentary crust and distribute resources such as hydrocarbons, coal, and water. The sedimentary record is used by Earth scientists to explore questions such as the continental crust evolution, dynamics of Earth's past climates and oceans, evolution of the biosphere, and the human interface with Earth surface processes. Major challenges to a data management system for sedimentary geology are the volume and diversity of field, analytical, and experimental data, along with many types of physical objects. Objects include rock samples, biological specimens, cores, and photographs. Field data runs the gamut from discrete location and spatial orientation to vertical records of bed thickness, textures, color, sedimentary structures, and grain types. Ex situ information can include geochemistry, mineralogy, petrophysics, chronologic, and paleobiologic data. All data types cover multiple order-of-magnitude scales, often requiring correlation of the multiple scales with varying degrees of resolution. The stratigraphic framework needs dimensional context with locality, time, space, and depth relationships. A significant challenge is that physical objects represent discrete values at specific points, but measured stratigraphic sections are continuous. In many cases, field data is not easily quantified, and determining uncertainty can be difficult. Despite many possible hurdles, the sedimentary community is anxious to embrace geoinformatic resources that can provide better tools to integrate the many data types, create better search capabilities, and equip our communities to conduct high-impact science at unprecedented levels.

  1. Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.; hide

    2015-01-01

    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.

  2. Geological and hydrogeological investigation in West Malaysia

    NASA Technical Reports Server (NTRS)

    Ahmad, J. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The broad synoptic view of the images allowed easy identification of circular features and major fault traces in low lying areas. Sedimentary units were delineated in accordance with the prevailing rock types and where applicable the folding characteristics. Igneous units could easily be differentiated by tone, degree of fracturing, texture, and drainage pattern. The larger fold structures, anticlinoriums and synclinoriums, of the younger sediments on the eastern edge of the central belt could also be easily delineated.

  3. Surface Textural Analysis of Quartz Grains from Modern Point Bar Deposits in Lower Reaches of the Yellow River

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming

    2018-01-01

    The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.

  4. Heterogeneous vesiculation of 2011 El Hierro xeno-pumice revealed by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Berg, S. E.; Troll, V. R.; Deegan, F. M.; Burchardt, S.; Krumbholz, M.; Mancini, L.; Polacci, M.; Carracedo, J. C.; Soler, V.; Arzilli, F.; Brun, F.

    2016-12-01

    During the first week of the 2011 El Hierro submarine eruption, abundant light-coloured pumiceous, high-silica volcanic bombs coated in dark basanite were found floating on the sea. The composition of the light-coloured frothy material (`xeno-pumice') is akin to that of sedimentary rocks from the region, but the textures resemble felsic magmatic pumice, leaving their exact mode of formation unclear. To help decipher their origin, we investigated representative El Hierro xeno-pumice samples using X-ray computed microtomography for their internal vesicle shapes, volumes, and bulk porosity, as well as for the spatial arrangement and size distributions of vesicles in three dimensions (3D). We find a wide range of vesicle morphologies, which are especially variable around small fragments of rock contained in the xeno-pumice samples. Notably, these rock fragments are almost exclusively of sedimentary origin, and we therefore interpret them as relicts an the original sedimentary ocean crust protolith(s). The irregular vesiculation textures observed probably resulted from pulsatory release of volatiles from multiple sources during xeno-pumice formation, most likely by successive release of pore water and mineral water during incremental heating and decompression of the sedimentary protoliths.

  5. Textural characteristics and sedimentary environment of sediment at eroded and deposited regions in the severely eroded coastline of Batu Pahat, Malaysia.

    PubMed

    Wan Mohtar, Wan Hanna Melini; Nawang, Siti Aminah Bassa; Abdul Maulud, Khairul Nizam; Benson, Yannie Anak; Azhary, Wan Ahmad Hafiz Wan Mohamed

    2017-11-15

    This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sea-Floor geology and character of Eastern Rhode Island Sound West of Gay Head, Massachusetts

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Ackerman, S.D.; Blackwood, D.S.; Irwin, B.J.; Schaer, J.D.; Forrest, M.R.

    2011-01-01

    Gridded multibeam bathymetry covers approximately 102 square kilometers of sea floor in eastern Rhode Island Sound west of Gay Head, Massachusetts. Although originally collected for charting purposes during National Oceanic and Atmospheric Administration hydrographic survey H11922, these acoustic data and the sea-floor stations subsequently occupied to verify them (1) show the composition and terrain of the seabed, (2) provide information on sediment transport and benthic habitat, and (3) are part of an expanding series of studies that provide a fundamental framework for research and management activities (for example, windfarms and fisheries) along the Massachusetts inner continental shelf. Most of the sea floor in the study area has an undulating to faintly rippled appearance and is composed of bioturbated muddy sand, reflecting processes associated with sediment sorting and reworking. Shallower areas are composed of rippled sand and, where small fields of megaripples are present, indicate sedimentary environments characterized by processes associated with coarse bedload transport. Boulders and gravel were found on the floors of scour depressions and on top of an isolated bathymetric high where erosion has removed the Holocene marine sediments and exposed the underlying relict lag deposits of Pleistocene drift. The numerous scour depressions, which formed during storm-driven events, result in the juxtaposition of sea-floor areas with contrasting sedimentary environments and distinct gravel, sand, and muddy sand textures. This textural heterogeneity in turn creates a complex patchwork of habitats. Our observations of local variations in community structure suggest that this small-scale textural heterogeneity adds dramatically to the sound-wide benthic biological diversity.

  7. Revealing Roosevelt

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image mosaic from the microscopic imager aboard NASA's Mars Exploration Rover Opportunity shows detailed structure of a small fin-like structure dubbed 'Roosevelt,' which sticks out from the outcrop pavement at the edge of 'Erebus Crater.'

    Roosevelt lines a fracture in the local pavement and scientists hypothesize that it is a fracture fill, formed by water that percolated through the fracture. This would mean the feature is younger than surrounding rocks and, therefore, might provide evidence of water that was present some time after the formation of Meridiani Planum sedimentary rocks.

    The image shows fine laminations (layers about 1 millimeter or .04 inch thick) that run parallel to the axis of the fin. Some of the textures visible in the image likely indicate that minerals precipitated from the outcrop rocks, but sediment grains are also apparent.

    The three frames combined into this mosaic were taken during Opportunity's 727th Martian day, or sol (Feb. 8, 2006). In subsequent days, the rover completed textural and chemical inspection of Roosevelt to help the science team understand this structure's significance for Martian history.

  8. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Vogel, Marilyn B.; Des Marais, David J.; Parenteau, Mary N.; Jahnke, Linda L.; Turk, Kendra A.; Kubo, Michael D. Y.

    2010-01-01

    Gypsum (CaSO 4·2H 2O) deposits from a range of sedimentary environments at Guerrero Negro, Baja California Sur, Mexico were investigated for microscale texture and composition in order to differentiate features formed under substantial microbial influence from those for which microbial effects were relatively minor or absent. Gypsum deposits were classified according to their sedimentary environment, textures, crystal habit, brine composition and other geochemical factors. The environments studied included subaqueous sediments in anchialine pools and in solar salterns, as well as subsurface sediments of mudflats and saltpans. Gypsum that developed in the apparent absence of biofilms included crystals precipitated in the water column and subsedimentary discs that precipitated from phreatic brines. Subsedimentary gypsum developed in sabkha environments exhibited a sinuous microtexture and poikilitically enclosed detrital particles. Water column precipitates had euhedral prismatic habits and extensive penetrative twinning. Gypsum deposits influenced by biofilms included bottom nucleated crusts and gypsolites developing in anchialine pools and saltern ponds. Gypsum precipitating within benthic biofilms, and in biofilms within subaerial sediment surfaces provided compelling evidence of biological influences on crystal textures and habits. This evidence included irregular, high relief surface textures, accessory minerals (S°, Ca-carbonate, Sr/Ca-sulfate and Mg-hydroxide) and distinctive crystal habits such as equant forms and crystals having distorted prism faces.

  9. Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba-F-Fe deposits (France)

    NASA Astrophysics Data System (ADS)

    Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude

    2003-02-01

    This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented by hydrothermal goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the hydrothermal formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the hydrothermal mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of hydrothermal fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures and in sand porosity.

  10. Microprobe monazite geochronology: new techniques for dating deformation and metamorphism

    NASA Astrophysics Data System (ADS)

    Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.

    2003-04-01

    High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic dating techniques. They allow geochronology to be incorporated into the microstructural analytical process, resulting in a new level of integration of time (t) into P-T-D histories.

  11. Lithologic and hydraulic controls on network-scale variations in sediment yield: Big Wood and North Fork Big Lost Rivers, Idaho

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Pitlick, J.; Smith, M. E.

    2008-12-01

    Channel morphology and sediment textures in streams and rivers are a product of the flux of sediment and water conveyed to channel networks. Differences in sediment supply between watersheds should thus be reflected by differences in channel and bed-material properties. In order to address this directly, field measurements of channel morphology, substrate lithology, and bed sediment textures were made at 35 sites distributed evenly across two adjacent watersheds in south-central Idaho, the Big Wood River (BW) and N. Fork Big Lost River (NBL). Measurements of sediment transport indicate a five-fold difference in sediment yields between these basins, despite their geographic proximity. Three dominant lithologic modes (an intrusive and extrusive volcanic suite and a sedimentary suite) exist in different proportions between these basins. The spatial distribution of lithologies exhibits a first-order control on the variation in sediment supply, bed sediment textures, and size distribution of the bed load at the basin outlet. Here we document the coupled hydraulic and sedimentologic structuring of these stream channel networks to differences in sediment supply. The results show that width and depth are remarkably similar between the two basins across a range in channel gradient and drainage area, with the primary difference being decreased bed armoring in the NBL. As a result, dimensionless shear stress (τ*) increases downstream in the NBL with an average value of 0.073, despite declining slope. The opposite is true in the BW where τ* averages 0.048. Lithologic characterization of the substrate indicates that much of the discrepancy in bed armoring can be attributed to an increasing downstream supply of resistant intrusive granitic rocks to the BW, whereas the NBL is dominated by erodible extrusive volcanic and sedimentary rocks. A simple modeling approach using an excess shear stress-based bed load transport equation and observed channel geometry shows that subtle changes in sediment texture can reproduce the marked difference in sediment yield between basins. This suggests that in gravel-bed streams the flux of sediment through the channel network is governed as much by textural changes as by morphological changes, and that these textural changes are tightly coupled to source area lithology.

  12. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-12-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  13. Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Colombia

    USGS Publications Warehouse

    McKee, Edwin Dinwiddie

    1989-01-01

    Most sedimentary structures represented in sand bodies of the Rio Orinoco are tabular-planar cross-strata which, together with some wedge-planar cross-strata, are the products of sand-wave deposition. Locally, in areas of river meander where point bars characteristically form, trough structures forming festoon patterns are numerous. At a few localities, sets of nearly horizontal strata occur between tabular-planar sets and are interpreted to be the deposits of very fast currents of the upper flow regime; elsewhere, uncommon lenses and beds of silt, clay, or organic matter consisting of leaves and twigs, seem to be the result of quiet-water settling through gravity. By far the most common grain size represented in the tabular-planar and wedge-planar cross-strata of the sandwave deposits is medium sand (? - ? millimeter) as determined by screen analyses. Many samples, however, also contain moderate quantities of coarse or very coarse sand. Eolian dunes on top of the sand-wave deposits are dominantly fine grained. The river channel sands were determined to be largely moderately well sorted, although in some places they were mostly well sorted, and in others, mostly moderately sorted.

  14. To what extent can intracrater layered deposits that lack clear sedimentary textures be used to infer depositional environments?

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; Kah, Linda C.

    2015-03-01

    Craters within Arabia Terra, Mars, contain hundreds of meters of layered strata showing systematic alternation between slope- and cliff-forming units, suggesting either rhythmic deposition of distinct lithologies or similar lithologies that experienced differential cementation. On Earth, rhythmically deposited strata can be examined in terms of stratal packaging, wherein the interplay of tectonics, sediment deposition, and base level (i.e., the position above which sediment accumulation is expected to be temporary) result in changes in the amount of space available for sediment accumulation. These predictable patterns of sediment deposition can be used to infer changes in basin accommodation regardless of the mechanism of deposition (e.g. fluvial, lacustrine, or aeolian). Here, we analyze sedimentary deposits from three craters (Becquerel Crater, Danielson Crater, Crater A) in Arabia Terra. Each crater contains layered deposits that are clearly observed in orbital images. Although orbital images are insufficient to specifically determine the origin of sedimentary deposits, depositional couplets can be interpreted in terms of potential accommodation space available for deposition, and changes in the distribution of couplet thickness through stratigraphy can be interpreted in terms of changing base level and the production of new accommodation space. Differences in stratal packaging in these three craters suggest varying relationships between sedimentary influx, sedimentary base level, and concomitant changes in accommodation space. Previous groundwater upwelling models hypothesize that layered sedimentary deposits were deposited under warm climate conditions of early Mars. Here, we use observed stacking patterns to propose a model for deposition under cold climate conditions, wherein episodic melting of ground ice could raise local base level, stabilize sediment deposition, and result in differential cementation of accumulated strata. Such analysis demonstrates that a first-order understanding of sedimentary deposition and accumulation-despite a lack of textural information that inhibits interpretation of depositional mechanism-can provide insight into potentially changeable depositional conditions of early Mars.

  15. Remnant colloform pyrite at the haile gold deposit, South Carolina: A textural key to genesis

    USGS Publications Warehouse

    Foley, N.; Ayuso, R.A.; Seal, R.R.

    2001-01-01

    Auriferous iron sulfide-bearing deposits of the Carolina slate belt have distinctive mineralogical and textural features-traits that provide a basis to construct models of ore deposition. Our identification of paragenetically early types of pyrite, especially remnant colloform, crustiform, and layered growth textures of pyrite containing electrum and pyrrhotite, establishes unequivocally that gold mineralization was coeval with deposition of host rocks and not solely related to Paleozoic tectonic events. Ore horizons at the Haile deposit, South Carolina, contain many remnants of early pyrite: (1) fine-grained cubic pyrite disseminated along bedding; (2) fine- grained spongy, rounded masses of pyrite that may envelop or drape over pyrite cubes; (3) fragments of botryoidally and crustiform layered pyrite, and (4) pyritic infilling of vesicles and pumice. Detailed mineral chemistry by petrography, microprobe, SEM, and EDS analysis of replaced pumice and colloform structures containing both arsenic compositional banding and electrum points to coeval deposition of gold and the volcanic host rocks and, thus, confirms a syngenetic origin for the gold deposits. Early pyrite textures are present in other major deposits of the Carolina slate belt, such as Ridgeway and Barite Hill, and these provide strong evidence for models whereby the sulfide ores formed prior to tectonism. The role of Paleozoic metamorphism was to remobilize and concentrate gold and other minerals in structurally prepared sites. Recognizing the significance of paragenetically early pyrite and gold textures can play an important role in distinguishing sulfide ores that form in volcanic and sedimentary environments from those formed solely by metamorphic processes. Exploration strategies applied to the Carolina slate belt and correlative rocks in the eastern United States in the Avalonian basement will benefit from using syngenetic models for gold mineralization.

  16. Utilizing borehole electrical images to interpret lithofacies of fan-delta: A case study of Lower Triassic Baikouquan Formation in Mahu Depression, Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Zhang, Changmin; Tang, Yong; Qu, Jianhua; Guo, Xudong; Sun, Yuqiu; Zhu, Rui; Zhou, Yuanquan (Nancy)

    2017-11-01

    Large-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T1b1 and T1b2, but sandstones, siltstones and mudstones are more developed in T1b3. The main sedimentary textures are massive beddings, cross beddings and scour-and-fill structures. Parallel and horizontal beddings are more developed in T1b3 relatively. On integrated analysis of the lithology and sedimentary structure, eight lithofacies from electrical images, referred to as image lithofacies, is established for the fan-deltas. Granules to coarse-pebbles within massive beddings, granules to coarse-pebbles within cross and parallel beddings, siltstones within horizontal and massive beddings are the most developed lithofacies respectively in T1b1, T1b2 and T1b3. It indicates a gradual rise of the lake level of Mahu depression during the Early Triassic, with the fan-delta aprons retrograding towards to the margin of the basin. Therefore, the borehole electrical imaging log compensate for the limitation of cores of the Baikouquan Formation, providing an effective new approach to interpret the lithofacies of fan-delta.

  17. Basin in the West Candor Chasma Layered Deposits

    NASA Image and Video Library

    2013-08-21

    This basin in Ceti Mensa, as seen by by NASA Mars Reconnaissance Orbiter, exposes concentric rings in the sedimentary layers. Dark sand ripples and textures in the bedrock suggesting wind scouring are also apparent.

  18. Petrology and sedimentology of the Horlick Formation (Lower Devonian), Ohio Range, Transantarctic Mountains

    USGS Publications Warehouse

    McCartan, Lucy; Bradshaw, Margaret A.

    1987-01-01

    The Horlick Formation of Early Devonian age is as thick as 50 m and consists of subhorizontal, interbedded subarkosic sandstone and chloritic shale and mudstone. The Horlick overlies an erosion surface cut into Ordovician granitic rocks and is, in turn, overlain by Carboniferous and Permian glacial and periglacial deposits. Textures, sedimentary structures, and ubiquitous marine body fossils and animal traces suggest that the Horlick was deposited on a shallow shelf having moderate wave energy and a moderate tidal range. The source terrane probably lay to the north, and longshore transport was toward the west.

  19. Stromatolite- and coated-grain-bearing carbonate rocks of the western Brooks Range: A section in Geologic studies in Alaska by the U.S. Geological Survey during 1987

    USGS Publications Warehouse

    Dumoulin, Julie A.

    1988-01-01

    Carbonate rocks characterized by locally abundant stromatolites and coated grains have been found at several localities in the Baird Mountains and Ambler River quadrangles (fig. 1). These rocks are part of a belt of metasedimentary and metaigneous rocks that constitutes the southwestern flank of the Brooks Range; all are included in the parautochthon (Schwatka sequence) of Mayfield and others (1983). The rocks have been deformed and metamorphosed to blueschist and greenschist facies, but primary textures and sedimentary structures are locally well preserved.

  20. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    USGS Publications Warehouse

    Mangold, Nicolas; Forni, Olivier; Dromart, G.; Stack, K.M.; Wiens, Roger C.; Gasnault, Olivier; Sumner, Dawn Y.; Nachon, Marion; Meslin, Pierre-Yves; Anderson, Ryan B.; Barraclough, Bruce; Bell, J.F.; Berger, G.; Blaney, D.L.; Bridges, J.C.; Calef, F.; Clark, Brian R.; Clegg, Samuel M.; Cousin, Agnes; Edgar, L.; Edgett, Kenneth S.; Ehlmann, B.L.; Fabre, Cecile; Fisk, M.; Grotzinger, John P.; Gupta, S.C.; Herkenhoff, Kenneth E.; Hurowitz, J.A.; Johnson, J. R.; Kah, Linda C.; Lanza, Nina L.; Lasue, Jeremie; Le Mouélic, S.; Lewin, Eric; Malin, Michael; McLennan, Scott M.; Maurice, S.; Melikechi, Noureddine; Mezzacappa, Alissa; Milliken, Ralph E.; Newsome, H.L.; Ollila, A.; Rowland, Scott K.; Sautter, Violaine; Schmidt, M.E.; Schroder, S.; D'Uston, C.; Vaniman, Dave; Williams, R.A.

    2015-01-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  1. Stack of Layers at 'Payson' in Meridiani Planum

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The stack of fine layers exposed at a ledge called 'Payson' on the western edge of 'Erebus Crater' in Mars' Meridiani Planum shows a diverse range of primary and secondary sedimentary textures formed billions of years ago. These structures likely result from an interplay between windblown and water-involved processes.

    The panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity acquired the exposures for this image on the rover's 749th Martian day (March 3, 2006) This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.

  2. Textural and mineralogical characteristics of microbial fossils associated with modern and ancient iron (oxyhydr)oxides: terrestrial analogue for sediments in Gale Crater.

    PubMed

    Potter-McIntyre, Sally L; Chan, Marjorie A; McPherson, Brian J

    2014-01-01

    Iron (oxyhydr)oxide microbial mats in modern to ∼100 ka tufa terraces are present in a cold spring system along Ten Mile Graben, southeastern Utah, USA. Mats exhibit morphological, chemical, and textural biosignatures and show diagenetic changes that occur over millennial scales. The Jurassic Brushy Basin Member of the Morrison Formation in the Four Corners region of the USA also exhibits comparable microbial fossils and iron (oxyhydr)oxide biosignatures in the lacustrine unit. Both the modern spring system and Brushy Basin Member represent alkaline, saline, groundwater-fed systems and preserve diatoms and other similar algal forms with cellular elaboration. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se, P) are associated with microbial fossils in modern and ancient iron (oxyhydr)oxides and may be potential markers for biosignatures. The presence of ferrihydrite in ∼100 ka fossil microbial mats and Jurassic rocks suggests that this thermodynamically unstable mineral may also be a potential biomarker. One of the most extensive sedimentary records on Mars is exposed in Gale Crater and consists of non-acidic clays and sulfates possibly of lacustrine origin. These terrestrial iron (oxyhydr)oxide examples are a valuable analogue because of similar iron- and clay-rich host rock compositions and will help (1) understand diagenetic processes in a non-acidic, saline lacustrine environment such as the sedimentary rocks in Gale Crater, (2) document specific biomediated textures, (3) demonstrate how biomediated textures might persist or respond to diagenesis over time, and (4) provide a ground truth library of textures to explore and compare in extraterrestrial iron (oxyhydr)oxides, where future explorations hope to detect past evidence of life.

  3. Constraining the Texture and Composition of Pore-Filling Cements at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Siebach, K. L.; Grotzinger, J. P.; McLennan, S. M.; Hurowitz, J. A.; Ming, D. W.; Vaniman, D. T.; Rampe, E. B.; Blaney, D. L.; Kah, L. C.

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity has encountered a wide variety of sedimentary rocks deposited in fluvio-lacuestrine sequences at the base of Gale Crater. The presence of sedimentary rocks requires that initial sediments underwent diagenesis and were lithified. Lithification involves sediment compaction, cementation, and re-crystallization (or authigenic) processes. Analysis of the texture and composition of the cement can reveal the environmental conditions when the cements were deposited, enabling better understanding of early environments present within Gale Crater. The first step in lithification is sediment compaction. The Gale crater sediments do not show evidence for extensive compaction prior to cementation; the Sheepbed mudstone in Yellowknife Bay (YKB) has preserved void spaces ("hollow nodules"), indicating that sediments were cemented around the hollow prior to compaction, and conglomerates show imbrication, indicating minimal grain reorganization prior to lithification. Furthermore, assuming the maximum burial depth of these sediments is equivalent to the depth of Gale Crater, the sediments were never under more than 1 kb of pressure, and assuming a 15 C/km thermal gradient in the late Noachian, the maximum temperature of diagenesis would have been approximately 75 C. This is comparable to shallow burial diagenetic conditions on Earth. The cementation and recrystallization components of lithification are closely intertwined. Cementation describes the precipitation of minerals between grains from pore fluids, and recrystallization (or authigenesis) is when the original sedimentary mineral grains are altered into secondary minerals. The presence of authigenic smectites and magnetite in the YKB formation suggests that some recrystallization has taken place. The relatively high percentage of XRD-amorphous material (25-40%) detected by CheMin suggests that this recrystallization may be limited in scope, and therefore may not contribute significantly to the cementing material. However, relatively persistent amorphous components could exist in the Martian environment (e.g. amorphous MgSO4), so recrystallization, including loss of crystallinity, cannot yet be excluded as a method of cementation. In order to describe the rock cementation, both the rock textures and their composition must be considered. Here, we attempt to summarize the current understanding of the textural and compositional aspects of the cement across the rocks analyzed by Curiosity to this point.

  4. Synsedimentary ash rains and paleoenvironmental conditions during the deposition of the Chachil Formation (Pliensbachian) at its type locality, Neuquén Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Armella, Claudia; Leanza, Héctor A.; Corfu, Fernando

    2016-11-01

    A detailed sedimentological analysis of the so called "Chachil Limestones" at its type locality around the Mirador del Chachil area, southwestern Neuquén province, Argentina, is presented in this paper for the first time. It is based on a macro/microfacial analysis and their environmental interpretation by means on texture, fabric, bioclasts, intrabasinal and extrabasinal grain amounts, sedimentary structures, bioturbations and hydro-dynamism. Because of the recognition of different facies associations, but no pure limestones, it is more suitable to refer these sediments as the Chachil Formation. The depositional environment of this unit is interpreted to correspond to an internal platform dominated by tides, with carbonate sedimentation disturbed by repeated explosive volcanic episodes, which reduced the sedimentation space, causing retrogradation of the sedimentary system and coastal onlap. In addition, a new recalibration of the U-Pb zircon dating used for the geochronological analysis reveals a small change with regard to previous information that has been used to recalculate the data, is presented in this paper.

  5. Determination of petrophysical properties of sedimentary rocks by optical methods

    NASA Astrophysics Data System (ADS)

    Korte, D.; Kaukler, D.; Fanetti, M.; Cabrera, H.; Daubront, E.; Franko, M.

    2017-04-01

    Petrophysical properties of rocks (thermal diffusivity and conductivity, porosity and density) as well as the correlation between them are of great importance for many geoscientific applications. The porosity of the reservoir rocks and their permeability are the most fundamental physical properties with respect to the storage and transmission of fluids, mainly oil characterization. Accurate knowledge of these parameters for any hydrocarbon reservoir is required for efficient development, management, and prediction of future performance of the oilfield. Thus, the porosity and permeability, as well as the chemical composition must be quantified as precisely as possible. This should be done along with the thermal properties, density, conductivity, diffusivity and effusivity that are intimately related with them. For this reason, photothermal Beam Deflection Spectrometry (BDS) technique for determination of materials' thermal properties together with other methods such as Energy Dispersive X-ray Scanning Electron Microscopy (SEM-EDX) for determining the chemical composition and sample structure, as well as optical microscopy to determine the particles size, were applied for characterization of sedimentary rocks. The rocks were obtained from the Andes south flank in the Venezuela's western basin. The validation of BDS applicability for determination of petrophysical properties of three sedimentary rocks of different texture and composition (all from Late Cretaceous associated with the Luna, Capacho and Colón-Mito Juan geological formations) was performed. The rocks' thermal properties were correlated to the microstructures and chemical composition of the examined samples.

  6. General Approach for Rock Classification Based on Digital Image Analysis of Electrical Borehole Wall Images

    NASA Astrophysics Data System (ADS)

    Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.

    2005-12-01

    Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.

  7. Primary arsenic(V) preserved in 3.26 billion-year-old shallow marine cherts of the Fig Tree Group demonstrates a complete Paleoarchean arsenic cycle driven by photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Myers, K. D.; Tice, M. M.; Bostick, B. C.

    2016-12-01

    Microbial arsenic (As) redox cycling is hypothesized to have been widespread in oxygen-free Archean environments, yet our understanding of Archean As cycles is hindered by a poor sedimentary record of As. Concentrations of up to 1.6 wt % As were discovered in chert clasts of a fan delta conglomerate sourced from shallow-water coastal environments in the 3.26-3.23 Ga Fig Tree Group of the Barberton Greenstone Belt, South Africa. Arsenic is associated at the outcrop-scale with Fe-bearing conglomerate pebbles and underlying banded ferruginous cherts, whereas low-Fe chert clasts, underlying low-Fe banded black and white cherts, bedded barites, and overlying ash deposits lack As. Bulk As and Fe K-edge X-ray absorption spectroscopy and 1-100 μm scale μ-X-ray fluorescence mapping were used to determine the abundance, oxidation state, and mineralogy of As in relation to sedimentary textures and bulk Fe mineralogy. Arsenic concentration is strongly linked to lithology: hematite (Fe2O3)-rich pebbles contain higher Fe:As ratios ( 10:1-100:1) than sideritic pebbles with little to no Fe2O3 (Fe:As 1:1-10:1). Arsenopyrite (FeAsS), orpiment (As2S3), As(III), and As(V) line pre-erosional textures and early dewatering structures. Significantly, As(V) is associated with hematite, pyrite, and siderite but not with products of recent oxidative weathering such as goethite. These results are best explained by As(V) adsorption to Fe-oxide phases during deposition or very early diagenesis, prior to silicification. Microbially-mediated SO42- and As(V) reduction led to As2S3 precipitation, known to occur in modern reducing and arsenic-bearing aquifers. Later metamorphic alteration of As2S3 led to partial replacement, likely isomorphously, with FeAsS. The presence of minerals formed during different stages of As(V) reduction associated with early sedimentary textures show that a complete biogeochemical As redox cycle was possible by 3.2 Ga. The As(V)/As(III) pair has a more positive reduction potential than the Fe(III)/Fe(II) pair, and As(V) is not produced in significant abundance by photochemical processes at seawater pH. The Fig Tree As cycle must therefore have been driven by photosynthetic bacteria, either indirectly through O2 production, or more likely directly by As(III)-oxidizing anoxygenic phototrophs.

  8. Mafic subvolcanic intrusions and their petrologic relation with the volcanism in the south hinge Torres Syncline, Paraná-Etendeka Igneous Province, southern Brazil

    NASA Astrophysics Data System (ADS)

    Sarmento, Carla Cecília Treib; Sommer, Carlos Augusto; Lima, Evandro Fernandes

    2017-08-01

    The hypabyssal intrusions investigated in this study are located in the east-central region of the state of Rio Grande do Sul, in the south hinge of the Torres Syncline. The intrusions comprise twenty-four dikes and ten sills, intruding in ponded pahoehoe, compound pahoehoe, rubbly and acidic lava flows of the south sub-Province of the Paraná Igneous Province and the sedimentary rocks of the Botucatu, Pirambóia, Santa Maria and Rio do Rasto Formations, on the edge of the Paraná Basin. The intrusive dikes in the flows have preferred NNW-SSE direction and the intrusive dikes in the sedimentary rocks have preferred NE-SW direction. Regarding the morphology, the dikes were separated into two different groups: symmetrical and asymmetrical. The small variation in facies is characterized by fine to aphanitic equigranular rocks. The rocks were divided into two types: Silica Supersaturated Tholeiite (SST) - dikes and sills consisting of plagioclase and clinopyroxene as essential minerals, with some olivine and felsic mesostasis, predominant intergranular texture and subordinate subophitic texture; and Silica Saturated Olivine Tholeiite (SSOT) - dikes consisting mainly of plagioclase, clinopyroxene and olivine, and predominant ophitic texture. The major and trace element geochemistry allows classifying these hypabyssal bodies as basalts (SSOT), basaltic andesites and trachyandesites (TSS) of tholeiitic affinity. The mineral chemistry data and the REE behavior, combined with the LILE and HFSE patterns, similar to the flows and low-Ti basic intrusions of southern Brazil and northwestern Namibia allow suggesting that these dikes and sills were part of a feeder system of the magmatism in the Paraná-Etendeka Igneous Province. The preferred direction of the intrusive dikes in the sedimentary rocks of the Paraná Basin coincides with tectonic-magmatic lineaments related to extensional processes and faulting systems that served as vents for dike swarms parallel to the Brazilian coast, with the same direction as the Namibia coast dike swarm. This suggests that these dikes were part of the triple junction system related to the opening of the South Atlantic Ocean. The preferred directions of the intrusive dikes in the lava flows are similar to the directions of the Ponta Grossa and Rio Grande Arcs and the Torres Syncline. They may have been a part of, or been caused by one or more geotectonic cycles that originated these structures. The emplacement process of the asymmetric dikes suggests they were enclosed under the hydraulic fracture model, since they do not follow a pre-existing fracture filling pattern. The emplacement of the sills conforms to the weakness zones of the sedimentary units. Regarding the intrusive dikes in the flows, divided by lithofacies associations, also taking into account the geochemical and petrographic similarities, it is observed that these dikes are part of a supply system of the basic lava flows, stratigraphically positioned above the host lava flows.

  9. Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration

    USGS Publications Warehouse

    Blaney, Diana L.; Wiens, R.C.; Maurice, S.; Clegg, S.M.; Anderson, Ryan; Kah, L.C.; Le Mouélic, S.; Ollila, A.; Bridges, N.; Tokar, R.; Berger, G.; Bridges, J.C.; Cousin, A.; Clark, B.; Dyar, M.D.; King, P.L.; Lanza, N.; Mangold, N.; Meslin, P.-Y.; Newsom, H.; Schroder, S.; Rowland, S.; Johnson, J.; Edgar, L.; Gasnault, O.; Forni, O.; Schmidt, M.; Goetz, W.; Stack, K.; Sumner, D.; Fisk, M.; Madsen, M.B.

    2014-01-01

    A suite of eight rocks analyzed by the Curiosity Rover while it was stopped at the Rocknest sand ripple shows the greatest chemical divergence of any potentially sedimentary rocks analyzed in the early part of the mission. Relative to average Martian soil and to the stratigraphically lower units encountered as part of the Yellowknife Bay formation, these rocks are significantly depleted in MgO, with a mean of 1.3 wt %, and high in Fe, averaging over 20 wt % FeOT, with values between 15 and 26 wt % FeOT. The variable iron and low magnesium and rock texture make it unlikely that these are igneous rocks. Rock surface textures range from rough to smooth, can be pitted or grooved, and show various degrees of wind erosion. Some rocks display poorly defined layering while others seem to show possible fractures. Narrow vertical voids are present in Rocknest 3, one of the rocks showing the strongest layering. Rocks in the vicinity of Rocknest may have undergone some diagenesis similar to other rocks in the Yellowknife Bay Formation as indicated by the presence of soluble calcium phases. The most reasonable scenario is that fine-grained sediments, potentially a mixture of feldspar-rich rocks from Bradbury Rise and normal Martian soil, were lithified together by an iron-rich cement.

  10. Sedimentology and Permafrost Characteristics of Pingo-Like Features (PLFs) from the Beaufort Sea shelf, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Medioli, B. E.; Dallimore, S. R.; Nixon, F. M.; Dallimore, A.; Blasco, S.; Paull, C. K.; McLaughlin, F.; Ussler, W.; Davies, E.

    2004-12-01

    Pingo-like features (PLFs) are rounded positive relief features commonly found on Beaufort Sea shelf, NWT. PLFs occur in water depths from 20 to 200m, are typically a few hundred meters in diameter and rise 10 to 35m above the seafloor. In the fall of 2003, an MBARI-USGS-GSC-DFO coring and geophysical study was undertaken of a number of PLFs. The crests, flanks and moats of 8 PLFs, as well as background shelf sites, were vibra-cored. Upon recovery, core temperatures of moat sediments ranged from 2.0 to -0.5 deg C and no ice bonding was observed. Sediments consisted of dark-olive-grey to black muds with shells. Sedimentary structures were rare with some finely laminated to finely-color-banded beds. Intense bioturbation, in situ marine shells and a lack of terriginous macrofossils suggest moat sediments were deposited in a shallow coastal environment. In some instances, a down core grain size coarsening was observed with higher organic content suggesting a gradational environment towards more lagoonal conditions. Core temperatures from the 8 PLFs were 0 to -1.7 deg C, significantly colder than the moat sediments. Ice-bonded permafrost was encountered within 1m of the seabed with visible ice content up to 40% by volume. Several ice-bonded intervals were preserved frozen for detailed investigation in the lab. The observed ground ice in the cores was quite unique when compared with visible ice forms commonly seen in regional terrestrial sections. The ice gave the core a vuggy texture with individual ice-filled vugs 10 to 200 mm3. Vugs were typically flattened to ovoid. When thawed, the ice produced excess water resulting in a very soft texture. In many cases the vuggy texture was maintained with sediment voids forming where the ice was. PLF crest sediments were massive silty clays with clayey silts and muddy fine sand interbeds. They generally lack sedimentary structures, although this may have been due to sediment structure loss upon thawing. The background seafloor sediments consisted of unfrozen, massive silty sands and sandy silts and were distinct from the crest and moat sediments. In several cores, a sharp transition was noted to well-sorted sands. This lower unit may represent a transgressed terrestrial sequence. Research continues to determine the origin of the PLFs and quantify the role of permafrost and ice formation.

  11. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    NASA Astrophysics Data System (ADS)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  12. Mesozoic clay diagenesis in the Appalachian Plateau

    NASA Astrophysics Data System (ADS)

    Boles, A.; Mulch, A.; van der Pluijm, B.

    2017-12-01

    Integrated investigation of authigenic clays in the Appalachian Plateau of the northeastern US Midcontinent using X-ray goniometry, Rietveld-method based illite polytype analysis, and 40Ar/39Ar geochronology yields novel insights about the structural diagenetic history of the North American sedimentary cover sequence. Texture analysis by High Resolution X-ray Texture Goniometry records the presence of a bedding-parallel diagenetic fabric, corresponding to a burial depth of 2-5 km. New development of polytype modeling using BGMN®, a quantitative X-ray powder diffraction forward modeling and whole-pattern matching program matches mineralic characteristic of illite at those depths and reduces uncertainty estimates in age analysis. Based on dating size fractions, the diagenetic age is constrained to 225-250 Ma (Triassic) by four authigenic illite samples, reflecting protracted, regional diagenesis in the area. Preliminary H isotopic analysis points to a surface-derived diagenetic fluid with δD values ranging from -48 to -72‰ (in the range of predicted Pangea meteoric fluid), with a dependence on proximity to the Appalachian Mountains that may reflect a rain shadow effect.

  13. Textural and Mineralogical Characteristics of Microbial Fossils Associated with Modern and Ancient Iron (Oxyhydr)Oxides: Terrestrial Analogue for Sediments in Gale Crater

    PubMed Central

    Chan, Marjorie A.; McPherson, Brian J.

    2014-01-01

    Abstract Iron (oxyhydr)oxide microbial mats in modern to ∼100 ka tufa terraces are present in a cold spring system along Ten Mile Graben, southeastern Utah, USA. Mats exhibit morphological, chemical, and textural biosignatures and show diagenetic changes that occur over millennial scales. The Jurassic Brushy Basin Member of the Morrison Formation in the Four Corners region of the USA also exhibits comparable microbial fossils and iron (oxyhydr)oxide biosignatures in the lacustrine unit. Both the modern spring system and Brushy Basin Member represent alkaline, saline, groundwater-fed systems and preserve diatoms and other similar algal forms with cellular elaboration. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se, P) are associated with microbial fossils in modern and ancient iron (oxyhydr)oxides and may be potential markers for biosignatures. The presence of ferrihydrite in ∼100 ka fossil microbial mats and Jurassic rocks suggests that this thermodynamically unstable mineral may also be a potential biomarker. One of the most extensive sedimentary records on Mars is exposed in Gale Crater and consists of non-acidic clays and sulfates possibly of lacustrine origin. These terrestrial iron (oxyhydr)oxide examples are a valuable analogue because of similar iron- and clay-rich host rock compositions and will help (1) understand diagenetic processes in a non-acidic, saline lacustrine environment such as the sedimentary rocks in Gale Crater, (2) document specific biomediated textures, (3) demonstrate how biomediated textures might persist or respond to diagenesis over time, and (4) provide a ground truth library of textures to explore and compare in extraterrestrial iron (oxyhydr)oxides, where future explorations hope to detect past evidence of life. Key Words: Biogeochemistry—Mars—Biosignatures—Diagenesis—Iron oxides. Astrobiology 14, 1–14. PMID:24380534

  14. Geological, geomorphological, facies and allostratigraphic maps of the Eberswalde fan delta

    NASA Astrophysics Data System (ADS)

    Pondrelli, M.; Rossi, A. P.; Platz, T.; Ivanov, A.; Marinangeli, L.; Baliva, A.

    2011-09-01

    Geological, facies, geomorphological and allostratigraphic map of the Eberswalde fan delta area are presented. The Eberswalde fan delta is proposed as a sort of prototype area to map sedimentary deposits, because of its excellent data coverage and its variability in depositional as well as erosional morphologies and sedimentary facies. We present a report to distinguish different cartographic products implying an increasing level of interpretation. The geological map - in association with the facies map - represents the most objective mapping product. Formations are distinguished on the basis of objectively observable parameters: texture, color, sedimentary structures and geographic distribution. Stratigraphic relations are evaluated using Steno's principles. Formations can be interpreted in terms of depositional environment, but an eventual change of the genetic interpretation would not lead to a change in the geological map. The geomorphological map is based on the data represented in the geological map plus the association of the morphological elements, in order to infer the depositional sub-environments. As a consequence, it is an interpretative map focused on the genetic reconstruction. The allostratigraphic map is based on the morphofacies analysis - expressed by the geomorphological map - and by the recognition of surfaces which reflect allogenic controls, such as water level fluctuations: unconformities, erosional truncations and flooding surfaces. As a consequence, this is an even more interpretative map than the geomorphological one, since it focuses on the control on the sedimentary systems. Geological maps represent the most suitable cartographic product for a systematic mapping, which can serve as a prerequisite for scientific or landing site analyses. Geomorphological and allostratographic maps are suitable tools to broaden scientific analysis or to provide scientific background to landing site selection.

  15. Environment and Climate Changes during the Holocene: Inferred from Sedimentary Record/Proxies of a Paleodelta Region, Southwest Coast of India

    NASA Astrophysics Data System (ADS)

    Allu, N. C.; Prakash, V.; Gautam, P. K.; Bera, S. K.

    2014-12-01

    This work explains the sedimentation history and environment and climate changes during the Holocene along the southwest coast of India. The area is characterized by various landforms such as lagoons, barrier islands, beach ridges, paleostrandlines, alluvial plains, marshy lands and flood plains. Paleodelta, located at the mouth of the modern Periyar River is an important geomorphic marker. A borehole of 40 m depth was drilled in the paleodelta and sediment samples were recovered at different depth intervals. Paleoclimate and paleo-environment were inferred based on geochronology, textural and geotechnical parameters, clay minerals, and pollen analysis results. The bottom of the borehole represents an age of ~ 12 ka BP. Sediments exhibit coarsening texture upwards of the borehole, with fine mud and peat intercalations at the bottom. Six litho facies - muddy sand, sand, sandy mud, silty sand, sandy silt, and mud - were recorded. Geotechnical properties comprising moisture content, organic carbon, plasticity index record high values, whereas low bulk density associated with a low critical shear stress, are recorded. An increase in illite and to a lesser degree smectite with concomitant decrease in kaolinite is observed. Sediment texture represents a major change of depositional environment from marine to fluvial sedimentary facies during the major sea level fall i.e., after 7 ka B.P. The present sea level attained during 4-5 ka B.P; major rise of sea level has taken place from 7-11 ka BP and regression during 7 - 5 ka B.P. These transgression and regression phases introduced the changes in the environment of deposition. The monsoon was dynamic and more intense after the major fall of sea level causing the fluctuations in the fluvial facies. Upward coarsening of grain size in the borehole indicates change in sediment deposition due to increased hydrodynamic conditions and strong fluvial action, which can be linked to marine regression. Geotechnical properties suggest textural changes and sedimentary facies. An upward increase in smectite and kaolinite and decreasing illite supports major fall in sea level and also the aridity. Pollen record of sediment strata supports the paleo-environment dominated by the presence of semi-evergreen type of mangrove plants during mid- to early-Holocene times.

  16. Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record

    NASA Astrophysics Data System (ADS)

    Suttle, Martin D.; Genge, Matthew J.

    2017-10-01

    We report the discovery of fossil micrometeorites from Late Cretaceous chalk. Seventy-six cosmic spherules were recovered from Coniacian (87 ± 1 Ma) sediments of the White Chalk Supergroup. Particles vary from pristine silicate and iron-type spherules to pseudomorphic spherules consisting of either single-phase recrystallized magnetite or Fe-silicide. Pristine spherules are readily identified as micrometeorites on the basis of their characteristic mineralogies, textures and compositions. Both magnetite and silicide spherules contain dendritic crystals and spherical morphologies, testifying to rapid crystallisation of high temperature iron-rich metallic and oxide liquids. These particles also contain spherical cavities, representing weathering and removal of metal beads and irregular cavities, representing vesicles formed by trapped gas during crystallization; both features commonly found among modern Antarctic Iron-type (I-type) cosmic spherules. On the basis of textural analysis, the magnetite and Fe-silicide spherules are shown to be I-type cosmic spherules that have experienced complete secondary replacement during diagenesis (fossilization). Our results demonstrate that micrometeorites, preserved in sedimentary rocks, are affected by a suite of complex diagenetic processes, which can result in disparate replacement minerals, even within the same sequence of sedimentary beds. As a result, the identification of fossil micrometeorites requires careful observation of particle textures and comparisons with modern Antarctic collections. Replaced micrometeorites imply that geochemical signatures the extraterrestrial dust are subject to diagenetic remobilisation that limits their stratigraphic resolution. However, this study demonstrates that fossil, pseudomorphic micrometeorites can be recognised and are likely common within the geological record.

  17. Lower Cretaceous paleo-Vertisols and sedimentary interrelationships in stacked alluvial sequences, Utah, USA

    NASA Astrophysics Data System (ADS)

    Joeckel, R. M.; Ludvigson, G. A.; Kirkland, J. I.

    2017-11-01

    The Yellow Cat Member of the Cedar Mountain Formation in Poison Strip, Utah, USA, consists of stacked, erosionally bounded alluvial sequences dominated by massive mudstones (lithofacies Fm) with paleo-Vertisols. Sediment bodies within these sequences grade vertically and laterally into each other at pedogenic boundaries, across which color, texture, and structures (sedimentary vs. pedogenic) change. Slickensides, unfilled (sealed) cracks, carbonate-filled cracks, and deeper cracks filled with sandstone; the latter features suggest thorough desiccation during aridification. Thin sandstones (Sms) in some sequences, typically as well as laminated to massive mudstones (Flm) with which they are interbedded in some cases, are interpreted as avulsion deposits. The termini of many beds of these lithofacies curve upward, parallel to nearby pedogenic slickensides, as the features we call ;turnups.; Turnups are overlain or surrounded by paleosols, but strata sheltered underneath beds with turnups retain primary sedimentary fabrics. Turnups were produced by movement along slickensides during pedogenesis, by differential compaction alongside pre-existing gilgai microhighs, or by a combination of both. Palustrine carbonates (lithofacies C) appear only in the highest or next-highest alluvial sequences, along with a deep paleo-Vertisol that exhibits partially preserved microrelief at the base of the overlying Poison Strip Member. The attributes of the Yellow Cat Member suggest comparatively low accommodation, slow accumulation, long hiatuses in clastic sedimentation, and substantial time intervals of subaerial exposure and pedogenesis; it appears to be distinct among the members of the Cedar Mountain Formation in these respects.

  18. Controls on development and diversity of Early Archean stromatolites

    PubMed Central

    Allwood, Abigail C.; Grotzinger, John P.; Knoll, Andrew H.; Burch, Ian W.; Anderson, Mark S.; Coleman, Max L.; Kanik, Isik

    2009-01-01

    The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans. PMID:19515817

  19. Possible organosedimentary structures on Mars

    NASA Astrophysics Data System (ADS)

    Rizzo, Vincenzo; Cantasano, Nicola

    2009-10-01

    This study, using the Microscopic Imager (MI) of NASA Rover Exploration Mission's (REM) ‘Opportunity’, aims to explain the origin of laminated sediments lying at Meridiani Planum of Mars, and of the strange spherules, known as blueberries, about which several hypotheses have been formulated. To this purpose, images of the sedimentary textures of layers and fragments captured by REM have been analysed; sediments that NASA has already established as ‘pertinent to water presence’. Our study shows that such laminated sediments and the spherules they contain could be organosedimentary structures, probably produced by microorganisms. The laminated structures are characterized by a sequence of a thin pair of layers, which have the features of skeletal/agglutinated laminae and whose basic constituents are made by a partition of septa and vacuoles radially arranged around a central one. The growth of these supposed organosedimentary masses is based on the ‘built flexibility’ of such a basal element; it may be a coalescing microfossil formed by progressive film accretion (calcimicrobe), in a variety of geometrical gross forms, such as a repeated couplet sequence of laminae or domal mass and large composite polycentric spherule, both in elevation. The acquired structural and textural data seem to be consistent with the existence of life on Mars and could explain an origin of sediments at Meridiani Planum similar to that of terrestrial stromatolites. The Martian deposits, probably produced by cyanobacterial activity, and the embedded blueberries could represent a recurrent and multiform product of colonies with sheath forms, resembling in shape those of the fossil genus Archaeosphaeroides (stromatolites of Fig Tree, South Africa).

  20. The Chicxulub crater - impact metamorphism of sulfate and carbonate lithologies

    NASA Astrophysics Data System (ADS)

    Deutsch, A.; Langenhorst, F.; Hornemann, U.; Ivanov, B. A.

    2003-04-01

    It is discussed whether in the aftermath of the Chicxulub event, impact-released CO_2 and SO_x have changed the Earth's climate, acting also as lethal thread for life. Undoubtedly, vaporization of carbonates and sulfates, which are major target lithologies at the Chicxulub impact site, occurred in the footprint of the projectile. What happened to these lithologies outside this very restricted zone was so far unconstrained. Petrologic observations on PEMEX and UNAM as well as on the CSDP cores allow to set up a general classification for shock-related pro-grade effects on sulfate and carbonate sedimentary rocks. Shock effects in lithic breccias are restricted to brecciation and formation of twins in calcite. Suevites mostly lack melted carbonate clasts; annealing effects in anhydrite fragments are absent. The underlying melt breccias contain anhydrite fragments still displaying a sedimentary texture, and limestone clasts, whose texture reflect crystallization from melt. Impact melt breccias from deeper levels frequently contain partially resorbed anhydrite clasts and a melt matrix with the Ca-rich mineral assemblage quartz + plagioclase + clinopyroxene; this mineral assemblage provides evidence for partial dissociation of CaSO_4. Large clasts of anhydrite consist of equant crystals with 120^o triple junctions, a feature indicative for re-crystallization in the solid state. Tagamites (impact melt rocks) are virtually free of clasts from sedimentary lithologies. These rocks have an extremely high formation temperature, which caused total dissociation of CaSO_4 and CaCO_3. Finally, up to 100 μm wide veins of anhydrite + calcite + quartz cut the matrix of all lithologies except the tagamites. They probably represent "degassing vents". The given scheme is in qualitative accordance with data of shock recovery and annealing experiments as well as with modeling results. In addition, it substantiates that annealing plays a fundamental role in the impact metamorphism of sedimentary rocks.

  1. Insights into the Martian Regolith from Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Boyce, Jeremy W.; Szabo, Timea; Santos, Alison R.; Domokos, Gabor; Vazquez, Jorge; Moser, Desmond E.; Jerolmack, Douglas J.; Keller, Lindsay P.; Tartese, Romain

    2015-01-01

    Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been overprinted by metamorphic processes, which is the case for NWA 7034.

  2. The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai

    2013-01-01

    We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint. PMID:26523079

  3. Hydrogeologic unit map of the Piedmont and Blue Ridge provinces of North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.; Payne, R.A.

    1990-01-01

    The numerous geologic formations and rock types in the Piedmont and Blue Ridge provinces of North Carolina have been grouped into 21 hydrogeologic units on the basis of their water-bearing potential as determined from rock origin, composition, and texture. All major classes of rocks--metamorphic, igneous, and sedimentary--are present, although metamorphic rocks are the most abundant. The origin of the hydrogeologic units is indicated by the rock class or subclass (metaigneous, metavolanic, or metasedimentary). The composition of the igneous, metaigneous, and metavolcanic rocks is designated as felsic, intermediate, or mafic except for the addition in the metavolcanic group of epiclastic rocks and compositionally undifferentiated rocks. Composition is the controlling attribute in the classification of the metasedimentary units of gneiss (mafic or felsic), marble, quartzite. The other metasediments are designated primarily on the basis of texture (grain size, degree of metamorphism, and development of foliation). Sedimentary rocks occur in the Piedmont in several downfaulted basins. A computerized data file containing records from more than 6,200 wells was analyzed to determine average well yields in each of the 21 units. The well yields were adjusted to an average well depth of 154 feet and an average diameter of 6 inches, the average of all wells in the data set, to remove the variation in well yield attributed to differences in depth and diameter. Average yields range from a high of 23.6 gallons per minute for schist to a low 11.6 gallons per minute for sedimentary rocks of Triassic age.

  4. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  5. Evaluation of field methods for vertical high resolution aquifer characterization

    NASA Astrophysics Data System (ADS)

    Vienken, T.; Tinter, M.; Rogiers, B.; Leven, C.; Dietrich, P.

    2012-12-01

    The delineation and characterization of subsurface (hydro)-stratigraphic structures is one of the challenging tasks of hydrogeological site investigations. The knowledge about the spatial distribution of soil specific properties and hydraulic conductivity (K) is the prerequisite for understanding flow and fluid transport processes. This is especially true for heterogeneous unconsolidated sedimentary deposits with a complex sedimentary architecture. One commonly used approach to investigate and characterize sediment heterogeneity is soil sampling and lab analyses, e.g. grain size distribution. Tests conducted on 108 samples show that calculation of K based on grain size distribution is not suitable for high resolution aquifer characterization of highly heterogeneous sediments due to sampling effects and large differences of calculated K values between applied formulas (Vienken & Dietrich 2011). Therefore, extensive tests were conducted at two test sites under different geological conditions to evaluate the performance of innovative Direct Push (DP) based approaches for the vertical high resolution determination of K. Different DP based sensor probes for the in-situ subsurface characterization based on electrical, hydraulic, and textural soil properties were used to obtain high resolution vertical profiles. The applied DP based tools proved to be a suitable and efficient alternative to traditional approaches. Despite resolution differences, all of the applied methods captured the main aquifer structure. Correlation of the DP based K estimates and proxies with DP based slug tests show that it is possible to describe the aquifer hydraulic structure on less than a meter scale by combining DP slug test data and continuous DP measurements. Even though correlations are site specific and appropriate DP tools must be chosen, DP is reliable and efficient alternative for characterizing even strongly heterogeneous sites with complex structured sedimentary aquifers (Vienken et al. 2012). References: Vienken, T., Leven, C., and Dietrich, P. 2012. Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization — a field study. Canadian Geotechnical Journal, 49(2): 197-206. Vienken, T., and Dietrich, P. 2011. Field evaluation of methods for determining hydraulic conductivity from grain size data. Journal of Hydrology, 400(1-2): 58-71.

  6. Quantitative characterisation of sedimentary grains

    NASA Astrophysics Data System (ADS)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  7. Sedimentary processes and depositional environments of the Horn River Shale in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk

    2017-04-01

    The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea-level lowstand and vice versa. Therefore, the Horn River Formation represents an earlier upward shallowing environmental change from a deep basin (Evie) to shallower marginal slope (middle Otterpark), then turning back to the deeper marine environment (Muskwa) in association with overall regression-lowstand-transgression of the sea level. (This study is supported by "Research on Exploration Technologies and an Onsite Verification to Enhance the Fracturing Efficiency of a Shale Gas Formation" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.)

  8. Sedimentology and composition of sands injected during the seismic crisis of May 2012 (Emilia, Italy): clues for source layer identification and liquefaction regime

    NASA Astrophysics Data System (ADS)

    Fontana, D.; Lugli, S.; Marchetti Dori, S.; Caputo, R.; Stefani, M.

    2015-07-01

    In May 2012 widespread sand blows formed along buried channels in the eastern sector of the Po Plain (Northern Italy) as a consequence of a series of seismic events with main shocks of Mw 6.1 and 5.9. At San Carlo (Ferrara) a trench dug a few week after the earthquakes exposed sand dikes cutting through an old Reno River channel-levee system that was diverted in the 18th century and was deposited starting from the 14th century (unit A). This sequence overlies a Holocene muddy floodplain deposits and contains scattered sandy channel deposits (unit B) and a Pleistocene channel sand unit (unit C). Sands with inverse and normal grading, concave layering and vertical lamination coexisting along the dikes suggest multiple rhythmic opening and closing of the fractures that were injected and filled by a slurry of sand during the compression pulses, and emptied during the extension phase. The pulse mechanism may have lasted for several minutes and formed well stratified sand volcanoes structures that formed at the top of the fractures. Sands from dikes and from the various units show well defined compositional fields from lithoarenitic to quartz-feldspar-rich compositions. Sands from the old Reno levee and channel fill (unit A) have abundant lithic fragments derived from the erosion of Apennine sedimentary carbonate and terrigenous successions. Composition of the sand filling the dikes show clear affinities with sand layers of the old Reno River channel (Unit A) and clearly differ from any sand from deeper Holocene and Pleistocene layers (Unit B and C), which are richer in quartz and feldspar and poorer in sedimentary lithic fragments. Sorting related to sediment flux variations did not apparently affect the sand composition across the sedimentary structures. Textural and compositional data indicate that the liquefaction processes originated from a relatively shallow source consisting of channel sands located within Unit A at 6.8.to 7.5 m depth.

  9. Diverse Deposits in Melas Chasma

    NASA Image and Video Library

    2015-07-29

    This scene captured by NASA Mars Reconnaissance Orbiter includes chaotic deposits with a wide range of colors. The deposits are distinctive with both unique colors and small-scale textures such as fracture patterns. These are probably sedimentary rocks, transported and deposited in water or air. The original layers may have been jumbled in a landslide. Dark or reddish sand dunes cover some of the bedrock. http://photojournal.jpl.nasa.gov/catalog/PIA19860

  10. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  11. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    USGS Publications Warehouse

    Edgar, Lauren; Gupta, Sanjeev; Rubin, David M.; Lewis, Kevin W.; Kocurek, Gary A.; Anderson, Ryan; Bell, James F.; Dromart, Gilles; Edgett, Kenneth S.; Grotzinger, John P.; Hardgrove, Craig; Kah, Linda C.; LeVeille, Richard A.; Malin, Michael C.; Mangold, Nicholas; Milliken, Ralph E.; Minitti, Michelle; Palucis, Marisa C.; Rice, Melissa; Rowland, Scott K.; Schieber, Juergen; Stack, Kathryn M.; Sumner, Dawn Y.; Wiens, Roger C.; Williams, Rebecca M.E.; Williams, Amy J.

    2018-01-01

    This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture, and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop likely records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the northeast, across the surface of a bar that migrated southeast. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.

  12. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE PAGES

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.; ...

    2017-03-09

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  13. Melt in the impact breccias from the Eyreville drill cores, Chesapeake Bay impact structure, USA

    NASA Astrophysics Data System (ADS)

    Bartosova, Katerina; Hecht, Lutz; Koeberl, Christian; Libowitzky, Eugen; Reimold, Wolf Uwe

    2011-03-01

    The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP-0USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397-01551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile-rich targets, because no large melt body exists, in which homogenization would have taken place.

  14. Depositional History and Sequence Stratigraphy of the Middle Ordovician Yeongheung Formation (Yeongweol Group), Taebaeksan Basin, mid-east Korea

    NASA Astrophysics Data System (ADS)

    Kwon, Yoo Jin; Kwon, Yi Kyun

    2017-04-01

    The Middle Ordovician Yeongheung Formation consists of numerous meter-scale, shallowing-upward cycles which were deposited on a shallow-marine carbonate platform. Many diagnostic sedimentary textures and structures such as supratidal laminite, tepee structure, and solution-collapsed breccia are observed, which enable to infer the dry climate and high salinity conditions during deposition of the formation. In order to understand its depositional history, this study focuses on vertical and spatial stacking patterns of the second- to third-order sequences through the detailed outcrop description and geologic mapping. A total 19 lithofacies have been recognized, which can be grouped into 5 facies associations (FAs): FA1 (Supratidal flat), FA2 (Supratidal or dolomitization of peritidal facies), FA3 (Intertidal flat), FA4 (Shallow subtidal to peritidal platform), FA5 (Shallow subtidal shoal). Global mega-sequence boundary (Sauk-Tippecanoe) occurs in solution-collapsed breccia zone in the lower part of the formation. Correlation of the shallowing-upward cycle stacking pattern across the study area defines 6 transgressive-regressive depositional sequences. Each depositional sequences comprises a package of vertical and spatial staking of shallow subtidal cycles in the lower part and peritidal cycles in the upper part of the formation. According to sequence stratigraphic interpretation, the reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. Based on the absence of siliciclastic sequence such as the Jigunsan Formation and the lithologic & stratigraphic differences, however, the Yeongweol and Taebaek groups might not belong to a single depositional system within the North China platform. The Yeongweol Group can be divided by the four subunits into their unique lithologic successions and geographic distributions. The Eastern subunit of the Yeongweol Group is composed dominantly of carbonate rocks with a high composition ratio of siliciclastic materials dominated facies in the upper part of the Yeongheung Formation. The Middle1 subunit is pervasively recognized by subaerial exposures facies (carbonate breccia, paleosol), whereas the Middle2 subunit is similar to the Middle1 subunit except for the absence of subaerial exposure features. The Western subunit lost some of its primary sedimentary structure and texture in comparison to other subunits, because of the active recrystallization, metamorphism, structural deformation and carbonate diagenesis. This study reveals depositional history and refines sequence stratigraphy of the Yeongheung Formation, promoting understanding of the basin evolution of the Yeongweol Group.

  15. Seismic Shaking, Tsunami Wave Erosion And Generation of Seismo-Turbidites in the Ionian Sea

    NASA Astrophysics Data System (ADS)

    Polonia, Alina; Nelson, Hans; Romano, Stefania; Vaiani, Stefano Claudio; Colizza, Ester; Gasparotto, Giorgio; Gasperini, Luca

    2016-04-01

    We are investigating the effects of earthquakes and tsunamis on the sedimentary record in the Ionian Sea through the analysis of turbidite deposits. A comparison between radiometric dating and historical earthquake catalogs suggests that recent turbidite generation is triggered by great earthquakes in the Calabrian and hellenic Arcs such as the AD 1908 Messina, AD 1693 Catania, AD 1169 Eastern Sicily and AD 365 Crete earthquakes. Textural, micropaleontological, geochemical and mineralogical signatures of the youngest three seismo-turbidites reveal cyclic patterns of sedimentary units. The basal stacked turbidites result from multiple slope failure sources as shown by different sedimentary structures as well as mineralogic, geochemical and micropaleontological compositions. The homogenite units, are graded muds deposited from the waning flows of the multiple turbidity currents that are trapped in the Ionian Sea confined basin. The uppermost unit is divided into two parts. The lower marine sourced laminated part without textural gradation, we interpret to result from seiching of the confined water mass that appears to be generated by earthquake ruptures combined with tsunami waves. The uppermost part we interpret as the tsunamite cap that is deposited by the slow settling suspension cloud created by tsunami wave backwash erosion of the shoreline and continental shelf. This tsunami process interpretation is based on the final textural gradation of the upper unit and a more continental source of the tsunami cap which includes C/N >10, the lack of abyssal foraminifera species wirth the local occurrence of inner shelf foraminifera. Seismic reflection images show that some deeper turbidite beds are very thick and marked by acoustic transparent homogenite mud layers at their top. Based on a high resolution study of the most recent of such megabeds (Homogenite/Augias turbidite, i.e. HAT), we show that it was triggered by the AD 365 Crete earthquake. Radiometric dating support a scenario of synchronous deposition of the HAT in an area as wide as 150.000 km2, which suggests basin-scale sediment remobilization processes. The HAT in our cores is made up of a base to top sequence of stacked and graded sand/silt units with different compositions related to the Malta, Calabria and Sicilian margin locations. This composition suggests multiple synchronous slope failures typical of seismo-turbidites; however, the Crete earthquake source is too distant from the Italian margins to cause sediment failures by earthquake shaking. Consequently, because our present evidence suggests shallow-water sediment sources, we reinforce previous interpretations that the HAT is a deep-sea "tsunamite" deposit. Utilizing the expanded stratigraphy of the HAT, together with the heterogeneity of the sediment sources of the Ionian margins, we are trying to unravel the relative contribution of seismic shaking (sediment failures, MTDs, turbidity currents) and of tsunami wave processes (overwash surges, backwash flows, turbidity currents) for seismo-turbidite generation.

  16. Depositional processes in large-scale debris-flow experiments

    USGS Publications Warehouse

    Major, J.J.

    1997-01-01

    This study examines the depositional process and characteristics of deposits of large-scale experimental debris flows (to 15 m3) composed of mixtures of gravel (to 32 mm), sand, and mud. The experiments were performed using a 95-m-long, 2-m-wide debris-flow flume that slopes 31??. Following release, experimental debris flows invariably developed numerous shallow (???10 cm deep) surges. Sediment transported by surges accumulated abruptly on a 3?? runout slope at the mouth of the flume. Deposits developed in a complex manner through a combination of shoving forward and shouldering aside previously deposited debris and through progressive vertical accretion. Progressive accretion by the experimental flows is contrary to commonly assumed en masse sedimentation by debris flows. Despite progressive sediment emplacement, deposits were composed of unstratified accumulations of generally unsorted debris; hence massively textured, poorly sorted debris-flow deposits are not emplaced uniquely en masse. The depositional process was recorded mainly by deposit morphology and surface texture and was not faithfully registered by interior sedimentary texture; homogeneous internal textures could be misinterpreted as the result of en masse emplacement by a single surge. Deposition of sediment by similar, yet separate, debris flows produced a homogenous, massively textured composite deposit having little stratigraphic distinction. Similar deposit characteristics and textures are observed in natural debris-flow deposits. Experimental production of massively textured deposits by progressive sediment accretion limits interpretations that can be drawn from deposit characteristics and casts doubt on methods of estimating flow properties from deposit thickness or from relations between particle size and bed thickness.

  17. Structure-guided statistical textural distinctiveness for salient region detection in natural images.

    PubMed

    Scharfenberger, Christian; Wong, Alexander; Clausi, David A

    2015-01-01

    We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.

  18. Evolution of iron crust and clayey Ferralsol in deeply weathered sandstones of Marília Formation (Western Minas Gerais State, Brazil)

    NASA Astrophysics Data System (ADS)

    Rosolen, Vania; Bueno, Guilherme Taitson; Melfi, Adolpho José; Montes, Célia Regina; de Sousa Coelho, Carla Vanessa; Ishida, Débora Ayumi; Govone, José Silvio

    2017-11-01

    Extensive flat plateaus are typical landforms in the cratonic compartment of tropical regions. Paleoclimate, pediplanation, laterization, and dissection have created complex and distinct geological, geomorphological, and pedological features in these landscapes. In the Brazilian territory, the flat plateau sculpted in sandstone of Marília Formation (Neocretaceous) belonging to the Sul-Americana surface presents a very clayey and pisolitic Ferralsol (Red and Yellow Latossolo in the Brazilian soil classification). The clayey texture of soil and the pisolites have been considered as weathering products of a Cenozoic detritical formation which is believed to overlay the Marília Formation sandstones. Using data of petrography (optical microscopy and SEM), mineralogy (RXD), and macroscopic structures (description in the field of the arrangement of horizons and layers), a complete profile of Ferralsol with ferricrete and pisolites was studied. The complex succession of facies is in conformity with a sedimentary structure of Serra da Galga member (uppermost member of Marília Formation). The hardening hematite concentration appears as layered accretions in the subparallel clayey lenses of sandstone saprolite, preserving its structure. Iron contents varied according to different soil fabrics. Higher concentrations of iron are found in the massive ferricrete or in pisolites in the mottled horizon. Kaolinite is a dominant clay mineral and shows two micro-organizations: (1) massive fabric intrinsic to the sedimentary rock, and (2) reworked in pisolites and illuviated features. The pisolites are relicts of ferricrete in the soft bioturbated topsoil. The continuous sequence of ferricrete from saprolite to the Ferralsol indicates that the regolith is autochthonous, developed directly from sandstones of Marília Formation, through a long and intense process of laterization.

  19. Modern sedimentary environments on the Rhode Island inner shelf, off the eastern United States

    USGS Publications Warehouse

    Knebel, H.J.; Needell, S. W.; O'Hara, C. J.

    1982-01-01

    Analyses of side-scan sonar records along with previously published bathymetric, textural and subbottom data reveal the sedimentary environments on the inner Continental Shelf south of Narragansett Bay, Rhode Island. The bottom topography in this area is characterized by a broad central depression bordered by shallow, irregular sea floor on the north and east and by a discontinuous, curvilinear ridge on the south and west. Four distinct environments were identified: 1. (1) Pre-Mesozoic coastal rocks are exposed on the sea floor at isolated locations near the shore (waterdepths <32 m). These exposures have pronounced, irregular topographic relief and produce blotchy patterns on side-scan sonographs. 2. (2) Glacial moraine deposits form the discontinuous offshore ridge. These deposits have hummocky sea-floor relief, are covered by lag gravel and boudlers, and appear as predominantly black (strongly reflective) patterns on the side-scan records. 3. (3) Over most of the shallow, irregular bottom in the northeast, on the flanks of the morainal ridge, and atop bathymetric highs, the sea floor is characterized as a mosaic of light and dark patches and lineations. The dark (more reflective) zones are areas of coarse sands and megaripples (wavelengths = 0.8-1.2 m that either have no detectable relief or are slightly depressed relative to surrounding (light) areas of finer-grained sands. 4. (4) Smooth beds that produce nearly featureless patterns on the sonographs occupy the broad central bathymetric depression as well as smaller depressions north and east of Block Island. Within the broad depression, sonographs having practically no shading indicate a central zone of modern sandy silt, whereas records having moderate tonality define a peripheral belt of silty sand. The sedimentary environments that are outlined range from erosional or non-depositional (bedrock, glacial moraine) to depositional (featureless beds), and include areas that may reflect a combination of erosional and depositional processes (textural patchiness). The distribution and characteristics of the environments reveal the general post-glacial sedimentary history of this area and provide a guide to future utilization of the shelf surface. ?? 1982.

  20. Lateral trends and vertical sequences in estuarine sediments, Willapa Bay, Washington

    USGS Publications Warehouse

    Clifton, H. Edward; Phillips, L.

    1980-01-01

    Willapa Bay is a sizable estuary on the southern coast of Washington- Relatively unmodified in a geologic sense by human activity the bay provides an excellent example of modern depositional facies in an estuarine setting. Studies of these deposits indicate that consistent lateral trends exist in sediment texture and sedimentary structures. The texture changes from sandy at the mouth of the bay to muddy in its upper parts. In any part of the bay , sediment is coarsest in the channel bottoms, where lag deposits accumulate. The sediment tends to fine in an upslope direction and is finest in supratidal flat deposits of silt and clay. The nature of sedimentary structures depends on the combination of physical and biological processes and sediment textures. Bedforms exist wherever the bed is sandy. In the main tidal channels sandwaves and dunes up to 4 meters high occur. In tributary channels and at the margins of the main channel, at shallower depths and under less intense currents , the structures are generally less than a meter high. Current ripples occur in t he sandy bed of all of the tidal channels and in runoff channels cross the tidal flat. Symmetric long-crested ripples are produced by wave action over the sandy intertidal flat. Internal structures in the bay's sediment depend not only on the nature of the bedform but also on the rate of bioturbation relative to physical processes. Under fields of large sandwaves or dunes, medium- to large-scale tabular and trough crossbedding predominates. This crossbedding generally is unidirectional, reflecting the locally dominant current (ebb or flood). Ripple bedding predominates elsewhere in sandy sediment within the channels. Where sand transport is diminished, as on the floor of the upper tributary channels, bioturbation exceeds the rate of production of physical structures and bedding is destroyed. The depositional banks in such areas tend to be sites of rapid sediment accumulation and bedding in the form of interlayered sand (commonly ripple bedded) and mud persists. On intertidal flats the sediment accumulates slowly and bioturbation erases nearly all physical structures. Bedding is preserved only where deposition is locally rapid , as in topographic depressions or on the depositional banks of runoff channels, or where faunal activity is inhibited, as beneath mounds of blue-green algae. The rate of sedimentation is slower still on the supratidal flats, but the general paucity of faunal activity allows the preservation of thin alternations of fine sand , silt or clay. The lateral migration of the tidal channels produces vertical sequences in which topographically higher facies are superposed on one another. Near the mouth of the estuary the upward sequence: lag deposit — crossbedded sand — ripple or planar-bedded sand is typical. The crossbedding shows a general upward decrease in thickness and a progression from trough to tabular units. In the main tidal channel - in the central estuary and in sandy tributary channels, the typical vertical sequence resembles that near the mouth , with the exception that the sequence is capped by bioturbated sandy or muddy tide flat deposits. In the upper estuary , where muddy sediment predominates, a typical sequence shows the progression-. bioturbated lag deposit — gently dipping interlaminated sand and mud layers of the accretionary bank — bioturbated mud flat deposits — thinly laminated fine supratidal deposits.

  1. Linking Environmental Forcing and Trophic Supply to Benthic Communities in the Vercelli Seamount Area (Tyrrhenian Sea)

    PubMed Central

    Covazzi Harriague, Anabella; Bavestrello, Giorgio; Bo, Marzia; Borghini, Mireno; Castellano, Michela; Majorana, Margherita; Massa, Francesco; Montella, Alessandro; Povero, Paolo; Misic, Cristina

    2014-01-01

    Seamounts and their influence on the surrounding environment are currently being extensively debated but, surprisingly, scant information is available for the Mediterranean area. Furthermore, although the deep Tyrrhenian Sea is characterised by a complex bottom morphology and peculiar hydrodynamic features, which would suggest a variable influence on the benthic domain, few studies have been carried out there, especially for soft-bottom macrofaunal assemblages. In order to fill this gap, the structure of the meio-and macrofaunal assemblages of the Vercelli Seamount and the surrounding deep area (northern Tyrrhenian Sea – western Mediterranean) were studied in relation to environmental features. Sediment was collected with a box-corer from the seamount summit and flanks and at two far-field sites in spring 2009, in order to analyse the metazoan communities, the sediment texture and the sedimentary organic matter. At the summit station, the heterogeneity of the habitat, the shallowness of the site and the higher trophic supply (water column phytopigments and macroalgal detritus, for instance) supported a very rich macrofaunal community, with high abundance, biomass and diversity. In fact, its trophic features resembled those observed in coastal environments next to seagrass meadows. At the flank and far-field stations, sediment heterogeneity and depth especially influenced the meiofaunal distribution. From a trophic point of view, the low content of the valuable sedimentary proteins that was found confirmed the general oligotrophy of the Tyrrhenian Sea, and exerted a limiting influence on the abundance and biomass of the assemblages. In this scenario, the rather refractory sedimentary carbohydrates became a food source for metazoans, which increased their abundance and biomass at the stations where the hydrolytic-enzyme-mediated turnover of carbohydrates was faster, highlighting high lability. PMID:25343621

  2. Integrated Potential-field Studies in Support of Energy Resource Assessment in Frontier Areas of Alaska

    NASA Astrophysics Data System (ADS)

    Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.

    2008-05-01

    In frontier areas of Alaska, potential-field studies play an important role in characterizing the geologic structure of sedimentary basins having potential for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a potential source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity anomaly data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic potential (blue), and basement gravity (green) highlight domains with common geophysical characteristics and, by inference, lithology. The observed patterns suggest that much of the basin is underlain by Devonian to Jurassic oceanic rocks that probably have little or no potential for hydrocarbon generation. The coastal plain surficial deposits in the northern part of ANWR conceal another frontier basin with hydrocarbon potential. Proprietary aeromagnetic and gravity data were used, along with seismic reflection profiles, to construct a structural and stratigraphic model of this highly deformed sedimentary basin for use in an energy resource assessment. Matched-filtering techniques were used to separate short-wavelength magnetic and gravity anomalies attributed to sources near the top of the sedimentary section from longer-wavelength anomalies attributed to deeper basin and basement sources. Models along the seismic reflection lines indicate that the primary sources of the short-wavelength anomalies are folded and faulted sedimentary beds truncated at the Pleistocene erosion surface. In map view, the aeromagnetic and gravity anomalies produced by the sedimentary units were used to identify possible structural trapping features and geometries, but they also indicated that these features may be significantly disrupted by faulting.

  3. Experimental Approaches to Understanding Surficial Processes on Mars: The Stony Brook Experience 2000-2016

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Dehouck, E.; Hurowitz, J.; Lindsley, D. H.; Schoonen, M. A.; Tosca, N. J.; Zhao, Y. Y. S.

    2016-12-01

    Starting with Pathfinder and Global Surveyor, recent missions to Mars have provided great opportunity for low-temperature experimental geochemistry investigations of the Martian sedimentary record by providing geochemical and mineralogical data that can be used as meaningful tests for experiments. These missions have documented a long-lived, complex and dynamic sedimentary rock cycle, including "source-to-sink" sedimentary systems and global paleoenvironmental transitions through time. We designed and constructed an experimental facility, beginning in 2000, specifically to evaluate surficial processes on Mars. Our experimental philosophy has been to (1) keep apparatus simple and flexible, and if feasible maintain sample access during experiments; (2) use starting materials (minerals, rocks) close to known Mars compositions (often requiring synthesis); (3) address sedimentary processes supported by geological investigations at Mars; (4) begin with experiments at standard conditions so they are best supported by thermodynamics; (5) support experiments with thermodynamic-kinetic-mass balance modeling in both design and interpretation, and by high quality chemical, mineralogical and textural lab analyses; (6) interpret results in the context of measurements made at Mars. Although eliciting much comment in proposal and manuscript reviews, we have not attempted to slavishly maintain "Mars conditions", doing so only to the degree required by variables being tested in any given experiments. Among the problems we have addressed are (1) Amazonian alteration of rock surfaces; (2) Noachian-Hesperian chemical weathering; (3) epithermal alteration of `evolved' igneous rocks; (4) mineral surface chemical reactivity from aeolian abrasion; (5) evaporation of mafic brines; (6) early diagenesis of sedimentary iron mineralogy; (7) trace element and halogen behavior during chemical weathering and diagenesis; (8) photochemical influences on halogen distribution and speciation; (9) post-depositional stability of sedimentary amorphous materials.

  4. El Hierro's floating stones as messengers of crust-magma interaction at depth

    NASA Astrophysics Data System (ADS)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.

    2012-04-01

    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up and vesiculate. The "floating stones" from El Hierro thus represent the products of crust-magma interaction beneath the Canary Islands, but is probably relevant in most volcanic areas and tectonic settings. In addition, xenolith devolatilisation has important general implications for the mechanics of crustal recycling, magma emplacement into the upper crust and volatile release from active volcanic systems.

  5. Sulfur isotope biogeochemistry of soils from an episodically flooded coastal wetland, southern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Fernández Fernández, Luz Eva; Westphal, Julia; Schmiedinger, Iris; Kreuzburg, Matthias; Bahlo, Reiner; Koebsch, Franziska; Böttcher, Michael E.

    2017-04-01

    Coastal wetlands are under dynamic impact both from fresh water and salt water sources, thereby experiencing temporarily sulfur-excess and -limiting conditions. In the present study, nine up to 10 meter long sediment cores from a recently rewetted fen (Hütelmoor, southern Baltic Sea) which has been under impact by episodic flooding with brackish waters were investigated (isotope) geochemically. The sites are positioned at different distances to the Baltic Sea coastline. The soils were analyzed for the elemental composition (CNS), reactive iron and sedimentary sulfur contents, iron sulfide micro-textures, as well as the stable sulfur isotope composition of inorganic and organic sulfur fractions to understand signal development for the biogeochemical carbon-sulfur cycles in such a dynamic ecosystem. We found evidence for the activity of dissimilatory sulfate-reducing microorganisms and the associated formation of pyrite with different textures (framboids, single euhedral crystals and clusters) and sulfurization of organic matter. Sedimentary sulfur fractions and their stable isotope signatures are controlled by the availability of dissolved organic matter or methane, reactive iron, and in particular dissolved sulfate and thereby from the relative position to the coast line and the given lithology. d34S values in the pyrite fraction vary in a wide range between -21 and +15 per mil versus VCDT, in agreement with spatial and temporal dynamics in the extend of sulfate-limiting conditions during the oxidation of reduced carbon.

  6. Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre

    2018-04-01

    The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones.

  7. Application of MSS/LANDSAT images to the structural study of recent sedimentary areas: Campos Sedimentary Basin, Rio de Janeiro, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Barbosa, M. P.

    1983-01-01

    Visual and computer aided interpretation of MSS/LANDSAT data identified linear and circular features which represent the ""reflexes'' of the crystalline basement structures in the Cenozoic sediments of the emergent part of the Campos Sedimentary Basin.

  8. Volcano-sedimentary characteristics in the Abu Treifiya Basin, Cairo-Suez District, Egypt: Example of dynamics and fluidization over sedimentary and volcaniclastic beds by emplacement of syn-volcanic basaltic rocks

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Abdel Motelib, A.; Hammed, M. S.; El Manawi, A. H.

    2015-12-01

    This paper describes the Neogene lava-sediment mingling from the Abu Treifiya Basin, Cairo-Suez district, Egypt. The lava-sediment interactions as peperites have been identified for the first time at the study area and can be used as paleoenvironmental indicators. The identification of peperite reflects contemporaneous time relationship between volcanism and sedimentation and this finding is of primary importance to address the evolutional reconstruction of the Abu Treifiya Basin. Characterization of the facies architecture and textural framework of peperites was carried out through detailed description and interpretation of their outcrops. The peperites and sedimentary rocks are up to 350 m thick and form a distinct stratigraphic framework of diverse lithology that is widespread over several kilometers at the study area. Lateral and vertical facies of the peperites vary from sediment intercalated with the extrusive/intrusive basaltic rocks forming peperitic breccias to lava-sediment contacts at a large to small scales, respectively. Peperites encompass five main facies types ascribed to: (i) carbonate sediments-hosted fluidal and blocky peperites, (ii) lava flow-hosted blocky peperites, (iii) volcaniclastics-hosted fluidal and blocky peperites, (iv) sandstone/siltstone rocks-hosted blocky peperites, and (iv) debris-flows-hosted blocky peperites. Soft sediment deformation structures, vesiculated sediments, sediments filled-vesicles, and fractures in lava flows indicate that lava flows mingled with unconsolidated wet sediments. All the peperites in this study could be described as blocky or fluidal, but mixtures of different clast shapes occur regardless of the host sediment. The presence of fluidal and blocky juvenile clasts elucidates different eruptive styles, reflecting a ductile and brittle fragmentation. The gradual variation from fluidal to blocky peperite texture, producing the vertical grading is affected by influencing factors, e.g., the viscosity, magma temperature, confining pressure, sediment fluidization, and vapor film at the magma-sediment interactions. Peperites in the study area record deposition within a shallow marine and fluvio-lacustrine environment accumulated in a rift-related basin developed during pre- to syn-rift phase, respectively. The facies transitions (peperites) in this area resulted from the explosive and sediment depositional processes, which were mingled separately by volcanism under contrast geological conditions. The development of such contrast in the depositional sequences reflects variation in the accommodation to sediment supply in the same accumulation space inside the depocenters during the rifting of the Abu Treifiya Basin. Hydrothermal mineralizations comprising quartz and carbonate are restricted to peperites and lava flows.

  9. Physical and geotechnical properties and assessment of sediment stability on the continental slope and basin of the Bransfield Basin (Antarctica Peninsula)

    USGS Publications Warehouse

    Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.

    2004-01-01

    Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.

  10. Potential Biosignatures Visualization with the Close-Up Imager CLUPI for EXOMARS

    NASA Astrophysics Data System (ADS)

    Josset, J. L.; Westall, F.; Hofmann, B. A.; Beauvivre, S.

    The CLose-UP Imager CLUPI imaging experiment will be designed to obtain high-resolution colour and stereo images of rocks from the ExoMars rover Pasteur payload The close-up imager is a robotic equivalent of one of the most useful instruments of the field geologist the hand lens Imaging of surfaces of rocks soils and wind drift deposits is crucial for the understanding of the geological context of any site where the Pasteur rover will be active on Mars The purpose of the Close-up imager is to look an area of about 4 cm x 4 cm of the rocks at a focus distance of 10 cm With a resolution of approx 35 micrometer pixel many kinds of rock surface and internal structures can be visualized crystals in igneous rocks fracture mineralization secondary minerals details of the surface morphology sediment components sedimentary structures soil particles It is conceivable that even textures resulting from ancient biological activity can be seen such as fine lamination due to microbial mats stromatolites and textures resulting from colonies of filamentous microbes CLUPI is a powerful highly integrated miniaturized low-power robust imaging system with no mobile part able to operate at very low temperature -120oC The opto-mechanical interfaces will be a smart assembly in titanium sustaining wide temperature range The concept benefits from well-proven heritage Proba Rosetta MarsExpress and Smart-1 missions The close-up imager CLUPI on the ExoMars Rover will be described together with its capabilities to provide important information significantly

  11. Radiographic analysis of sedimentary structures and depositional histories in Apollo 15 cores

    NASA Technical Reports Server (NTRS)

    Coch, N. K.

    1977-01-01

    Radiographs of the Apollo 15 deepdrill drive tubes were analyzed on an SDS electronic enhancer to determine sedimentary structures in the core samples. The data obtained were compared with all other Apollo mission radiographs and used to make inferences on the character of sedimentary depositional processes on the lunar surface.

  12. Techniques of remote sensing applied to the environmental analysis of part of an aquifer located in the São José dos Campos Region sp, Brazil.

    PubMed

    Bressan, Mariana Affonseca; Dos Anjos, Célio Eustáquio

    2003-05-01

    The anthropogenic activity on the surface can modify and introduce new mechanisms of recharging the groundwater system, modifying the tax, the frequency and the quality of recharge of underground waters. The understanding of these mechanisms and the correct evaluation of such modifications are fundamental in determining the vulnerability of groundwater contamination. The groundwater flow of the South Paraíba Compartment, in the region of São José dos Campos, São Paulo, is directly related to structural features of the Taubaté Basin and, therefore, the analysis of its behaviour enhances the understanding of tectonic structure. The methodology adopted for this work consists in pre-processing and processing of the satellite images, visual interpretation of HSI products, field work and data integration. The derivation of the main structural features was based on visual analysis of the texture elements of drainage, and the relief in sedimentary and crystalline rocks. Statistical analysis of the feature densities and the metric-geometric relations between the analysed elements have been conducted. The crystalline rocks, on which the sediments were laying, conditions and controls the structural arrangement of sedimentary formations. The formation of the South Paraíba Grabén is associated with Cenozoic distensive movement which reactivated old features of crust weakness and generated previous cycles with normal characteristics. The environmental analysis is based on the integration of the existing methodology to characterise vulnerability of an universal pollutant and density fracture zone. The digital integration was processed using GIS (Geographic Information System) to delineate five defined vulnerability classes. The hydrogeological settings were analysed in each thematic map and, using fuzzy logic, an index for each different vulnerability class was compiled. Evidence maps could be combined in a series of steps using map algebra.

  13. Significance of hypoburrow nodule formation associated with large biogenic sedimentary structures in open-marine bay siliciclastics of the Upper Eocene Birket Qarun Formation, Wadi El-Hitan, Fayum, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Zaki A.; Gingras, Murray K.; Pemberton, S. George

    Unusually large biogenic sedimentary structures from the shallow quiescent-marine siliciclastics of the Upper Eocene Birket Qarun Formation in the Fayum area of Egypt display pronounced concretion formation around the trace fossils. The structures are massive, and vary morphologically, forming branched pillars (up to dm-scale), vertical (up to 180 cm height) amphora-like masses, and 3-D box-work "maze". Bioturbation, mainly Thalassinoides attributable to the Glossifungites ichnofacies, mediated and modified the physical and chemical microenvironments influencing early diagenesis; i.e., burrows promote the precipitation of pervasive calcite-dominated cement. The inferred paragenesis, combined with the negative (light) carbon and oxygen stable-isotopic values of the bulk calcite (δ 13C PDB from -0.94 to -4.98‰ and δ 18O PDB from -4.63 to -7.22‰) and bulk dolomite (δ 13C PDB from -2.05 to -8.23‰ and δ 18O PDB from -1.41 to -11.20‰), imply that the pore-water carbon was derived directly from seawater and dissolution of metastable carbonate, which was mediated by bacterial decomposition of organic matter and mixing of meteoric ground water. Thereby, the carbonate cement precipitated mostly under eodiagenetic conditions near the sediment/water interface (<~3 m in depth). The distribution of these structures is confined to parasequence-bounding flooding surfaces (generally expressed as transgressive surfaces of erosion). Notably, sedimentological, ichnological and paragenetic data can be related to stratigraphic evolution such that geochemical and textural evidence is distinctly associated with (1) early cementation of the host sandstone during highstands of relative sea level, (2) the formation of firmgrounds during low relative sea level, (3) the development of a Glossifungites-demarcated discontinuity during initial relative sea-level rise, and (4) continued cementation with rising relative sea level. This was followed by burial diagenesis, evidence for which is derived from petrographic and isotopic data.

  14. Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes

    NASA Astrophysics Data System (ADS)

    Zhao, Wenke; Forte, Emanuele; Fontolan, Giorgio; Pipan, Michele

    2018-04-01

    We evaluate the applicability and the effectiveness of integrated GPR attribute analysis to image the internal sedimentary features of the Piscinas Dunes, SW Sardinia, Italy. The main objective is to explore the limits of GPR techniques to study sediment-bodies geometry and to provide a non-invasive high-resolution characterization of the different subsurface domains of dune architecture. On such purpose, we exploit the high-quality Piscinas data-set to extract and test different attributes of the GPR trace. Composite displays of multi-attributes related to amplitude, frequency, similarity and textural features are displayed with overlays and RGB mixed models. A multi-attribute comparative analysis is used to characterize different radar facies to better understand the characteristics of internal reflection patterns. The results demonstrate that the proposed integrated GPR attribute analysis can provide enhanced information about the spatial distribution of sediment bodies, allowing an enhanced and more constrained data interpretation.

  15. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts) affected by large scale fracture (semblance image) and seem consistent with a suspended mud/sand mixture non-fluidized fluid flow. Near-Middle-Far offsets amplitude analysis confirms that most of the amplitude anomalies within the pipes conduit and terminus are only partly related to gas. An interpretation of the possible texture observed is proposed with a discussion of the noise and artefact induced by resolution and migration problems. Possible hypothetical formation mechanisms for those Pipes are discussed.

  16. Seismic valve as the main mechanism for sedimentary fluid entrapment within extensional basin: example of the Lodève Permian Basin (Hérault, South of France).

    NASA Astrophysics Data System (ADS)

    Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.

    2014-12-01

    During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized ore bodies by the single action of fluid overpressure fluctuations, undergoing changes in local stress distribution and (iii) a final tectonic activation of fault linked to last basinal fluid and hydrocarbon migration during which shear stress restoration on fault plane is faster than fluid pressure build-up.

  17. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    NASA Astrophysics Data System (ADS)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount. Soil shear resistance was highest on finer textured soil with the highest watering treatment, whereas compression resistance was highest on the coarsest textured soils with the highest watering amounts. Nutrient addition did not influence total cover or biocrust function, but did decrease lichen cover. Taken together, these results suggest that interactions between soil texture, water, and to a lesser degree nutrients, create predictable patterns in biocrust assemblage and offers a mechanistic understanding of edaphic controls over biocrust abundance and structure. These insights add to our increasing understanding of how edaphic gradients structure soil communities.

  18. Structural analysis of natural textures.

    PubMed

    Vilnrotter, F M; Nevatia, R; Price, K E

    1986-01-01

    Many textures can be described structurally, in terms of the individual textural elements and their spatial relationships. This paper describes a system to generate useful descriptions of natural textures in these terms. The basic approach is to determine an initial, partial description of the elements using edge features. This description controls the extraction of the texture elements. The elements are grouped by type, and spatial relationships between elements are computed. The descriptions are shown to be useful for recognition of the textures, and for reconstruction of periodic textures.

  19. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  20. Hydraulic properties of groundwater systems in the saprolite and sediments of the wheatbelt, Western Australia

    NASA Astrophysics Data System (ADS)

    George, Richard J.

    1992-01-01

    Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation. Aquifers with an average hydraulic conductivity of 0.55 m day -1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day -1). These aquifers are separated by an aquitard (0.065 m day -1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method. Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4-50 m 2 day -1) and is capable of producing from less than 5 to over 230 kl day -1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived. The overlying aquitard has a low transmissivity (< 1 m 2 day -1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m 2 day -1 to over 10 m 2 day -1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl -1 to greater than 250000 mgl -1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.

  1. Orientation selectivity based structure for texture classification

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu

    2014-10-01

    Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

  2. An improved evaluation method for measuring TOC of the Longmaxi Formation shale in the Sichuan Basin, south China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Hu, C.; Wang, M.

    2017-12-01

    The evaluation of total organic carbon (TOC) in shale using logging data is one of the most crucial steps in shale gas exploration. However, it didn't achieve the ideal effect for the application of `ΔlogR' method in the Longmaxi Formation shale of Sichuan Basin.The reason may be the organic matter carbonization in Longmaxi Formation. An improved evaluation method, using the classification by lithology and sedimentary structure: 1) silty mudstone (wellsite logging data show silty); 2) calcareous mudstone (calcareous content > 25%); 3) laminated mudstone (laminations are recognized by core and imaging logging technology); 4) massive mudstone (massive textures are recognized by core and imaging logging technology, was proposed. This study compares two logging evaluation methods for measuring TOC in shale: the △logR method and the new proposed method. The results showed that the correlation coefficient between the calculated TOC and the tested TOC, based on the △logR method, was only 0.17. The correlation coefficient obtained according to the new method reached 0.80. The calculation results illustrated that, because of the good correlation between lithologies and sedimentary structure zones and TOC of different types of shale, the shale reservoirs could be graded according to four shale types. The new proposed method is more efficient, faster, and has higher vertical resolution than the △logR method. In addition, a new software had been completed. It was found to be especially effective under conditions of insufficient data during the early stages of shale gas exploration in the Silurian Longmaxi Formation, Muai Syncline Belt, south of the Sichuan Basin.

  3. ChemCam results from the Shaler outcrop in Gale crater, Mars

    USGS Publications Warehouse

    Anderson, Ryan B.; Bridges, J.C.; Williams, A.; Edgar, L.; Ollila, A.; Williams, J.; Nachon, Marion; Mangold, N.; Fisk, M.; Schieber, J.; Gupta, S.; Dromart, G.; Wiens, R.; Le Mouélic, Stéphane; Forni, O.; Lanza, N.; Mezzacappa, Alissa; Sautter, V.; Blaney, D.; Clark, B.; Clegg, S.; Gasnault, O.; Lasue, J.; Léveillé, Richard; Lewin, E.; Lewis, K.W.; Maurice, S.; Newsom, H.; Schwenzer, S.P.; Vaniman, D.

    2015-01-01

    The ChemCam campaign at the fluvial sedimentary outcrop “Shaler” resulted in observations of 28 non-soil targets, 26 of which included active laser induced breakdown spectroscopy (LIBS), and all of which included Remote Micro-Imager (RMI) images. The Shaler outcrop can be divided into seven facies based on grain size, texture, color, resistance to erosion, and sedimentary structures. The ChemCam observations cover Facies 3 through 7. For all targets, the majority of the grains were below the limit of the RMI resolution, but many targets had a portion of resolvable grains coarser than ∼0.5 mm. The Shaler facies show significant scatter in LIBS spectra and compositions from point to point, but several key compositional trends are apparent, most notably in the average K2O content of the observed facies. Facies 3 is lower in K2O than the other facies and is similar in composition to the “snake,” a clastic dike that occurs lower in the Yellowknife Bay stratigraphic section. Facies 7 is enriched in K2O relative to the other facies and shows some compositional and textural similarities to float rocks near Yellowknife Bay. The remaining facies (4, 5, and 6) are similar in composition to the Sheepbed and Gillespie Lake members, although the Shaler facies have slightly elevated K2O and FeOT. Several analysis points within Shaler suggest the presence of feldspars, though these points have excess FeOT which suggests the presence of Fe oxide cement or inclusions. The majority of LIBS analyses have compositions which indicate that they are mixtures of pyroxene and feldspar. The Shaler feldspathic compositions are more alkaline than typical feldspars from shergottites, suggesting an alkaline basaltic source region, particularly for the K2O-enriched Facies 7. Apart from possible iron-oxide cement, there is little evidence for chemical alteration at Shaler, although calcium-sulfate veins comparable to those observed lower in the stratigraphic section are present. The differing compositions, and inferred provenances at Shaler, suggest compositionally heterogeneous terrain in the Gale crater rim and surroundings, and intermittent periods of deposition.

  4. Geo-environmetal characterization of dry riverbeds affected by mine tailings in the Mazarrón district, Murcia (Spain)

    NASA Astrophysics Data System (ADS)

    Martín-Crespo, Tomás.; Gómez-Ortiz, David; Martínez-Pagán, Pedro; Martín-Velázquez, Silvia; de Ignacio, Cristina; Lillo, Javier; Faz, Angel

    2010-05-01

    Mine tailings constitute an environmental issue of public concern because they represent accumulations and emission sources of heavy metals and acid mine drainage by sulphide oxidation. In this work, two geophysical methods, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), as well as mineralogical and geochemical techniques have been used in order to obtain a geo-environmental characterization of two dry riverbeds in a mining district. The abandoned San Cristóbal and Los Perules mining group (Mazarrón, Murcia) has generated a huge amount of sludge from the Ag, Pb and Zn extraction operations. These tailings were piled up in ponds or directly dumped to the San Cristóbal dry riverbed located at the mining site, and Las Moreras dry riverbed, where San Cristóbal flows into a few meters downstream. Furthermore, Las Moreras watercourse flows into the Mediterranean Sea five kilometres downstream. Samples from two boreholes have been analyzed in order to obtain thickness, mineralogical and chemical composition of tailings and watercourse sedimentary materials affected by them. San Cristóbal sampling point shows a thickness of 3,5 m of mine tailings, 2 m of sedimentary materials, and the in situ volcanic rocks to 5,5 m depth. Las Moreras site shows a thickness of 2 m of a mine tailings deposit, 4 m of sedimentary materials, and the in situ metamorphic rocks 6 m depth. In both sites, significant amounts of pyrite (15-20 wt %), sphalerite (10-15 wt %) and galena (5-10 wt %) have been determined, and secondary oxides (hematite) and sulphates (gypsum, jarosite) minerals have been also identified. Ag, As, Cd, Co, Cu, Sb, V, Pb and Zn contents are also significant in all studied samples from tailings samples, and acid mine drainage has been clearly detected affecting the San Cristóbal dry riverbed. Regarding the alluvial materials from the riverbeds, pyrite, sphalerite and galena have been only identified in the San Cristóbal sampling point, probably due to its location at the mining site. Furthermore, heavy metal content of both dry riverbeds show significant amounts of Ag, As, Cu, Sb, Pb, V and Zn, indicating an important process of contamination from the surficial tailings to the natural sediments and watercourses. Water from Las Moreras riverbed has also been analysed. Its pH is about 8 and it exhibit higher values in conductivity and TDS, together with the concentrations of major metallic ions, mainly Cu, Ni, Fe and Zn, most of them beyond the established limits for this kind of natural waters. ERT and GPR techniques have provided estimations of both thickness and internal structure of the dry riverbeds infilling. For San Cristóbal site, ERT indicates a ~6 m thick sedimentary sequence, in good agreement with borehole data. An upper unit of 30 ohm.m extending up to 1.5 m depth, and a lower unit of resistivity values lower than 5 ohm.m up to 6 m depth can be distinguished. The first unit corresponds to upper part of the tailing, characterized by sand texture, whereas the lower one corresponds to tailing with silty-clay texture and sedimentary material with high metal contents. For Las Moreras site a 2 m thick upper unit of low (< 5 ohm-m) resistivity values and a 4 m thick lower one of ~20-30 ohm.m are distinguished, in good agreement with the surficial tailings and lower sedimentary materials obtained in the borehole. Joint application of geophysical and geochemical techniques has revealed itself as very useful for obtaining a complete characterization of abandoned mine deposits, previously to a future reclamation of these dangerous tailings.

  5. Music Structure Analysis from Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.; Goto, Masataka

    Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.

  6. Development of modal layering in granites: a case study from the Carna Pluton, Connemara, Ireland

    NASA Astrophysics Data System (ADS)

    McKenzie, Kirsty; McCarthy, William; Hunt, Emma

    2016-04-01

    Modal layering in igneous rocks uniquely record dynamic processes operating in magma chambers and also host a large proportion of Earth's strategic mineral deposits. This research investigates the origin of biotite modal layering and primary pseudo-sedimentary structures in felsic magmas, by using a combination of Crystal Size Distribution (CSD) analysis and Electron Probe Microanalysis (EPMA) to determine the mechanisms responsible for the development of these structures in the Carna Pluton, Connemara, Ireland. The Carna Pluton is a composite granodiorite intrusion and is one of five plutons comprising the Galway Granite Complex (425 - 380 Ma). Prominent 30 cm thick modal layers are defined by sharp basal contacts to a biotite-rich (20%) granite, which grades upward over 10 cm into biotite-poor, alkali-feldspar megacrystic granite. The layering strikes parallel to, and dips 30-60° N toward the external pluton contact. Pseudo-sedimentary structures (cross-bedding, flame structures, slumping and crystal graded bedding) are observed within these layers. Petrographic observations indicate the layers contain euhedral biotite and fresh undeformed quartz and feldspar. Throughout the pluton, alkali-feldspar phenocrysts define a foliation that is sub-parallel to the strike of biotite modal layers. Together these observations indicate that the intrusion's concentric foliation, biotite layers and associated structures formed in the magmatic state and due to a complex interaction between magma flow and crystallisation processes. Biotite CSDs (>250 crystals per sample) were determined for nine samples across three biotite-rich layers in a single unit. Preliminary CSD results suggest biotite within basal contacts accumulated via fractional crystallisation within an upward-growing crystal pile, likely reflecting the yield strength of the magma as a limiting factor to gravitational settling of biotite. This is supported by the abrupt decrease in mean biotite crystal size across the contact, compared to the biotite crystals in the megacrystic granite below. CSD results provide additional evidence for in-situ textural coarsening of biotite. This study proposes a new model for the crystallisation dynamics of the Carna Pluton. During emplacement, 2 - 5 cm alkali-feldspar megacrysts were aligned and fractional crystallisation was the primary mechanism driving the formation of biotite modal layers. Pseudo-sedimentary structures are interpreted to have formed due to the entrainment of biotite crystals within a necessarily highly fluid magma chamber. However, this interpretation is difficult to reconcile with the high viscosities commonly associated with granitic melts. To test this hypothesis, ongoing EPMA analysis on biotite F content and Fe/(Fe+Mg) ratios will assess whether the magma viscosity could have been low enough to produce these features via flow processes; or whether expansion of the pluton and tilting of planar primary magmatic layers, prior to solidification, could be responsible.

  7. Superimposed deformation in seconds: breccias from the impact structure at Kentland, Indiana (USA)

    NASA Astrophysics Data System (ADS)

    Bjørnerud, M. G.

    1998-05-01

    Breccias from the central uplift at the Kentland, Indiana impact structure have outcrop and microscopic characteristics that give insight into events that may occur in a carbonate-dominated sedimentary sequence in the moments following hypervelocity impact. Three distinct types of brecciated rock bodies — fault breccias, breccia lenses, and breccia dikes — suggest multiple mechanisms of fragmentation. The fault breccias occur along steeply dipping faults that coincide with compositional discontinuities in the stratigraphic succession. The breccia lenses and dikes are less localized in occurrence and show no systematic spatial distribution or orientation. The fault breccias and breccia lenses show no consistent cross-cutting relationships, but both are transected by the breccia dikes. Textural analysis reveals significant differences in particle size distributions for the different breccias. The fault breccias are typically monomict, coarsest and least uniform in grain size, and yield the highest power-law exponent (fractal dimension) in plots of particle size vs. frequency. The polymict dike filling is finest and most uniform in grain size, has the lowest power-law exponent, and is locally laminated and size-sorted. SEM images of the dike-filling breccia show that fragmentation occurred to the scale of microns. Material within the breccia lenses has textural characteristics intermediate between the other two types, but the irregular morphology of these bodies suggests a mechanism of formation different from that of either of the other breccia categories. The breccia lenses and dikes both have sub-mm-scale spheroidal vugs that may have been formed by carbon dioxide bubbles released during sudden devolatilization of the carbonate country rock. Collectively, these observations shed light on the processes that occur during the excavation and modification phases of crater formation in carbonate strata — heterogeneous, polyphase, multiscale deformation accomplished over a time interval of seconds.

  8. CLUPI: CLose-UP Imager on.board the ExoMars Mission Rover

    NASA Astrophysics Data System (ADS)

    Josset, Jean-Luc

    The CLose-UP Imager (CLUPI) imaging experiment is designed to obtain high-resolution colour and stereo images of rocks from the ExoMars rover (Pasteur payload). The close-up imager is a robotic equivalent of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits is crucial for the understanding of the geological context of any site where the rover will be active on Mars. The purpose of the Close-up imager is to look an area of about 4 cm x 2.6 cm of the rocks at a focus distance of 10 cm. With a resolution of approx. 15 micrometer/pixel, many kinds of rock surface and internal structures can be visualized: crystals in igneous rocks, fracture mineralization, secondary minerals, details of the surface morphology, sediment components, sedimentary structures, soil particles. It is conceivable that even textures resulting from ancient biological activity can be seen, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes. CLUPI is a powerful highly integrated miniaturized (¡208g) low-power robust imaging system with no mobile part, able to operate at very low temperature (-120° C). The opto-mechanical interfaces will be a smart assembly in titanium sustaining wide temperature range. The concept benefits from well-proven heritage: Proba, Rosetta, MarsExpress and Smart-1 missions. . . The close-up imager CLUPI on the ExoMars Rover will be described together with its capabilities to provide important information significantly contributing to the understanding of the geological environment and could identify outstanding potential biofabrics (stromatolites...) of past life on Mars.

  9. Recreational-Grade Sidescan Sonar: Transforming a Low-Cost Leisure Gadget into a High Resolution Riverbed Remote Sensing Tool

    NASA Astrophysics Data System (ADS)

    Hamill, D. D.; Buscombe, D.; Wheaton, J. M.; Wilcock, P. R.

    2016-12-01

    The size and spatial organization of bed material, bed texture, is a fundamental physical attribute of lotic ecosystems. Traditional methods to map bed texture (such as physical samples and underwater video) are limited by low spatial coverage, and poor precision in positioning. Recreational grade sidescan sonar systems now offer the possibility of imaging submerged riverbed sediments at coverages and resolutions sufficient to identify subtle changes in bed texture, in any navigable body of water, with minimal cost, expertise in sonar, or logistical effort, thereby facilitating the democratization of acoustic imaging of benthic environments, to support ecohydrological studies in shallow water, not subject to the rigors of hydrographic standards, nor the preserve of hydroacoustic expertise and proprietary hydrographic industry software. We investigate the possibility of using recreational grade sidescan sonar for sedimentary change detection using a case study of repeat sidescan imaging of mixed sand-gravel-rock riverbeds in a debris-fan dominated canyon river, at a coverage and resolution that meets the objectives of studies of the effects of changing bed substrates on salmonid spawning. A repeat substrate mapping analysis on data collected between 2012 and 2015 on the Colorado River in Glen, Marble, and Grand Canyons will be presented. A detailed method has been developed to interpret and analyze non-survey-grade sidescan sonar data, encoded within an open source software tool developed by the authors. An automated technique to quantify bed texture directly from sidescan sonar imagery is tested against bed sediment observations from underwater video and multibeam sonar. Predictive relationships between known bed sediment observations and bed texture metrics could provide an objective means to quantify bed textures and to relate changes in bed texture to biological components of an aquatic ecosystem, at high temporal frequency, and with minimal logistical effort and cost.

  10. Structure, metamorphism, and geochronology of the Cosmos Hills and Ruby Ridge, Brooks Range schist belt, Alaska

    USGS Publications Warehouse

    Christiansen, Peter B.; Snee, Lawrence W.

    1994-01-01

    The boundary of the internal zones of the Brooks Range orogenic belt (the schist belt) is a fault contact that dips toward the hinterland (the Yukon-Koyukuk province). This fault, here referred to as the Cosmos Hills fault zone, juxtaposes oceanic rocks and unmetamorphosed sedimentary rocks structurally above blueschist-to-greenschist facies metamorphic rocks of the schist belt. Near the fault contact, schist belt rocks are increasingly affected by a prominent, subhorizontal transposition foliation that is locally mylonitic in the fault zone. Structural and petrologic observations combined with 40Ar/39Ar incremental-release geochronology give evidence for a polyphase metamorphic and deformational history beginning in the Middle Jurassic and continuing until the Late Cretaceous. Our 40Ar/39Ar cooling age for Jurassic metamorphism is consistent with stratigraphic and other evidence for the onset of Brooks Range orogenesis. Jurassic metamorphism is nearly everywhere overprinted by a regional greenschist-facies event dated at 130–125 Ma. Near the contact with the Cosmos Hills fault zone, the schist belt is increasingly affected by a younger greenschist metamorphism that is texturally related to a prominent foliation that folds and transposes an older fabric. The 40Ar/39Ar results on phengite and fuchsite that define this younger fabric give recrystallization ages ranging from 103 to less than 90 Ma. We conclude that metamorphism that formed the transposition fabric peaked around 100 Ma and may have continued until well after 90 Ma. This age for greenschist metamorphism is broadly synchronous with the depositional age of locally derived, shallow-marine clastic sedimentary strata in the hanging wall of the fault zone and thus substantiates the interpretation that the fault zone accommodated extension in the Late Cretaceous. This extension unroofed and exhumed the schist belt during relative subsidence of the Yukon-Koyukuk province.

  11. Quaternary geology and sapphire deposits from the BO PHLOI gem field, Kanchanaburi Province, Western Thailand

    NASA Astrophysics Data System (ADS)

    Choowong, Montri

    2002-01-01

    One of the most famous blue sapphire deposits in Thailand and SE Asia is from the Bo Phloi District, Kanchanaburi Province, Western Thailand. This paper presents the results of our gemstone investigation as well as establishing the Bo Phloi depositional sequence as one of the Quaternary Type Sections in the region. Relationships among the sedimentology, depositional sequences and geomorphology were investigated in order to understand the gemstone depositional features. Sedimentary structures and textures of the sequences show that the deposition of gemstones is related genetically to fluvial processes. Gemstones are recognized in floodplain and low terrace deposits where gemstone paystreaks concentrate mostly inside layers of gravel beds and foreset-bedded gravels lithofacies. C-14 dating of wood and peat within gemstone-bearing layers indicated that the deposit formed during the middle to late Pleistocene. The gemstone-bearing gravel bed defines a north-south trend along the incised palaeo-channel of an ancient braided river system in the middle part of the basin.

  12. A New Unusual Ice-induced Sedimentary Structure: the Silt Mushroom

    PubMed Central

    Jianhua, Zhong; Liangtian, Ni; Ningliang, Sun; Chuang, Liu; Bing, Hao; Mengchun, Cao; xin, Chen; Ke, Luo; Shengxin, Liu; Leitong, Huang; Guanqun, Yang; Shaojie, Wang; Feifei, Su; Xuejing, He; Yanqiu, Xue

    2016-01-01

    Upon channel bars or point bars within the lows of the Yellow River, a new sedimentary structure, named ‘silt mushroom’, has been observed. The process of their formation is interpreted to be via the ice process. The name, the silt mushroom comes from their figurative form. This is because they look somewhat similar to mushroom’s in size and shape; being in the range of 1 to 10 cm in diameter, with the medium 3–5 cm, and on average 10 cm in height, occuring generally in groups, and occasionally in isolation in relatively soft silt. They develop in the transition from winter to spring, and are convincingly related to ice processes. Ice-induced silt mushrooms are best examined in association with the many other newly discovered ice-induced sedimentary structures (over 20 kinds). Clearly, up to now, ice processes have been significantly underestimated. With the substantial discovery of the ice-induced silt mushroom, it opens up new questions. This is because its structure mirrors the same sedimentary structures found in rocks, questioning their genesis, and sedimentary environment analysis. This achievement is significant not only in sedimentology, but also in palaeogeography, palaeoclimate, geological engineering, hydraulics and fluviology. PMID:27833155

  13. Jurassic carbonate microfacies, sea-level changes and the Toarcian anoxic event in the Tethys Himalaya (South Tibet)

    NASA Astrophysics Data System (ADS)

    Han, Zhong; Hu, Xiumian; Garzanti, Eduardo

    2016-04-01

    Detailed microfacies analysis of carbonate rocks from the Tingri and Nyalam areas of South Tibet allowed us to reconstruct the evolution of sedimentary environments during the Early to Middle Jurassic. Based on texture, sedimentary structure, grain composition and fossil content of about 500 thin sections, 17 microfacies overall were identified, and three evolutionary stages were defined. Stage 1 (Rhaetian?-lower Sinemurian Zhamure Formation) was characterized by siliciclastic and mixed siliciclastic-carbonate sedimentation on a barrier shore environment, stage 2 (upper Sinemurian-Pliensbachian Pupuga Formation) by high-energy grainstones with rich benthic faunas thriving on a carbonate platform, and stage 3 (Toarcian-lower Bajocian Nieniexiongla Formation) by low-energy mudstones intercalated with frequent storm layers on a carbonate ramp. Besides, Carbon isotope analyses (δ13Ccarb and δ13Corg) were performed on the late Pliensbachian-early Toarcian interval, and the organic matter recorded a pronounced stepped negative excursion -4.5‰ corresponding to characteristics of the early Toarcian oceanic anoxic event globally, which began just below the stage 2-stage 3 facies shifting boundary. The comparison between the Tethys Himalaya (South Tibet) and the tropical/subtropical zones of the Western Tethys and Panthalassa was carried out to discuss the factors controlling sedimentary evolution. The change from stage 1 to stage 2 was possibly induced by sea-level rise, when the Tibetan Tethys Himalaya was located at tropical/subtropical latitudes in suitable climatic and ecological conditions for carbonate sedimentation. The abrupt change from stage 2 to stage 3 is interpreted as a consequence of the early Toarcian oceanic anoxic event, accompanied by obvious carbon-isotope negative excursion and sea-level rise. The failed recovery from the carbonate crisis in the early Bajocian, with continuing deposition on a low-energy carbonate ramp, is ascribed to the tectonic moving towards higher latitudes.

  14. Sedimentary structures and stratal geometries at the foothills of Mount Sharp: their role in paleoenvironmental interpretation

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Rubin, D. M.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Stack, K.; Kah, L. C.; Banham, S.; Edgett, K. S.

    2015-12-01

    The Mars Science Laboratory Curiosity rover has been exploring sedimentary rocks at the foothills of Mount Sharp since August 2014. Robust interpretation of the paleoenvironmental contexts requires detailed facies analysis of these rocks including analysis and interpretation of sedimentary structures and sediment body geometries. Here, we describe some of the detailed sedimentary structures and sedimentary geometries observed by Curiosity between the Pahrump_Hills field site and its current location at Marias Pass. The Pahrump Hills sedimentary section comprises a succession dominated by finely laminated mudstones of the Murray formation that are interpreted to have been deposited in an ancient lake within Gale crater. Toward the top of the Pahump Hills succession, we observe the appearance of coarser-grained sandstones that are interstratified within the lacustrine mudstones. These sandstones that include Whale Rock and Newspaper Rock show lenticular geometries, and are pervasively cross-stratified. These features indicate that currents eroded shallow scours in the lake beds that were then infilled by deposition from migrating subaqueous dunes. The paleoenvironmental setting may represent either a gullied delta front setting or one in which lake level fall caused fluvial erosion and infilling of the shallow scours. Since leaving Pahrump_Hills, Curiosity has imaged extensive exposures of strata that are partly correlative with and stratigraphically overlie the uppermost part of the Pahrump section. Isolated cross-bedded sandstones and possible interstratified conglomerates beds occur within Murray formation mudstones. Capping sandstones with a likely variety of environmental contexts overlie mudstones. Where imaged in detail, sedimentary structures, such as trough-cross bedding and possible eolian pinstriping, provide constraints on plausible sedimentary processes and bounds on depositional setting.

  15. Relationships Between Magnetic Susceptibility and Sedimentary Facies Along AL Qahmah, Southern Red Sea Coast

    NASA Astrophysics Data System (ADS)

    Nabhan, A. I.; Yang, W.

    2016-12-01

    Facies and magnetic parameters of an arid siliciclastic coast were investigated in Al Qahmah, Saudi Arabia. The purpose of the survey was to map and understand the distribution of magnetic minerals in the different sedimentary facies in a 20-km2 area. Four NW-SE profiles parallel to shoreline and thirty-nine roughly perpendicular NE-SW profiles were measured. Petrographic study of sediment composition and texture of 152 samples was conducted. The coast sediments contain six lithofacies: beach, washover fan, tidal channel, eolian dune, sabkha, and wadi. The high concentration of heavy minerals in beach and dune facies causes high magnetic of susceptibility. Mineral composition of the total fraction in these facies confirms the presence of magnetite and ilmenite. The high values of susceptibility in beach and dune facies are attributed to strong winnowing and wave processes that control the pattern of transport, sorting of magnetic minerals in the beach facies. These minerals are picked up and moved by wind at low tide to form extensive low dune fields near the beach. The results showed that magnetic measurements are a sensitive and fast method, which can be used for studying the distribution of magnetic minerals in the sedimentary facies and help interpret various controlling processes.

  16. Quantifying grain shape with MorpheoLV: A case study using Holocene glacial marine sediments

    NASA Astrophysics Data System (ADS)

    Charpentier, Isabelle; Staszyc, Alicia B.; Wellner, Julia S.; Alejandro, Vanessa

    2017-06-01

    As demonstrated in earlier works, quantitative grain shape analysis has revealed to be a strong proxy for determining sediment transport history and depositional environments. MorpheoLV, devoted to the calculation of roughness coefficients from pictures of unique clastic sediment grains using Fourier analysis, drives computations for a collection of samples of grain images. This process may be applied to sedimentary deposits assuming core/interval/image archives for the storage of samples collected along depth. This study uses a 25.8 m jumbo piston core, NBP1203 JPC36, taken from a 100 m thick sedimentary drift deposit from Perseverance Drift on the northern Antarctic Peninsula continental shelf. Changes in ocean and ice conditions throughout the Holocene recorded in this sedimentary archive can be assessed by studying grain shape, grain texture, and other proxies. Ninety six intervals were sampled and a total of 2319 individual particle images were used. Microtextures of individual grains observed by SEM show a very high abundance of authigenically precipitated silica that obscures the original grain shape. Grain roughness, computed along depth with MorpheoLV, only shows small variation confirming the qualitative observation deduced from the SEM. Despite this, trends can be seen confirming the reliability of MorpheoLV as a tool for quantitative grain shape analysis.

  17. A lithofacies terrain model for the Blantyre Region: Implications for the interpretation of palaeosavanna depositional systems and for environmental geology and economic geology in southern Malawi

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Ludwig, R.-R.; Kathewera, A.; Mwenelupembe, J.

    2005-06-01

    The Blantyre City Area is part of the African savanna in southern Malawi. Sedimentological, geomorphological, chemical and mineralogical studies were conducted to create a lithofacies terrain model. The project involves mapping, cross-sectioning, grain size, heavy mineral analysis, XRD and the study of sedimentary textures under the petrographic microscope. These classical techniques were combined with GIS-based field and office works. The combined efforts led to 2-D maps and 3-D block diagrams that illustrate the geomorphological and sedimentological evolution of the landscape in southern Malawi during the late Mesozoic and Cenozoic. The results obtained through integrated geomorphological-sedimentological studies form the basis for land management (planning of residential areas, waste disposal sites, assessment of bearing capacity of rocks), geohazard prediction (delineation of high risk zones in terms of mass flow and inundation) and the evaluation of high-place (ceramic raw materials) and high-unit value (placers of precious metals and gemstones) mineral commodities in the study area. The study addresses regional and general aspects alike. In regional terms, the study aimed at unraveling the evolution of landforms at the southern end of the East African Rift System during the most recent parts of the geological past. Four stages of peneplanation were established in the working area. Planation was active from the Cretaceous to the Quaternary (stage I: early to mid-Cretaceous, stage II: early Tertiary, stage III: early to mid-Tertiary, stage IV: mid- to late Tertiary). During the most recent parts of the Quaternary, strong fluvial incision was triggered by the base-level lowering of the Shire River. Geomorphological alteration of the landscape goes along with a phyllosilicate-sesquioxide transformation from minerals indicative of more acidic meteoric fluids (e.g., gibbsite, kaolinite) to those typical of more alkaline conditions (e.g. smectite, vermiculite, hydrobiotite). In addition, the investigation is to provide some characteristic features suitable for the recognition and interpretation of terrestrial environments resembling the present-day savanna in the ancient sedimentary record: Conspicuous bimodality in the grain-size distribution. High degree of gravel roundness. Boulder fields (basal conglomerates) with fitting breccias and no rotation of structural elements. Poor to very poor sorting of siliciclastics. Stratification is rare; if present only in sandy beds with antidune and tabular cross-bedding at low angle prevailing over cross-bedding at high angle. Grading rare; in arenaceous deposits poorly developed FU sequences, in rudites poorly developed CU sequences, locally with surface armoring. Directional sedimentary structures in coarse-grained deposits are unimodal. Fabric types: a(t)b(i) and a(p)b(i); shear planes indicative of slide may be present. Ribbon-shaped architectural elements prevail over channel-like types. Bounding surfaces/unconformities are uneven to wavy and more widespread than scour-and-pool structures. Fine-grained carbonaceous interbeds are restricted to shallow depressions. Etch marks such as tafonis, flutes, honeycomb textures are common. Placer deposits of metallic and non-metallic mineral commodities are abundant. Alucretes and ferricretes of bog iron (ferrihydrite > goethite) and lateritic (goethite > ferrihydrite) types are common, calcitic freshwater limestones and gypcretes are scarce. Kandite-group minerals "in" (relic), smectite-group minerals "in", vermiculite "in" (recent), mica-group minerals "out".

  18. The integration of gravity, magnetic and seismic data in delineating the sedimentary basins of northern Sinai and deducing their structural controls

    NASA Astrophysics Data System (ADS)

    Selim, El Sayed Ibrahim

    2016-01-01

    The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.

  19. New petrofacies in upper Cretaceous section of southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colburn, I.P.; Oliver, D.

    1986-04-01

    A distinctive sandstone-conglomerate petrofacies is recognized throughout the Late Cretaceous (Maestrichtian-late Campanian) Chatsworth Formation in the Simi Hills. It is named the Woolsey Canyon petrofacies after the district where it was first recognized. The petrofacies is also recognized in the Late Cretaceous (late Campanian and possibly early Maestrichtian) Tuna Canyon Formation of the central Santa Monica Mountains. The conglomerates in the petrofacies are composed predominantly of angular pebble-size clasts of argillite, quartz-rich rocks (orthoquartzarenite, metaorthoquartzarenite, mice quartz schist) and leucocratic plutoniate (granite-granodiorite). The conglomerate texture and composition are mirrored in the sandstone. The uniformly angular character of the conglomerate clastsmore » and the survival of argillite clasts indicate that the detritus underwent no more than 5 mi of subaerial transport before it entered the deep marine realm. Foraminifers collected from mudstones interbedded with the conglomerates indicate upper bathyal water depth at the site of deposition. A source terrane of low to moderate relief is indicated by the absence of cobbles and boulders. Bed forms, sedimentary structures, and textural features indicate the detritus moved north from its source terrane to be deposited by turbidity currents, debris flows, and grain flows on the Chatsworth Submarine Fan. The detritus of the Woolsey Canyon petrofacies was derived from basement rocks, now largely buried beneath the Los Angeles basin, that were being eroded during the formation of the Cretaceous Los Angeles erosion surface. The detritus came from the Los Angeles arch of that surface.« less

  20. Features structure of iron-bearing strata’s of the Bakchar deposit, Western Siberia

    NASA Astrophysics Data System (ADS)

    Asochakova, E. M.

    2017-12-01

    The ore-bearing strata’s of Bakchar deposit have complicated structural-textural heterogeneity and variable mineral composition. This deposit is one of the most promising areas of localization of sedimentary iron ore. The ore-bearing strata’s are composed mainly of sandstones (sometimes with ferruginous pebbles, less often conglomerates), siltstones and clays. The ironstones are classified according to their lithology and geochemistry into three types: goethite-hydrogoethitic oolitic, glauconite-chloritic and transitional (intermediate) type iron ores. The mineral composition includes many different minerals: terrigenous, authigenic and clayey. Ironstones are characterized by elevated concentrations of many rare and valuable metals present in them as trace elements, additionally alloying (Mn, V, Cr, Ti, Zr, Mo, etc.) and harmful impurities (S, As, Cu, Pb, Zn, P). There are prerequisites for the influence of numerous factors, such as prolonged transgression of the sea, swamping of paleo-river deltas, the appearance of a tectonic fracture zone associated with active bottom tectonics and unloading of catagenetic waters, regression and natural ore enrichment due to the re-washing of slightly-iron rocks. These factors are reflected in the structure of the ore-bearing strata in which rhythmic cycles of ore sedimentation with successive changes in them are distinguished by an association of different mineral composition.

  1. Textural states of a hot-worked MA2-1 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; Kochubei, A. Ya.; Kurtasov, S. F.; Mel'Nikov, K. E.

    2007-02-01

    Quantitative texture analysis is used to study texture formation in an MA2-1 magnesium alloy subjected to axisymmetric upsetting at temperatures of 250-450°C and strain rates of 10-4-100 -1. The deformed structure is examined by optical microscopy, and the results obtained are used to plot the structural-state diagram of the alloy after 50% upsetting. The experimental textures are compared with the textures calculated in terms of a thermoactivation model.

  2. Geologic and paleoecologic studies of the Nebraska Sand Hills

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.; Fryberger, S.G.; Hanley, John H.; Bradbury, J. Platt

    1980-01-01

    PART A: The Nebraska Sand Hills are an inactive, late Quaternary, most probably Holocene, dune field (covering 57,000 km 2 ) that have been eroded along streams and in blowouts, resulting in excellent lateral and vertical exposures of the stratification of dune and interdune sediments. This paper presents new data on the geometry, primary sedimentary structures, modification of sedimentary structures, direction of sand movement, and petrography of these eolian deposits. Eolian deposits of the Sand Hills occur as relatively thin (9-24 m) 'blanket' sands, composed of a complex of dune and discontinuous, diachronous interdune deposits unconformably overlying fluviolacustrine sediments. The internal stratification of large dunes in the Sand Hills (as high as 100 m), is similar to the internal stratification of smaller dunes of the same type in the Sand Hills, differing only in scale. Studies of laminae orientation in the Sand Hills indicate that transverse, barchan, and blowout dunes can be differentiated in rocks of eolian origin using both the mean dip angle of laminae and the mean angular deviation of dip direction. A variety of secondary structures modify or replace primary eolian stratification in the Sand Hills, the more common of which are dissipation structures and bioturbation. Dissipation structures in the Sand Hills may develop when infiltrating water deposits clay adjacent to less permeable layers in the sand, or along the upper margins of frozen layers that form in the sands during winter. Cross-bed measurements from dunes of the Nebraska Sand Hills necessitate a new interpretation of the past sand transport directions. The data from these measurements indicate a general northwest-to-southeast drift of sand, with a more southerly drift in the southeast part of the Sand Hills. A large area of small dunes < 100 m high) described by Smith (1965) as linear or seif in the central part of the Sand Hills was interpreted by him on the basis of morphology only. We interpret these as transverse-ridge dunes that were generally moving to the south. Further, our measurements indicate that dunes in the western part of the Sand Hills did not develop in response to present-day effective wind regimes. The presence of 'transverse' and en echelon barchan dunes in the Sand Hills corresponds to a developmental sequence of barchan to linear dunes proposed by Tsoar (1978). Dune and interdune deposits of the Sand Hills are subfeldsarenites to feldsarenites. Sand grains are commonly coated with montmorillonitic clay, which may be the local source of the clay concentrated in the dissipation structures. Textures of sand samples taken from adjacent layers within a dune were as dissimilar as textures of samples taken from widely separated dunes. This common occurrence indicates that textural data must be used carefully and in combination with other data to recognize ancient rocks of eolian origin. Organic material derived from a variety of flora and fauna that inhabit the interdunes (chapters B and C) generated both oil and gas upon heating. Thus, interdune sediments may be an indigenous hydrocarbon source if buried in eolianites. The twofold stratigraphy of loess and correlative dune deposits in the Sand Hills proposed by Reed and Dreeszen (1965) could not be confirmed by the present study. Rather, available data indicate that the dunes represent a single formation as suggested by Lugn (1935). PART B: Three assemblages of nonmarine Mollusca from paleointerdune deposits in the Nebraska Sand Hills inhabited shallow, quiet, vegetated, subpermanent or temporary, freshwater interdune ponds and adjacent terrestrial habitats. Analysis of factors affecting the taxonomic composition, diversity, and abundance of species in living assemblages of mollusks support this interpretation. The mollusks have long biostratigraphic ranges and broad biogeographic distributions. They fail to establish precise age relations of the faunas othe

  3. Structural texture similarity metrics for image analysis and retrieval.

    PubMed

    Zujovic, Jana; Pappas, Thrasyvoulos N; Neuhoff, David L

    2013-07-01

    We develop new metrics for texture similarity that accounts for human visual perception and the stochastic nature of textures. The metrics rely entirely on local image statistics and allow substantial point-by-point deviations between textures that according to human judgment are essentially identical. The proposed metrics extend the ideas of structural similarity and are guided by research in texture analysis-synthesis. They are implemented using a steerable filter decomposition and incorporate a concise set of subband statistics, computed globally or in sliding windows. We conduct systematic tests to investigate metric performance in the context of "known-item search," the retrieval of textures that are "identical" to the query texture. This eliminates the need for cumbersome subjective tests, thus enabling comparisons with human performance on a large database. Our experimental results indicate that the proposed metrics outperform peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM) and its variations, as well as state-of-the-art texture classification metrics, using standard statistical measures.

  4. Novel chromatin texture features for the classification of pap smears

    NASA Astrophysics Data System (ADS)

    Bejnordi, Babak E.; Moshavegh, Ramin; Sujathan, K.; Malm, Patrik; Bengtsson, Ewert; Mehnert, Andrew

    2013-03-01

    This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into bloblike texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed structural texture features and a range of different cytology features drawn from the literature, show that two of the four top ranking features are structural texture features. They also show that a combination of structural and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment, using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy associated changes (MACs) in Papanicoloau stain.

  5. Impact-generated carbonate melts: evidence from the Haughton structure, Canada

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Spray, John G.

    2001-12-01

    Evidence is presented for the melting of dolomite-rich target rocks during formation of the 24 km diameter, 23 Ma Haughton impact structure on Devon Island in the Canadian high Arctic. Field studies and analytical scanning electron microscopy reveal that the >200 m thick crater-fill deposit, which currently covers an ˜60 km2 area in the center of the structure, comprises fragmented target rocks set within a carbonate-silicate matrix. The silicate component of the matrix consists of Si-Al-Mg-rich glass. The carbonate component is microcrystalline calcite, containing up to a few wt% Si and Al. The calcite also forms spherules and globules within the silicate glass, with which it develops microtextures indicative of liquid immiscibility. Dolomite clasts exhibit evidence of assimilation and may show calcite and rare dolomite overgrowths. Some clasts are penetrated by calcite and silicate injections. Along with the carbonate-silicate glass textures, the presence of pigeonite and spinifex-textured diopside suggests that the matrix to the crater-fill deposit was originally molten and was rapidly cooled. This indicates that the impact event that generated Haughton caused fusion of the predominantly dolomitic target rocks. It appears that the Ca-Mg component of the dolomite may have dissociated, with Mg entering the silicate melt phase, while the Ca component formed a CaCO3-dominant melt. The silicates were derived by the fusion of Lower Paleozoic sandstones, siltstones, shales and impure dolomites. Evidence for melting is corroborated by a review of theoretical and experimental work, which shows that CaCO3 melts at >10 GPa and >2000 K, instead of dissociating to release CO2. This work indicates that carbonate-rich sedimentary targets may also undergo impact melting and that the volume of CO2 released into the atmosphere during such events may be considerably less than previously estimated.

  6. Structural and stratigraphic framework and spatial distribution of permeability of the Atlantic coastal plain, North Carolina to New York

    USGS Publications Warehouse

    Brown, Philip Monroe; Miller, James A.; Swain, Frederick Morrill

    1972-01-01

    This report describes and interprets the results of a detailed subsurface mapping program undertaken in that part of the Atlantic Coastal Plain which extends from the South Carolina and North Carolina border through Long Island, N.Y. Data obtained from more than 2,200 wells are analyzed. Seventeen chronostratigraphic units are mapped in the subsurface. They range in age from Jurassic(?) to post-Miocene. The purpose of the mapping program was to determine the external and internal geometry of mappable chronostratigraphic units and to derive and construct a permeability-distribution network for each unit based upon contrasts in the textures and compositions of its contained sediments. The report contains a structure map and a combined isopach, lithofacies, and permeability-distribution map for each of the chronostratigraphic units delineated in the subsurface. In addition, it contains a map of the top of the basement surface. These maps, together with 36 stratigraphic cross sections, present a three-dimensional view of the regional subsurface hydrogeology. They provide focal points of reference for a discussion of regional tectonics, structure, stratigraphy, and permeability distribution. Taken together and in chronologic sequence, the maps constitute a detailed sedimentary model, the first such model to be constructed for the middle Atlantic Coastal Plain. The chronostratigraphic units mapped record a structural history dominated by lateral and vertical movement along a system of intersecting hinge zones. Taphrogeny, related to transcurrent faulting, is the dominant type of deformation that controlled the geometry of the sedimentary model. Twelve of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are independent of the present-day configuration of the underlying basement surface. These 12 units, classified as genetically unrooted units, are assigned to a first-order tectonic stage. A structural model is proposed whose alinements of positive and negative structural features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant features of the structural model are northeast-plunging half grabens arranged en echelon and bordered by northeast-plunging fault-block anticlines. Tension-type hinge zones that strike north lie athwart the half grabens. Five of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are accordant with the present-day configuration of the underlying basement surface. These five units, classified as genetically rooted units, are assigned to a second-order tectonic stage. A structural model is proposed whose alinements of positive and negative features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant feature of this model is a graben that stands tangential to southeast-plunging asymmetrical anticlines. Tension-type hinge zones that strike northeast lie athwart the graben. To account for the semiperiodic realinement of structural features that has characterized the history of the region and as a working hypothesis, we propose that the dominant tectonic element, which is present in the area between north Florida and Long Island, N.Y., is a unit-structural block, a ?basement? block, bounded by wrench-fault zones. We propose that forces derived principally from the rotation and precession of the earth act on the unit-structural block and deform it. Two tectonic models are proposed. One model is compatible with the structural and sedimentary geometries that are associated with chronostratigraphic units assigned to a first-order tectonic stage. It features tension-type hinge zones that strike north and shear-type hinge zones that strike northeast. The other model is compatible with the structural and sedimentary geometries associated with chronostratigraphi

  7. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  8. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata

    NASA Astrophysics Data System (ADS)

    Present, Theodore M.; Paris, Guillaume; Burke, Andrea; Fischer, Woodward W.; Adkins, Jess F.

    2015-12-01

    Carbonate Associated Sulfate (CAS) is trace sulfate incorporated into carbonate minerals during their precipitation. Its sulfur isotopic composition is often assumed to track that of seawater sulfate and inform global carbon and oxygen budgets through Earth's history. However, many CAS sulfur isotope records based on bulk-rock samples are noisy. To determine the source of bulk-rock CAS variability, we extracted CAS from different internal sedimentary components micro-drilled from well-preserved Late Ordovician and early Silurian-age limestones from Anticosti Island, Quebec, Canada. Mixtures of these components, whose sulfur isotopic compositions vary by nearly 25‰, can explain the bulk-rock CAS range. Large isotopic variability of sedimentary micrite CAS (34S-depleted from seawater by up to 15‰) is consistent with pore fluid sulfide oxidation during early diagenesis. Specimens recrystallized during burial diagenesis have CAS 34S-enriched by up to 9‰ from Hirnantian seawater, consistent with microbial sulfate reduction in a confined aquifer. In contrast to the other variable components, brachiopods with well-preserved secondary-layer fibrous calcite-a phase independently known to be the best-preserved sedimentary component in these strata-have a more homogeneous isotopic composition. These specimens indicate that seawater sulfate remained close to about 25‰ (V-CDT) through Hirnantian (end-Ordovician) events, including glaciation, mass extinction, carbon isotope excursion, and pyrite-sulfur isotope excursion. The textural relationships between our samples and their CAS isotope ratios highlight the role of diagenetic biogeochemical processes in setting the isotopic composition of CAS.

  9. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1998-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  10. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  11. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1999-04-27

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  12. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-21

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  13. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-14

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  14. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air

    NASA Astrophysics Data System (ADS)

    Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin

    2017-12-01

    Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.

  15. Cascaded Amplitude Modulations in Sound Texture Perception.

    PubMed

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  16. Explaining the texture properties of whey protein isolate/starch co-gels from fracture structures.

    PubMed

    Fu, Wei; Nakamura, Takashi

    2017-04-01

    The effects of tapioca starch (TS) and potato starch (PS) on texture properties of whey protein isolate (WPI)/starch co-gels were investigated for fracture structures. We focused on two types of WPI network structures. In a fine-stranded structure at pH 6.8, the WPI/TS co-gel fractured similarly to the WPI single gel. The WPI/PS co-gel was broken at a lower strain and lower stress. In a random aggregation at pH 5.8, the WPI/TS co-gel reached a yielding point at a lower strain, whereas the WPI/PS co-gel fractured at a higher strain and higher stress. In the fracture structures, it was revealed that breaks occurred in different places in these cases, which could explain the different texture properties of samples. This study tries to explain the texture properties of WPI/starch co-gels from fracture structures and provides a reference to predict texture properties of the WPI/starch food system.

  17. Memnonia Landscape

    NASA Technical Reports Server (NTRS)

    2006-01-01

    28 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a contact between a dust-covered plain and a dust-mantled, textured upland in the Memnonia Sulci region of Mars. The dominant landforms in this scene are yardangs-they are the product of extensive wind erosion of a relatively poorly-consolidated, sand-bearing material (e.g., deposits of volcanic ash or poorly cemented sedimentary rocks).

    Location near: 9.3oS, 172.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  18. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    NASA Astrophysics Data System (ADS)

    Stefurak, Elizabeth J. T.; Fischer, Woodward W.; Lowe, Donald R.

    2015-02-01

    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ30Si dataset spans a range from -4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ30Si distributions, but systematic texture-specific δ30Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean -1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during diagenesis and metamorphism, although fractionations during diagenetic phase transformations may have affected certain textures. We interpret these systematic variations to reflect fractionation during silica precipitation as well as isotopically distinct fluids from which later phases originated. SIMS δ18O values fall in a range from 16.39‰ to 23.39‰ (n = 381), similar to previously published data from bulk gas source mass spectrometry of Onverwacht cherts. We observed only limited examples of texture-related variation in δ18O and did not observe correlation of δ18O with δ30Si trends. This is consistent with hypotheses that Si isotope ratios are more resistant to alteration under conditions of rock-buffered diagenesis (Marin-Carbonne et al., 2011). Our results indicate that low temperature processes fractionated silicon isotopes in early Archean marine basins, a behavior that probably precludes the application of chert δ30Si as a robust paleothermometer. The values we observe for facies that sedimentological and petrographic observations indicate formed as primary and earliest diagenetic silica precipitates from seawater are more 30Si-rich than that expected for bulk silicate Earth. This is consistent with the hypothesis that the silicon isotope budget is balanced by the coeval deposition of 30Si-enriched cherts and 30Si-depleted iron formation lithologies. Precipitation of authigenic clay minerals in both terrestrial and marine settings may have also comprised a large 30Si-depleted sink, with the corollary of an important non-carbonate alkalinity sink consuming cations released by silicate weathering.

  19. Deep-sea fan deposition of the lower Tertiary Orca Group, eastern Prince William Sound, Alaska

    USGS Publications Warehouse

    Winkler, Gary R.

    1976-01-01

    The Orca Group is a thick, complexly deformed, sparsely fossiliferous sequence of flysch-like sedimentary and tholeiitic volcanic rocks of middle or late Paleocene age that crops out over an area of. roughly 21,000 km2 in the Prince William Sound region and the adjacent Chugach Mountains. The Orca Group also probably underlies a large part of the Gulf of Alaska Tertiary province and the continental shelf south of the outcrop belt; coextensive rocks to the southwest on Kodiak Island are called the Ghost Rocks and Sitkalidak Formations. The Orca Group was pervasively faulted, tightly folded, and metamorphosed regionally to laumontite and prehnite-pumpellyite facies prior to, and perhaps concurrently with, intrusion of early Eocene granodiorite and quartz monzonite plutons. In eastern Prince William Sound, 95% of the Orca sedimentary rocks are interbedded feldspathic and lithofeldspathic sandstone, siltstone, and mudstone turbidites. Lithic components vary widely in abundance and composition, but labile sedimentary and volcanic grains dominate. A widespread yet minor amount of the mudstone is hemipelagic or pelagic, with scattered foraminifers. Pebbly mudstone with rounded clasts of exotic lithologies and locally conglomerate with angular blocks of deformed sandstone identical to the enclosing matrix are interbedded with the turbidites. Thick and thin tabular bodies of altered tholeiitic basalt are locally and regionally conformable with the sedimentary rocks, and constitute 15-20% of Orca outcrops in eastern Prince William Sound. The basalt consists chiefly of pillowed and nonpillowed flows, but also includes minor pillow breccia, tuff, and intrusive rocks. Nonvolcanic turbidites are interbedded with the basalt; lenticular bioclastic limestone, red and green mudstone, chert, and conglomerate locally overlie the basalt, but are supplanted upward by turbidites. From west to east, basalts within the Orca Group become increasingly fragmental and amygdaloidal. Such textural changes probably indicate shallower water to the east. A radial distribution of paleocurrents and distinctive associations of turbidite facies within the sedimentary rocks suggest that the Orca Group in eastern Prince William Sound was deposited on a westward-sloping, complex deep-sea fan. Detritus was derived primarily from 'tectonized' sedimentary, volcanic, and plutonic rocks. Coeval submarine volcanism resulted in intercalation of basalt within prisms of terrigenous sediment.

  20. Method of Forming Textured Silicon Substrate by Maskless Cryogenic Etching

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Homyk, Andrew P. (Inventor)

    2014-01-01

    Disclosed herein is a textured substrate comprising a base comprising silicon, the base having a plurality of needle like structures depending away from the base, wherein at least one of the needle like structures has a depth of greater than or equal to about 50 micrometers determined perpendicular to the base, and wherein at least one of the needle like structures has a width of less than or equal to about 50 micrometers determined parallel to the base. An anode and a lithium ion battery comprising the textured substrate, and a method of producing the textured substrate are also disclosed.

  1. Cascaded Amplitude Modulations in Sound Texture Perception

    PubMed Central

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191

  2. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  3. 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning

    NASA Astrophysics Data System (ADS)

    Cawood, Adam J.; Bond, Clare E.

    2018-01-01

    Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.

  4. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil.

    PubMed

    Gloaguen, Thomas Vincent; Passe, José João

    2017-11-01

    The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Trace Metal Variations Detected by Using Continuous XRF Core Scanning: Preliminary Results on Redox-sensitive Elements in East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Cho, J. H.; Shin, D. H.; Kim, J. K.; Hyun, S.; Jang, S.; Kum, B. C.; Yoo, K. C.; Moh, T. J.

    2017-12-01

    The cruise of R/V ISABU focused on the detailed geological, geochemical and paleoceanographical investigations in the East Sea. The purpose of this cruise was the use of technically sophisticated Giant Piston Corer (GPC, OSIL) as well as the recovery of the longest piston core (20.7 m, ISA-16ESUB-2B) ever recorded in KIOST with a high resolution of stratigraphic sedimentary layer. The Late Pleistocene to the Holocene sediments in the Ulleung Basin are characterized by several volcanic tephra layers with alternations of fine light and dark clayey layers, reflecting variability in the paleoenvironment. Based on the previous researches and AMS results, we determine the ages of sedimentary layers from three tephra layers, 1.86 mbsf (U-Oki, 10.7 ka), 3.31 mbsf (AT, 29.4 ka), 11.67 mbsf (Aso-4, 88.0 ka) and 17.09 mbsf (Aso-3, 133.0 ka) respectively. Sediment textures are identified as hemipelagic mud, bioturbated mud and laminated mud with tephra layers. The sedimentation rates of each intervals are 0.174 m/kyr (present to U-Oki), 0.078 m/kyr (U-Oki to AT), 0.143 m/kyr (AT to Aso-4) and 0.120 m/kyr (Aso-4 to Aso-3) respectively. Sensitivity of XRF core scanner was obtained by establishing equivalences between peak areas. Element concentrations are analyzed by traditional techniques such as ICP-MS, ICP-OES. The Ca/Fe ratio reflects carbonate content and ISA-16ESUB-2B core shows strong correlation to sedimentary horizons. Sr/Ca ratio has good correlation with sedimentary units. Enhanced Sr contents indicates strong surface ocean production. Br/Cl ratio are high peak during MIS 5.5. Br content implies generally high organic rich sediments.

  6. Staff - Marwan A. Wartes | Alaska Division of Geological & Geophysical

    Science.gov Websites

    programs, offering expertise in sedimentary geology and tectonics. My background is primarily in outcrop : Archives of coupled structural and sedimentary processes (GSA/AAPG) FIELD TRIP LEADERSHIP 2017, Field trip China: Journal of Sedimentary Research, v. 75, no. 2, p. 268-279. Carroll, A.R., and Wartes, M.A., 2003

  7. Environmental niche divergence among three dune shrub sister species with parapatric distributions

    PubMed Central

    Chefaoui, Rosa M.; Correia, Otília; Bonal, Raúl; Hortal, Joaquín

    2017-01-01

    Abstract Background and Aims The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus, which have a parapatric distribution in the Iberian Peninsula. Methods Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. Key Results The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides–spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii, the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. Conclusions: The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical, ecological and evolutionary processes driving the evolution of species adaptations and how they determine their current geographical ranges. PMID:28334085

  8. Exploring the influence of texture and composition on the thermal transport properties of mudstones

    NASA Astrophysics Data System (ADS)

    Kenderes, S. M.; Hofmeister, A. M.; Merriman, J. D.; Whittington, A. G.

    2017-12-01

    The thermal history of sedimentary basins depends strongly on the thermal transport properties of the rocks within the basin. Mudstones are compositionally diverse, varying both chemically and with modal mineralogy, which are known to affect the thermal transport properties of earth materials. To explore the influence of composition and texture on the thermal transport properties of mudstones, we have measured the thermal diffusivity (D) and isobaric heat capacity (CP) of 12 mudstones using the contact-free laser flash analysis (LFA) and differential scanning calorimetry (DSC). At 20°C, D values of the shales range from 0.318 to 1.214 mm2·s-1 and CP values range from 799 to 918 J·kg-1·°C-1 and at 300°C, D values range from 0.227 to 0.582 mm2·s-1 and CP values range from 1095 to 1344 J·kg-1·°C-1. The mudstones with the highest D values, and lowest CP values are green micaceous or calcareous siltstones respectively, whereas the mudstones with the lowest D values, and highest CP values are black, claystones with 9% organic carbon. This suggests that organic carbon content and, to a lesser extent, the grainsize influence the thermal transport properties of these rocks. The lower D values and higher CP values cause organic rich claystones to absorb and transmit heat differently than other types of mudstones. This is especially true at lower temperatures, where the difference in D values is much greater than at higher temperatures. Additionally, when compared to other sedimentary rocks, shales generally have lower D values and higher CP values. These results also highlight the necessity of using rock type specific values in heat transport numerical models.

  9. Diagram of Lake Stratification on Mars

    NASA Image and Video Library

    2017-06-01

    This diagram presents some of the processes and clues related to a long-ago lake on Mars that became stratified, with the shallow water richer in oxidants than deeper water was. The sedimentary rocks deposited within a lake in Mars' Gale Crater more than three billion years ago differ from each other in a pattern that matches what is seen in lakes on Earth. As sediment-bearing water flows into a lake, bedding thickness and particle size progressively decrease as sediment is deposited in deeper and deeper water as seen in examples of thick beds (PIA19074) from shallowest water, thin beds (PIA19075) from deeper water and even thinner beds (PIA19828) from deepest water. At sites on lower Mount Sharp, inside the crater, measurements of chemical and mineral composition by NASA's Curiosity Mars rover reveal a clear correspondence between the physical characteristics of sedimentary rock from different parts of the lake and how strongly oxidized the sediments were. Rocks with textures indicating that the sediments were deposited near the edge of a lake have more strongly oxidized composition than rocks with textures indicating sedimentation in deep water. For example, the iron mineral hematite is more oxidized than the iron mineral magnetite. An explanation for why such chemical stratification occurs in a lake is that the water closer to the surface is more exposed to oxidizing effects of oxygen in the atmosphere and ultraviolet light. On Earth, a stratified lake with a distinct boundary between oxidant-rich shallows and oxidant-poor depths provides a diversity of environments suited to different types of microbes. If Mars has ever hosted microbial live, the stratified lake at Gale Crater may have similarly provided a range of different habitats for life. https://photojournal.jpl.nasa.gov/catalog/PIA21500

  10. Flood, Seismic or Volcanic Deposits? New Insights from X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Van Daele, M. E.; Moernaut, J.; Vermassen, F.; Llurba, M.; Praet, N.; Strupler, M. M.; Anselmetti, F.; Cnudde, V.; Haeussler, P. J.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    Event deposits, such as e.g. turbidites incorporated in marine or lacustrine sediment sequences, may be caused by a wide range of possible triggering processes: failure of underwater slopes - either spontaneous or in response to earthquake shaking, hyperpycnal flows and floods, volcanic processes, etc. Determining the exact triggering process remains, however, a major challenge. Especially when studying the event deposits on sediment cores, which typically have diameters of only a few cm, only a small spatial window is available to analyze diagnostic textural and facies characteristics. We have performed X-ray CT scans on sediment cores from Chilean, Alaskan and Swiss lakes. Even when using relatively low-resolution CT scans (0.6 mm voxel size), many sedimentary structures and fabrics that are not visible by eye, are revealed. For example, the CT scans allow to distinguish tephra layers that are deposited by fall-out, from those that reached the basin by river transport or mud flows and from tephra layers that have been reworked and re-deposited by turbidity currents. The 3D data generated by the CT scans also allow to examine relative orientations of sedimentary structures (e.g. convolute lamination) and fabrics (e.g. imbricated mud clasts), which can be used to reconstruct flow directions. Such relative flow directions allow to determine whether a deposit (e.g. a turbidite) had one or several source areas, the latter being typical for seismically triggered turbidites. When the sediment core can be oriented (e.g. using geomagnetic properties), absolute flow directions can be reconstructed. X-ray CT scanning, at different resolution, is thus becoming an increasingly important tool for discriminating the exact origin of EDs, as it can help determining whether e.g. an ash layer was deposited as fall out from an ash cloud or fluvially washed into the lake, or whether a turbidite was triggered by an earthquake or a flood.

  11. Sedimentology of Hirnantian glaciomarine deposits in the Balkan Terrane, western Bulgaria: Fixing a piece of the north peri-Gondwana jigsaw puzzle

    NASA Astrophysics Data System (ADS)

    Chatalov, Athanas

    2017-04-01

    Glaciomarine deposits of late Hirnantian age in the western part of the Palaeozoic Balkan Terrane have persistent thickness ( 7 m) and lateral uniformity in rock colour, bedding pattern, lithology, and sedimentary structures. Four lithofacies are distinguished from base to top: lonestone-bearing diamictites, interbedded structureless mudstones, crudely laminated diamictites, and finely laminated mudstones. The diamictites are clast-poor to clast-rich comprising muddy to sandy varieties. Their compositional maturity is evidenced by the very high amount of detrital quartz compared to the paucity of feldspar and unstable lithic grains. Other textural components include extraclasts derived from the local Ordovician basement, mudstone intraclasts, and sediment aggregates. Turbate structures, grain lineations, and soft sediment deformation of the matrix below larger grains are locally observed. Sedimentological analysis reveals that deposition occurred in an ice-intermediate to ice-distal, poorly agitated shelf environment by material supplied from meltwater buoyant plumes and rain-out from ice-rafted debris. Remobilization by mass-flow processes (cohesive debris flows and slumps) was an important mechanism particularly for the formation of massive diamictites. The glaciomarine deposits represent a typical deglaciation sequence reflecting retreat of the ice front (grounded or floating ice sheet), relative sea-level rise and gradually reduced sedimentation rate with increasing contribution from suspension fallout. This sequence was deposited on the non-glaciated shelf of the intracratonic North Gondwana platform along the southern margin of the Rheic Ocean. The Hirnantian strata of the Balkan Terrane can be correlated with similar glaciomarine deposits known from peri-Gondwana terranes elsewhere in Europe showing clear 'Armorican affinity'. Several lines of evidence suggest that the provenance of siliciclastic material was associated mainly with sedimentary recycling of mature sands which had been deposited across North Gondwana in Cambrian and pre-glacial Ordovician times.

  12. Variation of the hydraulic properties within gravity-driven deposits in basinal carbonates

    NASA Astrophysics Data System (ADS)

    Jablonska, D.; Zambrano, M.; Emanuele, T.; Di Celma, C.

    2017-12-01

    Deepwater gravity-driven deposits represent important stratigraphic heterogeneities within basinal sedimentary successions. A poor understanding of their distribution, internal architecture (at meso- and micro-scale) and hydraulic properties (porosity and permeability), may lead to unexpected compartmentalization issues in reservoir analysis. In this study, we examine gravity-driven deposits within the basinal-carbonate Maiolica Formation adjacent to the Apulian Carbonate Plaftorm, southern Italy. Maiolica formation is represented by horizontal layers of thin-bedded cherty pelagic limestones often intercalated by mass-transport deposits (slumps, debris-flow deposits) and calcarenites of diverse thickness (0.1 m - 40 m) and lateral extent (100 m - >500 m). Locally, gravity-driven deposits compose up to 60 % of the exposed succession. These deposits display broad array of internal architectures (from faulted and folded strata to conglomerates) and various texture. In order to further constrain the variation of the internal architectures and fracture distribution within gravity-driven deposits, field sedimentological and structural analyses were performed. To examine the texture and hydraulic properties of various lithofacies, the laboratory porosity measurements of suitable rock samples were undertaken. These data were supported by 3D pore network quantitative analysis of X-ray Computed microtomography (MicroCT) images performed at resolutions 1.25 and 2.0 microns. This analysis helped to describe the pores and grains geometrical and morphological properties (such as size, shape, specific surface area) and the hydraulic properties (porosity and permeability) of various lithofacies. The integration of the analyses allowed us to show how the internal architecture and the hydraulic properties vary in different types of gravity-driven deposits within the basinal carbonate succession.

  13. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat

    2018-06-01

    The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

  14. Quantitative phase and texture angularity analysis of brain white matter lesions in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Baxandall, Shalese; Sharma, Shrushrita; Zhai, Peng; Pridham, Glen; Zhang, Yunyan

    2018-03-01

    Structural changes to nerve fiber tracts are extremely common in neurological diseases such as multiple sclerosis (MS). Accurate quantification is vital. However, while nerve fiber damage is often seen as multi-focal lesions in magnetic resonance imaging (MRI), measurement through visual perception is limited. Our goal was to characterize the texture pattern of the lesions in MRI and determine how texture orientation metrics relate to lesion structure using two new methods: phase congruency and multi-resolution spatial-frequency analysis. The former aims to optimize the detection of the `edges and corners' of a structure, and the latter evaluates both the radial and angular distributions of image texture associated with the various forming scales of a structure. The radial texture spectra were previously confirmed to measure the severity of nerve fiber damage, and were thus included for validation. All measures were also done in the control brain white matter for comparison. Using clinical images of MS patients, we found that both phase congruency and weighted mean phase detected invisible lesion patterns and were significantly greater in lesions, suggesting higher structure complexity, than the control tissue. Similarly, multi-angular spatial-frequency analysis detected much higher texture across the whole frequency spectrum in lesions than the control areas. Such angular complexity was consistent with findings from radial texture. Analysis of the phase and texture alignment may prove to be a useful new approach for assessing invisible changes in lesions using clinical MRI and thereby lead to improved management of patients with MS and similar disorders.

  15. Using Aluminum Foil to Record Structures in Sedimentary Rock.

    ERIC Educational Resources Information Center

    Metz, Robert

    1982-01-01

    Aluminum foil can be used to make impressions of structures preserved in sedimentary rock. The impressions can be projected onto a screen, photographed, or a Plaster of Paris model can be made from them. Impressions of ripple marks, mudcracks, and raindrop impressions are provided in photographs illustrating the technique. (Author/JN)

  16. Frustules to fragments, diatoms to dust: How degradation of microfossil shape and microstructures can teach us how ice sheets work

    USGS Publications Warehouse

    Scherer, R.P.; Sjunneskog, C.M.; Iverson, M.R.; Hooyer, T.S.

    2005-01-01

    In a laboratory experiment we investigated micro- and nanoscale changes in fossil diatom valves and in the texture of diatomaceous sediments that result from ice sheet overburden and subglacial shearing. Our experiment included compression and shearing of Antarctic diatom-rich sediments in a ring shear device and comparison of experimental samples with natural glacial sediments from the Antarctic continental shelf. The purpose of the experiment is to establish objective criteria for analyzing subglacial processes and interpreting the origin of glacial-geologic features on the Antarctic continental shelf. We find distinct changes resulting from different glacial settings, with respect to whole diatom frustules, diatom micromorphology, and microtextural properties of sedimentary units. By providing constraints on subglacial shearing, these observations of genetically controlled micro- and nanoscale diatom structures and architecture are contributing to the understanding of large-scale glacial processes, aiding the development of models of modern ice sheet processes, and guiding interpretation of past ice sheet configurations. Copyright ?? 2005 American Scientific Publishers. All rights reserved.

  17. Origin of mounds in the Pantanal wetlands: An integrated approach between geomorphology, pedogenesis, ecology and soil micromorphology.

    PubMed

    de Oliveira Junior, Jairo Calderari; Beirigo, Raphael Moreira; Chiapini, Mariane; do Nascimento, Alexandre Ferreira; Couto, Eduardo Guimarães; Vidal-Torrado, Pablo

    2017-01-01

    Vegetated mounds are an important geomorphological feature of the Pantanal, where the influence of floods dictates not only hydropedological processes, but also the distribution and ecology of the flora and fauna. This work aimed to identify factors and processes that influence the formation and spatial distribution of the mounds, which are commonly associated with termite activity. In order to characterize pedological processes, macro and micro morphological descriptions, satellite image interpretation, dating of the sandy sedimentary material using OSL and carbon dating using 14C AMS were carried out. This dating of the materials indicates that the sediments in which the soils were formed were deposited during the Pleistocene, while the carbonates are from the Holocene. The basin-like format of the laminar structures suggests that part of the more clayey material was deposited in lacustrine environments. The more humid climate in the Holocene intensified argilluviation, which at an advanced stage, led to a more pronounced textural gradient, reducing drainage and leading to ferrolysis and thickening of the E horizon. Besides pedogenic processes, more erosive flooding during the Holocene began reducing and rounding the landscape's more elevated structures (paleolevees). In the final stage, these structures were occupied by termites to shelter from flooding. Thereafter, the bio-cementation action of the termite nests has increased the resistance of the vegetated mounds to processes of erosion.

  18. Origin of mounds in the Pantanal wetlands: An integrated approach between geomorphology, pedogenesis, ecology and soil micromorphology

    PubMed Central

    de Oliveira Junior, Jairo Calderari; Beirigo, Raphael Moreira; Chiapini, Mariane; do Nascimento, Alexandre Ferreira; Couto, Eduardo Guimarães

    2017-01-01

    Vegetated mounds are an important geomorphological feature of the Pantanal, where the influence of floods dictates not only hydropedological processes, but also the distribution and ecology of the flora and fauna. This work aimed to identify factors and processes that influence the formation and spatial distribution of the mounds, which are commonly associated with termite activity. In order to characterize pedological processes, macro and micro morphological descriptions, satellite image interpretation, dating of the sandy sedimentary material using OSL and carbon dating using 14C AMS were carried out. This dating of the materials indicates that the sediments in which the soils were formed were deposited during the Pleistocene, while the carbonates are from the Holocene. The basin-like format of the laminar structures suggests that part of the more clayey material was deposited in lacustrine environments. The more humid climate in the Holocene intensified argilluviation, which at an advanced stage, led to a more pronounced textural gradient, reducing drainage and leading to ferrolysis and thickening of the E horizon. Besides pedogenic processes, more erosive flooding during the Holocene began reducing and rounding the landscape’s more elevated structures (paleolevees). In the final stage, these structures were occupied by termites to shelter from flooding. Thereafter, the bio-cementation action of the termite nests has increased the resistance of the vegetated mounds to processes of erosion. PMID:28700595

  19. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-03-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  20. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-06-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  1. Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites.

    PubMed

    Noffke, Nora

    2015-02-01

    Sandstone beds of the <3.7 Ga Gillespie Lake Member on Mars have been interpreted as evidence of an ancient playa lake environment. On Earth, such environments have been sites of colonization by microbial mats from the early Archean to the present time. Terrestrial microbial mats in playa lake environments form microbialites known as microbially induced sedimentary structures (MISS). On Mars, three lithofacies of the Gillespie Lake Member sandstone display centimeter- to meter-scale structures similar in macroscopic morphology to terrestrial MISS that include "erosional remnants and pockets," "mat chips," "roll-ups," "desiccation cracks," and "gas domes." The microbially induced sedimentary-like structures identified in Curiosity rover mission images do not have a random distribution. Rather, they were found to be arranged in spatial associations and temporal successions that indicate they changed over time. On Earth, if such MISS occurred with this type of spatial association and temporal succession, they would be interpreted as having recorded the growth of a microbially dominated ecosystem that thrived in pools that later dried completely: erosional pockets, mat chips, and roll-ups resulted from water eroding an ancient microbial mat-covered sedimentary surface; during the course of subsequent water recess, channels would have cut deep into the microbial mats, leaving erosional remnants behind; desiccation cracks and gas domes would have occurred during a final period of subaerial exposure of the microbial mats. In this paper, the similarities of the macroscopic morphologies, spatial associations, and temporal succession of sedimentary structures on Mars to MISS preserved on Earth has led to the following hypothesis: The sedimentary structures in the <3.7 Ga Gillespie Lake Member on Mars are ancient MISS produced by interactions between microbial mats and their environment. Proposed here is a strategy for detecting, identifying, confirming, and differentiating possible MISS during current and future Mars missions.

  2. Texture analysis of aeromagnetic data for enhancing geologic features using co-occurrence matrices in Elallaqi area, South Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Eldosouky, Ahmed M.; Elkhateeb, Sayed O.

    2018-06-01

    Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.

  3. Rock type discrimination techniques using Landsat and Seasat image data

    NASA Technical Reports Server (NTRS)

    Blom, R.; Abrams, M.; Conrad, C.

    1981-01-01

    Results of a sedimentary rock type discrimination project using Seasat radar and Landsat multispectral image data of the San Rafael Swell, in eastern Utah, are presented, which has the goal of determining the potential contribution of radar image data to Landsat image data for rock type discrimination, particularly when the images are coregistered. The procedure employs several images processing techniques using the Landsat and Seasat data independently, and then both data sets are coregistered. The images are evaluated according to the ease with which contacts can be located and rock units (not just stratigraphically adjacent ones) separated. Results show that of the Landsat images evaluated, the image using a supervised classification scheme is the best for sedimentary rock type discrimination. Of less value, in decreasing order, are color ratio composites, principal components, and the standard color composite. In addition, for rock type discrimination, the black and white Seasat image is less useful than any of the Landsat color images by itself. However, it is found that the incorporation of the surface textural measures made from the Seasat image provides a considerable and worthwhile improvement in rock type discrimination.

  4. Carbonate-silicate liquid immiscibility upon impact melting, Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Graup, Guenther

    1999-05-01

    The 24-km-diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 +/- 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the S and E of the impact site. To the N and W, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a post-impact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes: carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment-matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite has, therefore, like the silicate melt a primary origin by impact shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites to the SW to E of the Ries crater. The rarer suevites to the W to NE of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of carbonate melt, indicates that the Malm limestones are the source rocks of the carbonate impact melt. This correspondence shows that the suevites preserve a compositional memory of their source rocks. From the regional distribution of suevites with or without immiscible carbonate melts, it is inferred that the Ries impactor hit the steep Albtrauf escarpment at its toe, in an oblique impact from the north.

  5. Exhumation and stress history in the sedimentary cover during Laramide thick-skinned tectonics assessed by stylolite roughness analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin

    2017-04-01

    Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.

  6. Image segmentation using association rule features.

    PubMed

    Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J

    2002-01-01

    A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.

  7. Advanced light-scattering materials: Double-textured ZnO:B films grown by LP-MOCVD

    NASA Astrophysics Data System (ADS)

    Addonizio, M. L.; Spadoni, A.; Antonaia, A.

    2013-12-01

    Double-textured ZnO:B layers with enhanced optical scattering in both short and long wavelength regions have been successfully fabricated using MOCVD technique through a three step process. Growth of double-textured structures has been induced by wet etching on polycrystalline ZnO surface. Our double-layer structure consists of a first ZnO:B layer wet etched and subsequently used as substrate for a second ZnO:B layer deposition. Polycrystalline ZnO:B layers were etched by utilizing diluted solutions of fluoridic acid (HF), chloridric acid (HCl) and phosphoric acid (H3PO4) and their effect on surface morphology modification was systematically investigated. The morphology of the second deposited ZnO layer strongly depended on the surface properties of the etched ZnO first layer. Growth of cauliflower-like texture was induced by protrusions presence on the HCl etched surface. Optimized double-layer structure shows a cauliflower-like double texture with higher RMS roughness and increased spectral haze values in both short and long wavelength regions, compared to conventional pyramidal-like single texture. Furthermore, this highly scattering structure preserves excellent optical and electrical properties.

  8. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less

  9. Method for adhering a coating to a substrate structure

    DOEpatents

    Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey

    2015-02-17

    A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.

  10. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT images.

    PubMed

    Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan

    2010-01-01

    Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C.

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Yinchen, R.

    1992-01-01

    Bayan Obo, a complex rare earth element (REE)FeNb ore deposit, located in Inner Mongolia, P.R.C. is the world's largest known REE deposit. The deposit is chiefly in a marble unit (H8), but extends into an overlying unit of black shale, slate and schist unit (H9), both of which are in the upper part of the Middle Proterozoic Bayan Obo Group. Based on sedimentary structures, the presence of detrital quartz and algal fossil remains, and the 16-km long geographic extent, the H8 marble is a sedimentary deposit, and not a carbonatite of magmatic origin, as proposed by some previous investigators. The unit was weakly regionally metamorphosed (most probably the lower part of the green schist facies) into marble and quartzite prior to mineralization. Tectonically, the deposit is located on the northern flank of the Sino-Korean craton. Many hypotheses have been proposed for the origin of the Bayan Obo deposit; the studies reported here support an epigenetic, hydrothermal, metasomatic origin. Such an origin is supported by field and laboratory textural evidence; 232Th/208Pb internal isochron mineral ages of selected monazite and bastnaesite samples; 40Ar/39Ar incremental heating minimum mineral ages of selected alkali amphiboles; chemical compositions of different generations of both REE ore minerals and alkali amphiboles; and evidence of host-rock influence on the various types of Bayan Obo ores. The internal isochron ages of the REE minerals indicate Caledonian ages for various episodes of REE and Fe mineralization. No evidence was found to indicate a genetic relation between the extensive biotite granitic rocks of Hercynian age in the mine region and the Bayan Obo are deposit, as suggested by previous workers. ?? 1992.

  12. Reconnaissance of alluvial fans as potential sources of gravel aggregate, Santa Cruz River valley, Southeast Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Melick, Roger

    2002-01-01

    This investigation was conducted to provide information on the aggregate potential of alluvial fan sediments in the Santa Cruz River valley. Pebble lithology, roundness, and particle size were determined in the field, and structures and textures of alluvial fan sediments were photographed and described. Additional measurements of particle size on digital photographs were made on a computer screen. Digital elevation models were acquired and compiled for viewing the areal extent of selected fans. Alluvial fan gravel in the Santa Cruz River valley reflects the lithology of its source. Gravel derived from granitic and gneissic terrane of the Tortolita, Santa Catalina, and Rincon Mountains weathers to grus and is generally inferior for use as aggregate. Gravel derived from the Tucson, Sierrita, and Tumacacori Mountains is composed mostly of angular particles of volcanic rock, much of it felsic in composition. This angular volcanic gravel should be suitable for use in asphalt but may require treatment for alkali-silica reaction prior to use in concrete. Gravel derived from the Santa Rita Mountains is of mixed plutonic (mostly granitic rocks), volcanic (mostly felsic rocks), and sedimentary (sandstone and carbonate rock) composition. The sedimentary component tends to make gravel derived from the Santa Rita Mountains slightly more rounded than other fan gravel. The coarsest (pebble, cobble, and boulder) gravel is found near the heads (proximal part) of alluvial fans. At the foot (distal part) of alluvial fans, most gravel is pebble-sized and interbedded with sand and silt. Some of the coarsest gravel was observed near the head of the Madera Canyon, Montosa Canyon, and Esperanza Wash fans. The large Cienega Creek fan, located immediately south and southeast of Tucson, consists entirely of distal-fan pebble gravel, sand, and silt.

  13. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  14. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.

    PubMed

    Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo

    2017-10-02

    GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.

  15. Optimizing Pt/TiO2 templates for textured PZT growth and MEMS devices

    NASA Astrophysics Data System (ADS)

    Potrepka, Daniel; Fox, Glenn; Sanchez, Luz; Polcawich, Ronald

    2013-03-01

    Crystallographic texture of lead zirconate titanate (PZT) thin films strongly influences piezoelectric properties used in MEMS applications. Textured growth can be achieved by relying on crystal growth habit and can also be initiated by the use of a seed-layer heteroepitaxial template. Template choice and the process used to form it determine structural quality, ultimately influencing performance and reliability of MEMS PZT devices such as switches, filters, and actuators. This study focuses on how 111-textured PZT is generated by a combination of crystal habit and templating mechanisms that occur in the PZT/bottom-electrode stack. The sequence begins with 0001-textured Ti deposited on thermally grown SiO2 on a Si wafer. The Ti is converted to 100-textured TiO2 (rutile) through thermal oxidation. Then 111-textured Pt can be grown to act as a template for 111-textured PZT. Ti and Pt are deposited by DC magnetron sputtering. TiO2 and Pt film textures and structure were optimized by variation of sputtering deposition times, temperatures and power levels, and post-deposition anneal conditions. The relationship between Ti, TiO2, and Pt texture and their impact on PZT growth will be presented. Also affiliated with U.S. Army Research Lab, Adelphi, MD 20783, USA

  16. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  17. Characteristics of sedimentary structures in coarse-grained alluvial rivers

    NASA Astrophysics Data System (ADS)

    Ackerley, David; Powell, Mark

    2013-04-01

    The characteristics of coarse-grained alluvial surfaces have important implications for the estimation of flow resistance, entrainment thresholds and sediment transport rates in gravel-bed rivers. This area of research has, thus, demanded attention from geomorphologists, sedimentologists, and river engineers. The majority of research has focused towards understanding the characteristics and adjustments in surface grain size. Bed stability, however, is not ultimately defined by particle size but how grains are arranged within the bed surface. For example, by the organisation of particles into a variety of grain and form scale sedimentary structures and bedforms (e.g. imbrication; pebble clusters, stone nets, transverse ribs). While it is widely acknowledged sedimentary structuring must be considered within estimates of flow resistance and sediment transport, relatively little is known about the structural properties of water-worked river gravels. As a consequence, we remain woefully ignorant of this important aspect of gravel-bed river sedimentology. The aim of this poster is to present some preliminary results of a study designed to characterise the morphodynamics of sedimentary structures in coarse-grained alluvial rivers and their implications upon entrainment thresholds and sediment transport rates. The poster focuses on investigating the variability in grain and form scale sedimentary structuring across a number of field sites. Representative patches of three gravel bars on the Rivers Wharfe, Manifold and Afon Elan, UK, have been surveyed using a Leica HDS 3000 Terrestrial Laser Scanner. The resultant raw point-cloud data, recorded at a 4mm resolution, has been registered, filtered, and interpolated to produce highly detailed 2½D digital elevation models of gravel-bed surface topography. These surfaces have been analysed using a number of structural parameters including bed elevation probability distribution function statistics (standard deviation, skewness, kurtosis), semivariograms, and inclination indices. This research enhances our understanding of alluvial bed surface structures and lays the foundations for developing a more detailed understanding of their morphodynamics.

  18. Texture and structure contribution to low-temperature plasticity enhancement of Mg-Al-Zn-Mn Alloy MA2-1hp after ECAP and annealing

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.

    2013-05-01

    Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.

  19. Supercritical bedforms and sedimentary structures from field and core studies, Middle Eocene deep-marine base-of-slope environment, Ainsa Basin, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Cornard, Pauline; Pickering, Kevin

    2017-04-01

    In recent years, many researchers have focussed on supercritical- and subcritical-flow deposits using flume-tank experiments (e.g., Cartigny el al., 2011; Postma et al., 2014; Postma and Cartigny, 2014), or from direct observations on presently active deep-water systems (e.g., Hughes et al., 2012). Using outcrop and core examples from a base-of-slope environment in the Middle Eocene Ainsa Basin, Spanish Pyrenees, and with published experimental work, a range of deposits are interpreted as upper-flow regime sedimentary structures. This contribution focusses on the interpretation of several supercritical bedforms (antidunes and chutes-and-pools) observed on the field and upper-flow regime sedimentary structures recognized in cores. The spatial distribution of supercritical-flow deposits obtained from an analysis of field outcrops and core sedimentary logs are evaluated in relation to the depositional environment (channel axis, off-axis, margin and interfan). The frequency distributions of the bed thicknesses are also analysed in relation to supercritical versus subcritical bed-thickness distributions.

  20. The Lacustrine Upper Brushy Basin Member of the Morrison Formation, Four Corners Region, Usa: a Lithological and Mineralogical Terrestrial Analog for Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J.

    2013-12-01

    The upper part of the Jurassic Brushy Basin Member of the Morrison Formation is an iron- and clay-rich volcaniclastic shale deposited in an ephemeral alkaline saline lake system. Sedimentary rocks exposed in Gale Crater consist of similar non-acidic clays, possibly of lacustrine origin. Three primary clastic lithofacies are present in both the Brushy Basin Member and at Gale Crater: silt-/claystone, sandstone, and conglomerate. Both the terrestrial and martian silt-/claystone lithofacies are interpreted as lacustrine depositional environments due to features such as parallel laminated and massive sedimentary structures. Vugs are present in the siltstone/claystone facies on both the Colorado Plateau and at Gale Crater. Fluvial features are also observed in both examples such as cross-bedded sandstones and imbricated conglomerates. Concretions are present in both the Colorado Plateau and Gale Crater units. The vugs in the Brushy Basin Member preserve algal forms with cellular elaboration and are interpreted as charophyte molds. Two distinct suites of elements (1. C, Fe, As, P and, 2. C, S, Se, P) are associated with the microbial fossils and may be potential markers for biosignatures. Vugs at Gale Crater are a potential target to investigate the possibility of preserved microbial (algal) life where early analyses show the presence of the elements capable of supporting life. The Brushy Basin Member is composed predominately of quartz, feldspars, zeolites and altered volcanic ash. The abundant clay minerals in both the terrestrial and martian examples are hypothesized to have formed due to partial alteration of volcanic minerals in alkaline fluid. Similarly, concretions present in the terrestrial unit exhibit a diverse range of mineralogies likely due to alkaline fluid chemistries interacting with reactive volcaniclastic sediments. Terrestrial concretion mineralogy is diverse even within an outcrop or stratigraphic horizon which suggests reactants to precipitate concretions are being sourced from diagenetic micorenvironments. Similar diagenetic microenvironments may be preserved at Gale Crater due to the fine-grained, volcaniclastic (reactive) rocks. The Brushy Basin Member is a valuable analog because comparative iron-and clay-rich compositions help to: 1) understand diagenetic processes in a non-acidic, saline lacustrine environment, 2) document specific sedimentary structures and lithofacies associations to interpret depositional environment, 3) document specific biomediated features (e.g., textures, morphologies, chemistries), and 4) demonstrate how these features might persist or respond to diagenesis over time.

  1. An Archaean submarine volcanic debris avalanche deposit, Yilgarn Craton, western Australia, with komatiite, basalt and dacite megablocks. The product of dome collapse

    NASA Astrophysics Data System (ADS)

    Trofimovs, J.; Cas, R. A. F.; Davis, B. K.

    2004-11-01

    The Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, western Australia contains excellent exposure of Archaean felsic and ultramafic breccias characterised by facies associations interpreted to reflect a volcanic debris avalanche mode of deposition. Such Archaean volcanic deposits are typically difficult to identify due to poor preservation and exposure. However, primary volcanological and sedimentological features are preserved within the relatively low strain and low metamorphic grade (up to lower greenschist facies) Boorara Domain that allow accurate facies reconstruction. The breccia deposit is characterised by two clast populations. A 'block facies' comprised of metre- to decimetre-scale megablocks of dacite, basalt and komatiite is preserved within a 'mixed' matrix breccia facies of angular, coarse sand- to boulder-sized clasts. The megablocks preserve original stratigraphy and show fracturing and jigsaw-fit textures within the poorly sorted, unstratified, genetically related matrix. Overlying the volcanic debris avalanche deposit, are a series of stratified horizons. These deposits show evidence of hydraulic sorting within bedforms exhibiting normal grain-size grading and tractional scour and fill structures along their basal contacts. The stratified facies is interpreted to have been deposited by high concentration, high competency turbidity currents, triggered by slope stabilization slides in the source region. Primary contacts and volcanic textures preserved in decimetre-scale volcanic blocks allow reconstruction of the pre-collapse palaeovolcanological history of the source region. The volcanic debris avalanche deposit, together with the associated stratified sedimentary horizons, were produced by sector collapse of a submarine, dacitic volcanic dome. Contemporaneous komatiite intrusion into the dacite dome may have caused dome flank instability. However, the volcanic debris avalanche trigger is interpreted to be a post-lithification tectonic influence.

  2. Sedimentary facies, geomorphic features and habitat distribution at the Hudson Canyon head from AUV multibeam data

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Guida, Vincent G.; Macelloni, Leonardo; Chiocci, Francesco L.; Rona, Peter A.; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2015-11-01

    Mapping of physical benthic habitats at the head of Hudson Canyon was performed by means of integrated analysis of acoustic data, video surveys and seafloor sampling. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery for the identification of geomorphological features and the characterization of surficial sediments. Habitat characterization in terms of seafloor texture and identification of benthic and demersal communities was accomplished by visual analysis of still photographs from underwater vehicles. Habitat classes were defined on the basis of the seafloor texture observed on photos and then compared with the geophysical data in order to associate habitats to acoustic classes and/or geomorphological features. This enabled us to infer habitat distribution on the basis of morpho-acoustic classes and extrapolate results over larger areas. Results from bottom trawling were used to determine the overall biodiversity within the identified habitats. Our analysis revealed a variety of topographic and sedimentological structures that provide a wide range of physical habitats. A variety of sandy and muddy substrates, gravel patches and mudstone outcrops host rich and varied faunal assemblages, including cold-water corals and sponge communities. Pockmark fields below 300 m depth suggest that methane-based chemosynthetic carbonate deposition may contributes to creation of specific benthic habitats. Hummocky terrain has been delineated along the canyon rims and associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps). These results show the relationships of physical features to benthic habitat variation, support the notion of the area as a biodiversity hotspot and define essential habitats for planning of sustainable regional fisheries.

  3. Origin of sulfide and phosphate deposits in Upper Proterozoic carbonate strata, Irece basin, Bahia, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, J.R.; Misi, A.

    1991-03-01

    Carbonate strata of the Una Group represent late Proterozoic platform sedimentation in the Irece basin of north-central Brazil. Stratabound sulfide- and phosphate-rich units occur within a 50-m thick tidal flat sequence of dolomitic limestone and cherty dolomite. Three types of primary phosphate concentrations are present: columnar stromatolitic, laminar stromatolitic, and intraclastic. Resedimented phosphate clasts and phosphatic units interbedded with non phosphatic dolomites suggest early diagenetic replacement of algal carbonate units. Local stratabound Zn-Pb-Ag sulfide concentrations at the Tres Irmas prospect occur within silty dolomite with shallow water sedimentary structures and local disturbed laminae, synsedimentary faults, and breccias. Sulfide minerals includemore » pyrite, sphalerite, galena, marcasite, jordanite, tetrahedrite, and covellite. Pyrite crystal aggregates commonly show bladed forms. Nodular aggregates of length-slow quartz are locally associated with sulfides. Sulfur isotope analyses indicate relatively uniform heavy {delta}{sup 34}S values. Barite shows a {delta}{sup 34}S range from +25.2 to +29.6{per thousand}, CDT. Pyrite and sphalerite representative of a variety of textural types have a {delta}{sup 34}S range of +20.2 to +22.6{per thousand}. Late Proterozoic evaporite sulfates show a wide range of {delta}{sup 34} S values from about +10 to +28{per thousand}. Thus, the {delta}{sup 34}S values for Irece barite could reflect original seawater sulfate values. However, the relatively heavy {delta}{sup 34}S values of the associated sulfides suggests that the original seawater sulfate was modified by bacterial sulfate reduction processes in shallow sea floor sediments. Textural and {delta}{sup 34}S evidence suggests that a later stage of metallic mineralization scavenged sulfur from preexisting sulfides or from direct reduction of evaporitic sulfate minerals.« less

  4. Predicted facies, sedimentary structures and potential resources of Jurassic petroleum complex in S-E sWestern Siberia (based on well logging data)

    NASA Astrophysics Data System (ADS)

    Prakojo, F.; Lobova, G.; Abramova, R.

    2015-11-01

    This paper is devoted to the current problem in petroleum geology and geophysics- prediction of facies sediments for further evaluation of productive layers. Applying the acoustic method and the characterizing sedimentary structure for each coastal-marine-delta type was determined. The summary of sedimentary structure characteristics and reservoir properties (porosity and permeability) of typical facies were described. Logging models SP, EL and GR (configuration, curve range) in interpreting geophysical data for each litho-facies were identified. According to geophysical characteristics these sediments can be classified as coastal-marine-delta. Prediction models for potential Jurassic oil-gas bearing complexes (horizon J11) in one S-E Western Siberian deposit were conducted. Comparing forecasting to actual testing data of layer J11 showed that the prediction is about 85%.

  5. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    USGS Publications Warehouse

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and geothermal gradients, and tectonic warps. These concepts have practical and empirical application in most mining districts where they are of use in the exploration for ore, but are of such broad and general application that they may not represent known or inferred ore formation processes. Close spatial relation among some sedimentary rock- hosted Au deposits and their host structures suggests that the structures and the orebodies are genetically linked because they may have shared the same developmental history. Examples of probable syn-deformational genesis and structural control of sedimentary rock-hosted Au deposits are in the large Betze deposit in the Carlin trend, Nevada and in the Lannigou, Jinlongshan, and Maanqiao Au deposits, China.

  6. Analysis of a multisensor image data set of south San Rafael Swell, Utah

    NASA Technical Reports Server (NTRS)

    Evans, D. L.

    1982-01-01

    A Shuttle Imaging Radar (SIR-A) image of the southern portion of the San Rafael Swell in Utah has been digitized and registered to coregistered Landsat, Seasat, and HCMM thermal inertia images. The addition of the SIR-A image to the registered data set improves rock type discrimination in both qualitative and quantitative analyses. Sedimentary units can be separated in a combined SIR-A/Seasat image that cannot be seen in either image alone. Discriminant Analyses show that the classification accuracy is improved with addition of the SIR-A image to Landsat images. Classification accuracy is further improved when texture information from the Seasat and SIR-A images is included.

  7. Paraboloid Structured Silicon Surface for Enhanced Light Absorption: Experimental and Simulative Investigations

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Kaur, Jasmeet; Fareed, Imran; Mobin, Abdul; Kim, Jae Hyun

    2015-09-01

    In this paper, we present an optical model that simulates the light trapping and scattering effects of a paraboloid texture surface first time. This model was experimentally verified by measuring the reflectance values of the periodically textured silicon (Si) surface with the shape of a paraboloid under different conditions. A paraboloid texture surface was obtained by electrochemical etching Si in the solution of hydrofluoric acid, dimethylsulfoxide (DMSO), and deionized (DI) water. The paraboloid texture surface has the advantage of giving a lower reflectance value than the hemispherical, random pyramidal, and regular pyramidal texture surfaces. In the case of parabola, the light can be concentrated in the direction of the Si surface compared to the hemispherical, random pyramidal, and regular pyramidal textured surfaces. Furthermore, in a paraboloid textured surface, there can be a maximum value of 4 or even more by anisotropic etching duration compared to the hemispherical or pyramidal textured surfaces which have a maximum h/ D (depth and diameter of the texture) value of 0.5. The reflectance values were found to be strongly dependent on the h/ D ratio of the texture surface. The measured reflectance values were well matched with the simulated ones. The minimum reflectance value of ~4 % was obtained at a wavelength of 600 nm for an h/ D ratio of 3.75. The simulation results showed that the reflectance value for the h/ D ratio can be reduced to ~0.5 % by reducing the separations among the textures. This periodic paraboloidal structure can be applied to the surface texturing technique by substituting with a conventional pyramid textured surface or moth-eye antireflection coating.

  8. Incident flux angle induced crystal texture transformation in nanostructured molybdenum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Lu, T.-M.; Wang, G.-C.

    2012-07-15

    Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less

  9. Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture.

    PubMed

    Ross, Heather A; Wright, Kathryn M; McDougall, Gordon J; Roberts, Alison G; Chapman, Sean N; Morris, Wayne L; Hancock, Robert D; Stewart, Derek; Tucker, Gregory A; James, Euan K; Taylor, Mark A

    2011-01-01

    Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties.

  10. Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture

    PubMed Central

    Ross, Heather A.; Wright, Kathryn M.; McDougall, Gordon J.; Roberts, Alison G.; Chapman, Sean N.; Morris, Wayne L.; Hancock, Robert D.; Stewart, Derek; Tucker, Gregory A.; James, Euan K.; Taylor, Mark A.

    2011-01-01

    Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties. PMID:20855456

  11. Structural framework and hydrocarbon potential of Ross Sea, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, A.K.; Davey, F.J.

    The 400 to 1100-m deep continental shelf of the Ross Sea is underlain by three major sedimentary basins (Eastern basin, Central trough, and Victoria Land basin), which contain 5 to 6 km of sedimentary rock of Late Cretaceous(.) and younger age. An addition 6 to 7 km of older sedimentary and volcanic rocks lie within the Victoria Land basin. Eroded basement ridges of early Paleozoic(.) and older rocks similar to those of onshore Victoria Land separate the basins. The three basins formed initially in late Mesozoic time during an early period of rifting between East and West Antarctica. The Easternmore » basin is a 300-km wide, asymmetric basement trough that structurally opens into the Southern Ocean. A seaward-prograding sequence of late Oligocene and younger glacial deposits covers a deeper, layered sequence of Paleogene(.) and older age. The Central trough, a 100-km wide depression, is bounded by basement block faults and is filled with a nearly flat-lying sedimentary section. A prominent positive gravity anomaly, possibly caused by rift-related basement rocks, lies along the axis of the basin. The Victoria Land basin, unlike the other two basins, additionally contains a Paleogene(.) to Holocene rift zone, the Terror Rift. Rocks in the rift, near the axis of the 150-km wide basement half-graben, show extensive shallow faulting and magmatic intrusion of the sedimentary section. The active Terror rift and older basin structures extend at least 300 km along the base of the Transantarctic Mountains. Petroleum hydrocarbons have not been reported in the Ross Sea region, with possible exception of ethane gas found in Deep Sea Drilling Project cores from the Eastern basin. Model studies indicate that hydrocarbons could be generated at depths of 3.5 to 6 km within the sedimentary section. The best structures for hydrocarbon entrapment occur in the Victoria Land basin and associated Terror Rift.« less

  12. New insight on the recent tectonic evolution and uplift of the southern Ecuadorian Andes from gravity and structural analysis of the Neogene-Quaternary intramontane basins

    NASA Astrophysics Data System (ADS)

    Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J. M.

    2016-10-01

    The sedimentary basins of Loja, Malacatos-Vilcabamba and Catamayo belong to the Neogene-Quaternary synorogenic intramontane basins of South Ecuador. They were formed during uplift of the Andes since Middle-Late Miocene as a result of the Nazca plate subduction beneath the South American continental margin. This E-W compressional tectonic event allowed for the development of NNE-SSW oriented folds and faults, determining the pattern and thickness of sedimentary infill. New gravity measurements in the sedimentary basins indicate negative Bouguer anomalies reaching up to -292 mGal related to thick continental crust and sedimentary infill. 2D gravity models along profiles orthogonal to N-S elongated basins determine their deep structure. Loja Basin is asymmetrical, with a thickness of sedimentary infill reaching more than 1200 m in the eastern part, which coincides with a zone of most intense compressive deformation. The tectonic structures include N-S, NW-SE and NE-SW oriented folds and associated east-facing reverse faults. The presence of liquefaction structures strongly suggests the occurrence of large earthquakes just after the sedimentation. The basin of Malacatos-Vilcabamba has some folds with N-S orientation. However, both Catamayo and Malacatos-Vilcabamba basins are essentially dominated by N-S to NW-SE normal faults, producing a strong asymmetry in the Catamayo Basin area. The initial stages of compression developed folds, reverse faults and the relief uplift determining the high altitude of the Loja Basin. As a consequence of the crustal thickening and in association with the dismantling of the top of the Andes Cordillera, extensional events favored the development of normal faults that mainly affect the basins of Catamayo and Malacatos-Vilcabamba. Gravity research helps to constrain the geometry of the Neogene-Quaternary sedimentary infill, shedding some light on its relationship with tectonic events and geodynamic processes during intramontane basin development.

  13. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    The nature of detrital sedimentary (siliciclastic) rocks is determined by geological processes that occur in the four main Earth surface environments encountered over the sediment's history from source to final sink: (i) the site of sediment production (provenance), where interactions among bedrock geology, tectonic uplift, and climate control weathering and erosion processes; (ii) the transport path, where the medium of transport, gradient, and distance to the depositional basin may modify the texture and composition of weathered material; (iii) the site of deposition, where a suite of physical, chemical, and biological processes control the nature of sediment accumulation and early burial modification; and (iv) the conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments. Many of these geological processes leave characteristic geochemical signatures, making detrital sedimentary rocks one of the most important archives of geochemical data available for reconstructions of ancient Earth surface environments. Although documentation of geochemical data has long been a part of the study of sedimentation (e.g., Twenhofel, 1926, 1950; Pettijohn, 1949; Trask, 1955), the development and application of geochemical methods specific to sedimentary geological problems blossomed in the period following the Second World War ( Degens, 1965; Garrels and Mackenzie, 1971) and culminated in recent years, as reflected by the publication of various texts on marine geochemistry (e.g., Chester, 1990, 2000), biogeochemistry (e.g., Schlesinger, 1991; Libes, 1992), and organic geochemistry (e.g., Tissot and Welte, 1984; Engel and Macko, 1993).Coincident with the growth of these subdisciplines a new focus has emerged in the geological sciences broadly represented under the title of "Earth System Science" (e.g., Kump et al., 1999). Geochemistry has played the central role in this revolution (e.g., Berner, 1980; Garrels and Lerman, 1981; Berner et al., 1983; Kump et al., 2000), with a shifting emphasis toward sophisticated characterization of the linkages among solid Earth, oceans, biosphere, cryosphere, atmosphere, and climate, mediated by short- and long-term biogeochemical cycles. As a result, one of the primary objectives of current geological inquiry is improved understanding of the interconnectedness and associated feedback among the cycles of carbon, nitrogen, phosphorous, oxygen, and sulfur, and their relationship to the history of Earth's climate. This "Earth System" approach involves uniformitarian extrapolations of knowledge gained from modern environments to proxy-based interpretations of environmental change recorded in ancient strata. The strength of modern data lies with direct observations of pathways and products of physical, chemical, and biological processes, but available time-series are short relative to the response times of many of the biogeochemical systems under study. By contrast, stratigraphically constrained geological data offer time-series that encompass a much fuller range of system response. But with the enhanced breadth of temporal resolution and signal amplitude provided by ancient sedimentary records comes a caveat - we must account for the blurring of primary paleo-environmental signals by preservational artifacts and understand that proxy calibrations are extended from the modern world into a nonsubstantively uniformitarian geological past.Fortunately, detrital sedimentary rocks preserve records of multiple proxies (dependent and independent) that illuminate the processes and conditions of sediment formation, transport, deposition, and burial. An integrated multiproxy approach offers an effective tool for deconvolving the history of biogeochemical cycling of, among other things, carbon and sulfur, and for understanding the range of associated paleo-environmental conditions (e.g., levels of atmospheric oxygen and carbon dioxide, oceanic paleoredox, and paleosalinity). Authors of a single chapter can hope, at best, to present a cursory glance at the many biogeochemical proxies currently used and under development in sedimentary studies. Our goal, instead, is to focus on a selected suite of tools of particular value in the reconstruction of paleo-environments preserved in fine-grained siliciclastic sedimentary rocks.Fine-grained, mixed siliciclastic-biogenic sedimentary facies - commonly termed hemipelagic (mainly calcareous or siliceous mudrocks containing preserved organic matter (OM)) - are ideal for unraveling the geological past and are thus the focus of this chapter. These strata accumulate in predominantly low-energy basinal environments where the magnitude (and frequency) of lacunae is diminished, resulting in relatively continuous, though generally condensed sequences. Fortunately, condensation tends to benefit geochemical analysis as it helps to amplify some subtle environmental signals. Because hemipelagic facies include contributions from both terrigenous detrital and pelagic biogenic systems, as well as from authigenic components reflecting the burial environment (Figure 1), they are rich archives of geochemical information. In this chapter we present a conceptual model linking the major processes of detrital, biogenic, and authigenic accumulation in fine-grained hemipelagic settings. This model is intended to be a fresh synthesis of decades of prior research on the geochemistry of modern and ancient mudrocks, including our own work.

  14. Auto-Focused on Details in Yellowjacket on Mars

    NASA Image and Video Library

    2015-05-22

    This image from the Chemistry and Camera (ChemCam) instrument on NASA's Curiosity Mars rover shows detailed texture of a rock target called "Yellowjacket" on Mars' Mount Sharp. This was the first rock target for ChemCam after checkout of restored capability for autonomous focusing. The image covers a patch of rock surface about 2.5 inches (6 centimeters) across. It was taken on May 15, 2015, during the mission's 986th Martian day, or sol. ChemCam's Remote Micro-Imager camera, on top of Curiosity's mast, captured the image from a distance of about 8 feet (2.4 meters). ChemCam also hit the target with laser pulses and recorded spectrographic information from the resulting flashes to reveal the chemical composition. Yellowjacket, located near an area called "Logan Pass" on lower Mount Sharp, is a layered sedimentary rock. The laser analysis yielded a composition very close to that of Mars soil and unlike the lakebed sedimentary compositions observed at lower elevations earlier in the mission. The soil-like composition may indicate that the rock formed from sediment transported by wind, rather than by water. http://photojournal.jpl.nasa.gov/catalog/PIA19661

  15. Instrumental textural perception of food and comparative biomaterials

    USDA-ARS?s Scientific Manuscript database

    Texture is an important food quality attribute affecting consumer acceptance. Consumers characterize texture as either crispy or crunchy, and the moisture content and internal structure of the products are significant factors in its perception. Exposing an extruded corn snack (ECS), an extruded biod...

  16. Food texture analysis in the 21st century

    USDA-ARS?s Scientific Manuscript database

    The study of food texture encompasses sensory, physiological, and structural aspects. Research in this area must be multidisciplinary in nature, accounting for consumer perception and acceptability, rheology, and structural aspects. This brief review of the field covers sensory panels, instrumenta...

  17. Ash turbidites from Southern Italy help understanding the parent eruptions and contributing to geodynamic evolution cadre of the Tyrrhenian sea

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico Maria

    2010-05-01

    Tephra layers intercalated in sedimentary successions are very interesting since they represent some instants of geodynamic evolution in a sedimentation basin. Furthermore, they can constitute deposits of explosive eruptions whose distal behaviour can be useful for studying the volcanoes activity, especially when pyroclastic deposits in proximal areas are absent. In the Craco area (Matera, Italy), thick ash turbidites intercalated in marine clays deposits have been recently recognized, which interest is related to the considerable cropping out thickness (1 to 5 m), freshness of the material and absence of sedimentary component. Petrography, sedimentology and chemistry of the deposits have been characterized with the aim of defining genesis and deposition of the material. The deposits are essentially made up of ashy pyroclasts, dominated by fresh acidic to intermediate glass, mostly in the form of shards, pumice fragments and groundmass fragments with vitrophyric texture. Rare crystals include Pl, Opx, Cpx, Hbl and Bt. 40Ar/39Ar geochronology on the amphibole dated one level to 2.24 ± 0.06 Ma, indicating the Late Pliocene. The grain size (fine ash) and textural features of the deposits are typical of pyroclastic fall deposits related to explosive eruptions with consequent upward projection of the fragmented material through Plinian columms. The columns turned eastward because of stratospheric winds and the material fell in a marine environment. It deposited on the slope of Pliocene basins in the frontal sector of the Southern Apennine chain. Structural features are the following: fining-upward gradation of the deposits with cross- and convolute laminations at the base and fine-grained massive beds at the top. They suggest that the primary pyroclastic fall deposits were mobilized as volcaniclastic turbidity currents towards a deeper environment. Glass and crystal compositions were investigated by SEM/EDS analysis. Petrographycal and chemical compositions of the volcaniclastic material is typical of a transitional high-K calc-alkaline series (basaltic andesite to rhyolite for the ash). The age and chemical composition constrain the provenance of the volcaniclastic Craco levels from the Southern Tyrrhenian domain, where a volcanic arc was probably active during the Pliocene. The hypothetical eruptive centres have been located at the northern termination of the arc, exactly in the Pontine islands area. Other neighbouring volcanic centres have been located on land in the Volturno plain. The integrated approach used in this work can be applied in the future to other tephra layers of Neogene successions for contributing to geodynamic evolution cadre of the Tyrrhenian sea.

  18. The case for metamorphic base metal mineralization: pyrite chemical, Cu and S isotope data from the Cu-Zn deposit at Kupferberg in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.

    2017-12-01

    The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn-sedimentary/early diagenetic pyrite contained in Early Paleozoic shale units.

  19. Structures having enhanced biaxial texture

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured alloy article includes a rolled and annealed biaxially textured base metal substrate characterized by an x-ray diffraction phi scan peak of no more than 20.degree. FWHM; and a biaxially textured layer of an alloy or another material on a surface thereof. The article further includes at least one of an electromagnetic device or an electro-optical device epitaxially joined to the alloy.

  20. 3D modeling of seismic waves propagation in the Israeli continental shelf: soft sediments, buried canyons and their effects.

    NASA Astrophysics Data System (ADS)

    Tsesarsky, M.; Volk, O.; Shani-Kadmiel, S.; Gvirtzman, Z.

    2016-12-01

    Sedimentary wedges underlay many coastal areas, specifically along passive continental margins. Although a large portion of the world`s population is concentrated along coastal areas, relatively few studies investigated the seismic hazard related to internal structure of these wedges. This is particularly important, when the passive margin is located in proximity to active plate boundaries. Sedimentry wedges have low angles compared to fault bounded basins, hence commonly treated using 1D methods. In various locations the sedimentary wedges are transected by deep buried canyons typically filled with sediments softer than their surrounding bedrock. Such structures are found is the Mediterranean coast of Israel. Here, a sedimentary wedge and buried canyons underlay some of the country's most densely populated regions. Seismic sources can be found both at sea and on land at epicentral distances ranging from 50 to 200 km. Although this region has a proven seismic record, it has, like many other parts of the world, limited instrumental coverage and long return periods. This makes assessment of ground motions in a future earthquake difficult and highlights the importance of non-instrumental methods. We employ numerical modeling (SW4 FD code) to study seismic ground motions and their amplification atop the sedimentary wedge and canyons. This goal is a part of a larger objective aiming at developing a systematic approach for distinction between individual contributions of basin structures to the highly complex overall basin response. We show that the sedimentary wedge and buried canyon both exhibit a unique response and modeling them as one-dimensional structures could significantly underestimate seismic hazard. The sedimentary wedge exhibit amplification ratios, relative to a horizontally layered model, up to a factor of 2. This is mainly due to the amplification of Rayleigh waves traveling into the wedge from its thin side. The buried canyon structure shows a simple, "easy to use" response with considerably high PGV values and amplification ratios of up to 3 along its axis. This response is due to a geometrical focusing effect caused by the convex shape of the canyon's floor. The canyon's response is significant even where the canyon is buried deep under the surface.

  1. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-07-01

    Nanometer-scale hydrogenated amorphous silicon (a-Si:H) layers formed on crystalline silicon (c-Si) with pyramid-shaped textures have been characterized by spectroscopic ellipsometry (SE) using a tilt angle measurement configuration, in an attempt to establish a nondestructive method for the structural characterization of the a-Si:H/c-Si heterojunction solar cells. By applying an a-Si:H dielectric function model developed recently, the thickness and SiH2 content of the a-Si:H layer have been determined even on the textured substrates. Furthermore, from the SE analysis incorporating the Drude model, the carrier properties of the In2O3:Sn layers in the textured solar-cell structure have been characterized.

  2. Structural investigations in the Massif-Central, France

    NASA Technical Reports Server (NTRS)

    Scanvic, J. Y.

    1974-01-01

    This survey covered the French Massif-Central (where crystalline and volcanic rocks outcrop) and its surrounding sedimentaries, Bassin de Paris, Bassin d'Aquitaine and Rhodanian valley. One objective was the mapping of fracturing and the surveying of its relationship with known ore deposits. During this survey it was found that ERTS imagery outlines lithology in some sedimentary basins. On the other hand, in a basement area, under temperature climate conditions, lithology is rarely expressed. These observations can be related to the fact that band 5 gives excellent results above sedimentary basins in France and generally band 7 is the most useful in a basement area. Several examples show clearly the value of ERTS imagery for mapping linear features and circular structures. All the main fractures are identified with the exception of new ones found both in sedimentaries and basement areas. Other interesting findings concern sun elevation which, stereoscopic effect not being possible, simulates relief in a better way under certain conditions.

  3. Development of magnetic and elastic anisotropies in slates during progressive deformation

    NASA Astrophysics Data System (ADS)

    Hrouda, František; Pros, Zdeněk; Wohlgemuth, Jiří

    1993-05-01

    Magnetic and elastic anisotropies were investigated in rocks of the Nízký Jeseník Mountains (northeast Bohemian Massif) ranging in lithology from almost unmetamorphosed sediments, through slate, to phyllite, and showing a range of structural styles from sedimentary, through spaced and slaty cleavage, to metamorphic schistosity. In unmetamorphosed and undeformed sedimentary rocks, both the anisotropies display close relationships to the sedimentary fabric. During the development of the spaced and slaty cleavage they are gradually re-oriented into the attitudes of the deformational fabrics, and in the rocks with metamorphic schistosity they are fully related to the deformational fabric elements, which can be oriented in a very different way from the original sedimentary structures. The magnetic anisotropy is mostly due to the preferred orientation of phyllosilicates generated during very weak regional metamorphism, and subordinately due to the preferred orientation of magnetite. The elastic anisotropy is probably controlled by the preferred orientation of phyllosilicates and by the existence of oriented systems of microcracks.

  4. Initiation and growth of gypsum piercement structures in the Zechstein Basin

    USGS Publications Warehouse

    Williams-Stroud, S. C.; Paul, J.

    1997-01-01

    The importance of tectonic processes in initiating halite diapirs has become much better understood in recent years. Less well understood is the development of diapiric structures involving rocks composed predominantly of gypsum. Below about 1000 m, gypsum dehydrates to anhydrite, which often obscures primary sedimentary textures. If the strain associated with diapiric rise in the rock induces the transition to anhydrite, obliteration of primary features in the gypsum can be expected. In our study, we infer that the diapiric movement in the Werra Anhydrite member of cycle 1 of the Zechstein Formation of Europe occurred before the initial transition of gypsum to anhydrite based on the presence of pseudomorphs of bedded primary gypsum crystals, the overburden lithologies and depositional environment, and the mechanical properties of gypsum, anhydrite and carbonate rocks. Faulting and differential loading of a shallow overburden were the key components in initiating the gypsum diapirism. The transition to anhydrite occurred after burial and after cessation of diapirism. In comparison, the diapirism of calcium sulfate of the Leine Anhydrite into the Leine Halite members of cycle 3 of the Zechstein Formation probably occurred much later after burial and appears to have been triggered by halite diapirism, which in turn triggered the dehydration reaction, causing the calcium sulfate to become the incompetent phase relative to the halite. Published by Elsevier Science Ltd.

  5. Patch reef modeling: a comparison of Devonian and recent examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Precht, W.F.

    In reef research, models have been developed to define variations in the lithic and biotic development of facies. Walker and Alberstadt, and Hoffman and Narkiewicz developed models for growth of ancient reef communities. Although these models form a solid foundation by which patch reefs can be classed and zoned, they are neither complete nor accurate for all reef types. A comparison was made of Lower Devonian patch reefs from the Appalachian basin of New York, New Jersey, and Pennsylvania, and Holocene examples from the Bahamas and Florida Keys to identify the structure, orientation, community variability, and succession of the reefmore » biofacies. The complexion and genesis of the carbonate lithofacies were also studied. Results show similarities; these include the size, areal distribution, 3-D geometry, wave-resistance potential, lateral sequences of facies, sedimentary textures and structures, vertical zonation explained by growth from low-energy to high-energy regimes, biotic diversity, growth habit and form, and postmortem alteration. Thus, when used in conjunction with the traditional models, the recent can serve as the basis for a general model which include most patch reef types. However, these models should not be used as explicit analogs for all Phanerozoic reefs. Knowing and understanding the limitations of these comparative studies are essential to a fuller comprehension of the potential for variations which exist within and between the traditional models.« less

  6. Wrinkle structures—a critical review

    NASA Astrophysics Data System (ADS)

    Porada, Hubertus; Bouougri, El Hafid

    2007-04-01

    In this paper, a variety of so-called 'wrinkle structures' is reviewed in an attempt to help distinguish between crinkly decorations arising from physical processes that acted on siliciclastic bedding surfaces, and true microbially induced 'wrinkle structures'. Two types of small-scale, microbially induced sedimentary structures are prominent due to their distinct geometry and mode of occurrence: (1) 'elephant skin' textures, characterized by reticulate patterns of sharp-crested ridges forming mm- to cm-scale polygons, occurring on argillite or argillaceous veneers above fine-grained sandstone and likely reflecting growth structures of microbial, mats (2) 'Kinneyia' structures, characterized by mm-scale flat-topped, winding ridges and intervening troughs and pits, sometimes resembling small-scale interference ripples. 'Kinneyia' structures usually occur on upper surfaces of siltstone/sandstone beds, themselves frequently event deposits, and are thought to have formed beneath microbial mats. Additionally, more linear variations of mat growth structures, partly resembling small-scale 'α-petees' may be developed. Finally, some wrinkly structures resulting from tractional mat deformation or mat slumping are occasionally preserved. These may appear as arcuate belts of non-penetrative, small-scale folds or as wrinkled bulges on otherwise flat surfaces. 'Wrinkle structures' as indicators for the former presence of mats gain in importance if other mat-related structures are additionally observed in the same clastic succession, e.g. 'sand chips' (sandy intraclasts) or spindle-shaped or sinuously curved to circular sand cracks, frequently combined in networks. Furthermore, appropriate lithologies and facies are required. For instance, if compared with the distribution of modern cohesive microbial mats, laminated siltstone/argillite with intercalated siltstone/sandstone beds representing event deposits in tidal flat successions would be compatible with microbial mat development. Within a variety of physically induced small-scale wrinkly structures, miniature load structures may, above all, be misinterpreted as microbially induced 'wrinkle structures', due to their similar size and appearance, and their comparatively frequent occurrence.

  7. Generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks Holocene of south Florida and Caicos Platform, B. W. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedesco, L.P.; Wanless, H.R.

    Excavation of deep, open burrow networks and subsequent infilling with sediment from the surface produces an entirely new sedimentary deposit and results in obliteration to severe diagenetic transformation of precursor depositional facies. Repetitive excavation and infilling is responsible for creating the preserved depositional facies of many marine deposits. Excavating burrowers occur from intertidal to abyssal depths, and are important throughout the Phanerozoic. The repetitive coupling of deep, open burrow excavation with subsequent storm sediment infilling of open burrow networks is a gradual process that ultimately results in the loss of the original deposit and the generation of new lithologies, fabricsmore » and facies. The new lithologies are produced in the subsurface and possess fabrics, textures and skeletal assemblages that are not a direct reflection of either precursor facies or the surficial depositional conditions. Sedimentary facies generated by repetitive burrow excavation and infilling commonly are massively bedded and generally are mottled skeletal packstones. Skeletal grains usually are well-preserved and coarser components are concentrated in burrow networks, pockets and patches. The coarse skeletal components of burrow-generated facies are a mixture of coarse bioclasts from the precursor facies and both the coarse and fine skeletal material introduced from the sediment surface. Many so-called bioturbated or massive facies may, in fact, be primary depositional facies generated in the subsurface and represent severe diagenetic transformation of originally deposited sequences. In addition, mudstones and wackestones mottled with packstone patches may record storm sedimentation.« less

  8. Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites

    NASA Astrophysics Data System (ADS)

    Flannery, David T.; Allwood, Abigail C.; Summons, Roger E.; Williford, Kenneth H.; Abbey, William; Matys, Emily D.; Ferralis, Nicola

    2018-02-01

    The large isotopic fractionation of carbon associated with enzymatic carbon assimilation allows evidence for life's antiquity, and potentially the early operation of several extant metabolic pathways, to be derived from the stable carbon isotope record of sedimentary rocks. Earth's organic carbon isotope record extends to the Late Eoarchean-Early Paleoarchean: the age of the oldest known sedimentary rocks. However, complementary inorganic carbon reservoirs are poorly represented in the oldest units, and commonly reported bulk organic carbon isotope measurements do not capture the micro-scale isotopic heterogeneities that are increasingly reported from younger rocks. Here, we investigated the isotopic composition of the oldest paired occurrences of sedimentary carbonate and organic matter, which are preserved as dolomite and kerogen within textural biosignatures of the ∼3.43 Ga Strelley Pool Formation. We targeted least-altered carbonate phases in situ using microsampling techniques guided by non-destructive elemental mapping. Organic carbon isotope values were measured by spatially-resolved bulk analyses, and in situ using secondary ion mass spectrometry to target microscale domains of organic material trapped within inorganic carbon matrixes. Total observed fractionation of 13C ranges from -29 to -45‰. Our data are consistent with studies of younger Archean rocks that host biogenic stromatolites and organic-inorganic carbon pairs showing greater fractionation than expected for Rubisco fixation alone. We conclude that organic matter was fixed and/or remobilized by at least one metabolism in addition to the CBB cycle, possibly by the Wood-Ljungdahl pathway or methanogenesis-methanotrophy, in a shallow-water marine environment during the Paleoarchean.

  9. Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa

    NASA Astrophysics Data System (ADS)

    Wright, C. I.; Mason, T. R.

    The St. Lucia Estuary is situated on the subtropical, predominantly microtidal Zululand coast. Modern sedimentary environments within the estuary fall into three categories: (1) barrier environments; (2) abandoned channel environments; and (3) estuarine/lagoonal environments. The barrier-associated environment includes tidal inlet channel, inlet beach face, flood-tidal delta, ebb-tidal delta, spit, backspit and aeolian dune facies. The abandoned channel environment comprises washover fan, tidal creek tidal creek delta and back-barrier lagoon facies. The estuarine/lagoonal environment includes subtidal estuarine channel, side-attached bar, channel margin, mangrove fringe and channel island facies. Each sedimentary facies is characterised by sedimentary and biogenic structures, grain-size and sedimentary processes. Vertical facies sequences produced by inlet channel migration and lagoonal infilling are sufficiently distinct to be recognized in the geological record and are typical of a prograding shoreline.

  10. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    NASA Astrophysics Data System (ADS)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.

  11. Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.

    2016-04-01

    The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.

  12. Environmental niche divergence among three dune shrub sister species with parapatric distributions.

    PubMed

    Chozas, Sergio; Chefaoui, Rosa M; Correia, Otília; Bonal, Raúl; Hortal, Joaquín

    2017-05-01

    The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus , which have a parapatric distribution in the Iberian Peninsula. Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides-spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii , the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. : The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical, ecological and evolutionary processes driving the evolution of species adaptations and how they determine their current geographical ranges. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Burial preservation of trace fossils as indicator of storm deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, A.J.

    Positive semirelief epichnia (ridgelike trace fossils on the top surface of a bed) commonly represent burrow structures, perhaps originally supported by a mucoidal matrix, that have been infilled by sediment. The preservation of these structures, in addition to other trace fossils on a bed superface, suggests an instantaneous burial event and a minimum of concomitant erosion. This supposition can be verified by an absence of paucity of biogenic sedimentary structures accompanied by certain physical sedimentary structures (laminated shell hashes, graded bedding, fissile shales) in strata directly overlying bioturbated surfaces. The main process involved in this burial preservation (the rapid burialmore » of biogenic sedimentary structures with minimum erosion) are probably storm-generated in most instances. Sediments would be deposited primarily in the suspension mode, and mean storm wave base would be slightly above the sediment-water interface. This burial preservation model is most applicable to relatively small stratigraphic intervals (several centimeters or decimeters) representing deposition on an open-marine shelf. Positive semirelief epichnia, interpreted as burrow system infilling, from the Cincinnatian Series (Upper Ordovician) of Ohio and Indiana are used to illustrate these concepts.« less

  14. Sharp improvement of flashover strength from composite micro-textured surfaces

    NASA Astrophysics Data System (ADS)

    Huo, Yankun; Liu, Wenyuan; Ke, Changfeng; Chang, Chao; Chen, Changhua

    2017-09-01

    A composite micro-textured surface structure is proposed and demonstrated to enhance the surface flashover strength of polymer insulators used in vacuum. The structure is fabricated in two stages, with periodic triangular grooves of approximately 210 μm in width formed in the first stage and micro-holes of approximately 2 μm coated on the inner surface of grooves in the second. The aim is to exploit the synergistic effects between the grooves and micro-holes to suppress the secondary electron yield to obtain a better flashover performance. To acquire insulators with the composite micro-textured surface, the CO2 laser processing technique is applied to treat the surface of the PMMA insulators. The test results show that the flashover voltages of the insulators with the two-stage fabricated structure increase by 150% compared with the untreated samples in the best state. Compared with the traditional macro-groove structures on insulators, the proposed composite micro-textured insulators exhibit a better surface flashover performance.

  15. Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics

    NASA Astrophysics Data System (ADS)

    Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.

    2011-05-01

    In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.

  16. Research of second harmonic generation images based on texture analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  17. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  18. The formation of cosmic structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III

    1992-01-01

    The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.

  19. Diatreme-forming volcanism in a deep-water faulted basin margin: Lower Cretaceous outcrops from the Basque-Cantabrian Basin, western Pyrenees

    NASA Astrophysics Data System (ADS)

    Agirrezabala, L. M.; Sarrionandia, F.; Carracedo-Sánchez, M.

    2017-05-01

    Deep-water diatremes and related eruption products are rare and they have been mainly interpreted from seismic-based data. We present lithofacies and geochemistry analysis of two Lower Cretaceous (Albian) deep-water diatremes and associated extra-diatreme volcaniclastic deposits at a well-exposed outcrop of the northern margin of the Basque-Cantabrian Basin (north Iberia). The studied diatremes are located along a N-S trending Albian fault and present sub-circular to elongate sections, inward-dipping steep walls and smooth to very irregular contacts with the host rocks. They are filled by un-bedded mixed breccias constituted by juvenile and lithic (sedimentary, igneous and metamorphic) clasts. Their textural and structural characteristics indicate that they represent lower diatreme and root zones of the volcanic system. Mapping, geochemical and petrologic data from diatreme-fills support their genetic relationship with the extra-diatreme volcaniclastic beds, which would be generated by the eruption of an incipiently vesicular trachytic magma. Studied diatremes result from multiple explosions that lasted over an estimated period of 65 k.y. during the Late Albian (H. varicosum ammonite Zone, pro parte), and reached up to a maximum subsurface depth of ca. 370 m, whereas extra-diatreme volcaniclastic beds were formed by eruption-fed gravity-driven flows on the deep-water (200-500 m) paleoseabed. Petrological features suggest that these diatremes and related extra-diatreme deposits resulted mainly from phreatomagmatic explosions. In addition, organic geochemistry data indicate that the thermal effect of the trachytic melts on the sedimentary host caused the conversion of the abundant organic matter to methane and CO2 gases, which could also contribute significantly to the overpressure necessary for the explosive fragmentation of the magma and the host rocks. Considering the inferred confining pressures (ca. 8-11 MPa) and the possible participation of unvesiculated (or degassed) melts, our results stress the importance of active hydraulic structures (e.g. faults) and the supplementary driving forces (e.g. thermogenic gases) in the formation of deep-water marine diatremes.

  20. Eruptive style and construction of shallow marine mafic tuff cones in the Narakay Volcanic Complex (Proterozoic, Hornby Bay Group, Northwest Territories, Canada)

    NASA Astrophysics Data System (ADS)

    Ross, Gerald M.

    1986-03-01

    The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a cone-margin surge platform into standing water. Few of the tuff cone deposits display a systematic vertical sequence of stratification styles, structures and grain morphologies. This indicates that either the eruptive style varied irregularly between hydrovolcanic and Strombolian and/or that pyroclasts of different origin were mixed during eruptions.

  1. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  2. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  3. Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning.

    PubMed

    Zhang, Dongyu; Lin, Liang; Chen, Tianshui; Wu, Xian; Tan, Wenwei; Izquierdo, Ebroul

    2017-01-01

    Sketch portrait generation benefits a wide range of applications such as digital entertainment and law enforcement. Although plenty of efforts have been dedicated to this task, several issues still remain unsolved for generating vivid and detail-preserving personal sketch portraits. For example, quite a few artifacts may exist in synthesizing hairpins and glasses, and textural details may be lost in the regions of hair or mustache. Moreover, the generalization ability of current systems is somewhat limited since they usually require elaborately collecting a dictionary of examples or carefully tuning features/components. In this paper, we present a novel representation learning framework that generates an end-to-end photo-sketch mapping through structure and texture decomposition. In the training stage, we first decompose the input face photo into different components according to their representational contents (i.e., structural and textural parts) by using a pre-trained convolutional neural network (CNN). Then, we utilize a branched fully CNN for learning structural and textural representations, respectively. In addition, we design a sorted matching mean square error metric to measure texture patterns in the loss function. In the stage of sketch rendering, our approach automatically generates structural and textural representations for the input photo and produces the final result via a probabilistic fusion scheme. Extensive experiments on several challenging benchmarks suggest that our approach outperforms example-based synthesis algorithms in terms of both perceptual and objective metrics. In addition, the proposed method also has better generalization ability across data set without additional training.

  4. Texture operator for snow particle classification into snowflake and graupel

    NASA Astrophysics Data System (ADS)

    Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro

    2012-11-01

    In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.

  5. Source and dispersal of silt on northern Gulf of Mexico continental shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, M.; Mazzullo, J.

    1988-01-01

    The surficial sediment on the continental shelf of the northern Gulf of Mexico is characterized by abundant silty clay which was deposited during the late Pleistocene lowstand and reworked during and after the Holocene transgression. The purposes of this study were to determine the sources of the silt fraction in this surficial sediment by quartz grain roundness and surface texture analysis, and to determine the effects of modern shelf currents upon the distribution of silt. Areal variations in quartz grain roundness and surface texture define six silt provinces on the northern Gulf of Mexico continental shelf. The Mississippi province ismore » the largest province and stretches from the Chandeleur Islands to Matagorda Bay. It is characterized by a mixture of rounded grains that were derived from the sedimentary rocks of the Gulf coastal plain and the Mid-Continent, and angular, fractured grains that were derived from glacial deposits in the northern United States. A comparison of the areal distribution of these six provinces with the late Pleistocene paleogeography of the continental shelf shows evidence for varying degrees of shore-parallel transport of silt by modern shelf currents.« less

  6. Sedimentary architecture of the Shaler outcrop, Gale Crater, Mars: paleoenvironmental and sediment transport implications

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Edgar, L. A.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Muller, J.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.

    2013-12-01

    Sedimentary rocks are archives of ancient depositional processes and environments on planetary surfaces. Reconstructing such processes and environments requires observations of sedimentary structures and architecture (the large-scale geometry and organisation of sedimentary bedsets). We report the analysis of the distinct Shaler outcrop, a prominent stratified unit located between the Bathurst Inlet outcrop and the floor of Yellowknife bay. The Shaler outcrop is an ~1 m thick stratal unit that spans approximately 30 m outcrop in length, and was examined by Curiosity on sols 120-121 and more recently on sols 309-324. Detailed stereo observations of the outcrop across most of its entire lateral extent were made using Navigation and Mast Cameras. These data permit detailed analysis of stratal geometries, distribution of sedimentary structures, and broad grain size trends. Overall the Shaler outcrop comprises a heterogeneous assemblage of interstratified platy sandstones separated by recessive, likely finer-grained beds. Coarser-grained beds are characterised by decimeter-scale trough cross-bedding. The north-eastern section of the outcrop shows greater abundance of interstratified sandstones and finer-grained beds. The southwestern section is characterised by darker bedsets that are likely coarser grained interstratified with finer-grained sandstones. The darker bedsets appear to comprise stacked trough-cross stratified bedsets. Finer-grained recessive intervals are not apparent in this section. The presence and scale of trough cross-stratification indicates that sediment was transported by the migration of sinuous crested dunes. Bedding geometries indicate sub-critical angles of climb. We examine the large-scale bedset architecture to evaluate the original depositional geometry of the Shaler sedimentary system, and consider its plausible depositional processes and paleoenvironmental setting. Finally, we consider its relationship to the sedimentary succession exposed in the Yellowknife bay region.

  7. The Scattering Properties of Natural Terrestrial Snows versus Icy Satellite Surfaces

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah; Hartman, Beth; Verbiscer, Anne

    1997-01-01

    Our comparisons of the single particle scattering behavior of terrestrial snows and icy satellite regoliths to the laboratory particle scattering measurements of McGuire and Hapke demonstrate that the differences between icy satellite regoliths and their terrestrial counterparts are due to particle structures and textures. Terrestrial snow particle structures define a region in the single particle scattering function parameter space separate from the regions defined by the McGuire and Hapke artificial laboratory particles. The particle structures and textures of the grains composing icy satellites regoliths are not simple or uniform but consist of a variety of particle structure and texture types, some of which may be a combination of the particle types investigated by McGuire and Hapke.

  8. Sedimentary structures formed under water surface waves: examples from a sediment-laden flash flood observed by remote camer

    NASA Astrophysics Data System (ADS)

    Froude, Melanie; Alexander, Jan; Cole, Paul; Barclay, Jenni

    2014-05-01

    On 13-14 October 2012, Tropical Storm Rafael triggered sediment-laden flash floods in the Belham Valley on Montserrat, West Indies. Rainfall was continuous for ~38 hours and intensity peaked at 48 mm/hr. Flow was strongly unsteady, turbulent with sediment concentrations varying up to hyperconcentrated. Time-lapse images captured at >1 frame per second by remote camera overlooking a surveyed valley section show the development of trains of water surface waves at multiple channel locations during different flow stages. Waves grew and diminished in height and remained stationary or migrated upstream. Trains of waves persisted for <5 minutes, until a single wave broke, sometimes initiating the breaking of adjacent waves within the train. Channel-wide surges (bores) propagating downstream with distinct turbulent flow fronts, were observed at irregular intervals during and up to 7 hours after peak stage. These bores are mechanically similar to breaking front tidal bores and arid flood bores, and resulted in a sudden increase in flow depth and velocity. When a bore front came into close proximity (within ~10 m) upstream of a train of water surface waves, the waves appeared to break simultaneously generating a localised surge of water upstream, that was covered by the bore travelling downstream. Those trains in which waves did not break during the passage of a bore temporarily reduced in height. In both cases, water surface waves reformed immediately after the surge in the same location. Deposits from the event, were examined in <4 m deep trenches ~0.5 km downstream of the remote camera. These contained laterally extensive lenticular and sheet-like units comprised of varying admixtures of sand and gravel that are attributed to antidunes, and associated transitions from upper-stage-plane-beds. Some of the structures are organised within concave upward sequences which contain downflow shifts between foreset and backset laminae; interpreted as trough fills from chute-and-pools or water surface wave breaking. At least 90% of the deposit is interpreted upper flow regime origin. The sequence, geometry and lamina-scale texture of the sedimentary structures will be discussed with reference to remote camera images of rapidly varying, unsteady and pulsatory flow behaviour.

  9. Rock-avalanche and ocean-resurge deposits in the late Eocene Chesapeake Bay impact structure: Evidence from the ICDP-USGS Eyreville cores, Virginia, USA

    USGS Publications Warehouse

    Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.

    2009-01-01

    An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated fine-grained deposits at the top of the section represents the transition to normal shelf sedimentation. ?? 2009 The Geological Society of America.

  10. Characteristics of depositional environments in the Nakdong River Estuary, South Korea

    NASA Astrophysics Data System (ADS)

    Woo, Han Jun; Lee, Jun-Ho; Kang, Jeongwon; Choi, Jae Ung

    2017-04-01

    Most of the major Korean estuaries, under high pressure from development, have dams with environmental problems, including restricted water circulation, low water quality, decreased biodiversity and wetland destruction. The Nakdong estuary on the southeastern coast of Korean Peninsula is an enclosed type with two large estuarine dams that were constructed in 1934 and between 1983 and 1987. The construction of dams has led to geomorphologic evolution of the barrier islands within Nakdong estuary. The estuary has been characterized as barrier-lagoon system with various subenvironments and microtidal with a 1.5 m tidal range. The sedimentary analyses and monitoring short-term sedimentation rates were investigated to understand characteristics of depositional environments in barrier-lagoon system of the Nakdong River Estuary. The surface sediments in the system were classified into three sedimentary facies in summer 2015. Generally, sand sediment was dominated in the seaward side of barrier islands and muddy sand sediment was dominated on the lagoon. Sandy mud and mud sediments were distributed in the tidal flat near Noksan industrial district and channels near dams. Fourteen a priori subenvironments were distinguished based on differences in landscape characterization (sediment texture, salinity, total organic carbon, pH and C/N ratios). The dendrogram resulting from cluster analysis of environmental variables from 14 a priori subenvironments could be clustered into 4 groups that were characterized by different sediment texture and hydrodynamic energy. The short-term sedimentation rates were obtained seasonally from three lines by burying a plate at sub-bottom depth from May 2015 to May 2016. The deposition was dominated on the tidal flat between mainland and Jinudo (JW- Line) and Sinjado (SJ-Line) with the net deposition rate of 10.09 mm/year and 12.38 mm/year, respectively. The erosion was dominated on the tidal flats at Eulsukdo (ES-Line) on the east side of the system with an annual erosion rate of -13.15 mm/year. Two 12.5-hours anchoring surveys at inlets were revealed that net suspended sediments were transported to the open sea during a tidal cycle in summer 2015 and 2016. The sedimentary processes of the anthropogenically altered barrier-lagoon system in Nakdong estuary showed that sediments transported into the lagoon through inlets during flood condition and moved to westward and deposited sediments on the tidal flat and channels near dams in low energy environments. In the east side of the system, sediments flowed out the sea with discharge from Nakdong Dam during ebb condition. These data will provide an important baseline for future assessments of environmental quality on dam open.

  11. Characterization of Sedimentary Deposits Using usSEABED for Large-scale Mapping, Modeling and Research of U.S.Continental Margins

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Reid, J. A.; Arsenault, M. A.; Jenkins, C.

    2006-12-01

    Geologic maps of offshore areas containing detailed morphologic features and sediment character can serve many scientific and operational purposes. Such maps have been lacking, but recent computer technology and software to capture diverse marine data are offering promise. Continental margins, products of complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression, contain landforms which provide a variety of important functions: critical habitats for fish, ship navigation, national defense, and engineering activities (i.e., oil and gas platforms, pipeline and cable routes, wind-energy sites) and contain important sedimentary records. Some shelf areas also contain sedimentary deposits such as sand and gravel, regarded as potential aggregate resources for mitigating coastal erosion, reducing vulnerability to hazards, and restoring ecosystems. Because coastal and offshore areas are increasingly important, knowledge of the framework geology and marine processes is useful to many. Especially valuable are comprehensive and integrated digital databases based on data from original sources in the marine community. Products of interest are GIS maps containing thematic information such as seafloor physiography, geology, sediment character and texture, seafloor roughness, and geotechnical engineering properties. These map products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The USGS with partners is leading a Nation-wide program to gather a wide variety of extant marine geologic data into the usSEABED system (http://walrus.wr.usgs/usseabed). This provides a centralized, fully integrated digital database of marine geologic data collected over the past 50 years by USGS, other federal and state agencies, universities and private companies. To date, approximately 325,000 data points from the U.S. EEZ reside in usSEABED. The usSEABED, which combines a broad array of physical data and information (both analytical and descriptive) about the sea floor, including sediment textural, statistical, geochemical, geophysical, and compositional information, is available to the marine community through USGS Data Series publications. Three DS reports for the Atlantic (DS-118), Gulf of Mexico (DS-146) and Pacific(DS-182) were published in 2006 and reports for HI and AK are forthcoming. The use of usSEABED and derivative map products are part of ongoing USGS efforts to conduct regional assessments of potential marine sand and gravel resources, map benthic habitats, and support research in understanding seafloor character and mobility, transport processes and natural resources.

  12. Martian fluvial conglomerates at Gale crater.

    PubMed

    Williams, R M E; Grotzinger, J P; Dietrich, W E; Gupta, S; Sumner, D Y; Wiens, R C; Mangold, N; Malin, M C; Edgett, K S; Maurice, S; Forni, O; Gasnault, O; Ollila, A; Newsom, H E; Dromart, G; Palucis, M C; Yingst, R A; Anderson, R B; Herkenhoff, K E; Le Mouélic, S; Goetz, W; Madsen, M B; Koefoed, A; Jensen, J K; Bridges, J C; Schwenzer, S P; Lewis, K W; Stack, K M; Rubin, D; Kah, L C; Bell, J F; Farmer, J D; Sullivan, R; Van Beek, T; Blaney, D L; Pariser, O; Deen, R G

    2013-05-31

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  13. Martian fluvial conglomerates at Gale Crater

    USGS Publications Warehouse

    Williams, Rebecca M.E.; Grotzinger, J.P.; Dietrich, W.E.; Gupta, S.; Sumner, D.Y.; Wiens, R.C.; Mangold, N.; Malin, M.C.; Edgett, K.S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, Horton E.; Dromart, G.; Palucis, M.C.; Yingst, R.A.; Anderson, Ryan B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M.B.; Koefoed, A.; Jensen, J.K.; Bridges, J.C.; Schwenzer, S.P.; Lewis, K.W.; Stack, K.M.; Rubin, D.; Kah, L.C.; Bell, J.F.; Farmer, J.D.; Sullivan, R.; Van Beek, T.; Blaney, D.L.; Pariser, O.; Deen, R.G.

    2013-01-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  14. Smart Cameras for Remote Science Survey

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Abbey, William; Allwood, Abigail; Bekker, Dmitriy; Bornstein, Benjamin; Cabrol, Nathalie A.; Castano, Rebecca; Estlin, Tara; Fuchs, Thomas; Wagstaff, Kiri L.

    2012-01-01

    Communication with remote exploration spacecraft is often intermittent and bandwidth is highly constrained. Future missions could use onboard science data understanding to prioritize downlink of critical features [1], draft summary maps of visited terrain [2], or identify targets of opportunity for followup measurements [3]. We describe a generic approach to classify geologic surfaces for autonomous science operations, suitable for parallelized implementations in FPGA hardware. We map these surfaces with texture channels - distinctive numerical signatures that differentiate properties such as roughness, pavement coatings, regolith characteristics, sedimentary fabrics and differential outcrop weathering. This work describes our basic image analysis approach and reports an initial performance evaluation using surface images from the Mars Exploration Rovers. Future work will incorporate these methods into camera hardware for real-time processing.

  15. Retaining {1 0 0} texture from initial columnar grains in 6.5 wt% Si electrical steels

    NASA Astrophysics Data System (ADS)

    Liang, Ruiyang; Yang, Ping; Mao, Weimin

    2017-11-01

    6.5 wt% Si electrical steel is a superior soft magnetic material with excellent magnetic properties which highly depends on texture. In this study, based on the heredity of 〈0 0 1〉 orientation in columnar grains, columnar grains are used as the initial material to prepare non-oriented 6.5 wt% Si electrical steel with excellent magnetic properties. EBSD and XRD techniques are adopted to explore the structure and texture evolution during hot rolling, warm rolling, cold rolling and annealing. The results show that, due to the heredity of "structure and texture" from the initial strong {1 0 0} columnar grains, annealed sheet with {1 0 0}〈0 0 1〉 texture had better magnetic properties, which can be used as non-oriented high-silicon electrical steel. Both preferred cube grain nucleation in deformed {1 1 3}〈3 6 1〉 grains in subsurface and coarse {1 0 0}〈0 0 1〉 deformed grains in center layer show the effect of initial columnar grains with {1 0 0} texture.

  16. ASCII Art Synthesis from Natural Photographs.

    PubMed

    Xu, Xuemiao; Zhong, Linyuan; Xie, Minshan; Liu, Xueting; Qin, Jing; Wong, Tien-Tsin

    2017-08-01

    While ASCII art is a worldwide popular art form, automatic generating structure-based ASCII art from natural photographs remains challenging. The major challenge lies on extracting the perception-sensitive structure from the natural photographs so that a more concise ASCII art reproduction can be produced based on the structure. However, due to excessive amount of texture in natural photos, extracting perception-sensitive structure is not easy, especially when the structure may be weak and within the texture region. Besides, to fit different target text resolutions, the amount of the extracted structure should also be controllable. To tackle these challenges, we introduce a visual perception mechanism of non-classical receptive field modulation (non-CRF modulation) from physiological findings to this ASCII art application, and propose a new model of non-CRF modulation which can better separate the weak structure from the crowded texture, and also better control the scale of texture suppression. Thanks to our non-CRF model, more sensible ASCII art reproduction can be obtained. In addition, to produce more visually appealing ASCII arts, we propose a novel optimization scheme to obtain the optimal placement of proportional-font characters. We apply our method on a rich variety of images, and visually appealing ASCII art can be obtained in all cases.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael Z.; Simpson, John T.; Aytug, Tolga

    Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.

  18. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  19. Pre-lithification tectonic foliation development in a clastic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John

    2016-04-01

    The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.

  20. Interpretation of Gravimetric and Aeromagnetic Data of the Tecoripa Chart in Southeast Sonora, Mexico.

    NASA Astrophysics Data System (ADS)

    Martínez-Retama, S.; Montaño-Del Cid, M. A.

    2015-12-01

    The Tecoripa chart H12-D64 is located southeast of the state of Sonora, México, south of Arizona. The geology is represented by sedimentary rocks of the Ordovician and Triassic, volcanic rocks of the Upper Cretaceous and Tertiary, intrusive rocks from the Upper Cretaceous- Tertiary and sedimentary rocks of the Cenozoic. In this paper a gravimetric study was conducted to determine the configuration and depth of the basement and to develop a structural model of the subsurface. For this purpose a consistent gravimetric survey in 3 profiles was conducted. To complement this study, gravimetric data obtained by INEGI (96 gravimetric stations spaced every 4000 m) that correspond to a regional survey was also used. The two sets of data were corrected and processed with the WinGLink software. The profiles were then modeled using the Talwani method. 4 Profiles corresponding to the gravimetric survey and 5 data profiles from INEGI were modeled. Aeromagnetic data from the total field of Tecoripa chart were also processed. The digital information was integrated and processed by generating a data grid. Processes applied to data consisted of reduction to the pole, regional-residual separation and upward continuations. In general, the obtained structural models show intrusive bodies associated with well-defined high gravimetric and magnetic and low gravimetric and magnetic are associated with basins and sedimentary rocks. The obtained geological models show the basement represented by volcanic rocks of the Tarahumara Formation from the Upper Cretaceous which are in contact with sedimentary rocks from the Barranca Group from Upper Cretaceous and limestones from the Middle Ordovician. Both volcanic and sedimentary rocks are intruded by granodiorite- granite with ages of the Tertiary-Oligocene. Based on the superficial geology as well as in the configuration of the basement and the obtained structural model the existence of faults with NW-SE orientation that originate Horst and Graben type structures can be inferred. The basins have depths of 2,000 to 4,000m with sedimentary fillings from the Báucarit Formation and Quaternary sediments.

  1. The volcano-sedimentary succession of Upper Permian in Wuli area, central Qinghai-Tibetan Plateau: Sedimentology, geochemistry and paleogeography

    NASA Astrophysics Data System (ADS)

    Liu, Shengqian; Jiang, Zaixing; Gao, Yi

    2017-04-01

    Detailed observations on cores and thin sections well documented a volcano-sedimentary succession from Well TK2, which is located in Wuli area, central Qinghai-Tibetan Plateau. The TK2 volcano-sedimentary succession reflects an active sedimentary-tectonic setting in the north margin of North Qiangtang-Chamdo terrane in the late Permian epoch. Based on the observation and recognition on lithology and mineralogy, the components of TK2 succession are mainly volcanic and volcaniclastic rocks and four main lithofacies are recognized, including massive volcanic lithofacies (LF1), pyroclastic tuff lithofacies (LF2), tuffaceous sandstone lithofacies (LF3) and mudstone lithofacies (LF4). LF1 is characterized by felsic components, massive structure and porphyrotopic structure with local flow structure, which indicates submarine intrusive domes or extrusion-fed lavas that formed by magma ascents via faults or dykes. Meanwhile, its eruption style may reflect a relative high pressure compensation level (PCL) that mainly determined by water depth, which implies a deep-water environment. LF2 is composed of volcanic lapilli or ash and featured with massive structure, parallel bedding and various deformed laminations including convolve structure, slide deformation, ball-and-pillow structure, etc.. LF2 indicates the sedimentation of initial or reworked explosive products not far away from volcano centers, reflecting the proximal accumulation of volcano eruption-fed clasts or their resedimentation as debris flows. In addition, the submarine volcano eruptions may induced earthquakes that facilitate the resedimentation of unconsolidated sediments. LF3 contains abundant pyroclastic components and is commonly massive with rip-up mudstone clasts or usually interbedded with LF4. In addition, typical flute casts, scour structures and graded beddings in thin-interbedded layers of sandstone and mudstone are commonly observed, which also represents the sedimentation of debris flows or turbidity flows in a relative deep-water environment. LF4 indicates suspension deposits of distal turbidity sediments in deeper-water setting, which is mainly tuffaceous and ordinary mudstone, commonly interbedded with thin pyroclastic layers. Geochemically, the felsic volcanic rocks belong to tholeiitic to calc-alkaline series, exhibiting characteristics of right-leaning rare earth element (REE) patterns with conspicuous Eu negative anomalies, enrichments in large ion lithophile elements (LILEs) and depletions in high field-strength elements (HFSEs), which reflect an island arc environment that corresponds to the late-Permian subduction of slabs. The TK2 volcanic-sedimentary succession reveals a submarine volcano-dominated depositional model and proves the existence of a deeper water environment, at least in a restricted zone of Wuli area. However, the traditional sedimentary and paleogeographic knowledges are mostly about coal-forming transitional facies in stable environment. Therefore, the proposing of a deep-water volcano-sedimentary model will provide a further comprehension of paleogeography in southern Qinghai at late-Permian, which will also supplement the previous cognition of stable ocean-land transitional environments and provide a new sight to the paleogeographic framework of late-Permian in North Qiangtang-Chamdo terrane.

  2. Seafloor environments within the Boston Harbor- Massachusetts Bay sedimentary system: A regional synthesis

    USGS Publications Warehouse

    Knebel, H.J.; Circe, R.C.

    1995-01-01

    Modern seafloor sedimentary environments within the glaciated, topographically complex Boston Harbor and Massachusetts Bay area have been interpreted and mapped from an extensive collection of sidescan sonar records and supplemental marine geologic data. Three categories of environments are present that reflect the dominant long-term processes of erosion or nondeposition, deposition, and sediment reworking. (1) Environments of erosion or nondeposition comprise exposures of bedrock, glacial drift, coarse lag deposits, and possibly coastal plain rocks that contain sediments (where present) ranging from boulder fields to gravelly sands and occur in areas of relatively strong currents. (2) Environments of deposition contain fine-grained sediments ranging from muddy sands to muds that have accumulated in areas of predominantly weak bottom currents. (3) Environments of sediment reworking contain patches with textures ranging from sandy gravels to muds that have been produced by a combination of erosion and deposition in areas with variable bottom currents. The distribution of sedimentary environments across the Boston Harbor-Massachusetts Bay area is extremely patchy. Locally, this patchiness is due either to modifications of bottom-current strength (caused by the irregular topography and differences in water depth) or to small-scale changes in the supply of fine-grained sediments. Regional patchiness, however, reflects differences in geologic and oceanographic conditions among the estuarine, inner shelf, and basinal parts of the sedimentary system. The estuarine part of the system (Boston Harbor) is a depositional trap for fine-grained sediments because it is protected from large waves, has generally weak and variable tidal currents, and receives a large supply of fine grained detritus from natural and anthropogenic sources. The inner shelf, on the other hand, is largely an area of erosion or nondeposition due to sediment removal and redistribution during past sea-level changes, to sediment resuspension and winnowing by modern waves and currents, and to an inadequate supply of fine-grained sediments. The basinal part of the system (Stellwagen Basin) is mainly a tranquil depositional environment in which fine-grained sediments from several potential sources settle through the water column and accumulate under weak bottom currents. This study indicates areas within the Boston Harbor-Massachusetts Bay sedimentary system where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.

  3. Provenance of sand on the Poverty Bay shelf, the link between source and sink sectors of the Waipaoa River sedimentary system

    NASA Astrophysics Data System (ADS)

    Parra, Julie G.; Marsaglia, Kathleen M.; Rivera, Kevin S.; Dawson, Shelby T.; Walsh, J. P.

    2012-12-01

    The Poverty Shelf, North Island, New Zealand, is a segment of the Waipaoa Sedimentary System (WSS), a MARGINS Source-to-Sink focus site. Our petrographic analysis of sand from shelf core samples indicates that the sand fraction is mainly derived from intra- and potentially extrabasinal sources, but surprisingly, the major fluvial system that drains into Poverty Bay, the Waipaoa River (mean %QFL = xQyFzL), is not the dominant source. Only one vibracore at the mouth of Poverty Bay contained sand (%QFL = xQyFzL) potentially derived from the Waipaoa River. The shelf sand (mean %QFL = xQyFzL) more strongly resembles beach sand (mean %QFL = xQyFzL) collected along the coast, which is likely sourced from pervasive local cliff erosion of Miocene-Pliocene sedimentary units that exhibit similar sandstone detrital modes (mean %QFL = xQyFzL). Texturally, coarser, more poorly sorted and more angular sand is located along the outer shelf, while finer, well-sorted sand characterizes the mid-shelf. These findings suggest a shorter transport history for the material near the outer-shelf bathymetric high areas, and this observation along with the composition data suggests that they were sourced by erosion of locally exposed Miocene-Pliocene units. A potential extrabasinal source of shelf sediment is indicated by anomalous prolate and equant-shaped greywacke (Torlesse) and minor red chert pebbles collected in two outer-shelf box cores on the Lachlan anticline; these are not lithologies found within the terrestrial segment of the WSS or strata comprising the outer-shelf highs. The clast shapes are also distinctly different from the oblate-shaped, pebble-sized greywacke gravel clasts on beaches in Hawke Bay. Rather, these sediments are more similar to Torlesse stream gravel. Seismic and multibeam data support the possibility that during the most recent sea-level lowstand, the Hawke Bay fluvial system flowed into Poverty Canyon, bringing these unique gravels onto what is now the Poverty outer shelf. The presence of the Torlesse gravel is significant in that it highlights how the WSS was not a closed sedimentary system in the past, just as recent sedimentary research has shown in the case today.

  4. Possibility of heliotropical response from inclination of columnar stromatolites, Socheong island, Korea

    NASA Astrophysics Data System (ADS)

    KONG, Dal Yong; LEE, Seong Joo; Golubic, Stjepko

    2014-05-01

    Socheong island is a unique island containing Precambrian stromatolites in South Korea. Most of Socheong stromatolites are domes and columns, occurring as 10 cm to 1 meter thick stromatolite beds. Lower parts of stromatolite beds are predominantly composed of domal stromatolites, while columns increase toward the upper level of stromatolite beds. In many of stromatolite beds, inclined columns are easily identifiable, which is generally considered as a result of heliotropism. From general lithology, sedimentary structures, inclined angles and distributional pattern, and structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. However, at this moment, we do not clearly reject heliotropism interpretation for inclined columns of Socheong stromatolites. This is because the original position of stromatolite columns were also lost if structural deformation would have affected throughout the whole sedimentary rocks of Socheong island. [Acknowledgments] This research was financially supported by the National Research Institute of Cultural Heritage.

  5. Effects of sedimentary sulfide on community structure, population dynamics, and colonization depth of macrozoobenthos in organic-rich estuarine sediments.

    PubMed

    Kanaya, Gen; Uehara, Tadayasu; Kikuchi, Eisuke

    2016-08-15

    An annual field survey and in situ recolonization experiment revealed the effects of sedimentary sulfide (H2S) on macrozoobenthos in a eutrophic brackish lagoon. Species diversity was much lower throughout the year in muddy opportunist-dominant sulfidic areas. Mass mortality occurred during warmer months under elevated H2S levels. An enclosure experiment demonstrated that sedimentary H2S modified community composition, size structure, and colonization depth of macrozoobenthos. Species-specific responses to each sediment type (sand, sulfidic mud, and mud with H2S removed) resulted in changes in the established community structure. Dominant polychaetes (Hediste spp., Pseudopolydora spp., and Capitella teleta) occurred predominantly in a thin surface layer in the presence of H2S. On the other hand, organic-rich mud facilitated settlement of polychaete larvae if it does not contain H2S. These results demonstrate that sediment characteristics, including H2S level and organic content, were key structuring factors for the macrozoobenthic assemblage in organically polluted estuarine sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A stratigraphy fieldtrip for people with visual impairment

    NASA Astrophysics Data System (ADS)

    Gomez-Heras, Miguel; Gonzalez-Acebron, Laura; Muñoz-Garcia, Belen; Garcia-Frank, Alejandra; Fesharaki, Omid

    2017-04-01

    This communication presents how a stratigraphy fieldtrip adapted to people with visual impairment was prepared and carried out. This fieldtrip aimed to promote scientific knowledge on Earth sciences to people with visual impairment and to inspire Earth scientists to take into account the needs of people with disabilities when designing public engagement activities. To do this, the theme chosen for the fieldtrip was the importance of sedimentary rocks shaping the Earth and what information can one extract from observing sedimentary structures. The Triassic outcrops of Riba de Santiuste (Guadalajara, Spain) were observed during this fieldtrip. The expected learning outcomes were: a) understanding what are sedimentary rocks, how they are formed and how they fold and crop out, b) knowing what is a sedimentary structure and recognising some of them and c) be able to make inferences of the sedimentary environment from certain sedimentary structures. The fieldtrip was prepared, through the NGO "Science without Barriers" together with the Madrid delegation of the National Association for Spanish Blind People (ONCE-Madrid). ONCE-Madrid was responsible of advertising this activity as a part of their yearly cultural program to its affiliate. A preparatory fieldtrip was carried out to test the teaching methodology and to make an appropriate risk assessment. This was made together with the responsible of the Culture Area of ONCE-Madrid and two blind people. The involvement of end-users in the preparation of activities is in the core of the European Disability Forum motto: "Nothing about us without us". A crucial aspect of the site was accessibility. In terms of perambulatory accessibility of outcrops the site is excellent and suitable to some extent for end-users regardless of their physical fitness. The fieldtrip itself took place on October 15th 2016 and 30 people with and without visual disability attended. In addition to overall observations and explanations of strata and stratification, five types of sedimentary structures were observed in detail: Grain size differences and its meaning in terms of energy of the sedimentary environment, plant roots bioturbation traces, flute casts, ripples and convolute stratification. An introduction to the fieldtrip was available in Braille, as well as maps and figures in relief. A 3D plaster model representing the whole outcrop was used to give an overall view of the area as it was noted during the preparatory fieldtrip that totally blind people with no geological background had problems "zooming out", i.e. imagining the whole geological structure from detailed manipulation of strata. The feedback of the majority of the attendants to the fieldtrip was very enthusiastic. They highlighted the suitability of the activities and materials, perceived the fieldtrip as an enjoyable learning experience and met to some extent the expected learning outcomes. It is noteworthy that the fieldtrip was positively perceived positively by attendants with and without visual disability. This fieldtrip was possible thanks to a European Geosciences Union Public Outreach Grant

  7. Process metallurgy simulation for metal drawing process optimization by using two-scale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko

    2014-10-06

    We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture andmore » hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.« less

  8. Process metallurgy simulation for metal drawing process optimization by using two-scale finite element method

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yoshida, Takashi; Kuramae, Hiroyuki; Morimoto, Hideo; Yamaguchi, Toshihiko; Morita, Yusuke

    2014-10-01

    We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.

  9. Volume illustration of muscle from diffusion tensor images.

    PubMed

    Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun

    2009-01-01

    Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.

  10. Sphene-centered ocellar texture as a petrological tool to unveil the mechanism facilitating magma mixing

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2015-04-01

    The sphene-centered ocellar texture is a unique magma mixing feature characterized by leucocratic ocelli of sphene enclosed in a biotite/hornblende-rich matrix (Hibbard, 1991). The ocelli usually consist of plagioclase, K-feldspar and quartz with sphene crystals at its centre. Although geochemical and isotopic data provide concrete evidence for the interaction between two compositionally distinct magmas, the exact processes by which mixing takes place is yet uncertain. So, textural analysis can be used to decipher the behaviour of two disparate magmas during mixing. Presented work is being carried out on the sphene ocelli, occurring in hybrid rocks of the Nimchak Granite Pluton (NGP), to understand its formation while two compositionally different magmas come in contact and try to equilibrate. The NGP is ca. 1 km2in extent which has been extensively intruded by number of mafic dykes exhibiting well preserved magma mixing and mingling structures and textures in the Bathani Volcano-Sedimentary Sequence (BVSS) located on the northern fringe of the Proterozoic Chotanagpur Granite Gneiss Complex (CGGC) of eastern Indian Shield. From petrographic and mineral chemical studies we infer that when basaltic magma intruded the crystallizing granite magma chamber, initially the two compositionally different magmas existed as separate entities. The first interaction that took place between the two phases is diffusion of heat from the relatively hotter mafic magma to the colder felsic one followed by diffusion of elemental components like K and incompatible elements from the felsic to the mafic domain. Once thermal equilibrium was attained between the mafic and felsic melts, the rheological contrasts between the two phases were greatly reduced. This allowed the felsic magma to back-vein into the mafic magma. The influx of back-veined felsic melt into the mafic system disrupted the equilibrium conditions in the mafic domain wherein minerals like amphibole, plagioclase and biotite were crystallizing. This led to the incongruent melting of amphibole and biotite to form liquids of sphene composition. Meanwhile, plagioclase continued to grow in the mafic-turned-hybrid system with a different composition after the advent of felsic melt as indicated by compositional zoning in plagioclase crystals. The newly produced sphene-liquid, owing to its higher affinity for felsic phase than mafic, got incorporated into the back-veining felsic melt forming a distinct liquid of its own. The felsic melt also incorporated crystallizing plagioclase grains in it from the mafic matrix. The mixture of felsic melt, sphene-liquid and plagioclase crystals flowed through the biotite, amphibole and plagioclase dominated matrix towards the low pressure zones to occupy the spherical void spaces left behind by escaping of gases/volatiles forming the sphene ocelli. Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier, J., Barbarin, B. (Eds.) Enclaves and granite petrology, 431-444.

  11. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlen, Jan, E-mail: jan.bohlen@hzg.de; Wendt, Joachim; Nienaber, Maria

    2015-03-15

    Rolling experiments were carried out on a ternary Mg–Zn–Ca alloy and its modification with zirconium. Short time annealing of as-rolled sheets is used to reveal the microstructure and texture development. The texture of the as-rolled sheets can be characterised by basal pole figures with split peak towards the rolling direction (RD) and a broad transverse angular spread of basal planes towards the transverse direction (TD). During annealing the RD split peaks as well as orientations in the sheet plane vanish whereas the distribution of orientations tilted towards the TD remains. It is shown in EBSD measurements that during rolling bandsmore » of twin containing structures form. During subsequent annealing basal orientations close to the sheet plane vanish based on a grain nucleation and growth mechanism of recrystallisation. Orientations with tilt towards the TD remain in grains that do not undergo such a mechanism. The addition of Zr delays texture weakening. - Highlights: • Ca in Mg–Zn-alloys contributes to a significant texture weakening during rolling and annealing. • Grain nucleation and growth in structures consisting of twins explain a texture randomisation during annealing. • Grains with transverse tilt of basal planes preferentially do not undergo a grain nucleation and growth mechanism. • Zr delays the microstructure and texture development.« less

  12. Soft-sediment deformation structures in Cambrian Series 2 tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record

    NASA Astrophysics Data System (ADS)

    Põldsaar, Kairi

    2015-04-01

    Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.

  13. Active faults of the Baikal depression

    USGS Publications Warehouse

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  14. Gas Production Within Stromatolites Across the Archean: Evidence For Ancient Microbial Metabolisms

    NASA Astrophysics Data System (ADS)

    Wilmeth, D.; Corsetti, F. A.; Berelson, W.; Beukes, N. J.; Awramik, S. M.; Petryshyn, V. A.

    2017-12-01

    Identifying the presence of specific microbial metabolisms in the Archean is a fundamental goal of deep-time geobiology. Certain fenestral textures within Archean stromatolites provide evidence for the presence of gas, and therefore gas-releasing metabolisms, within ancient microbial mats. Paleoenvironmental analysis indicates many of the stromatolites formed in shallow, agitated aqueous environments, with relatively rapid gas production and lithification of fenestrae. Proposed gases include oxygen, carbon dioxide, methane, hydrogen sulfide, and various nitrogen species, produced by appropriate metabolisms. This study charts the presence of gas-related fenestrae in Archean stromatolites over time, and examines the potential for various metabolisms to produce fenestral textures. Fenestral textures are present in Archean stromatolites on at least four separate cratons from 3.5 to 2.5 Ga. Fenestrae are preserved in carbonate and chert microbialites of various morphologies, including laminar, domal, and conical forms. Extensive fenestral textures, with dozens of fenestrae along individual laminae, are especially prevalent in Neoarchean stromatolites (2.8 -2.5 Ga). The volume of gas within Archean microbial mats was estimated by measuring fenestrae in ancient stromatolites and bubbles within modern mats. The time needed for metabolisms to produce appropriate gas volumes was calculated using modern rates obtained from the literature. Given the paleoenvironmental conditions, the longer a metabolism takes to make large amounts of gas, the less likely large bubbles will remain long enough to become preserved. Additionally, limiting reactants were estimated for each metabolism using previous Archean geochemical models. Metabolisms with limited reactants are less likely to produce large amounts of gas. Oxygenic photosynthesis can produce large amounts of gas within minutes, and the necessary reactants (carbon dioxide and water) were readily available in Archean environments. In the absence of clear sedimentary or geochemical evidence for abundant hydrogen or oxidized sulfur and nitrogen species during stromatolite morphogenesis, oxygenic photosynthesis is the metabolism with the highest potential for producing fenestrae before the Great Oxidation Event.

  15. Transport-related mylonitic ductile deformation and shape change of alluvial gold, southern New Zealand

    NASA Astrophysics Data System (ADS)

    Kerr, Gemma; Falconer, Donna; Reith, Frank; Craw, Dave

    2017-11-01

    Gold is a malleable metal, and detrital gold particles deform via internal distortion. The shapes of gold particles are commonly used to estimate transport distances from sources, but the mechanisms of internal gold deformation leading to shape changes are poorly understood because of subsequent recrystallisation of the gold in situ in placer deposits, which creates a rim zone around the particles, with undeformed > 10 μm grains. This paper describes samples from southern New Zealand in which grain size reduction (to submicrometer scale) and mylonitic textures have resulted from internal ductile deformation. These textures have been preserved without subsequent recrystallisation after deposition in late Pleistocene-Holocene alluvial fan placers. These mylonitic textures were imposed by transport-related deformation on recrystallised rims that were derived from previous stages of fluvial transportation and deposition. This latest stage of fluvial transport and deformation has produced numerous elongated gold smears that are typically 100 μm long and 10-20 μm wide. These smears are the principal agents for transport-induced changes in particle shape in the studied placers. Focused ion beam (FIB) sectioning through these deformed zones combined with scanning electron microscopic (SEM) imaging show that the interior of the gold particles has undergone grain size reduction (to 500 nm) and extensive folding with development of a ductile deformation fabric that resembles textures typical of mylonites in silicate rocks. Relict pods of the pre-existing recrystallised rim zone are floating in this ductile deformation zone and these pods are irregular in shape and discontinuous in three dimensions. Micrometer scale biologically-mediated deposition from groundwater of overgrowth gold on particle surfaces occurs at all stages of placer formation, and some of this overgrowth gold has been incorporated into deformation zones. These examples provide a rare view into the nature of the physical processes that accommodate gold particle shape change during sedimentary transport.

  16. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.; Bradak, B.; Chatzitheodoridis, E.; Ujvari, G.

    2016-11-01

    Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H2O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.

  17. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills.

    PubMed

    Kereszturi, A; Bradak, B; Chatzitheodoridis, E; Ujvari, G

    2016-11-01

    Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H 2 O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.

  18. Determining the saliency of feature measurements obtained from images of sedimentary organic matter for use in its classification

    NASA Astrophysics Data System (ADS)

    Weller, Andrew F.; Harris, Anthony J.; Ware, J. Andrew; Jarvis, Paul S.

    2006-11-01

    The classification of sedimentary organic matter (OM) images can be improved by determining the saliency of image analysis (IA) features measured from them. Knowing the saliency of IA feature measurements means that only the most significant discriminating features need be used in the classification process. This is an important consideration for classification techniques such as artificial neural networks (ANNs), where too many features can lead to the 'curse of dimensionality'. The classification scheme adopted in this work is a hybrid of morphologically and texturally descriptive features from previous manual classification schemes. Some of these descriptive features are assigned to IA features, along with several others built into the IA software (Halcon) to ensure that a valid cross-section is available. After an image is captured and segmented, a total of 194 features are measured for each particle. To reduce this number to a more manageable magnitude, the SPSS AnswerTree Exhaustive CHAID (χ 2 automatic interaction detector) classification tree algorithm is used to establish each measurement's saliency as a classification discriminator. In the case of continuous data as used here, the F-test is used as opposed to the published algorithm. The F-test checks various statistical hypotheses about the variance of groups of IA feature measurements obtained from the particles to be classified. The aim is to reduce the number of features required to perform the classification without reducing its accuracy. In the best-case scenario, 194 inputs are reduced to 8, with a subsequent multi-layer back-propagation ANN recognition rate of 98.65%. This paper demonstrates the ability of the algorithm to reduce noise, help overcome the curse of dimensionality, and facilitate an understanding of the saliency of IA features as discriminators for sedimentary OM classification.

  19. The Rio Tinto Basin, Spain: Mineralogy, Sedimentary Geobiology, and Implications for Interpretation of Outcrop Rocks at Meridiani Planum, Mars

    NASA Technical Reports Server (NTRS)

    Fernandez-Remolar, David C.; Morris, Richard V.; Gruener, John E.; Amils, Ricardo; Knoll, Andrew H.

    2005-01-01

    Exploration by the NASA rover Opportunity has revealed sulfate- and hematite-rich sedimentary rocks exposed in craters and other surface features of Meridiani Planum, Mars. Modern, Holocene, and Plio-Pleistocene deposits of the Rio Tinto, southwestern Spain, provide at least a partial environmental analog to Meridiani Planum rocks, facilitating our understanding of Meridiani mineral precipitation and diagenesis, while informing considerations of martian astrobiology. Oxidation, thought to be biologically mediated, of pyritic ore bodies by groundwaters in the source area of the Rio Tinto generates headwaters enriched in sulfuric acid and ferric iron. Seasonal evaporation of river water drives precipitation of hydronium jarosite and schwertmannite, while (Mg,Al,Fe(sup 3+))-copiapite, coquimbite, gypsum, and other sulfate minerals precipitate nearby as efflorescences where locally variable source waters are brought to the surface by capillary action. During the wet season, hydrolysis of sulfate salts results in the precipitation of nanophase goethite. Holocene and Plio-Pleistocene terraces show increasing goethite crystallinity and then replacement of goethite with hematite through time. Hematite in Meridiani spherules also formed during diagenesis, although whether these replaced precursor goethite or precipitated directly from groundwaters is not known. The retention of jarosite and other soluble sulfate salts suggests that water limited the diagenesis of Meridiani rocks. Diverse prokaryotic and eukaryotic microorganisms inhabit acidic and seasonally dry Rio Tinto environments. Organic matter does not persist in Rio Tinto sediments, but biosignatures imparted to sedimentary rocks as macroscopic textures of coated microbial streamers, surface blisters formed by biogenic gas, and microfossils preserved as casts and molds in iron oxides help to shape strategies for astrobiological investigation of Meridiani outcrops.

  20. Frictional Behavior of Micro/nanotextured Surfaces Investigated by Atomic Force Microscope: a Review

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Jia, Junhong

    2015-08-01

    Tribological issues between friction pair are fundamental problems for minimized devices because of their higher surface-to-volume ratio. Micro/nanotexturing is an effective technique to reduce actual contact area between contact pair at the nanoscale. Micro/nanotexture made a great impact on the frictional behavior of textured surfaces. This paper summarizes the recent advancements in the field of frictional behavior of micro/nanotextured surfaces, which are based on solid surface contact in atmosphere environment, especially focusing on the factors influencing the frictional behavior: Surface property, texturing density, texturing height, texturing structure and size of contact pair (atomic force microscope (AFM) tip) and texturing structures. Summarizing the effects of these factors on the frictional behavior is helpful for the understanding and designing of the surfaces in sliding micro/nanoelectromechanical systems (MEMS/NEMS). Controlling and reducing the friction force in moving mechanical systems is very important for the performance and reliability of nanosystems, which contribute to a sustainable future.

  1. Texture and microstructure evolution in single-phase Ti{sub x}Ta{sub 1-x}N alloys of rocksalt structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.

    2011-08-15

    The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less

  2. Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films

    NASA Astrophysics Data System (ADS)

    Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo

    2001-08-01

    The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr, Ti)O3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 °C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 °C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C-V characteristics, P-E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x-y alignment and the interface between electrode and PZT in MFM capacitors.

  3. Intrinsic vulnerability assessment of shallow aquifers of the sedimentary basin of southwestern Nigeria

    PubMed Central

    2018-01-01

    The shallow groundwater of the multi-layered sedimentary basin aquifer of southwestern Nigeria was assessed based on its intrinsic vulnerability property. The vulnerability evaluation involves determining the protective cover and infiltration condition of the unsaturated zone in the basin. This was achieved using the PI (P stands for protective cover effectiveness of the overlying lithology and I indicates the degree of infiltration bypass) vulnerability method of the European vulnerability approach. The PI method specifically measures the protection cover and the degree to which the protective cover is bypassed. Intrinsic parameters assessed were the subsoil, lithology, topsoil, recharge and fracturing for the protective cover. The saturated hydraulic conductivity of topsoil, infiltration processes and the lateral surface and subsurface flow were evaluated for the infiltration bypassed. The results show moderate to very low vulnerability areas. Low vulnerability areas were characterised by lithology with massive sandstone and limestone, subsoils of sandy loam texture, high slopes and high depth to water table. The moderate vulnerability areas were characterised by high rainfall and high recharge, low water table, unconsolidated sandstones and alluvium lithology. The intrinsic vulnerability properties shown in vulnerability maps will be a useful tool in planning and monitoring land use activities that can be of impact in groundwater pollution.

  4. Large-scale structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Spergel, David N.; Turok, Nail

    1991-01-01

    This paper studies the formation of large-scale structure by global texture in a flat universe dominated by cold dark matter. A code for evolution of the texture fields was combined with an N-body code for evolving the dark matter. The results indicate some promising aspects: with only one free parameter, the observed galaxy-galaxy correlation function is reproduced, clusters of galaxies are found to be significantly clustered on a scale of 20-50/h Mpc, and coherent structures of over 50/h Mpc in the galaxy distribution were found. The large-scale streaming motions observed are in good agreement with the observations: the average magnitude of the velocity field smoothed over 30/h Mpc is 430 km/sec. Global texture produces a cosmic Mach number that is compatible with observation. Also, significant evolution of clusters at low redshift was seen. Possible problems for the theory include too high velocity dispersions in clusters, and voids which are not as empty as those observed.

  5. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-02-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.« less

  6. Sedimentary Mounds on Mars: Tracing Present-day Formation Processes into the Past

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.; Edwards, C. S.

    2014-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one and revealed spectacular views of finely layered sedimentary materials throughout the globe [1]. Some of these sedimentary deposits are 'mound' shaped and lie inside of craters (Fig 1). Crater mound deposits are found throughout the equatorial region, as well as ice-rich deposits found in craters in the north and south polar region [2-4]. Despite their wide geographical extent and varying volatile content, the 'mound' deposits have a large number of geomorphic and structural similarities that suggest they formed via equivalent processes. Thus, modern depositional processes of ice and dust can serve as an invaluable analog for interpreting the genesis of ancient sedimentary mound deposits.

  7. Wettability transition of laser textured brass surfaces inside different mediums

    NASA Astrophysics Data System (ADS)

    Yan, Huangping; Abdul Rashid, Mohamed Raiz B.; Khew, Si Ying; Li, Fengping; Hong, Minghui

    2018-01-01

    Hydrophobic surface on brass has attracted intensive attention owing to its importance in scientific research and practical applications. Laser texturing provides a simple and promising method to achieve it. Reducing wettability transition time from hydrophilicity to hydrophobicity or superhydrophobicity remains a challenge. Herein, wettability transition of brass surfaces with hybrid micro/nano-structures fabricated by laser texturing was investigated by immersing the samples inside different mediums. Scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and surface contact angle measurement were employed to characterize surface morphology, chemical composition and wettability of the fabricated surfaces of brass samples. Wettability transition time from hydrophilicity to hydrophobicity was shortened by immersion into isopropyl alcohol for a period of 3 h as a result of the absorption and accumulation of organic substances on the textured brass surface. When the textured brass sample was immersed into sodium bicarbonate solution, flower-like structures on the sample surface played a key role in slowing down wettability transition. Moreover, it had the smallest steady state contact angle as compared to the others. This study provides a facile method to construct textured surfaces with tunable wetting behaviors and effectively extend the industrial applications of brass.

  8. Modeling and Circumventing the Effect of Sediments and Water Column on Receiver Functions

    NASA Astrophysics Data System (ADS)

    Audet, P.

    2017-12-01

    Teleseismic P-wave receiver functions are routinely used to resolve crust and mantle structure in various geologic settings. Receiver functions are approximations to the Earth's Green's functions and are composed of various scattered phase arrivals, depending on the complexity of the underlying Earth structure. For simple structure, the dominant arrivals (converted and back-scattered P-to-S phases) are well separated in time and can be reliably used in estimating crustal velocity structure. In the presence of sedimentary layers, strong reverberations typically produce high-amplitude oscillations that contaminate the early part of the wave train and receiver functions can be difficult to interpret in terms of underlying structure. The effect of a water column also limits the interpretability of under-water receiver functions due to the additional acoustic wave propagating within the water column that can contaminate structural arrivals. We perform numerical modeling of teleseismic Green's functions and receiver functions using a reflectivity technique for a range of Earth models that include thin sedimentary layers and overlying water column. These modeling results indicate that, as expected, receiver functions are difficult to interpret in the presence of sediments, but the contaminating effect of the water column is dependent on the thickness of the water layer. To circumvent these effects and recover source-side structure, we propose using an approach based on transfer function modeling that bypasses receiver functions altogether and estimates crustal properties directly from the waveforms (Frederiksen and Delayney, 2015). Using this approach, reasonable assumptions about the properties of the sedimentary layer can be included in forward calculations of the Green's functions that are convolved with radial waveforms to predict vertical waveforms. Exploration of model space using Monte Carlo-style search and least-square waveform misfits can be performed to estimate any model parameter of interest, including those of the sedimentary or water layer. We show how this method can be applied to OBS data using broadband stations from the Cascadia Initiative to recover oceanic plate structure.

  9. Sedimentary processes on the Storfjorden trough-mouth fan during last deglaciation phase: the role of subglacial meltwater plumes on continental margin sedimentation

    NASA Astrophysics Data System (ADS)

    Lucchi, Renata G.; Camerlenghi, Angelo; Colmenero-Hidalgo, Elena; Sierro, Francisco J.; Bárcena, Maria Angeles; Flores, José-Abel; Urgeles, Roger; Macrı, Patrizia; Sagnotti, Leonardo; Caburlotto, Andrea

    2010-05-01

    The continental margin of the Southern Storfjorden trough-mouth fan was investigated within the SVAIS project (BIO Hesperides cruise, August 2007) as a Spanish contribution to IPY Activity N. 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). The objectives were to investigate the glacially-dominated late-Neogene-Quaternary sedimentary architecture of the NW Barents Sea continental margin and reconstruct its sedimentary system in response to natural climate change. The paleo-ice streams in Storfjorden had a small catchment area draining ice from the southern Spitsbergen and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. Here ground truthing recovered the last few thousands years sedimentary sequence thought to represent last deglaciation phase. Detailed palaeostratigraphic investigations together with paleomagnetic and rock magnetic analyses and AMS dating define the constraints for high-resolution inter-core correlation and dating. Most of the cores contain at the base gravity-mass deposits including debris flows and over-consolidated glacigenic diamicton. Mass deposits are overlain by an oxidized interval originated at the release and sink of fresh, cold and oxygenated melt-waters at the inception of the deglaciation phase. On the upper slope the oxidized interval is overlain by several meters of finely-stratified sediments composed of sandy-silt layers cyclically recurring within finer-grained laminated silty-clay sediments. Textural and compositional analyses suggest preferential deposition by settling from meltwater sediment-laden plumes (plumites) occurred during deglaciation with coarser layers representing episodes of subglacial meltwater discharge (glacial hyperpycnal flows) accompanying the ice streams retreat. The laminated sequence is truncated at uppermost part by a more recent gravity-mass deposit that possibly removed part of the younger sequence. In the deeper part of the slope the plumites consist of crudely laminated, terrigenous and almost barren sediments. Here the sedimentary sequence is topped by intensively bioturbated, bioclasts-bearing silty-clays representing the most recent interglacial sedimentation. On the continental shelf, the upper sedimentary sequence contains dispersed cm-thick bivalve's shells suggesting an oxygenated and nutrient-rich environment (interglacial) overlaying an interval of terrigenous, barren sediments (deglaciation). Here the short core's length suggests the presence of stiffer/coarser sediments at the base that could not be sampled. The seismic stratigraphy indicates that the slope is formed by alternating debris flow deposits and layered sediments corresponding into our cores to the fast-deposited, low-density, terrigenous plumites. Bathymetric and seismic data revealed the presence of widespread submarine landslides restricted to the southernmost part of Storfjorden continental slope. Geotechnical investigation are in progress in order to understand if such layered deposits can act on the slope as a possible preferential weak horizon favoring sediment failure.

  10. Textural break foundation wall construction modules

    DOEpatents

    Phillips, Steven J.

    1990-01-01

    Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

  11. Archaean greenstone belts of Sierra Leone with comments on the stratigraphy and metallogeny

    NASA Astrophysics Data System (ADS)

    Umeji, A. C.

    Four belts of weakly metamorphosed volcano-sedimentary material, of about 2700 Ma, are enclosed by older granulites, gneisses and migmatites in the eastern part, and (i) a basal ultramafic unit followed by (ii) mafic to feldspathic differentiate and then (iii) a terminal sedimentary formation has been recognized in all the four belts and their average ratio is ultramafic: mafic (greenstone): sedimentary unit (2:5:3). The belts are linear and tightly folded along N-S to NE-SW axis which is also the regional grain of the structures in the older basement complex that engulfs them. Structural and geochronological evidences suggest that the deformation of these volcano-sedimentary supracrustals began during the Liberian tectonism ( c. 2700 Ma) and culminated at the beginning of the Eburnean (2200 Ma). Diapiric rise of K-rich younger Aechaean granites which sharphy trangressed all the earlier rocks and their structural trends, marked the last geotectonic event in the Archaean of this part of West Africa. Chromite cumulate and asbestiform deposits characterize the layered ultramafic unit. whilst gold and associated base metal sulphides which were derived from the volcanic units became hydrothermally concentrated close to the contact between the volcanic units and the overlying sediments, and also in the fault zones. Iron ore deposits are restricted to the sedimentary units where they occur as banded iron formation. It is only in the huge metasedimetary piles of the Sula-Kangari belt that deposits of iron ore occur in commercially viable quantities. The patterns of distribution, deformation and mineralization in these greenstone belts appear to fit closely into island arc model of plate tectonic theory.

  12. Micro-scale damage characterized within part of a dismembered positive flower structure, San Jacinto fault, southern California, USA

    NASA Astrophysics Data System (ADS)

    Peppard, Daniel W.; Webb, Heather N.; Dennis, Kristen; Vierra, Emma; Girty, Gary H.; Rockwell, Thomas K.; Blanton, Chelsea M.; Brown, Jack F.; Goldstein, Ariella I.; Kastama, Keith W.; Korte-Nahabedian, Mark A.; Puckett, Dan; Richter, Addison K.

    2018-07-01

    To better understand the processes that control sub-grain fracturing in fault damage zones, we studied micro-scale damage in sandstones adjacent to the San Jacinto fault (SJF) where it is exhumed from a total depth of ∼220 m beneath a northeast-verging thrust that comprises part of a relic and dismembered flower structure. The thrust places high grade gneiss of the pre-middle Cretaceous Burnt Valley complex over sedimentary rocks of the Pleistocene Bautista Formation. An ∼10-12 cm thick zone of cataclasite is present along the northeast side of the fault adjacent to a narrow black ultracataclasite core. Non-pervasive microscopic damage, characterized by pulverized sand grains, extends outward from the zone of cataclasites tens of meters. Such textures are better developed in sandstones that contain <18% matrix. Hence, a difference in rheology, rather than proximity to the fault core appears to control deformation patterns in sandstones of the Bautista Formation. At the time of formation, confining pressure is estimated to have been ∼6 MPa; hence, loading produced by over thrusting is not likely the cause of intragranular fragmentation in the footwall. Alternatively, strong oscillating stresses produced during dynamic rupture of large earthquakes on the San Jacinto fault likely caused very high point stresses at grain contacts that allowed for fracturing. Such high point stresses along grain contacts is the primary factor in the development of the observed pulverized grains.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonysamy, A.A., E-mail: alphons.antonysamy@GKNAerospace.com; Meyer, J., E-mail: jonathan.meyer@eads.com; Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk

    With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an <001> {sub β} direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong < 001 > {sub β} fibre texturemore » (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a < 001 > fibre texture in the build direction. • This oscillates between a random distribution around the axis and cube reinforcement. • In the skin layer nucleation occurs off the surrounding powder bed and growth occurs inwards. • Simulations show that a weak α-texture results from a random distribution across habit variants.« less

  14. Reconnaissance geologic map of the Loreto and part of the San Janier quadrangles, Baja California Sur, Mexico

    USGS Publications Warehouse

    McLean, Hugh

    1988-01-01

    The Loreto area of Baja California Sur, Mexico, contains a diverse association of igneous, sedimentary, and metasedimentary rocks exposed in the foothills and arroyos between the Sierra La Giganta and Gulf of California. The Loreto area was selected for this study to examine the possible relation of the marine rocks to the opening of the Gulf of California, and to determine the stratigraphic and structural relations between basement rocks composed of granitic and prebatholithic rocks and overlying Tertiary (mainly Miocene) sedimentary and volcanic rocks, and by a sequence of Pliocene marine and nonmarine sedimentary rocks. The Pliocene marine rocks lie in a structural depression informally called here, the Loreto embayment. This geologic map and report stem from a cooperative agreement between the U.S. Geological Survey and the Consejo de Recursos Minerales of Mexico that was initiated in 1982.

  15. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian volcano-sedimentary basins. Our approach permits to better identify different processes operating on volcanic edifices and to constrain the depositional environment and thus geodynamic setting of Precambrian continental volcanic belts. Acknowledgments: We acknowledge CAPES/CNPq project n° 402564/2012-0 (Programa Ciências sem Fronteiras), CNPq/CT-Mineral (Proc. 550.342/2011-7) and INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS.

  16. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-01-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet.« less

  17. Building structural similarity database for metric learning

    NASA Astrophysics Data System (ADS)

    Jin, Guoxin; Pappas, Thrasyvoulos N.

    2015-03-01

    We propose a new approach for constructing databases for training and testing similarity metrics for structurally lossless image compression. Our focus is on structural texture similarity (STSIM) metrics and the matched-texture compression (MTC) approach. We first discuss the metric requirements for structurally lossless compression, which differ from those of other applications such as image retrieval, classification, and understanding. We identify "interchangeability" as the key requirement for metric performance, and partition the domain of "identical" textures into three regions, of "highest," "high," and "good" similarity. We design two subjective tests for data collection, the first relies on ViSiProG to build a database of "identical" clusters, and the second builds a database of image pairs with the "highest," "high," "good," and "bad" similarity labels. The data for the subjective tests is generated during the MTC encoding process, and consist of pairs of candidate and target image blocks. The context of the surrounding image is critical for training the metrics to detect lighting discontinuities, spatial misalignments, and other border artifacts that have a noticeable effect on perceptual quality. The identical texture clusters are then used for training and testing two STSIM metrics. The labelled image pair database will be used in future research.

  18. New observations from Surtsey, the definitive surtseyan volcano

    NASA Astrophysics Data System (ADS)

    White, J. D.; Jakobsson, S. P.

    2013-12-01

    The eruption that formed Surtsey lasted from 1963 into 1967, and provides the name used for emergent eruptions from the seafloor, and sometimes even more generally for any eruption involving explosive interaction of magma with water. New work on Surtsey's eruption is allowing us to extend our understanding of many aspects of its evolution and the processes that took place both prior to emergence and after, when it was so well observed by Sigurdur Thorarinsson and others. In 1979, drilling through Surtsey was accomplished, and a core acquired that extends almost to the pre-eruption seafloor. Near the base of the hole, unlithified pyroclastic deposits were encountered, and sampled as drill cuttings. These are highly vesicular, and many show large populations of small, spherical to sub-spherical vesicles. Examination of the core and dozens of thin sections reveals strong palagonite rims on pyroclasts at many intervals in the core, developed particularly well on highly vesicular and originally glassy pyroclasts. In the uppermost several meters armoured lapilli are present, along with "vesiculated tuff". We see no evidence for deep subsidence of surficial deposits at the site cored, and our working hypothesis is that an eruption stratigraphy can be established from the drillsite. On the emergent cone, a notable feature not previously emphasized is an abundance of blocks from the pre-eruption seafloor. These blocks have been identified as lithified volcaniclastic material deposited as turbidites largely from the Vestmann Islands. It will be important to quantify the abundance of this seafloor sedimentary rock as clasts in Surtsey's deposits, because these lithic clasts imply excavation, perhaps substantial, of the pre-eruption seafloor. No fragments of pillow lava have been identified in Surtsey's ejecta, but there are abundant fragments of dikes characterized by parallel bands of vesicles and, on some fragments, paired chilled margins. Many of these exhibit strong cracking and a cauliflower-like appearance on one side, but they are not true cauliflower bombs. Juvenile bombs are also abundant, and display ubiquitous composite textures. Typical juvenile bombs have glassy weakly fractured surfaces and a contorted internal structure in which pyroclasts are entwined with stretched and bubbled coherent basalt. These textures are interpreted to have developed through strong 'recycling' processes that allowed capture of older pyroclasts within new ones through in-vent welding and agglutination, or in some cases by capture of particles within magma that was subsequently disrupted. Taken as a whole, these new observations challenge existing models for Surtsey's eruption. A new assessment of eruptive processes will take into account evidence for both ubiquitous hot-state particle recycling, and excavation and ejection of subvolcanic sedimentary strata at times in the eruption, including during the last explosive phase.

  19. Evolution of plastic anisotropy for high-strain-rate computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less

  20. Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications.

    PubMed

    Tsai, Chin-Yi; Lai, Jyong-Di; Feng, Shih-Wei; Huang, Chien-Jung; Chen, Chien-Hsun; Yang, Fann-Wei; Wang, Hsiang-Chen; Tu, Li-Wei

    2017-01-01

    In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown on planar Si(100), planar Si(111), and textured Si(100) substrates favor the growth of ZnO(110) ridge-like, ZnO(002) pyramid-like, and ZnO(101) pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100) substrate is slightly larger than that on the planar Si(111) substrate, while both of them are much larger than that on the textured Si(100) substrate. The average grain sizes (about 10-50 nm) of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells.

  1. Primary sedimentary structures and the internal architecture of a Martian sand body in search of evidence for sand transport and deposition

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit

    1988-01-01

    Lunar experiences show that unmanned sample return missions, despite limitations on sample size, can produce invaluable data to infer crustal processes, regolith processes, regolith-atmosphere/ionosphere interaction processes, etc. Drill cores provide a record of regolith evolution as well as a more complete sample of the regolith than small scoops and/or rakes. It is proposed that: (1) a hole be drilled in a sand body to obtain continuous oriented cores; a depth of about 10 m would be compatible with what we know of bed form hierarchy of terrestrial stream deposits; (2) two trenches, at right angles to each other and close to the drill-hole, be dug and the walls scraped lightly such that primary/internal sedimentary structures of the sand body become visible; (3) the walls of the trenches be made gravitationally stable by impregnation techniques; (4) acetate or other peels of a strip on each wall be taken; and (5) appropriately scaled photographs of the walls be taken at different sun-angles to ensure maximum ease of interpretation of sedimentary structures; and, to correlate these structural features with those in the core at different depth levels of the core.

  2. Structural geology of Amazonian-aged layered sedimentary deposits in southwest Candor Chasma, Mars

    USGS Publications Warehouse

    Okubo, C.H.

    2010-01-01

    The structural geology of an outcropping of layered sedimentary deposits in southwest Candor Chasma is mapped using two adjacent high-resolution (1 m/pixel) HiRISE digital elevation models and orthoimagery. Analysis of these structural data yields new insight into the depositional and deformational history of these deposits. Bedding in non-deformed areas generally dips toward the center of west Candor Chasma, suggesting that these deposits are basin-filling sediments. Numerous kilometer-scale faults and folds characterize the deformation here. Normal faults of the requisite orientation and length for chasma-related faulting are not observed, indicating that the local sediments accumulated after chasma formation had largely ceased in this area. The cause of the observed deformation is attributed to landsliding within these sedimentary deposits. Observed crosscutting relationships indicate that a population of sub-vertical joints are the youngest deformational structures in the area. The distribution of strain amongst these joints, and an apparently youthful infill of sediment, suggests that these fractures have been active in the recent past. The source of the driving stress acting on these joints has yet to be fully constrained, but the joint orientations are consistent with minor subsidence within west Candor Chasma.

  3. Palynostratigraphy of the Erkovtsy field of brown coal (the Zeya-Bureya sedimentary basin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kezina, T.V.; Litvinenko, N.D.

    2007-08-15

    The Erkovtsy brown coal field in the northwestern Zeya-Bureya sedimentary basin (129-130{sup o}E, 46-47{sup o}N) is structurally confined to southern flank of the Mesozoic-Cenozoic Belogor'e depression. The verified stratigraphic scheme of the coalfield sedimentary sequence is substantiated by palynological data on core samples from 18 boreholes sampled in the course of detailed prospecting and by paleobotanical analysis of sections in the Yuzhnyi sector of the coalfield (data of 1998 by M.A. Akhmetiev and S.P. Manchester). Sections of the Erkovtsy, Arkhara-Boguchan, and Raichikha brown-coal mines are correlated. Stratigraphic subdivisions distinguished in the studied sedimentary succession are the middle and upper Tsagayanmore » subformations (the latter incorporating the Kivda Beds), Raichikha, Mukhino, Buzuli, and Sazanka formations.« less

  4. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Spies, Thomas A.

    1992-01-01

    Relationships between spectral and texture variables derived from SPOT HRV 10 m panchromatic and Landsat TM 30 m multispectral data and 16 forest stand structural attributes is evaluated to determine the utility of satellite data for analysis of hemlock forests west of the Cascade Mountains crest in Oregon and Washington, USA. Texture of the HRV data was found to be strongly related to many of the stand attributes evaluated, whereas TM texture was weakly related to all attributes. Data analysis based on regression models indicates that both TM and HRV imagery should yield equally accurate estimates of forest age class and stand structure. It is concluded that the satellite data are a valuable source for estimation of the standard deviation of tree sizes, mean size and density of trees in the upper canopy layers, a structural complexity index, and stand age.

  5. Comparative mineral chemistry and textures of SAFOD fault gouge and damage-zone rocks

    USGS Publications Warehouse

    Moore, Diane E.

    2014-01-01

    Creep in the San Andreas Fault Observatory at Depth (SAFOD) drillhole is localized to two foliated gouges, the central deforming zone (CDZ) and southwest deforming zone (SDZ). The gouges consist of porphyroclasts of serpentinite and sedimentary rock dispersed in a foliated matrix of Mg-smectite clays that formed as a result of shearing-enhanced reactions between the serpentinite and quartzofeldspathic rocks. The CDZ takes up most of the creep and exhibits differences in mineralogy and texture from the SDZ that are attributable to its higher shearing rate. In addition, a ∼0.2-m-wide sector of the CDZ at its northeastern margin (NE-CDZ) is identical to the SDZ and may represent a gradient in creep rate across the CDZ. The SDZ and NE-CDZ have lower clay contents and larger porphyroclasts than most of the CDZ, and they contain veinlets and strain fringes of calcite in the gouge matrix not seen elsewhere in the CDZ. Matrix clays in the SDZ and NE-CDZ are saponite and corrensite, whereas the rest of the CDZ lacks corrensite. Saponite is younger than corrensite, reflecting clay crystallization under declining temperatures, and clays in the more actively deforming portions of the CDZ have better equilibrated to the lower-temperature conditions.

  6. Insights into the diagenetic environment of fossil marine vertebrates of the Pisco Formation (late Miocene, Peru) from mineralogical and Sr-isotope data

    NASA Astrophysics Data System (ADS)

    Gioncada, A.; Petrini, R.; Bosio, G.; Gariboldi, K.; Collareta, A.; Malinverno, E.; Bonaccorsi, E.; Di Celma, C.; Pasero, M.; Urbina, M.; Bianucci, G.

    2018-01-01

    The late Miocene Pisco Formation of Peru is an outstanding example of richness and high-quality preservation of fossil marine vertebrates. In order to reconstruct the fossilization path, we present new textural, mineralogical and Sr-isotope data of diagenetic minerals formed in correspondence of fossil specimens such as marine vertebrates and mollusks. These fossil specimens were found at Cerro los Quesos, in the Ica Desert, within the diatomaceous strata of the Pisco Formation. Dolomite, gypsum, anhydrite and Mn minerals are the main phases found, while the calcium carbonate originally forming the mollusk valves is replaced by gypsum. An early formation of dolomite and of Mn minerals, triggered by the modifications of the geochemical environment due to organic matter degradation, is suggested by the textural relationships and is confirmed by the Sr isotopic ratio of dolomite, which agrees with that of seawater at the time of sedimentation. Instead, gypsum Sr isotopic ratios indicate a pre-Miocene seawater-derived brine circulating within the sedimentary sequence as a source for Sr. Oxidation of diagenetic sulfide causing a lowering of the pH of porewater is proposed as an explanation for Ca-carbonate dissolution. The diagenetic chemical environment was, nevertheless, favorable to bone preservation.

  7. Infiltration pattern in a regolith-fractured bedrock profile: field observation of a dye stain pattern

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul

    2006-02-01

    We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.

  8. Categorizing vitric lithofacies on seamounts: implications for recognizing deep-marine pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Clague, D. A.

    2011-12-01

    Glassy fragmental deposits commonly found capping seamounts have been variably interpreted as the products of quench-fragmentation (hyaloclastite), suppressed steam expansion, and/or explosive fire-fountains (pyroclastite). To better understand these vitriclastic deposits we use a multidisciplinary approach that outlines six lithofacies based on textures, sedimentary structures, geochemical diversity, and associations with seamount landforms. All seamounts studied yield MORB compositions and formed on or near mid-ocean ridge axes of the northeast Pacific Ocean. Consolidated deposits were sampled from the Taney (~29 Ma), President Jackson (~3 Ma), and Vance (~2 Ma) seamounts using ROV manipulator arms and dredge hauls. Unconsolidated deposits from the currently active Axial Seamount of the Juan de Fuca Ridge were sampled using ROV push core and vacuum techniques. Lithofacies occur with talus breccias and pillow basalt on steeply dipping outer flanks and caldera walls, and with pillow and sheet flows on subhorizontal rims and nested caldera floors of the seamounts. Vitric lithofacies within or near steeply dipping regions have very angular textures, coarse grain-sizes and abundant crystalline basalt fragments. Jig-saw fit texture is common in units with monomict geochemistry and closely associated with adjacent pillow basalt, suggesting in-situ fragmentation akin to pillow breccia. Similar units bearing polymodal geochemistry are generally associated with talus breccias along caldera walls and basal slopes, and are interpreted as fault-scarp derived debrites. Laterally these lithofacies abruptly grade into bottom-current reworked lithofacies on flat caldera floors. Reworked lithofacies have >40% muddy matrix with abundant angular mineral fragments, biogenic grains and minor devitrified glass shards. They typically exhibit well-defined planar lamination and locally show sinusoidal ripple forms. Horizontal burrows including Planolites are common. Locally this lithofacies has a structureless to 'swirled' habit and interdigitating bedding contacts where it is host to matrix-supported subround vitric lapilli with low-vesicularity. These rare globules have mud-filled embayments, bubbles and quench-cracks, jig-saw fit texture, and fluidal morphologies suggesting a pepperitic origin. Laterally, bottom current reworked lithofacies grade into fine-to medium-grained ash lithofacies proximal to volcanic-constructional landforms. These landforms have broad morphologies with subdued slopes and are interpreted as source vents. Lithofacies generated from these vents invariably contain an abundance of low-vesicular limu-o-Pele'- or highly-vesicular round lapilli. Units are coarse-tail reverse to normal graded and crudely planar laminated or structureless. Locally, basal contacts are erosive. This facies is interpreted as fall-out from particle lofting or high-density gravity flows generated by explosive eruptions. By combining high-resolution bathymetric mapping and sampling with post-cruise geochemical and petrographic examination, we outline a previously unrecognized diversity to seamount-capping vitriclastic deposits. This approach will be useful for studies focused on deciphering explosive origins of deep-marine volcaniclastic deposits.

  9. Rapakivi texture: An indication of the crystallization of hydrosilicates, II

    NASA Astrophysics Data System (ADS)

    Elliston, John N.

    1985-05-01

    Rapakivi granites have puzzled all who have seriously studied them. Typical rapakivi texture is a mixture of variously mantled, non-mantled or partly mantled, concentrically zoned, plastically distorted, fragmented, reaggregated, large and small ovoids. Commonly they are potash feldspar often mantled by, and having a variable content of plagioclase. Some display remarkable sphericity. In form, composition, zoning sequence, and crystallization pattern each ovoid reflects an individual development. Up to five concentric internal plagioclase rims have been observed and some ovoids may be isolated in autoliths and wall-rocks. Anomalies and contradictions arise from any assumption of genesis from a cooling melt. The recorded objective data imply that the "magma" from which rapakivi textures develop had similar diffusive and rheological properties to those of a partly dewatered macromolecular paste or a mixture of gelatinous hydrosilicates. As indicated by deep oil wells this system is found at somewhat elevated temperatures at considerable depths within accumulated sediments. In addition to the very specific diffusive and rheological properties of such partly dewatered sediments, the system has as its major components normal solvated macromolecules of mixed clays, silica gels and hydrous ferromagnesian minerals which are characterised by distinctive particle sizes and geometric shapes (platelets, spheres and rods, respectively). Thixotropic liquefaction and intrusion of such concentrated gelatinous "magma" or sediment paste introduces relative movement between the component macromolecules whereby they can reduce surface energy by interaction to assume a "close-packed" condition and aggregate during laminar flow into macro-accretions comprised essentially of their respective particle shapes. Syneresis of these precursor accretions desorbs ions, including the small montmorillonite particles behaving as a colloidal electrolyte. These diffuse from the illitic cores to form a montmorillonite-rich rim which it is suggested crystallizes together with the illitic cores to form mantled or polymantled feldspar ovoids. Crystallization of the rapakivi massif is associated with strong temperature rise stemming from exothermic crystallization of the close-packed metastable colloids. This follows the development of the characteristic texture. The rounded and rimmed precursor accretions are formed during earlier lower-temperature episodes of thixotropic liquefaction which are isothermal. The fluidity is an earlier event. There is high temperature dependent on the rate of water loss but no molten stage. Forty-six typical features of rapakivi texture are described and illustrated, each of which is directly attributable to specific interactions in an alternately dynamic and static colloidal system. Individual correlation between each observed distinctive feature of the rapakivi texture and the well-documented physico-chemical process is complete. For sediment-derived granites, therefore, the rapakivi texture can confidently be assumed to be an indication of the crystallization of their sedimentary hydrosilicate precursors.

  10. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Fullea, Javier

    2015-03-01

    We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.

  11. Method of manufacturing positive nickel hydroxide electrodes

    DOEpatents

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  12. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    USGS Publications Warehouse

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a segment of the Roberts Mountain thrust front, which bridges the southern ends of the trends. This pattern appears to delineate two well-defined, sub-parallel, northwest?southeast-trending crustal-scale structural zones. These features, here termed the ?Carlin? and ?Cortez? structural zones, are believed to control the regional-scale distribution of the sedimentary rock-hosted occurrences. Mineralizing processes were focused along these structural zones and significant ore deposits exist where they intersect other tectonic zones, favorable host rock-types, and (or) where appropriate physio-chemical conditions were present. The origin and age of the Carlin and Cortez structural zones are not well constrained, however, they are considered to be transcurrent features representing a long-lived, deep-crustal or mantle-rooted zone of weakness. Areas of elevated volcanic rock-hosted mineral potential are principally distributed along two broad and diffuse belts that trend (1) northwest-southeast across southwestern Nevada, parallel to the Sierra Nevada, and (2) northeast-southwest across northern Nevada, extending diagonally from the Sierra Nevada to southern Idaho. The first belt corresponds to the Walker Lane shear zone, a wide region of complex strike-slip faulting. The second, here termed the ?Humboldt shear(?) zone?, may represent a structural zone of transcurrent movement. Together, the Walker Lane and Humboldt shear(?) zones are believed to control the regional-scale distribution of volcanic rock-hosted occurrences. Volcanic rock-hosted mineralization was closely tied to the southward and westward migration of Tertiary magmatism across the region (which may have been mantle plume-driven). Both magmatic and mineralizing processes were localized and concentrated along these structural zones. The Humboldt shear(?) zone may have also affected the distribution of sedimentary rock-hosted mineralization along the Battle Mountain?Eureka (C

  13. Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field

    USGS Publications Warehouse

    Poag, C. Wylie; Powars, David S.; Poppe, Lawrence J.; Mixon, Robert B.

    1994-01-01

    New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peakring crater in southern Germany. We speculate that the Chesapeake Bay crater is the source of the North American tektite strewn field.

  14. Meteoroid mayhem in Ole Virginny: source of the North American tektite strewn field

    USGS Publications Warehouse

    Poag, C.W.; Powars, D.S.; Poppe, L.J.; Mixon, R.B.

    1994-01-01

    New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peak-ring crater in southern Germany. It is speculated that the Chesapeake Bay crater is the source of the North American tektite strewn field. -Authors

  15. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.

  16. Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

    PubMed

    Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina

    2015-04-01

    An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

  17. Reconstructed Oceanic Sedimentary Sequence in the Cape Three Points Area, Southern Axim-Konongo (Ashanti) Greenstone Belt in the Paleoproterozoic Birimian of Ghana.

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Ito, T.; Frank, N. K.; George, T. M.

    2014-12-01

    The Birimian greenstone belt likely formed through collision between the West African and Congo Cratons ~2.2 Ga. Accreted greenstone belts that formed through collision especially during the Palaeoproterozoic are usually not only good targets for preservation of oceanic sedimentary sequences but also greatly help understand the nature of the Paleoproterozoic deeper oceanic environments. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Axim-Konongo (Ashanti) greenstone belt in Ghana where excellently preserved Paleoprotrozoic deeper oceanic sedimentary sequences extensively outcrop. The Birimian greenstone belt in both the Birimian rock (partly Sefwi Group) and Ashanti belts are separated from the Tarkwaian Group which is a paleoplacer deposit (Perrouty et al., 2012). The Birimian rock was identified as volcanic rich greenstone belt; Kumasi Group is foreland basin with shale and sandstone, quartzite and turbidite derived from 2.1 Ga granite in the Birimian; Tarkwaian Group is composed of coarse detrital sedimentary rocks deposited along a strike-slip fault in the Birimian. In the eastern part of the Cape Three Point area, over 4km long of volcanic-sedimentary sequence outcrops and is affected by greenschist facies metamorphism. Four demarcated zones along the coast as Kutike, Atwepo, Kwtakor and Akodaa zones. The boundaries of each zone were not observed, but each zone displays a well preserved and continuous sedimentary sequence. Structurally, this region is west vergent structure and younging direction to the East. Kutike zone exhibits synform structure with S0 younging direction. Provisional stratigraphic columns in all the zones total about 500m thick. Kutike, Atwepo zones (> 200m thick) have coarsening upward characteristics from black shale to bedded volcanic sandstone. Kwtakor zone (> 150m) is the thickest volcaniclastic sequence and has fining upward sections. Akodaa zone (> 150m) consists of finer bed of volcaniclastics with black shales and has fining upward character. This continuous sequence indicate distal portion of submarine volcaniclastic section in an oceanic island arc between the West African and Congo Cratons.

  18. Three-dimensional morphological and textural complexity of Archean putative microfossils from the Northeastern Pilbara Craton: indications of biogenicity of large (>15 microm) spheroidal and spindle-like structures.

    PubMed

    Sugitani, Kenichiro; Grey, Kathleen; Nagaoka, Tsutomu; Mimura, Koichi

    2009-09-01

    We recently reported a diverse assemblage of carbonaceous structures (thread-like, film-like, spheroidal, and spindle-like) from chert in the ca. 3.0 Ga Farrel Quartzite of the Gorge Creek Group in the Pilbara Craton, Western Australia. Results from a rigorous examination of occurrence, composition, morphological complexity, size distributions, and taphonomy provided presumptive evidence for biogenicity. In this study, we present new data of morphological and textural complexity of large (>15 microm) spheroidal and spindle-like structures, using an in-focus, 3-D image reconstruction system, which further raises the scale of credibility that these structures are microfossils. While many of the large spheroids are single-walled, and the wall is irregularly folded, a few specimens are partially blistered, double walled, or have a dimpled wall. The wall-surface texture varies from smooth and homogeneous (hyaline) to patchy, granular or reticulate. Such variation is best explained as resulting from taphonomic processes. Additionally, an inner solitary body, present in some large spheroids, is hollow and partially broken, which indicates a primary origin for this substructure. Spindle-like structures have two types of flange-like appendage; one is attached at the equatorial plane of the body, whereas the other appears to be attached peripherally. In both cases, the appendage tends to have a flat geometry, a tapering thickness, and constancy in shape, proportions, and dimensions. Spindle-wall surfaces are variously textured and heterogeneous. These morphological and textural complexities and heterogeneity refute potential abiogenic formation models for these structures, such as crystals coated with organic matter, fenestrae, and the diagenetic redistribution of carbonaceous matter. When coupled with other data from Raman spectroscopy, NanoSIMS analysis, and palynology, the evidence that these large carbonaceous structures are biogenic appears compelling, though it is still equivocal as to whether they are cells or outer envelopes of colonies of smaller cells.

  19. UAV, DGPS, and Laser Transit Mapping of Microbial Mat Ecosystems on Little Ambergris Cay, B.W.I.

    NASA Astrophysics Data System (ADS)

    Stein, N.; Quinn, D. P.; Grotzinger, J. P.; Fischer, W. W.; Knoll, A. H.; Cantine, M.; Gomes, M. L.; Grotzinger, H. M.; Lingappa, U.; Metcalfe, K.; O'Reilly, S. S.; Orzechowski, E. A.; Riedman, L. A.; Strauss, J. V.; Trower, L.

    2016-12-01

    Little Ambergris Cay is a 6 km long, 1.6 km wide uninhabited island on the Caicos platform in the Turks and Caicos. Little Ambergris provides an analog for the study of microbial mat development in the sedimentary record. Recent field mapping during July of 2016 used UAV- and satellite-based images, differential GPS (DGPS), and total station theodolite (TST) measurements to characterize sedimentology and biofacies across the entirety of Little Ambergris Cay. Nine facies were identified in-situ during DGPS island transects including oolitic grainstone bedrock, sand flats, cutbank and mat-filled channels, hardground-lined bays with EPS-rich mat particles, mangroves, EPS mats, polygonal mats, and mats with blistered surface texture. These facies were mapped onto a 15 cm/pixel visible light orthomosaic of the island generated from more than 1500 nadir images taken by a UAV at 350 m standoff distance. A corresponding stereogrammetric digital elevation map was generated from drone images and 910 DGPS measurements acquired during several island transects. More than 1000 TST measurements provide additional facies elevation constraints, control points for satellite-based water depth calculations, and means to cross-calibrate and reconstruct the topographic profile of bedrock exposed at the beach. Additionally, the thickness of the underlying Holocene sediment fill was estimated over several island transects using a depth probe. Sub-cm resolution drone-based orthophotos of microbial mats were used to quantify polygonal mat size and textures. The mapping results highlight that sedimentary and bio-facies (including mat morphology and fabrics) correlate strongly with elevation. Notably, mat morphology was observed to be highly sensitive to cm-scale variations in topography and water depth. The productivity metric NDVI was computed for mat and vegetation facies using nadir images from a UAV-mounted two-band red-NIR camera. In combination with in situ facies mapping, these measurements provided ground truth for reduction of multispectral Landsat and Worldview-2 satellite images to evaluate mat distribution and diversity across a range of spatial and spectral facies variations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shashaank; Belianinov, Alex; Okatan, Mahmut B

    (001)pc textured K0.5Na0.5NbO3 (KNN) ceramic was found to exhibit a 65% improvement in the longitudinal piezoelectric response as compared to its random counterpart. Piezoresponse force microscopy study revealed the existence of larger 180 and non-180 domains for textured ceramic as compared to that of the random ceramic. Improvement in piezoresponse by the development of (001)pc texture is discussed in terms of the crystallographic nature of KNN and domain morphology. A comparative analysis performed with a rhombohedral composition suggested that the improvement in longitudinal piezoresponse of polycrystalline ceramics by the development of (001)pc texture is limited by the crystal structure.

  1. Facies, Stratigraphic and Depositional Model of the Sediments in the Abrolhos Archipelago (Bahia, BRAZIL)

    NASA Astrophysics Data System (ADS)

    Matte, R. R.; Zambonato, E. E.

    2012-04-01

    Located in the Mucuri Basin on the continental shelf of southern Bahia state, northeast Brazil, about 70 km from the city of Caravelas,the Abrolhos archipelago is made up of five islands; Santa Barbara, Redonda, Siriba, Guarita and Sueste. The exhumed sediments in the Abrolhos archipelago are a rare record of the turbidite systems which fill the Brazilian Atlantic Basin, and are probably an unprecedented example of a plataform turbidite system (Dr. Mutti, personal communication). Despite the limited area, the outcrops display a wide facies variation produced by different depositional processes, and also allow for the observation of the layer geometries. Associated with such sedimentary rocks, the Abrolhos Volcanic Complex belongs stratigraphically to the Abrolhos Formation. These igneous rocks were dated by the Ar / Ar method, with ages ranging from 60 to 40 My, placing such Volcanic Complex between the Paleocene and Eocene. The sedimentary section is best exposed in the Santa Barbara and Redonda islands and altogether it is 70 m thick. The measured vertical sections show a good stratigraphic correlation between the rocks of the western portion of the first island and those of Redonda Island. However, there is no correlation between the eastern and western portions of Santa Barbara Island, since they are very likely interrupted by the igneous intrusion and possibly by faulting. The sedimentary stack consists of deposits with alternated regressive and transgressive episodes interpreted as high frequency sequences. The coarse facies, sandstones and conglomerates, with abrupt or erosive bases record regressive phases. On the other hand, finer sandstones and siltstones facies, which are partly bioturbated, correspond to phases of a little sediment supply. In the central and eastern portions of Santa Barbara Island, there is a trend of progradational stacking, while both in the western portion of Santa Barbara and in Redonda islands an agradational trend is observed. The predominance of layers with tabular geometry, characteristic of turbidite lobes, the presence of hummocky stratification, trace fossils typical of shallow water (Ophiomorphs and Thalassinoides), all associated with the occurrence of the carbonaceous material as well as plant fragments suggest a deltaic/ plataform depositional context. Textural features and sedimentary structures observed in the conglomerates and sandstones show the action of gravitational flows of high and low density. The fine interlaminated sandstones and siltstones later deformed as slumps or slides, and conglomerates with oriented clasts indicate, respectively, mass movements and action of debris flow. Conglomeratic lags levels record a bypass phenomenon. There are no biostratigraphic data in these studied outcrops. However, petrographic analyses revealed the presence of fragments of igneous rocks (basalts and diabases) in both sandstones and conglomerates, suggesting a relative contemporaneity between igneous activity and sediment deposition. Futhermore, petrographic analyses also found poor permo-porous conditions in the reservoirs due to the presence of fragments of volcanic rocks and the abundance of intraclasts / pseudomatrix.

  2. Texture variations suppress suprathreshold brightness and colour variations.

    PubMed

    Schofield, Andrew J; Kingdom, Frederick A A

    2014-01-01

    Discriminating material changes from illumination changes is a key function of early vision. Luminance cues are ambiguous in this regard, but can be disambiguated by co-incident changes in colour and texture. Thus, colour and texture are likely to be given greater prominence than luminance for object segmentation, and better segmentation should in turn produce stronger grouping. We sought to measure the relative strengths of combined luminance, colour and texture contrast using a suprathreshhold, psychophysical grouping task. Stimuli comprised diagonal grids of circular patches bordered by a thin black line and contained combinations of luminance decrements with either violet, red, or texture increments. There were two tasks. In the Separate task the different cues were presented separately in a two-interval design, and participants indicated which interval contained the stronger orientation structure. In the Combined task the cues were combined to produce competing orientation structure in a single image. Participants had to indicate which orientation, and therefore which cue was dominant. Thus we established the relative grouping strength of each cue pair presented separately, and compared this to their relative grouping strength when combined. In this way we observed suprathreshold interactions between cues and were able to assess cue dominance at ecologically relevant signal levels. Participants required significantly more luminance and colour compared to texture contrast in the Combined compared to Separate conditions (contrast ratios differed by about 0.1 log units), showing that suprathreshold texture dominates colour and luminance when the different cues are presented in combination.

  3. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  4. Evidence of synsedimentary microbial activity and iron deposition in ferruginous crusts of the Late Cenomanian Utrillas Formation (Iberian Basin, central Spain)

    NASA Astrophysics Data System (ADS)

    García-Hidalgo, José F.; Elorza, Javier; Gil-Gil, Javier; Herrero, José M.; Segura, Manuel

    2018-02-01

    Ferruginous sandstones and crusts are prominent sedimentary features throughout the continental (braided)-coastal siliciclastic (estuarine-tidal) wedges of the Late Cenomanian Utrillas Formation in the Iberian Basin. Crust types recognized are: Ferruginous sandy crusts (Fsc) with oxides-oxyhydroxides (hematite and goethite) concentrated on sandstone tops presenting a fibro-radial internal structure reminding organic structures that penetrate different mineral phases, suggesting the existence of bacterial activity in crust development; Ferruginous muddy crusts (Fmc) consisting of wavy, laminated, microbial mats, being composed mainly of hematite. On the other hand, a more dispersed and broader mineralization included as Ferruginous sandstones with iron oxides and oxyhydroxides (hematite and goethite) representing a limited cement phase on these sediments. The presence of microbial remains, ferruginous minerals, Microbially-induced sedimentary structures, microbial laminites and vertebrate tracks preserved due to the presence of biofilms suggest firstly a direct evidence of syn-depositional microbial activity in these sediments; and, secondly, that iron accumulation and ferruginous crusts development occurred immediately after deposition of the host, still soft sediments. Ferruginous crusts cap sedimentary cycles and they represent the gradual development of hard substrate conditions, and the development of a discontinuity surface at the top of the parasequence sets, related to very low sedimentary rates; the overlying sediments record subsequent flooding of underlying shallower environments; crusts are, consequently, interpreted as boundaries for these higher-order cycles in the Iberian Basin.

  5. Epitaxial hexagonal materials on IBAD-textured substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substratesmore » to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.« less

  6. Origin and significance of the 2011 El Hierro xeno-pumice

    NASA Astrophysics Data System (ADS)

    Zaczek-Pedroza, Kirsten; Troll, Valentin R.; Deegan, Frances M.; Meade, Fiona C.; Burchardt, Steffi; Carracedo, Juan C.; Klügel, Andreas; Harris, Chris; Wiesmaier, Sebastian; Berg, Sylvia E.; Barker, Abigail K.

    2014-05-01

    During the first week of the 2011/2012 submarine eruption off El Hierro (Canary Islands), peculiar light-coloured pumiceous rocks (xeno-pumice) were found floating on the sea. The appearance of these rocks led to a potentially inappropriate response from the authorities, because the rocks were viewed as likely indicators of high-silica magma and possible explosive eruptive behaviour. However, the eruption remained a relatively minor and dominantly effusive event and the origin and significance of these peculiar xeno-pumice rocks for volcanic monitoring remains unresolved. Three contrasting models have been put forward, describing them as: a) recycled hydrothermally altered felsic magmatic rocks (Meletlidis et al., 2012, Geophys. Res. Lett., 39:L17302), b) sediment-contaminated high-silica magma (Sigmarsson et al., 2013, Contrib. Mineral. Petrol., 165:601-622) or c) frothy xenoliths from pre-island sedimentary strata that were melted while immersed in magma (Troll et al., 2012, Solid Earth, 3:97-110). Here, we combine the three available datasets to assess the origin of El Hierro xeno-pumice in the light of texture, mineralogy, major and trace element composition, and oxygen isotope characteristics in order to discuss their significance. We note that: 1) Sedimentary relicts occur frequently in xeno-pumice samples with occasionally observed relict bedding. 2) Vesicle sizes are extremely variable, which documents multiple degassing events. The vesicles are biggest especially close to sedimentary relicts, likely the result of a complex mix of minerals and porewaters originally present. 3) The mineral assemblage of xeno-pumice includes quartz, smectite, illite, wollastonite, jasper and mica (XRD) and is akin to marine sedimentary rocks in the region (Hoernle, 1998, J. Petrol.,39:859-880; Robertson & Stillman, 1979, J. Geol. Soc., 136:47 -60; Aparicio et al., 2006, Geol. Mag. 143:181 -193). 4) CIPW norms calculated from xeno-pumice major element compositions show the samples to be Si-oversaturated, partly corundum-normative, but with not magmatic mineral components in the norm. 5) Trace element concentrations of xeno-pumice are unlike any magmatic rocks from El Hierro and La Palma, but similar to known sedimentary rocks from the region. 6) A distinct Eu anomaly, typical for continentally derived sediment, is present in xeno-pumice but absent in El Hierro and La Palma magmatic rocks. Lastly, 7) Oxygen isotope values range from 9.1 to 11.6 o (n=6), which are elevated with respect to magmatic rocks from the Canaries (5.2 to ~ 7 o), but are characteristic for sediment derived from a mixture of continental (S- and I-type) granite sources. The combined datasets allow for a more thorough discussion on the origin of El Hierro xeno-pumice and we conclude that xeno-pumice is compositionally akin to sedimentary rocks from the region, but strikingly dissimilar to magmatic rocks from El Hierro and La Palma. We suggest a dominantly sedimentary origin for xeno-pumice. Xeno-pumice is therefore not an indicator for explosive felsic magma within volcanic plumbing systems, but a reflection of magma-crust interaction during ascent and emplacement. The occurrence of similar frothy sedimentary xenoliths in recent and historical eruptions on Lanzarote, Gran Canaria, Tenerife and La Palma make a case for xeno-pumice being a common phenomenon in the region.

  7. Three-Dimensional Spin Texture in Hybrid Perovskites and Its Impact on Optical Transitions

    DOE PAGES

    Zhang, Xie; Shen, Jimmy -Xuan; Van de Walle, Chris G.

    2018-05-15

    Hybrid perovskites such as MAPbI 3 (MA = CH 3NH 3) exhibit a unique spin texture. The spin texture (as calculated within the Rashba model) has been suggested to be responsible for a suppression of radiative recombination due to a mismatch of spins at the band edges. Here we compute the spin texture from first principles and demonstrate that it does not suppress recombination. The exact spin texture is dominated by the inversion asymmetry of the local electrostatic potential, which is determined by the structural distortion induced by the MA molecule. In addition, the rotation of the MA molecule atmore » room temperature leads to a dynamic spin texture in MAPbI 3. Furthermore these insights call for a reconsideration of the scenario that radiative recombination is suppressed and provide an in-depth understanding of the origin of the spin texture in hybrid perovskites, which is crucial for designing spintronic devices.« less

  8. Three-Dimensional Spin Texture in Hybrid Perovskites and Its Impact on Optical Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xie; Shen, Jimmy -Xuan; Van de Walle, Chris G.

    Hybrid perovskites such as MAPbI 3 (MA = CH 3NH 3) exhibit a unique spin texture. The spin texture (as calculated within the Rashba model) has been suggested to be responsible for a suppression of radiative recombination due to a mismatch of spins at the band edges. Here we compute the spin texture from first principles and demonstrate that it does not suppress recombination. The exact spin texture is dominated by the inversion asymmetry of the local electrostatic potential, which is determined by the structural distortion induced by the MA molecule. In addition, the rotation of the MA molecule atmore » room temperature leads to a dynamic spin texture in MAPbI 3. Furthermore these insights call for a reconsideration of the scenario that radiative recombination is suppressed and provide an in-depth understanding of the origin of the spin texture in hybrid perovskites, which is crucial for designing spintronic devices.« less

  9. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaid, Md; Bhattacharjee, P.P., E-mail: pinakib@iith.ac.in

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. Themore » microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001)<110 > component. • Austenite shows recrystallization during annealing retaining the deformation texture. • The deformation of recrystallization of two phases is independent of one other.« less

  10. Facies architecture of a Triassic rift-related Silicic Volcano-Sedimentary succession in the Tethyan realm, Peonias subzone, Vardar (Axios) Zone, northern Greece; Regional implications

    NASA Astrophysics Data System (ADS)

    Asvesta, Argyro; Dimitriadis, Sarantis

    2010-06-01

    In northern Greece, along the western edge of the Paleozoic Vertiscos terrane (Serbomacedonian massif) and within the Peonias subzone - the eastern part of the Vardar (Axios) Zone - a Silicic Volcano-Sedimentary (SVS) succession of Permo(?)-Skythian to Mid Triassic age records the development of a faulted continental margin and the formation of rhyolitic volcanoes along a continental shelf fringed by neritic carbonate accumulations. It represents the early rifting extensional stages that eventually led to the opening of the main oceanic basin in the western part of the Vardar (Axios) Zone (the Almopias Oceanic Basin). Even though the SVS succession is deformed, altered, extensively silicified and metamorphosed in the low greenschist facies, primary textures, original contacts and facies relationships are recognized in some places allowing clues for the facies architecture and the depositional environment. Volcanic and sedimentary facies analysis has been carried out at Nea Santa and Kolchida rhyolitic volcanic centres. Pyroclastic facies, mostly composed of gas-supported lapilli tuffs and locally intercalated accretionary lapilli tuffs, built the early cones which were then overridden by rhyolitic aphyric and minor K-feldspar-phyric lava flows. The characteristics of facies, especially the presence of accretionary lapilli, imply subaerial to coastal emplacement at this early stage. The mature and final stages of volcanism are mostly represented by quartz-feldspar porphyry intrusions that probably occupied the vents. At Nea Santa area, the presence of resedimented hyaloclastite facies indicates subaqueous emplacement of rhyolitic lavas and/or lobes. Moreover, quartz-feldspar-phyric sills and a partly extrusive dome featuring peperites at their margins are inferred to have intruded unconsolidated, wet carbonate sediments of the overlying Triassic Neritic Carbonate Formation, in a shallow submarine environment. The dome had probably reached above wave-base as is indicated by the presence of reworked rhyolitic clasts in the younger mixed rhyolite-carbonate epiclastic sedimentary facies. This facies is interpreted as mass- and debris-flow of mixed provenance, deposited below wave-base. The facies architecture of the SVS succession records a change in volcanic activity from explosive to effusive and then to intrusive. The depositional environment changed from subaerial-coastal to shallow submarine as the silicic volcanism evolved and carbonate sedimentation was progressively taking over, probably compensating for the gradual subsidence of the corresponding basin. Silicic magmatism and carbonate sedimentation were contemporaneous and spatially related. The timing of the rifting, the continental crustal elements involved and the accompanying tectonic, magmatic and sedimentary processes are features of the spatially and temporally evolving western peri-Tethyan region.

  11. Accessing Martian Fluvial and Lacustrine Sediments by Landing in Holden Crater, Margaritifer Sinus

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Grant, J. A.

    2001-01-01

    Rover missions to the surface of Mars after MER 2003, are likely to be centered around focused geologic field mapping. One objective with high priority in selecting landing sites for these missions will be to characterize the nature, spatial distribution, internal structure, composition, and depositional history of exposed sedimentary layered deposits by visiting a number of distributed outcrops identified previously (and with a high degree of certainty) from orbit. These deposits may contain prebiotic material, even fossil organisms, but their primary value will be to enable an assessment of the planet's climate at the time they were emplaced. High resolution imaging from a mobile rover will enable the detailed study of these deposits over a wide area, their internal structure and mineralogy at distributed localities, and could resolve biologically-derived structures (such as stromatolite-like textures) if they are present. With the addition of a spectrometer, it should be possible to ascertain the presence of carbonates, sulfates, organics, water (liquid, frost, and bound water), as well as a variety of silicate minerals in the context of the collected imagery. Such a mission approach is directly relevant to future exploration of Mars, because it provides the geologic context comparable to what a field geologist visiting a site for the first time would acquire. Rover missions after MER will likely have much better targeting and hazard avoidance landing systems, enabling access to planimetrically-challenged sites of high scientific interest. These vehicles will also likely have greater mobility than MER, capable of driving greater distances in a shorter amount of time. Many scientists and mission planners have realized the need to design a rover whose mobility can be comparable to the dimensions of its 3-sigma landing error ellipse.

  12. Wavelet Analysis for RADARSAT Exploitation: Demonstration of Algorithms for Maritime Surveillance

    DTIC Science & Technology

    2007-02-01

    this study , we demonstrate wavelet analysis for exploitation of RADARSAT ocean imagery, including wind direction estimation, oceanic and atmospheric ...of image striations that can arise as a texture pattern caused by turbulent coherent structures in the marine atmospheric boundary layer. The image...associated change in the pattern texture (i.e., the nature of the turbulent atmospheric structures) across the front. Due to the large spatial scale of

  13. Automatic extraction of tree crowns from aerial imagery in urban environment

    NASA Astrophysics Data System (ADS)

    Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng

    2006-10-01

    Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.

  14. Geology, ore facies and sulfur isotopes geochemistry of the Nudeh Besshi-type volcanogenic massive sulfide deposit, southwest Sabzevar basin, Iran

    NASA Astrophysics Data System (ADS)

    Maghfouri, Sajjad; Rastad, Ebrahim; Mousivand, Fardin; Lin, Ye; Zaw, Khin

    2016-08-01

    The southwest Sabzevar basin is placed in the southwestern part of a crustal domain known as the Sabzevar zone, at the north of Central Iranian microcontinent. This basin hosts abundant mineral deposits; particularly of the Mn exhalative and Cu-Zn volcanogenic massive sulfide (VMS) types. The evolution of this basin is governed by the Neo-tethys oceanic crust subduction beneath the Central Iranian microcontinent and by the resulting continental arc (Sanandaj-Sirjan) and back-arc (Sabzevar-Naien). This evolution followed two major sequences: (I) Lower Late Cretaceous Volcano-Sedimentary Sequence (LLCVSS), which is indicated by fine-grained siliciclastic sediments, gray basic coarse-grained different pyroclastic rocks and bimodal volcanism. During this stage, tuff-hosted stratiform, exhalative Mn deposits (Nudeh, Benesbourd, Ferizy and Goft), oxide Cu deposits (Garab and Ferizy) and Cu-Zn VMS (Nudeh, Chun and Lala) deposits formed. (II) Upper Late Cretaceous Sedimentary Dominated Sequence (ULCSS), including pelagic limestone, marly tuff, silty limestone and marl with minor andesitic tuff rocks. The economically most important Mn (Zakeri and Cheshmeh-sefid) deposits of Sabzevar zone occur within the marly tuff of this sequence. The Nudeh Cu-Zn volcanogenic massive sulfide (VMS) deposit is situated in the LLCVSS. The host-rock of deposits consists of alkali olivine basalt flow and tuffaceous silty sandstone. Mineralization occurs as stratiform blanket-like and tabular orebodies. Based on ore body structure, mineralogy, and ore fabric, we recognize three different ore facies in the Nudeh deposit: (1) a stringer zone, consisting of a discordant mineralization of sulfides forming a stockwork of sulfide-bearing quartz veins cutting the footwall volcano-sedimentary rocks; (2) a massive ore, consisting of massive replacement pyrite, chalcopyrite, sphalerite and Friedrichite with magnetite; (3) bedded ore, with laminated to disseminated pyrite, and chalcopyrite. Chloritization, silicification, sericitization and epidotization are the main wall-rock alterations; alteration intensity increases towards the stringer zone. The δ34S composition of the sulfides ranges from -1.5‰ to +3.69‰ with a general increase of δ34S ratios of massive ore facies to stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones. Sulfur isotopes, along with sedimentological, textural, petrological, mineralogical, and geochemical evidences, suggest that this deposit should be classified as a Besshi-type VMS ore deposit.

  15. Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface

    NASA Astrophysics Data System (ADS)

    Zheng, Dan; Cai, Zhen-bing; Shen, Ming-xue; Li, Zheng-yang; Zhu, Min-hao

    2016-11-01

    Tribological properties of graphene nanosheets (GNS) as lubricating oil additives on textured surfaces were investigated using a UMT-2 tribotester. The lubricating fluids keeping a constant temperature of 100 °C were applied to a GCr15 steel ball and an RTCr2 alloy cast iron plate with various texture designs (original surface, dimple density of 22.1%, 19.6% and 44.2%). The oil with GNS adding showed good tribological properties (wear reduced 50%), especially on the textured surfaces (the reduction in wear was high at over 90%). A combined effect between GNS additives and laser surface texturing (LST) was revealed, which is not a simple superposition of the two factors mentioned. A mechanism is proposed to explain for these results -the graphene layers sheared at the sliding contact interfaces, and form a protective film, which is closely related with the GNS structures and surface texture patterns.

  16. Mechanisms of objectionable textural changes by microwave reheating of foods: a review.

    PubMed

    Mizrahi, Shimon

    2012-01-01

    Microwave reheating, compared to a conventional method, is notorious for lack of crust formation and severe toughening of flour and starch-based products. This review discusses how the typical thermal characteristics of microwave heating are involved in affecting the texture as well as the possible role of non-thermal effects. While low surface temperature is the well known mechanism why microwave heating is incapable of crust formation, the most severe toughening problems are caused by internal boiling. Beside moisture loss, the internally generated steam causes 2 main textural effects when it is vented out. The first is the replacing of non-condensable gases (air) in the product voids with a condensable one (steam). When the latter is condensed by cooling, a vacuum may be created in the voids causing their collapse and a formation of a more compact and tougher structure. The second textural effect involves amylose extraction from starch granules and its redistribution to eventually form a rich layer on the walls of the structural foam cells of the baked goods. Relatively fast crystallization of the amylose seems to be the main cause of toughening a short while after microwave heating. This mechanism is relevant mainly to products where starch is an important structural element. Structural disruptions by localize excessive steam pressure at hot-spots are also discussed in this review as well as methods of preventing or alleviating the most objectionable textural changes. The most effective ways of preventing these undesirable changes are by avoiding internal boiling and/or by manipulating the starch content and properties. © 2011 Institute of Food Technologists®

  17. Joint Interpretation of Magnetotelluric and Gravimetric Data from the South American Paraná Basin

    NASA Astrophysics Data System (ADS)

    Santos, E. B.; Santos, H. B.; Vitorello, I.; Pádua, M. B.

    2013-05-01

    The Paraná Basin is a large sedimentary basin in central-eastern South America that extends through Brazil, Paraguay, Uruguay and Argentina. Evolved completely over the South American continental crust, this Paleozoic basin is filled with sedimentary and volcanic rocks deposited from the Silurian to the Cretaceous, when a significant basaltic effusion covered almost the entire area of the basin. A series of superposed sedimentary and volcanic rock layers were laid down under the influence of different tectonic settings, probably originated from distant collisional dynamics of continental boards that led to the amalgamation of Gondwanaland. The current boundaries of the basin can be the result of issuing erosional or of tectonic origin, such as the building up of large arches and faults. To evaluate the deep structural architecture of the lithosphere under a sedimentary basin is a great challenge, requiring the integration of different geophysical and geological studies. In this paper, we present the resulting Paraná Basin lithospheric model, obtained from processing and inversion of broadband and long-period magnetotelluric soundings along an E-W profile across the central part of the basin, complemented by a qualitative joint interpretation of gravimetric data, in order to obtain a more precise geoelectric model of the deep structure of the region.

  18. Relations and interactions between twinning and grain boundaries in hexagonal close-packed structures

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher Duncan

    Improving the formability and crashworthiness of wrought magnesium alloys are the two biggest challenges in current magnesium technology. Magnesium is the best material candidate for enabling required improvements in fuel economy of combustion engines and increases in ranges of electric vehicles. In hexagonal closed-packed (HCP) structures, effects of grain size/morphology and crystallographic texture are particularly important. Prior research has established a general understanding of the dependences of strength and strain anisotropy on grain morphology and texture. Unfortunately, deformation, recrystallization, and grain growth strategies that control the microstructures and textures of cubic metals and alloys have not generally worked for HCPs. For example, in Magnesium, the deformation texture induced by primary forming operations (rolling, extrusion, etc.) is not randomized by recrystallization and may strengthen during grain growth. A strong texture reduces formability during secondary forming (stamping, bending, hemming etc.) Thus, the inability to randomize texture has impeded the implementation of magnesium alloys in engineering applications. When rare earth solutes are added to magnesium alloys, distinct new textures are derived. However, `rare earth texture' derivation remains insufficiently explained. Currently, it is hypothesized that unknown mechanisms of alloy processing are at work, arising from the effects of grain boundary intrinsic defect structures on microstructural evolution. This dissertation is a comprehensive attempt to identify formal methodologies of analyzing the behavior of grain boundaries in magnesium. We focus particularly on twin boundaries and asymmetric tilt grain boundaries using molecular dynamics. We begin by exploring twin nucleation in magnesium single crystals, elucidating effects of heterogeneities on twin nucleation and their relationships with concurrent slip. These efforts highlighted the necessity of imperfections to nucleate {10-12} twins. Subsequent studies encountered the importance of deformation faceting on the high mobility of {10-12} and stabilization of observed twin mode boundaries. Implementation of interfacial defect theory was necessary to decipher the complex mechanisms observed which govern the development of defects in grain boundaries, disconnection pile-up, facet nucleation, interfacial disclination nucleation, disconnection movements, disconnection transformation across interfacial disclinations, cross-faceting, and byproducts of interactions between lattice dislocations and grain boundaries.

  19. Texture and anisotropy in ferroelectric lead metaniobate

    NASA Astrophysics Data System (ADS)

    Iverson, Benjamin John

    Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.

  20. Magnetic resonance imaging analyses of varved marine sedimentary records of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Briskin, Madeleine; Robins, Jon; Riedel, William R.; Booker, Ron

    1986-08-01

    Nuclear Magnetic Resonance Imaging used for the first time to analyze marine sedimentary records of the Gulf of California is a remarkable improvement over the more conventional X-ray technique in the identification of organic rich layers. Analytical results indicate that NMRI differentiates clearly between organic rich (light) and organic poor (dark) deposits. It also provides a fine resolution of sedimentary structures, laminae and stratigraphic subtleties. It may be made to yield a three-dimensional stratigraphy; the procedure is nondestructive. The organic vs. inorganic resolution provided by NMRI technology complemented by X-ray when needed should facilitate future studies of paleoceanographic, paleoclimatic and biogeochemical cycles recorded in the vast deposits of marine clays.

  1. Salt structure and sediment thickness, Texas-Louisiana continental slope, northwestern Gulf of Mexico

    USGS Publications Warehouse

    Martin, Raymond G.

    1973-01-01

    The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.

  2. Arctic Ocean Sedimentary Cover Structure, Based on 2D MCS Seismic Data.

    NASA Astrophysics Data System (ADS)

    Kireev, A.; Kaminsky, V.; Poselov, V.; Poselova, L.; Kaminsky, D.

    2016-12-01

    In 2016 the Russian Federation has submitted its partial revised Submission for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean. In order to prepare the Submission, in 2005 - 2014 the Russian organizations carried out a wide range of geological and geophysical studies, so that today over 23000 km of MCS lines and 4000 km of deep seismic sounding are accomplished. For correct time/depth conversion of seismic sections obtained with a short streamer in difficult ice conditions wide-angle reflection/refraction seismic sonobuoy soundings were used. All of these seismic data were used to refine the stratigraphy model, to identify sedimentary complexes and to estimate the total thickness of the sedimentary cover. Seismic stratigraphy model was successively determined for the Cenozoic and pre-Cenozoic parts of the sedimentary section and was based on correlation of the Russian MCS data and seismic data documented by boreholes. Cenozoic part of the sedimentary cover is based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin. Pre-Cenozoic part of the sedimentary cover is based on tracing major unconformities from boreholes on the Chukchi shelf (Crackerjack, Klondike, Popcorn) to the North-Chuckchi Trough and further to the Mendeleev Rise as well as to the Vilkitsky Trough and the adjacent Podvodnikov Basin. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to generalize all seismic surveys (top of acoustic basement correlation data) and bathymetry data in the sedimentary cover thickness map of the Arctic Ocean and adjacent Eurasian shelf, on which the structural prolongation of the shallow shelf into deep-water is obviously seen.

  3. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific

    2015-04-01

    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and extensional fractures. Faults observed at sites 352-U1440 and 352-U1441 show mainly strike-slip. The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  4. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  5. A Martian analog in Kansas: Comparing Martian strata with Permian acid saline lake deposits

    NASA Astrophysics Data System (ADS)

    Benison, Kathleen C.

    2006-05-01

    An important result of the Mars Exploration Rover's (MER) mission has been the images of sedimentary structures and diagenetic features in the Burns Formation at Meridiani Planum. Bedding, cross-bedding, ripple marks, mud cracks, displacive evaporite crystal molds, and hematite concretions are contained in these Martian strata. Together, these features are evidence of past saline groundwater and ephemeral shallow surface waters on Mars. Geochemical analyses of these Martian outcrops have established the presence of sulfates, iron oxides, and jarosite, which strongly suggests that these waters were also acidic. The same assemblage of sedimentary structures and diagenetic features is found in the salt-bearing terrestrial red sandstones and shales of the middle Permian (ca. 270 Ma) Nippewalla Group of Kansas, which were deposited in and around acid saline ephemeral lakes. These striking sedimentological and mineralogical similarities make these Permian red beds and evaporites the best-known terrestrial analog for the Martian sedimentary rocks at Meridiani Planum.

  6. Image Texture Predicts Avian Density and Species Richness

    PubMed Central

    Wood, Eric M.; Pidgeon, Anna M.; Radeloff, Volker C.; Keuler, Nicholas S.

    2013-01-01

    For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R2 = 0.52, p-value <0.001), and avian species richness among habitats (R2 = 0.54, p-value <0.001). Density of field sparrow (Spizella pusilla), a savanna associated species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but was best predicted by air photo image texture (R2 = 0.13, p-value = 0.002). Density of ovenbird (Seiurus aurocapillus), a woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R2 = 0.54, p-value <0.001). Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a valuable tool for mapping habitat quality and characterizing biodiversity across broad areas. PMID:23675463

  7. Hierarchical macro-mesoporous structures in the system TiO{sub 2}-Al{sub 2}O{sub 3}, obtained by hydrothermal synthesis using Tween-20 as a directing agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Benjume, M.L.; Espitia-Cabrera, M.I.; Contreras-Garcia, M.E., E-mail: eucontre@zeus.umich.mx

    2009-12-15

    Macro-mesoporous powders of titania, alumina, and mixed titania-20%alumina systems were obtained by hydrothermal synthesis employing surfactant Tween-20 as structural directing agent in order to promote the textural properties of titania. The effect of the alumina in the titania phase and on textural properties was analyzed. The obtained powders presented a macroporous channel structure that was characterized by X-ray diffractometry, scanning and transmission electron microscopy, N{sub 2} adsorption-desorption analysis, pore size distribution, Fourier transform infrared spectrometry, and thermogravimetric analysis. It was found that alumina content retarded the anatase phase crystallization and increased the Brunauer-Emmet-Teller surface area from 136 to 210 m{supmore » 2}/g. The powders calcined at 400 deg. C are thermally stable and possess an interconnected macro-mesoporous hierarchical structure; the results indicate that this synthesis can be employed to prepare mixed titania-alumina with good textural properties.« less

  8. Bone structure studies with holographic interferometric nondestructive testing and x-ray methods

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo; Nygren, Kaarlo; Rouvinen, Juha; Petrova, Valentina V.

    1994-02-01

    Changes in the biomechanics and in the molecular texture and structure of isolated radioulnar bones of subadult European moose (Alces alces L.) collected in various environmentally polluted areas of Finland were investigated by means of holographic interferometric non- destructive testing (HNDT), radiological, morphometrical, and x-ray diffraction methods. By means of small caudal-cranial bending forces, the surface movements of the lower end (distal epiphysis) of the radial bone were recorded with the HNDT method. To study bone molecular texture and structure changes under external compressing forces, the samples for x-ray diffraction analysis were taken from the upper end of the ulnar bone (olecranon tip). Results showed that the bones obtained from the Harjavalta area and those of North Karelian moose showing malnutrition and healing femoral fractures produced different HNDT pictures compared with the four normally developed North Karelian moose. In the x-ray diffraction, the Harjavalta samples showed changes in molecular texture and structure compared with the samples from the apparently normal North Karelian animals.

  9. SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions

    NASA Astrophysics Data System (ADS)

    Iyer, Karthik; Svensen, Henrik; Schmid, Daniel W.

    2018-01-01

    Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene-Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion are of significant interest to the energy industry. In this paper, we present a user-friendly 1-D finite element method (FEM)-based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin off the shore of Norway. An additional example includes emplacement of a dyke in a cooling pluton which forgoes sedimentation within a basin. Input data for the model are the present-day well log or sedimentary column with an Excel input file and include rock parameters such as thermal conductivity, total organic carbon (TOC) content, porosity and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary column through time and the changes that take place following sill emplacement such as TOC changes, thermal maturity and the amount of organic and carbonate-derived CO2. The TOC and vitrinite results can be readily benchmarked within the tool to present-day values measured within the sedimentary column. This allows the user to determine the conditions required to obtain results that match observables and leads to a better understanding of metamorphic processes in sedimentary basins.

  10. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Amjad; Chen, Yan; Lugovy, Mykola

    2014-01-01

    The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresismore » loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.« less

  11. In situ x-ray diffraction observation of multiple texture turnovers in sputtered Cr films

    NASA Astrophysics Data System (ADS)

    Zhao, Z. B.; Rek, Z. U.; Yalisove, S. M.; Bilello, J. C.

    2004-11-01

    A series of Cr films were deposited onto native oxides of (100) Si substrates via a confocal deposition geometry in a magnetron sputter chamber. The film growth chamber was incorporated with an in situ x-ray diffraction system, which allowed the collection of x-ray diffraction data on the growing film in a quasi real time fashion without interruption of film deposition. The in situ x-ray diffraction, coupled with other ex situ characterization techniques, was used to study structural evolutions of the Cr films deposited at various Ar pressures. It was observed that the evolution of the crystallographic structures of Cr films was very sensitive to both deposition conditions and film thickness. With the confocal deposition geometry, the Cr films developed various types of out-of-plane textures. In addition to the (110) and (100) types of textures commonly reported for vapor deposited Cr films, the (111) and (112) types of textures were also observed. The film deposited at low Ar pressure (2 mTorr) developed strong (111) type texture. With the increase in either Ar pressure or film thickness, the Cr films tended to develop (112) and (100) types of texture. At high Ar pressures (>10 mTorr), several changes in texture type with increasing film thickness were observed. The sequence can be described as (110)-->(112)-->(100). The strong tendency for these films to ultimately assume the (100) type of texture could be related to significant rises in substrate temperatures during the late stages of film growth with high Ar pressures. The observation of the multiple texture type changes suggests that the evolution of Cr films is controlled by complex growth kinetics. The competitive growth of grains with different orientations can be altered not only by controllable deposition parameters such as Ar pressure, but also by the variations of in situ film attributes (e.g., residual stress and substrate temperature) occurring concurrently with film growth.

  12. Texture design for microwave dielectric (Ca0.7Nd0.3)0.87TiO3 ceramics through reactive-templated grain growth.

    PubMed

    Tani, Toshihiko; Takeuchi, Tsuguto

    2015-06-01

    Plate-like Ca 3 Ti 2 O 7 (CT) and Nd 2 Ti 2 O 7 (NT) particles were synthesized in molten salts and used as reactive templates for the preparation of highly textured (Ca 0.7 Nd 0.3 ) 0.87 TiO 3 bulk ceramics (CNT) with preferred pseudocubic 〈100〉 and 〈110〉 orientations, respectively. During flux growth CT and NT particles developed facets parallel to the pseudocubic {100} and {110} planes, respectively, in a perovskite unit cell, since those planes correspond to the interlayers of the layered perovskite-type crystal structures. Complementary reactants for the CNT stoichiometry were wet-mixed with the reactive templates and the slurries were tape-cast. Then stacked tapes were heat-treated for dense single-phase CNT ceramics with a distorted and A-site deficient regular perovskite-type structure. The CNT ceramics prepared with CT and NT reactive templates exhibited strong pseudocubic 100- and 110-family x-ray diffraction peaks, respectively, with other peaks drastically suppressed when non-perovskite sources were used as complementary reactants. The textured ceramics possess unique microstructures; as either parallel or obliquely stacked block structures with a pseudocubic {100} plane faceted. The pseudocubic {100}-and {110}-textured CNT ceramics exhibited ∼10 and ∼20% higher products of the dielectric quality factor and frequency, Q · f , respectively, than conventional ceramic sintered at the same temperature. When Q · f is compared based on the same grain size, the {100}-textured CNT exhibited 27% higher values than non-textured while relative permittivity and temperature coefficient of resonant frequency were of similar values. Simple geometrical relationships between electric field and penetrated pseudocubic { hk 0}-type grain boundaries must lead to the reduced scattering and dielectric loss.

  13. MODTOHAFSD — A GUI based JAVA code for gravity analysis of strike limited sedimentary basins by means of growing bodies with exponential density contrast-depth variation: A space domain approach

    NASA Astrophysics Data System (ADS)

    Chakravarthi, V.; Sastry, S. Rajeswara; Ramamma, B.

    2013-07-01

    Based on the principles of modeling and inversion, two interpretation methods are developed in the space domain along with a GUI based JAVA code, MODTOHAFSD, to analyze the gravity anomalies of strike limited sedimentary basins using a prescribed exponential density contrast-depth function. A stack of vertical prisms all having equal widths, but each one possesses its own limited strike length and thickness, describes the structure of a sedimentary basin above the basement complex. The thicknesses of prisms represent the depths to the basement and are the unknown parameters to be estimated from the observed gravity anomalies. Forward modeling is realized in the space domain using a combination of analytical and numerical approaches. The algorithm estimates the initial depths of a sedimentary basin and improves them, iteratively, based on the differences between the observed and modeled gravity anomalies within the specified convergence criteria. The present code, works on Model-View-Controller (MVC) pattern, reads the Bouguer gravity anomalies, constructs/modifies regional gravity background in an interactive approach, estimates residual gravity anomalies and performs automatic modeling or inversion based on user specification for basement topography. Besides generating output in both ASCII and graphical forms, the code displays (i) the changes in the depth structure, (ii) nature of fit between the observed and modeled gravity anomalies, (iii) changes in misfit, and (iv) variation of density contrast with iteration in animated forms. The code is used to analyze both synthetic and real field gravity anomalies. The proposed technique yielded information that is consistent with the assumed parameters in case of synthetic structure and with available drilling depths in case of field example. The advantage of the code is that it can be used to analyze the gravity anomalies of sedimentary basins even when the profile along which the interpretation is intended fails to bisect the strike length.

  14. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    PubMed

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  15. Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain.

    PubMed

    Latha, Manohar; Kavitha, Ganesan

    2018-02-03

    Schizophrenia (SZ) is a psychiatric disorder that especially affects individuals during their adolescence. There is a need to study the subanatomical regions of SZ brain on magnetic resonance images (MRI) based on morphometry. In this work, an attempt was made to analyze alterations in structure and texture patterns in images of the SZ brain using the level-set method and Laws texture features. T1-weighted MRI of the brain from Center of Biomedical Research Excellence (COBRE) database were considered for analysis. Segmentation was carried out using the level-set method. Geometrical and Laws texture features were extracted from the segmented brain stem, corpus callosum, cerebellum, and ventricle regions to analyze pattern changes in SZ. The level-set method segmented multiple brain regions, with higher similarity and correlation values compared with an optimized method. The geometric features obtained from regions of the corpus callosum and ventricle showed significant variation (p < 0.00001) between normal and SZ brain. Laws texture feature identified a heterogeneous appearance in the brain stem, corpus callosum and ventricular regions, and features from the brain stem were correlated with Positive and Negative Syndrome Scale (PANSS) score (p < 0.005). A framework of geometric and Laws texture features obtained from brain subregions can be used as a supplement for diagnosis of psychiatric disorders.

  16. High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics.

    PubMed

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio

    2007-12-01

    Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.

  17. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    NASA Astrophysics Data System (ADS)

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-01

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  18. Retinal light trapping in textured photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kravets, V. G.; Grigorenko, A. N.

    2010-10-01

    We suggest a new structure for light trapping in solar cells which is loosely based on retina of human eye. In this design, the incident light is scattered by noble metal nanoparticles acting as amacrine retinal cells and then is guided and concentrated by conelike structures. We show that the proposed textured structure should lead to a significant enhancement of optical path of trapped light resulting in a higher degree of light conversion into electric current. The proposed design should work efficiently in direct sunlight and in cloudy weather.

  19. Innovative Ingredients and Emerging Technologies for Controlling Ice Recrystallization, Texture, and Structure Stability in Frozen Dairy Desserts: A Review.

    PubMed

    Soukoulis, Christos; Fisk, Ian

    2016-11-17

    Over the past decade, ice cream manufacturers have developed a strong understanding of the functionality of key ingredients and processing, developing effective explanations for the link between structure forming agents, stability mechanisms, and perceived quality. Increasing demand for products perceived as healthier/more natural with minimal processing has identified a number of new tools to improve quality and storage stability of frozen dairy desserts. Ingredients such as dietary fiber, polysaccharides, prebiotics, alternate sweeteners, fat sources rich in unsaturated fatty acids and ice strucsturing proteins (ISP) have been successfully applied as cryoprotective, texturizing, and structuring agents. Emerging minimal processing technologies including hydrostatic pressure processing, ultrasonic or high pressure assisted freezing, low temperature extrusion and enzymatically induced biopolymers crosslinking have been evaluated for their ability to improve colloidal stability, texture and sensory quality. It is therefore timely for a comprehensive review.

  20. Abdominal Tumor Characterization and Recognition Using Superior-Order Cooccurrence Matrices, Based on Ultrasound Images

    PubMed Central

    Mitrea, Delia; Mitrea, Paulina; Nedevschi, Sergiu; Badea, Radu; Lupsor, Monica; Socaciu, Mihai; Golea, Adela; Hagiu, Claudia; Ciobanu, Lidia

    2012-01-01

    The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue. PMID:22312411

  1. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    PubMed

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.

  2. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    PubMed

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.

  3. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China

    PubMed Central

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a “small plain, big front” character. PMID:26075611

  4. Seismic stratigraphy, tectonics and depositional history in the Halk el Menzel region, NE Tunisia

    NASA Astrophysics Data System (ADS)

    Sebei, Kawthar; Inoubli, Mohamed Hédi; Boussiga, Haïfa; Tlig, Said; Alouani, Rabah; Boujamaoui, Mustapha

    2007-01-01

    In the Halk el Menzel area, the proximal- to pelagic platform transition and related tectonic events during the Upper Cretaceous-Lower Miocene have not been taken into adequate consideration. The integrated interpretation of outcrop and subsurface data help define a seismic stratigraphic model and clarify the geodynamic evolution of the Halk el Menzel block. The sedimentary column comprises marls and limestones of the Campanian to Upper Eocene, overlain by Oligocene to Lower Miocene aged siliciclastics and carbonates. Well to well correlations show sedimentary sequences vary considerably in lithofacies and thicknesses over short distances with remarkable gaps. The comparison of sedimentary sequences cut by borehole and seismic stratigraphic modelling as well help define ten third order depositional sequences (S1-S10). Sequences S1 through S6 (Campanian-Paleocene) are mainly characterized by oblique to sigmoid configurations with prograding sedimentary structures, whereas, sequences S7-S10 (Ypresian to Middle Miocene) are organized in shallow water deposits with marked clinoform ramp geometry. Sedimentary discontinuities developed at sequence boundaries are thought to indicate widespread fall in relative sea level. Angular unconformities record a transpressive tectonic regime that operated from the Campanian to Upper Eocene. The geometry of sequences with reduced thicknesses, differential dipping of internal seismic reflections and associated normal faulting located westerly in the area, draw attention to a depositional sedimentary system developed on a gentle slope evolving from a tectonically driven steepening towards the Northwest. The seismic profiles help delimit normal faulting control environments of deposition. In contrast, reef build-ups in the Eastern parts occupy paleohighs NE-SW in strike with bordering Upper Maastrichtian-Ypresian seismic facies onlapping Upper Cretaceous counterparts. During the Middle-Upper Eocene, transpressive stress caused reactivation of faults from normal to reverse play. This has culminated in propagation folds located to the west; whereas, the eastern part of the block has suffered progressive subsidence. Transgressive carbonate depositional sequences have predominated during the Middle Miocene and have sealed pre-existing tectonic structures.

  5. In-situ Micro-structural Studies of Gas Hydrate Formation in Sedimentary Matrices

    NASA Astrophysics Data System (ADS)

    Kuhs, Werner F.; Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Schwarz, Jens-Oliver; Wolf, Martin; Enzmann, Frieder; Kersten, Michael; Haberthür, David

    2015-04-01

    The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in-situ with sub-micron resolution. Here, we report on synchrotron-based micro-tomographic studies by which the nucleation and growth processes of gas hydrate were observed in different sedimentary matrices (natural quartz, glass beds with different surface properties, with and without admixtures of kaolinite and montmorillonite) at varying water saturation. The nucleation sites can be easily identified and the growth pattern is clearly established. In under-saturated sediments the nucleation starts at the water-gas interface and proceeds from there to form predominantly isometric single crystals of 10-20μm size. Using a newly developed synchrotron-based method we have determined the crystallite size distributions (CSD) of the gas hydrate in the sedimentary matrix confirming in a quantitative and statistically relevant manner the impressions from the tomographic reconstructions. It is noteworthy that the CSDs from synthetic hydrates are distinctly smaller than those of natural gas hydrates [1], which suggest that coarsening processes take place in the sedimentary matrix after the initial hydrate formation. Understanding the processes of formation and coarsening may eventually permit the determination of the age of gas hydrates in sedimentary matrices [2], which are largely unknown at present. Furthermore, the full micro-structural picture and its evolution will enable quantitative digital rock physics modeling to reveal poroelastic properties and in this way to support the exploration and exploitation of gas hydrate resources in the future. [1] Klapp S.A., Hemes S., Klein H., Bohrmann G., McDonald I., Kuhs W.F. Grain size measurements of natural gas hydrates. Marine Geology 2010; 274(1-4):85-94. [2] Klapp S.A., Klein H, Kuhs W.F. First determination of gas hydrate crystallite size distribution using high-energy synchrotron radiation. Geophys.Res.Letters, 2007 ; 34 : L13608, DOI:10.1029/2006GL029134

  6. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    PubMed

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  7. Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR

    NASA Astrophysics Data System (ADS)

    Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin

    2016-06-01

    Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  8. Can cathodoluminescence of feldspar be used as provenance indicator?

    NASA Astrophysics Data System (ADS)

    Scholonek, Christiane; Augustsson, Carita

    2016-05-01

    We have studied feldspar from crystalline rocks for its textural and spectral cathodoluminescence (CL) characteristics with the aim to reveal their provenance potential. We analyzed ca. 60 rock samples of plutonic, volcanic, metamorphic, and pegmatitic origin from different continents and of 16 Ma to 2 Ga age for their feldspar CL textures and ca. 1200 feldspar crystals from these rocks for their CL color spectra. Among the analyzed rocks, igneous feldspar is most commonly zoned, whereby oscillatory zoning can be confirmed to be typical for volcanic plagioclase. The volcanic plagioclase also less commonly contains twin lamellae that are visible in CL light than crystals from other rock types. Alkali feldspar, particularly from igneous and pegmatitic rocks, was noted to be most affected by alteration features, visible as dark spots, lines and irregular areas. The size of all textural features of up to ca. 150 μm, in combination with possible alteration in both the source area and the sedimentary system, makes the CL textures of feldspar possible to use for qualitative provenance research only. We observed alkali feldspar mostly to luminesce in a bluish color and sometimes in red, and plagioclase in green to yellow. The corresponding CL spectra are dominated by three apparent intensity peaks at 440-520 nm (mainly blue), 540-620 nm (mainly green) and 680-740 nm (red to infrared). A dominance of the peak in the green wavelength interval over the blue one for plagioclase makes CL particularly useful for the differentiation of plagioclase from alkali feldspar. An apparent peak position in red to infrared at < 710 nm for plagioclase mainly is present in mafic rocks. Present-day coastal sand from Peru containing feldspar with the red to infrared peak position mainly exceeding 725 nm for northern Peruvian sand and a larger variety for sand from southern Peru illustrates a discriminative effect of different source areas. We conclude that the provenance application particularly can reveal first-cycle input from mafic rocks and source variations for detritus from arid areas that has been affected by little feldspar alteration.

  9. Core evidence of paleoseismic events in Paleogene deposits of the Shulu Sag in the Bohai Bay Basin, east China, and their petroleum geologic significance

    NASA Astrophysics Data System (ADS)

    Zheng, Lijing; Jiang, Zaixing; Liu, Hui; Kong, Xiangxin; Li, Haipeng; Jiang, Xiaolong

    2015-10-01

    The Shulu Sag, located in the southwestern corner of the Jizhong Depression, Bohai Bay Basin of east China, is a NE-SW trending, elongate Cenozoic half-graben basin. The lowermost part of the third member of the Shahejie Formation in this basin is characterized by continental rudstone and calcilutite to calcisiltite facies. Based on core observation and regional geologic analysis, seismites are recognized in these lacustrine deposits, which include soft-sediment deformation structures (sedimentary dikes, hydraulic shattering, diapir structures, convolute lamination, load-flame structures, ball-and-pillow structures, loop bedding, and subsidence structures), synsedimentary faults, and seismoturbidites. In addition, mixed-source rudstones, consisting of the Paleozoic carbonate clasts and in situ calcilutite clasts in the lowermost submember of Shahejie 3, appear in the seismites, suggesting an earthquake origin. A complete representative vertical sequence in the lowermost part of the third member found in well ST1H located in the central part of the Shulu Sag shows, from the base to the top: underlying undeformed layers, synsedimentary faults, liquefied carbonate rocks, allogenetic seismoturbidites, and overlying undeformed layers. Seismites are widely distributed around this well and there are multiple sets of stacked seismites separated by undeformed sediment. The nearby NW-trending Taijiazhuang fault whose fault growth index is from 1.1 to 1.8 and the NNE-trending Xinhe fault with a fault growth index of 1.3-1.9 may be the source of the instability to create the seismites. These deformed sedimentary layers are favorable for the accumulation of oil and gas; for example, sedimentary dikes can cut through many layers and serve as conduits for fluid migration. Sedimentary faults and fractures induced by earthquakes can act as oil and gas migration channels or store petroleum products as well. Seismoturbidites and mixed-source rudstones are excellent reservoirs due to their abundant primary or dissolved pores.

  10. The Tin Bider Impact Structure, Algeria: New Map with Field Inputs on Structural Aspect

    NASA Astrophysics Data System (ADS)

    Kassab, F.; Belhai, D.

    2017-07-01

    The Tin Bider impact structure is a complex type composed by sedimentary target rocks. We realized a geological map including new inputs on impact characters of a recent field investigation where we identify shatter cone and folds.

  11. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  12. Velocity Models of the Sedimentary Cover and Acoustic Basement, Central Arctic

    NASA Astrophysics Data System (ADS)

    Bezumov, D. V.; Butsenko, V.

    2017-12-01

    As the part of the Russian Federation Application on the Extension of the outer limit of the continental shelf in the Arctic Ocean to the Commission for the limits of the continental shelf the regional 2D seismic reflection and sonobuoy data was obtained in 2011, 2012 and 2014 years. Structure and thickness of the sedimentary cover and acoustic basement of the Central Arctic ocean can be refined due to this data. "VNIIOkeangeologia" created a methodology for matching 2D velocity model of the sedimentary cover based on vertical velocity spectrum calculated from wide-angle reflection sonobuoy data and the results of ray tracing of reflected and refracted waves. Matched 2D velocity models of the sedimentary cover in the Russian part of the Arctic Ocean were computed along several seismic profiles (see Figure). Figure comments: a) vertical velocity spectrum calculated from wide-angle reflection sonobuoy data. RMS velocity curve was picked in accordance with interpreted MCS section. Interval velocities within sedimentary units are shown. Interval velocities from Seiswide model are shown in brackets.b) interpreted sonobuoy record with overlapping of time-distance curves calculated by ray-tracing modelling.c) final depth velocity model specified by means of Seiswide software.

  13. Structural and Sequence Stratigraphic Analysis of the Onshore Nile Delta, Egypt.

    NASA Astrophysics Data System (ADS)

    Barakat, Moataz; Dominik, Wilhelm

    2010-05-01

    The Nile Delta is considered the earliest known delta in the world. It was already described by Herodotus in the 5th Century AC. Nowadays; the Nile Delta is an emerging giant gas province in the Middle East with proven gas reserves which have more than doubled in size in the last years. The Nile Delta basin contains a thick sedimentary sequence inferred to extend from Jurassic to recent time. Structural styles and depositional environments varied during this period. Facies architecture and sequence stratigraphy of the Nile Delta are resolved using seismic stratigraphy based on (2D seismic lines) including synthetic seismograms and tying in well log data. Synthetic seismograms were constructed using sonic and density logs. The combination of structural interpretation and sequence stratigraphy of the development of the basin was resolved. Seven chrono-stratigraphic boundaries have been identified and correlated on seismic and well log data. Several unconformity boundaries also identified on seismic lines range from angular to disconformity type. Furthermore, time structure maps, velocity maps, depth structure maps as well as Isopach maps were constructed using seismic lines and log data. Several structural features were identified: normal faults, growth faults, listric faults, secondary antithetic faults and large rotated fault blocks of manly Miocene age. In some cases minor rollover structures could be identified. Sedimentary features such as paleo-channels were distinctively recognized. Typical Sequence stratigraphic features such as incised valley, clinoforms, topsets, offlaps and onlaps are identified and traced on the seismic lines allowing a good insight into sequence stratigraphic history of the Nile Delta most especially in the Miocene to Pliocene clastic sedimentary succession.

  14. Crystal-to-glass-transition induced elastic anomaly of cerium-iron multilayer films and texture-related mechanical properties after hydrogenation

    NASA Astrophysics Data System (ADS)

    Hassdorf, R.; Arend, M.; Felsch, W.

    1995-04-01

    The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.

  15. Structure and electrical properties of <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Ye, S. K.; Fuh, J. Y. H.; Lu, L.

    2012-06-01

    <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) lead-free piezoelectric ceramics were prepared by templated-grain growth method using BaTiO3 as template. The degree of orientation and the microstructure of the ceramics with different amount of template were investigated. The electrical properties of the textured-ceramics in the optimized condition were dramatically enhanced compared with randomly-oriented BCTZ ceramics. The textured BCTZ ceramics showed high piezoelectric constants d33 = 470 pC/N and d31 = -170 pC/N, and high electromechanical coupling factors kp = 44% and k31 = 22%. In addition, the Curie point of the textured ceramics revealed an increase with the template content.

  16. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  17. Earth observations during STS-58

    NASA Image and Video Library

    1993-10-22

    STS058-88-017 (18 Oct-1 Nov 1993) --- The eye-catching "bullseye" of the Richat Structure adds interest to the barren Gres de Chinguetti Plateau in central Mauretania, northwest Africa. It represents domally uplifted, layered (sedimentary) rocks that have been eroded by water and wind into the present shape. Desert sands have invaded the feature from the south. The origin of the structure is unknown. It is not an impact structure, because field work showed that strata are undisturbed and flat-lying in the middle of the feature, and no shock-altered rock could be found. There is no evidence for a salt dome or shale diapir, nor is there any geophysical evidence for an underlying dome of dense igneous rock having about the same density as the sedimentary layers.

  18. Géodynamique et évolution thermique de la matière organique: exemple du bassin de Qasbat-Tadla, Maroc centralBasin geodynamics and thermal evolution of organic material: example from the Qasbat-Tadla Basin, central Morocco

    NASA Astrophysics Data System (ADS)

    Er-Raïoui, H.; Bouabdelli, M.; Bélayouni, H.; Chellai, H.

    2001-05-01

    Seismic data analysis of the Qasbat-Tadla Basin allows the deciphering of the main tectonic and sedimentary events that characterised the Hercynian orogen and its role in the basin's structural development. The global tectono-sedimentary framework involves structural evolution of an orogenic foreland basin and was the source of rising geotherms in an epizonal metamorphic environment. The complementary effects of these parameters has led to different source rock maturity levels, ranging from oil producing to graphite domains. Different maturity levels result from three distinct structural domains within the basin, each of which exhibit characteristic geodynamic features (tectonic contraints, rate of subsidence, etc.).

  19. Structural characteristics of fulvic acids from Continental Shelf sediments

    USGS Publications Warehouse

    Hatcher, P.G.; Breger, I.A.; Mattingly, M.A.

    1980-01-01

    Fulvic acids are those components of soil organic matter that remain soluble after a dilute alkaline extract of the soil is acidified to pH 2 (refs 1, 2). This extraction procedure has been applied to marine sediments, and the organic compounds so recovered have been called marine sedimentary fulvic acids. These fulvic acids are thought to form more complex humic substances in marine sediments by condensation reactions3. However, the chemical structural compositions of marine fulvic acids have not been defined sufficiently to allow this precursor relationship to be made. Here NMR spectroscopy is used to identify more clearly the chemical structural components of some marine sedimentary fulvic acids, thus enabling a more useful examination of their relationship to more complex humic substances. ?? 1980 Nature Publishing Group.

  20. Two stages of deformation and fluid migration in the central Brooks Range fold-and-thrust belt

    USGS Publications Warehouse

    Moore, Thomas E.; Potter, Christopher J.; O'Sullivan, Paul B.; Shelton, Kevin L.; Underwood, Michael B.

    2004-01-01

    We conclude that hydrocarbon generation from Triassic and Jurassic source strata and migration into stratigraphic traps occurred primarily by sedimentary burial principally at 100-90 Ma, between the times of the two major episodes of deformation. Subsequent sedimentary burial caused deep stratigraphic traps to become overmature, cracking oil to gas, and initiated some new hydrocarbon generation progressively higher in the section. Structural disruption of the traps in the early Tertiary released sequestered hydrocarbons. The hydrocarbons remigrated into newly formed structural traps, which formed at higher structural levels or were lost to the surface. Because of the generally high maturation of the Colville basin at the time of the deformation and remigration, most of the hydrocarbons available to fill traps were gas.

  1. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response.

    PubMed

    Raimbault, Ophélie; Benayoun, Stephane; Anselme, Karine; Mauclair, Cyril; Bourgade, Tatiana; Kietzig, Anne-Marie; Girard-Lauriault, Pierre-Luc; Valette, Stephane; Donnet, Christophe

    2016-12-01

    To study the biological activity effects of femtosecond laser-induced structures on cell behavior, TA6V samples were micro-textured with focused femtosecond laser pulses generating grooves of various dimensions on the micrometer scale (width: 25-75μm; depth: 1-10μm). LIPSS (Laser Induced Periodic Surface Structures) were also generated during the laser irradiation, providing a supplementary structure (sinusoidal form) of hundreds of nanometers at the bottom of the grooves oriented perpendicular (⊥ LIPPS) or parallel (// LIPPS) to the direction of these grooves. C3H10 T1/2 murine mesenchymal stem cells were cultivated on the textured biomaterials. To have a preliminary idea of the spreading of biological media on the substrate, prior to cell culture, contact angle measurement were performed. This showed that the post-irradiation hydrophilicity of the samples can decrease with time according to its storage environment. The multiscale structuration either induced a collaborative or a competitive influence of the LIPSS and grooves on the cells. It has been shown that cells individually and collectively were most sensitive to microscale grooves which were narrower than 25μm and deeper than 5μm with ⊥ LIPPS. In some cases, cells were individually sensitive to the LIPSS but the cell layer organization did not exhibit significant differences in comparison to a non-textured surface. These results showed that cells are more sensitive to the nanoscale structures (LIPSS), unless the microstructures's size is close to the cell size and deeper than 5μm. There, the cells are sensitive to the microscale structures and go on spreading following these structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage.

    PubMed

    Chen, Long; Tian, Yaoqi; Tong, Qunyi; Zhang, Zipei; Jin, Zhengyu

    2017-01-01

    The effects of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), and texture profile analysis (TPA). The addition of pullulan reduced the transversal relaxation time of rice starch gels during cold storage. The microstructure of rice starch gel with 0.5% pullulan was denser and more uniform compared with that of rice starch without pullulan in each period of storage time. With regard to textural properties, 0.01% pullulan addition did not significantly change the texture of rice starch gels, while 0.5% pullulan addition appeared to reduce the hardness and retain the springiness of rice starch gels (P⩽0.05). The restriction effects of pullulan on water mobility and starch retrogradation were hypothesized to be mainly responsible for the water retention, gel structure maintenance, and modification of the textural attributes of rice starch gels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The effect of microstructure on the deformation modes and mechanical properties of Ti-6Al-2Nb-1Ta-0.8Mo: Part II. Equiaxed structures

    NASA Astrophysics Data System (ADS)

    Lin, Fu-Shiong; Starke, E. A.; Gysler, A.

    1984-10-01

    The Ti-6Al-2Nb-lTa-0.8Mo alloy was processed to develop both near-basal and transverse textures. Samples were annealed at different temperatures to vary the equiaxed alpha grain size and the thick-ness of the grain boundary beta, and subsequently quenched in order to transform the beta phase to either martensite, tempered martensite, or Widmanstätten alpha + beta. The effect of microstructure and texture on tensile properties and on fracture toughness was investigated. In addition, yield locus diagrams were constructed in order to study the texture strengthening effect. The yield strength was found to be strongly dependent on the thickness and Burgers relationship of the transformed beta phase surrounding the alpha grains. A texture hardening effect as large as 60 pct was found for the basal-texture material but only 15 pct for the transverse texture material. These variations are asso-ciated with differences in deformation behavior.

  4. Cosmological texture is incompatible with Planck-scale physics

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.

    1992-01-01

    Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.

  5. Archean sedimentation and tectonics in southern Africa

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.

    1984-01-01

    Sequences in the Barberton Mountain Land greenstone belt (southern Africa) were examined to determine the nature of the sedimentary rocks, their tectonic implications, and their bearing on the present large-scale structural condition of the belt. Also assessed was whether there was evidence for a significant component of shallow-water-deposited sedimentary rocks in the parent materials of the Limpopo belt. The nature of a largehigh strain zone on the southern margin of the central Limpopo belt was examined.

  6. Refinement of Regional Distance Seismic Moment Tensor and Uncertainty Analysis for Source-Type Identification

    DTIC Science & Technology

    2014-09-02

    release; distribution is unlimited. rock zone which provides a pathway for formation fluids, natural gas and crude oil from deeper strata that are... southeast Louisiana (Figure 21). It is a part of the Gulf Coast salt basin which exhibits many salt structures formed by upward flow of sedimentary salt...primarily, evaporites) on account of low density of salt and overburden pressures caused by younger sedimentary deposits (Beckman and Williamson, 1990

  7. Sedimentary Petrography and Facies Analysis at the Shaler Outcrop, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Gupta, S.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.

    2013-12-01

    The Mars Science Laboratory Curiosity rover has recently completed an investigation of a large fluvial deposit known informally as the Shaler outcrop (~1 m thick). Curiosity acquired data at the Shaler outcrop during sols 120-121 and 309-324. The Shaler outcrop is comprised of cross-bedded coarse-grained sandstones and recessive finer-grained intervals. Shaler is distinguished from the surrounding units by the presence of resistant beds exhibiting decimeter scale trough cross-bedding. Observations using the Mast Cameras, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro Imager (RMI) enable the recognition of several distinct facies. MAHLI images were acquired on five distinct rock targets, and RMI images were acquired at 33 different locations. On the basis of grain size, erosional resistance, color, and sedimentary structures, we identify four facies: 1) resistant cross-stratified facies, 2) smooth, fine-grained cross-stratified facies, 3) dark gray, pitted facies, and 4) recessive, vertically fractured facies. Panoramic Mastcam observations reveal facies distributions and associations, and show cross-bedded facies that are similar to those observed at the Rocknest and Bathurst_Inlet locations. MAHLI and RMI images are used to determine the grain size, sorting, rounding and sedimentary fabric of the different facies. High-resolution images also reveal small-scale diagenetic features and sedimentary structures that are used to reconstruct the depositional and diagenetic history.

  8. Complex Rayleigh Waves Produced by Shallow Sedimentary Basins and their Potential Effects on Mid-Rise Buildings

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.

    2017-12-01

    Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.

  9. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  10. Structures and textures of the Murchison and Mighei carbonaceous chondrite matrices

    NASA Technical Reports Server (NTRS)

    Mackinnon, I. D. R.

    1980-01-01

    High-resolution transmission electron microscopy has confirmed earlier observations that the character of the Murchison and Mighei fine-grained matrices is complex in mineralogy and texture. Layer structure minerals occur as planar laths, rounded grains or subhedral grains, and range in size from less than 100 A to about 1 micrometer. Serpentine-type and brucite-type structures predominate in the CM matrices. The occurrence of Povlen chrysolite and a vein of disordered mixed-layer and brucite-type material cutting a large lizardite-type grain suggests that at least some of the matrix materials were formed by alteration of preexisting material.

  11. Mammographic texture synthesis using genetic programming and clustered lumpy background

    NASA Astrophysics Data System (ADS)

    Castella, Cyril; Kinkel, Karen; Descombes, François; Eckstein, Miguel P.; Sottas, Pierre-Edouard; Verdun, Francis R.; Bochud, François O.

    2006-03-01

    In this work we investigated the digital synthesis of images which mimic real textures observed in mammograms. Such images could be produced in an unlimited number with tunable statistical properties in order to study human performance and model observer performance in perception experiments. We used the previously developed clustered lumpy background (CLB) technique and optimized its parameters with a genetic algorithm (GA). In order to maximize the realism of the textures, we combined the GA objective approach with psychophysical experiments involving the judgments of radiologists. Thirty-six statistical features were computed and averaged, over 1000 real mammograms regions of interest. The same features were measured for the synthetic textures, and the Mahalanobis distance was used to quantify the similarity of the features between the real and synthetic textures. The similarity, as measured by the Mahalanobis distance, was used as GA fitness function for evolving the free CLB parameters. In the psychophysical approach, experienced radiologists were asked to qualify the realism of synthetic images by considering typical structures that are expected to be found on real mammograms: glandular and fatty areas, and fiber crossings. Results show that CLB images found via optimization with GA are significantly closer to real mammograms than previously published images. Moreover, the psychophysical experiments confirm that all the above mentioned structures are reproduced well on the generated images. This means that we can generate an arbitrary large database of textures mimicking mammograms with traceable statistical properties.

  12. The influence of propolis on rheological properties of lipstick.

    PubMed

    Goik, U; Ptaszek, A; Goik, T

    2015-08-01

    The aim of this work was to study the effect of propolis on the rheological and textural properties of lipsticks. The studied lipsticks were based on raw materials and contained no synthetic compounds, preservatives, fragrances or dyes. The rheological and textural properties of the prepared lipsticks, both with and without propolis, were studied as a function of temperature and storage period. Measurements were taken using an RS6000 rheometer (Haake, Germany) with a cone-plate sensor. The cone parameters were as follows: diameter 35 mm and angle 2°. Textural tests were performed using the same cone-plate geometry. The research results of rheological and textural properties of lipsticks, with and without the addition of propolis, indicate the possibility of application of propolis as a beneficial additive to such type of cosmetics. The presence of propolis does not significantly alter the viscoelastic properties of the lipsticks. The courses of flow curves indicate shear thinning, which is very advantageous from an application point of view. From the rheological point of view, the properties of lipsticks tested in low deformation conditions show some structural changes, most likely due to consolidation of the structure. The analysis of textural properties indicates that lipsticks with added propolis are more brittle and prone to crushing. However, the temperature increase (30°C) does not cause significant changes to the textural characteristics of these lipsticks. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments.

    PubMed

    Laverman, Anniet M; Cazier, Thibaut; Yan, Chen; Roose-Amsaleg, Céline; Petit, Fabienne; Garnier, Josette; Berthe, Thierry

    2015-09-01

    Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population.

  14. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia.

    PubMed

    Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M

    2013-12-01

    Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago.

  15. Method for radiometric calibration of an endoscope's camera and light source

    NASA Astrophysics Data System (ADS)

    Rai, Lav; Higgins, William E.

    2008-03-01

    An endoscope is a commonly used instrument for performing minimally invasive visual examination of the tissues inside the body. A physician uses the endoscopic video images to identify tissue abnormalities. The images, however, are highly dependent on the optical properties of the endoscope and its orientation and location with respect to the tissue structure. The analysis of endoscopic video images is, therefore, purely subjective. Studies suggest that the fusion of endoscopic video images (providing color and texture information) with virtual endoscopic views (providing structural information) can be useful for assessing various pathologies for several applications: (1) surgical simulation, training, and pedagogy; (2) the creation of a database for pathologies; and (3) the building of patient-specific models. Such fusion requires both geometric and radiometric alignment of endoscopic video images in the texture space. Inconsistent estimates of texture/color of the tissue surface result in seams when multiple endoscopic video images are combined together. This paper (1) identifies the endoscope-dependent variables to be calibrated for objective and consistent estimation of surface texture/color and (2) presents an integrated set of methods to measure them. Results show that the calibration method can be successfully used to estimate objective color/texture values for simple planar scenes, whereas uncalibrated endoscopes performed very poorly for the same tests.

  16. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + <100> fiber texture, similar to rolled product, in the Skin regions and alpha <111> + <100> fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  17. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Junwen, Wang; Conrad, J.E.; McKee, E.H.; Zonglin, Hou; Qingrun, Meng; Shengguang, Huang

    1997-01-01

    Detailed, integrative field and laboratory studies of the textures, structures, chemical characteristics, and isotopically determined ages and signatures of mineralization of the Bayan Obo deposit provided evidence for the origin and characteristics favorable for its formation and parameters necessary for defining giant polymetallic deposits of hydrothermal origin. Bayan Obo is an epigenetic, metasomatic, hydrothermal rare earth element (REE)-Fe-Nb ore deposit that is hosted in the metasedimentary H8 dolostone marble of the Middle Proterozoic Bayan Obo Group. The metasedimentary sequence was deposited on the northern continental slope of the North China craton. The mine area is about 100 km south of the suture marking Caledonian subduction of the Mongolian oceanic plate from the north beneath the North China craton. The mineralogy of the deposit is very complex, consisting of more than 120 different minerals, some of which are epigenetic minerals introduced by hydrothermal solutions, and some of which are primary and secondary metamorphic minerals. The major REE minerals are monazite and bastnaesite, whereas magnetite and hematite are the dominant Fe-ore minerals, and columbite is the most abundant Nb mineral. Dolomite, alkali amphibole, fluorite, barite, aegirine augite, apatite, phlogopite, albite, and microcline are the most widespread gangue minerals. Three general types of ores occur at Bayan Obo: disseminated, banded, and massive ores. Broad zoning of these ore types occurs in the Main and East Orebodies. Disseminated ores are in the outermost zone, banded ores are in the intermediate zone, and massive ores are in the cores of the orebodies. On the basis of field relations, host rocks, textures, structures, and mineral assemblages, many varieties of these three types of ores have been recognized and mapped. Isotopic dating of monazite, bastnaesite, aeschynite, and metamorphic and metasomatic alkali amphiboles associated with the deposit provides constraints on the ages of mineralization and the history of the deposit. Textural relations, differences in chemical composition, and 232Th/208Pb internal isochron ages of monazite and bastnaesite samples indicate that many episodes of REE mineralization occurred at Bayan Obo, ranging from about 555 Ma to about 398 Ma. Initial 208Pb/204Pb ratios suggest different sources of REE's for different generations of REE minerals. Relative ages of Fe mineralization were deduced from textural relationships of Fe minerals with other, dated mineral phases in the deposit. Most Nb mineralization was in the area of the West Orebodies and resulted in disseminated ore. Aeschynite, an early stage of Nb mineralization (438+-25.1 Ma), occurs with huanghoite and alkali amphiboles in veins. The 40Ar/39Ar ages of amphiboles, as well as petrographic textures, were used to distinguish three periods of regional metamorphism in the Bayan Obo mine area: (1) Late Proterozoic, about 890 Ma, which recrystallized H8 carbonate to marble and crystallized lineated alkali amphiboles along foliation planes in the marble; (2) Caledonian, about 425-395 Ma, which resulted in metamorphic and metasomatic-metamorphic alkali amphiboles; and (3) Hercynian, about 300 Ma, based on biotite 40Ar/39Ar analyses from biotite schist and folded banded ores. The 40Ar/39Ar ages of metasomatic alkali amphiboles also place time constraints on the hydrothermal history of the ore deposit. Metasomatic amphiboles represent periods of intense hydrothermal activity, which began as early as 1.26 Ga; that date is based on the age of amphibole from a vein that crosscuts the H6 quartzite that underlies the H8 dolostone marble. Although much of the metasomatic amphibole formed during periods that overlapped the peak period of REE mineralization of banded ores, REE and alkali amphibole phases generally occur in different mineral assemblages or are of very different ages in the same assemblage and, therefore, may have been derived from

  18. An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions.

    PubMed

    Shu, Ting; Zhang, Bob; Yan Tang, Yuan

    2017-04-01

    Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of Dihedral Angle and Porosity on Percolating-Sealing Capacity of Texturally Equilibrated Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.

    2013-12-01

    Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and capillary entry pressure. This expanded knowledge of the salt textural behavior vs. depth could also improve drilling operations in salt. Second, a series of experiments in different P-T conditions was carried out to investigate the actual shape of equilibrated channels in salt. The synthetic salt samples were scanned at the High Resolution X-ray CT Facility at the Department of Geological Science, the University of Texas at Austin with resolution in 1-6 micron range. The experimental results show both equilibrated (tubular pores) and non-equilibrated (planar features) in salt structure. Image processing was carried out by two open source software programs: ImageJ, which is a public domain Java image processing program, and 3DMA-Rock, which is a software package for quantitative analyzing of the pore space in three-dimensional X-ray computed microtomographic images of rock. We obtain medial axis and medial surface of the pore space, as well as find and characterize the corresponding pore-throat network. We also report permeability of the pore space computed using Palabos software.

  20. The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area

    NASA Astrophysics Data System (ADS)

    Segev, Amit; Rybakov, Michael; Lyakhovsky, Vladimir; Hofstetter, Avraham; Tibor, Gidon; Goldshmidt, Vladimir; Ben Avraham, Zvi

    2006-10-01

    A 3-D layered structure of the Levant and the southeastern Mediterranean lithospheric plates was constructed using interpretations of seismic measurements and borehole data. Structural maps of three principal interfaces, elevation, top basement and the Moho, were constructed for the area studied. This area includes the African, Sinai and Arabian plates, the Herodotus and the Levant marine basins and the Nile sedimentary cone. In addition, an isopach map of the Pliocene sediments, as well as the contemporaneous amount of denuded rock units, was prepared to enable setting up the structural map of the base Pliocene sediment. Variable density distributions are suggested for the sedimentary succession in accord with its composition and compaction. The spatial density distribution in the crystalline crust was calculated by weighting the thicknesses of the lower mafic and the upper felsic crustal layers, with densities of 2.9 g/cm 3 and 2.77 g/cm 3, respectively. Results of the local (Airy) isostatic modeling with compensation on the Moho interface show significant deviations from the local isostasy and require variable density distribution in the upper mantle. Moving the compensation level to the base of the lithosphere (˜ 100 km depth) and adopting density variations in the mantle lithosphere yielded isostatic compensation (± 200 m) over most of the area studied. The spatial pattern obtained of a density distribution with a range of ± 0.05 g/cm 3 is supported by a regional heat flux. Simulations of the flexure (Vening Meinesz) isostasy related to the Pliocene to Recent sedimentary loading and unloading revealed concentric oscillatory negative and positive anomalies mostly related to the Nile sedimentary cone. Such anomalies may explain the rapid subsidence in the Levant Basin and the arching in central Israel, northern Sinai and Egypt during Pliocene-Recent times. Comparison between the observed (Bouguer) gravity and the calculated gravity for the constructed 3-D lithospheric structure, which has variable density distributions, provided a good match and an independent constraint for the large-scale structure suggested and confirmed an oceanic nature for the Levant Basin lithosphere.

  1. Capability of ERTS-1 imagery to investigate geological and structural features in a sedimentary basin (Bassin Parisien, France)

    NASA Technical Reports Server (NTRS)

    Cavelier, C.; Scanvic, J. Y.; Weecksteen, G.; Zizerman, A.

    1973-01-01

    A preliminary study of the MSS imagery of a sedimentary basin whose structure is regular is reported. Crops and natural vegetation are distributed all over the site located under temperate climate. Ground data available concern plant species geology and tectonic and are correlated with results from ERTS 1 imagery. This comparison shows a good correlation. The main geological units are detected or enhanced by way of agricultural land use and/or natural vegetation. Alluvial deposits are outlined by vegetation grass land and poplar trees. Some spatial relationship of geostructures, suspected until now, are identified or extended in associating results from different spectral bands.

  2. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE PAGES

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek; ...

    2017-08-28

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  3. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  4. Structural, textural and sensory impact of sodium reduction on long fermented pizza.

    PubMed

    Bernklau, Isabelle; Neußer, Christian; Moroni, Alice V; Gysler, Christof; Spagnolello, Alessandro; Chung, Wookyung; Jekle, Mario; Becker, Thomas

    2017-11-01

    The aim of this study was to elucidate the microstructural, textural, and sensory impact of sodium reduction and its partial replacement by potassium chloride in pizza dough and crusts prepared by a traditional long fermentation process. For the first time, macrostructural changes in texture were elucidated and quantified by a novel protein network analysis. The fermentation process exerted a strengthening effect in the doughs, allowing to reduce sodium up to 25% without any negative impact on texture. Sodium reduction by 15% did not cause any significant textural changes in pizza crusts and partial replacement by KCl resulted in a strengthened dough and firmer pizza crust. The use of toppings masked the effect of lowering the sodium content, allowing to increase the reduction level from 15% to 35%. A reduction of NaCl by 25% with an addition of KCl achieved high acceptance in the sensory evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  6. Effect of fat types on the structural and textural properties of dough and semi-sweet biscuit.

    PubMed

    Mamat, Hasmadi; Hill, Sandra E

    2014-09-01

    Fat is an important ingredient in baking products and it plays many roles in providing desirable textural properties of baking products, particularly biscuit. In this study, the effect of fat types on dough rheological properties and quality of semi-sweet biscuit (rich tea type) were investigated using various techniques. Texture profile and extensibility analysis were used to study the dough rheology, while three-point bend test and scanning electron microscopy were used to analyse the textural characteristics of final product. TPA results showed that the type of fat significantly influenced dough textural properties. Biscuit produced with higher solid fat oil showed higher breaking force but this was not significantly different when evaluated by sensory panel. Scanning electron microscopy showed that biscuit produced with palm mid-fraction had an open internal microstructure and heterogeneous air cells as compared to other samples.

  7. Catalogue of X-Ray Texture Data for Al-Cu-Li Alloy 1460, 2090, 2096 and 2195 Near-Net-Shape Extrusions, Sheet and Plate

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Hafley, Robert A.; Alexa, Joel A.

    1998-01-01

    The effect of crystallographic texture on the mechanical properties of near-net-shape extrusions is of major interest ff these products are to find application in launch vehicle or aircraft structures. The objective of this research was to produce a catalogue containing quantitative texture information for extruded product, sheet and plate. The material characterized was extracted from wide, integrally stiffened panels fabricated from the Al-Cu-Li alloys 1460, 2090, 2096 and 2195. The textural characteristics of sheet and plate products of the same alloys were determined for comparison purposes. The approach involved using X-ray diffraction to generate pole figures in combination with orientation distribution function analysis. The data were compiled as a function of location in the extruded cross-sections and the variation in the major deformation- and recrystallization-related texture components was identified.

  8. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud turbidites reflect uniform, steady flow characteristics and a depositional sorting mechanism for silt-clay separation; whereas disorganized turbidites reflect an unsteady flow type, either as a short-lived surge or as a mud-contaminated mid-flow. Fine-grained carbonate turbidites show certain distinctive characteristics linked to the different dynamic behaviour of fine carbonate material. Hemiturbidites are the result of long-distance transport and an upward buoyancy mechanism during deposition.

  9. Stratigraphic Correlation via Opportunity's Pancam of the Burns Formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Thompson, S. D.; Calvin, W. M.; Farrand, W. H.

    2006-12-01

    Spectral properties of Meridiani Planum hematite-rich Burns formation observed by Opportunity's Pancam have been described previously but not at minimum spatial scales. This study is of the fine scale visible and near- infrared spectral features within the sedimentary structures over the entire lateral extent explored by Opportunity across an 8 km traverse from Endurance to Victoria craters. Investigation of the bedrock has shown sub-centimeter thinly laminated evaporite deposits with few occurrences of festoon cross-bedding, massive bedding, and subtle differences in color and texture. Pancam data analyses of rock targets where sufficient spatial resolution (<10 mm) is achieved (within 10 m) constrain spectral parameters of laminar, erosional, and possible secondary diagenetic features. Results show differences of statistical significance in iron mineral varieties and phases in both vertical section and lateral extent of the Burns formation. Spectra exhibit a steep positive slope in the visible (432-753 nm) region and subtle changes in the near infrared (753-1009 nm) region ranging from flat, concave, to convex profiles. Maxima are typically in the 750-850 nm region but can occur as low as 673 nm and as high as 1009 nm with the latter usually from the lower albedo materials (i.e., spherules and basaltic sands). Positive slopes from 934-1009 nm in this region are consistent with the presence of hematite, commonly associated with the spherules. The higher albedo surfaces tend to have greatest negative slope in the longer wavelengths. This could result from intrinsic characteristics of the outcrop material or a significantly thick (i.e. >100 micron) dust deposit. Band depth images centered at 535 nm and 904 nm provide statistics on the relative occurrences of crystalline ferric oxide minerals. Rarely iron-rich signatures are present in individual laminations and not in the adjacent layers. Such occurrences could result from multiple iron-rich sedimentary events, secondary diagenetic products such as cementation or recrystallization, or an invasive fracture fill material. Comparisons of geomorphologic and spectroscopic mapping will be presented to show overall relationships of the Meridiani plains materials.

  10. Campanian-Maastrichtian phosphorites of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Bassam, K. S.; Al-Dahan, A. A.; Jamil, A. K.

    1983-08-01

    Bedded marine sedimentary phosphate rocks of Campanian-Maastrichtian age are exposed in the Western Desert of Iraq, forming part of the Tethyan phosphate province. The studied phosphorites are found in three horizons within carbonate rocks; they are mostly pelletal in texture, associated with bone fragments and detrital quartz grains, and cemented by calcite or chert. The mineralogy of the phosphate is dominated by carbonate-fluorapatite. The phosphate and the associated carbonate rocks are relatively enriched with Cr, Ni, Cu, Zn, V, and organic matter. The apatite is enriched with isotopically light carbon and heavy sulfur. The mode of phosphorite formation seems to have included syngenetic deposition of phosphate under reducing, slightly alkaline conditions in shallow marine environment. Decomposition of organic phosphatic remnants appear to have been the local source of phosphorus enrichment. However, the major tectonic and paleogeographic development of the Tethys Sea during Upper Cretaceous have probably played an important role in providing suitable setting for large scale formation of phosphorite.

  11. Iron disulfide minerals and the genesis of roll-type uranium deposits.

    USGS Publications Warehouse

    Reynolds, R.L.; Goldhaber, M.B.

    1983-01-01

    Studies of the distribution of and textural relationships among pyrite and marcasite in host rocks for a number of roll-type sedimentary U deposits have enabled identification of several generations of FeS2 minerals. A critical factor influencing mineral formation is the complex relationship of pH and the S species that are precursors of FeS2 minerals. The presence or absence of intrinsic organic matter for bacterial sulphate reduction also plays a key role. In deposits lacking such organic matter, the pre-ore is often euhedral pyrite and the ore-stage is marcasite. In contrast, in deposits containing organic matter the pre-ore is pyrite occurring as framboids or as replacements of plant material, and the ore-stage is also pyrite. These contrasting FeS2 assemblages and their respective modes of origin are consistent with previously proposed biogenic and nonbiogenic theories of the genesis of roll-type U deposits. -J.E.S.

  12. Effect of layerwise structural inhomogeneity on stress- corrosion cracking of steel tubes

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu A.; Krymskaya, O. A.; Isaenkova, M. G.; Morozov, N. S.; Fesenko, V. A.; Ryakhovskikh, I. V.; Esiev, T. S.

    2016-04-01

    Based on X-ray texture and structure analysis data of the material of main gas pipelines it was shown that the layerwise inhomogeneity of tubes is formed during their manufacturing. The degree of this inhomogeneity affects on the tendency of tubes to stress- corrosion cracking under exploitation. Samples of tubes were cut out from gas pipelines located under various operating conditions. Herewith the study was conducted both for sections with detected stress-corrosion defects and without them. Distributions along tube wall thickness for lattice parameters and half-width of X-ray lines were constructed. Crystallographic texture analysis of external and internal tube layers was also carried out. Obtained data testifies about considerable layerwise inhomogeneity of all samples. Despite the different nature of the texture inhomogeneity of gas pipeline tubes, the more inhomogeneous distribution of texture or structure features causes the increasing of resistance to stress- corrosion. The observed effect can be explained by saturation with interstitial impurities of the surface layer of the hot-rolled sheet and obtained therefrom tube. This results in rising of lattice parameters in the external layer of tube as compared to those in underlying metal. Thus, internal layers have a compressive effect on external layers in the rolling plane that prevents cracks opening at the tube surface. Moreover, the high mutual misorientation of grains within external and internal layers of tube results in the necessity to change the moving crack plane, so that the crack growth can be inhibited when reaching the layer with a modified texture.

  13. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik A. V.; Shanmugam, Ganapathy

    1980-01-01

    A comparative study of the sequence of sedimentary structures in ancient and modern fine-grained turbidites is made in three contrasting areas. They are (1) Holocene and Pleistocene deep-sea muds of the Nova Scotian Slope and Rise, (2) Middle Ordovician Sevier Shale of the Valley and Ridge Province of the Southern Appalachians, and (3) Cambro-Ordovician Halifax Slate of the Meguma Group in Nova Scotia. A standard sequence of structures is proposed for fine-grained turbidites. The complete sequence has nine sub-divisions that are here termed T 0 to T 8. "The lower subdivision (T 0) comprises a silt lamina which has a sharp, scoured and load-cast base, internal parallel-lamination and cross-lamination, and a sharp current-lineated or wavy surface with 'fading-ripples' (= Type C etc. …)." (= Type C ripple-drift cross-lamination, Jopling and Walker, 1968). The overlying sequence shows textural and compositional grading through alternating silt and mud laminae. A convolute-laminated sub-division (T 1) is overlain by low-amplitude climbing ripples (T 2), thin regular laminae (T 3), thin indistinct laminae (T 4), and thin wipsy or convolute laminae (T 5). The topmost three divisions, graded mud (T 6), ungraded mud (T 7) and bioturbated mud (T 8), do not have silt laminae but rare patchy silt lenses and silt pseudonodules and a thin zone of micro-burrowing near the upper surface. The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites and is approximately equivalent to Bouma's (C)DE divisions. The repetition of partial sequences characterizes different parts of the slope/base-of-slope/basin plain environment, and represents deposition from different stages of evolution of a large, muddy, turbidity flow. Microstructural detail and sequence are well preserved in ancient and even slightly metamorphosed sediments. Their recognition is important for determining depositional processes and for palaeoenvironmental interpretation.

  14. Northward extension of Carolina slate belt stratigraphy and structure, South-Central Virginia: Results from geologic mapping

    USGS Publications Warehouse

    Hackley, P.C.; Peper, J.D.; Burton, W.C.; Horton, J. Wright

    2007-01-01

    Geologic mapping in south-central Virginia demonstrates that the stratigraphy and structure of the Carolina slate belt extend northward across a steep thermal gradient into upper amphibolite-facies correlative gneiss and schist. The Neoproterozoic greenschist-facies Hyco, Aaron, and Virgilina Formations were traced northward from their type localities near Virgilina, Virginia, along a simple, upright, northeast-trending isoclinal syncline. This syncline is called the Dryburg syncline and is a northern extension of the more complex Virgilina synclinorium. Progressively higher-grade equivalents of the Hyco and Aaron Formations were mapped northward along the axial trace of the refolded and westwardly-overturned Dryburg syncline through the Keysville and Green Bay 7.5-minute quadrangles, and across the northern end of the Carolina slate belt as interpreted on previous geologic maps. Hyco rocks, including felsic metatuff, metawacke, and amphibolite, become gneisses upgrade with areas of local anatexis and the segregation of granitic melt into leucosomes with biotite selvages. Phyllite of the Aaron Formation becomes garnet-bearing mica schist. Aaron Formation rocks disconformably overlie the primarily felsic volcanic and volcaniclastic rocks of the Hyco Formation as evidenced by repeated truncation of internal contacts within the Hyco on both limbs of the Dryburg syncline at the Aaron-Hyco contact. East-northeast-trending isograds, defined successively by the first appearance of garnet, then kyanite ?? staurolite in sufficiently aluminous rocks, are superposed on the stratigraphic units and synclinal structure at moderate to high angles to strike. The textural distinction between gneisses and identifiable sedimentary structures occurs near the kyanite ?? staurolite-in isograd. Development of the steep thermal gradient and regional penetrative fabric is interpreted to result from emplacement of the Goochland terrane adjacent to the northern end of the slate belt during Alleghanian orogenesis. This mapping study indicates that the Carolina slate belt does not terminate on the north against through-going faults or rest on higher-grade basement as previously suggested.

  15. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol

    2018-01-01

    Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.

  16. Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V

    DOE PAGES

    Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush; ...

    2016-01-20

    Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less

  17. Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush

    Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less

  18. Evolution of porous structure and texture in nanoporous SiO2/Al2O3 materials during calcination

    NASA Astrophysics Data System (ADS)

    Glazkova, Elena A.; Bakina, Olga V.

    2016-11-01

    The study focuses on the evolution of porous structure and texture of silica/alumina xerogels during calcination in the temperature range from 500 to 1200°C. The xerogel was prepared via sol-gel method using subcritical drying. The silica/alumina xerogels were examined using transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS), Brunauer Emmett Teller-Barrett Joyner Halenda (BET-BJH), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. SiO2 primary particles of size about 10 nm are connected with each other to form a porous xerogel structure. Alumina is uniformly distributed over the xerogel volume. The changes of textural characteristics under heat treatment of samples are radical; the specific surface area and pore size attain their maximum at 500-700°C. The heat treatment of samples causes dehydroxylation of the xerogel surface, and at 1200°C the sample is sintered, loses mesoporosity, and its specific surface area reduces considerably down to 78 m2/g.

  19. Texture segmentation: do the processing units on the saliency map increase with eccentricity?

    PubMed

    Schade, Ursula; Meinecke, Cristina

    2011-01-01

    The saliency map is a computational model and has been constructed for simulating human saliency processing, e.g. pop-out target detection (e.g. Itti & Koch, 2000). In this study the spatial structure on the saliency map was investigated. It is proposed that the saliency map is structured into processing units whose size is increasing with retinal eccentricity. In two experiments the distance between a target in the stimulus and an irrelevant structure in the mask was varied systematically. Our findings had two main points. Firstly, in texture segmentation tasks the saliency signals from two texture irregularities interfere, when these irregularities appear within a critical spatial distance. Second, the critical distances increase with target eccentricity. The eccentricity-dependent critical distances can be interpreted as crowding effects. It is assumed that additionally to the target eccentricity, also the strength of a saliency signal can determine the spatial area of its impairing influence. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Effects of vacuum and modified atmosphere on textural parameters and structural proteins of cultured meagre (Argyrosomus regius) fillets.

    PubMed

    Sáez, María I; Martínez, Tomás F; Cárdenas, Salvador; Suárez, María D

    2015-09-01

    The influence of two preservation strategies (vacuum package and modified atmosphere package) on the post-mortem changes of textural parameters, pH, water holding capacity, sarcoplasmic and myofibrillar proteins, and collagen content of meagre (Argyrosomus regius) fillets was studied. Fillets were stored in a cold room in aerobic (control, C), vacuum (V) and modified atmosphere (MA) package. Samples were withdrawn at six sampling points throughout 15-day storage, and post-mortem changes were assessed. The textural parameters were significantly enhanced in V and MA compared to C. Both V and MA treatments reduced the intensity of a group of myofibrillar protein fractions (140-195 kDa) and increased insoluble collagen compared to C. Consequently, the post-mortem flesh softening in C was attributed to increased proteolysis in both intracellular and extracellular structural proteins. The preservation of the textural and biochemical characteristics of meagre fillets subjected to V and MA treatments makes these two treatments highly recommendable for the commercialization of meagre fillets. © The Author(s) 2014.

  1. Super-formable pure magnesium at room temperature.

    PubMed

    Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick

    2017-10-17

    Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.

  2. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins.

    PubMed

    Roldán, Mar; Antequera, Teresa; Martín, Alberto; Mayoral, Ana Isabel; Ruiz, Jorge

    2013-03-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70, and 80 °C) and time (6, 12, and 24 h). Different physicochemical, histological and structural parameters were studied. Increasing cooking temperatures led to higher weight losses and lower moisture contents, whereas the effect of cooking time on these variables was limited. Samples cooked at 60 °C showed the highest lightness and redness, while increasing cooking temperature and cooking time produced higher yellowness values. Most textural variables in a texture profile analysis showed a marked interaction between cooking temperature and time. Samples cooked for 24h showed significantly lower values for most of the studied textural parameters for all the temperatures considered. Connective tissue granulation at 60 °C and gelation at 70 °C were observed in the SEM micrographs. The sous-vide cooking of lamb loins dramatically reduced microbial population even with the less intense heat treatment studied (60 °C-6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Tectonic evolution of the Neoproterozoic Tandilia sedimentary cover, Argentina: New evidence of contraction and extensional events in the southwest Gondwana margin

    NASA Astrophysics Data System (ADS)

    Hernández, Mariano; Arrouy, María Julia; Scivetti, Nicolás; Franzese, Juan R.; Canalicchio, José M.; Poiré, Daniel G.

    2017-11-01

    At the northwestern portion of the Tandilia System, a detailed structural analysis on the Precambrian sedimentary units exposed in the quarries of the Olavarría-Sierras Bayas area was carried out. These units exhibit deformational structures of several scales, from centimeters to hundreds of meters. The hundreds of meters scale involves E-W- and NW-SE-trending normal faults and NW-SE- and NE-SW-trending contractional folds. The centimeters to meters scale involves veins, joints, normal faults, shear fractures and stylolites, with a prevailing ∼ E-W to NW-SE trend. All these structures were formed by two major tectonic events. The first was the folding event at ∼580 Ma, with NNE-SSW to NE-SW and NW-SE direction of contraction. The second was the extensional faulting event, given by the widespread NNE-SSW-directed extension event during the Atlantic Ocean opening (Jurassic-Cretaceous). Both major events would have been controlled by the reactivation of basement anisotropies. These major tectonic events controlled the deformation of the Precambrian sedimentary cover of the Tandilia system, leading to an economically important aspect in the mining development of the Olavarría-Sierras Bayas area.

  4. Tidal sedimentation from a fluvial to estuarine transition, Douglas Group, Missourian -- Virgilian, Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanier, W.P.; Feldman, H.R.; Archer, A.W.

    The Tonganoxie Sandstone Member of the Stranger Formation (Douglas Group, Upper Pennsylvanian, Kansas) was deposited in a funnel-shaped, northeast-southwest-trending paleovalley that was incised during the uppermost Missourian sealevel lowstand and backfilled during the subsequent transgression. Quarry exposures of the Tonganoxie near Ottawa, Kansas, include [approximately] 5 m of sheetlike, vertically accreted siltstones and sandy siltstones, bounded above and below by thin coals with upright plant fossils and paleosols. Strata range from submillimeter-thick, normally graded rhythmites to graded bedsets up to 12.5 cm thick with a vertical sedimentary structure sequence (VSS) consisting of the following intervals: (A) a basal massive tomore » normally graded interval; (B) a parallel-laminated interval; (C) a ripple-cross-laminated interval; and (D) an interval of draped lamination. The Tonganoxie succession has many similarities to fluvial overbank/floodplain deposits: sheetlike geometry, upright plant fossils, lack of bioturbation and body fossils, dominance of silt, and a punctuated style of rapid sedimentation from suspension-laden waning currents. Analysis of stratum-thickness variations through the succession suggests that tides significantly influenced sediment deposition. A fluvial-to-estuarine transitional depositional setting is interpreted for the Tonganoxie by analogy with modern depositional settings that show similar physical and biogenic sedimentary structures, vertical sequences of sedimentary structures, and aggradation rates.« less

  5. New Bedform Phase Diagrams and Discriminant Functions for Formative Conditions of Bedforms in Open-Channel Flows

    NASA Astrophysics Data System (ADS)

    Ohata, Koji; Naruse, Hajime; Yokokawa, Miwa; Viparelli, Enrica

    2017-11-01

    Understanding of the formative conditions of fluvial bedforms is significant for both river management and geological studies. Diagrams showing bedform stability conditions have been widely used for the analyses of sedimentary structures. However, the use of discriminants to determine the boundaries of different bedforms regimes has not yet been explored. In this study, we use discriminant functions to describe formative conditions for a range of fluvial bedforms in a 3-D dimensionless parametric space. We do this by means of discriminant analysis using the Mahalanobis distance. We analyzed 3,793 available laboratory and field data and used these to produce new bedform phase diagrams. These diagrams employ three dimensionless parameters representing properties of flow hydraulics and sediment particles as their axes. The discriminant functions for bedform regimes proposed herein are quadratic functions of three dimensionless parameters and are expressed as curved surfaces in 3-D space. These empirical functions can be used to estimate paleoflow velocities from sedimentary structures. As an example of the reconstruction of hydraulic conditions, we calculated the paleoflow velocity of the 2011 Tohoku-Oki tsunami backwash flow from the sedimentary structures of the tsunami deposit. In so doing, we successfully reconstructed reasonable values of the paleoflow velocities.

  6. Role of Precambrian compositions and fabrics in the development of foreland structures, southern Front Range, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, R.B.

    1985-01-01

    The Front Range terminates to the south as three basement-cored uplifts located north and west of the Canon City embayment. Precambrian units consist of foliated and non-foliated granitic rocks, augen gneiss, interlayered schist and gneiss, amphibolite, quartzite, and pegmatite. Precambrian deformations include at least three phases of folding, two phases of crenulation cleavage development, and local mylonitization. Metamorphic conditions reached those of cordierite-sillimanite grade. Paleozoic and Mesozoic sediments surround and overlap the exposed uplifts to form south-plunging arches. Excellent three-dimensional exposure of structural relationships between Precambrian rocks and overlying Phanerozoic sediments is present. Deformation styles in the sedimentary cover aremore » strongly influenced by underlying Precambrian lithologies and structural orientations. Where the crystalline units are granitic, with steeply-dipping foliation or no directional fabric, uplifts are bounded by high angle faults. Some such faults show evidence of repeated movements and reversals dating back to Precambrian time. The boundary between mechanical basement and suprastructure is clearly not defined as the base of the sedimentary section. Balanced cross-sections constructed through the southern Front Range must include contemporaneous flexural folds and thrusts in Precambrian schistose and gneissic rocks as well as in Phanerozoic sedimentary layers.« less

  7. Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado

    USGS Publications Warehouse

    McQueen, Kathleen

    1957-01-01

    The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.

  8. Texturized dairy proteins.

    PubMed

    Onwulata, Charles I; Phillips, John G; Tunick, Michael H; Qi, Phoebi X; Cooke, Peter H

    2010-03-01

    Dairy proteins are amenable to structural modifications induced by high temperature, shear, and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey protein concentrate (WPC), and whey protein isolate (WPI) were modified using a twin-screw extruder at melt temperatures of 50, 75, and 100 degrees C, and moistures ranging from 20 to 70 wt%. Viscoelasticity and solubility measurements showed that extrusion temperature was a more significant (P < 0.05) change factor than moisture content. The degree of texturization, or change in protein state, was characterized by solubility (R(2)= 0.98). The consistency of the extruded dairy protein ranged from rigid (2500 N) to soft (2.7 N). Extruding at or above 75 degrees C resulted in increased peak force for WPC (138 to 2500 N) and WPI (2.7 to 147.1 N). NDM was marginally texturized; the presence of lactose interfered with its texturization. WPI products extruded at 50 degrees C were not texturized; their solubility values ranged from 71.8% to 92.6%. A wide possibility exists for creating new foods with texturized dairy proteins due to the extensive range of states achievable. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, WPI, or WPC, or NDM were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 degrees C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, whey protein isolate, whey protein concentrate, or nonfat dried milk were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 degrees C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels.

  9. Cordilleran hingeline: Late Precambrian rifted margin of the North American craton and its impact on the depositional and structural history, Utah and Nevada

    NASA Astrophysics Data System (ADS)

    Picha, Frank; Gibson, Richard I.

    1985-07-01

    The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074

  10. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2015-08-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of Lower-Upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of SC CO2 during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in Northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin). Experimental wet CO2 injection was performed in a reactor chamber under realistic conditions of deep saline formations (P ≈ 78 bar, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and porous network distribution. Chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analysed before and after the experiment. The results indicate an evolution of the pore network (porosity increase ≈ 2 %). Intergranular quartz matrix detachment and partial removal from the rock sample (due to CO2 input/release dragging) are the main processes that may explain the porosity increase. Primary mineralogy (≈ 95 % quartz) and rock texture (heterogeneous sand with interconnected framework of micro-channels) are important factors that seem to enhance textural/mineralogical changes in this heterogeneous system. The whole rock and brine chemical analyses after interaction with SC CO2-brine do not present important changes in the mineralogical, porosity and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages. These results, simulating the CO2 injection near the injection well during the first phases (24 h) indicate that, in this environment where CO2 displaces the brine, the mixture principally generates local mineralogical/textural re-adjustments due to physical detachment of quartz grains. Consequences deriving from these changes are variable. Possible porosity and permeability increases could facilitate further CO2 injection but textural re-adjustment could also affect the rock physically. However, it is not clear yet what effect the quartz (solid suspension) could provoke in more distant areas of the rock. Quartz could be transported in the fluid flow path and probably accumulated at pore throats.

  11. The Classification Ability with Naked Eyes According to the Understanding Level about Rocks of Pre-service Science Teachers

    NASA Astrophysics Data System (ADS)

    Seong, Cho Kyu; Ho, Chung Duk; Pyo, Hong Deok; Kyeong Jin, Park

    2016-04-01

    This study aimed to investigate the classification ability with naked eyes according to the understanding level about rocks of pre-service science teachers. We developed a questionnaire concerning misconception about minerals and rocks. The participant were 132 pre-service science teachers. Data were analyzed using Rasch model. Participants were divided into a master group and a novice group according to their understanding level. Seventeen rocks samples (6 igneous, 5 sedimentary, and 6 metamorphic rocks) were presented to pre-service science teachers to examine their classification ability, and they classified the rocks according to the criteria we provided. The study revealed three major findings. First, the pre-service science teachers mainly classified rocks according to textures, color, and grain size. Second, while they relatively easily classified igneous rocks, participants were confused when distinguishing sedimentary and metamorphic rocks from one another by using the same classification criteria. On the other hand, the understanding level of rocks has shown a statistically significant correlation with the classification ability in terms of the formation mechanism of rocks, whereas there was no statically significant relationship found with determination of correct name of rocks. However, this study found that there was a statistically significant relationship between the classification ability with regard the formation mechanism of rocks and the determination of correct name of rocks Keywords : Pre-service science teacher, Understanding level, Rock classification ability, Formation mechanism, Criterion of classification

  12. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  13. Geochemistry of the Archean Yellowknife Supergroup

    NASA Astrophysics Data System (ADS)

    Jenner, G. A.; Fryer, B. J.; McLennan, S. M.

    1981-07-01

    The Archean Yellowknife Supergroup (Slave Structural Province. Canada) is composed of a thick sequence of supracrustal rocks, which differs from most Archean greenstone belts in that it contains a large proportion ( ~ 80%) of sedimentary rocks. Felsic volcanics of the Banting Formation are characterized by HREE depletion without Eu-anomalies, indicating an origin by small degrees of partial melting of a mafic source, with minor garnet in the residua. Granitic rocks include synkinematic granites [HREE-depleted; low ( 87Sr /86Sr ) I], post-kinematic granites [negative Eu-anomalies, high ( 87Sr /86Sr ) I] and granitic gneisses with REE patterns similar to the post-kinematic granites. Sedimentary rocks (turbidites) of the Burwash and Walsh Formations have similar chemical compositions and were derived from 20% mafic-intermediate volcanics, 55% felsic volcanics and 25% granitic rocks. Jackson Lake Formation lithic wackes can be divided into two groups with Group A derived from 50% mafic-intermediate volcanics and 50% felsic volcanics and Group B, characterized by HREE depletion, derived almost exclusively from felsic volcanics. REE patterns of Yellowknife sedimentary rocks are similar to other Archean sedimentary REE patterns, although they have higher La N/Yb N. These patterns differ significantly from typical post-Archean sedimentary REE patterns, supporting the idea that Archean exposed crust had a different composition than the present day exposed crust.

  14. Tectono-sedimentary features in the Yap subduction zone, Western Pacific: constraints from latest integrated geophysical survey

    NASA Astrophysics Data System (ADS)

    Dong, D.; Zhang, G.; Bai, Y.; Fan, J.; Zhang, Z.

    2017-12-01

    The Yap subduction zone, western Pacific, is a typical structure related to the ridge subduction, but comparative shortage of the geophysical data makes the structural details unknown in this area. In this study, we present the latest and high-quality multi-beam swath bathymetry and multi-channel seismic data acquired synchronously in the year 2015 across the Yap subduction zone. Multichannel seismic and multi-beam data are mainly applied to investigate the topography of major tectonic units and stratigraphic structure in the Yap subduction zone and discuss the tectonic characteristics controlled by ridge subduction. It suggests that, Parece Vela Basin, as the regional sedimentary center, developed sedimentary layers nearly 800 meters thick. On the contrast, the horizontal sedimentary layers were not obviously identified in the Yap trench, where subduction erosion occurred. Caroline ridge changed the tectonic characteristics of subduction zone, and influenced magmatism of the Yap arc because of the special topography. The seismic profile clearly reveals landslide deposits at the upper slope break of the forearc, north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. Detailed topography and geological structure of horst and graben in the north of Yap are depicted, and topographic high of Caroline ridge is supposed to bring greater bending and tension and the subsequent horst and graben belt. Multichannel seismic evidence has been provided for interpreting the expansion of Sorol Trough and its inferred age. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: proto-Yap Arc rupture in the Oligocene, collision of the Caroline Ridge and the Yap Trench in the Late Oligocene or Middle Miocene, and onset of the Sorol Trough rifting in the Late Miocene. Acknowledge: This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030102), the National Natural Science Foundation of China (No. 41476042, 41506055 )

  15. Microbial shaping of sedimentary wrinkle structures

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.

    2014-10-01

    Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.

  16. Texture design for microwave dielectric (Ca0.7Nd0.3)0.87TiO3 ceramics through reactive-templated grain growth

    PubMed Central

    Tani, Toshihiko; Takeuchi, Tsuguto

    2015-01-01

    Plate-like Ca3Ti2O7 (CT) and Nd2Ti2O7 (NT) particles were synthesized in molten salts and used as reactive templates for the preparation of highly textured (Ca0.7Nd0.3)0.87TiO3 bulk ceramics (CNT) with preferred pseudocubic 〈100〉 and 〈110〉 orientations, respectively. During flux growth CT and NT particles developed facets parallel to the pseudocubic {100} and {110} planes, respectively, in a perovskite unit cell, since those planes correspond to the interlayers of the layered perovskite-type crystal structures. Complementary reactants for the CNT stoichiometry were wet-mixed with the reactive templates and the slurries were tape-cast. Then stacked tapes were heat-treated for dense single-phase CNT ceramics with a distorted and A-site deficient regular perovskite-type structure. The CNT ceramics prepared with CT and NT reactive templates exhibited strong pseudocubic 100- and 110-family x-ray diffraction peaks, respectively, with other peaks drastically suppressed when non-perovskite sources were used as complementary reactants. The textured ceramics possess unique microstructures; as either parallel or obliquely stacked block structures with a pseudocubic {100} plane faceted. The pseudocubic {100}-and {110}-textured CNT ceramics exhibited ∼10 and ∼20% higher products of the dielectric quality factor and frequency, Q · f, respectively, than conventional ceramic sintered at the same temperature. When Q · f is compared based on the same grain size, the {100}-textured CNT exhibited 27% higher values than non-textured while relative permittivity and temperature coefficient of resonant frequency were of similar values. Simple geometrical relationships between electric field and penetrated pseudocubic {hk0}-type grain boundaries must lead to the reduced scattering and dielectric loss. PMID:27877809

  17. Textured silicon nitride: processing and anisotropic properties

    PubMed Central

    Zhu, Xinwen; Sakka, Yoshio

    2008-01-01

    Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the same methods as those used for textured β-Si3N4 and β-Sialon. PMID:27877995

  18. Extraction of texture features with a multiresolution neural network

    NASA Astrophysics Data System (ADS)

    Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.

    1992-09-01

    Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.

  19. Archean cherts: field, petrographic and geochemical criteria to determine their origin

    NASA Astrophysics Data System (ADS)

    Ledevin, Morgane; Arndt, Nicholas T.; Simionovici, Alexandre

    2013-04-01

    Archean cherts provide valuable information about conditions on the sea floor during the early history of Earth. We conducted field, petrological and geochemical studies on examples from different environments in the Barberton Greenstone Belt (3.2-3.5 Ga), South Africa, with the aim of improving our understanding of these enigmatic rocks. We distinguish three different origins for cherts: direct precipitation from seawater (C-cherts); precipitation in fractures from silica-rich fluids (F-cherts); and replacement of preexisting rocks (silicification) either at or near the surface (S-cherts). The three types were distinguished using a combination of sedimentary and deformation structures, petrological observations (RAMAN, electron microprobe, X-Ray microfluorescence, cathodoluminescence) and geochemical data. C-cherts best record the composition and physical conditions in primitive oceans and the depositional environment because they precipitated from seawater. Based on sedimentary structures, we show that the silica was deposited as a siliceous ooze or amorphous gel on the seafloor, with variable precipitation rates that depend on the amount and nature of co-precipitated phases (called here the "contaminant"), such as detrital grains, carbonates, carbonaceous matter and oxides. We observe a complex rheology of C-cherts, which show both ductile to brittle deformation structures, sometimes in the same layer. We infer that the cherts underwent extremely rapid diagenetic induration at or near the surface, a process that proceeded faster when contaminants are lacking. Geochemical data (ICP-MS/ICP-AES) indicate that whole rock chemistries are dominated by the contaminant phases. Detrital grains with continental signatures dominate the compositions of cherts in the turbidite sequence of the Komati River whereas carbonates preserving modern, seawater-like compositions control the compositions of cherts of Fig Tree Fm in the Barite Valley. The silica minerals do not contribute significantly to the trace-element composition, but acts as a diluent. Buck Reef cherts have extremely low contents of most trace elements due to low contents of detrital minerals and carbonates. S-cherts result from the silicification of preexisting rocks: under the action of circulating fluids, primary minerals are replaced by silica minerals and the porosity of the protolith is significantly reduced. Such process occurs even at the surface and persist downward the sedimentary units until after the rocks are indurated. F-cherts were observed in the Barite Valley, where chert dykes cross-cut surrounding units at high angle. The fractures often display jigsaw-puzzle textures, suggesting hydraulic fracturation, and their near-vertical orientation points to emplacement at shallow levels in the sediment pile. The dykes are filled with a black chert that contains variable amounts of host rock fragments that vary in shape (angular to rounded) and size (dm to µm). They control the whole-rock chemistry of cherts, and obscure the chemical composition of the primary, precipitating fluid. We believe that this fluid had a thixotropic behavior, i.e. it was fluid enough during the intrusion to fill very fine <1mm fractures but viscous enough when the velocity decreased to suspend decimetric host rock fragments. Based on our observations, we conclude that (1) field and petrological studies are more reliable than geochemical analyses for the recognition of various chert types; (2) the composition of cherts strongly depends on the type and amount of mineral phases other than silica, especially clays and carbonates; (3) C-cherts might be more abundant than previously thought and deposited as an amorphous, siliceous gel onto the seafloor before being rapidly indurated.

  20. Metal catalyst technique for texturing silicon solar cells

    DOEpatents

    Ruby, Douglas S.; Zaidi, Saleem H.

    2001-01-01

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  1. Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe-Ga-Al rolled sheets

    NASA Astrophysics Data System (ADS)

    Li, Jiheng; Liu, Yangyang; Li, Xiaojuan; Mu, Xing; Bao, Xiaoqian; Gao, Xuexu

    2018-07-01

    The effects of different rolling conditions on the microstructure and texture of primary and secondary recrystallization in magnetostrictive Fe82Ga9Al9+0.1at%NbC alloy sheets were investigated. After the primary recrystallization annealing at 850 °C for 5 min, the as-rolled sheets prepared by warm-cold rolling with an intermediate annealing, can be fully recrystallized, and obtain the homogeneous matrix in which the fine dispersed NbC precipitate particles are distributed. The primary recrystallization textures of sheets with different rolling conditions consist mostly of strong {1 0 0} textures, γ-fiber textures, {4 1 1}〈1 4 8〉 texture and weak Goss texture. In the primary recrystallized sheets prepared by warm-cold rolling with an intermediate annealing, the high energy grain boundaries and ∑9 boundaries have the highest proportion. After high temperature annealing, the secondary recrystallizations of Goss grains in these sheets are more complete, and the size of abnormal grown Goss grain is up to several centimeters, which results in the strongest Goss texture. Correspondingly, the largest magnetostriction of 183 ppm is observed. The sample prepared by warm-cold rolling with an intermediate annealing, has homogeneous primary matrix, special texture components and grain boundary distribution, all of which provide a better surrounding for the abnormal growth of Goss grains. This work indicates that the control of rolling conditions of Fe-Ga-Al alloy sheets is necessary to achieve the strong Goss texture and obtain a possible high magnetostriction if other appropriate conditions (stress, domain structure) are achieved.

  2. Aluminum Surface Texturing by Means of Laser Interference Metallurgy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.

    2015-01-01

    The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.

  3. FAST TRACK COMMUNICATION: Directional annealing-induced texture in melt-spun (Sm12Co88)99Nb1 alloy

    NASA Astrophysics Data System (ADS)

    Jayaraman, T. V.; Rogge, P.; Shield, J. E.

    2010-07-01

    Developing texture in nanocrystalline permanent magnet alloys is of significant importance. Directional annealing is shown to produce texture in the permanent magnet alloy (Sm12Co88)99Nb1. Melt spinning produced isotropic grain structures of the hard magnetic metastable SmCo7 phase, with grain sizes of ~300 nm. Conventional annealing of melt-spun (Sm12Co88)99Nb1 alloy produced Sm2Co17 phase with random crystallographic orientation. Directional annealing of melt-spun (Sm12Co88)99Nb1 alloy, with appropriate combinations of annealing temperature and translational velocity, produced Sm2Co17 phase with (0 0 0 6) in-plane texture, as determined by x-ray diffraction analysis and magnetic measurements. The magnetization results show out-of-plane remanence higher than the in-plane remanence resulting in the degree of 'magnetic' texture in the order of 25-40%. Coercivity values above 2 kOe were maintained. The texture development via directional annealing while minimizing exposure to elevated temperatures provides a new route to anisotropic high-energy permanent magnets.

  4. Effect of wheel speed and annealing temperature on microstructure and texture evolution of Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yan, E-mail: yanfeng@nwpu.edu.cn

    Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons growmore » after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.« less

  5. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    NASA Astrophysics Data System (ADS)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  6. Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.

    2005-01-01

    Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.

  7. Map showing depth to bedrock of the Tacoma and part of the Centralia 30' x 60' quadrangles, Washington

    USGS Publications Warehouse

    Buchanan-Banks, Jane M.; Collins, Donley S.

    1994-01-01

    The heavily populated Puget Sound region in the State of Washington has experienced moderate to large earthquakes in the recent past (Nuttli, 1952; Mullineaux and others, 1967). Maps showing thickness of unconsolidated sedimentary deposits are useful aids in delineating areas where damage to engineered structures can result from increased shaking resulting from these earthquakes. Basins containing thick deposits of unconsolidated materials can amplify earthquakes waves and cause far more damage to structures than the same waves passing through bedrock (Singh and others, 1988; Algermissen and others, 1985). Configurations of deep sedimentary basins can also cause reflection and magnification of earthquake waves in ways still not fully understood and presently under investigation (Frankel and Vidale, 1992).

  8. Morphological texture assessment of oral bone as a screening tool for osteoporosis

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa; Eggertsson, Hafsteinn; Eckert, George

    2001-07-01

    Three classes of texture analysis approaches have been employed to assess the textural characteristic of oral bone. A set of linear structuring elements was used to compute granulometric features of trabecular bone. Multifractal analysis was also used to compute the fractal dimension of the corresponding tissues. In addition, some statistical features and histomorphometric parameters were computed. To assess the proposed approach we acquired digital intraoral radiographs of 47 subjects (14 males and 33 females). All radiographs were captured at 12 bits/pixel. Images were converted to binary form through a sliding locally adaptive thresholding approach. Each subject was scanned by DEXA for bone dosimetry. Subject were classified into one of the following three categories according World Health Organization (WHO) standard (1) healthy, (2) with osteopenia and (3) osteoporosis. In this study fractal dimension showed very low correlation with bone mineral density (BMD) measurements, which did not reach a level of statistical significance (p<0.5). However, entropy of pattern spectrum (EPS), along with statistical features and histomorphometric parameters, has shown correlation coefficients ranging from low to high, with statistical significance for both males and females. The results of this study indicate the utility of this approach for bone texture analysis. It is conjectured that designing a 2-D structuring element, specially tuned to trabecular bone texture, will increase the efficacy of the proposed method.

  9. Sedimentary Parameters Controlling Occurrence and Preservation of Microbial Mats in Siliciclastic Depositional Systems

    NASA Technical Reports Server (NTRS)

    Noffke, Nora; Knoll, Andrew H.

    2001-01-01

    Shallow-marine, siliciclastic depositional systems are governed by physical sedimentary processes. Mineral precipitation or penecontemporaneous cementation play minor roles. Today, coastal siliciclastic environments may be colonized by a variety of epibenthic, mat-forming cyanobacteria. Studies on microbial mats showed that they are not randomly distributed in modern tidal environments. Distribution and abundancy is mainly function of a particular sedimentary facies. Fine-grained sands composed of "clear" (translucent) quartz particles constitute preferred substrates for cyanobacteria. Mat-builders also favor sites characterized by moderate hydrodynamic flow regimes, which permit biomass enrichment and construction of mat fabrics without lethal burial of mat populations by fine sediments. A comparable facies relationship can be observed in ancient siliciclastic shelf successions from the terminal Neoproterozoic Nama Group, Namibia. Wrinkle structures that record microbial mats are present but sparsely distributed in mid- to inner shelf sandstones of the Nudaus Formation. The sporadic distribution of these structures reflects both the narrow ecological window that governs mat development and the distinctive taphonomic conditions needed to preserve the structures. These observations caution that statements about changing mat abundance across the Proterozoic-Cambrian boundary must be firmly rooted in paleoenvironmental and taphonomic analysis. Understanding the factors that influence the formation and preservation of microbial structures in siliciclastic regimes can facilitate exploration for biological signatures in Earth's oldest rocks. Moreover, insofar as these structures can be preserved on bedding surfaces and are not easily mimicked by physical processes, they constitute a set of biological markers that can be searched for on Mars by remotely controlled rovers.

  10. A feast of visualization

    NASA Astrophysics Data System (ADS)

    2008-12-01

    Strength through structure The visualization and assessment of inner human bone structures can provide better predictions of fracture risk due to osteoporosis. Using micro-computed tomography (µCT), Christoph Räth from the Max Planck Institute for Extraterrestrial Physics and colleagues based in Munich, Vienna and Salzburg have shown how complex lattice-shaped bone structures can be visualized. The structures were quantified by calculating certain "texture measures" that yield new information about the stability of the bone. A 3D visualization showing the variation with orientation of one of the texture measures for four different bone specimens (from left to right) is shown above. Such analyses may help us to improve our understanding of disease and drug-induced changes in bone structure (C Räth et al. 2008 New J. Phys. 10 125010).

  11. High-Resolution Subsurface Imaging and Stratigraphy of Quaternary Deposits, Marapanim Estuary, Northern Brazil

    NASA Astrophysics Data System (ADS)

    Silva, C. A.; Souza Filho, P. M.; Gouvea Luiz, J.

    2007-05-01

    The Marapanim estuary is situated in the Para Coastal Plain, North Brazil. It is characterized by an embayed coastline developed on Neogene and Quaternary sediments of the Barreiras and Pos-Barreiras Group. This system is strongly influenced by macrotidal regimes with semidiurnal tides and by humid tropical climate conditions. The interpretation of GPR-reflections presented in this paper is based on correlation of the GPR signal with stratigraphic data acquired on the coastal plain through five cores that were taken along GPR survey lines from the recent deposits and outcrops observed along to the coastal area. The profiles were obtained using a Geophysical Survey Systems Inc., Model YR-2 GPR, with monostatic 700 MHz antenna that permitted to get records of subsurface deposits at 20m depth. Were collected 54 radar sections completing a total of 4.360m. The field data were analyzed using a RADAN software and applying different filters. The interpretation of radar facies following the principles of seismic stratigraphy that permitted analyze the sedimentary facies and facies architecture in order to understand the lithology, depositional environments and stratigraphic evolution of this sedimentary succession as well as to leading to a more precise stratigraphic framework for the Neogene to Quaternary deposits at Marapanim coastal plain. Facies characteristics and sedimentologic analysis (i.e., texture, composition and structure aspects) were investigated from five cores collected through a Rammkernsonde system. The locations were determined using a Global Positioning System. Remote sensing images (Landsat-7 ETM+ and RADARSAT-1 Wide) and SRTM elevation data were used to identify and define the distribution of the different morphologic units. The Coastal Plain extends west-east of the mouth of the Marapanim River, where were identified six morphologic units: paleodune, strand plain, recent coastal dune, macrotidal sandy beach, mangrove and salt marsh. The integration of GPR profiles and stratigraphy data allowed for the recognition of paleochannel geometry, with width of 150m and depth of 20m, developed on Barreiras Group, two discontinuity surfaces and three facies associations organized into sedimentary facies: (i) Tidal channel with mottled sand, Conglomerate with clay pebble and Ophiomorpha/linear Skolithos, channel-fill and tabular cross-bedding sand and sand/mud interlayer facies. (ii) Dune/interdune with wavy bedding and cross-bedding sand and planar bedding and tabular cross-bedding sand facies. (iii) infilled tidal channel with mottled sand, planar/flaser bedding sand, lenticular bedding clay and sand/mud interlayer facies. The present study demonstrates that some facies associations occur restricts to tidal paleochannels and shows features well preserved that are very important to reconstruction of the relative sea-level history in the Marapanim Estuary.

  12. Discriminant function analysis as tool for subsurface geologist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesser, K.

    1987-05-01

    Sedimentary structures such as cross-bedding control porosity, permeability, and other petrophysical properties in sandstone reservoirs. Understanding the distribution of such structures in the subsurface not only aids in the prediction of reservoir properties but also provides information about depositional environments. Discriminant function analysis (DFA) is a simple yet powerful method incorporating petrophysical data from wireline logs, core analyses, or other sources into groups that have been previously defined through direct observation of sedimentary structures in cores. Once data have been classified into meaningful groups, the geologist can predict the distribution of specific sedimentary structures or important reservoir properties in areasmore » where cores are unavailable. DFA is efficient. Given several variables, DFA will choose the best combination to discriminate among groups. The initial classification function can be computed from relatively few observations, and additional data may be included as necessary. Furthermore, DFA provides quantitative goodness-of-fit estimates for each observation. Such estimates can be used as mapping parameters or to assess risk in petroleum ventures. Petrophysical data from the Skinner sandstone of Strauss field in southeastern Kansas tested the ability of DFA to discriminate between cross-bedded and ripple-bedded sandstones. Petroleum production in Strauss field is largely restricted to the more permeable cross-bedded sandstones. DFA based on permeability correctly placed 80% of samples into cross-bedded or ripple-bedded groups. Addition of formation factor to the discriminant function increased correct classifications to 83% - a small but statistically significant gain.« less

  13. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia

    PubMed Central

    Christian, Daniel; Wacey, David; Hazen, Robert M.

    2013-01-01

    Abstract Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago. Key Words: Archean—Biofilms—Microbial mats—Early Earth—Evolution. Astrobiology 13, 1103–1124. PMID:24205812

  14. Marine Stratocumulus Cloud Fields off the Coast of Southern California Observed Using LANDSAT Imagery. Part II: Textural Analysis.

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Sengupta, S. K.; Kuo, K. S.

    1988-04-01

    Statistical measures of the spatial distributions of gray levels (cloud reflectivities) are determined for LANDSAT Multispectral Scanner digital data. Textural properties for twelve stratocumulus cloud fields, seven cumulus fields, and two cirrus fields are examined using the Spatial Gray Level Co-Occurrence Matrix method. The co-occurrence statistics are computed for pixel separations ranging from 57 m to 29 km and at angles of 0°, 45°, 90° and 135°. Nine different textual measures are used to define the cloud field spatial relationships. However, the measures of contrast and correlation appear to be most useful in distinguishing cloud structure.Cloud field macrotexture describes general cloud field characteristics at distances greater than the size of typical cloud elements. It is determined from the spatial asymptotic values of the texture measures. The slope of the texture curves at small distances provides a measure of the microtexture of individual cloud cells. Cloud fields composed primarily of small cells have very steep slopes and reach their asymptotic values at short distances from the origin. As the cells composing the cloud field grow larger, the slope becomes more gradual and the asymptotic distance increases accordingly. Low asymptotic values of correlation show that stratocumulus cloud fields have no large scale organized structure.Besides the ability to distinguish cloud field structure, texture appears to be a potentially valuable tool in cloud classification. Stratocumulus clouds are characterized by low values of angular second moment and large values of entropy. Cirrus clouds appear to have extremely low values of contrast, low values of entropy, and very large values of correlation.Finally, we propose that sampled high spatial resolution satellite data be used in conjunction with coarser resolution operational satellite data to detect and identify cloud field structure and directionality and to locate regions of subresolution scale cloud contamination.

  15. Investigation of carbonate rocks appropriate for the production of natural hydraulic lime binders

    NASA Astrophysics Data System (ADS)

    Triantafyllou, George; Panagopoulos, George; Manoutsoglou, Emmanouil; Christidis, George; Přikryl, Richard

    2014-05-01

    Cement industry is facing growing challenges in conserving materials and conforming to the demanding environmental standards. Therefore, there is great interest in the development, investigation and use of binders alternatives to Portland cement. Natural hydraulic lime (NHL) binders have become nowadays materials with high added value, due to their advantages in various construction applications. Some of them include compatibility, suitability, workability and the versatility in applications. NHL binders are made from limestones which contain sufficient argillaceous or siliceous components fired at relatively low temperatures, with reduction to powder by slaking with or without grinding. This study is focused in developing technology for small-scale production of cementitious binders, combining the knowledge and experience of geologists and mineral resources engineers. The first step of investigation includes field techniques to the study the lithology, texture and sedimentary structure of Neogene carbonate sediments, from various basins of Crete Island, Greece and the construction of 3D geological models, in order to determine the deposits of each different geological formation. Sampling of appropriate quantity of raw materials is crucial for the investigation. Petrographic studies on the basis of the study of grain type, grain size, types of porosity and depositional texture, are necessary to classify effectively industrial mineral raw materials for this kind of application. Laboratory tests should also include the study of mineralogical and chemical composition of the bulk raw materials, as well as the content of insoluble limestone impurities, thus determining the amount of active clay and silica components required to produce binders of different degree of hydraulicity. Firing of the samples in various temperatures and time conditions, followed by X-ray diffraction analysis and slaking rate tests of the produced binders, is essential to insure the beneficiation of their behavior. Beneficiation is defined as the implementation of the best available techniques to insure the production of an economically usable final product which combines both the hydraulicity of the silicates, aluminates and ferrites, as well as the reactivity of the calcium oxide amounts that are present.

  16. Shape preferred orientation of iron grains compatible with Earth's uppermost inner core hemisphericity

    NASA Astrophysics Data System (ADS)

    Calvet, Marie; Margerin, Ludovic

    2018-01-01

    Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.

  17. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.

    2015-06-01

    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  18. Classification of Global Urban Centers Using ASTER Data: Preliminary Results From the Urban Environmental Monitoring Program

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.

    2001-05-01

    Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.

  19. 2D virtual texture on 3D real object with coded structured light

    NASA Astrophysics Data System (ADS)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  20. Investigations on the change of texture of plant cells due to preservative treatments by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Anand, Arun

    2014-10-01

    Texture change is observed in preserved fruits and vegetables. Responsible factors for texture change during preservative treatments are cell morphology, cell wall structure, cell turger, water content and some biochemical components, and also the environmental conditions. Digital Holographic microscopy (DHM) is a quantitative phase contrast imaging technique, which provides three dimensional optical thickness profiles of transparent specimen. Using DHM the morphology of plant cells preserved by refrigeration or stored in vinegar or in sodium chloride can be obtained. This information about the spatio-temporal evolution of optical volume and thickness can be an important tool in area of food processing. Also from the three dimensional images, the texture of the cell can be retrieved and can be investigated under varying conditions.

  1. An adaptive tensor voting algorithm combined with texture spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Su, Qing-tang; Lü, Gao-huan; Zhang, Xiao-feng; Liu, Yu-huan; He, An-zhi

    2015-01-01

    An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.

  2. Tailoring Spin Textures in Complex Oxide Micromagnets

    DOE PAGES

    Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...

    2016-09-12

    Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less

  3. Use of structured surfaces for friction and wear control on bearing surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Ling

    2014-10-01

    Surface texturing with purposely made regular micropatterns on flat or curved surfaces, as opposed to random roughness inherited from machining processes, has attracted significant attention in recent years. At the 2013 World Tribology Congress in Turin alone there were over 40 presentations related to surface texturing for tribological applications, from magnetic hard discs and hydrodynamic bearings to artificial joints. Although surface texturing has been reported being successfully applied in industrial applications such as seals, pistons, and thrust pad bearings, the demand for robust design is still high. Etsion has recently reviewed the modeling research mainly conducted by his group Etsion I (2013 Friction 1 195-209). This paper aims to review the state-of-the-art development of surface texturing made by a wider range of researchers.

  4. Compression of rehydratable vegetables and cereals

    NASA Technical Reports Server (NTRS)

    Burns, E. E.

    1978-01-01

    Characteristics of freeze-dried compressed carrots, such as rehydration, volatile retention, and texture, were studied by relating histological changes to textural quality evaluation, and by determining the effects of storage temperature on freeze-dried compressed carrot bars. Results show that samples compressed with a high moisture content undergo only slight structural damage and rehydrate quickly. Cellular disruption as a result of compression at low moisture levels was the main reason for rehydration and texture differences. Products prepared from carrot cubes having 48% moisture compared favorably with a freshly cooked product in cohesiveness and elasticity, but were found slightly harder and more chewy.

  5. Alga-like forms in onverwacht series, South Africa: Oldest recognized lifelike forms on earth

    USGS Publications Warehouse

    Engel, A.E.J.; Nagy, B.; Nagy, L.A.; Engel, C.G.; Kremp, G.O.W.; Drew, C.M.

    1968-01-01

    Spheroidal and cupshaped, carbonaceous alga-like bodies, as well as filamentous structures and amorphous carbonaceous matter occur in sedimentary rocks of the Onverwacht Series (Swaziland System) in South Africa. The Onverwacht sediments are older than 3.2 eons, and they are probably the oldest, little-altered sedimentary rocks on Earth. The basal Onverwacht sediments lie approximutely 10,000 meters stratigraphically below the Fig Tree sedimentary rocks, from which similar organic microstructures have been interpreted as alga-like micro-fossils. The Onverwacht spheroids and filaments are best preserved in black, carbon-rich cherts and siliceous argillites interlayered with thick sequences of lavas. These lifelike forms and the associated carbonaceous substances are probably biological in origin. If so, the origins of unicellular life on Earth are buried in older rocks now obliterated by igneous and metamorphic events.

  6. Cross-Modal Associations between Sounds and Drink Tastes/Textures: A Study with Spontaneous Production of Sound-Symbolic Words.

    PubMed

    Sakamoto, Maki; Watanabe, Junji

    2016-03-01

    Many languages have a word class whose speech sounds are linked to sensory experiences. Several recent studies have demonstrated cross-modal associations (or correspondences) between sounds and gustatory sensations by asking participants to match predefined sound-symbolic words (e.g., "maluma/takete") with the taste/texture of foods. Here, we further explore cross-modal associations using the spontaneous production of words and semantic ratings of sensations. In the experiment, after drinking liquids, participants were asked to express their taste/texture using Japanese sound-symbolic words, and at the same time, to evaluate it in terms of criteria expressed by adjectives. Because the Japanese language has a large vocabulary of sound-symbolic words, and Japanese people frequently use them to describe taste/texture, analyzing a variety of Japanese sound-symbolic words spontaneously produced to express taste/textures might enable us to explore the mechanism of taste/texture categorization. A hierarchical cluster analysis based on the relationship between linguistic sounds and taste/texture evaluations revealed the structure of sensation categories. The results indicate that an emotional evaluation like pleasant/unpleasant is the primary cluster in gustation. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Performance of linear and nonlinear texture measures in 2D and 3D for monitoring architectural changes in osteoporosis using computer-generated models of trabecular bone

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Raeth, Christoph W.

    2005-04-01

    Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities (high resolution MRI, micro-CT) are capable of depicting structural details of trabecular bone tissue. From the image data, structural properties obtained by quantitative measures are analysed with respect to the presence of osteoporotic fractures of the spine (in-vivo) or correlated with biomechanical strength as derived from destructive testing (in-vitro). Fairly well established are linear structural measures in 2D that are originally adopted from standard histo-morphometry. Recently, non-linear techniques in 2D and 3D based on the scaling index method (SIM), the standard Hough transform (SHT), and the Minkowski Functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. In this contribution, we generate models of trabecular bone with pre-defined structural properties which are exposed to simulated osteoclastic activity. We apply linear and non-linear texture measures to the models and analyse their performance with respect to detecting architectural changes. This study demonstrates, that the texture measures are capable of monitoring structural changes of complex model data. The diagnostic potential varies for the different parameters and is found to depend on the topological composition of the model and initial "bone density". In our models, non-linear texture measures tend to react more sensitively to small structural changes than linear measures. Best performance is observed for the 3rd and 4th Minkowski Functionals and for the scaling index method.

  8. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad

    2010-09-01

    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  9. Mammographic phenotypes of breast cancer risk driven by breast anatomy

    NASA Astrophysics Data System (ADS)

    Gastounioti, Aimilia; Oustimov, Andrew; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina

    2017-03-01

    Image-derived features of breast parenchymal texture patterns have emerged as promising risk factors for breast cancer, paving the way towards personalized recommendations regarding women's cancer risk evaluation and screening. The main steps to extract texture features of the breast parenchyma are the selection of regions of interest (ROIs) where texture analysis is performed, the texture feature calculation and the texture feature summarization in case of multiple ROIs. In this study, we incorporate breast anatomy in these three key steps by (a) introducing breast anatomical sampling for the definition of ROIs, (b) texture feature calculation aligned with the structure of the breast and (c) weighted texture feature summarization considering the spatial position and the underlying tissue composition of each ROI. We systematically optimize this novel framework for parenchymal tissue characterization in a case-control study with digital mammograms from 424 women. We also compare the proposed approach with a conventional methodology, not considering breast anatomy, recently shown to enhance the case-control discriminatory capacity of parenchymal texture analysis. The case-control classification performance is assessed using elastic-net regression with 5-fold cross validation, where the evaluation measure is the area under the curve (AUC) of the receiver operating characteristic. Upon optimization, the proposed breast-anatomy-driven approach demonstrated a promising case-control classification performance (AUC=0.87). In the same dataset, the performance of conventional texture characterization was found to be significantly lower (AUC=0.80, DeLong's test p-value<0.05). Our results suggest that breast anatomy may further leverage the associations of parenchymal texture features with breast cancer, and may therefore be a valuable addition in pipelines aiming to elucidate quantitative mammographic phenotypes of breast cancer risk.

  10. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  11. Quantitative analysis of ultrasonic images of fibrotic liver using co-occurrence matrix based on multi-Rayleigh model

    NASA Astrophysics Data System (ADS)

    Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.

  12. Intrabasement structures as structural templates for rifts: Insights from the Taranaki Basin, offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Collanega, L.; Jackson, C. A. L.; Bell, R. E.; Lenhart, A.; Coleman, A. J.; Breda, A.; Massironi, M.

    2017-12-01

    Intrabasement structures are often envisaged to have acted as structural templates for normal fault growth in the overlying sedimentary cover during rifting (e.g. East African Rift; NE Brazilian Margin; Norwegian North Sea). However, in some settings, the geometry of rift-related faults is apparently unaffected by pre-existing basement fabric (Måløy Slope and Lofoten Ridge, offshore Norway). Understanding the nucleation and propagation of normal faults in the presence of basement structures may elucidate how and under what conditions basement fabric can exert an influence on rifting. Here, we investigate the 3D geometry of a series of normal faults and intrabasement structures from the Taranaki Basin, offshore New Zealand to understand how normal faults grow in the presence of basement heterogeneities. The Taranaki Basin is an ideal setting because the basement structures, related to the Mesozoic compressional tectonics, are shallow and well-imaged on 3D seismic reflection data, and the relatively thin and stratigraphically simple sedimentary cover is only affected by mild Pliocene extension. Our kinematic analysis highlights two classes of normal faults affecting different vertical intervals of the sedimentary cover. Deep faults, just above the basement, strike NW-SE to NE-SW, reflecting the trend of underlying intrabasement structures. In contrast, shallow faults strike according to the NE-SW to NNE-SSW Pliocene trend and are not generally affected by intrabasement structures at distances >500 m above the basement. Deep and shallow faults are only linked when they strike similarly, and are located above strong intrabasement reflections. We infer that cover deformation is significantly influenced by intrabasement structures within the 500 m interval above the crystalline basement, whereas shallower faults are optimally aligned to the Pliocene regional stress field. Since we do not observe an extensional reactivation of intrabasement structures during Pliocene rifting, we suspect that the key factor controlling cover fault nucleation and growth are local stress perturbations due to intrabasement structures. We conclude that intrabasement structures may provide a structural template for subsequent rift episodes, but only when these structures are proximal to newly forming faults.

  13. Micromorphological difference between glacial and glaciofluvial quartz grain, evidence from Svalbard

    NASA Astrophysics Data System (ADS)

    Krbcová, Klára

    2017-04-01

    Micromorphology of glaciofluvial sediments were only partially shown by Mahaney et al. (2001). This paper deals with the main diagnostic textures of glaciofluvial sediments and changes of their micromorphology caused fluvial transport. All samples were collected in Svalbard in August 2012. Two glacial samples and six glaciofluvial samples were taken near the glacier Bertilbreen and one glacial sample and seven glaciofluvial samples were taken near the glacier Hørbyebreen. Samples were prepared according to the Mahaney (2002) and examined under electron microscope. The correlation analyses was used to set the main glaciofluvial microtextures. Similarity of the samples was tested by one-way ANOVA by F-test. Increasing numbers of V-shaped pits, rounded grains, meandering ridges and microblocks are typical for characteristic microtextures of glaciofluvial grains which had greater rate of fluvial transport. But the grains mainly transported by glacier had a greater percentage occurence of subangular grains, straight steps, straight and curved grooves, adhering particles, pitting and V-shaped etch pits. The fastest change in variability was set during the first kilometre of fluvial transport. The study was funded by the Grant Agency of Charles University (GAUK 1314214). Keywords: exoscopy, quartz grains micromorphology, glaciofluvial sediments References: MAHANEY, W. C. (2002): Atlas of sand grain surface textures and applications. Oxford University Press, USA, 237 s. MAHANEY, W. C., STEWART A., KALM, V. (2001): Quantification of SEM microtextures useful in sedimentary environmental discrimination. Boreas, 30, s. 165 - 171.

  14. Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran

    NASA Astrophysics Data System (ADS)

    Rahimpour-Bonab, H.; Kalantarzadeh, Z.

    2005-04-01

    In early Miocene times, an extensive carbonate shelf developed in Central Iran and during several cycles of sea-level fluctuations, evaporite-bearing carbonate sequences of the Qom Formation were deposited. However, in the early-middle Miocene, development of restricted marine conditions led to a facies change from shelf carbonates of the Qom Formation to the evaporite series of the M 1 member of the overlying Lower Red Formation. This member is a facies mosaic of lagoonal and salina evaporites (mainly halite beds) admixed with wadi siliciclastics. The purpose of this study, which focuses on two salt mines in the northwestern portion of Central Iran in the Zanjan province, was to reveal the origin, sedimentary environment, and diagenesis of these potash-bearing evaporite sequences. Petrographic examination revealed the following mineral assemblage: halite, gypsum, anhydrite and carnallite as primary precipitates, and langbeinite and aphthitalite as secondary metamorphic potash salts. In the Iljaq mine, distorted halite beds are dominated by burial and deformational textures and a great deal of secondary potash salts. In the Qarah-Aghaje mine, however, the bedded halite shows pristine primary textures and is devoid of the secondary potash salts. High bromine content of most evaporite minerals suggests their marine origin, and confirms the absence of the extensive meteoric alterations and subsequent bromine depletions. Potash salts are mainly secondary, and resulted from diagenetic replacements of distorted halite beds during thermal and dynamic metamorphism in a burial setting.

  15. Excellent Brightness with Shortening Lifetime of Textured Zn2SiO4:Mn2+ Phosphor Films on Quartz Glass

    NASA Astrophysics Data System (ADS)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Kim, Seongsin Margaret; Kung, Patrick

    2010-04-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor films were fabricated by the thermal diffusion of ZnO:Mn on quartz glass. The Zn2SiO4:Mn2+ phosphor films became textured along several hexagonal directions and their chemical composition was continuously graded at the interface. The decay time of Mn2+ was as short as 4.4 ms, and the optical transition probability of the films defined as the inverse of decay time showed a strong correlation with film texture degree as a function of annealing temperature. The brightest Zn2SiO4:Mn2+ film showed a photoluminescent brightness as high as 65% compared with a commercial Zn2SiO4:Mn2+ phosphor powder screen and a maximum absolute transparency of 70%. These excellent optical properties are explained by the combination of the unique textured structure and continuous grading of the Zn2SiO4:Mn2+ chemical composition at the interface.

  16. Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing.

    PubMed

    Yang, Huijuan; Khan, Muhammad Ammar; Yu, Xiaobo; Zheng, Haibo; Han, Minyi; Xu, Xinglian; Zhou, Guanghong

    2016-11-01

    This study investigated the role of high-pressure processing (HPP) for improving the functional properties of meat batters and the textural properties of reduced-fat sausages. Application of 200MPa pressure at 10°C for 2min to pork batters containing various fat contents (0-30%) affected their rheological properties, cooking losses, color, textual properties and their protein imaging. The results revealed that both application of 200MPa and increasing fat content decreased cooking loss, as well as improved the textural and rheological properties. Cooking losses, texture and sensory evaluation of 200MPa treated sausages having 20% fat were similar to those of the 0.1MPa treated sausages having 30% fat. Principal component analysis revealed that certain quality attributes were affected differently by the levels of fat addition and by HPP. These findings indicated the potential of HPP for improving yield and texture of emulsion-type sausages having reduced fat contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  18. Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Zimin; Zhuo, Yi; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Chengxin; Wang, Gang

    2017-06-01

    Various kinds of materials have been developed as transparent conductors for applications in semiconductor optoelectronic devices. However, there is a bottleneck that transparent conductive materials lose their transparency at ultraviolet (UV) wavelengths and could not meet the demands for commercial UV device applications. In this work, textured indium tin oxide (ITO) is grown and its potential to be used at UV wavelengths is explored. It is observed that the pronounced Burstein-Moss effect could widen the optical bandgap of the textured ITO to 4.7 eV. The average transmittance in UVA (315 nm-400 nm) and UVB (280 nm-315 nm) ranges is as high as 94% and 74%, respectively. The excellent optical property of textured ITO is attributed to its unique structural property. The compatibility of textured ITO thin films to the device fabrication is demonstrated on 368-nm nitride-based light emitting diodes, and the enhancement of light output power by 14.8% is observed compared to sputtered ITO.

  19. Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.

    PubMed

    Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting

    2018-04-01

    Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantification of Microtexture at Weld Nugget of Friction Stir-Welded Carbon Steel

    NASA Astrophysics Data System (ADS)

    Husain, Md M.; Sarkar, R.; Pal, T. K.; Ghosh, M.; Prabhu, N.

    2017-05-01

    Friction stir welding of C-Mn steel was carried out under 800-1400 rpm tool rotation. Tool traversing speed of 50 mm/min remained same for all joints. Effect of thermal state and deformation on texture and microstructure at weld nugget was investigated. Weld nugget consisted of ferrite + bainite/Widmanstatten ferrite with different matrix grain sizes depending on peak temperature. A texture around ( ϕ 2 = 0°, φ = 30°, ϕ 2 = 45°) was developed at weld nugget. Grain boundary misorientation at weld nugget indicated that continuous dynamic recrystallization influenced the development of fine equiaxed grain structure. Pole figures and orientation distribution function were used to determine crystallographic texture at weld nugget and base metal. Shear texture components D1, D2 and F were present at weld nugget. D1 shear texture was more prominent among all. Large number of high-angle grain boundaries ( 60-70%) was observed at weld nugget and was the resultant of accumulation of high amount of dislocation, followed by subgrain formation.

  1. Evidence for Acid-Sulfate Alteration in the Pahrump Hills Region, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Bish, D. L.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Vaniman. D. T.; Chipera, S. J.; hide

    2015-01-01

    The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rock in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September 2014 and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three mudstone samples (targets Confidence Hills, Mojave 2, and Telegraph Peak) to its internal instruments, including the CheMin XRD/XRF.

  2. Geologic map of the Callville Bay Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Anderson, R. Ernest

    2003-01-01

    Report: 139 Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map and four cross sections of the Callville Bay 7-minute quadrangle in Clark County, Nevada and Mohave County, Arizona. An accompanying text describes 21 stratigraphic units of Paleozoic and Mesozoic sedimentary rocks and 40 units of Cenozoic sedimentary, volcanic, and intrusive rocks. It also discusses the structural setting, framework, and history of the quadrangle and presents a model for its tectonic development.

  3. Automatic computational labeling of glomerular textural boundaries

    NASA Astrophysics Data System (ADS)

    Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki

    2017-03-01

    The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.

  4. Extension, sedimentation and diapirism: understanding evolution of diapiric structures in the Central High Atlas using analogue modelling

    NASA Astrophysics Data System (ADS)

    Moragas, Mar; Vergés, Jaume; Nalpas, Thierry; Saura, Eduard; Diego Martín-Martín, Juan; Messager, Grégoire; Hunt, David William

    2017-04-01

    Analogue modelling has proven to be an essential tool for the study and analysis of the mechanisms involved in tectonic processes. Applied to salt tectonics, analogue modelling has been used to understand the mechanisms that trigger the onset of diapirs and the evolution of diapiric structures and minibasins. Analogue modelling has also been applied to analyse the impact of the progradation of sedimentary systems above a ductile layer, representing the source of diapirs. However, these models did not consider ongoing tectonic processes during progradation. To analyse how extension and sedimentary progradation influence on the formation of diapiric structures and their geometries, we present models composed of a mildly extension followed by post-extension period. Each model includes a particular sedimentary pattern: homogeneous sedimentation during extension and post-extension, homogeneous sedimentation during extension followed by prograding sedimentation during post-extension and prograding sedimentation during both extension and post-extension. Proximal high sedimentation rates enhance the mobilization of ductile material towards growing diapirs, resulting well-developed passive diapirs. Diapirs from distal domain of the model with post-extension progradation show silicone extrusions, that are caused by the decreased sedimentation rate associated to the progradation. By contrast, reduced sedimentation in the distal part of the model with syn- and post-extension progradation (3.5 times smaller than in the proximal domain) causes a limited migration of the silicone and hampers the transition from reactive diapirs to active and passive diapirs. These models show that the ratio between diapir growth and sedimentation rate, the time of the onset of the progradation and the relative thickness of the sedimentary cover beneath the prograding system have a clear impact on the final diapiric geometries. Additionally, we present two models with increasing amounts of shortening (6% and 10%). These models show that the presence and location of diapirs clearly controls the distribution of the deformation associated with the inversion, primarily affecting the post-diapiric layers in the vicinities of the salt structures whereas very little deformation occurs away from diapirs. This deformation pattern is observed in the Early to Middle Jurassic Tazoult salt wall and Azourki diapir of the Central High Atlas (Morocco). These structures show that the deformation associated with the Alpine orogeny is focused on the sedimentary units fossilizing the salt structures and mainly localised above them. The presented results provide key information that can be applied to other diapiric structures of the Central High Atlas diapiric basin and similar examples elsewhere. This study was part of a collaborative research project funded by Statoil Research Centre, Bergen (Norway). Additional funding by the CSIC-FSE 2007-2013 JAE-Doc postdoctoral research contract (E.S.), the projects Intramural Especial (CSIC 201330E030) and MITE (CGL 2014-59516). and by the Grup Consolidat de Recerca "Geologia Sedimentària" de la Generalitat de Catalunya (2014GSR251). We are grateful to Statoil for its support and permission to publish this study.

  5. Texton-based analysis of paintings

    NASA Astrophysics Data System (ADS)

    van der Maaten, Laurens J. P.; Postma, Eric O.

    2010-08-01

    The visual examination of paintings is traditionally performed by skilled art historians using their eyes. Recent advances in intelligent systems may support art historians in determining the authenticity or date of creation of paintings. In this paper, we propose a technique for the examination of brushstroke structure that views the wildly overlapping brushstrokes as texture. The analysis of the painting texture is performed with the help of a texton codebook, i.e., a codebook of small prototypical textural patches. The texton codebook can be learned from a collection of paintings. Our textural analysis technique represents paintings in terms of histograms that measure the frequency by which the textons in the codebook occur in the painting (so-called texton histograms). We present experiments that show the validity and effectiveness of our technique for textural analysis on a collection of digitized high-resolution reproductions of paintings by Van Gogh and his contemporaries. As texton histograms cannot be easily be interpreted by art experts, the paper proposes to approaches to visualize the results on the textural analysis. The first approach visualizes the similarities between the histogram representations of paintings by employing a recently proposed dimensionality reduction technique, called t-SNE. We show that t-SNE reveals a clear separation of paintings created by Van Gogh and those created by other painters. In addition, the period of creation is faithfully reflected in the t-SNE visualizations. The second approach visualizes the similarities and differences between paintings by highlighting regions in a painting in which the textural structure of the painting is unusual. We illustrate the validity of this approach by means of an experiment in which we highlight regions in a painting by Monet that are not very "Van Gogh-like". Taken together, we believe the tools developed in this study are well capable of assisting for art historians in support of their study of paintings.

  6. Texture analysis improves level set segmentation of the anterior abdominal wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhoubing; Allen, Wade M.; Baucom, Rebeccah B.

    2013-12-15

    Purpose: The treatment of ventral hernias (VH) has been a challenging problem for medical care. Repair of these hernias is fraught with failure; recurrence rates ranging from 24% to 43% have been reported, even with the use of biocompatible mesh. Currently, computed tomography (CT) is used to guide intervention through expert, but qualitative, clinical judgments, notably, quantitative metrics based on image-processing are not used. The authors propose that image segmentation methods to capture the three-dimensional structure of the abdominal wall and its abnormalities will provide a foundation on which to measure geometric properties of hernias and surrounding tissues and, therefore,more » to optimize intervention.Methods: In this study with 20 clinically acquired CT scans on postoperative patients, the authors demonstrated a novel approach to geometric classification of the abdominal. The authors’ approach uses a texture analysis based on Gabor filters to extract feature vectors and follows a fuzzy c-means clustering method to estimate voxelwise probability memberships for eight clusters. The memberships estimated from the texture analysis are helpful to identify anatomical structures with inhomogeneous intensities. The membership was used to guide the level set evolution, as well as to derive an initial start close to the abdominal wall.Results: Segmentation results on abdominal walls were both quantitatively and qualitatively validated with surface errors based on manually labeled ground truth. Using texture, mean surface errors for the outer surface of the abdominal wall were less than 2 mm, with 91% of the outer surface less than 5 mm away from the manual tracings; errors were significantly greater (2–5 mm) for methods that did not use the texture.Conclusions: The authors’ approach establishes a baseline for characterizing the abdominal wall for improving VH care. Inherent texture patterns in CT scans are helpful to the tissue classification, and texture analysis can improve the level set segmentation around the abdominal region.« less

  7. Transcriptomic insights into citrus segment membrane's cell wall components relating to fruit sensory texture.

    PubMed

    Wang, Xun; Lin, Lijin; Tang, Yi; Xia, Hui; Zhang, Xiancong; Yue, Maolan; Qiu, Xia; Xu, Ke; Wang, Zhihui

    2018-04-23

    During fresh fruit consumption, sensory texture is one factor that affects the organoleptic qualities. Chemical components of plant cell walls, including pectin, cellulose, hemicellulose and lignin, play central roles in determining the textural qualities. To explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture, we performed mRNA-seq analyses of the segment membranes of two citrus cultivars, Shiranui and Kiyomi, with different organoleptic textures. Segment membranes were sampled at two developmental stages of citrus fruit, the beginning and end of the expansion period. More than 3000 differentially expressed genes were identified. The gene ontology analysis revealed that more categories were significantly enriched in 'Shiranui' than in 'Kiyomi' at both developmental stages. In total, 108 significantly enriched pathways were obtained, with most belonging to metabolism. A detailed transcriptomic analysis revealed potential critical genes involved in the metabolism of cell wall structures, for example, GAUT4 in pectin synthesis, CESA1, 3 and 6, and SUS4 in cellulose synthesis, CSLC5, XXT1 and XXT2 in hemicellulose synthesis, and CSE in lignin synthesis. Low levels, or no expression, of genes involved in cellulose and hemicellulose, such as CESA4, CESA7, CESA8, IRX9 and IRX14, confirmed that secondary cell walls were negligible or absent in citrus segment membranes. A chemical component analysis of the segment membranes from mature fruit revealed that the pectin, cellulose and lignin contents, and the segment membrane's weight (% of segment) were greater in 'Kiyomi'. Organoleptic quality of citrus is easily overlooked. It is mainly determined by sensory texture perceived in citrus segment membrane properties. We performed mRNA-seq analyses of citrus segment membranes to explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture. Transcriptomic data showed high repeatability between two independent biological replicates. The expression levels of genes involved in cell wall structure metabolism, including pectin, cellulose, hemicellulose and lignin, were investigated. Meanwhile, chemical component contents of the segment membranes from mature fruit were analyzed. This study provided detailed transcriptional regulatory profiles of different organoleptic citrus qualities and integrated insights into the mechanisms affecting citrus' sensory texture.

  8. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    NASA Astrophysics Data System (ADS)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  9. Texturization of as-cut p-type monocrystalline silicon wafer using different wet chemical solutions

    NASA Astrophysics Data System (ADS)

    Hashmi, Galib; Hasanuzzaman, Muhammad; Basher, Mohammad Khairul; Hoq, Mahbubul; Rahman, Md. Habibur

    2018-06-01

    Implementing texturization process on the monocrystalline silicon substrate reduces reflection and enhances light absorption of the substrate. Thus texturization is one of the key elements to increase the efficiency of solar cell. Considering as-cut monocrystalline silicon wafer as base substrate, in this work different concentrations of Na2CO3 and NaHCO3 solution, KOH-IPA (isopropyl alcohol) solution and tetramethylammonium hydroxide solution with different time intervals have been investigated for texturization process. Furthermore, saw damage removal process was conducted with 10% NaOH solution, 20 wt% KOH-13.33 wt% IPA solution and HF/nitric/acetic acid solution. The surface morphology of saw damage, saw damage removed surface and textured wafer were observed using optical microscope and field emission scanning electron microscopy. Texturization causes pyramidal micro structures on the surface of (100) oriented monocrystalline silicon wafer. The height of the pyramid on the silicon surface varies from 1.5 to 3.2 µm and the inclined planes of the pyramids are acute angle. Contact angle value indicates that the textured wafer's surface fall in between near-hydrophobic to hydrophobic range. With respect to base material absolute reflectance 1.049-0.75% within 250-800 nm wavelength region, 0.1-0.026% has been achieved within the same wavelength region when textured with 0.76 wt% KOH-4 wt% IPA solution for 20 min. Furthermore, an alternative route of using 1 wt% Na2CO3-0.2 wt% NaHCO3 solution for 50 min has been exploited in the texturization process.

  10. Electrophysiological correlates of target eccentricity in texture segmentation.

    PubMed

    Schaffer, Susann; Schubö, Anna; Meinecke, Cristina

    2011-06-01

    Event-related potentials and behavioural performance as a function of target eccentricity were measured while subjects performed a texture segmentation task. Fit-of-structures, i.e. easiness of target detection was varied: in Experiment 1, a texture with peripheral fit (easier detection of peripheral presented targets) and in Experiment 2, a texture with foveal fit (easier detection of foveal presented targets) was used. In the two experiments, the N2p was sensitive to target eccentricity showing larger amplitudes for foveal targets compared to peripheral targets, and at the foveal position, a reversal of the N2p differential amplitude effect was found. The anterior P2 seemed sensitive to the easiness of target detection. In both experiments the N2pc varied as a function of eccentricity. However, the P3 was neither sensitive to target eccentricity nor to the fit-of-structures. Results show the existence of a P2/N2 complex (Potts and Tucker, 2001) indicating executive functions located in the anterior cortex and perceptual processes located in the posterior cortex. Furthermore, the N2p might indicate the existence of a foveal vs. peripheral subsystem in visual processing. 2011 Elsevier B.V. All rights reserved.

  11. Single-Image Super-Resolution Based on Rational Fractal Interpolation.

    PubMed

    Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming

    2018-08-01

    This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.

  12. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddadi, Farid, E-mail: farid.haddadi@gmail.com

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in amore » thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.« less

  13. Effects of addition of hydrocolloids on the textural and structural properties of high-protein intermediate moisture food model systems containing sodium caseinate.

    PubMed

    Li, J; Wu, Y; Ma, Y; Lu, N; Regenstein, J M; Zhou, P

    2017-08-01

    High-protein intermediate moisture food (HPIMF) containing sodium caseinate (NaCN) often gave a harder texture compared with that made from whey proteins or soy proteins, due to the aggregation of protein particles. The objectives of this study were to explore whether the addition of hydrocolloids could soften the texture and illustrate the possible mechanism. Three kinds of hydrocolloids, xanthan gum, κ-carrageenan, and gum arabic were chosen, and samples including of these three kinds of hydrocolloids were studied through texture analysis using a TPA test and microstructure observation by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The texture analysis results showed that xanthan gum was more effective at softening the HPIMF containing NaCN compared to κ-carrageenan and gum arabic. In addition, with the increase of xanthan gum concentration from 0.2 to 2%, the HPIMF matrix became softer, and fractures were observed during the compression for samples with xanthan gum added at low concentrations but not 2%. Microstructure observation suggested that the matrix originally dominated by the network formed through the aggregation of swollen protein particles was inhibited by the addition of xanthan gum, resulting in the softening of the texture and also contributing to the fracture during compression. With the increase of xanthan gum concentration up to 2%, the protein dominating network would be gradually replaced with a matrix dominated by the newly formed network of xanthan gum with protein particles as fillers. Furthermore, this formation of a xanthan gum dominating network structure also resulted in changes in small molecule distribution, as observed using low-field NMR.

  14. Effects of fibre type and structure of longissimus lumborum (Ll), biceps femoris (Bf) and semimembranosus (Sm) deer muscles salting with different Nacl addition on proteolysis index and texture of dry-cured meats.

    PubMed

    Żochowska-Kujawska, J

    2016-11-01

    The aim of the present study was to describe the effect of fibre type and structure as well as NaCl level on the proteolysis index and texture parameters observed in dry-cured meats produced from individual deer muscles. The biceps femoris, semimembranosus and longissimus lumborum muscles were cut from deer main elements, shaped into blocks by trimming off the edges, cured by adding 4, 6 and 8% of salt (w/w) and dried in a ripening chamber for 29days. The results indicated that deer dry-cured muscles with higher percentage of red fibres (type I) showed higher texture parameters, proteolysis index as well as lower moisture losses than muscles with higher amount of white fibres (type IIB). Dry-cured deer muscles with lower NaCl content showed higher values of proteolysis index and lower hardness, cohesiveness, springiness, and chewiness, as well as lower changes in structure elements. Copyright © 2016. Published by Elsevier Ltd.

  15. Sedimentary fabrics of the macrotidal, mud-dominated, inner estuary to fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Shchepetkina, Alina; Gingras, Murray K.; Zonneveld, John-Paul; Pemberton, S. George

    2016-03-01

    The study provides a detailed description of mud-dominated sedimentary fabrics and their application for the rock record within the inner estuary to the fluvial zone of the Petitcodiac River estuary, New Brunswick, Canada. Sedimentological characteristics and facies distributions of the clay- and silt-rich deposits are reported. The inner estuary is characterized by thick accumulations of interbedded silt and silty clay on intertidal banks that flank the tidally influenced channel. The most common sedimentary structures observed are parallel and wavy lamination, small-scale soft-sediment deformation with microfaults, and clay and silt current ripples. The tidal channel contains sandy silt and clayey silt with planar lamination, massive and convolute bedding. The fluvio-tidal transition zone is represented by interbedded trough cross-stratified sand and gravel beds with planar laminated to massive silty mud. The riverine, non-tidal reach of the estuary is characterized by massive, planar tabular and trough cross-stratified gravel-bed deposits. The absence of bioturbation within the inner estuary to the fluvio-tidal transition zone can be explained by the following factors: low water salinities (0-5 ppt), amplified tide and current speeds, and high concentrations of flocculated material in the water body. Notably, downstream in the middle and outer estuary, bioturbation is seasonally pervasive: in those locales the sedimentary conditions are similar, but salinity is higher. In this study, the sedimentological (i.e., grain size, bedding characters, sedimentary structures) differences between the tidal estuary and the fluvial setting are substantial, and those changes occur over only a few hundred meters. This suggests that the widely used concept of an extensive fluvio-tidal transition zone and its depositional character may not be a geographically significant component of fluvial or estuary deposits, which can go unnoticed in the study of the ancient rocks.

  16. Uncertainty in Pedotransfer Functions from Soil Survey Data

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Rawls, W. J.

    2002-05-01

    Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of soil structure to the field-determined textural class gave similar results. No large improvement was achieved probably because textural class, topographic descriptors and structure descriptors were correlated predictors in many cases. Both median values and uncertainty of the saturated hydraulic conductivity had a power-law decrease as clay content increased. Defining two classes of bulk density helped to estimate hydraulic conductivity within textural classes. We conclude that categorical field soil survey data can be used in PTF-based estimating soil water retention and saturated hydraulic conductivity with quantified uncertainty

  17. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  18. Short-Term Effects of Pacifier Texture on NNS in Neurotypical Infants

    PubMed Central

    Oder, Austin L.; Stalling, David L.; Barlow, Steven M.

    2013-01-01

    The dense representation of trigeminal mechanosensitive afferents in the lip vermilion, anterior tongue, intraoral mucosa, and temporomandibular joint allows the infant's orofacial system to encode a wide range of somatosensory experiences during the critical period associated with feed development. Our understanding of how this complex sensorium processes texture is very limited in adults, and the putative role of texture encoding in the infant is unknown. The purpose of this study was to examine the short-term effects of a novel textured pacifier experience in healthy term infants (N = 28). Nonnutritive suck (NNS) compression pressure waveforms were digitized in real time using a variety of custom-molded textured pacifiers varying in spatial array density of touch domes. MANCOVA, adjusted for postmenstrual age at test and sex, revealed that infants exhibited an increase in NNS burst attempts at the expense of a degraded suck burst structure with the textured pacifiers, suggesting that the suck central pattern generator (sCPG) is significantly disrupted and reorganized by this novel orocutaneous experience. The current findings provide new insight into oromotor control as a function of the oral somatosensory environment in neurotypically developing infants. PMID:23737804

  19. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  20. Fold-structure analysis of paleozoic rocks in the Variscan Harz Mountains (Lautenthal, Central Germany) based on laserscanning and 3D modelling

    NASA Astrophysics Data System (ADS)

    Wagner, Bianca; Leiss, Bernd; Stöpler, Ralf; Zahnow, Fabian

    2017-04-01

    Folded paleozoic sedimentary rocks of Upper Devonian to Lower Carboniferous age are very well exposed in the abandoned chert quarry of Lautenthal in the western Harz Mountains. The outcrop represents typical structures of the Rhenohercynian thrust and fold belt of the Variscan orogen and therefore allows quantitative studies for the understanding of e.g. fold mechanisms and the amount of shortening. The sequence is composed of alternating beds of cherts, shales and tuffites, which show varying thicknesses, undulating and thinning out of certain layers. Irregularly occurring lenses of greywackes are interpreted as sedimentary intrusions. The compressive deformation style is expressed by different similar and parallel fold structures at varying scales as well as small-scale reverse faults and triangle structures. An accurate mapping of the outcrop in the classical way is very challenging due to distant and unconnected outcrop parts with differing elevations and orientations. Furthermore, the visibility is limited because of nearby trees, diffuse vegetation cover and no available total view. Therefore, we used a FARO 120 3D laserscanner and Trimble GNSS device to generate a referenced and drawn to scale point cloud of the complete quarry. Based on the point cloud a geometric 3D model of prominent horizons and structural features of various sizes was constructed. Thereafter, we analyzed the structures in matters of orientation and deformation mechanisms. Finally, we applied a retrodeformation algorithm on the model to restore the original sedimentary sequence and to calculate shortening including the amount of pressure solution. Only digital mapping allows such a time-saving, accurate and especially complete 3D survey of this excellent study object. We demonstrated that such 3D-models enable spatial correlations with other complex structures cropping out in the area. Moreover, we confirmed that a structural upscaling to the 100 to 1000 m scale is much easier and much more instructive than it could have been done in the classical way.

  1. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced stresses - with parallel geophysical imaging of the rock mass (and subsequent verification) flow and transport processes, and time-dependent stress and strain. An experimental advantage of sedimentary rock is the presence of pervasive mechanical interfaces (bedding planes), which suggest a host of experimental designs on large rock blocks and slabs (induced flexure, shear strength of interfaces, etc). Thus DUSEL will enable fundamental research about the behavior of a layered rock mass - the dominant structural architecture in near-surface environments worldwide. A further benefit is the natural suitability of sedimentary rocks for experiments related to oil and gas production, or to CO2 sequestration. For example, fluid-induced fracturing of sedimentary rock has long been used by the hydrocarbon industry to improve oil and coal bed methane recovery. Since some fracturing agents are potential contaminants, a major concern and legal responsibility in the US is ensuring the integrity of nearby aquifers. Hydraulic fracturing from a sedimentary rock DUSEL will be followed by injection of low viscosity grout. The rock mass will then be mined back to expose network characteristics of the induced hydraulic fractures. Key questions related to hydrocarbon extraction, CO2 sequestration, waste isolation, and remediation of subsurface contaminants depend critically on the connectivity and architecture of fractures and on coupled thermal, hydrological, mechanical and chemical processes. Fluid flow, particle transport and reaction transport processes are coupled to the stress across fractures, and to thermal, chemical and hydraulic gradients. All can best be studied via large block tests in a subterranean laboratory, ideally in a sedimentary environment.

  2. Crustal structure of Yunnan province, People's Republic of China, from seismic refraction profiles

    USGS Publications Warehouse

    Kan, R.-J.; Hu, H.-X.; Zeng, R.-S.; Mooney, W.D.; McEvilly, T.V.

    1986-01-01

    Seismic refraction, profiles in Yunnan Province, southwestern China, define the crustal structure in an area of active tectonics, on the southern end of the Himalaya-Burma arc. The crustal thickness ranges from 38 to 46 kilometers, and the relatively low mean crustal velocity indicates a crustal composition compatible with normal continental crust and consisting mainly of meta-sedimentary and silicic intrusive rocks, with little mafic or ultramafic component. This composition suggests a crustal evolution involving sedimentary processes on the flank of the Yangtze platform rather than the accretion of oceanic island arcs, as has been proposed. An anomalously low upper-mantle velocity observed on one profile, but not on another at right angles to it may indicate active tectonic processes in the mantle or seismic anisotropy.

  3. Crustal Structure of Yunnan Province, People's Republic of China, from Seismic Refraction Profiles.

    PubMed

    Kan, R J; Hu, H X; Zeng, R S; Mooney, W D; McEvilly, T V

    1986-10-24

    Seismic refraction, profiles in Yunnan Province, southwestern China, define the crustal structure in an area of active tectonics on the southern end of the Himalaya-Burma arc. The crustal thickness ranges from 38 to 46 kilometers, and the relatively low mean crustal velocity indicates a crustal composition compatible with normal continental crust and consisting mainly of meta-sedimentary and silicic intrusive rocks, with little mafic or ultramafic component. This composition suggests a crustal evolution involving sedimentary processes on the flank of the Yangtze platform rather than the accretion of oceanic island arcs, as has been proposed. An anomalously low upper-mantle velocity observed on one profile but not on another at right angles to it may indicate active tectonic processes in the mantle or seismic anisotropy.

  4. SU-F-R-18: Updates to the Computational Environment for Radiological Research for Image Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Aditya P.; Deasy, Joseph O.

    2016-06-15

    Purpose: To present new tools in CERR for Texture Analysis and Visualization. Method: (1) Quantitative Image Analysis: We added the ability to compute Haralick texture features based on local neighbourhood. The Texture features depend on many parameters used in their derivation. For example: (a) directionality, (b) quantization of image, (c) patch-size for the neighborhood, (d) handling of the edge voxels within the region of interest, (e) Averaging co-occurance matrix vs texture features for different directions etc. A graphical user interface was built to set these parameters and then visualize their impact on the resulting texture maps. The entire functionality wasmore » written in Matlab. Array indexing was used to speed up the texture calculation. The computation speed is very competitive with the ITK library. Moreover, our implementation works with multiple CPUs and the computation time can be further reduced by using multiple processor threads. In order to reduce the Haralick texture maps into scalar features, we propose the use of Texture Volume Histograms. This lets users make use of the entire distribution of texture values within the region of interest rather than using just the mean and the standard deviations. (2) Qualitative/Visualization tools: The derived texture maps are stored as a new scan (derived) within CERR’s planC data structure. A display that compares various scans was built to show the raw image and the derived texture maps side-by-side. These images are positionally linked and can be navigated together. CERR’s graphics handling was updated and sped-up to be compatible with the newer Matlab versions. As a result, the users can use (a) different window levels and colormaps for different viewports, (b) click-and-drag or use mouse scroll-wheel to navigate slices. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics and Outcomes modeling.« less

  5. Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.

    2018-05-01

    Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed from non-alluvial/fluvial/colluvial systems. In fact they relate with a marine source. Chronologies on aeolianites of northern Mallorca indicate that up to four periods of aeolian deposition took place during cooling stages and marine regressions over the last 100 kyr. Moreover, the alternation of short warming-cooling fluctuations between the cooling stages may have provided the conditions necessary to generate stormy weather in the western Mediterranean, resulting in aeolian-alluvial interactions. Additionally, the dynamics of this sedimentary environment were only possible because during the Last Glacial Maximum, the sea level remained low enough to allow for the formation of coastal dune fields and fans.

  6. Direct femtosecond laser surface structuring of crystalline silicon at 400 nm

    NASA Astrophysics Data System (ADS)

    Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore

    2018-03-01

    We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.

  7. Adaptation of mastication mechanics and eating behaviour to small differences in food texture.

    PubMed

    Le Révérend, Benjamin; Saucy, Françoise; Moser, Mireille; Loret, Chrystel

    2016-10-15

    Eating behaviour is significantly modified with the consumption of soft or hard textures. However, it is of interest to describe how adaptive is mastication to a narrow range of texture. ElectroMyoGraphy (EMG) and Kinematics of Jaw Movements (KJM) techniques were used simultaneously to follow mastication muscle activity and jaw motion during mastication of seven cereal products. We show that parameters such as the time of chewing activity, the number of chewing cycles, the chewing muscle EMG activity and the volume occupied for each chewing cycle are amongst others significantly different depending on products tested, even though the textural product space investigated is quite narrow (cereal finger foods). In addition, through a time/chewing cycle dependent analysis of the chewing patterns, we demonstrate that different foods follow different breakdown pathways during oral processing, depending on their initial structural properties, as dictated by their formulation and manufacturing process. In particular, we show that mastication behaviour of cereal foods can be partly classified based on the process that is used to generate product internal structure (e.g. baking vs extrusion). To the best of our knowledge, such time dependent analyses have not yet been reported. Those results suggest that it is possible to influence the chewing behaviour by modifying food textures within the same "food family". This opens new possibilities to design foods for specific populations that cannot accomplish specific oral processing tasks. Copyright © 2016. Published by Elsevier Inc.

  8. Geologic influence on induced seismicity: Constraints from potential field data in Oklahoma

    USGS Publications Warehouse

    Shah, Anjana K.; Keller, G. Randy

    2017-01-01

    Recent Oklahoma seismicity shows a regional correlation with increased wastewater injection activity, but local variations suggest that some areas are more likely to exhibit induced seismicity than others. We combine geophysical and drill hole data to map subsurface geologic features in the crystalline basement, where most earthquakes are occurring, and examine probable contributing factors. We find that most earthquakes are located where the crystalline basement is likely composed of fractured intrusive or metamorphic rock. Areas with extrusive rock or thick (>4 km) sedimentary cover exhibit little seismicity, even in high injection rate areas, similar to deep sedimentary basins in Michigan and western North Dakota. These differences in seismicity may be due to variations in permeability structure: within intrusive rocks, fluids can become narrowly focused in fractures and faults, causing an increase in local pore fluid pressure, whereas more distributed pore space in sedimentary and extrusive rocks may relax pore fluid pressure.

  9. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    NASA Astrophysics Data System (ADS)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while keeping a large adatom diffusion length on the film surface. Crystallographic texture evolution in the Gd2O3 films was investigated for different substrate types. At high rates, it was shown that films deposited on different substrates (quartz, silicon, sapphire, and GaN) all had similar theta-2theta diffraction patterns, suggesting that films grew similarly on different substrates due to the low adatom mobility. However, significant differences in texture were observed for films deposited at low rates (< 1 A/s) and high temperature (650°C) on different substrates. For evaluation of in-plane texture in the Gd2O 3 films, pole figure analysis was performed. Mixed phase films deposited at high rates and low temperature showed weak out-of-plane texture and random in-plane texture. Mixed phase films deposited at high temperatures possessed a fiber texture (strong out-of-plane texture), but lacked the necessary adatom mobility to develop in-plane texture. For single phase cubic films grown under low rates of deposition, out-of-plane texture was observed on quartz substrates. However, weak and strong in-plane textures were observed for sapphire and GaN substrates, respectively. The use of ion bombardment resulted in the formation of moderate biaxial texture for films grown on quartz. For films grown on sapphire, a very strong biaxial texture was achieved with ion bombardment which adds additional energy to the system. The effects of processing on the structure, composition, and interfacial chemistry of the Gd2O3 films were investigated. The results showed that films primarily adhered to the Structure-Zone models with a few exceptions. The deviation from the Structure-Zone model was explained by the combined effects of columnar growth, shadowing, and adatom mobility. At low deposition temperatures, decreasing oxygen flow resulted in increased film density due to higher adatom mobility. Films deposited at this temperature were characterized by small (10-15 nm) nanocrystalline grains with some porous disordered regions. The dielectric properties of Si(111)/Gd2O3/Ti/Au MOS capacitors were investigated. Moisture absorption in Gd2O 3 films was found to result in both increased dielectric loss (10x) and inflated dielectric constant values ( 40 %). Heat treatment of the films at 100 °C resulted in outgassing of moisture, reduction in dielectric constant, and excellent frequency dispersion of the dielectric constant over a range of 10 kHz-1 MHz. The effect of film processing on the dielectric constant was systematically investigated. Tuning of the dielectric constant from a value of 11 to a value of 24 was possible by manipulating the structure and crystallographic phase of the material via the processing conditions. Capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics of GaN/AlGaN/Gd2O3/Ti/Au MOS capacitors were investigated. The effects of processing on fixed oxide charge, trapped oxide charge, and density of interface states were evaluated. Single phase cubic films deposited at low rates with near heteroepitaxial growth were shown to have the lowest density of trapped charge. (Abstract shortened by ProQuest.).

  10. Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance

    NASA Astrophysics Data System (ADS)

    Castroviejo, Ricardo; Quesada, Cecilio; Soler, Miguel

    2011-07-01

    The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and Órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, Órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.

  11. Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA)

    NASA Astrophysics Data System (ADS)

    Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud

    2018-01-01

    The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.

  12. A microtremor survey to define the subsoil structure in a mud volcano areas

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; D'Amico, Sebastiano; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano

    2017-04-01

    Mud erupting systems have been observed and studied in different localities on the planet. They are characterized by emissions of fluids and fragmented sedimentary rocks creating large structures with different morphologies. This is mainly due to the presence of clay-bearing strata that can be buoyant in the surrounding regions and over-pressured fluids that facilitate the formation of diapirs through sedimentary rocks. In this study, we investigate the Lusi mud erupting system mainly by using ambient vibration methods. In particular, thickness of the sediments and the body wave velocities have been investigated. Results are integrated with gravimetry and electrical resistivity data in order to locate the main geological discontinuities in the area as well as to reconstruct a 3D model of the buried structure. The approach commonly used for this type of studies is based on the ratio of the horizontal to vertical components of ground motion (HVSR) and on passive array techniques. The HVSR generally enables to recognize peaks that point out to the fundamental frequency of the site, which usually fit quite well the theoretical resonance curves. The combination of HVSR and shear wave velocity, coming from passive array techniques, enables to collect valuable information about the subsurface structures. Here we present new data collected at the mud volcano and sedimentary hosted hydrothermal system sites in order to investigate the depths of the main discontinuities and of the hypothesized hydrocarbon reservoirs. We present the case study of Salse di Nirano (northen Italy), Salinelle (Mt. Etna, Sicily) and Lusi hydrothermal systems (Indonesia). Our results indicate that the ambient vibrations study approach represents a swift and simplified methods that provides quick information on the shallow subsoil structure of the investigated areas.

  13. Electromechanical coupling coefficient k15 of polycrystalline ZnO films with the c-axes lie in the substrate plane.

    PubMed

    Yanagitani, Takahiko; Mishima, Natsuki; Matsukawa, Mami; Watanabe, Yoshiaki

    2007-04-01

    The (1120) textured polycrystalline ZnO films with a high shear mode electromechanical coupling coefficient k15 are obtained by sputter deposition. An over-moded resonator, a layered structure of metal electrode film/(1120) textured ZnO piezoelectric film/metal electrode film/silica glass substrate was used to characterize k15 by a resonant spectrum method. The (1120) textured ZnO piezoelectric films with excellent crystallite c-axis alignment showed an electromechanical coupling coefficient k15 of 0.24. This value was 92% of k15 value in single-crystal (k15 = 0.26).

  14. Relation between textured surface and diffuse reflectance of Cu films

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Angappane, S.

    2018-04-01

    Cu nanostructures namely chevron, slanted and vertical posts deposited on Si substrate by glancing angle deposition (GLAD) technique using DC magnetron sputtering are studied to understand the optical reflectance properties of various textures. The X-ray diffraction analysis confirmed the crystalline nature of the different structures of deposited Cu films. The FESEM images confirmed the formation of chevron, slanted and vertical posts. From the optical reflectance spectra, we found that the reflectance is more for chevron than vertical and slanted posts which have almost the same reflectance over the entire wavelength. The films with chevron texture would find various applications, like, light detector, light trapping, sensors etc.

  15. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  16. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Biaxially textured articles formed by power metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Top