Sample records for th2 cell response

  1. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection

    PubMed Central

    Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten

    2015-01-01

    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512

  2. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection.

    PubMed

    Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten

    2015-03-01

    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.

  3. In vitro generated Th17 cells support the expansion and phenotypic stability of CD4(+)Foxp3(+) regulatory T cells in vivo.

    PubMed

    Zhou, Qiong; Hu, Ya; Howard, O M Zack; Oppenheim, Joost J; Chen, Xin

    2014-01-01

    CD4(+) T cells stimulate immune responses through distinct patterns of cytokine produced by Th1, Th2 or Th17 cells, or inhibit immune responses through Foxp3-expressing regulatory T cells (Tregs). Paradoxically, effector T cells were recently shown to activate Tregs, however, it remains unclear which Th subset is responsible for this effect. In this study, we found that Th17 cells expressed the highest levels of TNF among in vitro generated Th subsets, and most potently promoted expansion and stabilized Foxp3 expression by Tregs when co-transferred into Rag1(-/-) mice. Both TNF and IL-2 produced by Th17 cells contributed to this effect. The stimulatory effect of Th17 cells on Tregs was largely abolished when co-transferred with TNFR2-deficient Tregs. Furthermore, Tregs deficient in TNFR2 also supported a much lower production of IL-17A and TNF expression by co-transferred Th17 cells. Thus, our data indicate that the TNF-TNFR2 pathway plays a crucial role in the reciprocal stimulatory effect of Th17 cells and Tregs. This bidirectional interaction should be taken into account when designing therapy targeting Th17 cells, Tregs, TNF and TNFR2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Absence of Interleukin 1 Receptor–Related T1/St2 Does Not Affect T Helper Cell Type 2 Development and Its Effector Function

    PubMed Central

    Hoshino, Katsuaki; Kashiwamura, Shin-ichiro; Kuribayashi, Kozo; Kodama, Taku; Tsujimura, Tohru; Nakanishi, Kenji; Matsuyama, Tomohiro; Takeda, Kiyoshi; Akira, Shizuo

    1999-01-01

    T1/ST2, an orphan receptor with homology with the interleukin (IL)-1 receptor family, is expressed constitutively and stably on the surface of T helper type 2 (Th2) cells, but not on Th1 cells. T1/ST2 is also expressed on mast cells, which are critical for Th2-mediated effector responses. To evaluate whether T1/ST2 is required for Th2 responses and mast cell function, we have generated T1/ST2-deficient (T1/ST2−/−) mice and examined the roles of T1/ST2. Naive CD4+ T cells isolated from T1/ST2−/− mice developed to Th2 cells in response to IL-4 in vitro. T1/ST2−/− mice showed normal Th2 responses after infection with the helminthic parasite Nippostrongylus brasiliensis as well as in the mouse model of allergen-induced airway inflammation. In addition, differentiation and function of bone marrow–derived cultured mast cells were unaffected. These findings demonstrate that T1/ST2 does not play an essential role in development and function of Th2 cells and mast cells. PMID:10562328

  5. T Follicular Helper Cell Plasticity Shapes Pathogenic T Helper 2 Cell-Mediated Immunity to Inhaled House Dust Mite.

    PubMed

    Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E; Spolski, Rosanne; Leonard, Warren J; León, Beatriz

    2016-02-16

    Exposure to environmental antigens, such as house dust mite (HDM), often leads to T helper 2 (Th2) cell-driven allergic responses. However, the mechanisms underlying the development of these responses are incompletely understood. We found that the initial exposure to HDM did not lead to Th2 cell development but instead promoted the formation of interleukin-4 (IL-4)-committed T follicular helper (Tfh) cells. Following challenge exposure to HDM, Tfh cells differentiated into IL-4 and IL-13 double-producing Th2 cells that accumulated in the lung and recruited eosinophils. B cells were required to expand IL-4-committed Tfh cells during the sensitization phase, but did not directly contribute to disease. Impairment of Tfh cell responses during the sensitization phase or Tfh cell depletion prevented Th2 cell-mediated responses following challenge. Thus, our data demonstrate that Tfh cells are precursors of HDM-specific Th2 cells and reveal an unexpected role of B cells and Tfh cells in the pathogenesis of allergic asthma. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production

    PubMed Central

    Zhu, Jinfang

    2015-01-01

    Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these “type 2 immune response-related” cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed. PMID:26044597

  7. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease.

    PubMed

    Racke, M K; Bonomo, A; Scott, D E; Cannella, B; Levine, A; Raine, C S; Shevach, E M; Röcken, M

    1994-11-01

    The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

  8. Allergic TH2 Response Governed by B-Cell Lymphoma 6 Function in Naturally Occurring Memory Phenotype CD4+ T Cells

    PubMed Central

    Ogasawara, Takashi; Kohashi, Yuko; Ikari, Jun; Taniguchi, Toshibumi; Tsuruoka, Nobuhide; Watanabe-Takano, Haruko; Fujimura, Lisa; Sakamoto, Akemi; Hatano, Masahiko; Hirata, Hirokuni; Fukushima, Yasutsugu; Fukuda, Takeshi; Kurasawa, Kazuhiro; Tatsumi, Koichiro; Tokuhisa, Takeshi; Arima, Masafumi

    2018-01-01

    Transcriptional repressor B-cell lymphoma 6 (Bcl6) appears to regulate TH2 immune responses in allergies, but its precise role is unclear. We previously reported that Bcl6 suppressed IL-4 production in naïve CD4+ T cell-derived memory TH2 cells. To investigate Bcl6 function in allergic responses in naturally occurring memory phenotype CD4+ T (MPT) cells and their derived TH2 (MPTH2) cells, Bcl6-manipulated mice, highly conserved intron enhancer (hcIE)-deficient mice, and reporter mice for conserved noncoding sequence 2 (CNS2) 3′ distal enhancer region were used to elucidate Bcl6 function in MPT cells. The molecular mechanisms of Bcl6-mediated TH2 cytokine gene regulation were elucidated using cellular and molecular approaches. Bcl6 function in MPT cells was determined using adoptive transfer to naïve mice, which were assessed for allergic airway inflammation. Bcl6 suppressed IL-4 production in MPT and MPTH2 cells by suppressing CNS2 enhancer activity. Bcl6 downregulated Il4 expression in MPTH2 cells, but not MPT cells, by suppressing hcIE activity. The inhibitory functions of Bcl6 in MPT and MPTH2 cells attenuated allergic responses. Bcl6 is a critical regulator of IL-4 production by MPT and MPTH2 cells in TH2 immune responses related to the pathogenesis of allergies. PMID:29696026

  9. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization

    USDA-ARS?s Scientific Manuscript database

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10+ cells. Eight healthy subjects were given a TT booster vacci...

  10. Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation.

    PubMed

    Peine, Michael; Rausch, Sebastian; Helmstetter, Caroline; Fröhlich, Anja; Hegazy, Ahmed N; Kühl, Anja A; Grevelding, Christoph G; Höfer, Thomas; Hartmann, Susanne; Löhning, Max

    2013-01-01

    Differentiated T helper (Th) cell lineages are thought to emerge from alternative cell fate decisions. However, recent studies indicated that differentiated Th cells can adopt mixed phenotypes during secondary immunological challenges. Here we show that natural primary immune responses against parasites generate bifunctional Th1 and Th2 hybrid cells that co-express the lineage-specifying transcription factors T-bet and GATA-3 and co-produce Th1 and Th2 cytokines. The integration of Th1-promoting interferon (IFN)-γ and interleukin (IL)-12 signals together with Th2-favoring IL-4 signals commits naive Th cells directly and homogeneously to the hybrid Th1/2 phenotype. Specifically, IFN-γ signals are essential for T-bet(+)GATA-3(+) cells to develop in vitro and in vivo by breaking the dominance of IL-4 over IL-12 signals. The hybrid Th1/2 phenotype is stably maintained in memory cells in vivo for months. It resists reprogramming into classic Th1 or Th2 cells by Th1- or Th2-promoting stimuli, which rather induce quantitative modulations of the combined Th1 and Th2 programs without abolishing either. The hybrid phenotype is associated with intermediate manifestations of both Th1 and Th2 cell properties. Consistently, hybrid Th1/2 cells support inflammatory type-1 and type-2 immune responses but cause less immunopathology than Th1 and Th2 cells, respectively. Thus, we propose the self-limitation of effector T cells based on the stable cell-intrinsic balance of two opposing differentiation programs as a novel concept of how the immune system can prevent excessive inflammation.

  11. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization.

    PubMed

    Livingston, Kimberly A; Jiang, Xiaowen; Stephensen, Charles B

    2013-04-30

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10(+) cells. Eight healthy subjects were given a TT booster vaccination. Blood was drawn before, 3, 7, 14, and 28days after vaccination and peripheral blood mononuclear cells (PBMC) were cultured for 7days with TT, negative control (diluent), and a positive control (Staphylococcus enterotoxin B [SEB]). Activation markers (CD25 and CD69) were measured after 44h (n=8), cytokines in supernatant after 3 and 7days, and intracellular cytokine staining (ICS) of proliferated cells (identified by dye dilution) after 7days (n=6). Vaccination increased TT-specific expression of CD25 and CD69 on CD3(+)CD4(+) lymphocytes, and TT-specific proliferation at 7, 14 and 28days post vaccination. Vaccination induced TT-specific Th1 (IFN-γ, TNF-α, and IL-2) Th2 (IL-13, IL-5, and IL-4), Th17 (IL-17A) and IL-10(+) cells as measured by ICS. TT-specific Th1 cells were the most abundant (12-15% of all TT-specific CD4(+) T-cells) while IL10(+) (1.8%) Th17 (1.1%) and Th2 cells (0.2-0.6%) were less abundant. TT-specific cytokine concentrations in PBMC supernatants followed the same pattern where a TT-specific IL-9 response was also seen. In conclusion, TT booster vaccination induced a broad T-helper cell response. This method of evaluating cytokine phenotypes may be useful in examining the impact of nutrition and environmental conditions on the plasticity of T-helper cell memory responses. Published by Elsevier B.V.

  12. Estradiol Enhances CD4+ T-Cell Anti-Viral Immunity by Priming Vaginal DCs to Induce Th17 Responses via an IL-1-Dependent Pathway

    PubMed Central

    Anipindi, Varun C.; Dizzell, Sara E.; Nguyen, Philip V.; Shaler, Christopher R.; Chu, Derek K.; Jiménez-Saiz, Rodrigo; Liang, Hong; Swift, Stephanie; Nazli, Aisha; Kafka, Jessica K.; Bramson, Jonathan; Xing, Zhou; Jordana, Manel; Wan, Yonghong; Snider, Denis P.; Stampfli, Martin R.; Kaushic, Charu

    2016-01-01

    Clinical and experimental studies have shown that estradiol (E2) confers protection against HIV and other sexually transmitted infections. Here, we investigated the underlying mechanism. Better protection in E2-treated mice, immunized against genital HSV-2, coincided with earlier recruitment and higher proportions of Th1 and Th17 effector cells in the vagina post-challenge, compared to placebo-treated controls. Vaginal APCs isolated from E2-treated mice induced 10-fold higher Th17 and Th1 responses, compared to APCs from progesterone-treated, placebo-treated, and estradiol-receptor knockout mice in APC-T cell co-cultures. CD11c+ DCs in the vagina were the predominant APC population responsible for priming these Th17 responses, and a potent source of IL-6 and IL-1β, important factors for Th17 differentiation. Th17 responses were abrogated in APC-T cell co-cultures containing IL-1β KO, but not IL-6 KO vaginal DCs, showing that IL-1β is a critical factor for Th17 induction in the genital tract. E2 treatment in vivo directly induced high expression of IL-1β in vaginal DCs, and addition of IL-1β restored Th17 induction by IL-1β KO APCs in co-cultures. Finally, we examined the role of IL-17 in anti-HSV-2 memory T cell responses. IL-17 KO mice were more susceptible to intravaginal HSV-2 challenge, compared to WT controls, and vaginal DCs from these mice were defective at priming efficient Th1 responses in vitro, indicating that IL-17 is important for the generation of efficient anti-viral memory responses. We conclude that the genital mucosa has a unique microenvironment whereby E2 enhances CD4+ T cell anti-viral immunity by priming vaginal DCs to induce Th17 responses through an IL-1-dependent pathway. PMID:27148737

  13. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation.

    PubMed

    Hansen, G; Berry, G; DeKruyff, R H; Umetsu, D T

    1999-01-01

    Allergic asthma, which is present in as many as 10% of individuals in industrialized nations, is characterized by chronic airway inflammation and hyperreactivity induced by allergen-specific Th2 cells secreting interleukin-4 (IL-4) and IL-5. Because Th1 cells antagonize Th2 cell functions, it has been proposed that immune deviation toward Th1 can protect against asthma and allergies. Using an adoptive transfer system, we assessed the roles of Th1, Th2, and Th0 cells in a mouse model of asthma and examined the capacity of Th1 cells to counterbalance the proasthmatic effects of Th2 cells. Th1, Th2, and Th0 lines were generated from ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice and transferred into lymphocyte-deficient, OVA-treated severe combined immunodeficiency (SCID) mice. OVA-specific Th2 and Th0 cells induced significant airway hyperreactivity and inflammation. Surprisingly, Th1 cells did not attenuate Th2 cell-induced airway hyperreactivity and inflammation in either SCID mice or in OVA-immunized immunocompetent BALB/c mice, but rather caused severe airway inflammation. These results indicate that antigen-specific Th1 cells may not protect or prevent Th2-mediated allergic disease, but rather may cause acute lung pathology. These findings have significant implications with regard to current therapeutic goals in asthma and allergy and suggest that conversion of Th2-dominated allergic inflammatory responses into Th1-dominated responses may lead to further problems.

  14. Effector and central memory T helper 2 cells respond differently to peptide immunotherapy

    PubMed Central

    Mackenzie, Karen J.; Nowakowska, Dominika J.; Leech, Melanie D.; McFarlane, Amanda J.; Wilson, Claire; Fitch, Paul M.; O’Connor, Richard A.; Howie, Sarah E. M.; Schwarze, Jürgen; Anderton, Stephen M.

    2014-01-01

    Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62Llo) and central memory (CD62Lhi) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62Lhi and CD62Llo Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4+ T cells to PIT. Most notably, allergen-reactive CD62Llo Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62Lhi Th2 cells. Despite this, PIT was most potent against CD62Llo Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62Lhi Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios. PMID:24516158

  15. Adoptive Transfer of Tumor-Specific Th2 Cells Eradicates Tumors by Triggering an In Situ Inflammatory Immune Response.

    PubMed

    Lorvik, Kristina Berg; Hammarström, Clara; Fauskanger, Marte; Haabeth, Ole Audun Werner; Zangani, Michael; Haraldsen, Guttorm; Bogen, Bjarne; Corthay, Alexandre

    2016-12-01

    Adoptive cell therapy (ACT) trials to date have focused on transfer of autologous tumor-specific cytotoxic CD8 + T cells; however, the potential of CD4 + T helper (Th) cells for ACT is gaining interest. While encouraging results have been reported with IFNγ-producing Th1 cells, tumor-specific Th2 cells have been largely neglected for ACT due to their reported tumor-promoting properties. In this study, we tested the efficacy of idiotype-specific Th2 cells for the treatment of mice with MHC class II-negative myeloma. Th2 ACT efficiently eradicated subcutaneous myeloma in an antigen-specific fashion. Transferred Th2 cells persisted in vivo and conferred long-lasting immunity. Cancer eradication mediated by tumor-specific Th2 cells did not require B cells, natural killer T cells, CD8 + T cells, or IFNγ. Th2 ACT was also curative against B-cell lymphoma. Upon transfer, Th2 cells induced a type II inflammation at the tumor site with massive infiltration of M2-type macrophages producing arginase. In vivo blockade of arginase strongly inhibited Th2 ACT, consistent with a key role of arginase and M2 macrophages in myeloma elimination by Th2 cells. These results illustrate that cancer eradication may be achieved by induction of a tumor-specific Th2 inflammatory immune response at the tumor site. Thus, ACT with tumor-specific Th2 cells may represent a highly efficient immunotherapy protocol against cancer. Cancer Res; 76(23); 6864-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Interleukin-4 production by Follicular Helper T cells requires the conserved Il4 enhancer HS V

    PubMed Central

    Vijayanand, Pandurangan; Seumois, Grégory; Simpson, Laura J.; Abdul-Wajid, Sarah; Baumjohann, Dirk; Panduro, Marisella; Huang, Xiaozhu; Interlandi, Jeneen; Djuretic, Ivana M.; Brown, Daniel R.; Sharpe, Arlene H.; Rao, Anjana; Ansel, K. Mark

    2012-01-01

    SUMMARY Follicular helper T cells (Tfh cells) are the major producers of interleukin-4 (IL-4) in secondary lymphoid organs where humoral immune responses develop. Il4 regulation in Tfh cells appears distinct from the classical T helper 2 (Th2) cell pathway, but the underlying molecular mechanisms remain largely unknown. We found that HS V (also known as CNS2), a 3’ enhancer in the Il4 locus, is essential for IL-4 production by Tfh cells. Mice lacking HS V display marked defects in Th2 humoral immune responses, as evidenced by abrogated IgE and sharply reduced IgG1 production in vivo. In contrast, effector Th2 cells that are involved in tissue responses were far less dependent on HS V. HS V facilitated removal of repressive chromatin marks during Th2 and Tfh cell differentiation, and increased accessibility of the Il4 promoter. Thus Tfh and Th2 cells utilize distinct but overlapping molecular mechanisms to regulate Il4, a finding with important implications for understanding the molecular basis of Th2 mediated allergic diseases. PMID:22326582

  17. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.

    PubMed

    Chen, Qin; Shine, H David

    2013-10-01

    Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord. Copyright © 2013 Wiley Periodicals, Inc.

  18. Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo.

    PubMed

    Ulges, Alexander; Klein, Matthias; Reuter, Sebastian; Gerlitzki, Bastian; Hoffmann, Markus; Grebe, Nadine; Staudt, Valérie; Stergiou, Natascha; Bohn, Toszka; Brühl, Till-Julius; Muth, Sabine; Yurugi, Hajime; Rajalingam, Krishnaraj; Bellinghausen, Iris; Tuettenberg, Andrea; Hahn, Susanne; Reißig, Sonja; Haben, Irma; Zipp, Frauke; Waisman, Ari; Probst, Hans-Christian; Beilhack, Andreas; Buchou, Thierry; Filhol-Cochet, Odile; Boldyreff, Brigitte; Breloer, Minka; Jonuleit, Helmut; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias

    2015-03-01

    The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the β-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.

  19. B cell function in the immune response to helminths

    PubMed Central

    Harris, Nicola

    2010-01-01

    Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556

  20. STAT4 Deficiency Fails To Induce Lung Th2 or Th17 Immunity following Primary or Secondary Respiratory Syncytial Virus (RSV) Challenge but Enhances the Lung RSV-Specific CD8+ T Cell Immune Response to Secondary Challenge

    PubMed Central

    Dulek, Daniel E.; Newcomb, Dawn C.; Toki, Shinji; Goliniewska, Kasia; Cephus, Jacqueline; Reiss, Sara; Bates, John T.; Crowe, James E.; Boyd, Kelli L.; Moore, Martin L.; Zhou, Weisong

    2014-01-01

    ABSTRACT Immune-mediated lung injury is a hallmark of lower respiratory tract illness caused by respiratory syncytial virus (RSV). STAT4 plays a critical role in CD4+ Th1 lineage differentiation and gamma interferon (IFN-γ) protein expression by CD4+ T cells. As CD4+ Th1 differentiation is associated with negative regulation of CD4+ Th2 and Th17 differentiation, we hypothesized that RSV infection of STAT4−/− mice would result in enhanced lung Th2 and Th17 inflammation and impaired lung Th1 inflammation compared to wild-type (WT) mice. We performed primary and secondary RSV challenges in WT and STAT4−/− mice and used STAT1−/− mice as a positive control for the development of RSV-specific lung Th2 and Th17 inflammation during primary challenge. Primary RSV challenge of STAT4−/− mice resulted in decreased T-bet and IFN-γ expression levels in CD4+ T cells compared to those of WT mice. Lung Th2 and Th17 inflammation did not develop in primary RSV-challenged STAT4−/− mice. Decreased IFN-γ expression by NK cells, CD4+ T cells, and CD8+ T cells was associated with attenuated weight loss and enhanced viral clearance with primary challenge in STAT4−/− mice compared to WT mice. Following secondary challenge, WT and STAT4−/− mice also did not develop lung Th2 or Th17 inflammation. In contrast to primary challenge, secondary RSV challenge of STAT4−/− mice resulted in enhanced weight loss, an increased lung IFN-γ expression level, and an increased lung RSV-specific CD8+ T cell response compared to those of WT mice. These data demonstrate that STAT4 regulates the RSV-specific CD8+ T cell response to secondary infection but does not independently regulate lung Th2 or Th17 immune responses to RSV challenge. IMPORTANCE STAT4 is a protein critical for both innate and adaptive immune responses to viral infection. Our results show that STAT4 regulates the immune response to primary and secondary challenge with RSV but does not restrain RSV-induced lung Th2 or Th17 immune responses. These findings suggest that STAT4 expression may influence lung immunity and severity of illness following primary and secondary RSV infections. PMID:24920804

  1. Increased Th1 and Th2 allergen-induced cytokine responses in children with atopic disease.

    PubMed

    Smart, J M; Kemp, A S

    2002-05-01

    Polyclonal cytokine responses following stimulation of T cells with mitogens or superantigens provides information on cytokine production from a wide range of T cells. Alternatively allergen-induced T cell responses can provide information on cytokine production by allergen-reactive T cells. While there is evidence of increased Th2 and reduced Th1 cytokine production following T cell stimulation with non-specific mitogens and superantigens, the evidence that Th1 cytokine production to allergens is decreased in line with a postulated imbalance in Th1/Th2 responses is unclear, with studies finding decreased, no difference or increased IFN-gamma responses to allergens in atopic subjects. To examine childhood polyclonal and allergen-induced cytokine responses in parallel to evaluate cytokine imbalances in childhood atopic disease. PBMC cytokine responses were examined in response to a polyclonal stimulus, staphylococcal superantigen (SEB), in parallel with two inhalant allergens, house dust mite (HDM) and rye grass pollen (RYE), and an ingested allergen, ovalbumin (OVA), in (a) 35 healthy children (non-atopic) and (b) 36 children with atopic disease (asthma, eczema and/or rhinitis) (atopic). Atopic children had significantly reduced IFN-gamma and increased IL-4 and IL-5 but not IL13 production to SEB superantigen stimulation when compared with non-atopic children. HDM and RYE allergens stimulated significantly increased IFN-gamma, IL-5 and IL-13, while OVA stimulated significantly increased IFN-gamma production in atopic children. We show that a polyclonal stimulus induces a reduced Th1 (IFN-gamma) and increased Th2 (IL-4 and IL-5) cytokine pattern. In contrast, the allergen-induced cytokine responses in atopic children were associated with both increased Th1 (INF-gamma) and Th2 (IL-5 and IL-13) cytokine production. The increased Th1 response to allergen is likely to reflect prior sensitization and indicates that increases in both Th1 and Th2 cytokine production to allergens exists concomitantly with a decreased Th1 response to a polyclonal stimulus in atopic children.

  2. CD4+ T-cell clones obtained from cattle chronically infected with Fasciola hepatica and specific for adult worm antigen express both unrestricted and Th2 cytokine profiles.

    PubMed Central

    Brown, W C; Davis, W C; Dobbelaere, D A; Rice-Ficht, A C

    1994-01-01

    The well-established importance of helper T (Th)-cell subsets in immunity and immunoregulation of many experimental helminth infections prompted a detailed study of the cellular immune response against Fasciola hepatica in the natural bovine host. T-cell lines established from two cattle infected with F. hepatica were characterized for the expression of T-cell surface markers and proliferative responses against F. hepatica adult worm antigen. Parasite-specific T-cell lines contained a mixture of CD4+, CD8+, and gamma/delta T-cell-receptor-bearing T cells. However, cell lines containing either fewer than 10% CD8+ T cells or depleted of gamma/delta T cells proliferated vigorously against F. hepatica antigen, indicating that these T-cell subsets are not required for proliferative responses in vitro. Seventeen F. hepatica-specific CD4+ Th-cell clones were examined for cytokine expression following concanavalin A stimulation. Biological assays to measure interleukin-2 (IL-2) or IL-4, gamma interferon (IFN-gamma), and tumor necrosis factor and Northern (RNA) blot analysis to verify the expression of IL-2, IL-4, and IFN-gamma revealed that the Th-cell clones expressed a spectrum of cytokine profiles. Several Th-cell clones were identified as Th2 cells by the strong expression of IL-4 but little or no IL-2 or IFN-gamma mRNA. The majority of Th-cell clones were classified as Th0 cells by the expression of either all three cytokines or combinations of IL-2 and IL-4 or IL-4 and IFN-gamma. No Th1-cell clones were obtained. All of the Th-cell clones expressed a typical memory cell surface phenotype, characterized as CD45Rlow, and all expressed the lymph node homing receptor (L selectin). These results are the first to describe cytokine responses of F. hepatica-specific T cells obtained from infected cattle and extend our previous analysis of Th0 and Th1 cells from cattle immune to Babesia bovis (W. C. Brown, V. M. Woods, D. A. E. Dobbelaere, and K. S. Logan, Infect. Immun. 61:3273-3281, 1993) to include F. hepatica-specific Th2 cells. Images PMID:7509319

  3. Modulation of IL-33/ST2-TIR and TLR signalling pathway by fingolimod and analogues in immune cells.

    PubMed

    Rüger, K; Ottenlinger, F; Schröder, M; Zivković, A; Stark, H; Pfeilschifter, J M; Radeke, H H

    2014-12-01

    For the immune modulatory drug fingolimod (FTY720), lymphocyte sequestration has been extensively studied and accepted as mode of action. Further, direct effects on immune cell signalling are incompletely understood. Herein, we used the parent drug and newly synthesized analogues to investigate their effects on dendritic cell (DC) calcium signalling and on Th1, Th2 and Th17 responses. DC calcium signalling was determined with a single cell-based confocal assay and IL-33/ST2-TIR Th2-like response with ST2-transduced EL4-6.1 thymoma cells. The Th1/Th17 responses were examined with a LPS/TLR-enhanced antigen presentation assay with OVA-TCRtg CD4 and CD8 spleen cells. Our results revealed a comparable influence of fingolimod and S1P on intracellular calcium level in DC, while an oxy-derivative of fingolimod exhibited an EC50 of 3.3 nm, being 14 times more potent than FTY720-P. The IL-33/ST2-TIR Th2-like response in ST2-EL4 cells was inhibited by fingolimod and analogues at varying degrees. Using the OVA-TCRtg LPS/TLR-enhanced spleen cell assay, we found that fingolimod inhibited both IL-17 and IFN-γ production. In contrast, fingolimod phosphate failed to decrease Th1 cytokines. Interestingly, the effects of the parent compound fingolimod were modulated by the PP2A inhibitor okadaic acid, thus suggesting PP2A as relevant intracellular target. These studies describe detailed immune-modulating properties of fingolimod, including interference with a prototypical Th2 response via IL-33/ST2-TIR. Moreover, differential effects of fingolimod versus its phosphorylated derivative on TLR-activated and antigen-dependent Th1 activation suggest PP2A as an additional target of fingolimod immune therapy. Together with the analogues tested, these data may guide the development of more specific fingolimod derivatives. © 2014 John Wiley & Sons Ltd.

  4. Overcoming dendritic cell tardiness to triumph over IL-13 receptor: a strategy for the development of effective pediatric vaccines.

    PubMed

    Hoeman, Christine; Dhakal, Mermagya; Zaghouani, Habib

    2010-06-01

    Neonatal exposure to antigen gives rise to a primary response comprising both T helper 1 (Th1) and T helper 2 (Th2) lymphocytes. However, re-encounter with the same antigen yields an indubitably biased response with minimal Th1 but excessive Th2 cells. Since Th1 cells combat microbes while Th2 cells react to allergens, the neonate faces susceptibility to both microbial infections and allergic reactions. The Th1/Th2 imbalance of neonatal immunity stems from a delayed maturation of dendritic cells that yields limited IL-12 cytokine during the neonatal stage. Th1 cells developing under these circumstances up-regulate the IL-13Ralpha1 chain that physically associates with the IL-4Ralpha chain, forming a potentially hazardous heteroreceptor. During re-challenge with antigen, IL-4 from Th2 cells utilizes the heteroreceptor to signal the death of Th1 cells, leading to the Th2 bias of neonatal immunity. Our view to overcome Th1 deficiency is to supplement neonatal immunizations with toll-like receptor ligands that could stimulate maturation of dendritic cells and augment IL-12 production to counter IL-13Ralpha1 up-regulation. This regimen would yield Th1 cells devoid of the heteroreceptor and resistant to IL-4-induced apoptosis. Accordingly, the neonate would have balanced Th1/Th2 immunity and withstand both microbes and allergens. Such approaches could open new avenues for better pediatric vaccines and allergy therapies.

  5. Anti-HER2 CD4(+) T-helper type 1 response is a novel immune correlate to pathologic response following neoadjuvant therapy in HER2-positive breast cancer.

    PubMed

    Datta, Jashodeep; Berk, Erik; Xu, Shuwen; Fitzpatrick, Elizabeth; Rosemblit, Cinthia; Lowenfeld, Lea; Goodman, Noah; Lewis, David A; Zhang, Paul J; Fisher, Carla; Roses, Robert E; DeMichele, Angela; Czerniecki, Brian J

    2015-05-23

    A progressive loss of circulating anti-human epidermal growth factor receptor-2/neu (HER2) CD4(+) T-helper type 1 (Th1) immune responses is observed in HER2(pos)-invasive breast cancer (IBC) patients relative to healthy controls. Pathologic complete response (pCR) following neoadjuvant trastuzumab and chemotherapy (T + C) is associated with decreased recurrence and improved prognosis. We examined differences in anti-HER2 Th1 responses between pCR and non-pCR patients to identify modifiable immune correlates to pathologic response following neoadjuvant T + C. Anti-HER2 Th1 responses in 87 HER2(pos)-IBC patients were examined using peripheral blood mononuclear cells pulsed with 6 HER2-derived class II peptides via IFN-γ ELISPOT. Th1 response metrics were anti-HER2 responsivity, repertoire (number of reactive peptides), and cumulative response across 6 peptides (spot-forming cells [SFC]/10(6) cells). Anti-HER2 Th1 responses of non-pCR patients (n = 4) receiving adjuvant HER2-pulsed type 1-polarized dendritic cell (DC1) vaccination were analyzed pre- and post-immunization. Depressed anti-HER2 Th1 responses observed in treatment-naïve HER2(pos)-IBC patients (n = 22) did not improve globally in T + C-treated HER2(pos)-IBC patients (n = 65). Compared with adjuvant T + C receipt, neoadjuvant T + C - utilized in 61.5 % - was associated with higher anti-HER2 Th1 repertoire (p = 0.048). While pCR (n = 16) and non-pCR (n = 24) patients did not differ substantially in demographic/clinical characteristics, pCR patients demonstrated dramatically higher anti-HER2 Th1 responsivity (94 % vs. 33 %, p = 0.0002), repertoire (3.3 vs. 0.3 peptides, p < 0.0001), and cumulative response (148.2 vs. 22.4 SFC/10(6), p < 0.0001) versus non-pCR patients. After controlling for potential confounders, anti-HER2 Th1 responsivity remained independently associated with pathologic response (odds ratio 8.82, p = 0.016). This IFN-γ(+) immune disparity was mediated by anti-HER2 CD4(+)T-bet(+)IFN-γ(+) (i.e., Th1) - not CD4(+)GATA-3(+)IFN-γ(+) (i.e., Th2) - phenotypes, and not attributable to non-pCR patients' immune incompetence, host-level T-cell anergy, or increased immunosuppressive populations. In recruited non-pCR patients, anti-HER2 Th1 repertoire (3.7 vs. 0.5, p = 0.014) and cumulative response (192.3 vs. 33.9 SFC/10(6), p = 0.014) improved significantly following HER2-pulsed DC1 vaccination. Anti-HER2 CD4(+) Th1 response is a novel immune correlate to pathologic response following neoadjuvant T + C. In non-pCR patients, depressed Th1 responses are not immunologically "fixed" and can be restored with HER2-directed Th1 immune interventions. In such high-risk patients, combining HER2-targeted therapies with strategies to boost anti-HER2 Th1 immunity may improve outcomes and mitigate recurrence.

  6. T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses

    PubMed Central

    Tarasenko, Tatyana; Kole, Hemanta K.; Chi, Anthony W.; Mentink-Kane, Margaret M.; Wynn, Thomas A.; Bolland, Silvia

    2007-01-01

    The 5′-phosphoinositol phosphatase SHIP negatively regulates signaling pathways triggered by antigen, cytokine and Fc receptors in both lymphocytes and myeloid cells. Mice with germ-line (null) deletion of SHIP develop a myeloproliferative-like syndrome that causes early lethality. Lymphocyte anomalies have been observed in SHIP-null mice, but it is unclear whether they are due to an intrinsic requirement of SHIP in these cells or a consequence of the severe myeloid pathology. To precisely address the function of SHIP in T cells, we have generated mice with T cell-specific deletion of SHIP. In the absence of SHIP, we found no differences in thymic selection or in the activation state and numbers of regulatory T cells in the periphery. In contrast, SHIP-deficient T cells do not skew efficiently to Th2 in vitro. Mice with T cell-specific deletion of SHIP show poor antibody responses on Alum/NP-CGG immunization and diminished Th2 cytokine production when challenged with Schistosoma mansoni eggs. The failure to skew to Th2 responses may be the consequence of increased basal levels of the Th1-associated transcriptional factor T-bet, resulting from enhanced sensitivity to cytokine-mediated T-bet induction. SHIP-deficient CD8+ cells show enhanced cytotoxic responses, consistent with elevated T-bet levels in these cells. Overall our experiments indicate that in T cells SHIP negatively regulates cytokine-mediated activation in a way that allows effective Th2 responses and limits T cell cytotoxicity. PMID:17585010

  7. Modulation of CD4+ and CD8+ T Cell Function and Cytokine Responses in Strongyloides stercoralis Infection by Interleukin-27 (IL-27) and IL-37.

    PubMed

    Anuradha, Rajamanickam; Munisankar, Saravanan; Bhootra, Yukthi; Dolla, Chandrakumar; Kumaran, Paul; Nutman, Thomas B; Babu, Subash

    2017-11-01

    Strongyloides stercoralis infection is associated with diminished antigen-specific Th1- and Th17-associated responses and enhanced Th2-associated responses. Interleukin-27 (IL-27) and IL-37 are two known anti-inflammatory cytokines that are highly expressed in S. stercoralis infection. We therefore wanted to examine the role of IL-27 and IL-37 in regulating CD4 + and CD8 + T cell responses in S. stercoralis infection. To this end, we examined the frequency of Th1/Tc1, Th2/Tc2, Th9/Tc9, Th17/Tc17, and Th22/Tc22 cells in 15 S. stercoralis -infected individuals and 10 uninfected individuals stimulated with parasite antigen following IL-27 or IL-37 neutralization. We also examined the production of prototypical type 1, type 2, type 9, type 17, and type 22 cytokines in the whole-blood supernatants. Our data reveal that IL-27 or IL-37 neutralization resulted in significantly enhanced frequencies of Th1/Tc1, Th2/Tc2, Th17/Tc17, Th9, and Th22 cells with parasite antigen stimulation. There was no induction of any T cell response in uninfected individuals following parasite antigen stimulation and IL-27 or IL-37 neutralization. Moreover, we also observed increased production of gamma interferon (IFN-γ), IL-5, IL-9, IL-17, and IL-22 and decreased production of IL-10 following IL-27 and IL-37 neutralization and parasite antigen stimulation in whole-blood cultures. Thus, we demonstrate that IL-27 and IL-37 limit the induction of particular T cell subsets along with cytokine responses in S. stercoralis infections, which suggest the importance of IL-27 and IL-37 in immune modulation in a chronic helminth infection. Copyright © 2017 American Society for Microbiology.

  8. Modulation of mycobacterial-specific Th1 and Th17 cells in latent tuberculosis by coincident hookworm infection

    PubMed Central

    George, Parakkal Jovvian; Anuradha, Rajamanickam; Kumaran, Paramasivam Paul; Chandrasekaran, Vedachalam; Nutman, Thomas B.; Babu, Subash

    2013-01-01

    Hookworm infections and tuberculosis are co-endemic in many parts of the world. It has been suggested that infection with helminth parasites could suppress the predominant Th1 (IFN-γ-mediated) response needed to control Mycobacterium tuberculosis (Mtb) infection and enhance susceptibility to infection and/or disease. To determine the role of coincident hookworm infection on responses at steady state and on Mtb – specific immune responses in latent tuberculosis (TB), we examined the cellular responses in individuals with latent TB with or without concomitant hookworm infection. By analyzing the expression of Th1, Th2 and Th17 subsets of CD4+ T cells, we were able to demonstrate that the presence of coincident hookworm infection significantly diminished both spontaneously expressed and Mtb – specific mono – and dual – functional Th1 and Th17 cells. Hookworm infection, in contrast, was associated with expanded frequencies of mono – and dual – functional Th2 cells at both steady state and upon antigen – stimulation. This differential induction of CD4+ T cell subsets was abrogated upon mitogen stimulation. In addition, coincident hookworm infection was associated with increased adaptive T regulatory (aTreg) cells but not natural regulatory T cells (nTregs) in latent TB. Finally, the CD4+ T cell cytokine expression pattern was also associated with alterations in the systemic levels of Th1 and Th2 cytokines. Thus, coincident hookworm infection exerts a profound inhibitory effect on protective Th1 and Th17 responses in latent tuberculosis and may predispose toward the development of active tuberculosis in humans. PMID:23576678

  9. Development of chronic allergic responses by dampening Bcl6-mediated suppressor activity in memory T helper 2 cells

    PubMed Central

    Ogasawara, Takashi; Hatano, Masahiko; Satake, Hisae; Ikari, Jun; Taniguchi, Toshibumi; Tsuruoka, Nobuhide; Watanabe-Takano, Haruko; Fujimura, Lisa; Sakamoto, Akemi; Hirata, Hirokuni; Sugiyama, Kumiya; Fukushima, Yasutsugu; Nakae, Susumu; Matsumoto, Kenji; Saito, Hirohisa; Fukuda, Takeshi; Kurasawa, Kazuhiro; Tatsumi, Koichiro; Tokuhisa, Takeshi

    2017-01-01

    Mice deficient in the transcriptional repressor B-cell CLL/lymphoma 6 (Bcl6) exhibit similar T helper 2 (TH2) immune responses as patients with allergic diseases. However, the molecular mechanisms underlying Bcl6-directed regulation of TH2 cytokine genes remain unclear. We identified multiple Bcl6/STAT binding sites (BSs) in TH2 cytokine gene loci. We found that Bcl6 is modestly associated with the BSs, and it had no significant effect on cytokine production in newly differentiated TH2 cells. Contrarily, in memory TH2 (mTH2) cells derived from adaptively transferred TH2 effectors, Bcl6 outcompeted STAT5 for binding to TH2 cytokine gene loci, particularly Interleukin4 (Il4) loci, and attenuated GATA binding protein 3 (GATA3) binding to highly conserved intron enhancer regions in mTH2 cells. Bcl6 suppressed cytokine production epigenetically in mTH2 cells to negatively tune histone acetylation at TH2 cytokine gene loci, including Il4 loci. In addition, IL-33, a pro-TH2 cytokine, diminished Bcl6’s association with loci to which GATA3 recruitment was inversely augmented, resulting in altered IL-4, but not IL-5 and IL-13, production in mTH2 cells but no altered production in newly differentiated TH2 cells. Use of a murine asthma model that generates high levels of pro-TH2 cytokines, such as IL-33, suggested that the suppressive function of Bcl6 in mTH2 cells is abolished in severe asthma. These findings indicate a role of the interaction between TH2-promoting factors and Bcl6 in promoting appropriate IL-4 production in mTH2 cells and suggest that chronic allergic diseases involve the TH2-promoting factor-mediated functional breakdown of Bcl6, resulting in allergy exacerbation. PMID:28096407

  10. A novel subset of helper T cells promotes immune responses by secreting GM-CSF

    PubMed Central

    Zhang, J; Roberts, A I; Liu, C; Ren, G; Xu, G; Zhang, L; Devadas, S; Shi, Yufang

    2013-01-01

    Helper T cells are crucial for maintaining proper immune responses. Yet, they have an undefined relationship with one of the most potent immune stimulatory cytokines, granulocyte macrophage-colony-stimulating factor (GM-CSF). By depleting major cytokines during the differentiation of CD4+ T cells in vitro, we derived cells that were found to produce large amounts of GM-CSF, but little of the cytokines produced by other helper T subsets. By their secretion of GM-CSF, this novel subset of helper T cells (which we have termed ThGM cells) promoted the production of cytokines by other T-cell subtypes, including type 1 helper T cell (Th1), type 2 helper T cell (Th2), type 1 cytotoxic T cell (Tc1), type 2 cytotoxic T cell (Tc2), and naive T cells, as evidenced by the fact that antibody neutralization of GM-CSF abolished this effect. ThGM cells were found to be highly prone to activation-induced cell death (AICD). Inhibitors of TRAIL or granzymes could not block AICD in ThGM cells, whereas inhibition of FasL/Fas interaction partially rescued ThGM cells from AICD. Thus, ThGM cells are a novel subpopulation of T helper cells that produce abundant GM-CSF, exhibit exquisite susceptibility to apoptosis, and therefore play a pivotal role in the regulation of the early stages of immune responses. PMID:24076588

  11. Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG.

    PubMed

    Ou-Yang, Hai-Feng; Hu, Xing-Bin; Ti, Xin-Yu; Shi, Jie-Ran; Li, Shu-Jun; Qi, Hao-Wen; Wu, Chang-Gui

    2009-09-01

    Allergic asthma is a chronic inflammatory disease mediated by T helper (Th)2 cell immune responses. Currently, immunotherapies based on both immune deviation and immune suppression, including the development of recombinant mycobacteria as immunoregulatory vaccines, are attractive treatment strategies for asthma. In our previous studies, we created a genetically recombinant form of bacille Calmette-Guerin (rBCG) that expressed Der p2 of house dust mites and established that it induced a shift from a Th2 response to a Th1 response in naive mice. However, it is unclear whether rBCG could suppress allergic airway inflammation in a mouse model. In this article we report that rBCG dramatically inhibited airway inflammation, eosinophilia, mucus production and mast cell degranulation in allergic mice. Analysis of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid (BALF) and lung tissue revealed that the suppression was associated with a shift from a Th2 response to a Th1 response. At the same time, rBCG induced a CD4(+) CD25(+) Foxp3(+) T-cell subtype that could suppress the proliferation of Th2 effector cells in vitro in an antigen-specific manner. Moreover, suppression of CD4(+) CD25(+) T cells could be adoptively transferred. Thus, our results demonstrate that rBCG induces both generic and specific immune responses. The generic immune response is associated with a shift from a Th2 to a Th1 cytokine response, whereas the specific immune response against Der p2 appears to be related to the expansion of transforming growth factor-beta (TGF-beta)-producing CD4(+) CD25(+) Foxp3(+) regulatory T cells. rBCG can suppress asthmatic airway inflammation through both immune deviation and immune suppression and may be a feasible, efficient immunotherapy for asthma.

  12. Comparison of Th1- and Th2-associated immune reactivities stimulated by single versus multiple vaccination of mice with irradiated Schistosoma mansoni cercariae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caulada-Benedetti, Z.; Al-Zamel, F.; Sher, A.

    1991-03-01

    Mice immunized against Schistosoma mansoni by a single percutaneous exposure to radiation-attenuated parasite larvae demonstrate partial resistance to challenge infection that has been shown to correlate with development of cell-mediated immunity, whereas mice hyperimmunized by multiple exposure to attenuated larvae produce antibodies capable of transferring partial protection to naive recipients. Measurement of Ag-specific lymphokine responses in these animals suggested that the difference in resistance mechanisms may be due to the differential induction of Th subset response by the two immunization protocols. Thus, upon Ag stimulation, singly immunized mice predominantly demonstrated responses associated with Th1 reactivity, including IL-2 and IFN-gamma production,more » whereas multiply immunized animals showed increased IL-5, IL-4, and IgG1 antibody production associated with enhanced Th2 response. These responses demonstrated some degree of organ compartmentalization, with splenocytes demonstrating higher Th1-related lymphokine production and cells from draining lymph nodes showing stronger proliferation and Th2 type reactivity. However, hyperimmunized mice also continued to demonstrate substantial Th1-associated immune reactivity. Moreover, in vivo Ag challenge elicited activated larvacidal macrophages in hyperimmunized animals. These observations indicate that protective cell-mediated mechanisms associated with induction of CD4+ Th1 cell reactivity predominate in singly vaccinated mice. Further vaccination stimulates Th2 responses, such as enhanced IgG1 production, that may also contribute to protective immunity.« less

  13. Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions.

    PubMed

    Hegazy, Ahmed N; Peine, Michael; Helmstetter, Caroline; Panse, Isabel; Fröhlich, Anja; Bergthaler, Andreas; Flatz, Lukas; Pinschewer, Daniel D; Radbruch, Andreas; Löhning, Max

    2010-01-29

    Current T cell differentiation models invoke separate T helper 2 (Th2) and Th1 cell lineages governed by the lineage-specifying transcription factors GATA-3 and T-bet. However, knowledge on the plasticity of Th2 cell lineage commitment is limited. Here we show that infection with Th1 cell-promoting lymphocytic choriomeningitis virus (LCMV) reprogrammed otherwise stably committed GATA-3(+) Th2 cells to adopt a GATA-3(+)T-bet(+) and interleukin-4(+)interferon-gamma(+) "Th2+1" phenotype that was maintained in vivo for months. Th2 cell reprogramming required T cell receptor stimulation, concerted type I and type II interferon and interleukin-12 signals, and T-bet. LCMV-triggered T-bet induction in adoptively transferred virus-specific Th2 cells was crucial to prevent viral persistence and fatal immunopathology. Thus, functional reprogramming of unfavorably differentiated Th2 cells may facilitate the establishment of protective immune responses. Stable coexpression of GATA-3 and T-bet provides a molecular concept for the long-term coexistence of Th2 and Th1 cell lineage characteristics in single memory T cells. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Host Th1/Th2 immune response to Taenia solium cyst antigens in relation to cyst burden of neurocysticercosis.

    PubMed

    Tharmalingam, J; Prabhakar, A T; Gangadaran, P; Dorny, P; Vercruysse, J; Geldhof, P; Rajshekhar, V; Alexander, M; Oommen, A

    2016-10-01

    Neurocysticercosis (NCC), Taenia solium larval infection of the brain, is an important cause of acquired seizures in endemic countries, which relate to number, location and degenerating cysts in the brain. Multicyst infections are common in endemic countries although single-cyst infection prevails in India. Single-cyst infections in an endemic country suggest a role for host immunity limiting the infection. This study examined ex vivo CD4(+) T cells and in vitro Th1 and Th2 cytokine responses to T. solium cyst antigens of peripheral blood mononuclear cells of healthy subjects from endemic and nonendemic regions and of single- and multicyst-infected patients for association with cyst burden of NCC. T. solium cyst antigens elicited a Th1 cytokine response in healthy subjects of T. solium-endemic and T. solium-non-endemic regions and those with single-cyst infections and a Th2 cytokine response from subjects with multicyst neurocysticercosis. Multicyst neurocysticercosis subjects also exhibited low levels of effector memory CD4(+) T cells. Th1 cytokine response of T. solium exposure and low infectious loads may aid in limiting cyst number. Th2 cytokines and low effector T cells may enable multiple-cyst infections to establish and persist. © 2016 John Wiley & Sons Ltd.

  15. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses

    USDA-ARS?s Scientific Manuscript database

    CD4+ T helper 2 (TH2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, TH2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal...

  16. Granulocytic myeloid-derived suppressor cells from human cord blood modulate T-helper cell response towards an anti-inflammatory phenotype.

    PubMed

    Köstlin, Natascha; Vogelmann, Margit; Spring, Bärbel; Schwarz, Julian; Feucht, Judith; Härtel, Christoph; Orlikowsky, Thorsten W; Poets, Christian F; Gille, Christian

    2017-09-01

    Infections are a leading cause of perinatal morbidity and mortality. The outstandingly high susceptibility to infections early in life is mainly attributable to the compromised state of the neonatal immune system. One important difference to the adult immune system is a bias towards T helper type 2 (Th2) responses in newborns. However, mechanisms regulating neonatal T-cell responses are incompletely understood. Granulocytic myeloid-derived suppressor cells (GR-MDSC) are myeloid cells with a granulocytic phenotype that suppress various functions of other immune cells and accumulate under physiological conditions during pregnancy in maternal and fetal blood. Although it has been hypothesized that GR-MDSC accumulation during fetal life could be important for the maintenance of maternal-fetal tolerance, the influence of GR-MDSC on the immunological phenotype of neonates is still unclear. Here, we investigated the impact of GR-MDSC isolated from cord blood (CB-MDSC) on the polarization of Th cells. We demonstrate that CB-MDSC inhibit Th1 responses and induced Th2 responses and regulatory T (Treg) cells. Th1 inhibition was cell-contact dependent and occurred independent of other cell types, while Th2 induction was mediated independently of cell contact through expression of ArgI and reactive oxygen species by CB-MDSC and partially needed the presence of monocytes. Treg cell induction by CB-MDSC also occurred cell-contact independently but was partially mediated through inducible nitric oxide synthase. These results point towards a role of MDSC in regulating neonatal immune responses. Targeting MDSC function in neonates could be a therapeutic opportunity to improve neonatal host defence. © 2017 John Wiley & Sons Ltd.

  17. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice.

    PubMed Central

    Zhou, X; Paulsson, G; Stemme, S; Hansson, G K

    1998-01-01

    Atherosclerosis is an inflammatory-fibrotic response to accumulation of cholesterol in the artery wall. In hypercholesterolemia, low density lipoproteins (LDL) accumulate and are oxidized to proinflammatory compounds in the arterial intima, leading to activation of endothelial cells, macrophages, and T lymphocytes. We have studied immune cell activation and the autoimmune response to oxidized LDL in atherosclerotic apo E-knockout mice. Autoantibodies to oxidized LDL exhibited subclass specificities indicative of T cell help, and the increase in antibody titers in peripheral blood was associated with increased numbers of cytokine-expressing T cells in the spleen. In addition to T cell-dependent antibodies, IgM antibodies to oxidized LDL were also increased in apo E-knockout mice. This suggests that both T cell-dependent and T cell-independent epitopes may be present on oxidized LDL. In moderate hypercholesterolemia, IgG antibodies were largely of the IgG2a isotype, suggesting that T cell help was provided by proinflammatory T helper (Th) 1 cells, which are prominent components of atherosclerotic lesions. In severe hypercholesterolemia induced by cholesterol feeding of apo E-knockout mice, a switch to Th2-dependent help was evident. It was associated with a loss of IFN-gamma-producing Th1 cells in the spleen, whereas IL-4-producing Th2 cells were more resistant to hypercholesterolemia. IFN-gamma but not IL-4 mRNA was detected in atherosclerotic lesions of moderately hypercholesterolemic apo E-knockout mice, but IL-4 mRNA appeared in the lesions when mice were made severely hypercholesterolemic by cholesterol feeding. These data show that IFN-gamma-producing Th1 cells infiltrate atherosclerotic lesions and provide T cell help for autoimmune responses to oxidized LDL in apo E-knockout mice. However, severe hypercholesterolemia is associated with a switch from Th1 to Th2, which results not only in the formation of IgG1 autoantibodies to oxidized LDL, but also in the appearance of Th2-type cytokines in the atherosclerotic lesions. Since the two subsets of T cells counteract each other, this switch may have important consequences for the inflammatory/immune process in atherosclerosis. PMID:9541503

  18. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FLmore » activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.« less

  19. The active contribution of Toll-like receptors to allergic airway inflammation.

    PubMed

    Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming

    2011-10-01

    Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    PubMed

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths.

    PubMed

    Pelly, Victoria S; Coomes, Stephanie M; Kannan, Yashaswini; Gialitakis, Manolis; Entwistle, Lewis J; Perez-Lloret, Jimena; Czieso, Stephanie; Okoye, Isobel S; Rückerl, Dominik; Allen, Judith E; Brombacher, Frank; Wilson, Mark S

    2017-06-05

    Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4 + Foxp3 + regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex-T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3 + cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus Through selective deletion of Il4ra on Foxp3 + cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell-mediated suppression. © 2017 Pelly et al.

  2. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases.

    PubMed

    Finlay, Conor M; Walsh, Kevin P; Mills, Kingston H G

    2014-05-01

    Helminth parasites are highly successful pathogens, chronically infecting a quarter of the world's population, causing significant morbidity but rarely causing death. Protective immunity and expulsion of helminths is mediated by T-helper 2 (Th2) cells, type 2 (M2) macrophages, type 2 innate lymphoid cells, and eosinophils. Failure to mount these type 2 immune responses can result in immunopathology mediated by Th1 or Th17 cells. Helminths have evolved a wide variety of approaches for immune suppression, especially the generation of regulatory T cells and anti-inflammatory cytokines interleukin-10 and transforming growth factor-β. This is a very effective strategy for subverting protective immune responses to prolong their survival in the host but has the bystander effect of modulating immune responses to unrelated antigens. Epidemiological studies in humans have shown that infection with helminth parasites is associated with a low incidence of allergy/asthma and autoimmunity in developing countries. Experimental studies in mice have demonstrated that regulatory immune responses induced by helminth can suppress Th2 and Th1/Th17 responses that mediate allergy and autoimmunity, respectively. This has provided a rational explanation of the 'hygiene hypothesis' and has also led to the exploitation of helminths or their immunomodulatory products in the development of new immunosuppressive therapies for inflammatory diseases in humans. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths

    PubMed Central

    Coomes, Stephanie M.; Kannan, Yashaswini; Entwistle, Lewis J.; Perez-Lloret, Jimena; Czieso, Stephanie

    2017-01-01

    Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4+Foxp3+ regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex–T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3+ cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus. Through selective deletion of Il4ra on Foxp3+ cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell–mediated suppression. PMID:28507062

  4. Invariant NKT cells inhibit development of the Th17 lineage

    PubMed Central

    Mars, Lennart T.; Araujo, Luiza; Kerschen, Philippe; Diem, Séverine; Bourgeois, Elvire; Van, Linh Pham; Carrié, Nadège; Dy, Michel; Liblau, Roland S.; Herbelin, André

    2009-01-01

    T cells differentiate into functionally distinct effector subsets in response to pathogen encounter. Cells of the innate immune system direct this process; CD1d-restricted invariant natural killer T (iNKT) cells, for example, can either promote or inhibit Th1 and Th2 responses. Recently, a new subset of CD4+ T helper cells, called Th17, was identified that is implicated in mucosal immunity and autoimmune disorders. To investigate the influence of iNKT cells on the differentiation of naïve T cells we used an adoptive transfer model of traceable antigen-specific CD4+ T cells. Transferred naïve CD25−CD62L+ CD4+ T cells were primed by antigen immunization of the recipient mice, permitting their expansion and Th17 differentiation. This study establishes that in vivo activation of iNKT cells during T-cell priming impedes the commitment of naïve T cells to the Th17 lineage. In vivo cytokine neutralization experiments revealed a role for IL-4, IL-10, and IFN-γ in the iNKT-cell-mediated regulation of T-cell lineage development. Moreover, by comparing IL-17 production by antigen-experienced T cells from unmanipulated wild-type mice and iNKT-cell-deficient mice, we demonstrate an enhanced Th17 response in mice lacking iNKT cells. This invigorated Th17 response reverts to physiological levels when iNKT cells are introduced into Jα18−/− mice by adoptive transfer, indicating that iNKT cells control the Th17 compartment at steady state. We conclude that iNKT cells play an important role in limiting development of the Th17 lineage and suggest that iNKT cells provide a natural barrier against Th17 responses. PMID:19325124

  5. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice.

    PubMed

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric

    2012-12-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.

  6. Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells.

    PubMed

    Duechting, Andrea; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2017-09-12

    During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.

  7. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation

    PubMed Central

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A.; Korfhagen, Thomas R.; Whitsett, Jeffrey A.

    2015-01-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef–/– mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  8. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses

    PubMed Central

    Chen, Qian-Qian; Yan, Li; Wang, Chang-Zheng; Wang, Wei-Hua; Shi, Hui; Su, Bin-Bin; Zeng, Qing-Huan; Du, Hai-Tao; Wan, Jun

    2013-01-01

    AIM: To investigate the potential therapeutic effects of mesenchymal stem cells (MSCs) in inflammatory bowel disease (IBD), we transplanted MSCs into an experimental model of IBD. METHODS: A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg body weight) was administered to female BALB/c mice. Bone marrow mesenchymal stem cells (BMSCs) were derived from male green fluorescent protein (GFP) transgenic mice and were transplanted intravenously into the experimental animals after disease onset. Clinical activity scores and histological changes were evaluated. GFP and Sex determining region Y gene (SRY) expression were used for cell tracking. Ki67 positive cells and Lgr5-expressing cells were determined to measure proliferative activity. Inflammatory response was determined by measuring the levels of different inflammatory mediators in the colon and serum. The inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-6, IL-17, IL-4, IL-10, and transforming growth factor (TGF-β). Master regulators of Th1 cells (T-box expressed in T cells, T-bet), Th17 cells (retinoid related orphan receptor gamma(t), RORγt), Th2 cells (GATA family of transcription factors 3, GATA3) and regulatory T cells (forkhead box P3, Foxp3) were also determined. RESULTS: Systemic infusion of GFP-BMSCs ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea and inflammation, and increased survival (P < 0.05). The cell tracking study showed that MSCs homed to the injured colon. MSCs promoted proliferation of intestinal epithelial cells and differentiation of intestinal stem cells (P < 0.01). This therapeutic effect was mainly mediated by down-regulation of both Th1-Th17-driven autoimmune and inflammatory responses (IL-2, TNF-α, IFN-γ, T-bet; IL-6, IL-17, RORγt), and by up-regulation of Th2 activities (IL-4, IL-10, GATA-3) (P < 0.05). MSCs also induced activated CD4+CD25+Foxp3+ regulatory T cells (TGF-β, IL-10, Foxp3) with a suppressive capacity on Th1-Th17 effecter responses and promoted Th2 differentiation in vivo (P < 0.05). CONCLUSION: MSCs are key regulators of immune and inflammatory responses and may be an attractive candidate for cell-based therapy of IBD. PMID:23922467

  9. Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator.

    PubMed

    Allard, Jenna B; Poynter, Matthew E; Marr, Kieren A; Cohn, Lauren; Rincon, Mercedes; Whittaker, Laurie A

    2006-10-15

    Cystic fibrosis (CF) lung disease is characterized by persistent airway inflammation and airway infection that ultimately leads to respiratory failure. Aspergillus sp. are present in the airways of 20-40% of CF patients and are of unclear clinical significance. In this study, we demonstrate that CF transmembrane conductance regulator (CFTR)-deficient (CFTR knockout, Cftr(tm1Unc-)TgN(fatty acid-binding protein)CFTR) and mutant (DeltaF508) mice develop profound lung inflammation in response to Aspergillus fumigatus hyphal Ag exposure. CFTR-deficient mice also develop an enhanced Th2 inflammatory response to A. fumigatus, characterized by elevated IL-4 in the lung and IgE and IgG1 in serum. In contrast, CFTR deficiency does not promote a Th1 immune response. Furthermore, we demonstrate that CD4+ T cells from naive CFTR-deficient mice produce higher levels of IL-4 in response to TCR ligation than wild-type CD4+ T cells. The Th2 bias of CD4+ T cells in the absence of functional CFTR correlates with elevated nuclear levels of NFAT. Thus, CFTR is important to maintain the Th1/Th2 balance in CD4+ T cells.

  10. Phenytoin promotes Th2 type immune response in mice

    PubMed Central

    Okada, K; Sugiura, T; Kuroda, E; Tsuji, S; Yamashita, U

    2001-01-01

    The effects of chronic administration of phenytoin, a common anticonvulsive drug, on immune responses were studied in mice. Anti-keyhole limpet haemocyanin (KLH) IgE antibody response after KLH-immunization was enhanced in phenytoin-treated mice. Proliferative responses of spleen cells induced with KLH, concanavalin A (ConA), lipopolysaccharide and anti-CD3 antibody were reduced in phenytoin-treated mice. Accessory function of spleen adherent cells on ConA-induced T cell proliferative response was reduced in phenytoin-treated mice. KLH-induced IL-4 production of spleen cells was enhanced, while IFN-γ production was reduced in phenytoin-treated mice. In addition, production of IL-1α, but not IL-6 and IL-12 by spleen adherent cells from phenytoin-treated mice was reduced. Natural killer cell activity was reduced in phenytoin-treated mice. These results suggest that phenytoin treatment preferentially induces a Th2 type response. We also observed that plasma ACTH and corticosterone levels were increased in phenytoin-treated mice, and speculated that phenytoin might act directly and indirectly, through HPA axis activation, on the immune system to modulate Th1/Th2 balance. PMID:11472401

  11. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma.

    PubMed

    Shi, Yu-heng; Shi, Guo-chao; Wan, Huan-ying; Jiang, Li-hua; Ai, Xiang-yan; Zhu, Hai-xing; Tang, Wei; Ma, Jia-yun; Jin, Xiao-yan; Zhang, Bo-ying

    2011-07-05

    Recent recognition is that Th2 response is insufficient to fully explain the aetiology of asthma. Other CD4(+) T cells subsets might play a role in asthma. We investigated the relative abundance and activities of Th1, Th2, Th17 and CD4(+)CD25(+) Treg cells in patients with allergic asthma. Twenty-two patients with mild asthma, 17 patients with moderate to severe asthma and 20 healthy donors were enrolled. All patients were allergic to house dust mites. Plasma total IgE, pulmonary function and Asthma Control Questionnaire were assessed. The proportions of peripheral blood Th1, Th2, Th17 and CD4(+)CD25(+) Treg cells were determined by flow cytometry. The expression of cytokines in plasma and in the culture supernatant of peripheral blood mononuclear cells was determined by enzyme linked, immunosorbent assay. The frequency of blood Th2 cells and IL-4 levels in plasma and culture supernatant of peripheral blood mononuclear cells were increased in all patients with allergic asthma. The frequency of Th17 cells and the plasma and culture supernatant levels of IL-17 were increased, whereas the frequency of CD4(+)CD25(+) Treg cells and plasma IL-10 levels were decreased in patients with moderate to severe asthma. Dermatophagoides pteronyssinus specific IgE levels were positively correlated with the percentage of blood Th2 cells and plasma IL-4 levels. Forced expiratory volume in the first second was negatively correlated with the frequency of Th17 cells and plasma IL-17 levels, and positively correlated with the frequency of Treg cells. However, mean Asthma Control Questionnaire scores were positively correlated with the frequency of Th17 cells and plasma IL-17 levels, and negatively correlated with the frequency of Treg cells. Imbalances in Th1/Th2 and Th17/Treg were found in patients with allergic asthma. Furthermore, elevated Th17 cell responses, the absence of Tregs and an imbalance in Th17/Treg levels were associated with moderate to severe asthma.

  12. Chronic cat allergen exposure induces a TH2 cell-dependent IgG4 response related to low sensitization.

    PubMed

    Renand, Amedee; Archila, Luis D; McGinty, John; Wambre, Erik; Robinson, David; Hales, Belinda J; Thomas, Wayne R; Kwok, William W

    2015-12-01

    In human subjects, allergen tolerance has been observed after high-dose allergen exposure or after completed allergen immunotherapy, which is related to the accumulation of anti-inflammatory IgG4. However, the specific T-cell response that leads to IgG4 induction during chronic allergen exposure remains poorly understood. We sought to evaluate the relationship between cat allergen-specific T-cell frequency, cat allergen-specific IgE and IgG4 titers, and clinical status in adults with cat allergy with and without cat ownership and the cellular mechanism by which IgG4 is produced. Fel d 1-, Fel d 4-, Fel d 7-, and Fel d 8-specific T-cell responses were characterized by CD154 expression after antigen stimulation. In allergic subjects without cat ownership, the frequency of cat allergen (Fel d 1 and Fel d 4)-specific TH2 (sTH2) cells correlates with higher IgE levels and is linked to asthma. Paradoxically, we observed that subjects with cat allergy and chronic cat exposure maintain a high frequency of sTH2 cells, which correlates with higher IgG4 levels and low sensitization. B cells from allergic, but not nonallergic subjects, are able to produce IgG4 after cognate interactions with sTH2 clones and Fel d 1 peptide or the Fel d 1 recombinant protein. These experiments suggest that (1) allergen-experienced B cells with the capacity to produce IgG4 are present in allergic subjects and (2) cat allergen exposure induces an IgG4 response in a TH2 cell-dependent manner. Thus IgG4 accumulation could be mediated by chronic activation of the TH2 response, which in turn drives desensitization. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  13. The Th1-promoting effects of dehydroepiandrosterone can provide an explanation for the stronger Th1-immune response of women.

    PubMed

    Namazi, Mohammad Reza

    2009-03-01

    Estrogens foster immunological processes driven by CD4+ Th2 cells and B cells and androgens foster Th1 CD4+ and CD8+ cell activity. Higher levels of IFN-gamma and IL-2 and lower levels of IL-4 and IL-10 are detected in the phytohemagglutinin-stimulated lymphocyte culture supernatants of men compared with women. It is documented that the physiologic levels of estrogens produced during the luteal phase of the menstrual cycle shift the female immune system toward a Th2-type response and that the Th1 cytokines are increased in postmenopausal women. However, the Th1 immune response is also surprisingly stronger in women, hence affording them a better protection against infections. Nickel sensitivity, a Th1 immune reaction, seems to be more common in women even if men wear earrings. Further, not only the Th2 but also the Th1 autoimmune diseases are generally more common in women than men. How do women advance a stronger Th1 response than men? It is suggested that in contrast to the paradigm that estrogens lead to a Th2 bias, estrogens can enhance Th1 cytokine production also. However, the discrepant effects of estrogens are difficult to be reconciled from a molecular viewpoint and hence are not advocated by all authors. This paper provides an explanation: The effects of dehydroepiandrosterone on Th1/Th2 balance seem to be model-specific; in humans dehydroepiandrosterone, represents a pivotal up-regulator of Th1 immune response. Steroid sulphatase is a microsomal enzyme that cleaves the sulphate group of dehydroepiandrosterone sulphate. This enzyme is controlled by an X-linked gene that escapes the Lyon effect of X-inactivation; as a result, women usually have about twice steroid sulphatase in their cells, including macrophages, as have men. Putting all these facts together, it could be concluded that women's macrophages, which contain higher steroid sulphatase levels and enter peripheral lymphoid organs through afferent lymphatic drainage, produce higher levels of dehydroepiandrosterone in these organs; and higher levels of this hormone produce stronger Th1 immune responses.

  14. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo

    PubMed Central

    Yang, Nan; Patil, Sangita; Zhuge, Jian; Wen, Ming-Chun; Bolleddula, Jayaprakasam; Doddaga, Srinivasulu; Goldfarb, Joseph; Sampson, Hugh A.; Li, Xiu-Min

    2012-01-01

    Allergic asthma is associated with Th2-mediated inflammation. Several flavonoids were isolated from Glycyrrhiza uralensis, one of the herbs in the anti-asthma herbal medicine intervention, ASHMI. The aim of this investigation was to determine whether Glycyrrhiza uralensis flavonoids have inhibitory effects on memory Th2 responses in vitro, and antigen induced Th2 inflammation in vivo. The effects of three Glycyrrhiza uralensis flavonoids on effector memory Th2 cells, D10.G4.1 (D10 cells), were determined by measuring Th2 cytokine production. Isoliquiritigenin, 7, 4’-dihydroxyflavone (7, 4’-DHF) and liquiritigenin significantly suppressed IL-4 and IL-5 production in a dose dependent manner, 7, 4’-DHF being most potent. It was also evaluated for effects on D10 cell proliferation, GATA-3 expression and IL-4 mRNA expression, which were suppressed, with no loss of cell viability. Chronic treatment with 7, 4’-DHF in a murine model of allergic asthma not only significantly reduced eosinophilic pulmonary inflammation, serum IgE levels, IL-4 and IL-13 levels, but also increased IFN-γ production in lung cell cultures in response to antigen stimulation. PMID:23165939

  15. IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells (Treg), including ST2L+ Foxp3+ cells, and mediates Treg-dependent promotion of cardiac allograft survival

    PubMed Central

    Turnquist, Hēth R.; Zhao, Zhenlin; Rosborough, Brian R.; Liu, Quan; Castellaneta, Antonino; Isse, Kumiko; Wang, Zhiliang; Lang, Megan; Stolz, Donna Beer; Zheng, Xin Xiao; Demetris, A. Jake; Liew, Foo Y.; Wood, Kathryn J.; Thomson, Angus W.

    2011-01-01

    IL-33 administration is associated with facilitation of Th type-2 (Th2) responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L, the membrane-bound form of ST2, promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4+ Foxp3+ regulatory T cells (Treg) in mice. IL-33 expands functional myeloid-derived suppressor cells (MDSC), -CD11b+ cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes a St2-dependent expansion of suppressive CD4+ Foxp3+ Treg, including a ST2L+ population. IL-33 monotherapy following fully allogeneic mouse heart transplantation resulted in significant graft prolongation, associated with increased Th2-type responses and decreased systemic CD8+ IFN-γ+ cells. Also, despite reducing overall CD3+ cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3+ cells. Whereas control graft recipients displayed increases in systemic CD11b+ Gr-1hi cells, IL-33-treated recipients exhibited increased CD11b+ Gr-1int cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Treg. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4+ Foxp3+ Treg that underlie IL-33-mediated cardiac allograft survival. PMID:21949025

  16. Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-gamma.

    PubMed

    Huang, T J; MacAry, P A; Eynott, P; Moussavi, A; Daniel, K C; Askenase, P W; Kemeny, D M; Chung, K F

    2001-01-01

    Th2 T cell immune-driven inflammation plays an important role in allergic asthma. We studied the effect of counterbalancing Th1 T cells in an asthma model in Brown Norway rats that favors Th2 responses. Rats received i.v. transfers of syngeneic allergen-specific Th1 or Th2 cells, 24 h before aerosol exposure to allergen, and were studied 18-24 h later. Adoptive transfer of OVA-specific Th2 cells, but not Th1 cells, and OVA, but not BSA exposure, induced bronchial hyperresponsiveness (BHR) to acetylcholine and eosinophilia in a cell number-dependent manner. Importantly, cotransfer of OVA-specific Th1 cells dose-dependently reversed BHR and bronchoalveolar lavage (BAL) eosinophilia, but not mucosal eosinophilia. OVA-specific Th1 cells transferred alone induced mucosal eosinophilia, but neither BHR nor BAL eosinophilia. Th1 suppression of BHR and BAL eosinophilia was allergen specific, since cotransfer of BSA-specific Th1 cells with the OVA-specific Th2 cells was not inhibitory when OVA aerosol alone was used, but was suppressive with OVA and BSA challenge. Furthermore, recipients of Th1 cells alone had increased gene expression for IFN-gamma in the lungs, while those receiving Th2 cells alone showed increased IL-4 mRNA. Importantly, induction of these Th2 cytokines was inhibited in recipients of combined Th1 and Th2 cells. Anti-IFN-gamma treatment attenuated the down-regulatory effect of Th1 cells. Allergen-specific Th1 cells down-regulate efferent Th2 cytokine-dependent BHR and BAL eosinophilia in an asthma model via mechanisms that depend on IFN-gamma. Therapy designed to control the efferent phase of established asthma by augmenting down-regulatory Th1 counterbalancing mechanisms should be effective.

  17. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells

    PubMed Central

    Moraes-Vieira, Pedro M.M.; Larocca, Rafael A.; Bassi, Enio J.; Peron, Jean Pierre S.; Andrade-Oliveira, Vinícius; Wasinski, Frederick; Araujo, Ronaldo; Thornley, Thomas; Quintana, Francisco J.; Basso, Alexandre S.; Strom, Terry B.; Câmara, Niels O.S.

    2016-01-01

    Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs. PMID:24271843

  18. Looking beyond the induction of Th2 responses to explain immunomodulation by helminths.

    PubMed

    Nutman, T B

    2015-06-01

    Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  19. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.

    PubMed

    Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko

    2013-10-17

    Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A Novel Sphingomyelinase-Like Enzyme in Ixodes scapularis Tick Saliva Drives Host CD4+ T cells to Express IL-4

    PubMed Central

    Alarcon-Chaidez, F. J.; Boppana, V. D.; Hagymasi, A.T.; Adler, A. J.; Wikel, S. K.

    2009-01-01

    Tick feeding modulates host immune responses. Tick-induced skewing of host CD4+ T cells towards a Th2 cytokine profile facilitates transmission of tick-borne pathogens that would otherwise be neutralized by Th1 cytokines. Tick-derived factors that drive this Th2 response have not previously been characterized. In the current study, we examined an I. scapularis cDNA library prepared at 18-24 hours of feeding and identified and expressed a tick gene with homology to Loxosceles spider venom proteins with sphingomyelinase activity. This I. scapularis sphingomyelinase-like (IsSMase) protein is a Mg+2-dependent, neutral (pH 7.4) form of sphingomyelinase. Significantly, in an in vivo TCR transgenic adoptive transfer assay IsSMase programmed host CD4+ T cells to express the hallmark Th2 effector cytokine IL-4. IsSMase appears to directly program host CD4 T cell IL-4 expression (as opposed to its metabolic by-products) because induced IL-4 expression was not altered when enzymatic activity was neutralized. TCR transgenic CD4 T cell proliferation (CFSE-dilution) was also significantly increased by IsSMase. Furthermore, a Th2 response is superimposed onto a virally-primed Th1 response by IsSMase. Thus, IsSMase is the first identified tick molecule capable of programming host CD4+ T cells to express IL-4. PMID:19292772

  1. Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles

    PubMed Central

    Schanen, Brian C.; Das, Soumen; Reilly, Christopher M.; Warren, William L.; Self, William T.; Seal, Sudipta; Drake, Donald R.

    2013-01-01

    Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies. PMID:23667525

  2. Functional diversity of human vaginal APC subsets in directing T cell responses

    PubMed Central

    Duluc, Dorothée; Gannevat, Julien; Anguiano, Esperanza; Zurawski, Sandra; Carley, Michael; Boreham, Muriel; Stecher, Jack; Dullaers, Melissa; Banchereau, Jacques; Oh, SangKon

    2012-01-01

    Human vaginal mucosa is the major entry site of sexually transmitted pathogens and thus has long been attractive as a site for mounting mucosal immunity. It is also known as a tolerogenic microenvironment. Here, we demonstrate that immune responses in the vagina are orchestrated by the functional diversity of four major antigen-presenting cell (APC) subsets. Langerhans cells (LCs) and CD14− lamina propria (LP)-DCs polarize CD4+ and CD8+ T cells toward Th2, whereas CD14+ LP-DCs and macrophages polarize CD4+ T cells toward Th1. Both LCs and CD14− LP-DCs are potent inducers of Th22. Due to their functional specialties and the different expression levels of pattern-recognition receptors on the APC subsets, microbial products do not bias them to elicit common types of immune responses (Th1 or Th2). To evoke desired types of adaptive immune responses in the human vagina, antigens may need to be targeted to proper APC subsets with right adjuvants. PMID:23131784

  3. Expansion of Pathogen-Specific Mono- and Multifunctional Th1 and Th17 Cells in Multi-Focal Tuberculous Lymphadenitis

    PubMed Central

    Kumar, Nathella Pavan; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Nair, Dina; Jawahar, Mohideen S.; Nutman, Thomas B.; Babu, Subash

    2013-01-01

    Background Th1 and Th17 responses are known to play an important role in immunity to pulmonary tuberculosis (PTB), although little is known about their role in extrapulmonary forms of tuberculosis (TB). Methods To identify the role of Th1, Th17, and Th22 cells in multi-focal TB lymphadenitis (TBL), we examined mycobacteria–specific immune responses in the whole blood of individuals with PTB (n = 20) and compared them with those with TBL (n = 25). Results Elevated frequencies of CD4+ T cells expressing IFN- γ, TNF-α, and IL-2 were present in individuals with TBL compared with those with PTB at baseline and in response to ESAT-6 and CFP-10. Similarly, increased frequencies of CD4+ T cells expressing IL-17A, IL-17F, and IFN-γ were also present in individuals with TBL at baseline and following ESAT-6 and CFP-10 stimulation although no significant difference in frequency of Th22 cells was observed. Finally, frequencies of Th1 (but not Th17) cells exhibited a significantly negative correlation with natural regulatory T cell frequencies at baseline. Conclusions Multi-focal TB lymphadenitis is therefore characterized by elevated frequencies of Th1 and Th17 cells, indicating that Th1 and Th17 responses in TB disease are probably correlates of disease severity rather than of protective immunity. PMID:23451159

  4. Vitamin D regulation of OX40 ligand in immune responses to Aspergillus fumigatus.

    PubMed

    Nguyen, Nikki Lynn Hue; Chen, Kong; McAleer, Jeremy; Kolls, Jay K

    2013-05-01

    OX40 ligand (OX40L) is a costimulatory molecule involved in Th2 allergic responses. It has been shown that vitamin D deficiency is associated with increased OX40L expression in peripheral CD11c(+) cells and controls Th2 responses to Aspergillus fumigatus in vitro in cystic fibrosis (CF) patients with allergic bronchopulmonary aspergillosis (ABPA). To investigate if vitamin D deficiency regulated OX40L and Th2 responses in vivo, we examined the effect of nutritional vitamin D deficiency on costimulatory molecules in CD11c(+) cells and A. fumigatus-induced Th2 responses. Vitamin D-deficient mice showed increased expression of OX40L on lung CD11c(+) cells, and OX40L was critical for enhanced Th2 responses to A. fumigatus in vivo. In in vitro assays, vitamin D treatment led to vitamin D receptor (VDR) binding in the promoter region of OX40L and significantly decreased the promoter activity of the OX40L promoter. In addition, vitamin D altered NF-κB p50 binding in the OX40L promoter that may be responsible for repression of OX40L expression. These data show that vitamin D can act directly on OX40L, which impacts Th2 responses and supports the therapeutic use of vitamin D in diseases regulated by OX40L.

  5. Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine

    PubMed Central

    Ross, Pádraig J.; Allen, Aideen C.; Walsh, Kevin; Misiak, Alicja; Lavelle, Ed C.; McLoughlin, Rachel M.; Mills, Kingston H. G.

    2013-01-01

    Whooping cough caused by Bordetella pertussis is a re-emerging infectious disease despite the introduction of safer acellular pertussis vaccines (Pa). One explanation for this is that Pa are less protective than the more reactogenic whole cell pertussis vaccines (Pw) that they replaced. Although Pa induce potent antibody responses, and protection has been found to be associated with high concentrations of circulating IgG against vaccine antigens, it has not been firmly established that host protection induced with this vaccine is mediated solely by humoral immunity. The aim of this study was to examine the relative contribution of Th1 and Th17 cells in host immunity to infection with B. pertussis and in immunity induced by immunization with Pw and Pa and to use this information to help rationally design a more effective Pa. Our findings demonstrate that Th1 and Th17 both function in protective immunity induced by infection with B. pertussis or immunization with Pw. In contrast, a current licensed Pa, administered with alum as the adjuvant, induced Th2 and Th17 cells, but weak Th1 responses. We found that IL-1 signalling played a central role in protective immunity induced with alum-adsorbed Pa and this was associated with the induction of Th17 cells. Pa generated strong antibody and Th2 responses, but was fully protective in IL-4-defective mice, suggesting that Th2 cells were dispensable. In contrast, Pa failed to confer protective immunity in IL-17A-defective mice. Bacterial clearance mediated by Pa-induced Th17 cells was associated with cell recruitment to the lungs after challenge. Finally, protective immunity induced by an experimental Pa could be enhanced by substituting alum with a TLR agonist that induces Th1 cells. Our findings demonstrate that alum promotes protective immunity through IL-1β-induced IL-17A production, but also reveal that optimum protection against B. pertussis requires induction of Th1, but not Th2 cells. PMID:23592988

  6. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine

    PubMed Central

    Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  7. Expansion of Pathogen-Specific T-Helper 1 and T-Helper 17 Cells in Pulmonary Tuberculosis With Coincident Type 2 Diabetes Mellitus

    PubMed Central

    Kumar, Nathella Pavan; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Nutman, Thomas B.; Babu, Subash

    2013-01-01

    Background. Type 2 diabetes mellitus (DM) is a major risk factor for the development of active pulmonary tuberculosis, although the immunological mechanisms underlying this interaction remain unexplored. The influence of poorly controlled diabetes on pathogen-specific T-helper 1 (Th1) and T-helper 17 (Th17) responses have not been examined. Methods. To identify the role of Th1 and Th17 cells in tuberculosis with coincident DM, we examined mycobacteria-specific immune responses in the whole blood of individuals who had tuberculosis with DM and compared them to those in individuals who had tuberculosis without DM. Results. Tuberculosis coincident with DM is characterized by elevated frequencies of monofunctional and dual-functional CD4+ Th1 cells following Mycobacterium tuberculosis antigen stimulation and elevated frequencies of Th17 subsets at both baseline and following antigen stimulation. This was associated with increased systemic (plasma) levels of both Th1 and Th17 cytokines and decreased baseline frequencies of natural regulatory T cells but not interleukin 10 or transforming growth factor β. Conclusions. Therefore, our data reveal that tuberculosis in persons with DM is characterized by elevated frequencies of Th1 and Th17 cells, indicating that DM is associated with an alteration in the immune response to tuberculosis, leading to a biased induction of Th1- and Th17-mediated cellular responses and likely contributing to increased immune pathology in M. tuberculosis infection. PMID:23715661

  8. Helminth Infections Coincident with Active Pulmonary Tuberculosis Inhibit Mono- and Multifunctional CD4+ and CD8+ T Cell Responses in a Process Dependent on IL-10

    PubMed Central

    George, Parakkal Jovvian; Anuradha, Rajamanickam; Kumar, Nathella Pavan; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Nutman, Thomas B.; Babu, Subash

    2014-01-01

    Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB. PMID:25211342

  9. The relevance of TH1 and TH2 cells in immediate and nonimmediate reactions to gelatin-containing vaccine.

    PubMed

    Ohsaki, M; Tsutsumi, H; Kumagai, T; Yamanaka, T; Wataya, Y; Furukawa, H; Kojima, H; Saito, A; Yano, S; Chiba, S

    1999-02-01

    The immune mechanism of gelatin allergy, especially the participation of TH1 and TH2 cells and their cytokine secretion, has not been investigated. We investigated the characteristics of T lymphocytes from patients allergic to gelatin-containing vaccine by secondary in vitro stimulation of circulating mononuclear cells with gelatin. We studied 8 children with a history of immediate-type reactions and 8 with nonimmediate-type reactions after inoculation of gelatin-containing vaccine. The expression of IFN-gamma (TH1 ), IL-2 (TH1 ), IL-4 (TH2 ), and IL-13 (TH2 ) mRNA was examined semiquantitatively by using a reverse transcriptase PCR. IgE antibody to bovine gelatin was measured with the fluorometric ELISA system, and gelatin-specific T-cell responses were detected by an in vitro lymphocyte proliferation assay. Patients with an immediate reaction all had gelatin-specific IgE antibody, whereas others did not. However, all patients exhibited positive T-lymphocyte responses specific to gelatin. Lymphocytes from subjects with nonimmediate-type reactions generally expressed very weak or sometimes no IFN-gamma, IL-2, or IL-13 genes and especially no IL-4 gene. On the other hand, the lymphocytes of subjects with immediate-type reactions significantly expressed not only IL-4 and IL-13 but also IFN-gamma and IL-2 mRNA. Our observations suggest that both gelatin-specific TH2 and TH1 responses are involved in the pathogenesis of the immediate reaction to gelatin. The gelatin-specific IL-4 and/or IL-13 responses consistently observed in patients with an immediate reaction may be associated with the production of gelatin-specific IgE antibody.

  10. Galectin-9 ameliorates anti-GBM glomerulonephritis by inhibiting Th1 and Th17 immune responses in mice.

    PubMed

    Zhang, Qian; Luan, Hong; Wang, Le; He, Fan; Zhou, Huan; Xu, Xiaoli; Li, Xingai; Xu, Qing; Niki, Toshiro; Hirashima, Mitsuomi; Xu, Gang; Lv, Yongman; Yuan, Jin

    2014-04-15

    Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a Th1- and Th17-predominant autoimmune disease. Galectin-9 (Gal-9), identified as the ligand of Tim-3, functions in diverse biological processes and leads to the apoptosis of CD4(+)Tim-3(+) T cells. It is still unclear how Gal-9 regulates the functions of Th1 and Th17 cells and prevents renal injury in anti-GBM GN. In this study, Gal-9 was administered to anti-GBM GN mice for 7 days. We found that Gal-9 retarded the increase of Scr, ameliorated renal tubular injury, and reduced the formation of crescents. The infiltration of Th1 and Th17 cells into the spleen and kidneys significantly decreased in Gal-9-treated nephritic mice. The reduced infiltration of Th1 and Th17 cells might be associated with the downregulation of CCL-20, CXCL-9, and CXCL-10 mRNAs in the kidney. In parallel, the blood levels of IFN-γ and IL-17A declined in Gal-9-treated nephritic mice at days 21 and 28. In addition, an enhanced Th2 cell-mediated immune response was observed in the kidneys of nephritic mice after a 7-day injection of Gal-9. In conclusion, the protective role of Gal-9 in anti-GBM GN is associated with the inhibition of Th1 and Th17 cell-mediated immune responses and enhanced Th2 immunity in the kidney.

  11. Liposomal Glutathione Supplementation Restores TH1 Cytokine Response to Mycobacterium tuberculosis Infection in HIV-Infected Individuals.

    PubMed

    Ly, Judy; Lagman, Minette; Saing, Tommy; Singh, Manpreet Kaur; Tudela, Enrique Vera; Morris, Devin; Anderson, Jessica; Daliva, John; Ochoa, Cesar; Patel, Nishita; Pearce, Daniel; Venketaraman, Vishwanath

    2015-11-01

    Cytokines are signaling biomolecules that serve as key regulators of our immune system. CD4(+) T-cells can be grouped into 2 major categories based on their cytokine profile: T-helper 1 (TH1) subset and T-helper 2 (TH2) subset. Protective immunity against HIV infection requires TH1-directed CD4 T-cell responses, mediated by cytokines, such as interleukin-1β (IL-1β), IL-12, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Cytokines released by the TH1 subset of CD4 T-cells are considered important for mediating effective immune responses against intracellular pathogens such as Mycobacterium tuberculosis (M. tb). Oxidative stress and redox imbalance that occur during HIV infection often lead to inappropriate immune responses. Glutathione (GSH) is an antioxidant present in nearly all cells and is recognized for its function in maintaining redox homeostasis. Our laboratory previously reported that individuals with HIV infection have lower levels of GSH. In this study, we report a link between lower levels of GSH and dysregulation of TH1- and TH2-associated cytokines in the plasma samples of HIV-positive subjects. Furthermore, we demonstrate that supplementing individuals with HIV infection for 13 weeks with liposomal GSH (lGSH) resulted in a significant increase in the levels of TH1 cytokines, IL-1β, IL-12, IFN-γ, and TNF-α. lGSH supplementation in individuals with HIV infection also resulted in a substantial decrease in the levels of free radicals and immunosuppressive cytokines, IL-10 and TGF-β, relative to those in a placebo-controlled cohort. Finally, we determined the effects of lGSH supplementation in improving the functions of immune cells to control M. tb infection by conducting in vitro assays using peripheral blood mononuclear cells collected from HIV-positive individuals at post-GSH supplementation. Our studies establish a correlation between low levels of GSH and increased susceptibility to M. tb infection through TH2-directed response, which may be relieved with lGSH supplementation enhancing the TH1 response.

  12. Oral administration with diosgenin enhances the induction of intestinal T helper 1-like regulatory T cells in a murine model of food allergy.

    PubMed

    Huang, Chung-Hsiung; Wang, Chia-Chi; Lin, Yu-Chin; Hori, Masatoshi; Jan, Tong-Rong

    2017-01-01

    Although the development of T helper (Th)1-like regulatory T (Treg) cells under Th1 inflammatory conditions has been reported, the role of Th1-like Treg cells in Th2 allergic responses remains mostly unclear. We previously demonstrated that diosgenin, the major sapogenin contained in the Chinese yam, attenuated food allergy and augmented Th1 and Treg immune responses. In this study, we hypothesized that diosgenin may enhance the induction of Th1-like Treg cells in the gut of mice with food allergy. Ovalbumin (OVA)-sensitized BALB/c mice were gavaged daily with diosgenin and received repeatedly intragastric ovalbumin challenges to induce intestinal allergic responses. The induction of Foxp3 + Treg cells co-expressing Th1-type transcription factors, cytokines and chemokines in the intestine was examined, and the mRNA expression of the chemokines corresponding to Th1-like Treg cells was measured. Diosgenin administration increased the number of Foxp3 + Treg cells co-expressing Th1 markers, including CCR5, CXCR3, IFN-γ and T-bet in the intestine, and enhanced populations of Foxp3 + IFN-γ + and Foxp3 + T-bet + cells that expressed the regulatory cytokine IL-10 in the Peyer's patches. Diosgenin also augmented the intestinal expression of CXCR3, CCL3, and CXCL10. Concordantly, diosgenin increased the number of CXCR3 + Foxp3 + IL-10 cells in the Peyer's patches. Our data demonstrated the enhanced induction of Th1-like Treg cells in allergic mice treated with diosgenin, providing evidence to suggest a role for Th1-like Treg cells in diosgenin-mediated anti-allergic effects against Th2-type allergy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Downregulation of CXCR6 and CXCR3 in lymphocytes from birch-allergic patients.

    PubMed

    Casas, R; Lindau, C; Zetterström, O; Duchén, K

    2008-09-01

    Preferential expression of chemokine receptors on Th1 or Th2 T-helper cells has mostly been studied in cell lines generated in vitro or in animal models; however, results are less well characterized in humans. We determined T-cell responses through chemokine receptor expression on lymphocytes, and cytokine secretion in plasma from birch-allergic and healthy subjects. The expression of CCR2, CCR3, CCR4, CCR5, CCR7, CXCR3, CXCR4, CXCR6, IL-12 and IL-18R receptors was studied on CD4(+) and CD8(+) cells from birch-allergic (n = 14) and healthy (n = 14) subjects by flow cytometry. The concentration of IL-4, IL-5, IL-10, IL-12, IFN-gamma and TNF-alpha cytokines was measured in plasma from the same individuals using a cytometric bead array human cytokines kit. The similar expression of CCR4 in T cells from atopic and healthy individuals argues against the use of the receptor as an in vivo marker of Th2 immune responses. Reduced percentages of CD4(+) cells expressing IL-18R, CXCR6 and CXCR3 were found in the same group of samples. TNF-alpha, IFN-gamma, IL-10, IL-5, IL-4 and IL-12 cytokines were elevated in samples from allergic individuals. Reduced expression of Th1-associated chemokine receptors together with higher levels of Th1, Th2 and anti-inflammatory cytokines in samples from allergic patients indicate that immune responses in peripheral blood in atopic diseases are complex and cannot be simplified to the Th1/Th2 paradigm. Not only the clinical picture of atopic diseases but also the clinical state at different time points of the disease might influence the results of studies including immunological markers associated with Th1- or Th2-type immune responses.

  14. The Predominant CD4+ Th1 Cytokine Elicited to Chlamydia trachomatis Infection in Women Is Tumor Necrosis Factor Alpha and Not Interferon Gamma

    PubMed Central

    Gupta, Kanupriya; Ogendi, Brian M. O.; Bakshi, Rakesh K.; Kapil, Richa; Press, Christen G.; Sabbaj, Steffanie; Lee, Jeannette Y.

    2017-01-01

    ABSTRACT Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine. PMID:28100498

  15. Microenvironmental Regulation of Mammary Carcinogenesis

    DTIC Science & Technology

    2009-06-01

    cells, leukocytes 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...metastatic spread to sentinel LNs and increased primary tumor size13. Perhaps more significant, the ratio of CD4+ to CD8+ T cells or TH2 to TH1 cells...present in primary tumors, where CD4+ or TH2 cells are more frequent than CD8+ or TH1 cells, correlates with LN metastasis and reduced overall patient

  16. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients.

    PubMed

    Li, Qifeng; Zhang, Hui; Yu, Liang; Wu, Chao; Luo, Xinhui; Sun, He; Ding, Jianbing

    2018-01-01

    Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients. Copyright © 2017. Published by Elsevier B.V.

  17. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis

    PubMed Central

    Mahata, Bidesh; Zhang, Xiuwei; Kolodziejczyk, Aleksandra A.; Proserpio, Valentina; Haim-Vilmovsky, Liora; Taylor, Angela E.; Hebenstreit, Daniel; Dingler, Felix A.; Moignard, Victoria; Göttgens, Berthold; Arlt, Wiebke; McKenzie, Andrew N.J.; Teichmann, Sarah A.

    2014-01-01

    Summary T helper 2 (Th2) cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis. PMID:24813893

  18. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses.

    PubMed

    Chen, Fengyang; Ye, Xiaodi; Yang, Yadong; Teng, Tianli; Li, Xiaoyu; Xu, Shifang; Ye, Yiping

    2015-04-15

    The leaves and bark of Metasequoia glyptostroboides are used as anti-microbic, analgesic and anti-inflammatory drug for dermatic diseases in Chinese folk medicine. However, the pharmacological effects and material basis responsible for the therapeutic use of this herb have not yet been well studied. The objectives of this study were to evaluate the anti-inflammatory effects of the proanthocyanidin fraction from the bark of M. glyptostroboides (MGEB) and to elucidate its immunological mechanisms. The anti-inflammatory activity of MGEB was evaluated using 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in mice. Its potential mechanisms were further investigated by determining its effects on Con A-induced T cell activation and Th1/Th17 responses in vitro. Both intraperitoneal injection and oral administration of MGEB significantly reduced the ear swelling in DNFB-induced ACD mice. MGEB inhibited Con A-induced proliferation and the expression levels of cell surface molecules CD69 and CD25 of T cells in vitro. MGEB also significantly decreased the production of Th1/Th17 specific cytokines (IL-2, IFN-γ and IL-17) and down-regulated their mRNA expression levels in activated T-cells. MGEB could ameliorate ACD, at least in part, through directly inhibiting T cells activation and Th1/Th17 responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Preventative effect of an herbal preparation (HemoHIM) on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    PubMed

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4(+) T cells displayed increased Th1 (IFN-γ(+) cell) as well as decreased Th2 (IL-4(+) cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  20. Innate immunological function of TH2 cells in vivo

    USDA-ARS?s Scientific Manuscript database

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  1. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    PubMed

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  2. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    PubMed

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for the characterisation of macrophage polarisation in situ. Furthermore, CD163 cannot be considered a reliable M2 marker when used on its own.

  3. Role of Arginase 1 from Myeloid Cells in Th2-Dominated Lung Inflammation

    PubMed Central

    Barron, Luke; Smith, Amber M.; El Kasmi, Karim C.; Qualls, Joseph E.; Huang, Xiaozhu; Cheever, Allen; Borthwick, Lee A.; Wilson, Mark S.; Murray, Peter J.; Wynn, Thomas A.

    2013-01-01

    Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution. PMID:23637937

  4. Design of new acid-activated cell-penetrating peptides for tumor drug delivery

    PubMed Central

    Zhang, Wei; Li, Li; Zhang, Yun; Zhang, Li; Liu, Hui; Wang, Rui

    2017-01-01

    TH(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), a histidine-rich, cell-penetrating peptide with acid-activated pH response, designed and synthesized by our group, can effectively target tumor tissues with an acidic extracellular environment. Since the protonating effect of histidine plays a critical role in the acid-activated, cell-penetrating ability of TH, we designed a series of new histidine substituents by introducing electron donating groups (Ethyl, Isopropyl, Butyl) to the C-2 position of histidine. This resulted in an enhanced pH-response and improved the application of TH in tumor-targeted delivery systems. The substituents were further utilized to form the corresponding TH analogs (Ethyl-TH, Isopropyl-TH and Butyl-TH), making them easier to protonate for positive charge in acidic tumor microenvironments. The pH-dependent cellular uptake efficiencies of new TH analogs were further evaluated using flow cytometry and confocal laser scanning microscopy, demonstrating that ethyl-TH and butyl-TH had an optimal pH-response in an acidic environment. Importantly, the new TH analogs exhibited relatively lower toxicity than TH. In addition, these new TH analogs were linked to the antitumor drug camptothecin (CPT), while butyl-TH modified conjugate presented a remarkably stronger pH-dependent cytotoxicity to cancer cells than TH and the other conjugates. In short, our work opens a new avenue for the development of improved acid-activated, cell-penetrating peptides as efficient anticancer drug delivery vectors. PMID:28603674

  5. Follicular helper T cell in immunity and autoimmunity.

    PubMed

    Mesquita, D; Cruvinel, W M; Resende, L S; Mesquita, F V; Silva, N P; Câmara, N O S; Andrade, L E C

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  6. A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells.

    PubMed

    Cook, Peter C; Owen, Heather; Deaton, Aimée M; Borger, Jessica G; Brown, Sheila L; Clouaire, Thomas; Jones, Gareth-Rhys; Jones, Lucy H; Lundie, Rachel J; Marley, Angela K; Morrison, Vicky L; Phythian-Adams, Alexander T; Wachter, Elisabeth; Webb, Lauren M; Sutherland, Tara E; Thomas, Graham D; Grainger, John R; Selfridge, Jim; McKenzie, Andrew N J; Allen, Judith E; Fagerholm, Susanna C; Maizels, Rick M; Ivens, Alasdair C; Bird, Adrian; MacDonald, Andrew S

    2015-04-24

    Dendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4(+) T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.

  7. Dendritic Cells Induce a Subpopulation of IL-12Rβ2-Expressing Treg that Specifically Consumes IL-12 to Control Th1 Responses

    PubMed Central

    Sela, Uri; Park, Chae Gyu; Park, Andrew; Olds, Peter; Wang, Shu; Fischetti, Vincent A.

    2016-01-01

    Cytokines secreted from dendritic cells (DCs) play an important role in the regulation of T helper (Th) cell differentiation and activation into effector cells. Therefore, controlling cytokine secretion from DCs may potentially regulate Th differentiation/activation. DCs also induce de-novo generation of regulatory T cells (Treg) that modulate the immune response. In the current study we used the mixed leukocyte reaction (MLR) to investigate the effect of allospecific Treg on IL-12, TNFα and IL-6 secretion by DCs. Treg cells were found to markedly down-regulate IL-12 secretion from DCs following stimulation with TLR7/8 agonist. This down-regulation of IL-12 was neither due to a direct suppression of its production by the DCs nor a result of marked DC death. We found that IL-12 was rather actively consumed by Treg cells. IL-12 consumption was mediated by a subpopulation of IL-12Rβ2-expressing Treg cells and was dependent on MHC class-II expressed on dendritic cells. Furthermore, IL-12 consumption by Tregs increased their suppressive effect on T cell proliferation and Th1 activation. These results provide a new pathway of Th1 response regulation where IL-12 secreted by DCs is consumed by a sub-population of IL-12Rβ2-expressing Treg cells. Consumption of IL-12 by Tregs not only reduces the availability of IL-12 to Th effector cells but also enhances the Treg immunosuppressive effect. This DC-induced IL-12Rβ2-expressing Treg subpopulation may have a therapeutic advantage in suppressing Th1 mediated autoimmunity. PMID:26745371

  8. Dectin-1/2–induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses

    PubMed Central

    Kaisar, Maria M. M.; Jónasdóttir, Hulda S.; van der Ham, Alwin J.; Pelgrom, Leonard R.; Schramm, Gabriele; Layland, Laura E.; Sancho, David; Prazeres da Costa, Clarissa; Giera, Martin; Yazdanbakhsh, Maria

    2018-01-01

    The molecular mechanisms through which dendritic cells (DCs) prime T helper 2 (Th2) responses, including those elicited by parasitic helminths, remain incompletely understood. Here, we report that soluble egg antigen (SEA) from Schistosoma mansoni, which is well known to drive potent Th2 responses, triggers DCs to produce prostaglandin E2 (PGE2), which subsequently—in an autocrine manner—induces OX40 ligand (OX40L) expression to license these DCs to drive Th2 responses. Mechanistically, SEA was found to promote PGE2 synthesis through Dectin-1 and Dectin-2, and via a downstream signaling cascade involving spleen tyrosine kinase (Syk), extracellular signal-regulated kinase (ERK), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase 1 and 2 (COX-1 and COX-2). In addition, this pathway was activated independently of the actions of omega-1 (ω-1), a previously described Th2-priming glycoprotein present in SEA. These findings were supported by in vivo murine data showing that ω-1–independent Th2 priming by SEA was mediated by Dectin-2 and Syk signaling in DCs. Finally, we found that Dectin-2−/−, and to a lesser extent Dectin-1−/− mice, displayed impaired Th2 responses and reduced egg-driven granuloma formation following S. mansoni infection, highlighting the physiological importance of this pathway in Th2 polarization during a helminth infection. In summary, we identified a novel pathway in DCs involving Dectin-1/2-Syk-PGE2-OX40L through which Th2 immune responses are induced. PMID:29668708

  9. The expanding universe of T-cell subsets: Th1, Th2 and more.

    PubMed

    Mosmann, T R; Sad, S

    1996-03-01

    Since their discovery nearly ten years ago, T helper 1 (Th1) and Th2 subsets have been implicated in the regulation of many immune responses. In this article, Tim Mosmann and Subash Sad discuss the increasing number of T-cell subsets defined by cytokine patterns; the differentiation pathways of CD4+ and CD8+ T cells; the contribution of other cell types to these patterns; and the cytokine interactions during infection and pregnancy.

  10. Recent thymic emigrants are biased against the T-helper type 1 and toward the T-helper type 2 effector lineage.

    PubMed

    Hendricks, Deborah W; Fink, Pamela J

    2011-01-27

    After intrathymic development, T cells exit the thymus and join the peripheral T-cell pool. Such recent thymic emigrants (RTEs) undergo both phenotypic and functional maturation during the first 3 weeks they reside in the periphery. Using a well-controlled in vitro polarization scheme, we now show that CD4(+) RTEs are defective in T-helper (Th) type 0 (Th0), Th1, Th17, and regulatory T-cell lineage commitment, with dampened cytokine production and transcription factor expression. In contrast, CD4(+) RTES are biased toward the Th2 lineage both in vitro and in vivo, with more robust interleukin-4, interleukin-5, and interleukin-13 production than their mature naive counterparts. Coculture experiments demonstrate that mature naive T cells influence neighboring RTEs in their Th responses. In adoptive hosts, CD4(+) RTEs drive production of the Th2-associated antibody isotype immunoglobulin G1 and mediate airway inflammatory disease. This bias in RTEs likely results from dampened negative regulation of the Th2 lineage by diminished levels of T-bet, a key Th1 transcription factor. CD4(+) RTEs thus represent a transitional population with a distinct interpretation of, and response to, immunologic cues. These characteristics may be beneficial during the postthymic maturation period by leading to the avoidance of inappropriate immune responses, particularly in lymphopenic neonates and adults.

  11. Induction of immunoglobulin G1, interleukin-6 and interleukin-10 by Taenia crassiceps metacestode carbohydrates

    PubMed Central

    Dissanayake, Senarath; Khan, Nasir; Shahin, Allen; Wijesinghe, Shanaka; Lukic, Miodrag

    2002-01-01

    T helper type 2 (Th2) -polarized immune responses are characteristically dominant in helminth infections. Two murine models that show a Th1 to Th2 polarization with infection progression are those of Schistosoma mansoni and Taenia crassiceps. In both, an early Th1 response is replaced by a late Th2 response. We report that the nucleic acid-, protein- and lipid-free carbohydrate fraction of T. crassiceps metacestodes (denoted T-CHO) possesses Th2-like immunomodulatory activity. Immunization of two strains of rats (Dark Agouti and Albino Oxford) and BALB/c mice with chicken albumin in the presence of T-CHO resulted in selective enhancement of immunoglobulin G1 (IgG1) antibodies, considered to be associated with Th2 responses in both rats and mice. Interleukin-6 (IL-6) followed by IL-10 were the dominant cytokines detected in in vitro cultures of mouse spleen cells stimulated with T-CHO. IL-4 and IL-5 were not detected in these culture supernates. Furthermore, Taenia carbohydrates were mitogenic to spleen cells, activated serine phosphorylation of proteins and up-regulated the expression of the anti-apoptotic protein, Bcl-2. When mouse spleen cells were cultured in the presence of Taenia carbohydrates, a concentration-dependent down-regulation of IL-2 and an overlapping up-regulation of IL-6 secretion were seen. PMID:12460185

  12. Valsartan Attenuates KIR2.1 by Downregulating the Th1 Immune Response in Rats Following Myocardial Infarction.

    PubMed

    Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua

    2016-03-01

    Myocardial infarction (MI) results in decreased inward-rectifier K⁺ current (IK1), which is mediated primarily by the Kir2.1 protein and is accompanied by upregulated T cells. Interferon γ (IFN-γ), secreted predominantly by Th1 cells, causes a decrease in IK1 in microglia. Whether Th1 cells can induce IK1/Kir2.1 remodeling following MI and whether valsartan can ameliorate this phenomenon remain unclear. Rats experiencing MI received either valsartan or saline for 7 days. Th1-enriched lymphocytes and myocytes were cocultured with or without valsartan treatment. Th1 cells were monitored by flow cytometry. The protein levels of Kir2.1 were detected by Western blot analyses. IK1 was recorded through whole-cell patch clamping. The plasma levels of IFN-γ, interleukin 2, and tumor necrosis factor α were detected by enzyme-linked immunosorbent assay. Th1 cell number and cytokine expression levels were higher following MI, and the Kir2.1 protein level was decreased. In MI rats, valsartan reduced Th1 cell number and cytokine expression levels and increased the Kir2.1 expression and the IK1 current compared with the rats that received saline treatment; these results are consistent with the effect of valsartan in cocultured lymphocytes and myocytes. In vitro, IFN-γ overexpression suppressed the IK1 current, whereas interleukin 2 and tumor necrosis factor α had no significant effect on the current, establishing that Th1 cell regulation of IK1/Kir2.1 expression is mainly dependent on IFN-γ. Valsartan ameliorates IK1/Kir2.1 remodeling by downregulating the Th1 immune response following MI.

  13. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases.

    PubMed Central

    Lucey, D R; Clerici, M; Shearer, G M

    1996-01-01

    In the mid-1980s, Mosmann, Coffman, and their colleagues discovered that murine CD4+ helper T-cell clones could be distinguished by the cytokines they synthesized. The isolation of human Th1 and Th2 clones by Romagnani and coworkers in the early 1990s has led to a large number of reports on the effects of Th1 and Th2 on the human immune system. More recently, cells other than CD4+ T cells, including CD8+ T cells, monocytes, NK cells, B cells, eosinophils, mast cells, basophils, and other cells, have been shown to be capable of producing "Th1" and "Th2" cytokines. In this review, we examine the literature on human diseases, using the nomenclature of type 1 (Th1-like) and type 2 (Th2-like) cytokines, which includes all cell types producing these cytokines rather than only CD4+ T cells. Type 1 cytokines include interleukin-2 (IL-2), gamma interferon, IL-12 and tumor necrosis factor beta, while type 2 cytokines include IL-4, IL-5, IL-6, IL-10, and IL-13. In general, type 1 cytokines favor the development of a strong cellular immune response whereas type 2 cytokines favor a strong humoral immune response. Some of these type 1 and type 2 cytokines are cross-regulatory. For example, gamma interferon and IL-12 decrease the levels of type 2 cytokines whereas IL-4 and IL-10 decrease the levels of type 1 cytokines. We use this cytokine perspective to examine human diseases including infections due to viruses, bacteria, parasites, and fungi, as well as selected neoplastic, atopic, rheumatologic, autoimmune, and idiopathic-inflammatory conditions. Clinically, type 1 cytokine-predominant responses should be suspected in any delayed-type hypersensitivity-like granulomatous reactions and in infections with intracellular pathogens, whereas conditions involving hypergammaglobulinemia, increased immunoglobulin E levels, and/or eosinophilia are suggestive of type 2 cytokine-predominant conditions. If this immunologic concept is relevant to human diseases, the potential exists for novel cytokine-based therapies and novel cytokine-directed preventive vaccines for such diseases. PMID:8894351

  14. Age-related T cell responses to allergens in childhood.

    PubMed

    Smart, J M; Suphioglu, C; Kemp, A S

    2003-03-01

    T cell priming, as determined by allergen-induced proliferative responses, is believed to occur principally in early childhood in both atopic and non-atopic infants under the influence of multiple factors including environmental allergen exposure. It is considered that T cell priming with expansion of Th2 cells is a crucial factor in the development of atopic disease. To examine T cell priming to commonly encountered allergens in childhood in relation to age. In a cross-sectional study T cell proliferation in relation to age was examined for three common allergens, ovalbumin (OVA), house dust mite (HDM) and rye grass pollen (RYE), in atopic and non-atopic children. The effect of age on Th1 (IFN-gamma) and Th2 (IL-5 and IL-13) cytokine production in response to these allergens was investigated to examine the possibility of immune deviation with time. A significant increase in T cell proliferation with age was observed with RYE among atopic children only. However, the same was not observed with the two other allergens studied (i.e. OVA and HDM). In addition, RYE-induced (but not HDM or OVA) cytokine production showed an increased Th2 deviation with age as reflected in the increasing IL-5/IFN-gamma and IL-13/IFN-gamma ratios only among the atopic subjects with rye grass pollen sensitivity. These findings suggest that grass pollen sensitivity in childhood is accompanied by a progressive accumulation of allergen-primed T cells and progressive deviation of the allergen-induced cytokine response towards a Th2 response in atopic subjects throughout childhood.

  15. On the Mechanism Determining the Th1/Th2 Phenotype of an Immune Response, and its Pertinence to Strategies for the Prevention, and Treatment, of Certain Infectious Diseases

    PubMed Central

    Bretscher, P A

    2014-01-01

    It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592

  16. Synergistically increased ILC2 and Th9 cells in lung tissue jointly promote the pathological process of asthma in mice.

    PubMed

    Ying, Xinyu; Su, Zhaoliang; Bie, Qingli; Zhang, Pan; Yang, Huijian; Wu, Yumin; Xu, Yunyun; Wu, Jing; Zhang, Mengying; Wang, Shengjun; Xu, Huaxi

    2016-06-01

    In recent years, T helper (Th) 9 cells have been demonstrated to be key mediators in immune responses in asthmatic lungs, and innate lymphoid cells 2 (ILC2s) have been described as a novel type of innate immunocyte with the ability to enhance immunoglobulin E (IgE) production. However, the interaction between ILC2s and Th9 cells in the pulmonary system of a mouse model of asthma remains to be elucidated. In the present study, the response state of lung tissue with regards to Th9 and ILC2s in a mouse model of asthma was investigated by detecting Th9‑ and ILC2‑associated cytokine receptors. The present study also investigated the association between the expression levels of the cytokine receptors in lung tissue samples and the IgE levels in sera samples from mouse models of asthma. Results from the present study demonstrated that the frequency of ILC2s and Th9 cells was significantly increased in the lung tissue samples, indicating that a Th2-type immune response had occurred. In addition, high mRNA expression levels of RAR‑related orphan receptor α, interleukin 1 receptor‑like 1, transcription factor PU.1 and interleukin (IL)‑9 were observed. Furthermore, IL‑5Rα, IL‑13Rα2 and high‑affinity IgE receptor were increased in mouse models of asthma, and a positive association was observed between the expression levels of ILC2‑ or Th9‑associated receptors in tissue samples and IgE levels in the sera. This indicated that ILC2s and Th9 were in a state of polarization and may promote each other in the lung tissue of mouse models of asthma, and that the lung tissue was responding to the two types of cells via increased expression of receptors.

  17. Preventative Effect of an Herbal Preparation (HemoHIM) on Development of Airway Inflammation in Mice via Modulation of Th1/2 Cells Differentiation

    PubMed Central

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4+ T cells displayed increased Th1 (IFN-γ+ cell) as well as decreased Th2 (IL-4+ cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance. PMID:23844220

  18. Immunopathology of leishmaniasis: an update.

    PubMed

    Mansueto, P; Vitale, G; Di Lorenzo, G; Rini, G B; Mansueto, S; Cillari, E

    2007-01-01

    Leishmaniasis represents a severe, increasing, public health problem. The perspective of its control is highly dependent on research progress, on therapeutic manipulations of the immune system, and on vaccine development. There is a correlation between the clinical outcome of Leishmania infection and the cytokine response profile. While a protective immune response against Leishmania has been clearly identified to be related to the influence of a type-1 response and IFN-gamma production, the precise role of T helper (TH) 2 cytokines in non-healing infections requires further exploration. IL-4 and IL-13 (TH2 cytokines) can promote disease progression in cutaneous leishmaniasis, whereas IL-4 would appear to enhance protective type-1 responses in visceral leishmaniasis. Thus, the TH1/TH2 paradigm of resistance/susceptibility to intracellular parasites is probably an oversimplification of a more complicated network of regulatory/counter regulatory interactions. Moreover, the presence of antigen specific regulatory T cell subsets may provide an environment that contributes to the balance between TH1 and TH2 cells. Finally, the involvement of CD8 positive T cells has been described, but the modality of their function in this kind of infection has not been so far elucidated.

  19. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis

    PubMed Central

    Chen, Liye; Ridley, Anna; Hammitzsch, Ariane; Al-Mossawi, Mohammad Hussein; Bunting, Helen; Georgiadis, Dimitris; Chan, Antoni; Kollnberger, Simon; Bowness, Paul

    2016-01-01

    Objective Human leucocyte antigen (HLA)-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly associated with ankylosing spondylitis (AS). ERAP1 is a key aminopeptidase in HLA class I presentation and can potentially alter surface expression of HLA-B27 free heavy chains (FHCs). We studied the effects of ERAP1 silencing/inhibition/variations on HLA-B27 FHC expression and Th17 responses in AS. Methods Flow cytometry was used to measure surface expression of HLA class I in peripheral blood mononuclear cells (PBMCs) from patients with AS carrying different ERAP1 genotypes (rs2287987, rs30187 and rs27044) and in ERAP1-silenced/inhibited/mutated HLA-B27-expressing antigen presenting cells (APCs). ERAP1-silenced/inhibited APCs were cocultured with KIR3DL2CD3ε-reporter cells or AS CD4+ T cells. Th17 responses of AS CD4+ T cells were measured by interleukin (IL)-17A ELISA and Th17 intracellular cytokine staining. FHC cell surface expression and Th17 responses were also measured in AS PBMCs following ERAP1 inhibition. Results The AS-protective ERAP1 variants, K528R and Q730E, were associated with reduced surface FHC expression by monocytes from patients with AS and HLA-B27-expressing APCs. ERAP1 silencing or inhibition in APCs downregulated HLA-B27 FHC surface expression, reduced IL-2 production by KIR3DL2CD3ε-reporter cells and suppressed the Th17 expansion and IL-17A secretion by AS CD4+ T cells. ERAP1 inhibition of AS PBMCs reduced HLA class I FHC surface expression by monocytes and B cells, and suppressed Th17 expansion. Conclusions ERAP1 activity determines surface expression of HLA-B27 FHCs and potentially promotes Th17 responses in AS through binding of HLA-B27 FHCs to KIR3DL2. Our data suggest that ERAP1 inhibition has potential for AS treatment. PMID:26130142

  20. Bcl11b is essential for licensing Th2 differentiation during helminth infection and allergic asthma

    USDA-ARS?s Scientific Manuscript database

    Naïve CD4+ T-helper cells differentiate into Th2 effector cells during asthma and helminth (worm) infection. Here we report that mice lacking the transcription factor Bcl11b in mature CD4+ T-cells are incapable of mounting an effective Th2 response in asthma and worm infection with a major reductio...

  1. T helper cell 2 immune skewing in pregnancy/early life: chemical exposure and the development of atopic disease and allergy.

    PubMed

    McFadden, J P; Thyssen, J P; Basketter, D A; Puangpet, P; Kimber, I

    2015-03-01

    During the last 50 years there has been a significant increase in Western societies of atopic disease and associated allergy. The balance between functional subpopulations of T helper cells (Th) determines the quality of the immune response provoked by antigen. One such subpopulation - Th2 cells - is associated with the production of IgE antibody and atopic allergy, whereas, Th1 cells antagonize IgE responses and the development of allergic disease. In seeking to provide a mechanistic basis for this increased prevalence of allergic disease, one proposal has been the 'hygiene hypothesis', which argues that in Westernized societies reduced exposure during early childhood to pathogenic microorganisms favours the development of atopic allergy. Pregnancy is normally associated with Th2 skewing, which persists for some months in the neonate before Th1/Th2 realignment occurs. In this review, we consider the immunophysiology of Th2 immune skewing during pregnancy. In particular, we explore the possibility that altered and increased patterns of exposure to certain chemicals have served to accentuate this normal Th2 skewing and therefore further promote the persistence of a Th2 bias in neonates. Furthermore, we propose that the more marked Th2 skewing observed in first pregnancy may, at least in part, explain the higher prevalence of atopic disease and allergy in the first born. © 2014 British Association of Dermatologists.

  2. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity.

    PubMed

    Querec, Troy; Bennouna, Soumaya; Alkan, Sefik; Laouar, Yasmina; Gorden, Keith; Flavell, Richard; Akira, Shizuo; Ahmed, Rafi; Pulendran, Bali

    2006-02-20

    The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines available, with a 65-yr history of use in >400 million people globally. Despite this efficacy, there is presently no information about the immunological mechanisms by which YF-17D acts. Here, we present data that suggest that YF-17D activates multiple Toll-like receptors (TLRs) on dendritic cells (DCs) to elicit a broad spectrum of innate and adaptive immune responses. Specifically, YF-17D activates multiple DC subsets via TLRs 2, 7, 8, and 9 to elicit the proinflammatory cytokines interleukin (IL)-12p40, IL-6, and interferon-alpha. Interestingly, the resulting adaptive immune responses are characterized by a mixed T helper cell (Th)1/Th2 cytokine profile and antigen-specific CD8+ T cells. Furthermore, distinct TLRs appear to differentially control the Th1/Th2 balance; thus, whilst MyD88-deficient mice show a profound impairment of Th1 cytokines, TLR2-deficient mice show greatly enhanced Th1 and Tc1 responses to YF-17D. Together, these data enhance our understanding of the molecular mechanism of action of YF-17D, and highlight the potential of vaccination strategies that use combinations of different TLR ligands to stimulate polyvalent immune responses.

  3. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease.

    PubMed

    Kidd, Parris

    2003-08-01

    One theory of immune regulation involves homeostasis between T-helper 1 (Th1) and T-helper 2 (Th2) activity. The Th1/Th2 hypothesis arose from 1986 research suggesting mouse T-helper cells expressed differing cytokine patterns. This hypothesis was adapted to human immunity, with Th1- and Th2-helper cells directing different immune response pathways. Th1 cells drive the type-1 pathway ("cellular immunity") to fight viruses and other intracellular pathogens, eliminate cancerous cells, and stimulate delayed-type hypersensitivity (DTH) skin reactions. Th2 cells drive the type-2 pathway ("humoral immunity") and up-regulate antibody production to fight extracellular organisms; type 2 dominance is credited with tolerance of xenografts and of the fetus during pregnancy. Overactivation of either pattern can cause disease, and either pathway can down-regulate the other. But the hypothesis has major inconsistencies; human cytokine activities rarely fall into exclusive pro-Th1 or -Th2 patterns. The non-helper regulatory T cells, or the antigen-presenting cells (APC), likely influence immunity in a manner comparable to Th1 and Th2 cells. Many diseases previously classified as Th1 or Th2 dominant fail to meet the set criteria. Experimentally, Th1 polarization is readily transformed to Th2 dominance through depletion of intracellular glutathione, and vice versa. Mercury depletes glutathione and polarizes toward Th2 dominance. Several nutrients and hormones measurably influence Th1/Th2 balance, including plant sterols/sterolins, melatonin, probiotics, progesterone, and the minerals selenium and zinc. The long-chain omega-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) significantly benefit diverse inflammatory and autoimmune conditions without any specific Th1/Th2 effect. Th1/Th2-based immunotherapies, e.g., T-cell receptor (TCR) peptides and interleukin-4 (IL-4) injections, have produced mixed results to date.

  4. Treatment of mice with fenbendazole attenuates allergic airways inflammation and Th2 cytokine production in a model of asthma.

    PubMed

    Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C

    2009-01-01

    Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.

  5. Aberrant in Vivo T Helper Type 2 Cell Response and Impaired Eosinophil Recruitment in Cc Chemokine Receptor 8 Knockout Mice

    PubMed Central

    Chensue, Stephen W.; Lukacs, Nicholas W.; Yang, Tong-Yuan; Shang, Xiaozhou; Frait, Kirsten A.; Kunkel, Steven L.; Kung, Ted; Wiekowski, Maria T.; Hedrick, Joseph A.; Cook, Donald N.; Zingoni, Alessandra; Narula, Satwant K.; Zlotnik, Albert; Barrat, Franck J.; O'Garra, Anne; Napolitano, Monica; Lira, Sergio A.

    2001-01-01

    Chemokine receptors transduce signals important for the function and trafficking of leukocytes. Recently, it has been shown that CC chemokine receptor (CCR)8 is selectively expressed by Th2 subsets, but its functional relevance is unclear. To address the biological role of CCR8, we generated CCR8 deficient (−/−) mice. Here we report defective T helper type 2 (Th2) immune responses in vivo in CCR8−/− mice in models of Schistosoma mansoni soluble egg antigen (SEA)-induced granuloma formation as well as ovalbumin (OVA)- and cockroach antigen (CRA)-induced allergic airway inflammation. In these mice, the response to SEA, OVA, and CRA showed impaired Th2 cytokine production that was associated with aberrant type 2 inflammation displaying a 50 to 80% reduction in eosinophils. In contrast, a prototypical Th1 immune response, elicited by Mycobacteria bovis purified protein derivative (PPD) was unaffected by CCR8 deficiency. Mechanistic analyses indicated that Th2 cells developed normally and that the reduction in eosinophil recruitment was likely due to systemic reduction in interleukin 5. These results indicate an important role for CCR8 in Th2 functional responses in vivo. PMID:11238588

  6. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection.

    PubMed

    Fanales-Belasio, Emanuele; Moretti, Sonia; Fiorelli, Valeria; Tripiciano, Antonella; Pavone Cossut, Maria R; Scoglio, Arianna; Collacchi, Barbara; Nappi, Filomena; Macchia, Iole; Bellino, Stefania; Francavilla, Vittorio; Caputo, Antonella; Barillari, Giovanni; Magnani, Mauro; Laguardia, Maria Elena; Cafaro, Aurelio; Titti, Fausto; Monini, Paolo; Ensoli, Fabrizio; Ensoli, Barbara

    2009-03-01

    Tat is an early regulatory protein that plays a major role in human HIV-1 replication and AIDS pathogenesis, and therefore, it represents a key target for the host immune response. In natural infection, however, Abs against Tat are produced only by a small fraction (approximately 20%) of asymptomatic individuals and are rarely seen in progressors, suggesting that Tat may possess properties diverting the adaptive immunity from generating humoral responses. Here we show that a Th1-type T cell response against Tat is predominant over a Th2-type B cell response in natural HIV-1 infection. This is likely due to the capability of Tat to selectively target and very efficiently enter CD1a-expressing monocyte-derived dendritic cells (MDDC), which represent a primary target for the recognition and response to virus Ag. Upon cellular uptake, Tat induces MDDC maturation and Th1-associated cytokines and beta-chemokines production and polarizes the immune response in vitro to the Th1 pattern through the transcriptional activation of TNF-alpha gene expression. This requires the full conservation of Tat transactivation activity since neither MDDC maturation nor TNF-alpha production are found with either an oxidized Tat, which does not enter MDDC, or with a Tat protein mutated in the cysteine-rich region (cys22 Tat), which enters MDDC as the wild-type Tat but is transactivation silent. Consistently with these data, inoculation of monkeys with the native wild-type Tat induced a predominant Th1 response, whereas cys22 Tat generated mostly Th2 responses, therefore providing evidence that Tat induces a predominant Th1 polarized adaptive immune response in the host.

  7. Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination

    PubMed Central

    Bagri, Puja; Anipindi, Varun C.; Nguyen, Philip V.; Vitali, Danielle; Stämpfli, Martin R.

    2017-01-01

    ABSTRACT It is well established that interferon gamma (IFN-γ) production by CD4+ T cells is critical for antiviral immunity against herpes simplex virus 2 (HSV-2) genital infection. However, the role of interleukin-17A (IL-17A) production by CD4+ T cells in HSV-2 antiviral immunity is yet to be elucidated. Here we demonstrate that IL-17A plays an important role in enhancing antiviral T helper type 1 (Th1) responses in the female genital tract (FGT) and is essential for effective protection conferred by HSV-2 vaccination. While IL-17A did not play a critical role during primary genital HSV-2 infection, seen by lack of differences in susceptibility between IL-17A-deficient (IL-17A−/−) and wild-type (WT) C57BL/6 mice, it was critical for mediating antiviral responses after challenge/reexposure. Compared to WT mice, IL-17A−/− mice (i) infected intravaginally and reexposed or (ii) vaccinated intranasally and challenged intravaginally demonstrated poor outcomes. Following intravaginal HSV-2 reexposure or challenge, vaccinated IL-17A−/− mice had significantly higher mortality, greater disease severity, higher viral shedding, and higher levels of proinflammatory cytokines and chemokines in vaginal secretions. Furthermore, IL-17A−/− mice had impaired Th1 cell responses after challenge/reexposure, with significantly lower proportions of vaginal IFN-γ+ CD4+ T cells. The impaired Th1 cell responses in IL-17A−/− mice coincided with smaller populations of IFN-γ+ CD4+ tissue resident memory T (TRM) cells in the genital tract postimmunization. Taken together, these findings describe a novel role for IL-17A in regulating antiviral IFN-γ+ Th1 cell immunity in the vaginal tract. This strategy could be exploited to enhance antiviral immunity following HSV-2 vaccination. IMPORTANCE T helper type 1 (Th1) immunity, specifically interferon gamma (IFN-γ) production by CD4+ T cells, is critical for protection against genital herpesvirus (HSV-2) infection, and enhancing this response can potentially help improve disease outcomes. Our study demonstrated that interleukin-17A (IL-17A) plays an essential role in enhancing antiviral Th1 responses in the female genital tract (FGT). We found that in the absence of IL-17A, preexposed and vaccinated mice showed poor disease outcomes and were unable to overcome HSV-2 reexposure/challenge. IL-17A-deficient mice (IL-17A−/−) had smaller populations of IFN-γ+ CD4+ tissue resident memory T (TRM) cells in the genital tract postimmunization than did wild-type (WT) mice, which coincided with attenuated Th1 responses postchallenge. This has important implications for developing effective vaccines against HSV-2, as we propose that strategies inducing IL-17A in the genital tract may promote more effective Th1 cell immunity and better overall protection. PMID:28956763

  8. Fasciola hepatica Immune Regulates CD11c+ Cells by Interacting with the Macrophage Gal/GalNAc Lectin.

    PubMed

    Rodríguez, Ernesto; Carasi, Paula; Frigerio, Sofía; da Costa, Valeria; van Vliet, Sandra; Noya, Verónica; Brossard, Natalie; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa

    2017-01-01

    Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica , is a trematode zoonosis of interest in public health and livestock production. Like other helminths, F. hepatica modulates the host immune response by inducing potent polarized Th2 and regulatory T cell immune responses and by downregulating the production of Th1 cytokines. In this work, we show that F. hepatica glycans increase Th2 immune responses by immunomodulating TLR-induced maturation and function of dendritic cells (DCs). This process was mediated by the macrophage Gal/GalNAc lectin (MGL) expressed on DCs, which recognizes the Tn antigen (GalNAc-Ser/Thr) on parasite components. More interestingly, we identified MGL-expressing CD11c + cells in infected animals and showed that these cells are recruited both to the peritoneum and the liver upon F. hepatica infection. These cells express the regulatory cytokines IL-10, TNFα and TGFβ and a variety of regulatory markers. Furthermore, MGL + CD11c + cells expand parasite-specific Th2/regulatory cells and suppress Th1 polarization. The results presented here suggest a potential role of MGL in the immunomodulation of DCs induced by F. hepatica and contribute to a better understanding of the molecular and immunoregulatory mechanisms induced by this parasite.

  9. Fasciola hepatica Immune Regulates CD11c+ Cells by Interacting with the Macrophage Gal/GalNAc Lectin

    PubMed Central

    Rodríguez, Ernesto; Carasi, Paula; Frigerio, Sofía; da Costa, Valeria; van Vliet, Sandra; Noya, Verónica; Brossard, Natalie; van Kooyk, Yvette; García-Vallejo, Juan J.; Freire, Teresa

    2017-01-01

    Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is a trematode zoonosis of interest in public health and livestock production. Like other helminths, F. hepatica modulates the host immune response by inducing potent polarized Th2 and regulatory T cell immune responses and by downregulating the production of Th1 cytokines. In this work, we show that F. hepatica glycans increase Th2 immune responses by immunomodulating TLR-induced maturation and function of dendritic cells (DCs). This process was mediated by the macrophage Gal/GalNAc lectin (MGL) expressed on DCs, which recognizes the Tn antigen (GalNAc-Ser/Thr) on parasite components. More interestingly, we identified MGL-expressing CD11c+ cells in infected animals and showed that these cells are recruited both to the peritoneum and the liver upon F. hepatica infection. These cells express the regulatory cytokines IL-10, TNFα and TGFβ and a variety of regulatory markers. Furthermore, MGL+ CD11c+ cells expand parasite-specific Th2/regulatory cells and suppress Th1 polarization. The results presented here suggest a potential role of MGL in the immunomodulation of DCs induced by F. hepatica and contribute to a better understanding of the molecular and immunoregulatory mechanisms induced by this parasite. PMID:28360908

  10. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice.

    PubMed

    Elhaik Goldman, Shirin; Dotan, Shahar; Talias, Amir; Lilo, Amit; Azriel, Shalhevet; Malka, Itay; Portnoi, Maxim; Ohayon, Ariel; Kafka, Daniel; Ellis, Ronald; Elkabets, Moshe; Porgador, Angel; Levin, Ditza; Azhari, Rosa; Swiatlo, Edwin; Ling, Eduard; Feldman, Galia; Tal, Michael; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2016-04-01

    Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.

  11. Role of T cells in the B-cell response: glutaraldehyde-fixed T-helper hybridoma cells synergize with the lymphokine IL-4 to induce B-cell activation and proliferation.

    PubMed

    Kubota, E; McKenzie, D T; Dutton, R W; Swain, S L

    1991-01-01

    Antigen-unselected helper T-cell hybridomas (Th) which activate normal resting B cells to RNA synthesis and proliferation in the presence of concanavalin A (Con A) have been developed. The response is completely Th cell dependent, and not restricted by the haplotype of the B-cell major histocompatibility complex (MHC). Culture supernatants from the Con A-stimulated Th hybridomas contain interleukin-4 (IL-4) and IL-2, but undetectable level of IL-5. The supernatant alone, however, does not induce B-cell activation or proliferation. Although the Con A-mediated Th cell-dependent B-cell response occurs in an MHC-unrestricted manner, the response of resting B cells can be blocked by monoclonal Ia antibody specific for the surface class II molecules of the responding B cell. The response is also blocked by monoclonal antibody to L3T4. Significant activation and proliferation of resting B cells can also be triggered by glutaraldehyde-fixed Th hybridomas and Con A when exogenous IL-4 is added. The stimulation with fixed Th hybridomas plus IL-4 can be inhibited by monoclonal anti-L3T4 or anti-Ia. These results suggest that maximal B-cell activation requires a direct helper T cell-B cell interaction which depends on availability of Ia on the B cell and L3T4 on the T cell, even when Con A overcomes the requirement for MHC-restricted T-cell recognition. We suggest that this signal, in conjunction with T-cell produced lymphokine IL-4, is responsible for the activation and subsequent proliferation of the B cells which occurs following interaction with T cells.

  12. Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats.

    PubMed

    Pérez-Berezo, Teresa; Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Castell, Margarida

    2009-03-01

    Previous studies in young rats have reported the impact of 3 weeks of high cocoa intake on healthy immune status. The present article describes the effects of a longer-term cocoa-enriched diet (9 weeks) on the specific immune response to ovalbumin (OVA) in adult Wistar rats. At 4 weeks after immunization, control rats produced anti-OVA antibodies, which, according their amount and isotype, were arranged as follows: IgG1 > IgG2a > IgM > IgG2b > IgG2c. Both cocoa diets studied (4% and 10%) down-modulated OVA-specific antibody levels of IgG1 (main subclass associated with the Th2 immune response in rats), IgG2a, IgG2c and IgM isotypes. Conversely, cocoa-fed rats presented equal or higher levels of anti-OVA IgG2b antibodies (subclass linked to the Th1 response). Spleen and lymph node cells from OVA-immunized control and cocoa-fed animals proliferated similarly under OVA stimulation. However, spleen cells from cocoa-fed animals showed decreased interleukin-4 secretion (main Th2 cytokine), and lymph node cells from the same rats displayed higher interferon-gamma secretion (main Th1 cytokine). These changes were accompanied by a reduction in the number of anti-OVA IgG-secreting cells in spleen. In conclusion, cocoa diets induced attenuation of antibody synthesis that may be attributable to specific down-regulation of the Th2 immune response.

  13. BALB/c mice display more enhanced BCG vaccine induced Th1 and Th17 response than C57BL/6 mice but have equivalent protection.

    PubMed

    Garcia-Pelayo, M Carmen; Bachy, Véronique S; Kaveh, Daryan A; Hogarth, Philip J

    2015-01-01

    It is generally assumed that the inbred mouse strains BALB/c (H-2(d)) and C57BL/6 (H-2(b)) respond to mycobacterial infection with distinct polarisation of T helper responses, with C57BL/6 predisposed to Th1 and BALB/c to Th2. We investigated this in a BCG-immunisation, Mycobacterium bovis challenge model. Following immunisation, lung and spleen cell cytokine responses to in vitro re-stimulation with a cocktail of seven secreted, immunogenic, recombinant mycobacterial proteins were determined. In both lung and spleen, BALB/c cells produced at least 2-fold more IFN-γ, and up to 7-fold more IL-2 and IL-17 than C57BL/6 cells, whereas IL-10 production was reciprocally increased in C57BL/6 mice. These data suggest that, contrary to reports in the literature, specific mycobacterial antigens are able to induce strong Th1 and Th17 responses in BALB/c mice following BCG vaccination, whilst in C57BL/6 mice, the Th1 response is partly counterbalanced by IL-10. After subsequent M. bovis low dose challenge, protection, as measured in the lungs and dissemination to the spleen, was equivalent in BALB/c and C57BL/6 mice, indicating that BCG-induced immunity was equivalent in both strains. Thus, the differential immune responses do not appear to have a role in protection, but further, as yet unidentified, specific immune responses play a significant role. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation

    PubMed Central

    Gerami-Nejad, Maryam; Kumamoto, Yosuke; Mohammed, Javed A.; Jarrett, Elizabeth; Drummond, Rebecca A.; Zurawski, Sandra M.; Zurawski, Gerard; Berman, Judith; Iwasaki, Akiko; Brown, Gordon D.; Kaplan, Daniel H.

    2015-01-01

    Summary Candida albicans is a dimorphic fungus responsible for chronic mucocutaneous and systemic infections. Mucocutaneous immunity to C. albicans requires T helper-17 (Th17) cell differentiation that is thought to depend on recognition of filamentous C. albicans. Systemic immunity is considered T cell independent. Using a murine skin infection model, we compared T helper cell responses to yeast and filamentous C. albicans, We found that only yeast induced Th17 cell responses through a mechanism that required Dectin-1 mediated expression of interleukin-6 (IL-6) by Langerhans cells. Filamentous forms induced Th1 without Th17 cell responses due to the absence of Dectin-1 ligation. Notably, Th17 cell responses provided protection against cutaneous infection while Th1 cell responses provided protection against systemic infection. Thus, C. albicans morphology drives distinct T helper cell responses that provide tissue specific protection. These findings provide insight into compartmentalization of Th responses, C. albicans pathogenesis and have critical implications for vaccine strategies. PMID:25680275

  15. Production and function of cytokines in natural and acquired immunity to Candida albicans infection.

    PubMed Central

    Ashman, R B; Papadimitriou, J M

    1995-01-01

    Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890

  16. Th17 Cells Coordinate with Th22 Cells in Maintaining Homeostasis of Intestinal Tissues and both are Depleted in SIV-Infected Macaques.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S

    2014-05-01

    Th17 and Th22 cells are thought to function as innate regulators of mucosal antimicrobial responses, tissue inflammation and mucosal integrity, yet their role in persistent SIV infection is still unclear. Here we compared Th17 and Th22 cells in their phenotype, effector/cytokine function, and frequency in blood and intestinal mucosal tissues, and correlate levels with mucosal damage in SIV-infected rhesus macaques. We found that Th17/Th22 cells share similar features in that both highly produce TNF-α and IL-2 and express CCR5 in intestinal tissues; yet very few show cytotoxic functions, as evidenced by lack of IFN-γ and granzyme B production. Further, Th17/Th22 cells display distinct tissue-specific distributions. Both Th17 and Th22 cells and cytokine secretion were significantly depleted in both blood and intestine in chronically SIV-infected macaques. The frequency of Th17 and Th22 cells in the intestine positively correlated with percentages of intestinal CD4+ T cells and negatively with damage to intestinal mucosa, and plasma viral loads in SIV infection. These findings indicate Th17 and Th22 cells share considerable functions, and may coordinate in innate mucosal immune responses, and their regional loss in the intestine may be associated with local mucosal immune dysfunction in persistent HIV/SIV infection.

  17. Th17 Cells Coordinate with Th22 Cells in Maintaining Homeostasis of Intestinal Tissues and both are Depleted in SIV-Infected Macaques

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.

    2014-01-01

    Th17 and Th22 cells are thought to function as innate regulators of mucosal antimicrobial responses, tissue inflammation and mucosal integrity, yet their role in persistent SIV infection is still unclear. Here we compared Th17 and Th22 cells in their phenotype, effector/cytokine function, and frequency in blood and intestinal mucosal tissues, and correlate levels with mucosal damage in SIV-infected rhesus macaques. We found that Th17/Th22 cells share similar features in that both highly produce TNF-α and IL-2 and express CCR5 in intestinal tissues; yet very few show cytotoxic functions, as evidenced by lack of IFN-γ and granzyme B production. Further, Th17/Th22 cells display distinct tissue-specific distributions. Both Th17 and Th22 cells and cytokine secretion were significantly depleted in both blood and intestine in chronically SIV-infected macaques. The frequency of Th17 and Th22 cells in the intestine positively correlated with percentages of intestinal CD4+ T cells and negatively with damage to intestinal mucosa, and plasma viral loads in SIV infection. These findings indicate Th17 and Th22 cells share considerable functions, and may coordinate in innate mucosal immune responses, and their regional loss in the intestine may be associated with local mucosal immune dysfunction in persistent HIV/SIV infection. PMID:25364618

  18. Induction of appropriate Th-cell phenotypes: cellular decision-making in heterogeneous environments.

    PubMed

    van den Ham, H-J; Andeweg, A C; de Boer, R J

    2013-11-01

    Helper T (Th)-cell differentiation is a key event in the development of the adaptive immune response. By the production of a range of cytokines, Th cells determine the type of immune response that is raised against an invading pathogen. Th cells can adopt many different phenotypes, and Th-cell phenotype decision-making is crucial in mounting effective host responses. This review discusses the different Th-cell phenotypes that have been identified and how Th cells adopt a particular phenotype. The regulation of Th-cell phenotypes has been studied extensively using mathematical models, which have explored the role of regulatory mechanisms such as autocrine cytokine signalling and cross-inhibition between self-activating transcription factors. At the single cell level, Th responses tend to be heterogeneous, but corrections can be made soon after T-cell activation. Although pathogens and the innate immune system provide signals that direct the induction of Th-cell phenotypes, these instructive mechanisms could be easily subverted by pathogens. We discuss that a model of success-driven feedback would select the most appropriate phenotype for clearing a pathogen. Given the heterogeneity in the induction phase of the Th response, such a success-driven feedback loop would allow the selection of effective Th-cell phenotypes while terminating incorrect responses. © 2013 John Wiley & Sons Ltd.

  19. Schistosoma Infection and Schistosoma-Derived Products Modulate the Immune Responses Associated with Protection against Type 2 Diabetes

    PubMed Central

    Tang, Chun-Lian; Liu, Zhi-Ming; Gao, Yan Ru; Xiong, Fei

    2018-01-01

    Studies on parasite-induced immunoregulatory mechanisms could contribute to the development of new therapies for inflammatory diseases such as type 2 diabetes (T2D), which is a chronic inflammatory disease characterized by persistent elevated glucose levels due to insulin resistance. The association between previous Schistosoma infection and T2D has been confirmed—Schistosoma infection and Schistosoma-derived products modulate the immune system, including innate and acquired immune responses, contributing to T2D disease control. Schistosoma infections and Schistosoma-derived molecules affect the immune cell composition in adipose tissue, dampening inflammation and improving glucose tolerance. This protective role includes the polarization of immune cells to alternatively activated macrophages, dendritic cells, eosinophils, and group 2 innate lymphoid cells. Furthermore, Schistosoma infection and Schistosoma products are effective for the treatment of T2D, as they increase the number of type 2 helper T cells (Th2) and regulatory T cells (Tregs) and decrease type 1 helper T cells (Th1) and type 17 helper T cells (Th17) cells. Thus, our aim was to comprehensively review the mechanism through which Schistosoma infection and Schistosoma products modulate the immune response against T2D. PMID:29387059

  20. Schistosoma Infection and Schistosoma-Derived Products Modulate the Immune Responses Associated with Protection against Type 2 Diabetes.

    PubMed

    Tang, Chun-Lian; Liu, Zhi-Ming; Gao, Yan Ru; Xiong, Fei

    2017-01-01

    Studies on parasite-induced immunoregulatory mechanisms could contribute to the development of new therapies for inflammatory diseases such as type 2 diabetes (T2D), which is a chronic inflammatory disease characterized by persistent elevated glucose levels due to insulin resistance. The association between previous Schistosoma infection and T2D has been confirmed- Schistosoma infection and Schistosoma -derived products modulate the immune system, including innate and acquired immune responses, contributing to T2D disease control. Schistosoma infections and Schistosoma -derived molecules affect the immune cell composition in adipose tissue, dampening inflammation and improving glucose tolerance. This protective role includes the polarization of immune cells to alternatively activated macrophages, dendritic cells, eosinophils, and group 2 innate lymphoid cells. Furthermore, Schistosoma infection and Schistosoma products are effective for the treatment of T2D, as they increase the number of type 2 helper T cells (Th2) and regulatory T cells (Tregs) and decrease type 1 helper T cells (Th1) and type 17 helper T cells (Th17) cells. Thus, our aim was to comprehensively review the mechanism through which Schistosoma infection and Schistosoma products modulate the immune response against T2D.

  1. The Role of Th1/Th2 Cytokine Balance in Gulf War-Related Illness

    DTIC Science & Technology

    2001-02-01

    Ramirez et al, 1996). Finally, although natural infection with Bordetella pertussis and its whole cell-derived vaccine promote a strong Thl response...the stress of deployment with additional effects of the T helper 2 (Th2) adjuvant pertussis could skew the immune response towards a Th2 profile. The...paradoxically the acellular vaccine component pertussis toxin used as adjuvant in GW vaccinations causes Th2 deviation (Munoz et al, 1990; Mu et al, 1993

  2. The Systemic Immune State of Super-shedder Mice Is Characterized by a Unique Neutrophil-dependent Blunting of TH1 Responses

    PubMed Central

    Johns, Jennifer; Nolan, Garry; Monack, Denise

    2013-01-01

    Host-to-host transmission of a pathogen ensures its successful propagation and maintenance within a host population. A striking feature of disease transmission is the heterogeneity in host infectiousness. It has been proposed that within a host population, 20% of the infected hosts, termed super-shedders, are responsible for 80% of disease transmission. However, very little is known about the immune state of these super-shedders. In this study, we used the model organism Salmonella enterica serovar Typhimurium, an important cause of disease in humans and animal hosts, to study the immune state of super-shedders. Compared to moderate shedders, super-shedder mice had an active inflammatory response in both the gastrointestinal tract and the spleen but a dampened TH1 response specific to the secondary lymphoid organs. Spleens from super-shedder mice had higher numbers of neutrophils, and a dampened T cell response, characterized by higher levels of regulatory T cells (Tregs), fewer T-bet+ (TH1) T cells as well as blunted cytokine responsiveness. Administration of the cytokine granulocyte colony stimulating factor (G-CSF) and subsequent neutrophilia was sufficient to induce the super-shedder immune phenotype in moderate-shedder mice. Similar to super-shedders, these G-CSF-treated moderate-shedders had a dampened TH1 response with fewer T-bet+ T cells and a loss of cytokine responsiveness. Additionally, G-CSF treatment inhibited IL-2-mediated TH1 expansion. Finally, depletion of neutrophils led to an increase in the number of T-bet+ TH1 cells and restored their ability to respond to IL-2. Taken together, we demonstrate a novel role for neutrophils in blunting IL-2-mediated proliferation of the TH1 immune response in the spleens of mice that are colonized by high levels of S. Typhimurium in the gastrointestinal tract. PMID:23754944

  3. T cell subsets in cord blood are influenced by maternal allergy and associated with atopic dermatitis.

    PubMed

    Fu, Yujing; Lou, Hongfei; Wang, Chengshuo; Lou, Wei; Wang, Yang; Zheng, Tao; Zhang, Luo

    2013-03-01

    This study aimed to investigate the influence of maternal allergy on cord blood regulatory and effector T cells and to evaluate their role as a predictor of atopic dermatitis (AD) during the first 2 yr of life. Seventy mother-infant pairs were recruited in this prospective birth cohort study (21 allergic and 49 non-allergic mothers). Cord blood samples were collected and assayed for the percentage of regulatory T cells (Treg), interferon-γ (IFN-γ), and interleukin-4 (IL-4) producing T cells (Th1 and Th2, respectively) using flow cytometry. Experiments were undertaken to assess the function of cord blood CD4(+) CD25(+) CD127(-) Treg cells by cell proliferation and cytokine responses. Their offspring at the age of 2 yr old were evaluated by dermatologists to determine whether they had AD. During the first 2 yr of life, 15.7% of the children developed a physician-diagnosed AD. A significantly increased percentage of Th2 cell was observed in cord blood of newborns with maternal allergy. Treg/Th2 ratio significantly decreased among the offspring of allergic mothers. Treg cell-associated suppression of Th2 response was attenuated in Der p1-stimulated CD4(+) CD25(-) T cells from the offspring of allergic mothers. Children with reduced Th1/Th2 (p = 0.001, OR = 0.37) and Treg/Th2 (p = 0.001, OR = 0.47) ratio in cord blood had a higher risk of developing AD. Maternal allergic status is associated with increased percentage of IL-4(+) CD4(+) T cells and a reduced Treg/Th2 ratio in cord blood at their children's birth, which may predispose to an increased risk for developing AD. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  4. The transcription factors Thpok and LRF are necessary and partly redundant for T helper cell differentiation

    PubMed Central

    Carpenter, Andrea C.; Grainger, John R.; Xiong, Yumei; Kanno, Yuka; Chu, H. Hamlet; Wang, Lie; Naik, Shruti; dos Santos, Liliane; Wei, Lai; Jenkins, Marc K.; O’Shea, John J.; Belkaid, Yasmine; Bosselut, Rémy

    2014-01-01

    Summary T helper (Th) cells are critical for defenses against infection and recognize peptides bound to Class II Major Histocompatibility Complex (MHC-II) molecules. Although transcription factors have been identified that direct helper cells into specific effector fates, whether a ‘master’ regulator controls the developmental program common to all Th cells remains unclear. Here we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok only displayed LRF-dependent functions and contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extra-cellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function. PMID:23041065

  5. TET1 and TET3 are essential in induction of Th2-type immunity partly through regulation of IL-4/13A expression in zebrafish model.

    PubMed

    Yang, Chao; Li, Zhuo; Kang, Wei; Tian, Yu; Yan, Yuzhu; Chen, Wei

    2016-10-10

    It has been considered that epigenetic modulation can affect a diverse array of cellular activities, in which ten eleven translocation (TET) methylcytosine dioxygenase family members refer to a group of fundamental components involved in catalyzation of 5-hydroxymethylcytosine and modification of gene expression. Even though the function of TET proteins has been gradually revealed, their roles in immune regulation are still largely unknown. Recent studies provided clues that TET2 could regulate several innate immune-related inflammatory mediators in mammals. This study sought to explore the function of TET family members in potential T-helper (Th) cell differentiation involved in adaptive immunity by utilizing a zebrafish model. As shown by results, soluble antigens could induce expression of zebrafish IL-4/13A (i.e. a pivotal Th2-type cytokine essential in Th2 cell differentiation and functions), and further trigger the expression of Th1- and Th2-related genes. It is noteworthy that this response was accompanied by the up-regulation of two TET family members (TET1 and TET3) both in immune organs (spleen and kidney) and cells (peripheral lymphocytes). Knocking-down of TET1 and TET3 will give rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, and further restrain the expression of Th2-related genes, which indicates a restrained Th2 cell differentiation. Nonetheless, TET2 did not exhibit effect on the modification of Th1/Th2 related gene expression. Hence, these data showed that TET1 and TET3 might be two significant epigenetic regulators involved in Th2 differentiation through regulation of IL-4/13A expression. This is the first report to show that TET family members play indispensable roles in Th2-type immunity, indicating an epigenetic modulation manner involved in adaptive immune regulations and responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A malaria protein factor induces IL-4 production by dendritic cells via PI3K-Akt-NF-κB signaling independent of MyD88/TRIF and promotes Th2 response.

    PubMed

    Wu, Xianzhu; Gowda, Nagaraj M; Kawasawa, Yuka I; Gowda, D Channe

    2018-04-17

    Dendritic cells (DC) and cytokines produced by DC play crucial roles in inducing and regulating pro-/anti-inflammatory and Th1/Th2 responses. DC are known to produce Th1-promoting cytokine, IL-12, in response to malaria and other pathogenic infections, but it is thought that DC do not produce Th2-promoting cytokine, IL-4. Here, we show that a protein factor of malaria parasites induces IL-4 responses by CD11c hi MHCII hi CD3ε - CD49b - CD19 - FcεRI - DC via PI3K-Akt-NF-κB signaling independent of TLR-MyD88/TRIF. Malaria parasite-activated DC induced IL-4 responses by T cells both in vitro and in vivo , favoring Th2, and il-4 deficient DC were unable to induce IL-4 expression by T cell.  Interestingly, lethal parasites, Plasmodium falciparum and P. berghei ANKA, induced IL-4 response primarily by CD8a - DC, whereas nonlethal P. yoelii induced IL-4 by both CD8α + and CD8α - DC. In both P. berghei ANKA- and P. yoelii -infected mice, IL-4-expressing CD8α - DC did not express IL-12, but a distinct CD8α - DC subset expressed IL-12. In P. berghei ANKA infection, CD8α + DC expressed IL-12 but not IL-4, whereas in P. yoelii infection CD8α + DC expressed IL-4 but not IL-12. This differential IL-4 and IL-12 responses by DC subsets may contribute to different Th1/Th2 development and clinical outcomes in lethal and nonlethal malaria. Our results for the first time demonstrate that a malaria protein factor induces IL-4 production by DC via PI3K-Akt-NF-κB signaling, revealing signaling and molecular mechanisms that initiate and promote Th2 development. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. HIV infection impairs Th1 and Th17 Mycobacterium tuberculosis-specific T cell responses

    PubMed Central

    Murray, Lyle W; Satti, Iman; Meyerowitz, Jodi; Jones, Matthew; Willberg, Christian B; Ussher, James E; Goedhals, Dominique; Hurst, Jacob; Phillips, Rodney E; McShane, Helen

    2018-01-01

    Background HIV-infected individuals have a higher risk of developing active tuberculosis than HIV-uninfected individuals, but the mechanisms underpinning this are unclear. We hypothesized that depletion of specific components of Mycobacterium tuberculosis (M.tb)-specific CD4+ and CD8+ T cell responses contributed to this increased risk. Methods M.tb-specific T cell responses in 147 HIV-infected and 44 HIV-uninfected control subjects in a TB-endemic setting in Bloemfontein, South Africa were evaluated. Using a whole-blood flow cytometry assay, we measured expression of IFNγ, TNFα, IL-2 and IL-17 in CD4+ and CD8+ T cells in response to M.tb antigens (PPD, ESAT-6/CFP-10 (EC) and DosR regulon-encoded α-crystallin (Rv2031c)). Results Fewer HIV-infected individuals had detectable CD4+ and CD8+ T cell responses to PPD and Rv2031c than HIV-uninfected subjects. M.tb-specific T cells showed distinct patterns of cytokine expression comprising both Th1 (CD4 and CD8) and Th17 (CD4) cytokines, the latter at highest frequency for Rv2031c. Th17 antigen-specific responses to all antigens tested were specifically impaired in HIV-infected individuals. Conclusions HIV-associated impairment of CD4+ and CD8+ M.tb-specific T cell responses is antigen-specific, particularly impacting responses to PPD and Rv2031c. Preferential depletion of Th17 cytokine-expressing CD4+ T cells suggests this T cell subset may be key to TB susceptibility in HIV-infected individuals. PMID:29546381

  8. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model

    PubMed Central

    Connolly, Michael; Marketon, Anthony

    2016-01-01

    Allergies caused by Japanese Red Cedar (JRC) pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1) to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4+ T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses. PMID:27239481

  9. Eosinophils are required to suppress Th2 responses in Peyer's patches during intestinal infection by nematodes.

    PubMed

    Strandmark, J; Steinfelder, S; Berek, C; Kühl, A A; Rausch, S; Hartmann, S

    2017-05-01

    Infections with enteric nematodes result in systemic type 2 helper T (Th2) responses, expansion of immunoglobulin (Ig)G1 antibodies, and eosinophilia. Eosinophils have a supportive role in mucosal Th2 induction during airway hyperreactivity. Whether eosinophils affect the local T-cell and antibody response in the gut-associated lymphoid tissue during enteric infections is unknown. We infected eosinophil-deficient ΔdblGATA-1 mice with the Th2-inducing small intestinal nematode Heligmosomoides polygyrus and found that parasite fecundity was decreased in the absence of eosinophils. A lack of eosinophils resulted in significantly augmented expression of GATA-3 and IL-4 by CD4 + T cells during acute infection, a finding strictly limited to Peyer's patches (PP). The increase in IL-4-producing cells in ΔdblGATA-1 mice was particularly evident within the CXCR5 + PD-1 + T-follicular helper cell population and was associated with a switch of germinal centre B cells to IgG1 production and elevated serum IgG1 levels. In contrast, infected wild-type mice had a modest IgG1 response in the PP, whereas successfully maintaining a population of IgA + germinal center B cells. Our results suggest a novel role for eosinophils during intestinal infection whereby they restrict IL-4 responses by follicular T helper cells and IgG1 class switching in the PP to ensure maintenance of local IgA production.

  10. Tissue-Restricted Adaptive Type 2 Immunity Is Orchestrated by Expression of the Costimulatory Molecule OX40L on Group 2 Innate Lymphoid Cells.

    PubMed

    Halim, Timotheus Y F; Rana, Batika M J; Walker, Jennifer A; Kerscher, Bernhard; Knolle, Martin D; Jolin, Helen E; Serrao, Eva M; Haim-Vilmovsky, Liora; Teichmann, Sarah A; Rodewald, Hans-Reimer; Botto, Marina; Vyse, Timothy J; Fallon, Padraic G; Li, Zhi; Withers, David R; McKenzie, Andrew N J

    2018-06-19

    The local regulation of type 2 immunity relies on dialog between the epithelium and the innate and adaptive immune cells. Here we found that alarmin-induced expression of the co-stimulatory molecule OX40L on group 2 innate lymphoid cells (ILC2s) provided tissue-restricted T cell co-stimulation that was indispensable for Th2 and regulatory T (Treg) cell responses in the lung and adipose tissue. Interleukin (IL)-33 administration resulted in organ-specific surface expression of OX40L on ILC2s and the concomitant expansion of Th2 and Treg cells, which was abolished upon deletion of OX40L on ILC2s (Il7ra Cre/+ Tnfsf4 fl/fl mice). Moreover, Il7ra Cre/+ Tnfsf4 fl/fl mice failed to mount effective Th2 and Treg cell responses and corresponding adaptive type 2 pulmonary inflammation arising from Nippostrongylus brasiliensis infection or allergen exposure. Thus, the increased expression of OX40L in response to IL-33 acts as a licensing signal in the orchestration of tissue-specific adaptive type 2 immunity, without which this response fails to establish. Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  11. Amelioration of skewed Th1/Th2 balance in tumor-bearing and asthma-induced mice by oral administration of Agaricus blazei extracts.

    PubMed

    Takimoto, Hiroaki; Kato, Hanano; Kaneko, Masahiro; Kumazawa, Yoshio

    2008-01-01

    We showed in a previous study that hot-water extracts of Agaricus blazei (Agaricus extracts) had anti-tumor activity to Meth A fibrosarcoma, but it remains unclear whether the Agaricus extracts ameliorate the skewed balance of type-1 T helper (Th1) and type-2 T helper (Th2) cells. We examined whether Agaricus extracts effect the skewed Th1/Th2 balance in tumor-bearing and asthma-induced mice. When Meth A-bearing mice were given orally either Agaricus extracts or water once a day starting 5 days after tumor implantation, spleen T cells, prepared from tumor-bearing mice treated with Agaricus extracts, in response to anti-CD3 monoclonal antibody produced significantly higher levels of interferon gamma (IFN-gamma) than that of controls. The mRNA expression of IFN-gamma-inducing protein 10 and the frequency of CD69(+) or CD49d(+) cells, among activated T cells infiltrated into tumors, significantly increased in Agaricus-treated mice, compared with those of tumor-controls. In asthma-induced mice, treatment with the Agaricus extracts caused significant downregulation of OVA-specific antibody responses of IgG1 and IgE but not of IgG2a, and significantly decreased total cell numbers, levels of interleukin 5, and eosinophil numbers in bronchial alveolar lavage fluids. IFN-gamma production by anti-CD3-stimulated spleen cells, obtained from Agaricus-treated mice, significantly increased. Our results strongly suggest that oral administration of Agaricus extracts ameliorates the Th1/Th2 balance from the Th2-skewed conditions.

  12. Lenalidomide Synergistically Enhances the Effect of Dendritic Cell Vaccination in a Model of Murine Multiple Myeloma.

    PubMed

    Nguyen-Pham, Thanh-Nhan; Jung, Sung-Hoon; Vo, Manh-Cuong; Thanh-Tran, Huong-Thi; Lee, Youn-Kyung; Lee, Hyun-Ju; Choi, Nu-Ri; Hoang, My-Dung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-10-01

    We investigated the efficacy of lenalidomide (LEN) in combination with dendritic cell (DC) vaccination in the MOPC-315 murine myeloma model. After tumor growth, LEN was injected intraperitoneally for 4 consecutive days in combination with DC vaccination. The combination of LEN and vaccination efficiently inhibited tumor growth compared with the single agents alone. A cytotoxic assay revealed that the anticancer effects of DC vaccination plus LEN involved not only generation of antigen-specific cytotoxic T lymphocytes but also NK cells. Vaccinated mice had reduced numbers of suppressor cells, including both myeloid-derived suppressor cells and regulatory T cells, in the spleen. The proportions of CD4+ and CD8+ T cells increased in the spleen, and a Th1 cytokine (interferon-γ) rather than a Th2 cytokine (interleukin-10) was synthesized in response to tumor antigens. LEN enhanced the innate immune response by modulating NK cell numbers and function. In addition, LEN reduced the production levels of angiogenesis-inducing factors in tumor-bearing mice. Together, these results suggest that a combination of LEN and DC vaccination may synergistically enhance anticancer immunity in the murine myeloma model, by inhibiting immunosuppressor cells and stimulating effector cells, as well as effectively polarizing the Th1/Th2 balance in favor of a Th1-specific immune response.

  13. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4+ T-cell epitopes with other tree nuts

    PubMed Central

    Archila, Luis Diego; Chow, I-Ting; McGinty, John W.; Renand, Amedee; Jeong, David; Robinson, David; Farrington, Mary L.; Kwok, William.W.

    2017-01-01

    Background Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T-cell epitopes and T-cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. Objectives In this study, we characterized cashew specific T-cell responses in cashew allergic subjects and examined cross-reactivity of these cashew specific cells toward other tree nut allergens. Methods CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T-cells was determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. Results CD4+ T-cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T-cell epitopes were then identified. These epitopes elicited either TH2 or TH2/TH17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T-cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Conclusions Phylogenetically diverse tree nut allergens can activate cashew reactive T-cells and elicit a TH2 type response at an epitope specific level. Clinical relevance Lack of cross-reactivity between walnut and cashew suggest that cashew peptide immunotherapy approach may not be most effective for walnut. PMID:27129138

  14. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4(+) T cell epitopes with other tree nuts.

    PubMed

    Archila, L D; Chow, I-T; McGinty, J W; Renand, A; Jeong, D; Robinson, D; Farrington, M L; Kwok, W W

    2016-06-01

    Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T cell epitopes and T cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. In this study, we characterized cashew-specific T cell responses in cashew-allergic subjects and examined cross-reactivity of these cashew-specific cells towards other tree nut allergens. CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T cells were determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. CD4(+) T cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T cell epitopes were then identified. These epitopes elicited either TH 2 or TH 2/TH 17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Phylogenetically diverse tree nut allergens can activate cashew-reactive T cells and elicit a TH 2-type response at an epitope-specific level. Lack of cross-reactivity between walnut and cashew suggests that cashew peptide immunotherapy approach may not be most effective for walnut. © 2016 John Wiley & Sons Ltd.

  15. HIV-specific Th2 and Th17 responses predict HIV vaccine protection efficacy

    PubMed Central

    Sauce, Delphine; Gorochov, Guy; Larsen, Martin

    2016-01-01

    Understanding the factors that delineate the efficacy of T-cell responses towards pathogens is crucial for our ability to develop potent therapies and vaccines against infectious diseases, such as HIV. Here we show that a recently developed analytical tool, the polyfunctionality index (PI), not only enables prediction of protection after vaccination against HIV, but also allows identification of the immunological pathways involved. Our data suggest that induction of a synergistic network of CD4+ T-cell subsets is implicated in HIV-protection. Accordingly, we provide evidence that vaccine-induced protection is associated with CD40L expressing Th2 cells and IL-2 secreting Th17 cells. In conclusion, we describe a novel approach that is widely applicable and readily interpretable in a biological and clinical context. This approach could greatly impact our fundamental understanding of T-cell immunity as well as the search for effective vaccines. PMID:27324186

  16. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps.

    PubMed

    Shaw, Joanne L; Fakhri, Samer; Citardi, Martin J; Porter, Paul C; Corry, David B; Kheradmand, Farrah; Liu, Yong-Jun; Luong, Amber

    2013-08-15

    Chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP) are associated with Th1 and Th2 cytokine polarization, respectively; however, the pathophysiology of CRS remains unclear. The importance of innate lymphoid cells in Th2-mediated inflammatory disease has not been clearly defined. The objective of this study was to investigate the role of the epithelial cell-derived cytokine IL-33 and IL-33-responsive innate lymphoid cells in the pathophysiology of CRS. Relative gene expression was evaluated using quantitative real-time polymerase chain reaction. Innate lymphoid cells in inflamed ethmoid sinus mucosa from patients with CRSsNP and CRSwNP were characterized using flow cytometry. Cytokine production from lymphoid cells isolated from inflamed mucosa of patients with CRS was examined using ELISA and intracellular cytokine staining. Elevated expression of ST2, the ligand-binding chain of the IL-33 receptor, was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP and healthy control subjects. An increased percentage of innate lymphoid cells was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP. ST2(+) innate lymphoid cells are a consistent source of IL-13 in response to IL-33 stimulation. Significant induction of IL-33 was observed in epithelial cells derived from patients with CRSwNP compared with patients with CRSsNP in response to stimulation with Aspergillus fumigatus extract. These data suggest a role for sinonasal epithelial cell-derived IL-33 and an IL-33-responsive innate lymphoid cell population in the pathophysiology of CRSwNP demonstrating the functional importance of innate lymphoid cells in Th2-mediated inflammatory disease.

  17. Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation.

    PubMed

    Kopitar, A N; Ihan Hren, N; Ihan, A

    2006-02-01

    In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.

  18. Desmoglein 3-specific T regulatory 1 cells consist of two subpopulations with differential expression of the transcription factor Foxp3

    PubMed Central

    Veldman, Christian; Pahl, Andreas; Hertl, Michael

    2009-01-01

    Pemphigus vulgaris (PV) is an autoimmune bullous skin disorder associated with autoantibodies against desmoglein (Dsg) 3. An imbalance of type 1 regulatory T (Tr1) cells and T helper type 2 (Th2) cells specific for Dsg3 may be critical for the loss of tolerance against Dsg3 in PV. Within the population of Dsg3-responsive, interleukin (IL)-10-secreting Tr1 cell clones, two major subpopulations were identified and sorted by fluorescence-activated cell sorting (FACS) based on their size and granularity. Upon in vitro culture, the larger subpopulation differentiated back into the two former subpopulations of the Tr1 cell clones, while the smaller subpopulation died within 2 weeks. The smaller subpopulation of the Tr1 cell clones was characterized by the expression of Foxp3, the secretion of IL-10, transforming growth factor (TGF)-β and IL-5 upon stimulation with Dsg3, a proliferative response to IL-2 but not to Dsg3 or mitogenic stimuli, and an inhibitory effect on the proliferative response of Dsg3-responsive Th clones in a Dsg3-specific manner. In contrast, the larger subpopulation showed a Th-like phenotype, lacking Foxp3, cytotoxic T-lymphocyte antigen 4 (CTLA4) and glucocorticoid-induced tumour necrosis factor receptor (GITR) expression and IL-2 secretion, and did not mount a proliferative response to Dsg3 and mitogenic stimuli. The two Tr1 subpopulations showed expression of identical T-cell receptor (TCR) Vβ chains which varied among the PV patients studied. Upon inhibition of Foxp3, the smaller Tr1 subpopulation developed a proliferate response to Dsg3 and mitogenic stimuli, no longer suppressed Dsg3-specific Th cells, lost expression of GITR and CTLA4 and secreted IL-2. Thus, our observations suggest a distinct relationship between Dsg3-specific Tr1 and Th-like cells which may be critical for the continuous generation and survival of Dsg3-specific Tr1 cells. PMID:18800988

  19. A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation.

    PubMed

    Kılıç, Ayşe; Santolini, Marc; Nakano, Taiji; Schiller, Matthias; Teranishi, Mizue; Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka; Weiss, Scott T; Sharma, Amitabh; Renz, Harald

    2018-06-07

    Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis. Since an altered expression of various miRs has been associated with T cell-driven diseases, including asthma, we hypothesized that miRs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and miR expression. Instead of focusing on the magnitude of miR differential expression, here we addressed the secondary consequences for the set of molecular interactions in the cell, the interactome. We developed the Impact of Differential Expression Across Layers, a network-based algorithm to prioritize disease-relevant miRs based on the central role of their targets in the molecular interactome. This method identified 5 Th2-related miRs (mir27b, mir206, mir106b, mir203, and mir23b) whose antagonization led to a sharp reduction of the Th2 phenotype. Overall, a systems biology tool was developed and validated, highlighting the role of miRs in Th2-driven immune response. This result offers potentially novel approaches for therapeutic interventions.

  20. Comparison of Th17 cells mediated immunological response among asthmatic children with or without allergic rhinitis.

    PubMed

    Qing, Miao; Yongge, Liu; Wei, Xu; Yan, Wang; Zhen, Li; Yixin, Ren; Hui, Guan; Li, Xiang

    2018-03-31

    To investigate whether there were differences in Th17 cells mediated immunological responses among asthmatics with or without allergic rhinitis. A case-control comparison was conducted in a cohort of 67 children with asthma (AS), 50 children with allergic rhinitis (AR), 52 children with both AS and AR (ASR), 25 infectious rhinitis (IR), and 55 healthy controls (HC). The percentages of circulating Th17 cells were determined by flow cytometry. The Th2- and Th17-related cytokines in plasma and culture supernatants were measured by enzyme-linked immunosorbent assay. The effect of proinflammation cytokine IL-17E on Th2 cytokines production from human T helper (Th) lymphocytes was analyzed. (1) A inter-group comparison revealed that Th17 cells levels were highest in ASR group [(0.89% ± 0.27) %], following by AS group [(0.82 ± 0.29) %] and AR group[(0.78 ± 0.17) %] (P< 0.05). (2) After in-vitro stimulation with house dust mite (HDM) antigen, the levels of IL-4 and IL-17E in culture supernatants of PBMCs from allergic children (AS group, AR group and ASR group) were significantly enhanced. (3) The release of Th2 cytokines from IL-17E treated Th cells of allergic children (AS group, AR group and ASR group) were significantly induced, no similar result was observed in IR group and HC group. Our findings preliminarily revealed that Th17 cell and its related cytokines might be involved in pathogenesis of airway inflammation diseases, and also presenting varying immunological characteristics among asthmatic children with or without allergic rhinitis.

  1. Short exposure of maturing, bone marrow-derived dendritic cells to norepinephrine: impact on kinetics of cytokine production and Th development.

    PubMed

    Maestroni, Georges J M

    2002-08-01

    The information gathered by dendritic cells (DC) during the innate immune response to a pathogen is determinant for the type of adaptive response. Here we show that short-term (3 h) exposure of bone marrow-derived DC to norepinephrine (NE), at the beginning of lipopolysaccharide (LPS) or keyhole limpet hemocyanin (KLH) stimulation hampers IL-12 production and increases IL-10 release. The NE effect was mediated by both beta- and alpha2-adrenergic receptors. The capacity of NE-exposed DC to produce IL-12 upon CD40 cross-linking as well as to stimulate allogeneic T-helper (Th) lymphocytes was reduced. Adoptive transfer of NE-exposed DC induced a Th2 slanted response in vivo. Thus, a brief NE exposure of antigen-stimulated DC seems to limit their Th1 polarizing properties. Noteworthy, the ganglionic blocker pentolinium administered in mice before skin sensitization with fluoroscein isothiocyanate (FITC) could increase the Th1-type response in the draining lymph nodes. Our results suggest that the extent of Th differentiation in the response to an antigen might be influenced by the local sympathetic nervous activity in the early phase of dendritic cell stimulation.

  2. T helper cells in leprosy: An update.

    PubMed

    Saini, Chaman; Tarique, Mohd; Rai, Reeta; Siddiqui, Anisuddin; Khanna, Neena; Sharma, Alpana

    2017-04-01

    Leprosy is an ancient disease caused by gram positive, rod shaped bacilli called Mycobacterium leprae. Patients present with varied clinico-pathological disease depending on the host immune response to Mycobacterium leprae. Thus tuberculoid (TT) and lepromatous (LL) patients represent two ends of a spectrum where the former shows limited disease, high T cell mediate immune (CMI) response and low antibody (HI) levels in serum. In contrast the latter has low T cell and high humoral immune response i.e antibody levels. The mechanisms underlying these differences have been investigated intensely; however, there is no consensus on the primary immunological basis. Over three decades, Th1 and Th2 paradigm were thought to underling tuberculoid and lepromatous disease respectively. However many patients were shown to have mixed Th1/Th2 pattern of (IFN-γ/IL-4) cytokines. The present review was undertaken with a view to understand the T cells and cytokine dysregulation in leprosy. In recent years the sub classes of T cells that are Regulatory in nature (Treg) have been implicated in immune diseases where they were shown to suppress T cell functions. Additionally Th17 cells secreting IL-17A, IL17F, were implicated in immune inflammation. Taken together these regulatory cells may play a part in influencing immune responses in leprosy. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. The effect of three-monthly albendazole treatment on Th2 responses: Differential effects on IgE and IL-5.

    PubMed

    de Ruiter, K; Tahapary, D L; Wammes, L J; Wiria, A E; Hamid, F; van Lieshout, L; Smit, J W A; Houwing-Duistermaat, J J; Sartono, E; Supali, T; Yazdanbakhsh, M

    2017-06-01

    Helminth parasites induce a strong Th2 response, characterized by high levels of IgE and elevated signature cytokines such as IL-5. As many global deworming programmes are underway, there is concern that this might lead to emergence of Th1-mediated pathologies when the counterbalancing helminth-induced Th2 response is absent. Therefore, we assessed the effect of deworming on Th2-mediated responses in a household-clustered randomized controlled trial in Indonesia. Total plasma IgE and whole-blood IL-5 responses to mitogen phytohaemagglutinin (PHA) were measured in 1494 and 682 subjects, respectively, at baseline, 9 and 21 months after three-monthly single-dose treatment with albendazole or placebo. Anthelmintic treatment did not result in complete removal of helminth infections in the community. However, treatment significantly decreased IgE levels in albendazole- compared to placebo-treated subjects. IL-5 responses to PHA were not significantly affected by anthelmintic treatment and tended to increase in albendazole-treated subjects, indicating that intensive treatment of helminth parasites has different outcomes on B-cell (IgE levels) and T-cell (IL-5) responses. The data shows that 2 years of deworming can have differential effects on responses typified as Th2-mediated, which needs to be taken into account when examining the impact of helminths on noncommunicable diseases. © 2017 John Wiley & Sons Ltd.

  4. Healthy human T-Cell Responses to Aspergillus fumigatus antigens.

    PubMed

    Chaudhary, Neelkamal; Staab, Janet F; Marr, Kieren A

    2010-02-17

    Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H)1-T(H)17) and destructive allergic (T(H)2) immunity. How Aspergillus allergens (Asp f proteins) participate in the development of allergic sensitization is unknown. To determine whether Asp f proteins are strictly associated with T(H)2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17) to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H)1-responses to Asp f3 (a putative peroxismal membrane protein), Asp f9/16 (cell wall glucanase), Asp f11 (cyclophilin type peptidyl-prolyl isomerase) and Asp f22 (enolase). Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals. Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.

  5. Dendritic cells: importance in allergy.

    PubMed

    Aiba, Setsuya

    2007-09-01

    In this review we discuss the role of dendritic cells (DC) in the pathogenesis of allergic contact hypersensitivity (ACH) and atopic disorders, such as asthma and atopic eczema. In ACH patients, DC recognize the invasion of simple chemicals such as haptens, and trigger antigen-specific T cell responses leading to the characteristic histological and clinical changes such as spongiosis and papulovesicular eruptions. During atopic disorders, it is well known that the Th2-deviated immune response plays a crucial role in their pathogenesis. DC provide T cells with antigen and costimulatory signals (signals 1 and 2, respectively), as well as with a polarizing signal (signal 3). When studying ACH, it is important to understand how simple chemicals induce the activation of DC and their migration to the draining lymph nodes where they supply signals 1 and 2 to naive T cells. The mechanisms by which DC induce the Th2-deviated immune response, namely via the Th2-deviated signal 3, are central topics in the pathogenesis of atopic disorders.

  6. Novel function of Extracellular matrix protein 1 in suppressing Th17 cell development in experimental autoimmune encephalomyelitis

    PubMed Central

    Su, Pan; Chen, Sheng; Zheng, Yu Han; Zhou, Hai Yan; Yan, Cheng Hua; Yu, Fang; Zhang, Ya Guang; He, Lan; Zhang, Yuan; Wang, Yanming; Wu, Lei; Wu, Xiaoai; Yu, Bingke; Ma, Li Yan; Yang, Zhiru; Wang, Jianhua; Zhao, Guixian; Zhu, Jinfang; Wu, Zhi-Ying; Sun, Bing

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. While Th17 cells are important for the disease induction, Th2 cells are inhibitory in this process. Here, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of experimental autoimmune encephalomyelitis (EAE). Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further mechanism study revealed that ECM1 could interact with αv integrin on DC cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 differentiation at early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited Th17 cell response and EAE induction in ECM1 transgenic mouse. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 differentiation in the EAE model, suggesting that ECM1 may have a potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis. PMID:27316685

  7. Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells

    PubMed Central

    Cui, Junqing; Watanabe, Naohiro; Kawano, Tetsu; Yamashita, Masakatsu; Kamata, Tohru; Shimizu, Chiori; Kimura, Motoko; Shimizu, Eiko; Koike, Jyunzo; Koseki, Haruhiko; Tanaka, Yujiro; Taniguchi, Masaru; Nakayama, Toshinori

    1999-01-01

    Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation. PMID:10499917

  8. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses

    PubMed Central

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-01-01

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. PMID:28775364

  9. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    PubMed

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  10. Emodin inhibits splenocyte proliferation and inflammation by modulating cytokine responses in a mouse model system.

    PubMed

    Sharma, Rahul; Tiku, Ashu Bhan

    2016-01-01

    Emodin, an anthraquinone derivative, was investigated for potential anti-inflammatory and anti-proliferative effects in vitro. The potential to induce these outcomes was assessed using concanavalin A (ConA)-stimulated mouse splenocytes. Dose-response studies showed that emodin at 100 µM was not cytotoxic to naive cells, and that the same dose caused proliferation to be significantly reduced in ConA-stimulated cells. In addition, emodin significantly reduced ConA-induced nitric oxide (NO) production and the formation/release of TH1 (IL-2, IFNγ, TNFα) and TH17 (IL-6 and IL-17) cell cytokines, but induced those of TH2 (IL-4) and Treg (IL-10) cells. From the results, it is concluded that earlier-reported immunomodulatory effects imparted by emodin may have been attributable, in part, to anti-proliferative effects on lymphocytes, as well as a shift within the TH1/TH2 and TH17/Treg balance (towards TH2 and Treg). These findings, while providing evidence of mechanisms of emodin immunomodulation, are also potentially important for sparking studies that ultimately may result in the potential use of this agent in preventive and/or corrective strategies against autoimmune and other inflammatory diseases.

  11. Interleukin-21-Producing CD4(+) T Cells Promote Type 2 Immunity to House Dust Mites.

    PubMed

    Coquet, Jonathan M; Schuijs, Martijn J; Smyth, Mark J; Deswarte, Kim; Beyaert, Rudi; Braun, Harald; Boon, Louis; Karlsson Hedestam, Gunilla B; Nutt, Steven L; Hammad, Hamida; Lambrecht, Bart N

    2015-08-18

    Asthma is a T helper 2 (Th2)-cell-mediated disease; however, recent findings implicate Th17 and innate lymphoid cells also in regulating airway inflammation. Herein, we have demonstrated profound interleukin-21 (IL-21) production after house dust mite (HDM)-driven asthma by using T cell receptor (TCR) transgenic mice reactive to Dermatophagoides pteronyssinus 1 and an IL-21GFP reporter mouse. IL-21-producing cells in the mediastinal lymph node (mLN) bore characteristics of T follicular helper (Tfh) cells, whereas IL-21(+) cells in the lung did not express CXCR5 (a chemokine receptor expressed by Tfh cells) and were distinct from effector Th2 or Th17 cells. Il21r(-/-) mice developed reduced type 2 responses and the IL-21 receptor (IL-21R) enhanced Th2 cell function in a cell-intrinsic manner. Finally, administration of recombinant IL-21 and IL-25 synergistically promoted airway eosinophilia primarily via effects on CD4(+) lymphocytes. This highlights an important Th2-cell-amplifying function of IL-21-producing CD4(+) T cells in allergic airway inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation.

    PubMed

    Hammer, Anna; Schliep, Anne; Jörg, Stefanie; Haghikia, Aiden; Gold, Ralf; Kleinewietfeld, Markus; Müller, Dominik N; Linker, Ralf A

    2017-09-12

    There has been a marked increase in the incidence of autoimmune diseases like multiple sclerosis (MS) in the last decades which is most likely driven by a change in environmental factors. Here, growing evidence suggests that ingredients of a Western diet like high intake of sodium chloride (NaCl) or saturated fatty acids may impact systemic immune responses, thus increasing disease susceptibility. Recently, we have shown that high dietary salt or long-chain fatty acid (LCFA) intake indeed aggravates T helper (Th) cell responses and neuroinflammation. Naïve CD4 + T cells were treated with an excess of 40 mM NaCl and/or 250 μM lauric acid (LA) in vitro to analyze effects on Th cell differentiation, cytokine secretion, and gene expression. We employed ex vivo analyses of the model disease murine experimental autoimmune encephalomyelitis (EAE) to investigate whether salt and LCFA may affect disease severity and T cell activation in vivo. LCFA, like LA, together with NaCl enhance the differentiation of Th1 and Th17 cells as well as pro-inflammatory cytokine and gene expression in vitro. In cell culture, we observed an additive effect of LA and hypertonic extracellular NaCl (NaCl + LA) in Th17 differentiation assays as well as on IL-17, GM-CSF, and IL-2 gene expression. In contrast, NaCl + LA reduced Th2 frequencies. We employed EAE as a model of Th1/Th17 cell-mediated autoimmunity and show that the combination of a NaCl- and LA-rich diet aggravated the disease course and increased T cell infiltration into the central nervous system (CNS) to the same extent as dietary NaCl. Our findings demonstrate a partially additive effect of NaCl and LA on Th cell polarization in vitro and on Th cell responses in autoimmune neuroinflammation. These data may help to better understand the pathophysiology of autoimmune diseases such as MS.

  13. Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  14. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Eldi, Preethi; Buller, R Mark; Karupiah, Gunasegaran

    2015-01-01

    Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses.

  15. Applications and mechanisms of immunotherapy in allergic rhinitis and asthma.

    PubMed

    Kappen, Jasper H; Durham, Stephen R; Veen, Hans In 't; Shamji, Mohamed H

    2017-01-01

    Clinical and immunologic tolerance are hallmarks of successful allergen immunotherapy (AIT). Clinical benefits such as reduced symptoms, pharmacotherapy intake and improvement of quality of life persist following cessation of treatment. Successful AIT is associated with suppression of allergic inflammatory cells such as mast cells, eosinophils and basophils in target organs. Furthermore, AIT down-regulates type 2 innate lymphoid cells and allergen-specific type 2 T-helper (Th2) cells. The immunologic tolerant state following AIT is associated with the induction of distinct phenotypes of regulatory T-cells (T-regs) including interleukin (IL)-10-, IL-35- and transforming growth factor (TGF)-β- producing T-regs and FoxP3 + T-regs. B-cell responses, including the induction of IL-10 + regulatory B-cells (B-regs) and the production of IgG4-associated blocking antibodies are also induced following successful AIT. These events are associated with the suppression of antigen-specific Th2 responses and delayed immune deviation in favour of Th1 type responses. Insight into the mechanisms of AIT has allowed identification of novel biomarkers with potential to predict the clinical response to AIT and also novel therapeutic strategies for more effective and safer AIT.

  16. Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2.

    PubMed

    Koth, Laura L; Rodriguez, Madeleine W; Bernstein, Xin Liu; Chan, Salina; Huang, Xiaozhu; Charo, Israel F; Rollins, Barrett J; Erle, David J

    2004-09-15

    Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.

  17. Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2

    PubMed Central

    Koth, Laura L; Rodriguez, Madeleine W; Bernstein, Xin Liu; Chan, Salina; Huang, Xiaozhu; Charo, Israel F; Rollins, Barrett J; Erle, David J

    2004-01-01

    Background Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. Methods To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. Results We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. Conclusion We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2. PMID:15377395

  18. Identity and Diversity of Human Peripheral Th and T Regulatory Cells Defined by Single-Cell Mass Cytometry.

    PubMed

    Kunicki, Matthew A; Amaya Hernandez, Laura C; Davis, Kara L; Bacchetta, Rosa; Roncarolo, Maria-Grazia

    2018-01-01

    Human CD3 + CD4 + Th cells, FOXP3 + T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3 + CD4 + T cell compartment remains questionable. In this study, we examined CD3 + CD4 + T cell populations by single-cell mass cytometry. We characterize the CD3 + CD4 + Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3 + CD4 + Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4) + FOXP3 + Treg and CD183 (CXCR3) + T-bet + Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3 + CD4 + T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3 + CD4 + T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy.

    PubMed

    Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Choi, Dae Woon; Kwon, Da-Ae; Bae, Min-Jung; Sung, Ki-Seung; Shon, Dong-Hwa

    2015-12-04

    Turmeric (Curcuma longa) has traditionally been used to treat pain, fever, allergic and inflammatory diseases such as bronchitis, arthritis, and dermatitis. In particular, turmeric and its active component, curcumin, were effective in ameliorating immune disorders including allergies. However, the effects of turmeric and curcumin have not yet been tested on food allergies. Mice were immunized with intraperitoneal ovalbumin (OVA) and alum. The mice were orally challenged with 50mg OVA, and treated with turmeric extract (100mg/kg), curcumin (3mg/kg or 30 mg/kg) for 16 days. Food allergy symptoms including decreased rectal temperature, diarrhea, and anaphylaxis were evaluated. In addition, cytokines, immunoglobulins, and mouse mast cell protease-1 (mMCP-1) were evaluated using ELISA. Turmeric significantly attenuated food allergy symptoms (decreased rectal temperature and anaphylactic response) induced by OVA, but curcumin showed weak improvement. Turmeric also inhibited IgE, IgG1, and mMCP-1 levels increased by OVA. Turmeric reduced type 2 helper cell (Th2)-related cytokines and enhanced a Th1-related cytokine. Turmeric ameliorated OVA-induced food allergy by maintaining Th1/Th2 balance. Furthermore, turmeric was confirmed anti-allergic effect through promoting Th1 responses on Th2-dominant immune responses in immunized mice. Turmeric significantly ameliorated food allergic symptoms in a mouse model of food allergy. The turmeric as an anti-allergic agent showed immune regulatory effects through maintaining Th1/Th2 immune balance, whereas curcumin appeared immune suppressive effects. Therefore, we suggest that administration of turmeric including various components may be useful to ameliorate Th2-mediated allergic disorders such as food allergy, atopic dermatitis, and asthma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Cyanidin-3-glucoside suppresses Th2 cytokines and GATA-3 transcription factor in EL-4 T cells.

    PubMed

    Pyo, Myoung Yun; Yoon, Soo Jeong; Yu, Yeonsil; Park, Sunyoung; Jin, Mirim

    2014-01-01

    Allergic disease is dominated by Th2 immune responses. Interleukin (IL)-4 and IL-13, representative Th2 cytokines, play pivotal roles in the pathogenic activation of the Th2 immune response. In this study, we found that cyanidin-3-glucoside chloride (C3G), an anthocyanin suppressed IL-4 and IL-13 produced in activated EL-4 T cells but not Th1 cytokines including IL-2, interferon-γ, or IL-12. IL-4 and IL-13 mRNA levels and luciferase activation in cells transiently transfected with IL-4 and IL-13 promoter reporter plasmids were significantly inhibited by C3G, suggesting that suppression might be, at least in part, regulated at the transcriptional level. Data from western blot and reverse transcription-polymerase chain reaction analyses of transcription factors involved in cytokine expression suggested that expression of GATA-3, but not T-bet, was downregulated in the nucleus by C3G. Taken together, our data indicate that C3G may has potential as an anti-allergic agent suppressing Th2 activation by downregulating Th2 cytokines and the GATA3 transcription factor in allergies.

  1. Mina: A Th2 response regulator meets TGFβ

    PubMed Central

    Pillai, Meenu R.; Lian, Shangli; Bix, Mark

    2014-01-01

    The JmjC protein Mina is an important immune response regulator. Classical forward genetics first discovered its immune role in 2009 in connection with the development of T helper 2 (Th2) cells. This prompted investigation into Mina’s role in the two best-studied contexts where Th2 responses are essential: atopic asthma and helminth expulsion. In work focused on a mouse model of atopic asthma, Mina deficiency was found to ameliorate airway hyper-resistance and pulmonary inflammation. And, in a case-control study genetic variation at the human MINA locus was found to be associated with the development of childhood atopic asthma. Although the underlying cellular and molecular mechanism of Mina’s involvement in pulmonary inflammation remains unknown, our recent work on parasitic helminth expulsion suggests the possibility that, rather than T cells, epithelial cells responding to TGFβ may play the dominant role. Here we review the growing body of literature on the emerging Mina pathway in T cells and epithelial cells and attempt to set these into a broader context. PMID:25282476

  2. Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination

    PubMed Central

    Pedotti, Rosetta; DeVoss, Jason J.; Youssef, Sawsan; Mitchell, Dennis; Wedemeyer, Jochen; Madanat, Rami; Garren, Hideki; Fontoura, Paulo; Tsai, Mindy; Galli, Stephen J.; Sobel, Raymond A.; Steinman, Lawrence

    2003-01-01

    Analysis of mRNA from multiple sclerosis lesions revealed increased amounts of transcripts for several genes encoding molecules traditionally associated with allergic responses, including prostaglandin D synthase, histamine receptor type 1 (H1R), platelet activating factor receptor, Ig Fc ɛ receptor 1 (FcɛRI), and tryptase. We now demonstrate that, in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), mediated by T helper 1 (Th1) T cells, histamine receptor 1 and 2 (H1R and H2R) are present on inflammatory cells in brain lesions. Th1 cells reactive to myelin proteolipid protein expressed more H1R and less H2R than Th2 cells. Pyrilamine, an H1R antagonist, blocked EAE, and the platelet activating factor receptor antagonist CV6209 reduced the severity of EAE. EAE severity was also decreased in mice with disruption of the genes encoding Ig FcγRIII or both FcγRIII and FcɛRI. Prostaglandin D synthase and tryptase transcripts were elevated in EAE brain. Taken together, these data reveal extensive involvement of elements of the immune response associated with allergy in autoimmune demyelination. The pathogenesis of demyelination must now be viewed as encompassing elements of both Th1 responses and “allergic” responses. PMID:12576552

  3. Alternatively activated macrophages in helminth infections

    PubMed Central

    Kreider, Timothy; Anthony, Robert M.; Urban, Joseph F.; Gause, William C.

    2007-01-01

    Summary Helminthic parasites can trigger highly polarized immune responses typically associated with increased numbers of CD4+ Th2 cells, eosinophils, mast cells, and basophils. These cell populations are thought to coordinate an effective response ultimately leading to parasite expulsion, but they also play a role in the regulation of associated pathologic inflammation. Recent studies suggest that macrophages, conventionally associated with IFNγ-dominant Th1-type responses to many bacteria and viruses, also play an essential role in the Th2-type inflammatory response. These macrophages are referred to as alternatively activated macrophages (AAMΦs) as they express a characteristic pattern of cell surface and secreted molecules distinct from that of classically activated macrophages (CAMΦs) associated with microbe infections. In this review, we will discuss recent findings regarding the role of AAMΦs in the development of disease and host protection following helminth infection. PMID:17702561

  4. Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cells activation.

    PubMed

    Bui, Thi Tho; Piao, Chun Hua; Song, Chang Ho; Shin, Hee Soon; Shon, Dong-Hwa; Chai, Ok Hee

    2017-12-01

    Piper nigrum (Piperaceae) is commonly used as a spice and traditional medicine in many countries. P. nigrum has been reported to have anti-oxidant, anti-bacterial, anti-tumor, anti-mutagenic, anti-diabetic, and anti-inflammatory properties. However, the effect of P. nigrum on allergic asthma has not been known. This study investigated the effect of P. nigrum ethanol extracts (PNE) on airway inflammation in asthmatic mice model. In the ovalbumin (OVA)-induced allergic asthma model, we analysed the number of inflammatory cells and cytokines production in bronchoalveolar lavage fluid (BALF) and lung tissue; histological structure; as well as the total immunoglobulin (Ig)E, anti-OVA IgE, anti-OVA IgG 1 and histamine levels in serum. The oral administration (200 mg/kg) of PNE reduced the accumulation of inflammatory cells (eosinophils, neutrophils in BALF and mast cells in lung tissue); regulated the balance of the cytokines production of Th1, Th2, Th17 and Treg cells, specifically, inhibited the expressions of GATA3, IL-4, IL-6, IL-1β, RORγt, IL-17A, TNF-α and increased the secretions of IL-10, INF-γ in BALF and lung homogenate. Moreover, PNE suppressed the levels of total IgE, anti-OVA IgE, anti-OVA IgG 1 and histamine release in serum. The histological analysis showed that the fibrosis and infiltration of inflammatory cells were also ameliorated in PNE treated mice. On the other hand, PNE inhibited the allergic responses via inactivation of rat peritoneal mast cells degranulation. These results suggest that PNE has therapeutic potential for treating allergic asthma through inhibiting Th2/Th17 responses and mast cells activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Interleukin-10 Modulation of Virus Clearance and Disease in Mice with Alphaviral Encephalomyelitis.

    PubMed

    Martin, Nina M; Griffin, Diane E

    2018-03-15

    Alphaviruses are an important cause of mosquito-borne outbreaks of arthritis, rash, and encephalomyelitis. Previous studies in mice with a virulent strain (neuroadapted SINV [NSV]) of the alphavirus Sindbis virus (SINV) identified a role for Th17 cells and regulation by interleukin-10 (IL-10) in the pathogenesis of fatal encephalomyelitis (K. A. Kulcsar, V. K. Baxter, I. P. Greene, and D. E. Griffin, Proc Natl Acad Sci U S A 111:16053-16058, 2014, https://doi.org/10.1073/pnas.1418966111). To determine the role of virus virulence in generation of immune responses, we analyzed the modulatory effects of IL-10 on disease severity, virus clearance, and the CD4 + T cell response to infection with a recombinant strain of SINV of intermediate virulence (TE12). The absence of IL-10 during TE12 infection led to longer morbidity, more weight loss, higher mortality, and slower viral clearance than in wild-type mice. More severe disease and impaired virus clearance in IL-10 -/- mice were associated with more Th1 cells, fewer Th2 cells, innate lymphoid type 2 cells, regulatory cells, and B cells, and delayed production of antiviral antibody in the central nervous system (CNS) without an effect on Th17 cells. Therefore, IL-10 deficiency led to more severe disease in TE12-infected mice by increasing Th1 cells and by hampering development of the local B cell responses necessary for rapid production of antiviral antibody and virus clearance from the CNS. In addition, the shift from Th17 to Th1 responses with decreased virus virulence indicates that the effects of IL-10 deficiency on immunopathologic responses in the CNS during alphavirus infection are influenced by virus strain. IMPORTANCE Alphaviruses cause mosquito-borne outbreaks of encephalomyelitis, but determinants of outcome are incompletely understood. We analyzed the effects of the anti-inflammatory cytokine IL-10 on disease severity and virus clearance after infection with an alphavirus strain of intermediate virulence. The absence of IL-10 led to longer illness, more weight loss, more death, and slower viral clearance than in mice that produced IL-10. IL-10 influenced development of disease-causing T cells and entry into the brain of B cells producing antiviral antibody. The Th1 pathogenic cell subtype that developed in IL-10-deficient mice infected with a less virulent virus was distinct from the Th17 subtype that developed in response to a more virulent virus, indicating a role for virus strain in determining the immune response. Slow production of antibody in the nervous system led to delayed virus clearance. Therefore, both the virus strain and the host response to infection are important determinants of outcome. Copyright © 2018 American Society for Microbiology.

  6. DNA β-Amyloid1–42 Trimer Immunization for Alzheimer Disease in a Wild-Type Mouse Model

    PubMed Central

    Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N.; Stüve, Olaf; Rosenberg, Roger N.

    2010-01-01

    Context DNA β-amyloid1–42 (Aβ42) trimer immunization was developed to produce specific T helper 2 cell (TH2)–type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Aβ42 peptide that occur in the brain of patients with AD. Objective To compare the immune response in wild-type mice after immunization with DNA Aβ42 trimer and Aβ42 peptide. Design and Intervention Wild-type mice received either 4 µg of DNA Aβ42 trimer immunization administered with gene gun (n=8) or intraperitoneal injection of 100 µg of human Aβ42 peptide with the adjuvant Quil A (n=8). Titers, epitope mapping, and isotypes of the Aβ42-specific antibodies were analyzed. Main Outcome Measures Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Aβ42-specific antibodies, and T-cell activation. Results DNA Aβ42 trimer immunization resulted in antibody titers with a mean of 15 µg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a TH2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed TH1/TH2 immune response (IgG1/IgG2a ratio of 1) (P<.001). No increased T-cell proliferation was observed in the DNA-immunized mice (P=.03). Conclusion In this preliminary study in a wild-type mouse model, DNA Aβ42 trimer immunization protocol produced a TH2 immune response and appeared to have low potential to cause an inflammatory T-cell response. PMID:19861672

  7. DNA beta-amyloid(1-42) trimer immunization for Alzheimer disease in a wild-type mouse model.

    PubMed

    Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N

    2009-10-28

    DNA beta-amyloid(1-42) (Abeta42) trimer immunization was developed to produce specific T helper 2 cell (T(H)2)-type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Abeta42 peptide that occur in the brain of patients with AD. To compare the immune response in wild-type mice after immunization with DNA Abeta42 trimer and Abeta42 peptide. Wild-type mice received either 4 microg of DNA Abeta42 trimer immunization administered with gene gun (n = 8) or intraperitoneal injection of 100 microg of human Abeta42 peptide with the adjuvant Quil A (n = 8). Titers, epitope mapping, and isotypes of the Abeta42-specific antibodies were analyzed. Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Abeta42-specific antibodies, and T-cell activation. DNA Abeta42 trimer immunization resulted in antibody titers with a mean of 15 microg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a T(H)2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed T(H)1/T(H)2 immune response (IgG1/IgG2a ratio of 1) (P < .001). No increased T-cell proliferation was observed in the DNA-immunized mice (P = .03). In this preliminary study in a wild-type mouse model, DNA Abeta42 trimer immunization protocol produced a T(H)2 immune response and appeared to have low potential to cause an inflammatory T-cell response.

  8. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients.

    PubMed

    Wei, Ping; Hu, Guo-Hua; Kang, Hou-Yong; Yao, Hong-Bing; Kou, Wei; Liu, Hong; Zhang, Cheng; Hong, Su-Ling

    2014-05-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). The aryl hydrocarbon receptor (AhR) exhibits strong immunomodulation potential via regulation of the differentiation of T lymphocytes and dendritic cells (DCs) after activation by its ligand, such as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). The aim of this study was to analyze the effect of AhR on Th17 differentiation by investigating the action of ITE on DCs and CD4(+) T cells from patients with AR. In all, 26 AR patients and 12 healthy controls were included in this study. The expression of interleukin (IL)-1β, IL-6, IL-10, and IL-17 in the culture supernatant and the presence of Th17 cells in CD4(+) T cells and DC-CD4(+) T-cell co-culture system were measured before and after treatment with ITE. We show that ITE significantly induced cell secretion of IL-10 and inhibited IL-1β and IL-6 production in DCs, and promoted IL-10 production and suppressed IL-17 expression in CD4(+) T cells in vitro. It also suppressed the expansion of Th17 cells in vitro. Our work demonstrates that ITE acts on DCs and CD4(+) T cells to inhibit the Th17 response that suppresses AR; the AhR-DC-Th17 axis may be an important pathway in the treatment of AR. ITE, a nontoxic AhR ligand, attenuated the Th17 response; thus, it appears to be a promising therapeutic candidate for suppressing the inflammatory responses associated with AR.

  9. Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-γ+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease.

    PubMed

    Globig, Anna-Maria; Hennecke, Nadine; Martin, Bianca; Seidl, Maximilian; Ruf, Günther; Hasselblatt, Peter; Thimme, Robert; Bengsch, Bertram

    2014-12-01

    Skewed T helper (TH) cell responses and specific functions of TH1, TH2, TH17, and Treg cells have been implicated in the pathogenesis of inflammatory bowel disease (IBD) that led to the establishment of the pathogenic TH1/TH2 and TH17/Treg cell imbalance paradigms. However, the relevant TH cell population driving mucosal inflammation is still unknown. We performed a comprehensive TH cell profiling of circulating and intestinal lymphocytes isolated from patients with Crohn's disease (CD; n = 69) and ulcerative colitis (UC; n = 41) undergoing endoscopy or surgical resection and compared them with healthy controls (n = 45). Mucosal inflammation was assessed endoscopically and histologically. TH cells were analyzed by flow cytometric evaluation of cytokine production and differentiation marker expression. Specialized TH cell populations were enriched in the intestinal mucosa compared with peripheral blood. Specifically, we observed a concomitant upregulation of TH17 cells and Tregs in active inflammatory lesions in patients with both CD and UC compared with quiescent/mildly inflamed lesions and healthy tissue. Of note, interferon γ+ interleukin (IL)-17+coproducing CD4+ T cells with high expression of T-bet, CD26, and IL-22 resembling recently described pathogenic TH17 cells were specifically enriched in the inflamed mucosal tissue. Our results argue against the controversial TH1/TH2 or TH17/Treg paradigms. In contrast, they suggest that a subpopulation of TH17 cells sharing a TH1 signature may be specifically involved in intestinal inflammation in CD and UC. These findings provide a better understanding of IBD pathogenesis and may help explain the efficacy of anti-IL-12p40/IL-23 and failure of anti-IL-17A therapies despite the enrichment of TH17 cells.

  10. Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.

    PubMed

    Ventre, Erwan; Brinza, Lilia; Schicklin, Stephane; Mafille, Julien; Coupet, Charles-Antoine; Marçais, Antoine; Djebali, Sophia; Jubin, Virginie; Walzer, Thierry; Marvel, Jacqueline

    2012-10-01

    IL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses.

  11. Profiling calcium signals of in vitro polarized human effector CD4+ T cells.

    PubMed

    Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia

    2018-06-01

    Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Mannosylated Mucin-Type Immunoglobulin Fusion Proteins Enhance Antigen-Specific Antibody and T Lymphocyte Responses

    PubMed Central

    Johansson, Tomas; Nilsson, Anki; Chatzissavidou, Nathalie; Sjöblom, Magnus; Rova, Ulrika; Holgersson, Jan

    2012-01-01

    Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented. OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays. Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect. Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses. PMID:23071675

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Li, Cuiying; Weng, Dong

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentagemore » of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung inflammation and fibrosis.« less

  14. Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses.

    PubMed

    Bishu, Shrinivas; Su, Ee Wern; Wilkerson, Erich R; Reckley, Kelly A; Jones, Donald M; McGeachy, Mandy J; Gaffen, Sarah L; Levesque, Marc C

    2014-02-11

    Accumulating data implicate the CD4+ T cell subset (Th17 cells) in rheumatoid arthritis (RA). IL-17 is an inflammatory cytokine that induces tumor necrosis factor (TNF)α, IL-1β and IL-6, all of which are targets of biologic therapies used to treat RA. RA patients are well documented to experience more infections than age-matched controls, and biologic therapies further increase the risk of infection. The Th17/IL-17 axis is vital for immunity to fungi, especially the commensal fungus Candida albicans. Therefore, we were prompted to examine the relationship between RA and susceptibility to C. albicans because of the increasing interest in Th17 cells and IL-17 in driving autoimmunity, and the advent of new biologics that target this pathway. We analyzed peripheral blood and saliva from 48 RA and 33 healthy control subjects. To assess C. albicans-specific Th17 responses, PBMCs were co-cultured with heat-killed C. albicans extract, and IL-17A levels in conditioned supernatants were measured by ELISA. The frequency of Th17 and Th1 cells was determined by flow cytometry. As a measure of IL-17A-mediated effector responses, we evaluated C. albicans colonization rates in the oral cavity, salivary fungicidal activity and levels of the antimicrobial peptide β-defensin 2 (BD2) in saliva. Compared to controls, PBMCs from RA subjects exhibited elevated baseline production of IL-17A (P = 0.004), although they had similar capacity to produce IL-17A in response to Th17 cell differentiating cytokines (P = 0.91). However RA PBMCs secreted less IL-17A in response to C. albicans antigens (P = 0.006). Significantly more RA patients were colonized with C. albicans in the oral cavity than healthy subjects (P = 0.02). Concomitantly, RA saliva had reduced concentrations of salivary BD2 (P = 0.02). Nonetheless, salivary fungicidal activity was preserved in RA subjects (P = 0.70). RA subjects exhibit detectable impairments in oral immune responses to C. albicans, a strongly Th17-dependent opportunistic pathogen, despite an overall elevated baseline production of IL-17A.

  15. Reciprocal modulation of helper Th1 and Th17 cells by the β2-adrenergic receptor agonist drug terbutaline.

    PubMed

    Carvajal Gonczi, Catalina M; Tabatabaei Shafiei, Mahdieh; East, Ashley; Martire, Erika; Maurice-Ventouris, Meagane H I; Darlington, Peter J

    2017-09-01

    Catecholamine hormones are powerful regulators of the immune system produced by the sympathetic nervous system (SNS). They regulate the adaptive immune system by altering T-cell differentiation into T helper (Th) 1 and Th2 cell subsets, but the effect on Th17 cells is not known. Th17 cells, defined, in part, by chemokine receptor CCR6 and cytokine interleukin (IL)-17A, are crucial for mediating certain pathogen-specific responses and are linked with several autoimmune diseases. We demonstrated that a proportion of human Th17 cells express beta 2-adrenergic receptor (β2AR), a G protein-coupled receptor that responds to catecholamines. Activation of peripheral blood mononuclear cells, which were obtained from venous blood drawn from healthy volunteers, with anti-cluster of differentiation 3 (CD3) and anti-CD28 and with a β2-agonist drug, terbutaline (TERB), augmented IL-17A levels (P < 0.01) in the majority of samples. TERB reduced interferon gamma (IFNγ) indicating that IL-17A and IFNγ are reciprocally regulated. Similar reciprocal regulation was observed with dbcAMP. Proliferation of Th cells was monitored by carboxyfluorescein diacetate N-succinimidyl ester labeling and flow cytometry with antibody staining for CD3 and CD4. TERB increased proliferation by a small but significant margin (P < 0.001). Next, Th17 cells (CD4 + CXCR3 - CCR6 + ) were purified using an immunomagnetic positive selection kit, which removes all other mononuclear cells. TERB increased IL-17A from purified Th17 cells, which argues that TERB acts directly on Th17 cells. Thus, hormone signals from the SNS maintain a balance of Th cells subtypes through the β2AR. © 2017 Federation of European Biochemical Societies.

  16. Major role for CD8 T cells in the protection against Toxoplasma gondii following dendritic cell vaccination.

    PubMed

    Guiton, R; Zagani, R; Dimier-Poisson, I

    2009-10-01

    Toxoplasma gondii is the causative agent of toxoplasmosis, a worldwide zoonosis for which an effective vaccine is needed. Vaccination with pulsed dendritic cells is very efficient but their use in a vaccination protocol is unconceivable. Nevertheless, unravelling the induced effector mechanisms is crucial to design new vaccine strategies. We vaccinated CBA/J mice with parasite extract-pulsed dendritic cells, challenged them with T. gondii cysts and carried out in vivo depletion of CD4(+) or CD8(+) T lymphocytes to study the subsequent cellular immune response and protective mechanisms. CD4(+) lymphocytes were poorly implicated either in spleen and mesenteric lymph node (MLN) cytokine secretion or in mice protection. By contrast, the increasing number of intracerebral cysts and depletion of CD8(+) cells were strongly correlated, revealing a prominent role for CD8(+) lymphocytes in the protection of mice. Splenic CD8(+) lymphocytes induce a strong Th1 response controlled by a Th2 response whereas CD8(+) cells from MLNs inhibit both Th1 and Th2 responses. CD8(+) cells are the main effectors following dendritic cell vaccination and Toxoplasma infection while CD4(+) T cells only play a minor role. This contrasts with T. gondii infection which elicits the generation of CD4(+) and CD8(+) T cells that provide protective immunity.

  17. Immunological Signatures after Bordetella pertussis Infection Demonstrate Importance of Pulmonary Innate Immune Cells

    PubMed Central

    Brummelman, Jolanda; van der Maas, Larissa; Tilstra, Wichard; Pennings, Jeroen L. A.; Han, Wanda G. H.; van Els, Cécile A. C. M.; van Riet, Elly; Kersten, Gideon F. A.; Metz, Bernard

    2016-01-01

    Effective immunity against Bordetella pertussis is currently under discussion following the stacking evidence of pertussis resurgence in the vaccinated population. Natural immunity is more effective than vaccine-induced immunity indicating that knowledge on infection-induced responses may contribute to improve vaccination strategies. We applied a systems biology approach comprising microarray, flow cytometry and multiplex immunoassays to unravel the molecular and cellular signatures in unprotected mice and protected mice with infection-induced immunity, around a B. pertussis challenge. Pre-existing systemic memory Th1/Th17 cells, memory B-cells, and mucosal IgA specific for Ptx, Vag8, Fim2/3 were detected in the protected mice 56 days after an experimental infection. In addition, pre-existing high activity and reactivation of pulmonary innate cells such as alveolar macrophages, M-cells and goblet cells was detected. The pro-inflammatory responses in the lungs and serum, and neutrophil recruitment in the spleen upon an infectious challenge of unprotected mice were absent in protected mice. Instead, fast pulmonary immune responses in protected mice led to efficient bacterial clearance and harbored potential new gene markers that contribute to immunity against B. pertussis. These responses comprised of innate makers, such as Clca3, Retlna, Glycam1, Gp2, and Umod, next to adaptive markers, such as CCR6+ B-cells, CCR6+ Th17 cells and CXCR6+ T-cells as demonstrated by transcriptome analysis. In conclusion, besides effective Th1/Th17 and mucosal IgA responses, the primary infection-induced immunity benefits from activation of pulmonary resident innate immune cells, achieved by local pathogen-recognition. These molecular signatures of primary infection-induced immunity provided potential markers to improve vaccine-induced immunity against B. pertussis. PMID:27711188

  18. A role for B cells in the development of T cell helper function in a malaria infection in mice

    PubMed Central

    Langhorne, Jean; Cross, Caroline; Seixas, Elsa; Li, Ching; von der Weid, Thierry

    1998-01-01

    B cell knockout mice are unable to clear a primary erythrocytic infection of Plasmodium chabaudi chabaudi. However, the early acute infection is controlled to some extent, giving rise to a chronic relapsing parasitemia that can be reduced either by drug treatment or by adoptive transfer of B cells. Similar to mice rendered B-cell deficient by lifelong treatment with anti-μ antibodies, B cell knockout mice (μMT) retain a predominant CD4+ Th1-like response to malarial antigens throughout a primary infection. This contrasts with the response seen in control C57BL/6 mice in which the CD4+ T-cell response has switched to that characteristic of Th2 cells at the later stages of infection, manifesting efficient help for specific antibodies in vitro and interleukin 4 production. Both chloroquine and adoptive transfer of immune B cells reduced parasite load. However, the adoptive transfer of B cells resulted in a Th2 response in recipient μMT mice, as indicated by a relative increase in the precursor frequency of helper cells for antibody production. These data support the idea that B cells play a role in the regulation of CD4+ T subset responses. PMID:9465085

  19. Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses.

    PubMed

    Chiurchiù, Valerio; Leuti, Alessandro; Dalli, Jesmond; Jacobsson, Anders; Battistini, Luca; Maccarrone, Mauro; Serhan, Charles N

    2016-08-24

    Resolution of inflammation is a finely regulated process mediated by specialized proresolving lipid mediators (SPMs), including docosahexaenoic acid (DHA)-derived resolvins and maresins. The immunomodulatory role of SPMs in adaptive immune cells is of interest. We report that D-series resolvins (resolvin D1 and resolvin D2) and maresin 1 modulate adaptive immune responses in human peripheral blood lymphocytes. These lipid mediators reduce cytokine production by activated CD8(+) T cells and CD4(+) T helper 1 (TH1) and TH17 cells but do not modulate T cell inhibitory receptors or abrogate their capacity to proliferate. Moreover, these SPMs prevented naïve CD4(+) T cell differentiation into TH1 and TH17 by down-regulating their signature transcription factors, T-bet and Rorc, in a mechanism mediated by the GPR32 and ALX/FPR2 receptors; they concomitantly enhanced de novo generation and function of Foxp3(+) regulatory T (Treg) cells via the GPR32 receptor. These results were also supported in vivo in a mouse deficient for DHA synthesis (Elovl2(-/-)) that showed an increase in TH1/TH17 cells and a decrease in Treg cells compared to wild-type mice. Additionally, either DHA supplementation in Elovl2(-/-) mice or in vivo administration of resolvin D1 significantly reduced cytokine production upon specific stimulation of T cells. These findings demonstrate actions of specific SPMs on adaptive immunity and provide a new avenue for SPM-based approaches to modulate chronic inflammation. Copyright © 2016, American Association for the Advancement of Science.

  20. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis.

    PubMed

    Millet, Arnaud; Martin, Katherine R; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-11-02

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology.

  1. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis

    PubMed Central

    Millet, Arnaud; Martin, Katherine R.; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A.; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-01-01

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology. PMID:26436651

  2. Role of DAF in protecting against T-cell autoreactivity that leads to experimental autoimmune uveitis.

    PubMed

    An, Fengqi; Li, Qing; Tu, Zhidan; Bu, Hong; Chan, Chi-Chao; Caspi, Rachel R; Lin, Feng

    2009-08-01

    To investigate the role of decay-accelerating factor (DAF), a cell surface complement regulator that recently has been linked to T-cell responses and autoimmunity in the pathogenesis of experimental autoimmune uveitis (EAU). EAU was induced in wild-type (WT) and Daf1(-/-) mice, and their disease severities, IRBP specific Th1/Th17 responses, and cytokine expression profiles were compared. In a test of the efficacy of treatment with soluble mouse DAF protein, EAU was induced in disease-susceptible B10.RIII mice, and they were treated with 0.5 mg soluble DAF protein or equal volume of PBS IP every other day. Retinal histology and IRBP-specific T-cell responses were compared after 14 days. Both EAU incidence and histopathology scores were significantly greater in Daf1(-/-) mice. There was a >10-fold greater mononuclear cell influx into the retina together with severe vasculitic lesions, retinal folding, and photoreceptor cell layer destruction. There were 5- to 7-fold greater Th1 and 3- to 4-fold greater Th17 responses against IRBP in Daf1(-/-) mice with EAU, and they expressed significantly elevated levels of GM-CSF, IL-2, IL-3, and IFN-gamma. WT B10.RIII mice that received soluble DAF protein treatments exhibited decreased IRBP-specific Th1/Th17 responses and were protected from retinal injury compared with the mice that received PBS treatments. DAF significantly influences IRBP-specific Th1 and Th17 responses and disease severity in EAU. Systemic upregulation of DAF levels could be used to suppress retinal antigen(s)-specific autoimmunity to treat autoimmune posterior uveitis.

  3. Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.

    PubMed

    Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E

    2017-09-01

    We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Systems Modeling of Molecular Mechanisms Controlling Cytokine-driven CD4+ T Cell Differentiation and Phenotype Plasticity

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Kronsteiner, Barbara; Viladomiu, Monica; Pedragosa, Mireia; Lu, Pinyi; Philipson, Casandra W.; Hoops, Stefan; Marathe, Madhav; Eubank, Stephen; Bisset, Keith; Wendelsdorf, Katherine; Jarrah, Abdul; Mei, Yongguo; Bassaganya-Riera, Josep

    2013-01-01

    Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARγ) in modulating plasticity between Th17 and iTreg cells. PPARγ regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARγ activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARγ. Deletion of PPARγ in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARγ in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa. PMID:23592971

  5. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22.

    PubMed

    Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xiaodan; School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Science, Jinan; Guo, Yuqi

    Purpose: Inefficient T-cell reconstitution from x-ray–induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. Methods and Materials: CD3{sup +}, CD8{sup +}, and CD4{sup +} T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3more » signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. Results: Reconstitution of CD4{sup +} T cells was delayed more than that of CD8{sup +} T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. Conclusions: T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the proliferation of Th1 and by suppressing expansions of Th17 and Tregs. The role of cinnamon in efficient T-cell reconstitution from SLTBI is effective in antitumor immunity.« less

  7. Listeria arpJ gene modifies T helper type 2 subset differentiation.

    PubMed

    Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro

    2015-07-15

    Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Multiple host defense defects in failure of C57BL/6 ep/ep (pale ear) mice to resolve visceral Leishmania donovani infection.

    PubMed Central

    Murray, H W; Hariprashad, J; McDermott, D F; Stoeckle, M Y

    1996-01-01

    Euthymic C57BL/L ep/ep (pale ear [PE]) mice halt the visceral replication of intracellular Leishmania donovani but fail to properly resolve infection. A previous study identified an isolated defect in tissue granuloma formation in these mice; CD4+ and CD8+ cell number, gamma interferon (IFN-gamma) production, and macrophage antimicrobial activity in vitro were all intact. New in vivo results reported here suggest a considerably more complex immune defect, with evidence indicating (i) enhanced control over L. donovani after transfer of normal C57BL/6 spleen cells, (ii) a partially suppressive Th2 cell-associated response mediated by interleukin-4 (IL-4) but not reversed by CD4+ cell depletion, (iii) absent responses to endogenous Th1 cell lymphokines (IFN-gamma and IL-2) but preserved responsiveness to endogenous tumor necrosis factor alpha, (iv) absent responses to exogenous treatment with recognized antileishmanial cytokines (IFN-gamma, IL-2, IL-12, and granulocyte-macrophage colony-stimulating factor [GM-CSF]) not corrected by transfer of C57BL/6 spleen cells, and (v) a deficient response to antimony chemotherapy. Defective hepatic granuloma formation was not corrected by transfer of C57BL/6 spleen cells or by anti-IL-4 administration. While treatment with IL-2 and GM-CSF modified the tissue reaction and induced selected effector cells to encase tissue macrophages, no antileishmanial activity resulted. Together, these observations suggest that the failure of PE mice to resolve visceral L. donovani infection likely represents expression of multiple suboptimal immune responses and/or partial defects, probably involving a combination of T-cell dysfunction, a Th2 cell response, and target cell (macrophage) hyporesponsiveness. PMID:8557335

  9. Role of Th17 Cells in the Pathogenesis of Human IBD

    PubMed Central

    Gálvez, Julio

    2014-01-01

    The gastrointestinal tract plays a central role in immune system, being able to mount efficient immune responses against pathogens, keeping the homeostasis of the human gut. However, conditions like Crohn's disease (CD) or ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD), are related to an excessive and uncontrolled immune response against normal microbiota, through the activation of CD4+ T helper (Th) cells. Classically, IBD was thought to be primarily mediated by Th1 cells in CD or Th2 cells in UC, but it is now known that Th17 cells and their related cytokines are crucial mediators in both conditions. Th17 cells massively infiltrate the inflamed intestine of IBD patients, where they produce interleukin- (IL-) 17A and other cytokines, triggering and amplifying the inflammatory process. However, these cells show functional plasticity, and they can be converted into either IFN-γ producing Th1 cells or regulatory T cells. This review will summarize the current knowledge regarding the regulation and functional role of Th17 cells in the gut. Deeper insights into their plasticity in inflammatory conditions will contribute to advancing our understanding of the mechanisms that regulate mucosal homeostasis and inflammation in the gut, promoting the design of novel therapeutic approaches for IBD. PMID:25101191

  10. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection.

    PubMed

    Licona-Limón, Paula; Henao-Mejia, Jorge; Temann, Angela U; Gagliani, Nicola; Licona-Limón, Ileana; Ishigame, Harumichi; Hao, Liming; Herbert, De'broski R; Flavell, Richard A

    2013-10-17

    Type 2 inflammatory cytokines, including interleukin-4 (IL-4), IL-5, IL-9, and IL-13, drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial, and the importance of IL-9- versus IL-4-producing CD4⁺ effector T cells in type 2 immunity is incompletely defined. Herein, we generated IL-9-deficient and IL-9-fluorescent reporter mice that demonstrated an essential role for this cytokine in the early type 2 immunity against Nippostrongylus brasiliensis. Whereas T helper 9 (Th9) cells and type 2 innate lymphoid cells (ILC2s) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells, caused rapid worm expulsion, marked basophilia, and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    PubMed Central

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue

    2011-01-01

    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200

  12. Suppressive effects of a novel CC chemokine receptor 4 antagonist on Th2 cell trafficking in ligand- and antigen-induced mouse models.

    PubMed

    Komiya, Takaki; Sugiyama, Tetsuya; Takeda, Kazuhiko; Watanabe, Noriki; Imai, Masamichi; Kokubo, Masaya; Tokuda, Natsuko; Ochiai, Hiroshi; Habashita, Hiromu; Shibayama, Shiro

    2013-11-15

    CC chemokine receptor 4 (CCR4) has been implicated as a preferential marker for T helper type 2 (Th2) cells, and is believed to be involved in the pathology of allergic diseases by controlling Th2 cell trafficking into inflamed tissues. The objective of the study was to characterize the pharmacological properties of E0001-163, a novel CCR4 antagonist. E0001-163 was tested in both in vitro chemotaxis assays as well as in vivo mouse models of CCR4 ligand-induced air pouch and antigen-induced airway inflammation by utilizing in vitro-polarized Th2 cells. In vitro, E0001-163 inhibited migratory response of human Th2-polarized cells to CCL22, a CCR4 ligand, with an IC50 value of 11.9 nM. E0001-163 significantly suppressed CCL22-induced Th2 cell trafficking into mouse air pouch in a dose-dependent manner at doses of 3 and 10mg/kg, suggesting that E0001-163 has an inhibitory effect on CCR4-mediated T cell trafficking in vivo. In addition, E0001-163 partially decreased Th2 cell trafficking and the level of IL-4 in the lungs in Th2-tansferred and ovalbumin (OVA)-challenged mice. T cell trafficking involves multiple chemokine receptors both in acute and chronic phases, and our findings suggest that CCR4, together with other chemokine receptors, may be involved in Th2 cell trafficking under disease conditions. © 2013 Elsevier B.V. All rights reserved.

  13. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice.

    PubMed

    Lee, Gihyun; Chung, Hwan-Suck; Lee, Kyeseok; Lee, Hyeonhoon; Kim, Minhwan; Bae, Hyunsu

    2017-09-15

    Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) is a lethal autoimmune disease caused by mutations in the Foxp3 gene scurfin (scurfy). Immunosuppressive therapy for IPEX patients has been generally ineffective and has caused severe side effects, however curcumin has shown immune regulation properties for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel diseases without side effects. The aim of this study was to investigate whether curcumin would attenuate symptoms of IPEX in mouse model and would prolong its survival period. C57BL/6 mice were separated into scurfy or wild-type litter mate groups by genotyping, and each group subsequently was separated into 2 subgroups that were fed a 1% curcumin containing or normal diet from the last day of breast-feeding. After weaning, pups were fed either a 1% curcumin containing or normal diet until all scurfy mice die for survival data. To elucidate immune cell proportions in spleen and lymph nodes, cells were analyzed by flowcytometry. Cellular cytokine production was accessed to investigate the effects of curcumin in T cell differentiation in vitro. Scurfy mice fed a 1% curcumin diet survived 4.0-fold longer compared to scurfy (92.5 days) mice fed a normal diet (23 days). A curcumin diet decreased all of the Th1/Th2/Th17 cell populations and attenuated diverse symptoms such as splenomegaly in scurfy mice. In vitro experiments showed that curcumin treatment directly decreased the Th1/Th2/Th17 cytokine production of IFN-γ, IL-4, and IL-17A in CD4 + T cells. Curcumin diet attenuated the scurfy-induced immune disorder, a model of IPEX syndrome, by inhibiting Th1/Th2/Th17 responses in mice. These results have implications for improving clinical therapy for patients with IPEX and other T cell related autoimmune diseases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter.

    PubMed

    Burgler, Simone; Mantel, Pierre-Yves; Bassin, Claudio; Ouaked, Nadia; Akdis, Cezmi A; Schmidt-Weber, Carsten B

    2010-06-01

    The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers immunity and tolerance. The present study demonstrates that retinoic acid receptor-related orphan receptor C2 (RORC2), a key transcription factor in Th17 cell development, inhibits FOXP3 expression in human T cells. Although overexpression of RORC2 in naive T cells reduces levels of FOXP3, small interfering RNA-mediated knockdown of RORC2 enhances its expression. RORC2 mediates this inhibition at least partially by binding to two out of four ROR-responsive elements on the FOXP3 promoter. Knockdown of RORC2 promotes high FOXP3 levels and decreased expression of proinflammatory cytokines beta form of pro-IL-1, IL-6, IL-17A, IFN-gamma, and TNF-alpha in differentiating naive T cells, suggesting that the role of RORC2 in Th17 cell development involves not only induction of Th17-characteristic genes, but also suppression of regulatory T cell-specific programs. Together, this study identifies RORC2 as a polarizing factor in transcriptional cross-regulation and provides novel viewpoints on the control of immune tolerance versus effector immune responses.

  15. Cell-mediated immune response and Th/Th cytokine profile of B-T constructs of F1 and V antigen of Yersinia pestis.

    PubMed

    Gupta, G; Khan, A A; Rao, D N

    2010-03-01

    Yersinia pestis, a Gram-negative bacterium, is the etiological agent of pneumonic and bubonic plague and still active in various regions of the world. Because plague is highly infectious and can readily spread by aerosolization, it poses a bioterrorism threat. The effective induction of mucosal as well as systemic immunity is an important attribute of an improved vaccine for plague. An alternative approach described here is the use of protective epitopes derived from immunodominant antigens (F1 and V) of Yersinia pestis. As T-cell immunity is also a major contributor of protection, microencapsulated B-T constructs of F1 and V antigen were used to immunize outbred and inbred mice through intranasal route, and lympho-proliferative response and cytokine profile of both Th(1) and Th(2) arms were measured in spleen, lamina propria and Peyer's patches. Three B-T constructs of F1 antigen and seven of V antigen showed significantly high T-cell response in terms of inducing systemic as well as mucosal response when compared to constituent peptides. These ten conjugates showed Th(1) cytokine profile whereas rest of the conjugates showed mixed Th(1)/Th(2) response. Four conjugates of V antigen showed high level of IL-10 production. In present study, microencapsulated B-T constructs after intranasal immunization generated systemic as well as mucosal immune response in all three sites, which offers an alternative approach for plague vaccine.

  16. Obesity promotes prolonged ovalbumin-induced airway inflammation modulating T helper type 1 (Th1), Th2 and Th17 immune responses in BALB/c mice.

    PubMed

    Silva, F M C; Oliveira, E E; Gouveia, A C C; Brugiolo, A S S; Alves, C C; Correa, J O A; Gameiro, J; Mattes, J; Teixeira, H C; Ferreira, A P

    2017-07-01

    Clinical and epidemiological studies indicate that obesity affects the development and phenotype of asthma by inducing inflammatory mechanisms in addition to eosinophilic inflammation. The aim of this study was to assess the effect of obesity on allergic airway inflammation and T helper type 2 (Th2) immune responses using an experimental model of asthma in BALB/c mice. Mice fed a high-fat diet (HFD) for 10 weeks were sensitized and challenged with ovalbumin (OVA), and analyses were performed at 24 and 48 h after the last OVA challenge. Obesity induced an increase of inducible nitric oxide synthase (iNOS)-expressing macrophages and neutrophils which peaked at 48 h after the last OVA challenge, and was associated with higher levels of interleukin (IL)-4, IL-9, IL-17A, leptin and interferon (IFN)-γ in the lungs. Higher goblet cell hyperplasia was associated with elevated mast cell influx into the lungs and trachea in the obese allergic mice. In contrast, early eosinophil influx and lower levels of IL-25, thymic stromal lymphopoietin (TSLP), CCL11 and OVA-specific immunoglobulin (IgE) were observed in the obese allergic mice in comparison to non-obese allergic mice. Moreover, obese mice showed higher numbers of mast cells regardless of OVA challenge. These results indicate that obesity affects allergic airway inflammation through mechanisms involving mast cell influx and the release of TSLP and IL-25, which favoured a delayed immune response with an exacerbated Th1, Th2 and Th17 profile. In this scenario, an intense mixed inflammatory granulocyte influx, classically activated macrophage accumulation and intense mucus production may contribute to a refractory therapeutic response and exacerbate asthma severity. © 2017 British Society for Immunology.

  17. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    PubMed

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites. Published by Elsevier Inc.

  18. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

    PubMed Central

    Hohl, Tobias M.; Collins, Nichole; Leiner, Ingrid; Gallegos, Alena; Saijo, Shinobu; Coward, Jesse W.; Iwakura, Yoichiro

    2011-01-01

    Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation. PMID:21242294

  19. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults.

    PubMed

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-10-09

    Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the immunological fitness of the middle-aged population is ill-defined. It is currently unknown whether effective T-cell help towards B-cells is initiated by conjugate-carrier vaccines at middle-age. We characterized systemic Tetanus Toxoid (TT) specific T-helper cell responses in the circulation of middle-aged adults (50-65years of age, n=31) having received the MenACWY-TT vaccination. Blood samples were taken pre- as well as 7days, 28days, and 1year post-vaccination. TT-specific T-cell responses were determined by IFNγ Elispot and by the secretion of IFNγ, IL13, IL10, IL17, and IL21 in cell culture supernatants. Circulating CD4+CXCR5+ICOS+IL21+ cells were analyzed by flow cytometry, and meningococcal and TT-specific IgG responses by bead-based immunoassays. The correlation between the T-cell help and humoral responses was evaluated. Vaccination with a TT-carrier protein induced a mixed TT-specific Th1 (IFNγ), Th2 (IL13, IL10), and Th17 (IL17) response in most participants. Additionally, circulating CD4+CXCR5+ICOS+IL21+ cells were significantly increased 7days post-vaccination. Pre-vaccination TT-specific cytokine production and post-vaccination Th2 responses correlated positively with the increase of CD4+CXCR5+ICOS+IL21+ cells. No correlation between T-cell help and antibody responses was found. The characteristics of the T-cell response upon a TT-carrier vaccination suggests effective T-cell help towards B-cells in response to meningococcal polysaccharides, although the absence of a correlation with the antibody responses warrants further clarification. However, the robust T-helper cell response in middle-aged adults, decades after previous TT vaccinations, strengthens the classification of this age group for future vaccine interventions in the context of population ageing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Breaking the asymptomatic phase of HIV-1 infection.

    PubMed

    Tomar, R H

    1994-01-01

    AIDS typically consists of three phases: (1) an acute, infectious mononucleosis-like syndrome followed by (2) a prolonged asymptomatic stage ending in (3) the appearance of frank AIDS. The asymptomatic phase may last for years and its presence suggests a persistent conflagration between the virus and the host's immune response. There is considerable evidence that an immune response develops but the response is ultimately inadequate. From the work of others as well as our own, we have constructed a hypothesis which attempts to explain some aspects of the immune response. We propose that HIV-1 preferentially infects a subset of CD4+ lymphocytes which are then either destroyed or altered in their biological functions. Further, we suggest that this subset represents the CD4+ TH1 lymphocyte population. By decreasing the quantity of IL-2 and interferon-gamma produced by TH1 lymphocytes, the production of cytokines by TH2 cells is increased. One of the cytokines produced by TH2 lymphocytes is IL-10, a polypeptide with significant inhibitory properties towards lymphocytes. Sera from patients with frank AIDS have significant lymphocyte inhibitory activities some of which operate through IL-10. Thus, a gradual shift to a TH2-type response and release of increasing amounts of inhibitors eventually prevents the host from replacing destroyed cells or mounting new and appropriate immune responses.

  1. Use of a LiESP/QA-21 Vaccine (CaniLeish) Stimulates an Appropriate Th1-Dominated Cell-Mediated Immune Response in Dogs

    PubMed Central

    Moreno, Javier; Vouldoukis, Ioannis; Martin, Virginie; McGahie, David; Cuisinier, Anne-Marie; Gueguen, Sylvie

    2012-01-01

    Canine leishmaniasis is an important zoonotic disease of dogs. The clinical outcome of infection is variable, with the efficiency of the immune response being the key determining factor. There is now a general consensus that a predominant Th1 immune profile in an overall mixed Th1/Th2 response is associated with resistance in dogs, and the absence of a strong Th1 influence is associated with a progression to clinical disease. As a result, there has been a growing demand for vaccines that can induce a specific, strong Th1 response. In this study, we measured the impact of a primary course of a newly available LiESP/QA-21 vaccine on selected humoral and cellular markers of the canine immune response during the onset of immunity. All vaccinated dogs developed a humoral response characterised by IgG2 production. More importantly, vaccinated dogs developed significantly stronger cell-mediated immunity responses than did control dogs. Vaccination induced specific cellular reactivity to soluble Leishmania antigens, with a Leishmania-specific lymphoproliferation (p = 0.0072), characterised by an increased population of T lymphocytes producing IFN-γ (p = 0.0021) and a significant ability of macrophages to reduce intracellular parasite burdens in vitro after co-culture with autologous lymphocytes (p = 0.0014). These responses were correlated with induction of the NOS pathway and production of NO derivatives, which has been shown to be an important leishmanicidal mechanism. These results confirm that vaccination with LiESP/QA-21 induces an appropriate Th1-profile cell-mediated response within three weeks of completing the primary course, and that this response effectively reduces the parasite load in pre-infected macrophages in vitro. PMID:22724031

  2. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  3. Effects of ω-3 Polyunsaturated Fatty Acids on the Homeostasis of CD4+ T Cells and Lung Injury in Mice With Polymicrobial Sepsis.

    PubMed

    Chang, Yu-Fan; Hou, Yu-Chen; Pai, Man-Hui; Yeh, Sung-Ling; Liu, Jun-Jen

    2017-07-01

    Sepsis is a common cause of death in critically ill patients. An overwhelming inflammatory response and imbalance of helper T (Th) cells and regulatory T (Treg) cells are thought to be involved in the progression of sepsis. ω-3 Polyunsaturated fatty acids (PUFAs) were found to have anti-inflammatory and immunomodulatory properties. This study investigated the effects of ω-3 PUFAs on the balance of Th subsets, Treg cells, and the inflammatory response in septic mice. Mice were randomly assigned to soybean oil (SO) and fish oil (FO) groups. The 2 groups received an identical nutrient distribution except for the sources of the fat. The SO group was fed soybean oil, while part of the soybean oil was replaced by fish oil in the FO group. The FO group had an ω-6/ω-3 PUFA ratio of 2:1. After feeding the diets for 3 weeks, sepsis was induced by cecal ligation and puncture (CLP), and mice were sacrificed on days 0, 1, and 3. Compared with the SO group, the FO group had lower inflammatory mediator levels in the plasma and peritoneal lavage fluid after CLP. Also, the FO group had lower Th1, Th2, and Th17 percentages and a higher Th1/Th2 ratio in blood. In lung tissues, neutrophil infiltration was reduced, whereas peroxisome proliferator-activated receptor γ expression was upregulated. A fish oil diet with an ω-6/ω-3 PUFA ratio of 2:1 may elicit more balanced Th polarization, alleviate inflammatory responses, and attenuate lung injury in CLP-induced sepsis.

  4. IL-21/IL-21R signaling suppresses intestinal inflammation induced by DSS through regulation of Th responses in lamina propria in mice

    PubMed Central

    Wang, Yuanyuan; Jiang, Xuefeng; Zhu, Junfeng; Dan Yue; Zhang, Xiaoqing; Wang, Xiao; You, Yong; Wang, Biao; Xu, Ying; Lu, Changlong; Sun, Xun; Yoshikai, Yasunobu

    2016-01-01

    Serum level of IL-21 is increased in patients with inflammatory bowel diseases (IBD), suggesting that IL-21/IL-21 receptor (IL-21R) signaling may be involved in the pathogenesis of IBD. However, the role of IL-21/IL-21 receptor signaling plays in the pathogenesis of IBD is not very clear. In this study, using IL-21R.KO mice, we tested the role of IL-21/IL-21R signaling in the regulation of T helper cell responses during intestinal inflammation. Here we found that IL-21R.KO mice were more susceptible to DSS-induced colitis as compared with C57BL/6 mice. The spontaneous inflammatory cytokines released by macrophages in LP of colon were significantly increased, and Th2, Th17 and Treg responses were down-regulated markedly. However, Th1 responses were significantly up-regulated in IL-21R.KO mice. Meanwhile, the population of CD8+CD44+IFN-γ+ T cells was markedly elevated in LP of inflammatory intestine of IL-21RKO mice. In vivo, after disease onset, DSS-induced intestinal inflammation was ameliorated in C57BL/6 mice treated with rIL-21. Our results demonstrate that IL-21/IL-21R signaling contributes to protection against DSS-induced acute colitis through suppression of Th1 and activation of Th2, Th17 and Treg responses in mice. Therefore, therapeutic manipulation of IL-21/IL-21R activity may allow improved immunotherapy for IBD and other inflammatory diseases associated with Th cell responses. PMID:27545302

  5. T-cell suppression and selective in vivo activation of TH2 subpopulation by the Entamoeba histolytica 220-kilodalton lectin.

    PubMed Central

    Talamás-Rohana, P; Schlie-Guzmán, M A; Hernández-Ramírez, V I; Rosales-Encina, J L

    1995-01-01

    A 220-kDa surface protein (L220) with lectin activity from Entamoeba histolytica trophozoites has been characterized previously (J. L. Rosales-Encina, I. Meza, A. López-de-León, P. Talamás-Rohana, and M. Rojkind, J. Infect. Dis. 156:790-797, 1987). This molecule is involved in the adhesion process (I. Meza, F. Cázares, J. L. Rosales-Encina, P. Talamás-Rohana, and M. Rojkind, J. Infect. Dis. 156:798-805, 1987) and is very immunogenic. In this work, we studied both the humoral and the cellular immune responses to L220. We compared L220 with L220-derived components, such as a fusion peptide (M-11) and chemically obtained peptides (by treating the 220-kDa molecule with N-chlorosuccinimide-urea). Spleen cells from L220-immunized mice were unable to proliferate in vitro when stimulated with the protein. However, a proliferative response was obtained when mice were immunized with the L220-derived fusion peptide or the cleaved lectin. To find out if there was a correlation between the observed responses and TH1 or TH2 activation, we analyzed patterns of cytokine secretion (interleukin-2 [IL-2], IL-4, IL-10, and gamma interferon). Cells from mice immunized with peptides that induced cell proliferation (100, 80, and 47 kDa) with the peptides (P < 0.01) and with the intact molecule secreted IL-2 and gamma interferon, showing a TH1-subset pattern. Conversely, cells from mice immunized with the intact 220-kDa molecule secreted IL-4 and IL-10, typical of a TH2 subpopulation; however, antibodies from each group recognized the 220-kDa molecule as determined by Western blotting (immunoblotting). These results suggest that various epitopes in the 220-kDa molecule generate different response patterns, suppressing or activating T-cell responses. PMID:7558304

  6. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice

    PubMed Central

    Oriss, Timothy B.; Raundhal, Mahesh; Morse, Christina; Huff, Rachael E.; Das, Sudipta; Hannum, Rachel; Gauthier, Marc C.; Scholl, Kathryn L.; Chakraborty, Krishnendu; Nouraie, Seyed M.; Wenzel, Sally E.; Ray, Prabir

    2017-01-01

    Severe asthma (SA) is a significant problem both clinically and economically, given its poor response to corticosteroids (CS). We recently reported a complex type 1–dominated (IFN-γ–dominated) immune response in more than 50% of severe asthmatics despite high-dose CS treatment. Also, IFN-γ was found to be critical for increased airway hyperreactivity (AHR) in our model of SA. The transcription factor IRF5 expressed in M1 macrophages can induce a Th1/Th17 response in cocultured human T cells. Here we show markedly higher expression of IRF5 in bronchoalveolar lavage (BAL) cells of severe asthmatics as compared with that in cells from milder asthmatics or healthy controls. Using our SA mouse model, we demonstrate that lack of IRF5 in lymph node migratory DCs severely limits their ability to stimulate the generation of IFN-γ– and IL-17–producing CD4+ T cells and IRF5–/– mice subjected to the SA model displayed significantly lower IFN-γ and IL-17 responses, albeit showing a reciprocal increase in Th2 response. However, the absence of IRF5 rendered the mice responsive to CS with suppression of the heightened Th2 response. These data support the notion that IRF5 inhibition in combination with CS may be a viable approach to manage disease in a subset of severe asthmatics. PMID:28515358

  7. Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms.

    PubMed

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J

    2015-10-01

    Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell's viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic type 2 (Th2) immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB.

    PubMed

    Jackson-Sillah, Dolly; Cliff, Jacqueline M; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A; Addo, Kwasi K; Ottenhoff, Tom H M; Bothamley, Graham; Dockrell, Hazel M

    2013-01-01

    Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.

  9. Interferon-gamma and T-bet expression in a patient with toxoplasmic lymphadenopathy.

    PubMed

    Jöhrens, Korinna; Moos, Verena; Schneider, Thomas; Stein, Harald; Anagnostopoulos, Ioannis

    2010-04-01

    Infection with Toxoplasma gondii (TG) presents in some individuals as a self-limited disease with a predominant lymphadenopathy characterized by prominent B-cell activation. As this is in contrast to the in vitro based concept of a T(h)1-immune response against TG, we investigated native lymphoid tissue and peripheral blood of a patient with serologic evidence of toxoplasmosis to verify which cells show T(h)1-response features. High-level expression of T-bet in monocytoid B-cells, in germinal center B-cells, and in a lesser amount in T cells could be demonstrated by immunohistochemistry. In vitro stimulation of lymph node cells with either TG, staphylococcus enterotoxin B, or phorbol 12-myristate 13-acetate/ionomycin revealed an interferon-gamma expression in T-bet(+) B cells only in the patient and not in controls. Similar results were found for T-bet(+) T cells which were also present in controls. CD4(+) peripheral blood cells stimulated with TG antigens showed a TG-specific but attenuated T(h)1-reactivity in the patient associated with a reduced expression of IL-2 when compared with controls. We conclude that the pathogenesis and course of toxoplasmic lymphadenopathy is based on a T(h)1-cell defect, which becomes compensated by the B cells mounting a T(h)1-like immune response.

  10. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis.

    PubMed

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-09-01

    Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Polarization of T-helper lymphocytes toward the Th2 phenotype in uremic patients.

    PubMed

    Libetta, C; Rampino, T; Dal Canton, A

    2001-08-01

    T-helper (Th) lymphocytes consist of Th1 and Th2 subsets. Th1 cells are effectors of cell-mediated immunity and secrete interferon-gamma (IFN-gamma), which recruits new Th1 cells in cooperation with interleukin-12 (IL-12; produced by monocytes) and inhibits Th2 differentiation. Th2 cells produce IL-4 and IL-10, which inhibit IFN-gamma secretion and cell immunity. We investigated whether the impaired immune response in uremia is associated with an altered balance of Th1/Th2. Peripheral-blood mononuclear cells (PBMCs) were collected from patients with chronic renal failure (CRF) on conservative treatment (CRF patients), patients with end-stage renal disease (ESRD) on regular hemodialysis therapy (ESRD-HD patients), and healthy controls (CON). CD4(+) cells were isolated from PBMCs by negative selection using a magnetic labeling system. PBMCs and purified CD4(+) cells were cultured in Iscove's medium and Iscove's medium plus mitogens (phytohemagglutinin and lipopolysaccharide). IFN-gamma, IL-12, IL-4, and IL-10 were measured in supernatant. The constitutive release of IL-4 and IL-10 by PBMCs and CD4(+) cells of CRF and ESRD-HD patients was increased by five to eight times in comparison with CON (P < 0.001). Constitutive IFN-gamma release by PBMCs of ESRD-HD patients was undetectable, although they secreted an increased amount of IL-12. Mitogen-stimulated release of IFN-gamma by PBMCs and CD4(+) cells of CRF and ESRD-HD patients was blunted (average PBMCs: CON, 115.8 pg/2 x10(6) cells; CRF, 81.8 pg/2 x10(6) cells; ESRD-HD, 9.3 pg/2 x10(6) cells; CD4(+) cells: CON, 358.0 pg/5 x 10(5) cells; CRF, 165.4 pg/5 x 10(5) cells; ESRD-HD, 43.5 pg/5 x 10(5) cells). The ability of PBMCs of ESRD-HD patients to secrete IFN-gamma was recovered after IL-4 and IL-10 neutralization. Uremia is associated with a prevalence of Th1 over Th2 cells and a configuration of cytokine network that depresses cell-mediated immunity.

  12. The Role of COX-2 in the Inflammatory and Fibrotic Response in the Lung Following Exposure to Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Sayers, Brian C.

    Exposure to multiwalled carbon nanotubes (MWCNT) has been demonstrated to exacerbate airway inflammation and fibrosis in allergen-challenged mouse model. These data have led to concern that individuals with asthma could represent a susceptible population to adverse health effects following exposure to MWCNT, and possibly other engineered nanoparticles. Asthma pathogenesis is caused by the interaction of a complex genetic predisposition and environmental exposures. Because chronic airway inflammation is common to all asthma phenotypes, it is logical to investigate genes that are involved in inflammatory pathways in order to understand the genetic basis of asthma. The metabolism of arachidonic acid by cyclooxygenase (COX) enzymes is the rate-determining step in the synthesis of prostanoids, which are biologically active lipids that are important modulators of inflammation. Based on the role of COX enzymes in inflammatory pathways, we sought to investigate how COX enzymes are involved in the inflammatory response following MWCNT exposure in asthmatic airways. We report that MWCNT significantly exacerbated allergen-induced airway inflammation and mucus cell metaplasia in COX-2 deficient mice compared to wild type mice. In addition, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13, IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2 deficient mice but not in WT mice. We conclude that exacerbation of allergen-induced airway inflammation and mucus cell metaplasia by MWCNTs is enhanced by deficiency in COX-2 and associated with activation of a mixed Th1/Th2/Th17 immune response. Based on our observation that COX-2 deficient mice developed a mixed Th immune response following MWCNT exposure, we sought to evaluate how cytokines associated with different Th immune responses alter COX expression following MWCNT exposure. For this study, a mouse macrophage cell line (RAW264.7) was used because MWCNT were largely sequestered within alveolar macrophages with 24 hours after aspiration in mice. We report that the Th1 cytokine interferon gamma (IFNgamma) causes decreased COX-1 expression but increased prostaglandin E2 (PGE 2) production in mouse macrophages exposed to nickel nanoparticles (NiNP), a residual impurity found in MWCNT from the catalytic synthesis process. NiNP exposure alone increased COX-2 and decreased COX-1 in the absence of exogenous cytokines. IFNgamma further reduced COX-1 levels suppressed by NiNP. IL-4, IL-13, or IL-17 did not reduce COX-1 expression alone or in combination with NiNP. Exogenous PGE2 enhanced NiNP- or IFN-gamma-mediated COX-1 suppression. Pharmacologic inhibition of ERK1,2 or JAK/STAT-1 cell signaling pathways inhibited PGE2 production in all dose groups and restored COX-1 expression in cells treated with IFNgamma and NiNP. These data show that PGE2 production is induced in macrophages exposed to IFNgamma and NiNP and suggest that macrophages could be an important source of the anti-inflammatory mediator PGE2 following nanoparticle exposure in a Th1 immune microenvironment. In summary, these studies highlight an important role for COX enzymes in regulating inflammation in response to engineered nanoparticles and show that prostanoid production in response to nanoparticle exposure could be determined in part by the Th immune microenvironment.

  13. Adequate Th2-Type Response Associates with Restricted Bacterial Growth in Latent Mycobacterial Infection of Zebrafish

    PubMed Central

    Hammarén, Milka Marjut; Luukinen, Bruno Vincent; Pesu, Marko; Rämet, Mika; Parikka, Mataleena

    2014-01-01

    Tuberculosis is still a major health problem worldwide. Currently it is not known what kind of immune responses lead to successful control and clearance of Mycobacterium tuberculosis. This gap in knowledge is reflected by the inability to develop sufficient diagnostic and therapeutic tools to fight tuberculosis. We have used the Mycobacterium marinum infection model in the adult zebrafish and taken advantage of heterogeneity of zebrafish population to dissect the characteristics of adaptive immune responses, some of which are associated with well-controlled latency or bacterial clearance while others with progressive infection. Differences in T cell responses between subpopulations were measured at the transcriptional level. It was discovered that a high total T cell level was usually associated with lower bacterial loads alongside with a T helper 2 (Th2)-type gene expression signature. At late time points, spontaneous reactivation with apparent symptoms was characterized by a low Th2/Th1 marker ratio and a substantial induction of foxp3 reflecting the level of regulatory T cells. Characteristic gata3/tbx21 has potential as a biomarker for the status of mycobacterial disease. PMID:24968056

  14. Mina: a Th2 response regulator meets TGFβ.

    PubMed

    Pillai, Meenu R; Lian, Shangli; Bix, Mark

    2014-12-01

    The JmjC protein Mina is an important immune response regulator. Classical forward genetics first discovered its immune role in 2009 in connection with the development of T helper 2 (Th2) cells. This prompted investigation into Mina's role in the two best-studied contexts where Th2 responses are essential: atopic asthma and helminth expulsion. In work focused on a mouse model of atopic asthma, Mina deficiency was found to ameliorate airway hyper-resistance and pulmonary inflammation. And, in a case-control study genetic variation at the human MINA locus was found to be associated with the development of childhood atopic asthma. Although the underlying cellular and molecular mechanism of Mina's involvement in pulmonary inflammation remains unknown, our recent work on parasitic helminth expulsion suggests the possibility that, rather than T cells, epithelial cells responding to TGFβ may play the dominant role. Here we review the growing body of literature on the emerging Mina pathway in T cells and epithelial cells and attempt to set these into a broader context. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4+ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model.

    PubMed

    Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira

    2017-01-01

    Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.

  16. Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection.

    PubMed

    Demiri, M; Müller-Luda, K; Agace, W W; Svensson-Frej, M

    2017-10-01

    Low- and high-dose infections with the murine large intestinal nematode Trichuris muris are associated with induction of adaptive Th1 and Th2 responses, respectively, in mesenteric lymph nodes (MLN). Classical dendritic cells (cDC) accumulate in the large intestinal mucosa and MLN upon T. muris infection, yet their role in driving adaptive responses to infection remains largely unknown. We performed low- and high-dose T. muris infections of mice deficient in defined cDC subsets to investigate their role in induction of adaptive immune responses. Mice lacking IRF4-dependent cDC failed to clear a high-dose infection and displayed impaired Th2 responses. Conversely, mice lacking IRF8-dependent cDC cleared a low-dose infection and displayed an impaired Th1 response while increased production of Th2 cytokines. Finally, mice lacking both IRF4- and IRF8-dependent cDC were able to generate a Th2 response and clear a low-dose infection. Collectively, these results suggest that IRF4- and IRF8-dependent cDC act antagonistically during T. muris infection, and demonstrate that intestinal Th2 responses can be generated towards T. muris in the absence of IRF4-dependent cDC. © 2017 John Wiley & Sons Ltd.

  17. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    PubMed

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J G; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E; Kraneveld, Aletta D

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  18. Bifidobacterium breve Attenuates Murine Dextran Sodium Sulfate-Induced Colitis and Increases Regulatory T Cell Responses

    PubMed Central

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J. G.; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E.; Kraneveld, Aletta D.

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition. PMID:24787575

  19. Distinct CD4+-T-cell responses to live and heat-inactivated Aspergillus fumigatus conidia.

    PubMed

    Rivera, Amariliz; Van Epps, Heather L; Hohl, Tobias M; Rizzuto, Gabrielle; Pamer, Eric G

    2005-11-01

    Aspergillus fumigatus is an important fungal pathogen that causes invasive pulmonary disease in immunocompromised hosts. Respiratory exposure to A. fumigatus spores also causes allergic bronchopulmonary aspergillosis, a Th2 CD4+-T-cell-mediated disease that accompanies asthma. The microbial factors that influence the differentiation of A. fumigatus-specific CD4+ T lymphocytes into Th1 versus Th2 cells remain incompletely defined. We therefore examined CD4+-T-cell responses of immunologically intact mice to intratracheal challenge with live or heat-inactivated A. fumigatus spores. Live but not heat-inactivated fungal spores resulted in recruitment of gamma interferon (IFN-gamma)-producing, fungus-specific CD4+ T cells to lung airways, achieving A. fumigatus-specific frequencies exceeding 5% of total CD4+ T cells. While heat-inactivated spores did not induce detectable levels of IFN-gamma-producing, A. fumigatus-specific CD4+ T cells in the airways, they did prime CD4+ T-cell responses in draining lymph nodes that produced greater amounts of interleukin 4 (IL-4) and IL-13 than T cells responding to live conidia. While immunization with live fungal spores induced antibody responses, we found a marked decrease in isotype-switched, A. fumigatus-specific antibodies in sera of mice following immunization with heat-inactivated spores. Our studies demonstrate that robust Th1 T-cell and humoral responses are restricted to challenge with fungal spores that have the potential to germinate and cause invasive infection. How the adaptive immune system distinguishes between metabolically active and inactive fungal spores remains an important question.

  20. The Interactive Roles of Lipopolysaccharides and dsRNA/Viruses on Respiratory Epithelial Cells and Dendritic Cells in Allergic Respiratory Disorders: The Hygiene Hypothesis.

    PubMed

    Lin, Tsang-Hsiung; Su, Hsing-Hao; Kang, Hong-Yo; Chang, Tsung-Hsien

    2017-10-23

    The original hygiene hypothesis declares "more infections in early childhood protect against later atopy". According to the hygiene hypothesis, the increased incidence of allergic disorders in developed countries is explained by the decrease of infections. Epithelial cells and dendritic cells play key roles in bridging the innate and adaptive immune systems. Among the various pattern-recognition receptor systems of epithelial cells and dendritic cells, including toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and others, TLRs are the key systems of immune response regulation. In humans, TLRs consist of TLR1 to TLR10. They regulate cellular responses through engagement with TLR ligands, e.g., lipopolysaccharides (LPS) acts through TLR4 and dsRNA acts through TLR3, but there are certain common components between these two TLR pathways. dsRNA activates epithelial cells and dendritic cells in different directions, resulting in allergy-related Th2-skewing tendency in epithelial cells, and Th1-skewing tendency in dendritic cells. The Th2-skewing effect by stimulation of dsRNA on epithelial cells could be suppressed by the presence of LPS above some threshold. When LPS level decreases, the Th2-skewing effect increases. It may be via these interrelated networks and related factors that LPS modifies the allergic responses and provides a plausible mechanism of the hygiene hypothesis. Several hygiene hypothesis-related phenomena, seemingly conflicting, are also discussed in this review, along with their proposed mechanisms.

  1. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    PubMed Central

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  2. Der p 1-pulsed myeloid and plasmacytoid dendritic cells from house dust mite-sensitized allergic patients dysregulate the T cell response.

    PubMed

    Charbonnier, Anne-Sophie; Hammad, Hamida; Gosset, Philippe; Stewart, Geoffrey A; Alkan, Sefik; Tonnel, André-Bernard; Pestel, Joël

    2003-01-01

    Although reports suggest that dendritic cells (DC) are involved in the allergic reaction characterized by a T helper cell type 2 (Th2) profile, the role of myeloid (M-DC) and plasmacytoid DC (P-DC), controlling the balance Th1/Th2, remains unknown. Here, we showed that in Dermatophagoides pteronyssinus (Dpt)-sensitized allergic patients and in healthy donors, M-DC displayed a higher capacity to capture Der p 1, a major allergen of Dpt, than did P-DC. However, Der p 1-pulsed M-DC from healthy subjects overexpressed CD80 and secreted interleukin (IL)-10, whereas M-DC from allergic patients did not. In contrast, with Der p 1-pulsed P-DC from both groups, no increase in human leukocyte antigen-DR, CD80, and CD86 and no IL-10 secretion were detected. When cocultured with allogeneic naive CD4(+) T cells from healthy donors, Der p 1-pulsed M-DC from allergic patients favored a Th1 profile [interferon (IFN)-gamma(high)/IL-4(low)] and Der p 1-pulsed P-DC, a Th2 profile (IFN-gamma(low)/IL-4(high)). In healthy donors, no T cell polarization (IFN-gamma(low)/IL-4(low)) was induced by Der p 1-pulsed M-DC or P-DC, but in response to Der p 1-pulsed M-DC, T cells secreted IL-10. The neutralization of IL-10 produced by Der p 1-pulsed M-DC from healthy donors led to an inhibition of IL-10 production by T cells and a polarization toward a type 1. Thus, IL-10 produced by M-DC might be an essential mediator controlling the balance between tolerance and allergic status. In addition, P-DC could contribute to the steady state in healthy donors or to the development of a Th2 response in allergic donors.

  3. The effect of in vivo exposure to zearalenone on cytokine secretion by Th1 and Th2 lymphocytes in porcine Peyer's patches after in vitro stimulation with LPS.

    PubMed

    Obremski, K

    2014-01-01

    Most research studies investigating the estrogenic effects of zearalenone (ZEN) focus on the mycotoxin's effect on the reproductive system. Since estrogen receptors are present on various types of immunocompetent cells, ZEN can also modify diverse immune functions. This study analyzed immunocompetent cells isolated from Peyer's patches in the ileum of pigs administered ZEN in the estimated daily dose of 8 μg kg(-1) BW (equivalent of 100 μg kg(-1) feed per day(-1)). The objective of the study was to determine whether long-term exposure to low ZEN doses below the NOEL threshold leads to changes in the percentages of lymphocyte subpopulations and cytokine secretion by Th1 (IL-2, IFN-γ) and Th2 (IL-4 and IL-10) lymphocytes in Peyer's patches of the ileum after in vitro stimulation with lipopolysaccharides (LPS). Immunocompetent cells isolated from Payer's patches on experimental days 0, 14, 28 and 42 were cultured in vitro and stimulated with LPS. The presence of IL-2, IFN-γ, IL-4 and IL-10 in culture media was determined by the ELISA method. The results of the study indicate that ZEN inhibits IL-2 and IFN-γ secretion and stimulates IL-4 and IL-10 produc- tion by Th1 and Th2 lymphocytes by shifting the Th1/Th2 balance towards the humoral immune response. The above can promote allergic responses, as demonstrated by the increase in the size of B1 cell populations producing more autoantibodies. ZEN can also lower resistance to viruses and tumors by inhibiting the proliferation of NK cells and IFN-γ secretion.

  4. Galectin-7 promotes proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting The TGFβ/Smad3 pathway.

    PubMed

    Luo, Zhenlong; Ji, Yudong; Tian, Dean; Zhang, Yong; Chang, Sheng; Yang, Chao; Zhou, Hongmin; Chen, Zhonghua Klaus

    2018-06-08

    Galectin-7 (Gal-7) has been associated with cell proliferation and apoptosis. It is known that Gal-7 antagonises TGFβ-mediated effects in hepatocytes by interacting with Smad3. Previously, we have demonstrated that Gal-7 is related to CD4+ T cells responses; nevertheless, its effect and functional mechanism on CD4+ T cells responses remain unclear. The murine CD4+ T cells were respectively cultured with Gal-7, anti-CD3/CD28 mAbs, or with anti-CD3/CD28 mAbs & Gal-7. The effects of Gal-7 on proliferation and the phenotypic changes in CD4+ T cells were assessed by flow cytometry. The cytokines from CD4+ T cells were analysed by quantitative real-time PCR. Subcellular localisation and expression of Smad3 were determined by immunofluorescence staining and Western blot, respectively. Gal-7 enhanced the proliferation of activated CD4+ T cells in a dose- and β-galactoside-dependent manner. Additionally, Gal-7 treatment did not change the ratio of Th2 cells in activated CD4+ T cells, while it increased the ratio of Th1 cells. Gal-7 also induced activated CD4+ T cells to produce a higher level of IFN-γ and TNF-α and a lower level of IL-10. Moreover, Gal-7 treatment significantly accelerated nuclear export of Smad3 in activated CD4+ T cells. These results revealed a novel role of Gal-7 in promoting proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting the TGFβ/Smad3 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Nasal delivery of chitosan-coated poly(lactide-co-glycolide)-encapsulated honeybee (Apis mellifera) venom promotes Th 1-specific systemic and local intestinal immune responses in weaned pigs.

    PubMed

    Lee, Jin-A; Kim, Yun-Mi; Kim, Tae-Hoon; Lee, Sang-Ho; Lee, Cho-A; Cho, Cheong-Weon; Jeon, Jong-Woon; Park, Jin-Kyu; Kim, Sang-Ki; Jung, Bock-Gie; Lee, Bong-Joo

    2016-10-01

    Nasal delivery is a convenient and acceptable route for drug administration, and has been shown to elicit a much more potent local and systemic response compared with other drug delivery routes. We previously demonstrated that rectal administration of poly(lactide-co-glycolide)-encapsulated honeybee venom (P-HBV) could enhance systemic Th 1-specific immune responses. We therefore synthesized chitosan-coated P-HBV (CP-HBV) and then evaluated the immune-boosting efficacy of nasally administered CP-HBV on systemic and local intestinal immunity compared with non-chitosan-coated P-HBV. The nasally delivered CP-HBV effectively enhanced Th 1-specific responses, eliciting a significant increase in the CD3(+)CD4(+)CD8(-) Th cell population, lymphocyte proliferation capacity, and expression of Th 1 cytokines (IFN-γ, IL-12, and IL-2) in peripheral blood mononuclear cells. Furthermore, these immune-boosting effects persisted up to 21days post CP-HBV administration. Nasal administration of CP-HBV also led to an increase of not only the CD4(+) Th 1 and IFN-γ secreting CD4(+) Th 1 cell population but also Th 1-specific cytokines and transcription factors, including IL-12, IFN-γ, STAT4, and T-bet, in isolated mononuclear cells from the spleen and ileum. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Multi-glycoside of Tripterygium wilfordii Hook. f. ameliorates imiquimod-induced skin lesions through a STAT3-dependent mechanism involving the inhibition of Th17-mediated inflammatory responses.

    PubMed

    Zhao, Jingxia; Di, Tingting; Wang, Yan; Liu, Xin; Liang, Daiying; Zhang, Guangzhong; Li, Ping

    2016-09-01

    Multi-glycoside of Tripterygium wilfordii Hook. f.(GTW) possesses anti-inflammatory and immunosuppressive properties, and has been used as a traditional treatment for psoriasis for many years, although the underlying immunological mechanisms remain poorly understood. The T helper (Th)17 cell response is considered to play a major role in the pathogenesis of psoriasis. Th17 cells are implicated in the mechanism of pathogenesis of imiquimod (IMQ)‑induced skin inflammation. Using a mouse model, we demonstrated that GTW protected mice from developing psoriasis-like lesions induced by topical IMQ administration. This protection was associated with significantly decreased mRNA levels of Th17 cytokines such as interleukin (IL)-17A, IL-17F and IL-22 in mouse skin samples as well as fewer IL-17-secreting splenic CD4+ lymphocytes in IMQ-exposed mice. There were no significant effects on the proportion of CD4+ interferon (IFN)-γ+ T cells, CD4+IL-4+ T cells and CD4+CD25+Foxp3+ Treg cells in the spleen cells. Taken together with the unchanged mRNA levels of Th1 cytokine IFN-γ, Th2 cytokine IL-4 and Treg cytokine IL-10 in IMQ-exposed mouse skin following GTW administration, our findings suggest that the immunosuppressive effect of GTW in psoriasis is exerted mainly on Th17 cells, rather than on Th1, Th2 or Treg cells. Furthermore, we showed that GTW suppressed Th17 function through the inhibition of STAT3 phosphorylation. These results have the potential to pave the way for the use of GTW as an agent for the treatment of psoriasis.

  7. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters.

    PubMed

    Villanueva-Cabello, Tania M; Mollicone, Rosella; Cruz-Muñoz, Mario E; López-Guerrero, Delia V; Martínez-Duncker, Iván

    2015-12-01

    CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Changes in immunological profile as a function of urbanization and lifestyle

    PubMed Central

    Mbow, Moustapha; de Jong, Sanne E; Meurs, Lynn; Mboup, Souleymane; Dieye, Tandakha Ndiaye; Polman, Katja; Yazdanbakhsh, Maria

    2014-01-01

    Differences in lifestyle and break with natural environment appear to be associated with changes in the immune system resulting in various adverse health effects. Although genetics can have a major impact on the immune system and disease susceptibility, the contribution of environmental factors is thought to be substantial. Here, we investigated the immunological profile of healthy volunteers living in a rural and an urban area of a developing African country (Senegal), and in a European country (the Netherlands). Using flow cytometry, we investigated T helper type 1 (Th1), Th2, Th17, Th22 and regulatory T cells, as well as CD4+ T-cell and B-cell activation markers, and subsets of memory T and B cells in the peripheral blood. Rural Senegalese had significantly higher frequencies of Th1, Th2 and Th22 cells, memory CD4+ T and B cells, as well as activated CD4+ T and B cells compared with urban Senegalese and urban Dutch people. Within the Senegalese population, rural paritcipants displayed significantly higher frequencies of Th2 and Th22 cells, as well as higher pro-inflammatory and T-cell activation and memory profiles compared with the urban population. The greater magnitude of immune activation and the enlarged memory pool, together with Th2 polarization, seen in rural participants from Africa, followed by urban Africans and Europeans suggest that environmental changes may define immunological footprints, which could have consequences for disease patterns in general and vaccine responses in particular. PMID:24924958

  9. Mycobacterium tuberculosis Rv1987 induces Th2 immune responses and enhances Mycobacterium smegmatis survival in mice.

    PubMed

    Sha, Shanshan; Shi, Xiaoxia; Deng, Guoying; Chen, Lina; Xin, Yi; Ma, Yufang

    2017-04-01

    Mycobacterium tuberculosis can interfere with host immune response and escape clearance through its specific antigens. M. tuberculosis Rv1987 encoded by region of difference (RD)-2 gene is a secretory protein with immunogenic potency. Here, we investigated the impact of Rv1987 on host cytokine responses and T cell polarization in mouse aerosol model. A recombinant M. smegmatis mc 2 155 strain that overexpressed Rv1987 protein (named MS1987) was constructed and used to infect C57BL/6 mice. The mc 2 155 harbored the empty vector (named MSVec) was as a control. The results showed that MS1987 challenged mice promoted Th2-biased cytokine responses with lower secretion of IFN-γ but higher production of IL-4 and Rv1987-specific IgG antibody compared to MSVec infected mice. Neutrophilic inflammation and high bacterial burden were observed in the lung tissues of MS1987 infected mice probably own to the failed Th1 cell immunity. Besides, subcutaneous injection of Rv1987 protein could mediate the Th1 cytokine responses caused by M. bovis BCG in mice. These results indicated that M. tuberculosis Rv1987 protein could modulate host immune response towards Th2 profile, which probably contributed to the immune evasion of bacteria from host elimination. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

    PubMed Central

    Delano, Matthew J.; Scumpia, Philip O.; Weinstein, Jason S.; Coco, Dominique; Nagaraj, Srinivas; Kelly-Scumpia, Kindra M.; O'Malley, Kerri A.; Wynn, James L.; Antonenko, Svetlana; Al-Quran, Samer Z.; Swan, Ryan; Chung, Chun-Shiang; Atkinson, Mark A.; Ramphal, Reuben; Gabrilovich, Dmitry I.; Reeves, Wesley H.; Ayala, Alfred; Phillips, Joseph; LaFace, Drake; Heyworth, Paul G.; Clare-Salzler, Michael; Moldawer, Lyle L.

    2007-01-01

    Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization. PMID:17548519

  11. Intrinsic atopic dermatitis (AD) shows similar Th2 and higher Th17 immune activation compared to extrinsic AD

    PubMed Central

    Suárez-Fariñas, M; Dhingra, N; Gittler, J; Shemer, A; Cardinale, I; de Guzman Strong, C; Krueger, JG; Guttman-Yassky, E

    2013-01-01

    Background Atopic dermatitis (AD) is classified as extrinsic (ADe) and intrinsic (ADi), representing approximately 80% and 20% of patients, respectively. While sharing a similar clinical phenotype, only ADe is characterized by high serum IgE. Since most AD patients exhibit high IgE, an “allergic”/IgE-mediated disease pathogenesis was hypothesized. However, current models associate AD with T-cell activation, particularly Th2/Th22 polarization, and epidermal barrier defects. Objective To define if both variants share a common pathogenesis. Methods We stratified 51 severe AD patients as ADe (42) and ADi (9) (with similar mean disease activity/SCORAD), and analyzed the molecular and cellular skin pathology of lesional and non-lesional ADi and ADe using gene-expression (RT-PCR) and immunohistochemistry. Results A significant correlation between IgE levels and SCORAD (r=0.76, p<10−5) was found only in ADe. Marked infiltrates of T-cells and dendritic cells and corresponding epidermal alterations (K16, Mki67, S100A7/A8/A9) defined lesional skin of both variants. However, higher activation of all inflammatory axes (including Th2) was detected in ADi, particularly Th17 and Th22-cytokines. Positive correlations between Th17-related molecules and SCORAD were only found in ADi, while only ADe showed positive correlations between SCORAD and Th2-cytokines (IL-4, IL-5), and negative correlations with differentiation products (loricrin, periplakin). Conclusions Although differences in Th17 and Th22 activation exist between ADi and ADe, we identified common disease-defining features of T-cell activation, production of polarized cytokines, and keratinocyte responses to immune products. Our data indicate that a Th2 bias is not the sole cause of high IgE in ADe, with important implications for similar therapeutic interventions. Clinical Implications Both extrinsic and intrinsic AD variants might be treated with T-cell targeted therapeutics or agents that modify keratinocyte responses. PMID:23777851

  12. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    PubMed

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  13. Predominance of TH1 response in tumor-bearing mice and cancer patients treated with AS101.

    PubMed

    Sredni, B; Tichler, T; Shani, A; Catane, R; Kaufman, B; Strassmann, G; Albeck, M; Kalechman, Y

    1996-09-18

    Several studies have recently suggested that the immune response to malignant growths is regulated by distinct patterns of type 2 cytokine production. These cytokines, regulating the cytotoxic T-lymphocyte response in patients with advanced cancers, may be associated with disease progression. Evidence suggests that the T Helper 1 (TH1) and T Helper 2 (TH2) types of reaction are reciprocally regulated in vivo. The immunomodulator AS101 (ammonium trichloro[dioxoethylene-O,O']tellurate) was found to stimulate mouse and human cells to proliferate and secrete a variety of cytokines. Clinical trials using AS101 on cancer patients are now in progress. The aim of this study was to evaluate the ability of AS101 to modulate TH1 and TH2 responses in tumor-bearing mice and in patients with advanced cancer. In addition, we investigated the association between the predominance of each type of response with the antitumoral effects of AS101. Mice into which Lewis lung carcinoma (3LL) had been transplanted (n = 221) and cancer patients (n = 13) were treated with AS101 on alternate days, at 10 micrograms/mouse intraperitoneally, or for the patients, at 3 mg/m2 intravenously. The types were sarcoma, melanoma, and colon, lung, ovarian, and renal cancers. Cytokine levels were determined by immunoassay kits and compared with the paired Student's t test: in mice, they were tested in spleen cell supernatants; in humans, in sera and mononuclear cell supernatants. The chi-squared test was used to compare tumor volumes. All P values represent two-sided tests of statistical significance. Our results show that treatment of mice and patients with AS101 results in a clear predominance in TH1 responses, with a concomitant decrease in the TH2-type response. This was reflected by a significant enhancement in interleukin 2 (IL-2) and interferon gamma (IFN gamma) levels (P < .01) paralleled by a substantial decrease in IL-4 and IL-10 (P < .01). Moreover, the concentration of IL-12 was significantly increased (P < .01) in AS101-treated patients who also showed enhanced levels of natural and lymphokine-activated killer cell-mediated cytotoxicity. The statistically significant increases in IL-2 and IFN gamma levels, paralleled by the pronounced decrease in IL-4 and IL-10 in the AS101-treated mice, were associated with its antitumoral effects. In addition, systemic cotreatment of 3LL-transplanted mice with AS101 and anti-IL-12 antibodies partly abrogated the antitumoral effect of AS101. Immunotherapy with AS101 enhances TH1 function while interfering with the TH2 response. This TH1 trend may be related to the antitumor effects of AS101. Isolation and characterization of a distinct cytokine pattern in patients with advanced cancer treated with AS101 may contribute to the development of intervention strategies using this compound.

  14. PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model.

    PubMed

    Li, Pan; Asokanathan, Catpagavalli; Liu, Fang; Khaing, Kyi Kyi; Kmiec, Dorota; Wei, Xiaoqing; Song, Bing; Xing, Dorothy; Kong, Deling

    2016-11-20

    Poly(lactic-co-glycolic acid) (PLGA) based nano/micro particles were investigated as a potential vaccine platform for pertussis antigen. Presentation of pertussis toxoid as nano/micro particles (NP/MP) gave similar antigen-specific IgG responses in mice compared to soluble antigen. Notably, in cell line based assays, it was found that PLGA based nano/micro particles enhanced the phagocytosis of fluorescent antigen-nano/micro particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen. More importantly, when mice were immunised with the antigen-nano/micro particles they significantly increased antigen-specific Th1 cytokines INF-γ and IL-17 secretion in splenocytes after in vitro re-stimulation with heat killed Bordetalla pertussis, indicating the induction of a Th1/Th17 response. Also, presentation of pertussis antigen in a NP/MP formulation is able to provide protection against respiratory infection in a murine model. Thus, the NP/MP formulation may provide an alternative to conventional acellular vaccines to achieve a more balanced Th1/Th2 immune response. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Virus Infection Stages and Distinct Th1 or Th17/Th22 T-Cell Responses in Malaria/SHIV Coinfection Correlate with Different Outcomes of Disease

    PubMed Central

    Ryan-Payseur, Bridgett; Ali, Zahida; Huang, Dan; Chen, Crystal Y.; Yan, Lin; Wang, Richard C.; Collins, William E.; Wang, Yunqi

    2011-01-01

    Background. Malaria and AIDS represent 2 leading causes of death from infectious diseases worldwide, and their high geographic overlap means coinfection is prevalent. It remains unknown whether distinct immune responses during coinfection with malaria and human immunodeficiency virus (HIV) affect clinical outcomes. Methods. We tested this hypothesis by employing macaque models of coinfection with malaria and simian-human immunodeficiency virus (SHIV). Results. Plasmodium fragile malaria coinfection of acutely SHIV-infected macaques induced hyperimmune activation and remarkable expansion of CD4+ and CD8+ T effector cells de novo producing interferon γ or tumor necrosis factor α. Malaria-driven cellular hyperactivation/expansion and high-level Th1-cytokines enhanced SHIV disease characterized by increasing CD4+ T-cell depletion, profound lymphoid depletion or destruction, and even necrosis in lymph nodes and spleens. Importantly, malaria/SHIV-mediated depletion, destruction, and necrosis in lymphoid tissues led to bursting parasite replication and fatal virus-associated malaria. Surprisingly, chronically SHIV-infected macaques without AIDS employed different defense mechanisms during malaria coinfection, and mounted unique ∼200-fold expansion of interleukin 17+/interleukin 22+ T effectors with profound Th1 suppression. Such remarkable expansion of Th17/Th22 cells and inhibition of Th1 response coincided with development of immunity against fatal virus-associated malaria without accelerating SHIV disease. Conclusions. These novel findings suggest that virus infection status and selected Th1 or Th17/Th22 responses after malaria/AIDS-virus coinfection correlate with distinct outcomes of virus infection and malaria. PMID:21921207

  16. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity

    USDA-ARS?s Scientific Manuscript database

    Th2 immunity is essential for the host protection against nematode infection, while detrimental in allergic inflammation or asthma. Although many of the details regarding the cellular and molecular events in Th2 immunity have been described, the specific cell types and effector molecules involved i...

  17. Developmental control of integrin expression regulates Th2 effector homing

    USDA-ARS?s Scientific Manuscript database

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  18. Differential effects of HIV transmission from monocyte-derived dendritic cells vs. monocytes to IL-17+CD4+ T cells

    PubMed Central

    Mitsuki, Yu-ya; Tuen, Michael; Hioe, Catarina E.

    2017-01-01

    HIV infection leads to CD4 helper T cell (Th) loss, but not all Th cells are equally depleted. The contribution of other immune cells in the Th depletion also remains unclear. This study investigates HIV transmission from monocyte-derived dendritic cells (MDDCs) vs. monocytes to Th17 and Th1 cells using an allogeneic coculture model. The addition of HIV to MDDCs increased the expression of the negative regulatory molecule PD-L1 and decreased the expression of the activation markers HLA-DR and CD86, whereas the virus up-regulated HLA-DR and CD86, but not PD-L1, on monocytes. Coculturing of CD4+ T cells with MDDCs pretreated with HIV led to the decline of Th17, but not Th1, responses. In contrast, pretreatment of monocytes with HIV increased Th17 without affecting Th1 responses. The enhanced Th17 responses in the cocultures with HIV-treated monocytes were also accompanied by high numbers of virus-infected CD4+ T cells. The Th17 expansion arose from memory CD4+ T cells with minimal contribution from naïve CD4+ T cells. The Th17-enhancing activity was mediated by the HIV envelope and did not require productive virus infection. Comparison of MDDCs and monocytes further showed that, although HIV-treated MDDCs reduced Th proliferation and increased the activation of the apoptosis mediator caspase-3, HIV-treated monocytes enhanced Th proliferation without increasing the active caspase-3 levels. This study indicates the potential role of distinct myeloid cell populations in shaping Th17 responses during HIV infection. PMID:27531931

  19. Diverse T-cell responses characterize the different manifestations of cutaneous graft-versus-host disease.

    PubMed

    Brüggen, Marie-Charlotte; Klein, Irene; Greinix, Hildegard; Bauer, Wolfgang; Kuzmina, Zoya; Rabitsch, Werner; Kalhs, Peter; Petzelbauer, Peter; Knobler, Robert; Stingl, Georg; Stary, Georg

    2014-01-09

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HCT) and can present in an acute (aGVHD), a chronic lichenoid (clGVHD), and a chronic sclerotic form (csGVHD). It is unclear whether similar or different pathomechanisms lead to these distinct clinical presentations. To address this issue, we collected lesional skin biopsies from aGVHD (n = 25), clGVHD (n = 17), and csGVHD (n = 7) patients as well as serial nonlesional biopsies from HCT recipients (prior to or post-HCT) (n = 14) and subjected them to phenotypic and functional analyses. Our results revealed striking differences between aGVHD and clGVHD. In aGVHD, we found a clear predominance of T helper (Th)2 cytokines/chemokines and, surprisingly, of interleukin (IL)-22 messenger RNA as well as an increase of IL-22-producing CD4(+) T cells. Thymic stromal lymphopoietin, a cytokine skewing the immune response toward a Th2 direction, was elevated at day 20 to 30 post-HCT in the skin of patients who later developed aGVHD. In sharp contrast to aGVHD, the immune response occurring in clGVHD showed a mixed Th1/Th17 signature with upregulated Th1/Th17 cytokine/chemokine transcripts and elevated numbers of interferon-γ- and IL-17-producing CD8(+) T cells. Our findings shed new light on the T-cell responses involved in the different manifestations of cutaneous GVHD and identify molecular signatures indicating the development of the disease.

  20. Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function.

    PubMed

    Layman, Awo A K; Oliver, Paula M

    2016-05-15

    The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Review series on helminths, immune modulation and the hygiene hypothesis: Immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies?

    PubMed Central

    Jackson, Joseph A; Friberg, Ida M; Little, Susan; Bradley, Janette E

    2009-01-01

    Although the molecules and cells involved in triggering immune responses against parasitic worms (helminths) remain enigmatic, research has continued to implicate expansions of T-helper type 2 (Th2) cells and regulatory T-helper (Treg) cells as a characteristic response to these organisms. An intimate association has also emerged between Th2 responses and wound-healing functions. As helminth infections in humans are associated with a strong Th2/Treg immunoregulatory footprint (often termed a ‘modified Th2’ response), plausible links have been made to increased susceptibility to microbial pathogens in helminth-infected populations in the tropics and to the breakdowns in immunological control (allergy and autoimmunity) that are increasing in frequency in helminth-free developed countries. Removal of helminths and their anti-inflammatory influence may also have hazards for populations exposed to infectious agents, such as malaria and influenza, whose worst effects are mediated by excessive inflammatory reactions. The patterns seen in the control of helminth immunity are discussed from an evolutionary perspective. Whilst an inability to correctly regulate the immune system in the absence of helminth infection might seem highly counter-adaptive, the very ancient and pervasive relationship between vertebrates and helminths supports a view that immunological control networks have been selected to function within the context of a modified Th2 environment. The absence of immunoregulatory stimuli from helminths may therefore uncover maladaptations that were not previously exposed to selection. PMID:19120495

  2. Dendritic Cells, New Tools for Vaccination

    DTIC Science & Technology

    2003-01-01

    stimulating a protective Th1 response, but secreting the Th2 cytokine IL-4 in response to hyphae , which was not protec- tive. However, suppression of IL...4 production by hyphae - pulsed DCs allowed for a protective response to occur. The success of this approach is based on two factors. (i) Pathogens can

  3. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    PubMed

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo.

    PubMed

    Hsiao, Yai-Ping; Shen, Chien-Chang; Huang, Chung-Hsiung; Lin, Yu-Chin; Jan, Tong-Rong

    2018-05-01

    Iron oxide nanoparticles (IONPs) have been shown to attenuate T helper (Th)1 and Th2 cell-mediated immunity in ovalbumin (OVA)-sensitized mice. The objective of this study is to investigate the effects of IONPs on the immune responses of Th17 cells, a subset of T cells involved in various inflammatory pathologies. For in vivo study, a murine model of delayed-type hypersensitivity (DTH) was employed. BALB/c mice received a single dose of IONPs (0.2-10 mg iron/kg) via the tail vein 1 h prior to ovalbumin (OVA) sensitization. Their footpads were subcutaneously challenged with OVA to induce DTH reactions. The expression of Th17 cell-related molecules in inflamed footpads were examined by immunohistochemistry. For in vitro study, OVA-primed splenocytes were directly exposed to IONPs (1-100 μg iron/mL), and then re-stimulated with OVA in culture. The expression of Th17 cell-related molecules were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. IONP administration attenuated the number of interleukin (IL)-6, IL-17, the transcription factor ROR-γ, and chemokine receptor 6 positive cells in OVA-challenged footpads, whereas the number of transforming growth factor-β, IL-23 and chemokine (C-C motif) ligand 20 positive cells was not altered. Direct exposure of OVA-primed splenocytes to IONPs suppressed the production of IL-6 and IL-17, and the mRNA expression of IL-17 and ROR-γt. These data indicate that exposure to IONPs attenuates Th17 cell responses in vivo and in vitro. Copyright © 2018. Published by Elsevier B.V.

  5. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica

    PubMed Central

    Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan

    2016-01-01

    Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733

  6. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Fuchs, S; Souroujon, M C

    2001-06-01

    Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent Ab-mediated autoimmune disorders, in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1-type cells and costimulatory factors such as CD40 ligand (CD40L) contribute to disease pathogenesis by producing proinflammatory cytokines and by activating autoreactive B cells. In this study we demonstrate the capacity of CD40L blockade to modulate EAMG, and analyze the mechanism underlying this disease suppression. Anti-CD40L Abs given to rats at the chronic stage of EAMG suppress the clinical progression of the autoimmune process and lead to a decrease in the AChR-specific humoral response and delayed-type hypersensitivity. The cytokine profile of treated rats suggests that the underlying mechanism involves down-regulation of AChR-specific Th1-regulated responses with no significant effect on Th2- and Th3-regulated AChR-specific responses. EAMG suppression is also accompanied by a significant up-regulation of CTLA-4, whereas a series of costimulatory factors remain unchanged. Adoptive transfer of splenocytes from anti-CD40L-treated rats does not protect recipient rats against subsequently induced EAMG. Thus it seems that the suppressed progression of chronic EAMG by anti-CD40L treatment does not induce a switch from Th1 to Th2/Th3 regulation of the AChR-specific immune response and does not induce generation of regulatory cells. The ability of anti-CD40L treatment to suppress ongoing chronic EAMG suggests that blockade of CD40L may serve as a potential approach for the immunotherapy of MG and other Ab-mediated autoimmune diseases.

  7. Upregulation of bacterial-specific Th1 and Th17 responses that are enriched in CXCR5+CD4+ T cells in non-small cell lung cancer.

    PubMed

    Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng

    2017-11-01

    The microbial community in the mucosal surfaces is involved in the development of human cancers, including gastric cancer and colorectal cancer. The respiratory tract in the lung also hosts a distinctive microbial community, but the correlation between this community and lung cancer is largely unknown. Here, we examined the Th1 and Th17 responses toward several bacterial antigens, in CD4 + T cells sourced from the peripheral blood (PB), the lung cancer (LC) tissue, and the gastrointestinal (GI) tract of non-small cell lung cancer (NSCLC) patients. Compared to healthy controls, the NSCLC patients presented significantly higher frequencies of Th1 and Th17 cells reacting to Streptococcus salivarius and S. agalactiae, in the PB, LC, and GI tract. Further investigation showed that the upregulation in anti-bacteria response was likely antigen-specific for two reasons. Firstly, the frequencies of Th1 and Th17 cells reacting to Escherichia coli, a typical GI bacterium, were not upregulated in the PB and the LC of NSCLC patients. Secondly, the S. salivarius and S. agalactiae responses could be partially blocked by Tü39, a MHC class II blocking antibody, suggesting that antigen-specific interaction between CD4 + T cells and antigen-presenting cells was required. We also found that S. salivarius and S. agalactiae could potently activate the monocytes to secrete higher levels of interleukin (IL)-6, IL-12, and tumor necrosis factor, which were Th1- and Th17-skewing cytokines. Interestingly, whereas CXCR5 + CD4 + T cells represented <20% of total CD4 + T cells, they represented 17%-82% of bacteria-specific Th1 or Th17 cells. Together, these data demonstrated that NSCLC patients presented a significant upregulation of bacterial-specific Th1 and Th17 responses that were enriched in CXCR5 + CD4 + T cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Differential Effects of Naja naja atra Venom on Immune Activity

    PubMed Central

    Kou, Jian-Qun; Han, Rong; Xu, Yin-Li; Ding, Xiao-Lan; Wang, Shu-Zhi; Chen, Cao-Xin; Ji, Hong-Zhang; Ding, Zhi-Hui; Qin, Zheng-Hong

    2014-01-01

    Previous studies reported that Naja naja atra venom (NNAV) inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4) secretion and inhibition of Th17 cytokine (IL-17) production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases. PMID:25024726

  9. Animal models of allergen-induced tolerance in asthma: are T-regulatory-1 cells (Tr-1) the solution for T-helper-2 cells (Th-2) in asthma?

    PubMed

    Tournoy, K G; Hove, C; Grooten, J; Moerloose, K; Brusselle, G G; Joos, G F

    2006-01-01

    Non-specific anti-inflammatory medication is actually the treatment of choice for controlling the T-helper type 2 (Th-2) cell-driven airway inflammation in asthma. The induction of counterbalancing Th-1 cell clones, long considered a promising approach for immunotherapy, has failed to fulfil its promise because of potentially detrimental side-effects. This is therefore probably not a valid option for the treatment of asthma. With the increasing awareness that active immune mechanisms exist to control inflammatory responses, interest rises to investigate whether these can be exploited to control allergen-induced airway disease. The induction of antigen-specific T cells with suppressive characteristics (regulatory T cells) is therefore a potentially interesting approach. These regulatory T cells mediate tolerance in healthy, non-atopic individuals and have the potential of becoming an effective means of preventing allergen-induced airway inflammation and possibly of suppressing ongoing allergic immune responses. Here we review the available knowledge about allergen-induced suppressive immunity obtained from animal models taking into account the different developmental stages of allergic airway disease.

  10. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress.

    PubMed

    Kwak-Kim, Joanne; Bao, Shihua; Lee, Sung Ki; Kim, Joon Woo; Gilman-Sachs, Alice

    2014-08-01

    Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. T cell epitope immunotherapy ameliorates allergic responses in a murine model of shrimp allergy.

    PubMed

    Wai, C Y Y; Leung, N Y H; Leung, P S C; Chu, K H

    2016-03-01

    Shellfish allergy is one of the most common food hypersensitivities worldwide but allergen-specific immunotherapy for shellfish allergy is not yet available. We believe that T cell peptide-based immunotherapy holds the potential for modulating allergic responses without IgE cross-linking. We sought to identify the immunodominant T cell epitopes of tropomyosin, the major shrimp allergen of Metapenaeus ensis (Met e 1), and to evaluate their therapeutic effects in a Balb/c mouse model of Met e 1 hypersensitivity. T cell epitopes of Met e 1 were first identified based on the proliferation and cytokine responses of splenocytes isolated from Met e 1-sensitized Balb/c mice upon stimulation by 18 synthetic peptides that span the full-length Met e 1. The immunodominant T cell peptides identified were then fed orally to Met e 1-sensitized Balb/c mice twice a week for four weeks. Allergic responses, serological antibody levels, intestinal histology and systemic and local cytokine profiles were compared between the treated and the untreated groups. Six major Met e 1 T cell epitopes were identified. Mice treated with the T cell epitope peptide mixture demonstrated an amelioration of systemic allergic symptoms and a significant reduction in Th2-associated antibody and cytokine responses. These benefits were accompanied by a shift to a balanced Th1/Th2 response, induction of IgG2a antibodies possessing in vitro and in vivo blocking activities and the induction of regulatory T cell responses. T cell epitope-based oral immunotherapy is effective in reducing allergic responses towards shrimp tropomyosin. This is a novel strategy for clinical management of shellfish allergy and is a model for mechanistic studies of oral immunotherapy. © 2015 John Wiley & Sons Ltd.

  12. Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis.

    PubMed

    Kristensen, B; Hegedüs, L; Madsen, H O; Smith, T J; Nielsen, C H

    2015-04-01

    T helper type 17 (Th17) cells play a pathogenic role in autoimmune disease, while interleukin (IL)-10-producing Th10 cells serve a protective role. The balance between the two subsets is regulated by the local cytokine milieu and by the relative expression of intact forkhead box protein 3 (FoxP3) compared to FoxP3Δ2, missing exon 2. Th17 and Th10 cell differentiation has usually been studied using polyclonal stimuli, and little is known about the ability of physiologically relevant self-antigens to induce Th17 or Th10 cell differentiation in autoimmune thyroid disease. We subjected mononuclear cells from healthy donors and patients with Hashimoto's thyroiditis (HT) or Graves' disease (GD) to polyclonal stimulation, or stimulation with human thyroglobulin (TG), human thyroid peroxidase (TPO), or Esherichia coli lipopolysaccharide (LPS). TPO and LPS induced increased differentiation of naive CD4(+) CD45RA(+) CD45R0(-) T cells from HT patients into Th17 cells. Th10 cell proportions were decreased in HT after polyclonal stimulation, but were comparable to those of healthy donors after antigen-specific stimulation. Taken together, our data show that an increased Th17 : Th10 ratio was found in HT patients after stimulation with thyroid-specific self-antigens. We also observed an elevated baseline production of IL-6 and transforming growth factor (TGF)-β1 and of mRNA encoding FoxP3Δ2 rather than intact FoxP3. This may contribute to the skewing towards Th17 cell responses in HT. © 2014 British Society for Immunology.

  13. M2 macrophages and inflammatory cells in oral lesions of chronic paracoccidioidomycosis.

    PubMed

    de Carli, Marina Lara; Miyazawa, Marta; Nonogaki, Suely; Shirata, Neuza Kasumi; Oliveira, Denise Tostes; Pereira, Alessandro Antônio Costa; Hanemann, João Adolfo Costa

    2016-02-01

    Paracoccidioidomycosis (PCM) is a systemic fungal infection caused by Paracoccidioides brasiliensis (Pb) and associated with deficient cellular immune response, which is modulated by inflammatory cells, mainly macrophages, and cytokines. Recently, the comprehension of the macrophage polarization mediated by Th1 and Th2 cytokines has contributed to elucidate the immune response that takes part in some diseases. Thus, the aim of this study was to assess the presence of Th1- and Th2-immune response and also Pb counting in oral lesions of chronic PCM. Forty-eight cases of chronic PCM oral lesions were included. All cases were classified as loose or dense granulomas. S100 protein, IL-1β, IL-6, TNF-α, CD163 and CD68 immunoexpressions, and Pb localization were evaluated. The fungi present in the tissue were quantified by anti-Pb antibody. Most patients were white men with mean age of 47 years old and showed higher incidence of multiple lesions. Loose granulomas were predominant and exhibited a great amount of M2 macrophages, which were visualized with anti-CD163 antibody. The expression for CD163 and CD68 was similar (P = 0.05), highlighting the predominance of M2 macrophages in PCM. IL-1β, IL-6, and TNF-α immunoexpression did not significantly change with CD163, CD68, and S100 protein. The number of fungi was significantly higher in cases with intense IL-1β immunoexpression (P = 0.003). M2-activated macrophages were the majority among inflammatory cells in chronic PCM, characterizing the action of a Th2-immune response. Nevertheless, Th1 cytokines were also found; mainly IL-1β, which was associated with fungi counting in oral lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    PubMed

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The role of Th1 and Th17 cells in glomerulonephritis.

    PubMed

    Azadegan-Dehkordi, Fatemeh; Bagheri, Nader; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud

    2015-04-01

    T helper (Th) cells as an important part of the immune is responsible for elimination of invading pathogens. But, if Th cell responses are not regulated effectively, the autoimmune diseases might develop. The Th17 subset usually produces interleukin-17A which in experimental models of organ-specific autoimmune inflammation is very important. Directory of open access journals (DOAJ), Google Scholar, Embase, Scopus, PubMed and Web of Science have been searched. Fifty-six articles were found and searched. In the present review article, we tried to summarize the recently published data about characteristics and role of Th1 and Th17 cells and discuss in detail, the potential role of these T helpers immune responses in renal inflammation and renal injury, focusing on glomerulonephritis. Published papers in animal and human studies indicated that autoimmune diseases such as rheumatoid arthritis and multiple sclerosis, classically believed to be Th1-mediated, are mainly derived from a Th17 immune response. Identification of the Th17 subgroup has explained seemingly paradoxical observations and improved our understanding of immune-mediated inflammatory responses. Secretion of IL-17A, as well as IL-17F, IL-21, IL-22, suggests that Th17 subset may play a crucial role as a pleiotropic pro-inflammatory Th subset. There is experimental evidence to support the notion that Th1 and Th17 cells contribute to kidney injury in renal inflammatory diseases like glomerulonephritis.

  16. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    PubMed Central

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  17. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice

    PubMed Central

    Kozy, Heather M.; Lum, Jeremy A.; Sweetwood, Rosemary; Chu, Mabel; Cunningham, Cameron R.; Salamon, Hugh; Lloyd, Clare M.; Coffman, Robert L.; Hessel, Edith M.

    2015-01-01

    Background CpG-containing oligodeoxynucleotides (CpG-ODN) are potent inhibitors of Th2-mediated allergic airway disease in sensitized mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. Objective To optimize the treatment regimen and determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. Methods A limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were given to ragweed allergen-sensitized mice chronically exposed to allergen during and after the 1018 ISS treatment regimen. Treatment effects were evaluated by measuring effect on lung Th2 cytokines and eosinophilia as well as lung dendritic cell function and T cell responses. Results Twelve intranasal 1018 ISS treatments induced significant suppression of BAL eosinophilia and IL-4, IL-5, and IL-13 levels and suppression was maintained through 13 weekly ragweed exposures administered after treatment cessation. At least 5 treatments were required for lasting Th2 suppression. CpG-ODN induced moderate Th1 responses but Th2 suppression did not require IFN-γ. Th2 suppression was associated with induction of a regulatory T cell response. Conclusion A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen. PMID:24464743

  18. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation.

    PubMed

    Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y; Wang, Hongshan; Siebenlist, Ulrich

    2009-02-01

    IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production, and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (also known as Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses that these two cytokines elicit. We identify CD11c(+) macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo.

  19. The Aryl Hydrocarbon Receptor: Differential Contribution to T Helper 17 and T Cytotoxic 17 Cell Development

    PubMed Central

    Hayes, Mark D.; Ovcinnikovs, Vitalijs; Smith, Andrew G.; Kimber, Ian; Dearman, Rebecca J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8+) and Th (CD4+) cells were isolated by negative selection from naive AhR+/− and AhR−/− mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR+/− mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR−/− mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses. PMID:25203682

  20. Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice.

    PubMed

    Im, Young Bin; Park, Woo Bin; Jung, Myunghwan; Kim, Suk; Yoo, Han Sang

    2016-06-28

    Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.

  1. Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma.

    PubMed

    Ehrentraut, Stefan; Schneider, Björn; Nagel, Stefan; Pommerenke, Claudia; Quentmeier, Hilmar; Geffers, Robert; Feist, Maren; Kaufmann, Maren; Meyer, Corinna; Kadin, Marshall E; Drexler, Hans G; MacLeod, Roderick A F

    2016-06-07

    We propose that deregulated T-helper-cell (Th) signaling underlies evolving Th17 cytokine expression seen during progression of cutaneous T-cell lymphoma (CTCL). Accordingly, we developed a lymphoma progression model comprising cell lines established at indolent (MAC-1) and aggressive (MAC-2A) CTCL stages. We discovered activating JAK3 (V722I) mutations present at indolent disease, reinforced in aggressive disease by novel compound heterozygous SOCS1 (G78R/D105N) JAK-binding domain inactivating mutations. Though isogenic, indolent and aggressive-stage cell lines had diverged phenotypically, the latter expressing multiple Th17 related cytokines, the former a narrower profile. Importantly, indolent stage cells remained poised for Th17 cytokine expression, readily inducible by treatment with IL-2 - a cytokine which mitigates Th17 differentiation in mice. In indolent stage cells JAK3 expression was boosted by IL-2 treatment. Th17 conversion of MAC-1 cells by IL-2 was blocked by pharmacological inhibition of JAK3 or STAT5, implicating IL2RG - JAK3 - STAT5 signaling in plasticity responses. Like IL-2 treatment, SOCS1 knockdown drove indolent stage cells to mimic key aggressive stage properties, notably IL17F upregulation. Co-immunoprecipitation experiments showed that SOCS1 mutations abolished JAK3 binding, revealing a key role for SOCS1 in regulating JAK3/STAT5 signaling. Collectively, our results show how JAK/STAT pathway mutations contribute to disease progression in CTCL cells by potentiating inflammatory cytokine signaling, widening the potential therapeutic target range for this intractable entity. MAC-1/2A cells also provide a candidate human Th17 laboratory model for identifying potentally actionable CTCL markers or targets and testing their druggability in vitro.

  2. A novel antagonist of the prostaglandin E(2) EP(4) receptor inhibits Th1 differentiation and Th17 expansion and is orally active in arthritis models.

    PubMed

    Chen, Q; Muramoto, K; Masaaki, N; Ding, Y; Yang, H; Mackey, M; Li, W; Inoue, Y; Ackermann, K; Shirota, H; Matsumoto, I; Spyvee, M; Schiller, S; Sumida, T; Gusovsky, F; Lamphier, M

    2010-05-01

    Rheumatoid arthritis (RA) is an autoimmune disorder involving subsets of activated T cells, in particular T helper (Th) 1 and Th17 cells, which infiltrate and damage tissues and induce inflammation. Prostaglandin E(2) (PGE(2)) enhances the Th17 response, exacerbates collagen-induced arthritis (CIA) and promotes inflammatory pain. The current study investigated whether selective antagonism of the PGE(2) EP(4) receptor would suppress Th1/Th17 cell development and inflammatory arthritis in animal models of RA. Effects of PGE(2) and a novel EP(4) receptor antagonist ER-819762 on Th1 differentiation, interleukin-23 (IL-23) production by dendritic cells (DCs), and Th17 development were assessed in vitro. The effect of ER-819762 was evaluated in CIA and glucose-6-phosphate isomerase (GPI)-induced arthritis models. In addition, the effects of ER-819762 on pain were evaluated in a model of chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in the rat. Stimulation of the EP(4) receptor enhanced Th1 differentiation via phosphatidylinositol 3 kinase signalling, selectively promoted Th17 cell expansion, and induced IL-23 secretion by activated DCs, effects suppressed by ER-819762 or anti-PGE(2) antibody. Oral administration of ER-19762 suppressed Th1 and Th17 cytokine production, suppressed disease in collagen- and GPI-induced arthritis in mice, and suppressed CFA-induced inflammatory pain in rats. PGE(2) stimulates EP(4) receptors to promote Th1 differentiation and Th17 expansion and is critically involved in development of arthritis in two animal models. Selective suppression of EP(4) receptor signalling may have therapeutic value in RA both by modifying inflammatory arthritis and by relieving pain.

  3. Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage

    PubMed Central

    Quispe Calla, Nirk E.; Pavelko, Stephen D.; Cherpes, Thomas L.

    2016-01-01

    While ascension of Chlamydia trachomatis into the upper genital tract of women can cause pelvic inflammatory disease and Fallopian tube damage, most infections elicit no symptoms or overt upper genital tract pathology. Consistent with this asymptomatic clinical presentation, genital C. trachomatis infection of women generates robust TH2 immunity. As an animal model that modeled this response would be invaluable for delineating bacterial pathogenesis and human host defenses, herein we explored if pathogen-specific TH2 immunity is similarly elicited by intravaginal (ivag) infection of mice with oculogenital C. trachomatis serovars. Analogous to clinical infection, ascension of primary C. trachomatis infection into the mouse upper genital tract produced no obvious tissue damage. Clearance of ivag challenge infection was mediated by interferon (IFN)-γ-producing CD4+ T cells, while IFN-γ signaling blockade concomitant with a single ivag challenge promoted tissue damage by enhancing Chlamydia-specific TH17 immunity. Likewise, IFN-γ and IL-17 signaling blockade or CD4+ T cell depletion eliminated the genital pathology produced in untreated controls by multiple ivag challenge infections. Conversely, we were unable to detect formation of pathogen-specific TH2 immunity in C. trachomatis-infected mice. Together, our work revealed C. trachomatis infection of mice generates TH1 and TH17 immune responses that promote pathogen clearance and immunopathological tissue damage. Absence of Chlamydia-specific TH2 immunity in these mice newly highlights the need to identify experimental models of C. trachomatis genital infection that more closely recapitulate the human host response. PMID:27606424

  4. Definition of a pool of epitopes that recapitulates the T cell reactivity against major house dust mite allergens.

    PubMed

    Hinz, D; Oseroff, C; Pham, J; Sidney, J; Peters, B; Sette, A

    2015-10-01

    Allergens from house dust mites (HDM) are a common cause of asthma. Der p and Der f from Dermatophagoides sp. are strong immunogens in humans. Allergen extracts are used to study T helper (Th2) cell responses to HDM, which are implicated in the development and regulation of allergic disease. To define an epitope mixture that recapitulates, and might substitute for, HDM extract in terms of detecting and characterizing Th2 cell responses. Peripheral blood mononuclear cells (PBMC) from 52 HDM allergic and 10 non-allergic individuals were stimulated with HDM extracts and assayed with a set of 178 peptides spanning mite allergens group Der p 1, 2, 23 and Der f group 1 and 2 allergens. A pool of the most dominant T cell epitopes identified in the present study and from published literature was assembled and tested for ex vivo T cell responses. Correlation with HDM-specific IgE titres was examined. Patterns of T cell reactivity to Der p and Der f - derived peptides revealed a large number of epitopes. Clear patterns of immunodominance were apparent, with HDM allergen group 1 and 2 dominant over group 23. Furthermore, within a given antigen, 6-11 epitopes accounted for the vast majority of responses. Based on these results and published data, a comprehensive dust mite pool (DMP) of epitopes was designed and found to allow detection of ex vivo T cell responses. DMP ex vivo reactivity correlated with HDM-specific IgE titres and was similar to that detected with commonly used HDM extracts. Ex vivo DMP stimulation was associated with a predominant Th2 response in allergic donors, and minor reactivity of T cells producing IFNγ, IL17 and IL10. A detailed map of Der p and Der f antigens defined a pool of epitopes that can be used to detect ex vivo HDM responses. © 2015 John Wiley & Sons Ltd.

  5. Regulation of expression of the ligand for CD40 on T helper lymphocytes.

    PubMed

    Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R

    1993-08-15

    Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell-delivered contact signals to B cells and may contribute to the high degree of specificity in B cell responses.

  6. Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice

    PubMed Central

    Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J

    2010-01-01

    We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731

  7. The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent.

    PubMed

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N; Gieryńska, Małgorzata

    2017-01-01

    Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM-comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo .

  8. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    PubMed Central

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  9. Cognate interactions between helper T cells and B cells. IV. Requirements for the expression of effector phase activity by helper T cells.

    PubMed

    Bartlett, W C; McCann, J; Shepherd, D M; Roy, M; Noelle, R J

    1990-12-15

    After activation with anti-CD3, activated Th (THCD3), but not resting Th, fixed with paraformaldehyde induce B cell RNA synthesis when co-cultured with resting B cells. This activity is expressed by Th of both Th1 and Th2 subtypes, as well as a third Th clone that is not classified into either subtype. It is proposed that anti-CD3 activation of Th results in the expression of Th membrane proteins that trigger B cell cycle entry. Kinetic studies reveal that 4 to 8 h of activation with anti-CD3 is sufficient for ThCD3 to express B cell-activating function. However, activation of Th with anti-CD3 for extended periods of time results in reduced Th effector activity. Inhibition of Th RNA synthesis during the anti-CD3 activation period ablates the ability of ThCD3 to induce B cell cycle entry. This indicates that de novo synthesis of proteins is required for ThCD3 to express effector function. The ability of fixed ThCD3 to induce entry of B cell into cycle is not due to an increase in expression of CD3, CD4, LFA-1, ICAM-1, class I MHC or Thy-1. Other forms of Th activation (PMA and A23187, Con A) also induced Th effector function. Furthermore, purified plasma membranes from anti-CD3 activated, but not resting Th, induced resting B cells to enter cycle. The addition of IL-4, but not IL-2, IL-5, or IFN-gamma amplified the DNA synthetic response of B cells stimulated with PM from activated Th. Taken together these data indicate that de novo expression of Th surface proteins on activated Th is required for Th to induce B cell cycle entry into G1 and the addition of IL-4 is required for the heightened progression into S phase.

  10. Targeting allergen to FcgammaRI reveals a novel T(H)2 regulatory pathway linked to thymic stromal lymphopoietin receptor.

    PubMed

    Hulse, Kathryn E; Reefer, Amanda J; Engelhard, Victor H; Patrie, James T; Ziegler, Steven F; Chapman, Martin D; Woodfolk, Judith A

    2010-01-01

    The molecule H22-Fel d 1, which targets cat allergen to FcgammaRI on dendritic cells (DCs), has the potential to treat cat allergy because of its T-cell modulatory properties. We sought to investigate whether the T-cell response induced by H22-Fel d 1 is altered in the presence of the T(H)2-promoting cytokine thymic stromal lymphopoietin (TSLP). Studies were performed in subjects with cat allergy with and without atopic dermatitis. Monocyte-derived DCs were primed with H22-Fel d 1 in the presence or absence of TSLP, and the resulting T-cell cytokine repertoire was analyzed by flow cytometry. The capacity for H22-Fel d 1 to modulate TSLP receptor expression on DCs was examined by flow cytometry in the presence or absence of inhibitors of Fc receptor signaling molecules. Surprisingly, TSLP alone was a weak inducer of T(H)2 responses irrespective of atopic status; however, DCs coprimed with TSLP and H22-Fel d 1 selectively and synergistically amplified T(H)2 responses in highly atopic subjects. This effect was OX40 ligand independent, pointing to an unconventional TSLP-mediated pathway. Expression of TSLP receptor was upregulated on atopic DCs primed with H22-Fel d 1 through a pathway regulated by FcgammaRI-associated signaling components, including src-related tyrosine kinases and Syk, as well as the downstream molecule phosphoinositide 3-kinase. Inhibition of TSLP receptor upregulation triggered by H22-Fel d 1 blocked TSLP-mediated T(H)2 responses. Discovery of a novel T(H)2 regulatory pathway linking FcgammaRI signaling to TSLP receptor upregulation and consequent TSLP-mediated effects questions the validity of receptor-targeted allergen vaccines. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  11. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  12. TSLP-dependent basophils promote TH2 cytokine responses following intestinal helminth infection1

    PubMed Central

    Giacomin, Paul R.; Siracusa, Mark C.; Walsh, Kevin P.; Grencis, Richard K.; Kubo, Masato; Comeau, Michael R.; Artis, David

    2012-01-01

    CD4+ T helper type 2 (TH2) cytokine responses promote the development of allergic inflammation and are critical for immunity to parasitic helminth infection. Recent studies highlighted that basophils can promote TH2 cytokine-mediated inflammation and that phenotypic and functional heterogeneity exists between classical IL-3-elicited basophils versus TSLP-elicited basophils. However, whether distinct basophil populations develop following helminth infection, and their relative contributions to anti-helminth immune responses remain to be defined. Following Trichinella spiralis infection of mice, we show that basophil responses are rapidly induced in multiple tissue compartments, including intestinal-draining lymph nodes. Trichinella-induced basophil responses were IL-3-IL-3R-independent but critically dependent on TSLP-TSLPR interactions. Selective depletion of basophils following Trichinella infection impaired infection-induced CD4+ TH2 cytokine responses, suggesting that TSLP-dependent basophils augment TH2 cytokine responses following helminth infection. The identification and functional classification of TSLP-dependent basophils in a helminth infection model, coupled with their recently-described role in promoting atopic dermatitis, suggests these cells may be a critical population in promoting TH2 cytokine-associated inflammation in a variety of inflammatory or infectious settings. Collectively, these data suggest that the TSLP-basophil pathway may represent a new target in the design of therapeutic intervention strategies to promote or limit TH2 cytokine-dependent immunity and inflammation. PMID:23024277

  13. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells

    PubMed Central

    Fraccaroli, Laura; Alfieri, Julio; Larocca, Luciana; Calafat, Mario; Roca, Valeria; Lombardi, Eduardo; Ramhorst, Rosanna; Leirós, Claudia Pérez

    2009-01-01

    Background and purpose Successful embryo implantation is followed by a local pro-inflammatory and Th1 response, subsequently controlled by a Th2 response. Vasoactive intestinal peptide (VIP) has anti-inflammatory effects and promotes tolerogenic/Th2 responses while favouring embryonic development. We investigated the potential regulatory role of VIP on human trophoblast cells, maternal pro-inflammatory responses and trophoblast-maternal leukocyte interactions. Experimental approach We tested VIP effects directly on a trophoblast cell line (Swan 71 cells) and after co-culture with maternal peripheral blood mononuclear cells (PBMCs) as models of the feto-maternal dialogue. We also co-cultured maternal and paternal PBMCs to test effects of endogenous VIP on maternal alloresponses. Key results Swan 71 cells express VPAC1 receptors and VIP induced their proliferation and the expression of leukaemia inhibitor factor, a pro-implantatory marker. After interaction with trophoblast cells, VIP increased Foxp3, the proportion of CD4+CD25+Foxp3+ cells within maternal PBMCs and transforming growth factor β expression. Also, during the trophoblast-maternal PBMCs interaction, VIP reduced pro-inflammatory mediators [interleukin (IL)-6, monocyte chemoattractant protein 1, nitric oxide], while increasing IL-10. Trophoblast cells produced VIP which dose-dependently suppressed allomaternal responses, accompanied by reduced expression of the T cell transcription factor, T-bet. Conclusions and implications Vasoactive intestinal peptide induced pro-implantatory markers and trophoblast cell proliferation, while controlling the initial pro-inflammatory response, by increasing maternal regulatory T cells and anti-inflammatory cytokines. As an autocrine regulatory peptide VIP might contribute to fetal survival through two mechanisms; a direct trophic effect on trophoblast cells and an immunomodulatory effect that favours tolerance to fetal antigens. PMID:19133995

  14. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine.

    PubMed

    Fairley, Stacie J; Singh, Shree R; Yilma, Abebayehu N; Waffo, Alain B; Subbarayan, Praseetha; Dixit, Saurabh; Taha, Murtada A; Cambridge, Chino D; Dennis, Vida A

    2013-01-01

    We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide) potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice, which are desirable prerequisites for a C. trachomatis candidate nanovaccine. Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta potential (-14.30 mV), apparent spherical smooth morphology, and continuous slow release pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40 (Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized with rMOMP in Freund's adjuvant had only a four-fold higher Th1 than Th2 antibody titer, suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly desirable candidate nanovaccine against C. trachomatis.

  15. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB

    PubMed Central

    Jackson-Sillah, Dolly; Cliff, Jacqueline M.; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A.; Addo, Kwasi K.; Ottenhoff, Tom H. M.; Bothamley, Graham; Dockrell, Hazel M.

    2013-01-01

    Background Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)–specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Methods Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. Results The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4+FoxP3+CD25hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. Conclusions These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes. PMID:23826366

  16. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Th17 cells and IL-17 in protective immunity to vaginal candidiasis.

    PubMed

    Pietrella, Donatella; Rachini, Anna; Pines, Mark; Pandey, Neelam; Mosci, Paolo; Bistoni, Francesco; d'Enfert, Cristophe; Vecchiarelli, Anna

    2011-01-01

    Th17 cells play a major role in coordinating the host defence in oropharyngeal candidiasis. In this study we investigated the involvement of the Th17 response in an animal model of vulvovaginal candidiasis (VVC). To monitor the course of infection we exploited a new in vivo imaging technique. i) The progression of VVC leads to a strong influx of neutrophils in the vagina soon after the challenge which persisted despite the resolution of infection; ii) IL-17, produced by vaginal cells, particularly CD4 T cells, was detected in the vaginal wash during the infection, reaching a maximum 14 days after the challenge; iii) The amount and kinetics of IL-23 in vaginal fluids were comparable to those in vaginal cells; iv) The inhibition of Th17 differentiation led to significant inhibition of IL-17 production with consequent exacerbation of infection; v) An increased production of βdefensin 2 was manifested in cells of infected mice. This production was strongly reduced when Th17 differentiation was inhibited and was increased by rIL-17 treatment. These results imply that IL-17 and Th17, along with innate antimicrobial factors, have a role in the immune response to vaginal candidiasis.

  18. Immunomodulatory effects of HSV2 glycoprotein D in HSV1 infected mice: implications for immunotherapy of recurrent HSV infection.

    PubMed

    York, L J; Giorgio, D P; Mishkin, E M

    1995-12-01

    Immunological analyses in this laboratory and others have suggested that a nonrecurrent HSV seropositive immune status is more closely correlated with a type 1 T helper cell (Th1) response characterized by elevated levels of interferon-gamma and IL2 rather than high titers of virus-specific antibodies. Effective intervention with an immunotherapeutic vaccine may require modulation of the regulatory network of T helper cells such that there is selective restimulation and expansion of the Th1 response. We have established a murine model for assessing the immunomodulatory capacity of an HSV glycoprotein subunit vaccine in animals with pre-existing herpes immunity. Animals were infected with varying doses of HSV1 and then administered glycoprotein D (gD) vaccine adjuvanted with aluminum phosphate at 3-week intervals. Observed changes in serological and cellular responses indicated that administration of subunit vaccine adjuvanted with aluminum phosphate could shift a dominant Th1 response, induced by sensitization with live HSV, towards a Th2 profile of activity. These data suggest that use of aluminum based adjuvants will not selectively stimulate Th1-associated responses and alternative adjuvants may be required for effective use of subunit vaccine in an immunotherapeutic indication in humans.

  19. Unique Action of Interleukin-18 on T Cells and Other Immune Cells.

    PubMed

    Nakanishi, Kenji

    2018-01-01

    Interleukin (IL)-18 was originally discovered as a factor that enhances interferon (IFN)-γ production by anti-CD3-stimulated Th1 cells, particularly in association with IL-12. IL-12 is a cytokine that induces development of Th1 cells. IL-18 cannot induce Th1 cell development, but has the capacity to activate established Th1 cells to produce IFN-γ in the presence of IL-12. Thus, IL-18 is regarded as a proinflammatory cytokine that facilitates type 1 responses. However, in the absence of IL-12 but presence of IL-2, IL-18 stimulates natural killer cells, NKT cells, and even established Th1 cells to produce IL-3, IL-9, and IL-13. Thus, IL-18 also facilitates type 2 responses. This unique function of IL-18 contributes to infection-associated allergic diseases. Together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Thus, IL-18 also induces innate-type allergic inflammation. IL-18 belongs to the IL-1 family of cytokines, which share similar molecular structures, receptors structures, and signal transduction pathways. Nevertheless, IL-18 shows a unique function by binding to a specific receptor expressed on distinct types of cells. In this review article, I will focus on the unique features of IL-18 in lymphocytes, basophils, and mast cells, particularly in comparison with IL-33.

  20. Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours.

    PubMed

    Chen, Lindi; Esfandiari, Arman; Reaves, William; Vu, Annette; Hogarty, Michael D; Lunec, John; Tweddle, Deborah A

    2018-03-01

    Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.

  1. Synthesis of truncated analogues of the iNKT cell agonist, α-galactosyl ceramide (KRN7000), and their biological evaluation

    PubMed Central

    Veerapen, Natacha; Reddington, Faye; Salio, Mariolina; Cerundolo, Vincenzo; Besra, Gurdyal S.

    2011-01-01

    Stimulation of iNKT cells by α-galactosyl ceramide (α-GalCer), also known as KRN7000, and its truncated analogue OCH induces both Th1- and Th2-cytokines, with OCH inducing a Th2-cytokine bias. Skewing of the iNKT cells’ response towards either a Th1- or Th2-cytokine profile offers potential therapeutic benefits. The length of both the acyl and the sphingosine chains in α-galactosyl ceramides is known to influence the cytokine release profile. We have synthesized analogues of α-GalCer with truncated sphingosine chains for biological evaluation, with particular emphasis on the Th1/Th2 distribution. Starting from a common precursor, d-lyxose, the sphingosine derivatives were synthesised via a straightforward Wittig condensation. PMID:21145749

  2. Decreased Vδ2 γδ T cells associated with liver damage by regulation of Th17 response in patients with chronic hepatitis B.

    PubMed

    Wu, Xiaoli; Zhang, Ji-Yuan; Huang, Ang; Li, Yuan-Yuan; Zhang, Song; Wei, Jun; Xia, Siyuan; Wan, Yajuan; Chen, Weiwei; Zhang, Zheng; Li, Yangguang; Wen, Ti; Chen, Yan; Tanaka, Yoshimasa; Cao, Youjia; Wang, Puyue; Zhao, Liqing; Wu, Zhenzhou; Wang, Fu-Sheng; Yin, Zhinan

    2013-10-15

     γδ T cells comprise a small subset of T cells and play a protective role against cancer and viral infections; however, their precise role in patients with chronic hepatitis B remains unclear.  Flow cytometry and immunofunctional assays were performed to analyze the impact of Vδ2 γδ (Vδ2) T cells in 64 immune-activated patients, 22 immune-tolerant carriers, and 30 healthy controls.  The frequencies of peripheral and hepatic Vδ2 T cells decreased with disease progression from immune tolerant to immune activated. In the latter group of patients, the decreases in peripheral and intrahepatic frequencies of Vδ2 T cells reversely correlated with alanine aminotransferase levels and histological activity index. These activated terminally differentiated memory phenotypic Vδ2 T cells exhibited impaired abilities in proliferation and chemotaxis, while maintained a relative intact interferon (IFN) γ production. Importantly, Vδ2 T cells, in vitro, significantly suppressed the production of cytokines associated with interleukin 17-producing CD4+ T (Th17) cells through both cell contact-dependent and IFN-γ-dependent mechanisms.  Inflammatory microenvironment in IA patients result in decreased numbers of Vδ2 T cells, which play a novel role by regulating the pathogenic Th17 response to protect the liver in patients with chronic hepatitis B.

  3. Regulatory T cells and TH1/TH2 cytokines as immunodiagnosis keys in systemic autoimmune diseases.

    PubMed

    Ursaciuc, Cornel; Surcel, Mihaela; Ciotaru, Dan; Dobre, Maria; Pirvu, Ioana Ruxandra; Munteanu, Adriana Narcisa; Alecu, Mihail; Huică, Radu

    2010-01-01

    We assessed Helper T-cell involvement and possibilities to quantify the cell-based immune response in systemic autoimmune diseases (SAID) in 14 systemic lupus erythematosus (SLE) and 7 rheumatoid arthritis (RA) patients. The goals of investigation were T-CD4+/T-CD8+ ratio, regulatory T cells (Treg) status and TH1/TH2 serum cytokine profiles (IFN-gamma and IL-2, respectively IL-4 and IL-6). SLE group proved significant decreased average Treg value as compared to RA group and controls and showed significant low Treg incidence (86% patients). The distribution of high T-CD4+/T-CD8+ ratio registered no significant distinction among LES and RA groups. SAID patients presented low serum IFN-gamma (86% RA, 60% SLE), high IL-2 (57% RA) and high IL-6 (53% LES), but no significant IL-4 modification. We conclude that Treg percentage remains the only cellular criterion for SAID immune evaluation. In the same time, different secretion mechanisms seem to be involved in SAID, i.e. TH2 in SLE and TH1 in RA.

  4. Differentiation of Effector CD4 T Cell Populations*

    PubMed Central

    Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.

    2012-01-01

    CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation. PMID:20192806

  5. The CD4+ T cell regulatory network mediates inflammatory responses during acute hyperinsulinemia: a simulation study.

    PubMed

    Martinez-Sanchez, Mariana E; Hiriart, Marcia; Alvarez-Buylla, Elena R

    2017-06-26

    Obesity is frequently linked to insulin resistance, high insulin levels, chronic inflammation, and alterations in the behaviour of CD4+ T cells. Despite the biomedical importance of this condition, the system-level mechanisms that alter CD4+ T cell differentiation and plasticity are not well understood. We model how hyperinsulinemia alters the dynamics of the CD4+ T regulatory network, and this, in turn, modulates cell differentiation and plasticity. Different polarizing microenvironments are simulated under basal and high levels of insulin to assess impacts on cell-fate attainment and robustness in response to transient perturbations. In the presence of high levels of insulin Th1 and Th17 become more stable to transient perturbations, and their basin sizes are augmented, Tr1 cells become less stable or disappear, while TGFβ producing cells remain unaltered. Hence, the model provides a dynamic system-level framework and explanation to further understand the documented and apparently paradoxical role of TGFβ in both inflammation and regulation of immune responses, as well as the emergence of the adipose Treg phenotype. Furthermore, our simulations provide new predictions on the impact of the microenvironment in the coexistence of the different cell types, suggesting that in pro-Th1, pro-Th2 and pro-Th17 environments effector and regulatory cells can coexist, but that high levels of insulin severely diminish regulatory cells, especially in a pro-Th17 environment. This work provides a first step towards a system-level formal and dynamic framework to integrate further experimental data in the study of complex inflammatory diseases.

  6. In vivo characterization of fusion protein comprising of A1 subunit of Shiga toxin and human GM-CSF: Assessment of its immunogenicity and toxicity.

    PubMed

    Oloomi, Mana; Bouzari, Saeid; Shariati, Elaheh

    2010-10-01

    Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF), previously produced in E. coli, was further characterized. The recombinant protein could cause 50% cytotoxicity and induced apoptosis in cells bearing GM-CSF receptors. The non-specific toxicity of the fusion protein was assessed in C57BL/6 and BALB/c mice. No mortality was observed in either group of mice, with different concentration of fusion protein. The lymphocyte proliferation assay, induction of specific IgG response and a mixed (Th1/Th2) response were observed only in BALB/c mice. The mixed response in BALB/c mice (Th1/Th2) could be explained on the basis of the two components of the fusion protein i.e. A1 and GM-CSF.

  7. A New Adjuvant Combined with Inactivated Influenza Enhances Specific CD8 T Cell Response in Mice and Decreases Symptoms in Swine Upon Challenge.

    PubMed

    Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette

    2015-11-01

    Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.

  8. Bone marrow-derived mesenchymal stem cells promote cell proliferation of multiple myeloma through inhibiting T cell immune responses via PD-1/PD-L1 pathway.

    PubMed

    Chen, Dandan; Tang, Ping; Liu, Linxiang; Wang, Fang; Xing, Haizhou; Sun, Ling; Jiang, Zhongxing

    2018-05-21

    This study aims to explore the effect of bone marrow mesenchymal stem cells (BMSCs) on multiple myeloma (MM) development and the underlying mechanism. BMSCs from C57BL/6 J mice were isolated and the third passage was used for subsequent experiments. Additionally, a series of in vitro transwell coculture assays were performed to explore the effects of BMSCs on the proliferation of MM cells 5TGM1 and CD4 + T cells. Furthermore, a 5TGM1-induced MM mice model was established. Moreover, PD-L1 shRNA was transfected into BMSCs to investigate whether PD-1/PD-L1 pathway involved in BMSCs-mediated regulation of T cells and MM growth. Data revealed that BMSCs significantly promoted 5TGM1 proliferation in a dose-dependent manner. Furthermore, BMSCs administration exerted stimulatory effects on MM development in terms of shortening the mouse survival rate, promoting tumor growth, and enhancing inflammatory infiltration in the MM model mice. Moreover, BMSCs decreased the percentage of Th1 and Th17 cells, whereas increased that of Th2 and Treg cells. Their corresponding cytokines of these T cell subsets showed similar alteration in the presence of BMSCs. Additionally, BMSCs significantly suppressed CD4 + T cell proliferation. We also found that PD-L1 shRNA inhibited 5TGM1 proliferation likely through activation of CD4 + T cells. Further in vivo experiments confirmed that PD-L1 inhibition attenuated BMSCs-induced MM growth, inflammation infiltration and imbalance of Th1/Th2 and Th17/Treg. In summary, our findings demonstrated that BMSCs promoted cell proliferation of MM through inhibiting T cell immune responses via PD-1/PD-L1 pathway.

  9. Heterogeneity of Human CD4(+) T Cells Against Microbes.

    PubMed

    Sallusto, Federica

    2016-05-20

    CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.

  10. Heterogeneity of T Cell Responses to Pandemic pH1N1 Monovalent Vaccine in HIV-Infected Pregnant Women.

    PubMed

    Weinberg, Adriana; Muresan, Petronella; Richardson, Kelly; Fenton, Terence; Dominguez, Teresa; Bloom, Anthony; Watts, D Heather; Abzug, Mark J; Nachman, Sharon A; Levin, Myron J

    2015-11-01

    We investigated the Th1 protective and regulatory T and B cell (Treg and Breg) responses to pH1N1 monovalent influenza vaccine (IIV1) in HIV-infected pregnant women on combination antiretroviral therapy (cART). Peripheral blood mononuclear cells (PBMCs) from 52 study participants were cryopreserved before and after vaccination and analyzed by flow cytometry. pH1N1-specific Th1, Treg, and Breg responses were measured in PBMCs after in vitro stimulation with pH1N1 and control antigen. The cohort analysis did not detect changes in pH1N1-Th1, Treg, or Breg subsets postvaccination. However, individual analyses distinguished subjects who mounted vigorous Th1 responses postvaccination from others who did not. Postvaccination, high pH1N1-Th1 correlated with high pH1N1-Treg and Breg responses, suggesting that low influenza effector responses did not result from excessive vaccine-induced immune regulation. High postvaccination pH1N1-Th1 responses correlated with baseline high PHA- and pH1N1-IFN-γ ELISpot and circulating CD4(+)CD39(+)% and CD8(+)CD39(+)% Treg, with low CD8(+) cell numbers and CD19(+)FOXP3(+)% Breg, but not with CD4(+) cell numbers or HIV viral load. These data highlight the heterogeneity of T cell responses to vaccines in HIV-infected individuals on cART. Predictors of robust Th1 responses to IIV include CD8(+) cell numbers, T cell functionality, and circulating Breg and Treg.

  11. Influence of immunotherapy with autologous dendritic cells on innate and adaptive immune response in cancer.

    PubMed

    Matias, Bruna F; de Oliveira, Tânia M; Rodrigues, Cláudia M; Abdalla, Douglas R; Montes, Letícia; Murta, Eddie F C; Michelin, Márcia A

    2013-01-01

    The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer.

  12. Influence of Immunotherapy with Autologous Dendritic Cells on Innate and Adaptive Immune Response in Cancer

    PubMed Central

    Matias, Bruna F.; de Oliveira, Tânia M.; Rodrigues, Cláudia M.; Abdalla, Douglas R.; Montes, Letícia; Murta, Eddie F.C.; Michelin, Márcia A.

    2013-01-01

    The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer. PMID:23926442

  13. Early Peritoneal Immune Response during Echinococcus granulosus Establishment Displays a Biphasic Behavior

    PubMed Central

    Mourglia-Ettlin, Gustavo; Marqués, Juan Martín; Chabalgoity, José Alejandro; Dematteis, Sylvia

    2011-01-01

    Background Cystic echinococcosis is a worldwide distributed helminth zoonosis caused by the larval stage of Echinococcus granulosus. Human secondary cystic echinococcosis is caused by dissemination of protoscoleces after accidental rupture of fertile cysts and is due to protoscoleces ability to develop into new metacestodes. In the experimental model of secondary cystic echinococcosis mice react against protoscoleces producing inefficient immune responses, allowing parasites to develop into cysts. Although the chronic phase of infection has been analyzed in depth, early immune responses at the site of infection establishment, e.g., peritoneal cavity, have not been well studied. Because during early stages of infection parasites are thought to be more susceptible to immune attack, this work focused on the study of cellular and molecular events triggered early in the peritoneal cavity of infected mice. Principal Findings Data obtained showed disparate behaviors among subpopulations within the peritoneal lymphoid compartment. Regarding B cells, there is an active molecular process of plasma cell differentiation accompanied by significant local production of specific IgM and IgG2b antibodies. In addition, peritoneal NK cells showed a rapid increase with a significant percentage of activated cells. Peritoneal T cells showed a substantial increase, with predominance in CD4+ T lymphocytes. There was also a local increase in Treg cells. Finally, cytokine response showed local biphasic kinetics: an early predominant induction of Th1-type cytokines (IFN-γ, IL-2 and IL-15), followed by a shift toward a Th2-type profile (IL-4, IL-5, IL-6, IL-10 and IL-13). Conclusions Results reported here open new ways to investigate the involvement of immune effectors players in E. granulosus establishment, and also in the sequential promotion of Th1- toward Th2-type responses in experimental secondary cystic echinococcosis. These data would be relevant for designing rational therapies based on stimulation of effective responses and blockade of evasion mechanisms. PMID:21912714

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, H.; Mosmann, T.; Strober, S.

    Purified CD4+ BALB/c spleen T cells obtained 4-6 wk after total lymphoid irradiation (TLI) helped normal syngeneic B cells to produce a vigorous antibody response to TNP keyhole limpet hemocyanin in adoptive cell transfer experiments. However, the same cells failed to transfer delayed-type hypersensitivity to the adoptive hosts as measured by a foot pad swelling assay. In addition, purified CD4+ cells from TLI-treated mice were unable to induce graft vs. host disease in lethally irradiated allogeneic C57BL/Ka recipient mice. In response to mitogen stimulation, unfractionated spleen cells obtained from TLI mice secreted normal levels of IL-4 and IL-5, but markedlymore » reduced levels of IL-2 and INF-gamma. A total of 229 CD4+ clones from spleen cells of both normal and TLI-treated mice were established, and the cytokine secretion pattern from each clone was analyzed. The results demonstrate that the ratio of Th1- and Th2-like clones in the spleens of normal BALB/c mice is 1:0.6, whereas the ratio in TLI mice is approximately 1:7. These results suggest that Th2-like cells recover rapidly (at approximately 4-6 wk) after TLI treatment and account for the early return of antibody helper activity and secretion of IL-4 and IL-5, but Th1-like cells recover more slowly (in approximately 3 mo) after irradiation, and this accounts for the deficit in cell-mediated immunity and the reduced amount of IL-2 and IFN-gamma secretion.« less

  15. Polarized Th2 like cells, in the absence of Th0 cells, are responsible for lymphocyte produced IL-4 in high IgE-producer schistosomiasis patients.

    PubMed

    Dutra, Walderez O; Correa-Oliveira, Rodrigo; Dunne, David; Cecchini, Luiza Fosenca; Fraga, Lúcia; Roberts, Morven; Soares-Silveira, Alda Maria; Webster, Michelle; Yssel, Hans; Gollob, Kenneth J

    2002-07-06

    Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP) IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-gamma or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-gamma.

  16. Polarized Th2 like cells, in the absence of Th0 cells, are responsible for lymphocyte produced IL-4 in high IgE-producer schistosomiasis patients

    PubMed Central

    Dutra, Walderez O; Correa-Oliveira, Rodrigo; Dunne, David; Cecchini, Luiza Fosenca; Fraga, Lúcia; Roberts, Morven; Soares-Silveira, Alda Maria; Webster, Michelle; Yssel, Hans; Gollob, Kenneth J

    2002-01-01

    Background Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP) IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-γ or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Results Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. Conclusions High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-γ. PMID:12100735

  17. Pertussis Circulation Has Increased T-Cell Immunity during Childhood More than a Second Acellular Booster Vaccination in Dutch Children 9 Years of Age

    PubMed Central

    Schure, Rose-Minke; de Rond, Lia; Öztürk, Kemal; Hendrikx, Lotte; Sanders, Elisabeth; Berbers, Guy; Buisman, Anne-Marie

    2012-01-01

    Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA-) were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. Trial Registration Controlled-Trials.com ISRCTN64117538 PMID:22860033

  18. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells

    PubMed Central

    Lawson, Victoria

    2012-01-01

    CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)–antigen–CD1d complex show how docking between CD1d–antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand–CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR–self-antigen–CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity. PMID:22734667

  19. Cell Type-Specific Immunomodulation Induced by Helminthes: Effect on Metainflammation, Insulin Resistance and Type-2 Diabetes.

    PubMed

    Aravindhan, Vivekanandhan; Anand, Gowrishankar

    2017-12-01

    Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4 + ] cells, cytotoxic T [CD8 + ] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.

  20. Immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy.

    PubMed

    Caramori, Gaetano; Lasagna, Lisa; Casalini, Angelo G; Adcock, Ian M; Casolari, Paolo; Contoli, Marco; Tafuro, Federica; Padovani, Anna; Chung, Kian Fan; Barnes, Peter J; Papi, Alberto; Rindi, Guido; Bertorelli, Giuseppina

    2011-01-01

    The T lymphocyte-mediated immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy is unknown. The aim of this study was to investigate the immune response in the parietal pleura of tuberculous pleurisy compared with nonspecific pleuritis. We have measured the numbers of inflammatory cells particularly T-cell subsets (Th1/Th2/Th17/Treg cells) in biopsies of parietal pleura obtained from 14 subjects with proven tuberculous pleurisy compared with a control group of 12 subjects with nonspecific pleuritis. The number of CD3+, CD4+ and CCR4+ cells and the expression of RORC2 mRNA were significantly increased in the tuberculous pleurisy patients compared with the nonspecific pleuritis subjects. The number of toluidine blue+ cells, tryptase+ cells and GATA-3+ cells was significantly decreased in the parietal pleura of patients with tuberculous pleurisy compared with the control group of nonspecific pleuritis subjects. Logistic regression with receiver operator characteristic (ROC) analysis for the three single markers was performed and showed a better performance for GATA-3 with a sensitivity of 75%, a specificity of 100% and an AUC of 0.88. There was no significant difference between the two groups of subjects in the number of CD8, CD68, neutrophil elastase, interferon (IFN)-γ, STAT4, T-bet, CCR5, CXCR3, CRTH2, STAT6 and FOXP3 positive cells. Elevated CD3, CD4, CCR4 and Th17 cells and decreased mast cells and GATA-3+ cells in the parietal pleura distinguish patients with untreated tuberculous pleurisy from those with nonspecific pleuritis.

  1. The dual nature of retinoic acid in pemphigus and its therapeutic potential: Special focus on all-trans Retinoic Acid.

    PubMed

    Tavakolpour, Soheil; Daneshpazhooh, Maryam; Mahmoudi, Hamid Reza; Balighi, Kamran

    2016-07-01

    The efficient treatment of pemphigus with no certain side effect remained a controversial issue. Although there are various options for controlling disease severity, the majority of them may cause serious side effects. Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune functions. Effects of RA, especially all-trans-Retinoic Acid (ATRA) on different types of cells involved in immune responses were analyzed in vitro and in vivo. RAs could affect the differentiation of T helper (Th) cells, B cells responses, stabilization of both natural regulatory T cells (nTregs) and regulatory B cells (Bregs) populations, and regulating the expression of critical genes in immune responses. The role of RA, based on major immune cells involved in pemphigus has not been addressed so far. In this study, we sought to determine the possible effects of RA, with a special focus on ATRA in pemphigus. All the evidences of ATRA effects on the immune system were collected and their association with the pemphigus was analyzed. According to the previous results, ATRA causes a decline in Th17 populations; increase in CD4+ induced regulatory T cells (iTregs), stabilization of nTregs, and promotion of suppressive B cells, which are critical in the improvement of pemphigus. Nevertheless, it also causes shifting of the Th1:Th2 balance toward Th2 cells, which is not favorable for pemphigus patients. In conclusion, ATRA acts via different ways in pemphigus. Due to increase in the suppressive function via iTregs, nTregs, and Bregs, it is suggested that patients with pemphigus may benefit from systemic ATRA therapy. To clarify this issue, further studies, such as clinical trials are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mycobacterium bovis BCG mycobacteria--new application.

    PubMed

    Kowalewicz-Kulbat, Magdalena; Pestel, Joël; Biet, Franck; Locht, Camille; Tonnel, André-Bernard; Druszczyńska, Magdalena; Rudnicka, Wiesława

    2006-01-01

    The polarized response of T helper-2 (Th2) lymphocytes to an allergen is considered to be the main cause of the pathogenesis of asthma. In this study, we asked a question whether M. bovis BCG mycobacteria which are known for the preferential stimulation of T helper-1 (Th1) immunity, diminish the effector functions of Th2 cells from allergic patients upon stimulation with a common house dust mite Der p-1 allergen. Our results allow a positive answer to this question. We demonstrate that BCG modulates the dendritic cell-dependent allergen presentation process and switches naive T lymphocytes towards an anti-allergic Th1 profile.

  3. Cigarette smoke alters the ability of human dendritic cells to promote anti-Streptococcus pneumoniae Th17 response.

    PubMed

    Le Rouzic, Olivier; Koné, Bachirou; Kluza, Jerome; Marchetti, Philippe; Hennegrave, Florence; Olivier, Cécile; Kervoaze, Gwenola; Vilain, Eva; Mordacq, Clémence; Just, Nicolas; Perez, Thierry; Bautin, Nathalie; Pichavant, Muriel; Gosset, Philippe

    2016-07-26

    Chronic obstructive pulmonary disease (COPD) is associated with chronic inflammation and impaired immune response to pathogens leading to bacteria-induced exacerbation of the disease. A defect in Th17 cytokines in response to Streptococcus pneumoniae, a bacteria associated with COPD exacerbations, has been recently reported. Dendritic cells (DC) are professional antigen presenting cells that drive T-cells differentiation and activation. In this study, we hypothesized that exposure to cigarette smoke, the main risk factor of COPD, might altered the pro-Th17 response to S. pneumoniae in COPD patients and human DC. Pro-Th1 and -Th17 cytokine production by peripheral blood mononuclear cells (PBMC) from COPD patients was analyzed and compared to those from smokers and non-smokers healthy subjects. The effect of cigarette smoke extract (CSE) was analyzed on human monocyte-derived DC (MDDC) from controls exposed or not to S. pneumoniae. Bacteria endocytosis, maturation of MDDC and secretion of cytokines were assessed by flow cytometry and ELISA, respectively. Implication of the oxidative stress was analyzed by addition of antioxidants and mitochondria inhibitors. In parallel, MDDC were cocultured with autologous T-cells to analyze the consequence on Th1 and Th17 cytokine production. PBMC from COPD patients exhibited defective production of IL-1β, IL-6, IL-12 and IL-23 to S. pneumoniae compared to healthy subjects and smokers. CSE significantly reduced S. pneumoniae-induced MDDC maturation, secretion of pro-Th1 and -Th17 cytokines and activation of Th1 and Th17 T-cell responses. CSE exposure was also associated with sustained CXCL8 secretion, bacteria endocytosis and mitochondrial oxidative stress. Antioxidants did not reverse these effects. Inhibitors of mitochondrial electron transport chain partly reproduced inhibition of S. pneumoniae-induced MDDC maturation but had no effect on cytokine secretion and T cell activation. We observed a defective pro-Th1 and -Th17 response to bacteria in COPD patients. CSE exposure was associated with an inhibition of DC capacity to activate antigen specific T-cell response, an effect that seems to be not only related to oxidative stress. These results suggest that new therapeutics boosting this response in DC may be helpful to improve treatment of COPD exacerbations.

  4. Effect of Intravenous immunoglobulin on Th1 and Th2 lymphocytes and improvement of pregnancy outcome in recurrent pregnancy loss (RPL).

    PubMed

    Ahmadi, Majid; Abdolmohammadi-Vahid, Samaneh; Ghaebi, Mahnaz; Aghebati-Maleki, Leili; Afkham, Amir; Danaii, Shahla; Abdollahi-Fard, Sedigheh; Heidari, Lida; Jadidi-Niaragh, Farhad; Younesi, Vahid; Nouri, Mohammad; Yousefi, Mehdi

    2017-08-01

    Women with elevated natural killer (NK) cell frequency and function during pregnancy, suffer from recurrent pregnancy loss (RPL). In the present study, the possible effect of intravenous immunoglobulin (IVIG) administration on Th1 and Th2 cell frequency, cytokine secretion, and expression of transcription factors is compared between RPL patients and control group. Totally, 44 women with a history of RPL (32 women as treated group and 12 as control group) were enrolled in the study. The frequency of Th1 and Th2 lymphocytes, the expression of transcription factors related to these cells and the serum levels of associated cytokines were assessed by flowcytometry, real-time PCR and ELISA, respectively. All, assessments were performed both before and after treatment with IVIG. A significant reduction in Th1 lymphocyte frequency, transcription factor expression and cytokine levels were observed in IVIG-treated group, while all the above parameters indicated a significant increase for Th2 lymphocytes. Th1/Th2 ratio decreased significantly (p value<0.0001) at the end of treatment and 28 out of 32 (87.5%) women in IVIG-treated group had live birth in comparison with 5 out of 12 (41.6%) in untreated group. IVIG administration proves to be an efficient therapeutic strategy which is able to enhance the success rate of pregnancy through a shift in Th2 responses. Furthermore, IVIG presents efficacy for the treatment of reproduction failures especially in subjects with immune cell abnormalities and increased NK cell level and function. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Metabolism of murine TH 17 cells: Impact on cell fate and function.

    PubMed

    Wang, Ran; Solt, Laura A

    2016-04-01

    An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Theory-Driven Models for Correcting Fight or Flight Imbalance in Gulf War Illness

    DTIC Science & Technology

    2013-09-01

    models require the inclusion of positive receptor feedback dynamics 483 to produce mutlistability, these effects become inherent in more coarse, but...separately. In this modified immune module innate immune cells (ICells) produce cytokines that regulate the innate immune response (IIR) including...Th1 type adaptive immune response (T1Cell), producing Th1 pro-inflammatory cytokines (T1Cyt) including IL-2, interferon-gamma (IFN-γ), and tumor

  7. ERK1 is important for Th2 differentiation and development of experimental asthma

    PubMed Central

    Goplen, Nicholas; Karim, Zunayet; Guo, Lei; Zhuang, Yonghua; Huang, Hua; Gorska, Magdalena M.; Gelfand, Erwin; Pagés, Gilles; Pouysségur, Jacques; Alam, Rafeul

    2012-01-01

    The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1−/− mice. ERK1−/− mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1−/− mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1−/− mice manifested reduced proliferation in response to the sensitizing allergen. ERK1−/− T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1−/− mice showed reduced numbers of CD44high CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1−/− mice had reduced numbers of CD44high cells. Finally, CD4 T cells form ERK1−/− mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44high Th2 cells, was much reduced in ERK1−/− mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.—Goplen, N., Karim, Z., Guo, L., Zhuang, Y., Huang, H., Gorska, M. M., Gelfand, E., Pagés, G., Pouysségur, J., Alam, R. ERK1 is important for Th2 differentiation and development of experimental asthma. PMID:22262639

  8. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R

    2014-03-15

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.

  9. EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.

    EPA Science Inventory

    Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...

  10. Effects of interferon-alpha subtypes on the TH1/TH2 balance in peripheral blood mononuclear cells from patients with hepatitis virus infection-associated liver disorders.

    PubMed

    Ariyasu, Toshio; Tanaka, Takeshi; Fujioka, Noboru; Yanai, Yoshiaki; Yamamoto, Shigeto; Yamauchi, Hiroshi; Ikegami, Hakuo; Ikeda, Masao; Kurimoto, Masashi

    2005-01-01

    Interferon-alpha (IFN-alpha) has recently been shown to modulate in vitro T helper (Th) 1-driven responses in the peripheral blood mononuclear cells (PBMC) of patients with hepatitis B virus or C virus infection. In this study, we examined the in vitro effects of IFN-alpha subtypes (IFN-alpha1, -alpha2, -alpha5, -alpha8, and -alpha10) on the Th1/Th2 balance in PBMC obtained from patients with hepatitis virus infection-associated liver disorders and chronic hepatitis (CH), in comparison with the effect on healthy control volunteer PBMC. The Th1-type cell percentages and Th1/Th2 ratios were significantly higher in the PBMC of patients when compared with controls both before and after cultivation in vitro, with the IFN-alpha subtypes. The IFNalpha-5 induced an increase in the Th2-type cell percentages in both control and patient PBMC, resulting in that IFN-alpha5 lowered the Th1/Th2 ratio in patients with CH. Furthermore, statistical analysis revealed that IFN-alpha8 significantly promoted an increase in the Th1/Th2 ratios of PBMC from patients with CH and liver cirrhosis (LC) but not that of PBMC from patients with LC-hepatocellular carcinoma (HCC) and HCC. These findings imply that hepatitis virus infection and its disease status modify the effects of IFN-alpha subtypes on Th1 and Th2 immune balance in patients. Our findings should help to elucidate the mechanisms underlying successful IFN therapy for hepatitis virus infection and prevention of hepatocellular carcinogenesis.

  11. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways.

    PubMed

    Umeshappa, Channakeshava Sokke; Xie, Yufeng; Xu, Shulin; Nanjundappa, Roopa Hebbandi; Freywald, Andrew; Deng, Yulin; Ma, Hong; Xiang, Jim

    2013-01-01

    Involvement of CD4(+) helper T (Th) cells is crucial for CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4(+) Th's signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4(+) Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4(+) T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2K(b)/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4(+) Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4(+) Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4(+) Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.

  12. Immunology mini-review: the basics of T(H)17 and interleukin-6 in transplantation.

    PubMed

    Nakagiri, T; Inoue, M; Minami, M; Shintani, Y; Okumura, M

    2012-05-01

    The outcomes of organ transplantation are determined by graft rejection, the mechanisms of which are some of the most important areas of study in the transplantation field. The main cause of rejection is the immunologic response of the recipient toward the transplanted organ. The immunologic responses are regulated by T-cell subsets, especially helper T-cells, which have been characterized as T(H)1 or T(H)2 cells according to their profiles of cytokines production. A unique subset of recently identified lymphocytes, the regulatory T cells (T(reg)s), seem to play a role in tolerance. The recently identified T(H)17 cells are a subset of effector-helper lymphocytes that specifically secrete interleukin (IL) 17. Interestingly, T(H)17 and T(reg) both develop from naïve T cells on stimulation by transforming growth factor β. The difference is only the existence of IL-6, a proinflammatory cytokine. T(H)17 clears pathogens that are not adequately handled by T(H)1 and T(H)2 elements, as well as contributing to autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory diseases. Autoimmune diseases are caused by reactions to self-antigens. T(H)17 (or IL-17) and IL-6 are also thought to be involved in rejection after organ transplantation. We examined the contributions of T(H)17 and IL-6 in bronchiolitis obliterans (BO), the histologic finding in chronic rejection of lung transplantations. Earlier studies have reported that T(H)17 and IL-6 contribute not only to chronic rejection of lung transplantations, but also to the rejection of other solid organs, e.g., heart, liver, and kidney. In addition, prospective avenues of research on T(H)17 and IL-6 in transplantation have emerged from the perspectives of recent studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Relationships between Th1 or Th2 iNKT Cell Activity and Structures of CD1d-Antigen Complexes: Meta-analysis of CD1d-Glycolipids Dynamics Simulations

    PubMed Central

    Laurent, Xavier; Renault, Nicolas; Farce, Amaury; Chavatte, Philippe; Hénon, Eric

    2014-01-01

    A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1. PMID:25376021

  14. An epitope-specific DerG-PG70 LEAPS vaccine modulates T cell responses and suppresses arthritis progression in two related murine models of rheumatoid arthritis

    PubMed Central

    Mikecz, Katalin; Glant, Tibor T.; Markovics, Adrienn; Rosenthal, Kenneth S.; Kurko, Julia; Carambula, Roy E.; Cress, Steve; Steiner, Harold L.; Zimmerman, Daniel H.

    2017-01-01

    Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA. PMID:28583308

  15. Neonatal innate TLR-mediated responses are distinct from those of adults.

    PubMed

    Kollmann, Tobias R; Crabtree, Juliet; Rein-Weston, Annie; Blimkie, Darren; Thommai, Francis; Wang, Xiu Yu; Lavoie, Pascal M; Furlong, Jeff; Fortuno, Edgardo S; Hajjar, Adeline M; Hawkins, Natalie R; Self, Steven G; Wilson, Christopher B

    2009-12-01

    The human neonate and infant are unduly susceptible to infection with a wide variety of microbes. This susceptibility is thought to reflect differences from adults in innate and adaptive immunity, but the nature of these differences is incompletely characterized. The innate immune response directs the subsequent adaptive immune response after integrating information from TLRs and other environmental sensors. We set out to provide a comprehensive analysis defining differences in response to TLR ligation between human neonates and adults. In response to most TLR ligands, neonatal innate immune cells, including monocytes and conventional and plasmacytoid dendritic cells produced less IL-12p70 and IFN-alpha (and consequently induced less IFN-gamma), moderately less TNF-alpha, but as much or even more IL-1beta, IL-6, IL-23, and IL-10 than adult cells. At the single-cell level, neonatal innate cells generally were less capable of producing multiple cytokines simultaneously, i.e., were less polyfunctional. Overall, our data suggest a robust if not enhanced capacity of the neonate vs the adult white-blood cell TLR-mediated response to support Th17- and Th2-type immunity, which promotes defense against extracellular pathogens, but a reduced capacity to support Th1-type responses, which promote defense against intracellular pathogens.

  16. Immunological response induced by cryoablation against murine H22 hepatoma cell line in vivo.

    PubMed

    Yang, Xueling; Li, Xiaoli; Guo, Zhi; Si, Tongguo; Yu, Haipeng; Xing, Wenge

    2018-02-01

    To describe immunological consequences induced by cryoablation against H22 cells in vivo. Adult BALB/c mice underwent subcutaneous implantation of H22 cells. All of them were assigned into three groups randomly: group A (false surgery), group B (cryoablation) and group C (cryoablation plus Freund's adjuvant). Animals were sacrificed 1, 2 and 3 weeks after treatment. Serum IFN-γ and IL-4, Th1/Th2 in spleens and cytotoxicity were detected. Compared with that of group A, (1) INF-γ of group B was higher, but IL-4 was lower; cryoablation plus Freund's adjuvant enhanced these effects. (2) Th1/Th2 rose significantly in both group B and group C. (3) Strong cytolytic activity against H22 cells of group B and group C was found on day 7, 14 and 21. Our study showed a marked shift toward Th1 and IFN-γ expression after cryoablation, with an immuno-stimulatory effect against murine H22 hepatoma Cell. Copyright © 2017. Published by Elsevier Inc.

  17. Dendritic Cells in the Gut: Interaction with Intestinal Helminths

    PubMed Central

    Mendlovic, Fela; Flisser, Ana

    2010-01-01

    The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes. PMID:20224759

  18. HLA-DR4-associated T and B cell responses to specific determinants on the IA-2 autoantigen in type 1 diabetes.

    PubMed

    McLaughlin, Kerry A; Gulati, Kavita; Richardson, Carolyn C; Morgan, Diana; Bodansky, H Jonathan; Feltbower, Richard G; Christie, Michael R

    2014-11-01

    Autoantibodies to IA-2 in type 1 diabetes are associated with HLA-DR4, suggesting influences of HLA-DR4-restricted T cells on IA-2-specific B cell responses. The aim of this study was to investigate possible T-B cell collaboration by determining whether autoantibodies to IA-2 epitopes are associated with T cell responses to IA-2 peptides presented by DR4. T cells secreting the cytokines IFN-γ and IL-10 in response to seven peptides known to elicit T cell responses in type 1 diabetes were quantified by cytokine ELISPOT in HLA-typed patients characterized for Abs to IA-2 epitopes. T cell responses were detected to all peptides tested, but only IL-10 responses to 841-860 and 853-872 peptides were associated with DR4. Phenotyping by RT-PCR of FACS-sorted CD45RO(hi) T cells secreting IL-10 in response to these two peptides indicated that these expressed GATA-3 or T-bet, but not FOXP3, consistent with these being Th2 or Th1 memory T cells rather than of regulatory phenotype. T cell responses to the same two peptides were also associated with specific Abs: those to 841-860 peptide with Abs to juxtamembrane epitopes, which appear early in prediabetes, and those to peptide 853-872 with Abs to an epitope located in the 831-862 central region of the IA-2 tyrosine phosphatase domain. Abs to juxtamembrane and central region constructs were both DR4 associated. This study identifies a region of focus for B and T cell responses to IA-2 in HLA-DR4 diabetic patients that may explain HLA associations of IA-2 autoantibodies, and this region may provide a target for future immune intervention to prevent disease. Copyright © 2014 by The American Association of Immunologists, Inc.

  19. SUMOylation-disrupting WAS mutation converts WASp from a transcriptional activator to a repressor of NF-κB response genes in T cells.

    PubMed

    Sarkar, Koustav; Sadhukhan, Sanjoy; Han, Seong-Su; Vyas, Yatin M

    2015-10-01

    In Wiskott-Aldrich syndrome (WAS), immunodeficiency and autoimmunity often comanifest, yet how WAS mutations misregulate chromatin-signaling in Thelper (TH) cells favoring development of auto-inflammation over protective immunity is unclear. Previously, we identified an essential promoter-specific, coactivator role of nuclear-WASp in TH1 gene transcription. Here we identify small ubiquitin-related modifier (SUMO)ylation as a novel posttranslational modification of WASp, impairment of which converts nuclear-WASp from a transcriptional coactivator to a corepressor of nuclear factor (NF)-κB response genes in human (TH)1-differentiating cells. V75M, one of many disease-causing mutations occurring in SUMO*motif (72-ψψψψKDxxxxSY-83) of WASp, compromises WASp-SUMOylation, associates with COMMD1 to attenuate NF-κB signaling, and recruits histone deacetylases-6 (HDAC6) to p300-marked promoters of NF-κB response genes that pattern immunity but not inflammation. Consequently, proteins mediating adaptive immunity (IFNG, STAT1, TLR1) are deficient, whereas those mediating auto-inflammation (GM-CSF, TNFAIP2, IL-1β) are paradoxically increased in TH1 cells expressing SUMOylation-deficient WASp. Moreover, SUMOylation-deficient WASp favors ectopic development of the TH17-like phenotype (↑IL17A, IL21, IL22, IL23R, RORC, and CSF2) under TH1-skewing conditions, suggesting a role for WASp in modulating TH1/TH17 plasticity. Notably, pan-histone deacetylase inhibitors lift promoter-specific repression imposed by SUMOylation-deficient WASp and restore misregulated gene expression. Our findings uncovering a SUMOylation-based mechanism controlling WASp's dichotomous roles in transcription may have implications for personalized therapy for patients carrying mutations that perturb WASp-SUMOylation. © 2015 by The American Society of Hematology.

  20. Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses

    PubMed Central

    Yang, De; Zhao, Yuliang; Guo, Hua; Li, Yana; Tewary, Poonam; Xing, Gengmei; Hou, Wei; Oppenheim, Joost J.; Zhang, Ning

    2010-01-01

    Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C82(OH)22]n could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC costimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C82(OH)22]n can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C82(OH)22]n exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNγ, IL-1β, and IL-2. The [Gd@C82(OH)22]n nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C82(OH)22]n nanoparticles reported previously. PMID:20121217

  1. Optimal culture conditions for the generation of natural killer cell-induced dendritic cells for cancer immunotherapy.

    PubMed

    Nguyen-Pham, Thanh-Nhan; Yang, Deok-Hwan; Nguyen, Truc-Anh Thi; Lim, Mi-Seon; Hong, Cheol Yi; Kim, Mi-Hyun; Lee, Hyun Ju; Lee, Youn-Kyung; Cho, Duck; Bae, Soo-Young; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Lee, Je-Jung

    2012-01-01

    Dendritic cell (DC)-based vaccines continue to be considered an attractive tool for cancer immunotherapy. DCs require an additional signal from the environment or other immune cells to polarize the development of immune responses toward T helper 1 (Th1) or Th2 responses. DCs play a role in natural killer (NK) cell activation, and NK cells are also able to activate and induce the maturation of DCs. We investigated the types of NK cells that can induce the maturation and enhanced function of DCs and the conditions under which these interactions occur. DCs that were activated by resting NK cells in the presence of inflammatory cytokines exhibited increased expression of several costimulatory molecules and an enhanced ability to produce IL-12p70. NK cell-stimulated DCs potently induced Th1 polarization and exhibited the ability to generate tumor antigen-specific cytotoxic T lymphocyte responses. Our data demonstrate that functional DCs can be generated by coculturing immature DCs with freshly isolated resting NK cells in the presence of Toll-like receptor agonists and proinflammatory cytokines and that the resulting DCs effectively present antigens to induce tumor-specific T-cell responses, which suggests that these cells may be useful for cancer immunotherapy.

  2. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization.

    PubMed

    Castañeda, Alejandro R; Pinkerton, Kent E; Bein, Keith J; Magaña-Méndez, Alfonso; Yang, Houa T; Ashwood, Paul; Vogel, Christoph F A

    2018-08-01

    The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR -/- ) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR -/- BMDCs with autologous naive T cells. PM 2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM 2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Asymptomatic Borrelia-seropositive individuals display the same incidence of Borrelia-specific interferon-gamma (IFN-γ)-secreting cells in blood as patients with clinical Borrelia infection

    PubMed Central

    Ekerfelt, C; Forsberg, P; Svenvik, M; Roberg, M; Bergström, S; Ernerudh, J

    1999-01-01

    Lyme disease is a complex disorder that sometimes becomes chronic. There are contradictory reports of experimental Borrelia infections regarding which type of T cell cytokine responses, i.e. Th1 or Th2, are needed to eradicate the Borrelia spirochaetes. In human borreliosis a predominance of Borrelia-specific Th1-like responses has been shown. In this study, spontaneous, as well as Borrelia-specific, secretion of IFN-γ (Th1) and IL-4 (Th2) in Borrelia-seropositive healthy asymptomatic individuals (n = 17) was investigated in peripheral blood by a sensitive ELISPOT assay, and compared with previously reported responses in patients with clinical Borrelia infection (n = 25). The seropositive asymptomatic individuals displayed the same predominance of Borrelia-specific IFN-γ-secreting cells as the patients with clinical Borrelia infection. Interestingly, the proportion of spontaneously IL-4-secreting cells, reflecting the unstimulated in vivo secretion, was lower in the seropositive asymptomatic individuals compared with patients with chronic Borrelia infections (n = 13, P = 0.02), whereas no such difference was found compared with subacute Borrelia infections (n = 12). These findings indicate that IFN-γ secretion alone is not sufficient to eliminate Borrelia spirochaetes in humans, although IFN-γ may still have a beneficial role in borreliosis acting in concert with other mechanisms. PMID:10193424

  4. Disruption of Smad4 Expression in T Cells Leads to IgA Nephropathy-Like Manifestations

    PubMed Central

    Yamashita, Michifumi; Choi, Sung Hee; Tomino, Yasuhiko; Letterio, John J.; Emancipator, Steven N.

    2013-01-01

    The link between glomerular IgA nephropathy (IgAN) and T helper 2 (Th2) response has been implicated, however, the mechanisms are poorly defined because of the lack of an appropriate model. Here we report a novel murine model characterized by lineage-restricted deletion of the gene encoding MAD homologue 4 (Smad4) in T cells (Smad4co/co;Lck-cre). Loss of Smad4 expression in T cells results in overproduction of Th2 cytokines and high serum IgA levels. We found that Smad4co/co;Lck-cre mice exhibited massive glomerular IgA deposition, increased albumin creatinine ratio, aberrant glycosylated IgA, IgA complexed with IgG1 and IgG2a, and polymeric IgA, all known features of IgAN in humans. Furthermore, we examined the β1, 4-galactosyltransferases (β4GalT) enzyme which is involved in the synthesis of glycosylated murine IgA, and we found reduced β4GalT2 and β4GalT4 mRNA levels in B cells. These findings indicate that Smad4co/co;Lck-cre mice could be a useful model for studying the mechanisms between IgAN and Th2 response, and further, disruption of Smad4-dependent signaling in T cells may play an important role in the pathogenesis of human IgAN and contributing to a Th2 T cell phenotype. PMID:24223846

  5. High levels of type 2 cytokine-producing cells in chronic fatigue syndrome.

    PubMed

    Skowera, A; Cleare, A; Blair, D; Bevis, L; Wessely, S C; Peakman, M

    2004-02-01

    The aetiology of chronic fatigue syndrome (CFS) is not known. However, it has been suggested that CFS may be associated with underlying immune activation resulting in a Th2-type response. We measured intracellular production of interferon (IFN)-gamma and interleukin (IL)-2; type 1 cytokines), IL-4 (type 2) and IL-10 (regulatory) by both polyclonally stimulated and non-stimulated CD4 and CD8 lymphocytes from patients with CFS and control subjects by flow cytometry. After polyclonal activation we found evidence of a significant bias towards Th2- and Tc2-type immune responses in CFS compared to controls. In contrast, levels of IFN-gamma, IL-2 and IL-10-producing cells were similar in both study groups. Non-stimulated cultures revealed significantly higher levels of T cells producing IFN-gamma or IL-4 in CFS patients. Concluding, we show evidence for an effector memory cell bias towards type 2 responsiveness in patients with CFS, as well as ongoing type 0 immune activation in unstimulated cultures of peripheral blood cells.

  6. High levels of type 2 cytokine-producing cells in chronic fatigue syndrome

    PubMed Central

    SKOWERA, A; CLEARE, A; BLAIR, D; BEVIS, L; WESSELY, S C; PEAKMAN, M

    2004-01-01

    The aetiology of chronic fatigue syndrome (CFS) is not known. However, it has been suggested that CFS may be associated with underlying immune activation resulting in a Th2-type response. We measured intracellular production of interferon (IFN)-γ and interleukin (IL)-2; type 1 cytokines), IL-4 (type 2) and IL-10 (regulatory) by both polyclonally stimulated and non-stimulated CD4 and CD8 lymphocytes from patients with CFS and control subjects by flow cytometry. After polyclonal activation we found evidence of a significant bias towards Th2- and Tc2-type immune responses in CFS compared to controls. In contrast, levels of IFN-γ, IL-2 and IL-10-producing cells were similar in both study groups. Non-stimulated cultures revealed significantly higher levels of T cells producing IFN-γ or IL-4 in CFS patients. Concluding, we show evidence for an effector memory cell bias towards type 2 responsiveness in patients with CFS, as well as ongoing type 0 immune activation in unstimulated cultures of peripheral blood cells. PMID:14738459

  7. Circulating Th1 cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children

    PubMed Central

    Obeng-Adjei, Nyamekye; Portugal, Silvia; Tran, Tuan M.; Yazew, Takele B.; Skinner, Jeff; Li, Shanping; Jain, Aarti; Felgner, Philip L.; Doumbo, Ogobara K.; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Crompton, Peter D.

    2015-01-01

    SUMMARY Malaria-specific antibody responses are short-lived in children, leaving them susceptible to repeated bouts of febrile malaria. The cellular and molecular mechanisms underlying this apparent immune deficiency are poorly understood. Recently, T follicular helper (Tfh) cells have been shown to play a critical role in generating long-lived antibody responses. We show that Malian children have resting PD-1+CXCR5+CD4+ Tfh cells in circulation that resemble germinal center Tfh cells phenotypically and functionally. Within this population PD-1+CXCR5+CXCR3− Tfh cells are superior to Th1-polarized PD-1+CXCR5+CXCR3+ Tfh cells in helping B cells. Longitudinally, we observed that malaria drives Th1 cytokine responses, and accordingly, the less functional Th1-polarized Tfh subset was preferentially activated and its activation did not correlate with antibody responses. These data provide insights into the Tfh cell biology underlying suboptimal antibody responses to malaria in children, and suggest that vaccine strategies that promote CXCR3− Tfh cell responses may improve malaria vaccine efficacy. PMID:26440897

  8. IL-9-producing cells in the development of IgE-mediated food allergy.

    PubMed

    Shik, Dana; Tomar, Sunil; Lee, Jee-Boong; Chen, Chun-Yu; Smith, Andrew; Wang, Yui-Hsi

    2017-01-01

    Food allergy is a harmful immune reaction driven by uncontrolled type 2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4 + TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type 2 innate lymphoid cells (ILC2s) and CD4 + TH2 cells, which perpetuate allergic reactions from the skin to the gut. IL-4 and cross-linking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9-producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy-triggered anaphylaxis.

  9. IL-9–producing cells in the development of IgE-mediated food allergy

    PubMed Central

    Shik, Dana; Tomar, Sunil; Lee, Jee-Boong; Chen, Chun-Yu; Smith, Andrew; Wang, Yui-Hsi

    2016-01-01

    Food allergy is a harmful immune reaction driven by uncontrolled type-2 immune responses. Considerable evidence demonstrates the key roles of mast cells, IgE, and TH2 cytokines in mediating food allergy. However, this evidence provides limited insight into why only some, rather than all, food allergic individuals are prone to develop life-threatening anaphylaxis. Clinical observations suggest that patients sensitized to food through the skin early in life may later develop severe food allergies. Aberrant epidermal thymic stromal lymphopoietin and interleukin (IL) 33 production and genetic predisposition can initiate an allergic immune response mediated by dendritic cells and CD4+TH2 cells in inflamed skin. After allergic sensitization, intestinal IL-25 and food ingestion enhance concerted interactions between type-2 innate lymphoid cells (ILC2s) and CD4+TH2 cells, which perpetuate allergic reactions from skin to the gut. IL-4 and crosslinking of antigen/IgE/FcεR complexes induce emigrated mast cell progenitors to develop into the multi-functional IL-9–producing mucosal mast cells, which produce prodigious amounts of IL-9 and mast cell mediators to drive intestinal mastocytosis in an autocrine loop. ILC2s and TH9 cells may also serve as alternative cellular sources of IL-9 to augment the amplification of intestinal mastocytosis, which is the key cellular checkpoint in developing systemic anaphylaxis. These findings provide a plausible view of how food allergy develops and progresses in a stepwise manner and that atopic signals, dietary allergen ingestion, and inflammatory cues are fundamental in promoting life-threatening anaphylaxis. This information will aid in improving diagnosis and developing more effective therapies for food allergy–triggered anaphylaxis. PMID:27909880

  10. Anti-retroviral therapy fails to restore the severe Th-17: Tc-17 imbalance observed in peripheral blood during simian immunodeficiency virus infection.

    PubMed

    Kader, M; Bixler, S; Piatak, M; Lifson, J; Mattapallil, J J

    2009-10-01

    Human immuno deficiency virus and simian immunodeficiency virus infections are characterized by a severe loss of Th-17 cells (IL-17(+)CD4(+) T cells) that has been associated with disease progression and systemic dissemination of bacterial infections. Anti-retroviral therapy (ART) has led to repopulation of CD4(+) T cells in peripheral tissues with little sustainable repopulation in mucosal tissues. Given the central importance of Th-17 cells in mucosal homeostasis, it is not known if the failure of ART to permanently repopulate mucosal tissues is associated with a failure to restore Th-17 cells that are lost during infection. Dynamics of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood of SIV infected rhesus macaques were evaluated and compared to animals that were treated with ART. The frequency of Th-17 and Tc-17 cells was determined following infection and after therapy. Relative expression of IL-21, IL-23, and TGFbeta was determined using Taqman PCR. Treatment of SIV infected rhesus macaques with anti-retroviral therapy was associated with a substantial repopulation of mucosal homing alpha4(+)beta7(hi)CD4(+) T cells in peripheral blood. This repopulation, however, was not accompanied by a restoration of Th-17 responses. Interestingly, SIV infection was associated with an increase in Tc-17 responses (IL-17(+)CD8(+) T cells) suggesting to a skewing in the ratio of Th-17: Tc-17 cells from a predominantly Th-17 phenotype to a predominantly Tc-17 phenotype. Surprisingly, Tc-17 responses remained high during the course of therapy suggesting that ART failed to correct the imbalance in Th-17 : Tc-17 responses induced following SIV infection. ART was associated with substantial repopulation of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood with little or no rebound of Th-17 cells. On the other hand, repopulation of alpha4(+)beta7(hi) CD4(+) T cells was accompanied by persistence of high levels of Tc-17 cells in peripheral blood. The dysregulation of Th-17 and Tc-17 responses likely plays a role in disease progression.

  11. CD4+CD25+ Regulatory Cells Contribute to the Regulation of Colonic Th2 Granulomatous Pathology Caused by Schistosome Infection

    PubMed Central

    Turner, Joseph D.; Jenkins, Gavin R.; Hogg, Karen G.; Aynsley, Sarah A.; Paveley, Ross A.; Cook, Peter C.; Coles, Mark C.; Mountford, Adrian P.

    2011-01-01

    Eggs of the helminth Schistosoma mansoni accumulate in the colon following infection and generate Th2-biassed inflammatory granulomas which become down- modulated in size as the infection proceeds to chronicity. However, although CD4+CD25+FoxP3+regulatory T cells (Tregs) are known to suppress Th1-mediated colitis, it is not clear whether they control Th2 –associated pathologies of the large intestine which characterise several helminth infections. Here we used a novel 3D-multiphoton confocal microscopy approach to visualise and quantify changes in the size and composition of colonic granulomas at the acute and chronic phases of S. mansoni infection. We observed decreased granuloma size, as well as reductions in the abundance of DsRed+ T cells and collagen deposition at 14 weeks (chronic) compared to 8 weeks (acute) post-infection. Th2 cytokine production (i.e. IL-4, IL-5) in the colonic tissue and draining mesenteric lymph node (mLN) decreased during the chronic phase of infection, whilst levels of TGF-β1 increased, co-incident with reduced mLN proliferative responses, granuloma size and fibrosis. The proportion of CD4+CD25+FoxP3+Tregs: CD4+ cells in the mLN increased during chronic disease, while within colonic granulomas there was an approximate 4-fold increase. The proportion of CD4+CD25+FoxP3+Tregs in the mLN that were CD103+ and CCR5+ also increased indicating an enhanced potential to home to intestinal sites. CD4+CD25+ cells suppressed antigen-specific Th2 mLN cell proliferation in vitro, while their removal during chronic disease resulted in significantly larger granulomas, partial reversal of Th2 hypo-responsiveness and an increase in the number of eosinophils in colonic granulomas. Finally, transfer of schistosome infection-expanded CD4+CD25+Tregs down-modulated the development of colonic granulomas, including collagen deposition. Therefore, CD4+CD25+FoxP3+Tregs appear to control Th2 colonic granulomas during chronic infection, and are likely to play a role in containing pathology during intestinal schistosomiasis. PMID:21858239

  12. Cytokine responses in acute and persistent human parvovirus B19 infection

    PubMed Central

    Isa, A; Lundqvist, A; Lindblom, A; Tolfvenstam, T; Broliden, K

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads immunoassay in serum from B19-infected patients and controls. The cytokine responses were correlated with B19 serology, quantitative B19 DNA levels and clinical symptoms. In addition to a proinflammatory response, elevated levels of the Th1 type of cytokines interleukin (IL)-2, IL-12 and IL-15 were evident at time of the initial peak of B19 viral load in a few patients during acute infection. This pattern was seen in the absence of an interferon (IFN)-γ response. During follow-up (20–130 weeks post-acute infection) some of these patients had a sustained Th1 cytokine response. The Th1 cytokine response correlated with the previously identified sustained CD8+ T cell response and viraemia. A cross-sectional study on patients with persistent B19 infection showed no apparent imbalance of their cytokine pattern, except for an elevated level of IFN-γ response. No general immunodeficiency was diagnosed as an explanation for the viral persistence in this later group. Neither the acutely infected nor the persistently infected patients demonstrated a Th2 cytokine response. In conclusion, the acutely infected patients demonstrated a sustained Th1 cytokine response whereas the persistently infected patients did not exhibit an apparent imbalance of their cytokine pattern except for an elevated IFN-γ response. PMID:17302890

  13. Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection

    PubMed Central

    Bizzell, Erica; Madan-Lala, Ranjna

    2017-01-01

    Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB. PMID:28767735

  14. Lupus Nephritis: An Overview of Recent Findings

    PubMed Central

    de Zubiria Salgado, Alberto; Herrera-Diaz, Catalina

    2012-01-01

    Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) since it is the major predictor of poor prognosis. In susceptible individuals suffering of SLE, in situ formation and deposit of immune complexes (ICs) from apoptotic bodies occur in the kidneys as a result of an amplified epitope immunological response. IC glomerular deposits generate release of proinflammatory cytokines and cell adhesion molecules causing inflammation. This leads to monocytes and polymorphonuclear cells chemotaxis. Subsequent release of proteases generates endothelial injury and mesangial proliferation. Presence of ICs promotes adaptive immune response and causes dendritic cells to release type I interferon. This induces maturation and activation of infiltrating T cells, and amplification of Th2, Th1 and Th17 lymphocytes. Each of them, amplify B cells and activates macrophages to release more proinflammatory molecules, generating effector cells that cannot be modulated promoting kidney epithelial proliferation and fibrosis. Herein immunopathological findings of LN are reviewed. PMID:22536486

  15. Fate vs choice: the immune system reloaded.

    PubMed

    Murphy, Kenneth M

    2005-01-01

    Development can occur by either instructive or stochastic processes. My colleagues and I have studied the contributions of these processes to differentiation of naïve CD4+ T-cells to either a Th1 or Th2 phenotype. Our initial discovery that pathogens in our in vitro priming system led to the development of Th1 cells through the action of interleukin-12 was important evidence of a link between innate and adaptive immunity. Subsequent studies in our laboratory revealed an important role for GATA-3 autoactivation in Th2 development. Other interesting projects that have emerged as a result of our Th cell differentiation studies include understanding the role of the inhibitory immunoreceptor B- and T-lymphocyte attenuator in the immune response, as well as the role of the transcription factor ERM in both T-cells and spermatogenesis. We currently maintain our interests in the Th differentiation field by trying to understand the role of type 1 interferons in Th1 development and the role of alternate promoters for the GATA-3 gene, among other things, but are also actively embarking on studies related to the choice between divergent cell types during embryonic stem cell differentiation.

  16. Epitope analysis of HLA-DR-restricted helper T-cell responses to Der p II, a major allergen molecule of Dermatophagoides pteronyssinus.

    PubMed

    Okano, M; Nagano, T; Nakada, M; Masuda, Y; Kino, K; Yasueda, H; Nose, Y; Nishimura, Y; Ohta, N

    1996-01-01

    T-cell epitopes of Der p II, a major allergen of Dermatophagoides pteronyssinus, were analyzed by using human T-cell clones. We tested 38 cloned T cells from two Japanese patients with allergic rhinitis, and identified at least two peptides (K33-T47 and I58-C73) as helper T-cell epitopes. The former epitope was shown to be restricted by HLA-DRB1*1502, and the latter by HLA-DRB1*0405, both of which are typical Japanese HLA-DR alleles, suggesting that those T-cell epitopes might be important for the onset of house-dust mite allergy in the Japanese population. We prepared 15 analog peptides of the HLA- DRB1*1502-restricted 15-mer peptide. Of those 15 residues, five (F35, L37, A39, F41, and E42) were critical for the epitope activity, and three residues (F35, A39, and E42) seemed to be included in anchor motifs for HLA-DRB1*1502. The epitope peptide was also recognized by HLA-DRB1*1502-positive healthy donors; however, only allergic T cells showed Th2 functions. Antigen-presenting cells of nonallergic donors were able to activate allergic T cells to express Th2 function. This seemed to suggest that antigen recognition of T cells, as well as additional unknown factors which promote Th2, rather than Th1, responses, might be important for the onset of house-dust mite allergy.

  17. Parasite-Antigen Driven Expansion of IL-5− and IL-5+ Th2 Human Subpopulations in Lymphatic Filariasis and Their Differential Dependence on IL-10 and TGFβ

    PubMed Central

    Anuradha, Rajamanickam; George, Parakkal Jovvian; Hanna, Luke E.; Chandrasekaran, Vedachalam; Kumaran, P. Paul; Nutman, Thomas B.; Babu, Subash

    2014-01-01

    Background Two different Th2 subsets have been defined recently on the basis of IL-5 expression – an IL-5+Th2 subset and an IL-5−Th2 subset in the setting of allergy. However, the role of these newly described CD4+ T cells subpopulations has not been explored in other contexts. Methods To study the role of the Th2 subpopulation in a chronic, tissue invasive parasitic infection (lymphatic filariasis), we examined the frequency of IL-5+IL-4+IL-13+ CD4+ T cells and IL-5−IL-4 IL-13+ CD4+ T cells in asymptomatic, infected individuals (INF) and compared them to frequencies (Fo) in filarial-uninfected (UN) individuals and to those with filarial lymphedema (CP). Results INF individuals exhibited a significant increase in the spontaneously expressed and antigen-induced Fo of both Th2 subpopulations compared to the UN and CP. Interestingly, there was a positive correlation between the Fo of IL-5+Th2 cells and the absolute eosinophil and neutrophil counts; in addition there was a positive correlation between the frequency of the CD4+IL-5−Th2 subpopulation and the levels of parasite antigen – specific IgE and IgG4 in INF individuals. Moreover, blockade of IL-10 and/or TGFβ demonstrated that each of these 2 regulatory cytokines exert opposite effects on the different Th2 subsets. Finally, in those INF individuals cured of infection by anti-filarial therapy, there was a significantly decreased Fo of both Th2 subsets. Conclusions Our findings suggest that both IL-5+ and IL-5−Th2 cells play an important role in the regulation of immune responses in filarial infection and that these two Th2 subpopulations may be regulated by different cytokine-receptor mediated processes. PMID:24498448

  18. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway.

    PubMed

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue

    2015-08-15

    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Th1 biased response to a novel Porphyromonas gingivalis protein aggravates bone resorption caused by this oral pathogen

    PubMed Central

    Leshem, Onir; Kashino, Suely S.; Gonçalves, Reginaldo B.; Suzuki, Noriyuki; Onodera, Masao; Fujimura, Akira; Sasaki, Hajime; Stashenko, Philip; Campos-Neto, Antonio

    2013-01-01

    In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study we characterized the protein, encoded by PG_1841 gene and evaluated its relevance in the in bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen. PMID:18457976

  20. Modeling Immune Response to Leishmania Species Indicates Adenosine As an Important Inhibitor of Th-Cell Activation

    PubMed Central

    Ribeiro, Henrique A. L.; Maioli, Tatiani U.; de Freitas, Leandro M.; Tieri, Paolo; Castiglione, Filippo

    2017-01-01

    Infection by Leishmania protozoan parasites can cause a variety of disease outcomes in humans and other mammals, from single self-healing cutaneous lesions to a visceral dissemination of the parasite. The correlation between chronic lesions and ecto-nucleotidase enzymes activity on the surface of the parasite is addressed here using damage caused in epithelial cells by nitric oxide. In order to explore the role of purinergic metabolism in lesion formation and the outcome of the infection, we implemented a cellular automata/lattice gas model involving major immune characters (Th1 and Th2 cells, IFN-γ, IL-4, IL-12, adenosine−Ado−, NO) and parasite players for the dynamic analysis of the disease progress. The model were analyzed using partial ranking correlation coefficient (PRCC) to indicate the components that most influence the disease progression. Results show that low Ado inhibition rate over Th-cells is shared by L. major and L. braziliensis, while in L. amazonensis infection the Ado inhibition rate over Th-cells reaches 30%. IL-4 inhibition rate over Th-cell priming to Th1 independent of IL-12 are exclusive of L. major. The lesion size and progression showed agreement with published biological data and the model was able to simulate cutaneous leishmaniasis outcomes. The sensitivity analysis suggested that Ado inhibition rate over Th-cells followed by Leishmania survival probability were the most important characteristics of the process, with PRCC of 0.89 and 0.77 respectively. The simulations also showed a non-linear relationship between Ado inhibition rate over Th-cells and lesion size measured as number of dead epithelial cells. In conclusion, this model can be a useful tool for the quantitative understanding of the immune response in leishmaniasis. PMID:28775959

  1. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma.

    PubMed

    van Rijt, Leonie; von Richthofen, Helen; van Ree, Ronald

    2016-07-01

    Allergic asthma is a chronic inflammatory disease of the lower airways that affects millions of people worldwide. Allergic asthma is a T helper 2 cell (Th2)-mediated disease, in which Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 are closely associated with the symptoms. IL-4 is needed by B cells to switch toward an IgE response, IL-5 recruits and activates eosinophils while IL-13 increases mucus production. The identification of type 2 innate lymphoid cells (ILC2), which are able to rapidly produce large amounts of IL-5 and IL-13 in response to epithelial derived cytokines, implicated a new key player besides Th2 cells. ILCs constitute a family of innate lymphocytes distinct from T and B cells. ILC2s are located in various epithelial compartments in mice and human, including the lung. The recent finding of increased numbers of ILC2s in the airways of severe asthma patients prompts further research to clarify their immunological function. Murine studies have shown that ILC2s are an early innate source of IL-5 and IL-13 after allergen exposure, which induce airway eosinophilic infiltration, mucus hyperproduction, and airway hyperresponsiveness but not allergen-specific IgE production. ILC2s contribute to the initiation as well as to the maintenance of the adaptive type 2 immune response. Here, we review the recent progress on our understanding of the role of ILC2s in the immunopathology of allergic asthma, in particular by studies using murine models which have elucidated fundamental mechanisms by which ILC2s act.

  2. Naive helper T cells from BCG-vaccinated volunteers produce IFN-gamma and IL-5 to mycobacterial antigen-pulsed dendritic cells.

    PubMed

    Kowalewicz-Kulbat, Magdalena; Kaźmierczak, Dominik; Donevski, Stefan; Biet, Franck; Pestel, Joël; Rudnicka, Wiesława

    2008-01-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a live vaccine that has been used in routine vaccination against tuberculosis for nearly 80 years. However, its efficacy is controversial. The failure of BCG vaccination may be at least partially explained by the induction of poor or inappropriate host responses. Dendritic cells (DCs) are likely to play a key role in the induction of immune response to mycobacteria by polarizing the reactivity of T lymphocytes toward a Th1 profile, contributing to the generation of protective cellular immunity against mycobacteria. In this study we aimed to investigate the production of Th1 and Th2 cytokines by naive CD4+ T cells to mycobacterial antigen-pulsed DCs in the group of young, healthy BCG vaccinated volunteers. The response of naive helper T cells was compared with the response of total blood lymphocytes. Our present results clearly showed that circulating naive CD45RA+CD4+ lymphocytes from BCG-vaccinated subjects can become effector helper cells producing IFN-gamma and IL-5 under the stimulation by autologous dendritic cells presenting mycobacterial protein antigen-PPD or infected with live M. bovis BCG bacilli.

  3. Brain Ischemia Induces Diversified Neuroantigen-Specific T-Cell Responses That Exacerbate Brain Injury.

    PubMed

    Jin, Wei-Na; Gonzales, Rayna; Feng, Yan; Wood, Kristofer; Chai, Zhi; Dong, Jing-Fei; La Cava, Antonio; Shi, Fu-Dong; Liu, Qiang

    2018-06-01

    Autoimmune responses can occur when antigens from the central nervous system are presented to lymphocytes in the periphery or central nervous system in several neurological diseases. However, whether autoimmune responses emerge after brain ischemia and their impact on clinical outcomes remains controversial. We hypothesized that brain ischemia facilitates the genesis of autoimmunity and aggravates ischemic brain injury. Using a mouse strain that harbors a transgenic T-cell receptor to a central nervous system antigen, MOG 35-55 (myelin oligodendrocyte glycoprotein) epitope (2D2), we determined the anatomic location and involvement of antigen-presenting cells in the development of T-cell reactivity after brain ischemia and how T-cell reactivity impacts stroke outcome. Transient middle cerebral artery occlusion and photothrombotic stroke models were used in this study. We also quantified the presence and status of T cells from brain slices of ischemic patients. By coupling transfer of labeled MOG 35-55 -specific (2D2) T cells with tetramer tracking, we show an expansion in reactivity of 2D2 T cells to MOG 91-108 and MOG 103-125 in transient middle cerebral artery occlusion and photothrombotic stroke models. This reactivity and T-cell activation first occur locally in the brain after ischemia. Also, microglia act as antigen-presenting cells that effectively present MOG antigens, and depletion of microglia ablates expansion of 2D2 reactive T cells. Notably, the adoptive transfer of neuroantigen-experienced 2D2 T cells exacerbates Th1/Th17 responses and brain injury. Finally, T-cell activation and MOG-specific T cells are present in the brain of patients with ischemic stroke. Our findings suggest that brain ischemia activates and diversifies T-cell responses locally, which exacerbates ischemic brain injury. © 2018 The Authors.

  4. Airway responses of healthy farmers and nonfarmers to exposure in a swine confinement building.

    PubMed

    Palmberg, Lena; Larssson, Brit-Marie; Malmberg, Per; Larsson, Kjell

    2002-08-01

    The objective of the study was to determine whether swine farmers continuously exposed to the farming environment react differently to acute exposure than previously unexposed nonfarmers. Nine healthy nonfarmers, not previously exposed to a farming environment, and eight swine farmers were exposed in a swine confinement building for 3 hours while weighing pigs. Lung function measurements, methacholine challenge tests, and nasal lavages were performed before and after the exposure. Blood samples were drawn repeatedly during the exposure day. Differential cell counts and cytokine levels were analyzed in the nasal lavage fluid and blood. The exposure levels were the same in both groups. Bronchial responsiveness to methacholine increased by a median of 4.0 (25th-75th percentiles 2.2-10.1 among the nonfarmers) and 0.7 (25th-75th percentiles 0.01-3.5 among the farmers) doubled concentration steps. The median serum levels of interleukin-6 increased from 3.8 (25th-75th percentiles <3-5.8) ng/l to 23.7 (25th-75th percentiles 11.6-41.6) ng/l among the nonfarmers and from <3 to 3.8 (25th-75th percentiles 3.1-11.6) ng/l among the swine farmers after the exposure. Swine dust exposure induced a ninefold increase in the total cell counts in the nasal lavage fluid of the nonfarmers, but no significant increase among the swine farmers. The exposure altered lung function and bronchial responsiveness, as well as cell number and cytokines in blood and nasal lavage fluid in previously unexposed nonfarming subjects, whereas only minor alterations were found in the farmers. This finding suggests possible adaptation mechanisms in chronically exposed swine farmers.

  5. Th17 Cells and IL-17 in Protective Immunity to Vaginal Candidiasis

    PubMed Central

    Pietrella, Donatella; Rachini, Anna; Pines, Mark; Pandey, Neelam; Mosci, Paolo; Bistoni, Francesco; d'Enfert, Cristophe; Vecchiarelli, Anna

    2011-01-01

    Background Th17 cells play a major role in coordinating the host defence in oropharyngeal candidiasis. In this study we investigated the involvement of the Th17 response in an animal model of vulvovaginal candidiasis (VVC). Methods To monitor the course of infection we exploited a new in vivo imaging technique. Results i) The progression of VVC leads to a strong influx of neutrophils in the vagina soon after the challenge which persisted despite the resolution of infection; ii) IL-17, produced by vaginal cells, particularly CD4 T cells, was detected in the vaginal wash during the infection, reaching a maximum 14 days after the challenge; iii) The amount and kinetics of IL-23 in vaginal fluids were comparable to those in vaginal cells; iv) The inhibition of Th17 differentiation led to significant inhibition of IL-17 production with consequent exacerbation of infection; v) An increased production of βdefensin 2 was manifested in cells of infected mice. This production was strongly reduced when Th17 differentiation was inhibited and was increased by rIL-17 treatment. Conclusions These results imply that IL-17 and Th17, along with innate antimicrobial factors, have a role in the immune response to vaginal candidiasis. PMID:21818387

  6. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation1

    PubMed Central

    Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y.; Wang, Hongshan; Siebenlist, Ulrich

    2008-01-01

    IL-17 is the signature cytokine of recently discovered T helper type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (a.k.a. Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses these two cytokines elicit. We identify CD11c+ macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo. PMID:19155511

  7. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK.

    PubMed

    Sagiv-Barfi, Idit; Kohrt, Holbrook E K; Czerwinski, Debra K; Ng, Patrick P; Chang, Betty Y; Levy, Ronald

    2015-03-03

    Monoclonal antibodies can block cellular interactions that negatively regulate T-cell immune responses, such as CD80/CTLA-4 and PD-1/PD1-L, amplifying preexisting immunity and thereby evoking antitumor immune responses. Ibrutinib, an approved therapy for B-cell malignancies, is a covalent inhibitor of BTK, a member of the B-cell receptor (BCR) signaling pathway, which is critical to the survival of malignant B cells. Interestingly this drug also inhibits ITK, an essential enzyme in Th2 T cells and by doing so it can shift the balance between Th1 and Th2 T cells and potentially enhance antitumor immune responses. Here we report that the combination of anti-PD-L1 antibody and ibrutinib suppresses tumor growth in mouse models of lymphoma that are intrinsically insensitive to ibrutinib. The combined effect of these two agents was also documented for models of solid tumors, such as triple negative breast cancer and colon cancer. The enhanced therapeutic activity of PD-L1 blockade by ibrutinib was accompanied by enhanced antitumor T-cell immune responses. These preclinical results suggest that the combination of PD1/PD1-L blockade and ibrutinib should be tested in the clinic for the therapy not only of lymphoma but also in other hematologic malignancies and solid tumors that do not even express BTK.

  8. Role of T Cell TGF-β Signaling in Intestinal Cytokine Responses and Helminthic Immune Modulation

    PubMed Central

    Ince, M. Nedim; Elliott, David E.; Setiawan, Tommy; Metwali, Ahmed; Blum, Arthur; Chen, Hung-lin; Urban, Joseph F.; Flavell, Richard A.; Weinstock, Joel V.

    2010-01-01

    Colonization with helminthic parasites induces mucosal regulatory cytokines, like IL-10 or TGF-β that are important in suppressing colitis. Helminths induce mucosal T cell IL-10 secretion and regulate lamina propria mononuclear cell Th1 cytokine generation in an IL-10 dependent manner in wild-type mice. Helminths also stimulate mucosal TGF-β release. As TGF-β exerts major regulatory effects on T lymphocytes, we investigated the role of T lymphocyte TGF-β signaling in helminthic modulation of intestinal immunity. T cell TGF-β signaling is interrupted in TGF-βRII DN mice by T cell-specific over-expression of a dominant negative TGF-β receptor II. We studied lamina propria mononuclear cell responses in wild-type and TGF-βRII DN mice that were uninfected or colonized with the nematode, Heligmosomoides polygyrus. Our results indicate an essential role of T cell TGF-β signaling in limiting mucosal Th1 and Th2 responses. Furthermore, we demonstrate that helminthic induction of intestinal T cell IL-10 secretion requires intact T cell TGF-β signaling pathway. Helminths fail to curtail robust, dysregulated intestinal Th1 cytokine production and chronic colitis in TGF-βRII DN mice. Thus, T cell TGF-β signaling is essential for helminthic stimulation of mucosal IL-10 production, helminthic modulation of intestinal interferon-γ generation and H. polygyrus-mediated suppression of chronic colitis. PMID:19544487

  9. Functional characterization of CD4 and CD8 T cell responses among human papillomavirus infected patients with ano-genital warts.

    PubMed

    Singh, Manjula; Thakral, Deepshi; Rishi, Narayan; Kar, Hemanta Kumar; Mitra, Dipendra Kumar

    2017-06-01

    Ano-genital warts are considered one of the commonest and highly infectious sexually transmitted infections. These warts are primarily caused by the human papillomavirus (HPV) of the family Papillomaviridae , genus alpha - papillomavirus , species 10 and types 6 and 11. However the high recurrence rate of warts is a matter of serious concern to the patients and a challenge for the treating physician. The conventional treatment options are targeted only to the local site of warts. There is no systemic treatment modality as there is limited understanding of the disease immune-pathogenesis. The role of cell-mediated immunity in combating HPV infection is not clearly defined. Hence the present study is aimed at investigating the CD4 + T helper (Th1 and Th2) and CD8 + T cell responses among wart patients. In this study, we compared HPV6 and HPV11 antigen-specific T cell responses among venereal wart patients relative to healthy controls. Significant decrease in percent frequencies of IFN-γ producing CD4 + and CD8 + T cells were observed in HPV infected wart patients. On the other hand, the frequency of CD4 + T cells expressing IL-4 was significantly increased in these patients as compared to healthy controls. The observed functional skewing of HPV specific T cells from Th1 to Th2 response in patients indicated suppressed immunity against the HPV. Moreover, decrease in CD8 T cell function correlated with poor wart clearance. Our findings open future avenues for exploring potential immunomodulation strategies as an adjunct to standard treatment for better management of these patients and prevention of recurrence.

  10. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation.

    PubMed

    Piconese, Silvia; Gri, Giorgia; Tripodo, Claudio; Musio, Silvia; Gorzanelli, Andrea; Frossi, Barbara; Pedotti, Rosetta; Pucillo, Carlo E; Colombo, Mario P

    2009-09-24

    The development of inflammatory diseases implies inactivation of regulatory T (Treg) cells through mechanisms that still are largely unknown. Here we showed that mast cells (MCs), an early source of inflammatory mediators, are able to counteract Treg inhibition over effector T cells. To gain insight into the molecules involved in their interplay, we set up an in vitro system in which all 3 cellular components were put in contact. Reversal of Treg suppression required T cell-derived interleukin-6 (IL-6) and the OX40/OX40L axis. In the presence of activated MCs, concomitant abundance of IL-6 and paucity of Th1/Th2 cytokines skewed Tregs and effector T cells into IL-17-producing T cells (Th17). In vivo analysis of lymph nodes hosting T-cell priming in experimental autoimmune encephalomyelitis revealed activated MCs, Tregs, and Th17 cells displaying tight spatial interactions, further supporting the occurrence of an MC-mediated inhibition of Treg suppression in the establishment of Th17-mediated inflammatory responses.

  11. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice.

    PubMed

    Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin

    2017-03-01

    The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  12. Hygiene hypothesis and prevalence of glomerulonephritis.

    PubMed

    Hurtado, Abdias; Johnson, Richard J

    2005-08-01

    The hygiene hypothesis was proposed to explain the marked increase in allergies that has been observed in industrialized (Westernized) societies. This hypothesis proposes that early and frequent exposure to bacterial and other antigens, such as is common in developing nations, leads to a normal Th1 response, but that better public hygiene and less infections observed in industrialized nations may lead to persistence of the Th2 phenotype and thereby increase our risk for developing allergies. Infection early in life with measles or hepatitis A virus, immunization with bacille Calmette-Guérin, certain gastrointestinal bacteria (lactobacillus), and environmental endotoxin exposure may protect individuals from developing allergy in adulthood. Paradoxically, infestation by parasites stimulates a Th2-cell response; however, the incidence of allergic disease is very low, perhaps due to the stimulation of T-regulatory lymphocytes that can downregulate Th1 and Th2 responses. Some types of human glomerulonephritis (GN) have Th1-predominant immune responses, including crescentic and membranoproliferative GN, whereas other types of GN have a predominant Th2 immune response, including membranous nephropathy, minimal change disease, and immunoglobulin A nephropathy. A review of the prevalence of specific GN shows that the higher prevalence of membranoproliferative GN in developing countries and the higher frequency of immunoglobulin A nephropathy and minimal change disease in industrialized countries could be explained by the hygiene hypothesis. We suggest that studies examining Th1/Th2 balance, particularly as it develops in childhood, should be performed to determine if early polarization of the immune response is responsible for the later development of specific forms of GN.

  13. Th Cells Promote CTL Survival and Memory via Acquired pMHC-I and Endogenous IL-2 and CD40L Signaling and by Modulating Apoptosis-Controlling Pathways

    PubMed Central

    Umeshappa, Channakeshava Sokke; Xie, Yufeng; Xu, Shulin; Nanjundappa, Roopa Hebbandi; Freywald, Andrew; Deng, Yulin; Ma, Hong; Xiang, Jim

    2013-01-01

    Involvement of CD4+ helper T (Th) cells is crucial for CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4+ Th’s signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2Kb/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy. PMID:23785406

  14. The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent

    PubMed Central

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N.; Gieryńska, Małgorzata

    2017-01-01

    Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM—comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo. PMID:29312229

  15. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis.

    PubMed

    Muñoz-Carrillo, José Luis; Muñoz-López, José Luis; Muñoz-Escobedo, José Jesús; Maldonado-Tapia, Claudia; Gutiérrez-Coronado, Oscar; Contreras-Cordero, Juan Francisco; Moreno-García, María Alejandra

    2017-12-01

    The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.

  16. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis

    PubMed Central

    Muñoz-Carrillo, José Luis; Muñoz-López, José Luis; Muñoz-Escobedo, José Jesús; Maldonado-Tapia, Claudia; Gutiérrez-Coronado, Oscar; Contreras-Cordero, Juan Francisco; Moreno-García, María Alejandra

    2017-01-01

    The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response. PMID:29320813

  17. Silencing of Endogenous IL-10 in Human Dendritic Cells Leads to the Generation of an Improved CTL Response Against Human Melanoma Associated Antigenic Epitope, MART-127−35

    PubMed Central

    Chhabra, Arvind; Chakraborty, Nityo G.; Mukherji, Bijay

    2008-01-01

    Dendritic cells (DC) present antigenic epitopes to and activate T cells. They also polarize the ensuing T cell response to Th1 or Th2 type response, depending on their cytokine production profile. For example, IL-12 producing DC generate Th1 type T cell response whereas IL-10 producing DC is usually tolerogenic. Different strategies -- such as the use of cytokines and anti-cytokine antibodies, dominant negative forms of protein, anti-sense RNA etc. -- have been employed to influence the cytokine synthetic profile of DC as well as to make DC more immunogenic. Utilizing GFP expressing recombinant adenoviruses in association with lipid-mediated transfection of siRNA, we have silenced the endogenous IL-10 gene in DC. We show that IL-10 gene silenced DC produce more IL-12 and also generates a better cytolytic T cell response against the human melanoma associated epitope, MART-127−35, in-vitro. We also show that the GFP expressing adenoviral vector can be used to optimize the parameters for siRNA delivery in primary cells and show that RNA interference methodology can efficiently knock-down virus encoded genes transcribed at very high multiplicity of infection in DC. PMID:18249038

  18. The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses.

    PubMed

    Durán-Aniotz, Claudia; Segal, Gabriela; Salazar, Lorena; Pereda, Cristián; Falcón, Cristián; Tempio, Fabián; Aguilera, Raquel; González, Rodrigo; Pérez, Claudio; Tittarelli, Andrés; Catalán, Diego; Nervi, Bruno; Larrondo, Milton; Salazar-Onfray, Flavio; López, Mercedes N

    2013-04-01

    Immunization with autologous dendritic cells (DCs) loaded with a heat shock-conditioned allogeneic melanoma cell lysate caused lysate-specific delayed type hypersensitivity (DTH) reactions in a number of patients. These responses correlated with a threefold prolonged long-term survival of DTH(+) with respect to DTH(-) unresponsive patients. Herein, we investigated whether the immunological reactions associated with prolonged survival were related to dissimilar cellular and cytokine responses in blood. Healthy donors and melanoma patient's lymphocytes obtained from blood before and after vaccinations and from DTH biopsies were analyzed for T cell population distribution and cytokine release. Peripheral blood lymphocytes from melanoma patients have an increased proportion of Th3 (CD4(+) TGF-β(+)) regulatory T lymphocytes compared with healthy donors. Notably, DTH(+) patients showed a threefold reduction of Th3 cells compared with DTH(-) patients after DCs vaccine treatment. Furthermore, DCs vaccination resulted in a threefold augment of the proportion of IFN-γ releasing Th1 cells and in a twofold increase of the IL-17-producing Th17 population in DTH(+) with respect to DTH(-) patients. Increased Th1 and Th17 cell populations in both blood and DTH-derived tissues suggest that these profiles may be related to a more effective anti-melanoma response. Our results indicate that increased proinflammatory cytokine profiles are related to detectable immunological responses in vivo (DTH) and to prolonged patient survival. Our study contributes to the understanding of immunological responses produced by DCs vaccines and to the identification of follow-up markers for patient outcome that may allow a closer individual monitoring of patients.

  19. Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice.

    PubMed

    Kan, Xuefeng; Zhang, Wanli; You, Ruxu; Niu, Yanfeng; Guo, Jianrong; Xue, Jun

    2017-01-13

    Previous studies showed Scutellaria barbata D. Don extract (SBE) is a potent inhibitor in hepatoma and could improve immune function of hepatoma H22-bearing mice. However, the immunomodulatory function of SBE on the tumor growth of hepatoma remains unclear. This study aimed to investigate the anti-tumor effects of SBE on hepatoma H22-bearing mice and explore the underlying immunomodulatory function. The hepatoma H22-bearing mice were treated by SBE for 30 days. The effect of SBE on the proliferation of HepG2 cells in vitro, the growth of transplanted tumor, the cytotoxicity of natural killer (NK) cells in spleen, the amount of CD4 + CD25 + Foxp3 + Treg cells and Th17 cells in tumor tissue, and the levels of IL-10, TGF-β, IL-17A, IL-2, and IFN-γ in serum of the hepatoma H22-bearing mice was observered. IL-17A was injected to the SBE treated mice from day 9 post H22 inoculation to examine its effect on tumor growth. SBE treatment inhibited the proliferation of HepG2 cells in vitro with a dose-dependent manner and significantly suppressed the tumor growth of hepatoma H22-bearing mice. Meanwhile, it increased NK cells' cytotoxicity in spleen, down-regulated the amount of CD4 + CD25 + Foxp3 + Treg cells and Th17 cells in tumor tissue, and decreased IL-10, TGF-β, and IL-17A levels (P < 0.01) whereas increased IL-2 and IFN-γ levels (P < 0.01) in the serum of hepatoma H22-bearing mice. Moreover, administration of recombinant mouse IL-17A reversed the anti-tumor effects of SBE. SBE could inhibit the proliferation of HepG2 cells in vitro. Meanwhile, SBE also could inhibit the growth of H22 implanted tumor in hepatoma H22-bearing mice, and this function might be associated with immunomodulatory activity through down-regulating of Treg cells and manipulating Th1/Th17 immune response.

  20. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease.

    PubMed

    Tang, Y; Bian, Z; Zhao, L; Liu, Y; Liang, S; Wang, Q; Han, X; Peng, Y; Chen, X; Shen, L; Qiu, D; Li, Z; Ma, X

    2011-11-01

    Mechanisms associated with the progression of simple steatosis to non-alcoholic fatty liver disease (NAFLD) remain undefined. Regulatory T cells (T(regs)) play a critical role in regulating inflammatory processes in non-alcoholic steatohepatitis (NASH) and because T helper type 17 (Th17) functionally oppose T(reg)-mediated responses, this study focused on characterizing the role of Th17 cells using a NAFLD mouse model. C57BL/6 mice were fed either a normal diet (ND) or high fat (HF) diet for 8 weeks. Mice in the HF group had a significantly higher frequency of liver Th17 cells compared to ND-fed mice. Neutralization of interleukin (IL)-17 in HF mice ameliorated lipopolysaccharide (LPS)-induced liver injury reflected by decreased serum alanine aminotransferase (ALT) levels and reduced inflammatory cell infiltrates in the liver. In vitro, HepG2 cells cultured in the presence of free fatty acids (FFA; oleic acid and palmitic acid) for 24 h and IL-17 developed steatosis via insulin-signalling pathway interference. IL-17 and FFAs synergized to induce IL-6 production by HepG2 cells and murine primary hepatocytes which, in combination with transforming growth factor (TGF-β), expanded Th17 cells. It is likely that a similar process occurs in NASH patients, as there were significant levels of IL-17(+) cell infiltrates in NASH patient livers. The hepatic expression of Th17 cell-related genes [retinoid-related orphan receptor gamma (ROR)γt, IL-17, IL-21 and IL-23] was also increased significantly in NASH patients compared to healthy controls. Th17 cells and IL-17 were associated with hepatic steatosis and proinflammatory response in NAFLD and facilitated the transition from simple steatosis to steatohepatitis. Strategies designed to alter the balance between Th17 cells and T(regs) should be explored as a means of preventing progression to NASH and advanced liver diseases in NAFLD patients. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  1. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus.

    PubMed

    Wang, Hui; Zhang, Dunfang; Han, Qi; Zhao, Xin; Zeng, Xin; Xu, Yi; Sun, Zheng; Chen, Qianming

    2016-07-01

    Oral lichen planus (OLP) is one of the most common chronic inflammatory oral mucosal diseases with T-cell-mediated immune pathogenesis. In subepithelial and lamina propria of OLP local lesions, the presence of CD4(+) T helper (CD4(+) Th) cells appeared as the major lymphocytes. These CD4(+) T lymphocytes can differentiate into distinct Th cell types such as Th1, Th2, Treg, Th17, Th22, Th9, and Tfh within the context of certain cytokines environment. Growing evidence indicated that Th1/Th2 imbalance may greatly participate into the cytokine network of OLP immunopathology. In addition, Th1/Th2 imbalance can be regulated by the Treg subset and also greatly influenced by the emerging novel CD4(+) Th subset Th17. Furthermore, the presence of novel subsets Th22, Th9 and Tfh in OLP patients is yet to be clarified. All these Th subsets and their specific cytokines may play a critical role in determining the character, extent and duration of immune responses in OLP pathogenesis. Therefore, we review the roles of distinct CD4(+) Th subsets and their signature cytokines in determining disease severity and susceptibility of OLP and also reveal the novel therapeutic strategies based on T lymphocytes subsets in OLP treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Induction of Broad CD4+ and CD8+ T-Cell Responses and Cross- Neutralizing Antibodies against Hepatitis C Virus by Vaccination with Th1-Adjuvanted Polypeptides Followed by Defective Alphaviral Particles Expressing Envelope Glycoproteins gpE1 and gpE2 and Nonstructural Proteins 3, 4, and 5▿ †

    PubMed Central

    Lin, Yinling; Kwon, Taewoo; Polo, John; Zhu, Yi-Fei; Coates, Stephen; Crawford, Kevin; Dong, Christine; Wininger, Mark; Hall, John; Selby, Mark; Coit, Doris; Medina-Selby, Angelica; McCoin, Colin; Ng, Philip; Drane, Debbie; Chien, David; Han, Jang; Vajdy, Michael; Houghton, Michael

    2008-01-01

    Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen. PMID:18508900

  3. Primary Murine CD4+ T Cells Fail to Acquire the Ability to Produce Effector Cytokines When Active Ras Is Present during Th1/Th2 Differentiation

    PubMed Central

    Janardhan, Sujit V.; Marks, Reinhard; Gajewski, Thomas F.

    2014-01-01

    Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo. PMID:25397617

  4. Burn Wound gammadelta T-Cells Support a Th2 and Th17 Immune Response

    DTIC Science & Technology

    2014-02-01

    disorder (rheumatoid arthritis), psoriasis , and graft vs host disease.24–27 Gamma-δ T-cells are functionally specialized and are involved in...Mathers AR, Ferris LK. Anti-cytokine therapy in the treatment of psoriasis . Cytokine 2013;61:704–12. 26. Greenblatt MB, Vrbanac V, Vbranac V, et al...Meglio P, Perera GK, et al. Identification of a novel proinflammatory human skin-homing V?9Vd2 T cell subset with a potential role in psoriasis . J

  5. Parkinson disease-associated LRRK2 G2019S transgene disrupts marrow myelopoiesis and peripheral Th17 response.

    PubMed

    Park, Jeongho; Lee, Jang-Won; Cooper, Scott C; Broxmeyer, Hal E; Cannon, Jason R; Kim, Chang H

    2017-10-01

    Parkinson's disease (PD) is a neurodegenerative disease, whereas Crohn's disease is an inflammatory bowel disease. Interestingly, polymorphisms in the LRRK2 gene have been identified as risk factors for both diseases. LRRK2 G2019S is the most prevalent mutation found in PD. To gain insights into the role of the LRRK2 G2019S gene on the development and activation of the immune system in the brain-gut axis, we investigated the effect of LRRK2 G2019S on bone marrow myeloid progenitors and myeloid cell function in the periphery. We used bacterial artificial chromosome transgenic rats harboring the human LRRK2 G2019S gene. LRRK2 G2019S transgene decreased the numbers of monocytic and granulocytic progenitors in the bone marrow. However, the numbers of peripheral, immature myeloid cells with suppressive activity were increased in the gut and blood circulation of LRRK2 G2019S compared with control rats in various acute and chronic inflammatory responses. In inflammatory conditions, Th17 cell activity was suppressed, but tissue-associated phylum Bacteroidetes was abnormally increased in the intestine of LRRK2 G2019S rats. The abnormally expanded myeloid cells because of the LRRK2 G2019S gene were highly suppressive on Th17 cell differentiation. Moreover, we found that inhibition of LRRK2 kinase affects myeloid progenitors and myeloid cell differentiation. Taken together, the results indicate that abnormal LRRK2 activity can alter bone marrow myelopoiesis, peripheral myeloid cell differentiation, and intestinal immune homeostasis. These findings may have ramifications in immune and inflammatory responses in patients with LRRK2 abnormalities. © Society for Leukocyte Biology.

  6. TH17-induced neutrophils enhance the pulmonary allergic response following BALB/c exposure to house dust mite allergen and fine particulate matter from California and China.

    PubMed

    Zhang, Jingjing; Fulgar, Ciara C; Mar, Tiffany; Young, Dominique E; Zhang, Qi; Bein, Keith J; Cui, Liangliang; Castañeda, Alejandro; Vogel, Christoph F A; Sun, Xiaolin; Li, Wei; Smiley-Jewell, Suzette; Zhang, Zunzhen; Pinkerton, Kent E

    2018-05-28

    Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether 1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; 2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and 3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM.Ten-week old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on Days 1, 3, and 5 (sensitization experiments), and PBS or HDM on Days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on Day 15.Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. While PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared to HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.

  7. Interleukin 9 and its receptor: an overview of structure and function.

    PubMed

    Demoulin, J B; Renauld, J C

    1998-01-01

    Interleukin-9 (IL-9) is a multifunctional cytokine produced by activated TH2 clones in vitro and during TH2-like T cell responses in vivo. Although IL-9 was initially described as a T cell growth factor, its role in T cell responses is still unclear. While freshly isolated normal T cells do not respond to IL-9, this cytokine induces the proliferation of murine T cell lymphomas in vitro, and in vivo overexpression of IL-9 results in the development of thymic lymphomas. In the human, the existence of an IL-9 mediated autocrine loop has been suggested for some malignancies such as Hodgkin's disease. Various observations indicate that IL-9 is actively involved in mast cells responses by inducing the proliferation and differentiation of these cells. Other potential biological targets for IL-9 include B lymphocytes, and hematopoietic progenitors, for which higher responses were observed with foetal or transformed cells as compared to normal adult progenitors. The IL-9 receptor is a member of the hemopoietin receptor superfamily and interacts with the gamma chain of the IL-2 receptor for signaling. Signal transduction studies have stressed the role of the Jak-STAT pathway in various IL-9 bioactivities, whereas the 4PS/IRS2 adaptor protein might also play a significant role in IL-9 signaling.

  8. Intervention of PKC-θ as an immunosuppressive regimen

    PubMed Central

    Sun, Zuoming

    2012-01-01

    PKC-θ is selectively enriched in T cells and specifically translocates to immunological synapse where it mediates critical T cell receptor signals required for T cell activation, differentiation, and survival. T cells deficient in PKC-θ are defective in their ability to differentiate into inflammatory effector cells that mediate actual immune responses whereas, their differentiation into regulatory T cells (Treg) that inhibits the inflammatory T cells is enhanced. Therefore, the manipulation of PKC-θ activity can shift the ratio between inflammatory effector T cells and inhibitory Tregs, to control T cell-mediated immune responses that are responsible for autoimmunity and allograft rejection. Indeed, PKC-θ-deficient mice are resistant to the development of several Th2 and Th17-dependent autoimmune diseases and are defective in mounting alloimmune responses required for rejection of transplanted allografts and graft-versus-host disease. Selective inhibition of PKC-θ is therefore considered as a potential treatment for prevention of autoimmune diseases and allograft rejection. PMID:22876242

  9. The relationship between atopy and neurological manifestations in HTLV-1 infection.

    PubMed

    Verde, Raquel Crisóstomo Lima; Carneiro Neto, José Abraão; Santos, Silvane Maria Braga; Carvalho, Edgar Marcelino; Lessa, Marcus Miranda

    2018-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1)induces exaggerated Th1 responses, whereas atopy is associated with exacerbated Th2 responses. Here, a cross-sectional study compared the prevalence of atopy in HTLV-1 carriers and HAM/TSP patients. It also compared the spontaneous cytokine production in HTLV-1-infected individuals. A retrospective cohort study evaluated the development of neurological manifestations in atopic and non-atopic carriers. Atopic HAM/TSP patients with high IFN-γ production exhibited higher IL-5 levels than non-atopic patients. Allergic rhinitis accelerated the development of Babinski signals and overactive bladders. Abnormal Th1 and Th2 responses coexist in HTLV-1-infected individuals and allergic diseases may worsen the clinical course of HTLV-1 infections.

  10. Non-invasive, epicutaneous immunisation with toxoid in deformable vesicles protects mice against tetanus, chiefly owing to a Th2 response.

    PubMed

    Chopra, Amla; Cevc, Gregor

    2014-06-02

    A non-invasive, intra/transcutaneous immunisation of mice with a suitable combination of tetanus toxoid, ultradeformable vesicle (Transfersome®) carrier, and monophosphoryl lipid A adjuvant targets immuno-competent cells in a body and can protect 100% of the tested mice against an otherwise lethal (50×LD50) parenteral tetanus toxin challenge. The late immune response to the epicutaneously applied tetanus toxoid in such vesicles consists chiefly of circulating IgG1 and IgG2b antibody isotypes, indicative of a specific Th2 cellular response bias. Immunisations by subcutaneous injections moreover protect 100% of mice against a similar, otherwise lethal, dose of tetanus toxin. However, the immune response to transcutaneous and invasive immunisation differs. The latter elicits mainly IgG1 and IgG2b as well as IgG2a antibody isotypes, indicative of a mixed Th1/Th2 response. The cytokine response of the intra/transcutaneously and subcutaneously immunised mice reflects the difference in the organ-specific manner. IFN-γ concentration is appreciably increased in the draining lymph nodes and IL-10 in spleen. Since tetanus is a neutral antigen, both the Th1-specific IFN-γ and the Th-2 specific-IL-10 are observable. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Systemic Lupus Erythematosus: Molecular Mimicry between Anti-dsDNA CDR3 Idiotype, Microbial and Self Peptides-As Antigens for Th Cells.

    PubMed

    Aas-Hanssen, Kristin; Thompson, Keith M; Bogen, Bjarne; Munthe, Ludvig A

    2015-01-01

    Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG(+) B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.

  12. Multiparameter fluorescence imaging for quantification of TH-1 and TH-2 cytokines at the single-cell level

    NASA Astrophysics Data System (ADS)

    Fekkar, Hakim; Benbernou, N.; Esnault, S.; Shin, H. C.; Guenounou, Moncef

    1998-04-01

    Immune responses are strongly influenced by the cytokines following antigenic stimulation. Distinct cytokine-producing T cell subsets are well known to play a major role in immune responses and to be differentially regulated during immunological disorders, although the characterization and quantification of the TH-1/TH-2 cytokine pattern in T cells remained not clearly defined. Expression of cytokines by T lymphocytes is a highly balanced process, involving stimulatory and inhibitory intracellular signaling pathways. The aim of this study was (1) to quantify the cytokine expression in T cells at the single cell level using optical imaging, (2) and to analyze the influence of cyclic AMP- dependent signal transduction pathway in the balance between the TH-1 and TH-2 cytokine profile. We attempted to study several cytokines (IL-2, IFN-(gamma) , IL-4, IL-10 and IL-13) in peripheral blood mononuclear cells. Cells were prestimulated in vitro using phytohemagglutinin and phorbol ester for 36h, and then further cultured for 8h in the presence of monensin. Cells were permeabilized and then simple-, double- or triple-labeled with the corresponding specific fluorescent monoclonal antibodies. The cell phenotype was also determined by analyzing the expression of each of CD4, CD8, CD45RO and CD45RA with the cytokine expression. Conventional images of cells were recorded with a Peltier- cooled CCD camera (B/W C5985, Hamamatsu photonics) through an inverted microscope equipped with epi-fluorescence (Diaphot 300, Nikon). Images were digitalized using an acquisition video interface (Oculus TCX Coreco) in 762 by 570 pixels coded in 8 bits (256 gray levels), and analyzed thereafter in an IBM PC computer based on an intel pentium processor with an adequate software (Visilog 4, Noesis). The first image processing step is the extraction of cell areas using an edge detection and a binary thresholding method. In order to reduce the background noise of fluorescence, we performed an opening procedure of the original image using a structuring element. The opened image was therefore subtracted from the original one, and the gray intensities were subsequently measured. Fluorescence intensities are mapped in MD representation using Matlab software. Consequently, quantitative comparative expression of intracellular cytokines and cell membrane markers was achieved. Using this technique, we showed that CD4+ and CD8+T lymphocytes expressed a large panel of cytokines, and that protein kinase A (PKA) activation pathway induced a polarization of activated human T cells to the TH-2 type profile. Data also showed different sensitivities of CD45 RO/CD45RA lymphocytes to the activation of PKA, thus suggesting the implication of memory CD4+- and CD8+-T cells in the T cell specific immune and inflammatory processes and their control by PKA activation pathway. Finally, this method represents a powerful tool for the detection and quantification of intracellular cytokine expression and the analysis of the functional properties of T lymphocytes during immune responses.

  13. Down-regulation of poison ivy/oak-induced contact sensitivity by treatment with a class II MHC binding peptide:hapten conjugate.

    PubMed

    Gelber, C; Gemmell, L; McAteer, D; Homola, M; Swain, P; Liu, A; Wilson, K J; Gefter, M

    1997-03-01

    Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.

  14. AllergoOncology - the impact of allergy in oncology: EAACI position paper.

    PubMed

    Jensen-Jarolim, E; Bax, H J; Bianchini, R; Capron, M; Corrigan, C; Castells, M; Dombrowicz, D; Daniels-Wells, T R; Fazekas, J; Fiebiger, E; Gatault, S; Gould, H J; Janda, J; Josephs, D H; Karagiannis, P; Levi-Schaffer, F; Meshcheryakova, A; Mechtcheriakova, D; Mekori, Y; Mungenast, F; Nigro, E A; Penichet, M L; Redegeld, F; Saul, L; Singer, J; Spicer, J F; Siccardi, A G; Spillner, E; Turner, M C; Untersmayr, E; Vangelista, L; Karagiannis, S N

    2017-06-01

    Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both antitumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Coincident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the crosstalk between allergic response and cancer is paving the way for new avenues of treatment. © 2016 John Wiley & Sons A/S . Published by John Wiley & Sons Ltd.

  15. AllergoOncology - The impact of Allergy in Oncology. EAACI Position Paper

    PubMed Central

    Jensen-Jarolim, E; Bax, HJ; Bianchini, R; Capron, M; Corrigan, C; Castells, M; Dombrowicz, D; Daniels-Wells, TR; Fazekas, J; Fiebiger, E; Gatault, S; Gould, HJ; Janda, J; Josephs, DH; Karagiannis, P; Levi-Schaffer, F; Meshcheryakova, A; Mechtcheriakova, D; Mekori, Y; Mungenast, F; Nigro, EA; Penichet, ML; Redegeld, F; Saul, L; Singer, J; Spicer, JF; Siccardi, AG; Spillner, E; Turner, MC; Untersmayr, E; Vangelista, L; Karagiannis, SN

    2017-01-01

    Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both anti-tumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Co-incident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intra-tumoural innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the cross-talk between allergic response and cancer is paving the way for new avenues of treatment. PMID:28032353

  16. Panax Notoginseng Saponin Controls IL-17 Expression in Helper T Cells

    PubMed Central

    Wei, Jia-Ru; Wen, Xiaofeng; Bible, Paul W.; Li, Zhiyu; Nussenblatt, Robert B.

    2017-01-01

    Abstract Purpose: Panax Notoginseng, a traditional Chinese medicine, is known as an anti-inflammatory herb. However, the molecular mechanism by which it controls helper T cell mediated immune responses is largely unknown. Methods: Naive CD4+ T cells isolated from healthy donors, patients with Behcet's disease, and C57BL/6 mice were polarized into Th1, Th17, and Treg cells. Proliferation and cytokine expression were measured in these cells with the presence or absence of Panax Notoginseng saponins (PNS). Genomewide expression profiles of Th1, Th17, and Treg cells were assessed using Affymetrix microarray analysis. Results: We found that PNS control the proliferation and differentiation of Th17 cells by globally downregulating the expression of inflammatory cytokines and cell cycle genes. Conclusions: These findings demonstrated that PNS function as an anti-inflammatory agent through directly targeting Th17 cell mediated immune response. PMID:28051353

  17. Myocardial Gene Expression of T-bet, GATA-3, Ror-γt, FoxP3, and Hallmark Cytokines in Chronic Chagas Disease Cardiomyopathy: An Essentially Unopposed TH1-Type Response

    PubMed Central

    Nogueira, Luciana Gabriel; Santos, Ronaldo Honorato Barros; Fiorelli, Alfredo Inácio; Mairena, Eliane Conti; Benvenuti, Luiz Alberto; Bocchi, Edimar Alcides; Stolf, Noedir Antonio; Kalil, Jorge; Cunha-Neto, Edecio

    2014-01-01

    Background. Chronic Chagas disease cardiomyopathy (CCC), a late consequence of Trypanosoma cruzi infection, is an inflammatory cardiomyopathy with prognosis worse than those of noninflammatory etiology (NIC). Although the T cell-rich myocarditis is known to play a pathogenetic role, the relative contribution of each of the functional T cell subsets has never been thoroughly investigated. We therefore assessed gene expression of cytokines and transcription factors involved in differentiation and effector function of each functional T cell subset (TH1/TH2/TH17/Treg) in CCC, NIC, and heart donor myocardial samples. Methods and Results. Quantitative PCR showed markedly upregulated expression of IFN-γ and transcription factor T-bet, and minor increases of GATA-3; FoxP3 and CTLA-4; IL-17 and IL-18 in CCC as compared with NIC samples. Conversely, cytokines expressed by TH2 cells (IL-4, IL-5, and IL-13) or associated with Treg (TGF-β and IL-10) were not upregulated in CCC myocardium. Expression of TH1-related genes such as T-bet, IFN-γ, and IL-18 correlated with ventricular dilation, FoxP3, and CTLA-4. Conclusions. Results are consistent with a strong local TH1-mediated response in most samples, possibly associated with pathological myocardial remodeling, and a proportionally smaller FoxP3+CTLA4+ Treg cell population, which is unable to completely curb IFN-γ production in CCC myocardium, therefore fueling inflammation. PMID:25152568

  18. Cellular and Molecular Mechanisms of TSLP Function in Human Allergic Disorders - TSLP Programs the “Th2 code” in Dendritic Cells

    PubMed Central

    Ito, Tomoki; Liu, Yong-Jun; Arima, Kazuhiko

    2013-01-01

    Thymic stromal lymphopoietin (TSLP) has been recently implicated as a key molecule for initiating allergic inflammation at the epithelial cell-dendritic cell (DC) interface. In humans, aberrant TSLP expression is observed in allergic tissues, such as lesional skins of atopic dermatitis, lungs of asthmatics, nasal mucosa of atopic rhinitis and nasal polyps, and ocular surface of allergic keratoconjunctivitis. TSLP is produced predominantly by damaged epithelial cells and stimulates myeloid DCs (mDCs). TSLP-activated mDCs can promote the differentiation of naïve CD4+ T cells into a Th2 phenotype and the expansion of CD4+ Th2 memory cells in a unique manner dependent on OX40L, one of the tumor necrosis factor superfamily members with Th2-promoting function, and lack of production of IL-12. From a genetic point of view, multiple genome-wide association studies have repeatedly identified the TSLP gene as one of the loci associated with susceptibility to allergic diseases. Thus, TSLP is a rational therapeutic target for the treatment of allergic disorders. Elucidating the mechanisms that regulate TSLP expression and the effects of TSLP on orchestrating the immune response toward a Th2 phenotype is essential for developing anti-TSLP therapy. PMID:22189594

  19. Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures

    PubMed Central

    Maxwell, Gerald D.; Reid, Kate; Elefanty, Andrew; Bartlett, Perry F.; Murphy, Mark

    1996-01-01

    Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons. PMID:8917581

  20. Effect of bacterial endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics.

    PubMed

    Koch, Andrea; Knobloch, Jürgen; Dammhayn, Cathrin; Raidl, Maria; Ruppert, Andrea; Hag, Haitham; Rottlaender, Dennis; Müller, Katja; Erdmann, Erland

    2007-11-01

    Epidemiological evidence, in vitro studies and animal models suggest that exposure to the bacterial endotoxin lipopolysaccharide (LPS) can influence the development and severity of asthma. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 and 2 responses, it is unclear whether the LPS ligand TLR 4 is expressed on CD4(+) and CD8(+) T-lymphocytes and if so, whether LPS could modulate the T(H)1 or T(H)2 response in this context. The present authors have, therefore, examined the expression of TLR 4 on peripheral blood CD4(+) and CD8(+) T-lymphocytes using RT-PCR method and FACS analyses. Furthermore, the authors have studied the IL-12-induced expression of the T(H)1-associated cytokine INF-gamma and the IL-4-induced expression of the T(H)2-specific cytokine IL-5 in the presence of LPS using ELISA and compared nine atopic asthmatic subjects and eleven nonatopic normal volunteers. There was an increased anti-CD3/anti-CD28-induced IL-5 expression in T cells of asthmatics compared with normals (p<0.01). In the presence of IL-4 (10 ng/ml), there was an additional increase in IL-5 expression and this additional increase was greater in T cells of normals compared with asthmatics (p<0.05). There was an expression of INF-gamma in anti-CD3/anti-CD28-induced T-lymphocytes without differences between both groups (NS). In the presence of IL-12 (10 ng/ml), there was an increase in INF-gamma release without differences between normals and asthmatics (NS). In the presence of different concentrations of LPS (10 ng/ml, 1 mug/ml), there was a decrease in IL-4-induced IL-5 expression without differences in both groups, indicating an intact T(H)2 response to bacterial endotoxin LPS in asthma. Interestingly, LPS increased the IL-12-induced INF-gamma release in a concentration-dependent manner in T-lymphocytes of normals but this could not be found in T cells of asthmatics, indicating an impaired T(H)1 response to bacterial endotoxin LPS in asthma. In addition, there was a TLR 4 expression on CD4(+) T-lymphocytes of normals and to a lesser extent in asthmatics but this TLR 4 expression could not be found on CD8(+) T cells of both groups. In conclusion, there may be an impaired concentration-dependent LPS-induced T(H)1 rather than a T(H)2 response in allergic adult asthmatics compared with normal volunteers. One reason for this could be a reduced TLR 4 expression on CD4(+) T-lymphocytes of asthmatic subjects.

  1. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate With Borrelia burgdorferi Antibodies During Early Infection and With Autoantibodies Late in the Illness in Patients With Antibiotic-Refractory Lyme Arthritis

    PubMed Central

    Sulka, Katherine B.; Pianta, Annalisa; Crowley, Jameson T.; Arvikar, Sheila L.; Anselmo, Anthony; Sadreyev, Ruslan; Steere, Allen C.

    2017-01-01

    Abstract Background. Control of Lyme disease is attributed predominantly to innate and adaptive T-helper 1 cell (TH1) immune responses, whereas the role of T-helper 17 cell (TH17) responses is less clear. Here we characterized these inflammatory responses in patients with erythema migrans (EM) or Lyme arthritis (LA) to elucidate their role early and late in the infection. Methods. Levels of 21 cytokines and chemokines, representative of innate, TH1, and TH17 immune responses, were assessed by Luminex in acute and convalescent sera from 91 EM patients, in serum and synovial fluid from 141 LA patients, and in serum from 57 healthy subjects. Antibodies to Borrelia burgdorferi or autoantigens were measured by enzyme-linked immunosorbent assay. Results. Compared with healthy subjects, EM patients had significantly higher levels of innate, TH1, and TH17-associated mediators (P ≤ .05) in serum. In these patients, the levels of inflammatory mediators, particularly TH17-associated cytokines, correlated directly with B. burgdorferi immunoglobulin G antibodies (P ≤ .02), suggesting a beneficial role for these responses in control of early infection. Late in the disease, in patients with LA, innate and TH1-associated mediators were often >10-fold higher in synovial fluid than serum. In contrast, the levels of TH17-associated mediators were more variable, but correlated strongly with autoantibodies to endothelial cell growth factor, matrix metalloproteinase 10, and apolipoprotein B-100 in joints of patients with antibiotic-refractory LA, implying a shift in TH17 responses toward an autoimmune phenotype. Conclusions. Patients with Lyme disease often develop pronounced TH17 immune responses that may help control early infection. However, late in the disease, excessive TH17 responses may be disadvantageous by contributing to autoimmune responses associated with antibiotic-refractory LA. PMID:28077518

  2. Chitosan Nanoparticles Act as an Adjuvant to Promote both Th1 and Th2 Immune Responses Induced by Ovalbumin in Mice

    PubMed Central

    Wen, Zheng-Shun; Xu, Ying-Lei; Zou, Xiao-Ting; Xu, Zi-Rong

    2011-01-01

    The study was conducted to investigate the promoted immune response to ovalbumin in mice by chitosan nanoparticles (CNP) and its toxicity. CNP did not cause any mortality or side effects when mice were administered subcutaneously twice with a dose of 1.5 mg at 7-day intervals. Institute of Cancer Research (ICR) mice were immunized subcutaneously with 25 μg ovalbumin (OVA) alone or with 25 μg OVA dissolved in saline containing Quil A (10 μg), chitosan (CS) (50 μg) or CNP (12.5, 50 or 200 μg) on days 1 and 15. Two weeks after the secondary immunization, serum OVA-specific antibody titers, splenocyte proliferation, natural killer (NK) cell activity, and production and mRNA expression of cytokines from splenocytes were measured. The serum OVA-specific IgG, IgG1, IgG2a, and IgG2b antibody titers and Con A-, LPS-, and OVA-induced splenocyte proliferation were significantly enhanced by CNP (P < 0.05) as compared with OVA and CS groups. CNP also significantly promoted the production of Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines and up-regulated the mRNA expression of IL-2, IFN-γ and IL-10 cytokines in splenocytes from the immunized mice compared with OVA and CS groups. Besides, CNP remarkably increased the killing activities of NK cells activity (P < 0.05). The results suggested that CNP had a strong potential to increase both cellular and humoral immune responses and elicited a balanced Th1/Th2 response, and that CNP may be a safe and efficacious adjuvant candidate suitable for a wide spectrum of prophylactic and therapeutic vaccines. PMID:21747747

  3. Interleukin-2 and other cytokines in candidiasis: expression, clinical significance, and future therapeutic targets.

    PubMed

    Rodríguez-Cerdeira, Carmen; Carnero-Gregorio, Miguel; López-Barcenas, Adriana; Fabbrocini, Gabriella; Sanchez-Blanco, Elena; Alba-Menendez, Alfonso; Guzmán, Roberto Arenas

    2018-06-01

    Susceptibility to Candida spp. infection is largely determined by the status of host immunity, whether immunocompromised/immunodeficient or immunocompetent. Interleukin-2 (IL-2), a potent lymphoid cell growth factor, is a four-α-helix bundle cytokine induced by activated T cells with two important roles: the activation and maintenance of immune responses, and lymphocyte production and differentiation. We reviewed the roles of cytokines as immune stimulators and suppressors of Candida spp. infections as an update on this continuously evolving field. We performed a comprehensive search of the Cochrane Central Register of Controlled Trials, Medline (PubMed), and Embase databases for articles published from March 2010 to March 2016 using the following search terms: interleukins, interleukin-2, Candida spp., and immunosuppression. Data from our own studies were also reviewed. Here, we provide an overview focusing on the ability of IL-2 to induce a large panel of trafficking receptors in skin inflammation and control T helper (Th)2 cytokine production in response to contact with Candida spp. Immunocompromised patients have reduced capacity to secrete Th1-related cytokines such as IL-2. The ability to secrete the Th1-related cytokine IL-2 is low in immunocompromised patients. This prevents an efficient Th1 immune response to Candida spp. antigens, making immunocompromised patients more susceptible to candidal infections.

  4. Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection

    PubMed Central

    Muir, Roshell; Metcalf, Talibah; Tardif, Virginie; Takata, Hiroshi; Phanuphak, Nittaya; Kroon, Eugene; Colby, Donn J.; Trichavaroj, Rapee; Valcour, Victor; Robb, Merlin L.; Michael, Nelson L.; Ananworanich, Jintanat; Trautmann, Lydie; Haddad, Elias K.

    2016-01-01

    The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2. The cTfh/B cell cocultures showed lower B cell survival and IgG secretion at stage 3 compared to stage 1/2. This coincided with lower IL-10 and increased RANTES and TNF-α suggesting a role for inflammation in altering cTfh and B cell responses. Elevated plasma viral load in stage 3 was found to correlate with decreased cTfh-mediated B cell IgG production indicating a role for increased viremia in cTfh impairment and dysfunctional humoral response. Phenotypic perturbations were also evident in the mature B cell compartment, most notably a decrease in resting memory B cells in stage 3 compared to stage 1/2, coinciding with higher viremia. Our coculture assay also suggested that intrinsic memory B cell defects could contribute to the impaired response despite at a lower level. Overall, cTfh-mediated B cell responses are significantly altered in stage 3 compared to stage 1/2, coinciding with increased inflammation and a reduction in memory B cells. These data suggest that early ART for acutely HIV infected individuals could prevent immune dysregulation while preserving cTfh function and B cell memory. PMID:27463374

  5. Garlic induces a shift in cytokine pattern in Leishmania major-infected BALB/c mice.

    PubMed

    Ghazanfari, T; Hassan, Z M; Ebtekar, M; Ahmadiani, A; Naderi, G; Azar, A

    2000-11-01

    The regulation of T helper (Th)1- and Th2-type cytokine patterns is important in the final outcome of leishmaniasis in human and murine models. We examined the efficacy of garlic therapy or a combination of garlic and an antimonial drug (glucantime) in promoting healing and regulation of Th1/Th2 cytokine patterns in highly susceptible BALB/c mice infected with Leishmania major. Separate groups of infected mice received 20 mg/kg/day garlic, 60 mg/kg/day glucantime or a combination of the two, from day 30 after infection for 2 weeks. An enzyme-linked immunosorbant assay (ELISA) was performed on spleen cell culture supernatants for interferon(IFN)-gamma interleukin(IL)-2, IL-4 and IL-10. The results indicate that garlic therapy is more effective than the usual antileishmanial drug in curing the infection. Garlic-treated mice developed Th1-type cytokine responses. In contrast, glucantime therapy led to a Th2-type response in the control group with a lower level of IL-2. However, a combination of garlic and glucantime treatment was more effective than either treatment alone, and resulted in a Th1-type response similar to that which developed with garlic treatment. These results suggest that garlic extract in combination with an antimonial drug, may provide effective therapy against L. major. The immunomodulatory properties of garlic were elucidated in terms of shifting the cytokine response to a Th1-type pattern and therefore causing the protective response.

  6. Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant.

    PubMed

    Borsutzky, Stefan; Fiorelli, Valeria; Ebensen, Thomas; Tripiciano, Antonella; Rharbaoui, Faiza; Scoglio, Arianna; Link, Claudia; Nappi, Filomena; Morr, Michael; Buttó, Stefano; Cafaro, Aurelio; Mühlradt, Peter F; Ensoli, Barbara; Guzmán, Carlos A

    2003-06-01

    A major requirement for HIV/AIDS research is the development of a mucosal vaccine that stimulates humoral and cell-mediated immune responses at systemic and mucosal levels, thereby blocking virus replication at the entry port. Thus, a vaccine prototype based on biologically active HIV-1 Tat protein as antigen and the synthetic lipopeptide, macrophage-activating lipopeptide-2 (MALP-2), asa mucosal adjuvant was developed. Intranasal administration to mice stimulated systemic and mucosal anti-Tat antibody responses, and Tat-specific T cell responses, that were more efficient than those observed after i.p. immunization with Tat plus incomplete Freund's adjuvant. Major linear B cell epitopes mapped within aa 1-20 and 46-60, whereas T cell epitopes were identified within aa 36-50 and 56-70. These epitopes have also been described in vaccinated primates and in HIV-1-infected individuals with better prognosis. Analysis of the anti-Tat IgG isotypes in serum, and the cytokine profile of spleen cells indicated that a dominant Th1 helper response was stimulated by Tat plus MALP-2, as opposed to the Th2 response observed with Tat plus incomplete Freund's adjuvant. Tat-specific IFN-gamma-producing cells were significantly increased only in response to Tat plus MALP-2. These data suggest that Malp-2 may represent an optimal mucosal adjuvant for candidate HIV vaccines based on Tat alone or in combination with other HIV antigens.

  7. Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance

    PubMed Central

    Ensminger, Stephan M.; Spriewald, Bernd M.

    2012-01-01

    Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401

  8. Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice.

    PubMed

    Ye, Jing; Ji, Qingwei; Liu, Jianfang; Liu, Ling; Huang, Ying; Shi, Ying; Shi, Lei; Wang, Menglong; Liu, Mengling; Feng, Ying; Jiang, Huimin; Xu, Yao; Wang, Zhen; Song, Junlong; Lin, Yingzhong; Wan, Jun

    2017-10-03

    CD4+ T helper (Th) cells, including Th1, Th2, and Th17 cells, play critical roles in angiotensin II-induced hypertension. Th22 cells, a novel subset of Th cells, take part in cardiovascular diseases by producing IL-22 (interleukin 22). This study aimed to investigate whether IL-22 is involved in hypertension. Th22 cells and IL-22 levels were detected in angiotensin II-infused mice, and the results showed that Th22 cells and IL-22 levels significantly increased. To determine the effect of Th22/IL-22 on blood pressure regulation, angiotensin II-infused mice were treated with recombinant mouse IL-22, an anti-IL-22 neutralizing monoclonal antibody, or control. Treatment with recombinant IL-22 resulted in increased blood pressure, amplified inflammatory responses, and aggravated endothelial dysfunction, whereas the anti-IL-22 neutralizing monoclonal antibody decreased blood pressure, reduced inflammatory responses, and attenuated endothelial dysfunction. To determine whether the STAT3 (signal transducer and activator of transcription 3) pathway mediates the effect of IL-22 on blood pressure regulation, the special STAT3 pathway inhibitor S31-201 was administered to mice treated with recombinant IL-22. S31-201 treatment significantly ameliorated the IL-22 effects of increased blood pressure and endothelial dysfunction. In addition, serum IL-22 levels were significantly increased in hypertensive patients compared with healthy persons. Correlation analysis showed a positive correlation between IL-22 levels and blood pressure. IL-22 amplifies the inflammatory response, induces endothelial dysfunction and promotes blood pressure elevation in angiotensin II-induced hypertensive mice. The STAT3 pathway mediates the effect of IL-22 on hypertension. Blocking IL-22 may be a novel therapeutic strategy to prevent and treat hypertension. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice

    NASA Astrophysics Data System (ADS)

    Das, Ishani; Padhi, Avinash; Mukherjee, Sitabja; Dash, Debi P.; Kar, Santosh; Sonawane, Avinash

    2017-04-01

    The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.

  10. Microwave ablation combined with OK-432 induces Th1-type response and specific antitumor immunity in a murine model of breast cancer.

    PubMed

    Li, Li; Wang, Wei; Pan, Hong; Ma, Ge; Shi, Xinyi; Xie, Hui; Liu, Xiaoan; Ding, Qiang; Zhou, Wenbin; Wang, Shui

    2017-01-31

    Minimally invasive therapies, such as microwave ablation (MWA), are widely used for the treatment of solid tumors. Previous studies suggest that MWA is feasible for the treatment of small breast cancer, and thermal ablation may induce adaptive antitumor immunity. However, the induced immune responses are mostly weak, and the immunomodulation effects of MWA in breast cancer are unclear. Immunostimulant OK-432 can induce tumor-specific T-cell responses and may augment the immunity induced by MWA. We treated 4T1 breast cancer bearing BALB/c mice with MWA, OK-432, MWA plus OK-432, or left without treatment. Survival time was evaluated with the Kaplan-Meyer method comparing survival curves by log-rank test. On day 25 after ablation, surviving mice received tumor rechallenge, and the rechallenged tumor volumes were calculated every 5 days. Immunohistochemistry and flow cytometry were used to evaluate the T-cell immune responses in ablated tissues and spleens. The tumor-specific immunity was assessed by enzyme-linked immunospot assays. Besides, the cytokine patterns were identified from enzyme-linked immunosorbent assay. Microwave ablation plus OK-432 resulted in longer survival than single treatment and protect most surviving mice from tumor rechallenge. Both local and systemic T-cell responses were induced by MWA and were further enhanced by subsequent administration of OK-432. Moreover, the combination of MWA and OK-432 induced stronger tumor-specific immune responses than MWA alone. In addition, OK-432 and MWA synergistically promoted the production of Th1-type but not Th2-type cytokines, and polarized T-cell responses to Th1-dominant state. The T-cell immune responses were activated by MWA in breast cancer. Furthermore, the combination of MWA and OK-432 induced Th1-type response and elicited specific antitumor immunity.

  11. Premalignant lesions skew spleen cell responses to immune modulation by adipocytes.

    PubMed

    Vielma, Silvana A; Klein, Richard L; Levingston, Corinne A; Young, M Rita I

    2013-05-01

    Obesity can promote a chronic inflammatory state and is associated with an increased risk for cancer. Since adipocytes can produce mediators that can regulate conventional immune cells, this study sought to determine if the presence of premalignant oral lesions would skew how immune cells respond to adipocyte-derived mediators to create an environment that may be more favorable for their progression toward cancer. While media conditioned by adipocytes stimulated normal spleen cell production of the T helper (Th) type-1 cytokines interleukin (IL)-2, interferon-γ (IFN-γ), IL-12 and granulocyte-monocyte colony-stimulating factor (GM CSF), media from premalignant lesion cells either blocked or had no added affect on the adipocyte-stimulated Th1 cytokine production. In contrast, media conditioned by premalignant lesion cells exacerbated adipocyte-stimulated spleen cell production of the Th2 cytokines IL-10 and IL-13, although it did not further enhance the adipocyte-stimulated spleen cell production of IL-4 and TGF-β. The premalignant lesion environment also heightened the adipocyte-stimulated spleen cell production of the inflammatory mediators IL 1α, IL-1β, IL-6 and IL-9, although it did not further increase the adipocyte-stimulated production of tumor necrosis factor-α (TNF-α). IL 17 production was unaffected by the adipocyte-derived mediators, but was synergistically triggered by adding media from premalignant lesion cells. These stimulatory effects on spleen cell production of Th2 and inflammatory mediators were not induced in the absence of media conditioned by adipocytes. In contrast, media conditioned by adipocytes did not stimulate production of predominantly monocyte-derived chemokine C-X-C motif ligand (CXCL)9, chemokine C-C motif ligand (CCL)3 or CCL4, although it stimulated production of CCL2 and the predominantly T cell-derived chemokine CCL5, which was the only chemokine whose production was further increased by media from premalignant lesions. These results suggest that the responsiveness of spleen cells to adipocyte-derived mediators is influenced by mediators from premalignant lesion cells to favor conventional immune cell production of a Th2 and inflammatory cytokines.

  12. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the Development of Experimental Food Allergy in IL-10-Deficient Mice.

    PubMed

    Polukort, Stephanie H; Rovatti, Jeffrey; Carlson, Logan; Thompson, Chelsea; Ser-Dolansky, Jennifer; Kinney, Shannon R M; Schneider, Sallie S; Mathias, Clinton B

    2016-06-15

    IL-10 is a key pleiotropic cytokine that can both promote and curb Th2-dependent allergic responses. In this study, we demonstrate a novel role for IL-10 in promoting mast cell expansion and the development of IgE-mediated food allergy. Oral OVA challenge in sensitized BALB/c mice resulted in a robust intestinal mast cell response accompanied by allergic diarrhea, mast cell activation, and a predominance of Th2 cytokines, including enhanced IL-10 expression. In contrast, the development of intestinal anaphylaxis, including diarrhea, mast cell activation, and Th2 cytokine production, was significantly attenuated in IL-10(-/-) mice compared with wild-type (WT) controls. IL-10 also directly promoted the expansion, survival, and activation of mast cells; increased FcεRI expression on mast cells; and enhanced the production of mast cell cytokines. IL-10(-/-) mast cells had reduced functional capacity, which could be restored by exogenous IL-10. Similarly, attenuated passive anaphylaxis in IL-10(-/-) mice could be restored by IL-10 administration. The adoptive transfer of WT mast cells restored allergic symptoms in IL-10(-/-) mice, suggesting that the attenuated phenotype observed in these animals is due to a deficiency in IL-10-responding mast cells. Lastly, transfer of WT CD4 T cells also restored allergic diarrhea and intestinal mast cell numbers in IL-10(-/-) mice, suggesting that the regulation of IL-10-mediated intestinal mast cell expansion is T cell dependent. Our observations demonstrate a critical role for IL-10 in driving mucosal mast cell expansion and activation, suggesting that, in its absence, mast cell function is impaired, leading to attenuated food allergy symptoms. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis.

    PubMed

    Wang, Xiaojia; Podila, Ramakrishna; Shannahan, Jonathan H; Rao, Apparao M; Brown, Jared M

    2013-01-01

    Carbon-based nanomaterials (CBN), such as graphene nanosheets (GNS) and multiwalled carbon nanotubes (MWCNT), have been proposed for potential nanomedicine applications such as biomedical devices and carriers for drug delivery. However, our current understanding regarding the systemic toxicity of these CBN through intravenous (iv) injection is limited. In this study, we compare the immune response resulting from GNS and MWCNT exposure. We hypothesize that iv administration of GNS and MWCNT would result in divergent systemic inflammatory responses due to physicochemical differences between these two CBN. In the lungs of C57BL/6 mice, GNS actuate a Th2 immune response 1 day following iv administration, which consists of neutrophilic influx and a significant increase in interleukin (IL)-5, IL-13, IL-33, and its soluble receptor (sST2) in the bronchoalveolar lavage fluid. MWCNT elicited a significant increase in the messenger ribonucleic acid expression of cytokines in the spleen including IL-4 and IL-33, which are associated with an increase in splenic cell differentiation (CD)4(+) and CD8(+) T-cells in C57BL/6 mice following iv injection. The observed Th2 responses in both the lung and spleen are absent in ST2(-/-) mice administrated GNS or MWCNT, suggesting a critical role for IL-33. In conclusion, the use of GNS or MWCNT as nanocarriers for drug delivery may result in Th2 immune responses that are mediated through the IL-33/ST2 axis and therefore may promote adverse allergic reactions.

  14. Pulmonary arterial remodeling induced by a Th2 immune response

    PubMed Central

    Daley, Eleen; Emson, Claire; Guignabert, Christophe; de Waal Malefyt, Rene; Louten, Jennifer; Kurup, Viswanath P.; Hogaboam, Cory; Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.; Rabinovitch, Marlene; Grunig, Ekkehard; Grunig, Gabriele

    2008-01-01

    Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH. PMID:18227220

  15. A common structural motif in immunopotentiating peptides with sequences present in human autoantigens. Elicitation of a response mediated by monocytes and Th1 cells.

    PubMed

    López-Moratalla, N; Ruíz, E; López-Zabalza, M J; Santiago, E

    1996-12-16

    We have found a common structural motif in human autoantigens, heat shock proteins and viral proteins. Peptides modelled after sequences present in those molecules were synthesized and immunomodulating properties tested. They share a core of 15 amino acid residues and a common pattern ('2-6-11' motif) characterized by requirements at fixed positions with respect to a Pro (position 6); an apolar residue or a Lys at position 2; and a Glu, Asp or Lys at position 11. Any of these peptides, when added to cultures of lymphomononuclear cells, caused the activation of monocytes manifested by a release of IL-1 alpha, IL-1 beta and TNF alpha. A release of INF gamma and IL-2 took also place; this release was abolished by anti-DR antibodies. Neither IL-4 nor IL-5 could be detected. This suggests a presentation by APCs and the appearance of cells with a Th1 phenotype. Monocytes and Th1 cells freshly obtained from 12 patients of Graves' disease, 8 of Hashimoto's disease and 8 of primary biliary cirrhosis exhibited activation features similar to those found in cells from healthy subjects incubated in the presence of peptides with a "2-6-11' motif and representing fragments of autoantigens. Their immunopotentiating properties suggest their involvement in the initiation or progression of the autoimmune response mediated by activated monocytes and Th1 cells.

  16. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response.

    PubMed

    McKallip, Robert J; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2005-03-15

    In the current study, we tested the central hypothesis that exposure to Delta-9-tetrahydrocannabinol (Delta9-THC), the major psychoactive component in marijuana, can lead to enhanced growth of tumors that express low to undetectable levels of cannabinoid receptors by specifically suppressing the antitumor immune response. We demonstrated that the human breast cancer cell lines MCF-7 and MDA-MB-231 and the mouse mammary carcinoma 4T1 express low to undetectable levels of cannabinoid receptors, CB1 and CB2, and that these cells are resistant to Delta9-THC-induced cytotoxicity. Furthermore, exposure of mice to Delta9-THC led to significantly elevated 4T1 tumor growth and metastasis due to inhibition of the specific antitumor immune response in vivo. The suppression of the antitumor immune response was mediated primarily through CB2 as opposed to CB1. Furthermore, exposure to Delta9-THC led to increased production of IL-4 and IL-10, suggesting that Delta9-THC exposure may specifically suppress the cell-mediated Th1 response by enhancing Th2-associated cytokines. This possibility was further supported by microarray data demonstrating the up-regulation of a number of Th2-related genes and the down-regulation of a number of Th1-related genes following exposure to Delta9-THC. Finally, injection of anti-IL-4 and anti-IL-10 mAbs led to a partial reversal of the Delta9-THC-induced suppression of the immune response to 4T1. Such findings suggest that marijuana exposure either recreationally or medicinally may increase the susceptibility to and/or incidence of breast cancer as well as other cancers that do not express cannabinoid receptors and are resistant to Delta9-THC-induced apoptosis.

  17. Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection

    PubMed Central

    Carbo, Adria; Bassaganya-Riera, Josep; Pedragosa, Mireia; Viladomiu, Monica; Marathe, Madhav; Eubank, Stephen; Wendelsdorf, Katherine; Bisset, Keith; Hoops, Stefan; Deng, Xinwei; Alam, Maksudul; Kronsteiner, Barbara; Mei, Yongguo; Hontecillas, Raquel

    2013-01-01

    T helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE)-based and agent-based modeling (ABM) to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN) on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP) in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levels of mucosal Treg) cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ) activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches characterized the induction of mucosal effector and regulatory pathways controlled by PPARγ during H. pylori infection affecting disease outcomes. PMID:24039925

  18. Identification of a T-helper cell epitope on the rotavirus VP6 protein.

    PubMed Central

    Baños, D M; Lopez, S; Arias, C F; Esquivel, F R

    1997-01-01

    In this work, we have studied the T-helper (Th)-cell response against rotavirus, in a mouse model. Adult BALB/c mice were inoculated parenterally with porcine rotavirus YM, and the Th-cell response from spleen cells against the virus and two overlapping fragments of the major capsid protein VP6 (VP6(1-192) and VP6(171-397)) were evaluated in vitro. The Th cells recognized the YM virus and the two protein fragments, suggesting that there are at least two Th-cell epitopes on the VP6 molecule. To study the specificity of Th cells against VP6 at the clonal level, we established two Th-cell hybridomas cross-reactive for the VP6 protein of rotavirus strains YM and SA11. Both hybridomas recognized the VP6(171-397) polypeptide, and a synthetic peptide comprising the amino acids 289 to 302 (RLSFQLVRPPNMTP) of YM VP6 in the context of the major histocompatibility complex class II IEd molecule. The Th-cell hybridomas recognized rotavirus VP6 in a highly cross-reactive fashion, since they could be stimulated by eight different strains of rotavirus, including the murine rotavirus EDIM, that represent five G serotypes and at least two subgroups. The amino acid sequence of the VP6 epitope is highly conserved in most group A rotavirus strains sequenced so far. On the other hand, it was found that Th cells specific for the VP6 epitope may constitute an important proportion of the total polyclonal Th-cell response against rotavirus YM in spleen cells. These results demonstrate that VP6 can be a target for highly cross-reactive Th cells. PMID:8985366

  19. Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection.

    PubMed

    Wang, Beinan; Dileepan, Thamotharampillai; Briscoe, Sarah; Hyland, Kendra A; Kang, Johnthomas; Khoruts, Alexander; Cleary, P Patrick

    2010-03-30

    Recurrent group A Streptococcus (GAS) tonsillitis and associated autoimmune diseases indicate that the immune response to this organism can be ineffective and pathological. TGF-beta1 is recognized as an essential signal for generation of regulatory T cells (Tregs) and T helper (Th) 17 cells. Here, the impact of TGF-beta1 induction on the T-cell response in mouse nasal-associated lymphoid tissue (NALT) following intranasal (i.n.) infections is investigated. ELISA and TGF-beta1-luciferase reporter assays indicated that persistent infection of mouse NALT with GAS sets the stage for TGF-beta1 and IL-6 production, signals required for promotion of a Th17 immune response. As predicted, IL-17, the Th17 signature cytokine, was induced in a TGF-beta1 signaling-dependent manner in single-cell suspensions of both human tonsils and NALT. Intracellular cytokine staining and flow cytometry demonstrated that CD4(+) IL-17(+) T cells are the dominant T cells induced in NALT by i.n. infections. Moreover, naive mice acquired the potential to clear GAS by adoptive transfer of CD4(+) T cells from immunized IL-17A(+)/(+) mice but not cells from IL-17A(-)/(-) mice. These experiments link specific induction of TGF-beta1 by a bacterial infection to an in vivo Th17 immune response and show that this cellular response is sufficient for protection against GAS. The association of a Th17 response with GAS infection reveals a potential mechanism for destructive autoimmune responses in humans.

  20. Follicular helper T cells in immunity and systemic autoimmunity.

    PubMed

    Craft, Joseph E

    2012-05-01

    Follicular helper T (T(FH)) cells are essential for B-cell maturation and immunoglobulin production after immunization with thymus-dependent antigens. Nevertheless, the development and function of T(FH) cells have been less clearly defined than classic CD4(+) effector T-cell subsets, including T-helper-1 (T(H)1), T(H)2 and T(H)17 cells. As such, our understanding of the genesis of T(FH) cells in humans and their role in the development of autoimmunity remains incomplete. However, evidence from animal models of systemic lupus erythematosus (SLE) and patients with systemic autoimmune diseases suggests that these cells are necessary for pathogenic autoantibody production, in a manner analogous to their role in promotion of B-cell maturation during normal immune responses. In this Review, I discuss the findings that have increased our knowledge of T(FH)-cell development and function in normal and aberrant immune responses. Such information might improve our understanding of autoimmune diseases, such as SLE, and highlights the potential of T(FH) cells as therapeutic targets in these diseases.

  1. Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections

    PubMed Central

    Faz-López, Berenice

    2016-01-01

    The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths. PMID:27648452

  2. Enterococcus faecium FC-K Derived from Kimchi Is a Probiotic Strain That Shows Anti-Allergic Activity.

    PubMed

    Rho, Man-Kwang; Kim, Young-Eun; Rho, Hyun-In; Kim, Tae-Rahk; Kim, Yoon-Bum; Sung, Won-Kyung; Kim, Taw-Woo; Kim, Dae-Ok; Kang, Hee

    2017-06-28

    A rise in the occurrence of allergic diseases is attributed to the dysregulated balance of type 1/type 2 immunity, where type 2 T-helper (Th2) cells predominate over type 1 T-helper (Th1) cells, leading to an abnormally increased production of IgE in response to unharmful antigens. Kimchi, a traditional Korean fermented food, is a rich source of beneficial lactic acid bacteria. In this study, we investigated the ability of Enterococcus faecium FC-K derived from kimchi to induce type I immunity in the presence of Th2 polarizing conditions in vitro and in vivo. Stimulation of mouse peritoneal macrophages with E. faecium FC-K induced the production of tumor necrosis factor alpha, interleukin (IL)-6, and IL-12. Under the in vitro Th2 conditions in which splenic T cells were activated in the presence of IL-4, E. faecium FC-K enhanced the ability of T cells to produce interferon (IFN)-γ. Using the ovalbumin (OVA)-induced allergy model, male BALB/c mice receiving E. faecium FC-K reduced the serum level of total IgE, but not that of OVA-specific IgE. Furthermore, the population of activated splenic B cells during OVA immunization was decreased in E. faecium FC-K-treated mice, accounting for a reduction of total IgE in the serum. Restimulating splenocytes from OVA-immunized mice with OVA ex vivo resulted in an increased production of IFN-γ, with no effect on IL-4, in E. faecium FC-Ktreated mice. These observations provide the evidence that E. faecium FC-K can be a beneficial probiotic strain that can modulate the Th2-mediated pathologic response.

  3. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages

    PubMed Central

    Donnelly, Sheila; Stack, Colin M.; O'Neill, Sandra M.; Sayed, Ahmed A.; Williams, David L.; Dalton, John P.

    2008-01-01

    During helminth infections, alternatively activated macrophages (AAMacs) are key to promoting Th2 responses and suppressing Th1-driven inflammatory pathology. Th2 cytokines IL-4 and/or IL-13 are believed to be important in the induction and activation of AAMacs. Using murine models for the helminth infections caused by Fasciola hepatica (Fh) and Schistosoma mansoni (Sm), we show that a secreted antioxidant, peroxiredoxin (Prx), induces alternative activation of macrophages. These activated, Ym1-expressing macrophages enhanced the secretion of IL-4, IL-5, and IL-13 from naive CD4+ T cells. Administration of recombinant FhPrx and SmPrx to wild-type and IL-4−/− and IL-13−/− mice induced the production of AAMacs. In addition, Prx stimulated the expression of markers of AAMacs (particularly, Ym1) in vitro, and therefore can act independently of IL-4/IL-13 signaling. The immunomodulatory property of Prx is not due to its antioxidant activity, as an inactive recombinant variant with active site Cys residues replaced by Gly could also induce AAMacs and Th2 responses. Immunization of mice with recombinant Prx or passive transfer of anti-Prx antibodies prior to infection with Fh not only blocked the induction of AAMacs but also the development of parasite-specific Th2 responses. We propose that Prx activates macrophages as an initial step in the induction of Th2 responses by helminth parasites and is thereby a novel pathogen-associated molecular pattern.—Donnelly, S., Stack, C. M., O'Neill, S. M., Sayed, A. A., Williams, D. L., Dalton, J. P. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. PMID:18708590

  4. Th2 polarization by Der p 1--pulsed monocyte-derived dendritic cells is due to the allergic status of the donors.

    PubMed

    Hammad, H; Charbonnier, A S; Duez, C; Jacquet, A; Stewart, G A; Tonnel, A B; Pestel, J

    2001-08-15

    The polarization of the immune response toward a Th2 or a Th1 profile can be mediated by dendritic cells (DCs) following antigen presentation and interaction with T cells. Costimulatory molecules such as CD80 and CD86 expressed by DCs, the polarizing cytokine environment during DC--T-cell interaction, and also the nature of the antigen are critical in the orientation of the immune response. In this study, the effect of the cysteine protease Der p 1, one of the major allergens of the house dust mite Dermatophagoides pteronyssinus, on these different parameters was evaluated comparatively on monocyte-derived DCs obtained from healthy donors, from pollen-sensitive patients, or from patients sensitive to Dermatophagoides pteronyssinus. Results showed that Der p 1 induced an increase in CD86 expression only on DCs from house dust mite--sensitive patients. This was also associated with a higher capacity to induce T-cell proliferation, a rapid increase in the production of proinflammatory cytokines, tumor necrosis factor--alpha and interleukin (IL)-1 beta, and the type 2 cytokine IL-10. No changes in the release of IL-12 p70 were induced by Der p 1. Finally, purified T cells from house dust mite-sensitive patients stimulated by autologous Der p 1--pulsed DCs preferentially produced IL-4 rather than interferon-gamma. These effects were abolished in the presence of the inactive precursor of Der p 1 (ProDer p 1). Taken together, these data suggest that DCs from house dust mite--sensitive patients, in contrast to DCs from healthy donors and from pollen-sensitive patients, exposed to Der p 1 play a pivotal role in the enhancement of the Th2 response associated with the allergic reaction developed in response to house dust mite exposure. (Blood. 2001;98:1135-1141)

  5. Dendritic cells from the elderly display an intrinsic defect in the production of IL-10 in response to lithium chloride.

    PubMed

    Agrawal, Sudhanshu; Gollapudi, Sastry; Gupta, Sudhir; Agrawal, Anshu

    2013-11-01

    Chronic, low grade inflammation is a characteristic of old age. Innate immune system cells such as dendritic cells (DCs) from the elderly display a pro-inflammatory phenotype associated with increased reactivity to self. Lithium is a well-established anti-inflammatory agent used in the treatment of bipolar disorders. It has also been reported to reduce inflammation in DCs. Here, we investigated whether Lithium is effective in reducing the inflammatory responses in DCs from the elderly. The effect of Lithium Chloride (LiCl) was compared on the response of TLR4 agonist, LPS and TLR2 agonist, PAM3CSK4 stimulated aged and young DCs. LiCl enhanced the production of IL-10 in LPS stimulated young DCs. However, it did not affect TNF-α and IL-6 production. In contrast, in aged DCs, LiCl reduced the secretion of TNF-α and IL-6 in LPS stimulated DCs but did not increase IL-10. LiCl had no significant effect on PAM3CSK4 responses in aged and young DCs. LiCl treated DCs also displayed differences at the level of CD4 T cell priming and polarization. LPS-stimulated young DCs reduced IFN-γ secretion and biased the Th cell response towards Th2/Treg while LiCl treated aged DCs only reduced IFN-γ secretion but did not bias the response towards Th2/Treg. In summary, our data suggests that LiCl reduces inflammation in aged and young DCs via different mechanisms. Furthermore, the effect of LiCl is different on LPS and PAM3CSK4 responses. © 2013.

  6. Altered Memory T-Cell Responses to Bacillus Calmette-Guerin and Tetanus Toxoid Vaccination and Altered Cytokine Responses to Polyclonal Stimulation in HIV-Exposed Uninfected Kenyan Infants.

    PubMed

    Garcia-Knight, Miguel A; Nduati, Eunice; Hassan, Amin S; Gambo, Faith; Odera, Dennis; Etyang, Timothy J; Hajj, Nassim J; Berkley, James Alexander; Urban, Britta C; Rowland-Jones, Sarah L

    2015-01-01

    Implementation of successful prevention of mother-to-child transmission of HIV strategies has resulted in an increased population of HIV-exposed uninfected (HEU) infants. HEU infants have higher rates of morbidity and mortality than HIV-unexposed (HU) infants. Numerous factors may contribute to poor health in HEU infants including immunological alterations. The present study assessed T-cell phenotype and function in HEU infants with a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected parameters at 3 and 12 months of age in HIV-exposed (n = 42) and HU (n = 28) Kenyan infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regulatory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus Toxoid vaccine antigens, and the magnitude and quality of the T cell response following polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal disease markers on the immunological parameters measured was assessed in HEU infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12 months. Conversely, we observed age-dependent differences in the magnitude and polyfunctionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells. These changes mirrored those seen following polyclonal stimulation, where at 3 months, cytokine responses were higher in HEU infants compared to HU infants, and at 12 months, HEU infant cytokine responses were consistently lower than those seen in HU infants. Finally, reduced effector memory Th1 responses to vaccine antigens were observed in HEU infants at 3 and 12 months and higher central memory Th1 responses to M. tuberculosis antigens were observed at 3 months only. Long-term monitoring of vaccine efficacy and T-cell immunity in this vulnerable population is warranted.

  7. Insights into the role of Bcl6 in follicular Th cells using a new conditional mutant mouse model.

    PubMed

    Hollister, Kristin; Kusam, Saritha; Wu, Hao; Clegg, Ninah; Mondal, Arpita; Sawant, Deepali V; Dent, Alexander L

    2013-10-01

    The transcriptional repressor Bcl6 controls development of the follicular Th cell (T(FH)) lineage, but the precise mechanisms by which Bcl6 regulates this process are unclear. A model has been proposed whereby Bcl6 represses the differentiation of T cells into alternative effector lineages, thus favoring T(FH) cell differentiation. Analysis of T cell differentiation using Bcl6-deficient mice has been complicated by the strong proinflammatory phenotype of Bcl6-deficient myeloid cells. In this study, we report data from a novel mouse model where Bcl6 is conditionally deleted in T cells (Bcl6(fl/fl)Cre(CD4) mice). After immunization, programmed death -1 (PD-1)(high) T(FH) cells in Bcl6(fl/fl)Cre(CD4) mice are decreased >90% compared with control mice, and Ag-specific IgG is sharply reduced. Residual PD-1(high)CXCR5(+) T(FH) cells in Bcl6(fl/fl)Cre(CD4) mice show a significantly higher rate of apoptosis than do PD-1(high)CXCR5(+) T(FH) cells in control mice. Immunization of Bcl6(fl/fl)Cre(CD4) mice did not reveal enhanced differentiation into Th1, Th2, or Th17 lineages, although IL-10 expression by CD4 T cells was markedly elevated. Thus, T cell-extrinsic factors appear to promote the increased Th1, Th2, and Th17 responses in germline Bcl6-deficient mice. Furthermore, IL-10 may be a key target gene for Bcl6 in CD4 T cells, which enables Bcl6 to promote the T(FH) cell phenotype. Finally, our data reveal a novel mechanism for the role of Bcl6 in promoting T(FH) cell survival.

  8. Effect of murine exposure to gamma rays on the interplay between Th1 and Th2 lymphocytes

    PubMed Central

    Ghazy, Amany A.; Abu El-Nazar, Salma Y.; Ghoneim, Hossam E.; Taha, Abdul-Rahman M.; Abouelella, Amira M.

    2015-01-01

    Gamma radiation radiotherapy is one of the widely used treatments for cancer. There is an accumulating evidence that adaptive immunity is significantly contributes to the efficacy of radiotherapy. This study is carried out to investigate the effect of gamma rays on the interplay between Th1/Th2 response, splenocyte lymphoproliferative response to polyclonal mitogenic activators and lymphocytic capacity to produce IL-12 and IL-10 in mice. Results showed that exposure of intact spleens to different doses of γ-rays (5, 10, 20 Gy) caused spontaneous and dose-dependent immune stimulation manifested by enhanced cell proliferation and elevated IL-12 production with decreased IL-10 release (i.e., Th1 bias). While exposure of splenocytes suspension to different doses of γ-rays (5, 10, 20 Gy) showed activation in splenocytes stimulated by PWM at 5 Gy then a state of conventional immune suppression that is characterized by being dose-dependent and is manifested by decreased cell proliferation and IL-12 release accompanied by increase in IL-10 production (i.e., Th2 bias). In addition, we investigated the exposure of whole murine bodies to different doses of γ-rays and found that the exposure to low dose γ-rays (0.2 Gy) caused a state of immune stimulation terminated by a remarkable tendency for immune suppression. Exposure to 5 or 10 Gy of γ-rays resulted in a state of immune stimulation (Th1 bias), but exposure to 20 Gy showed a standard state of immune suppression (Th2 bias). The results indicated that apparently we can control the immune response by controlling the dose of γ-rays. PMID:25914644

  9. Synergistic immunosuppression by candida in HIV infection: a cytokine based analysis.

    PubMed

    Bajaj, J S; Singh, A; Aggarwal, S K; Chattopadhya, D; Baveja, U K

    2000-03-01

    Candida is a common opportunistic pathogen in HIV infection and is regarded a signal infection for progression to AIDS. Cytokine imbalances between Th1/Th2 groups have been described in both candida and HIV infections. A study was undertaken to assess the role of candida in furthering immunosuppression in HIV infection based on cytokine levels and CD4 cell counts. 30 Indian subjects were enrolled; 10 HIV positive patients with and 10 without mucosal candidiasis and 10 age matched controls. Th1 cytokines; interleukin (IL) 2, IL 12 and interferon (IFN) gamma, Th2 cytokines; IL 4, IL 6, IL 10 and tumor necrosis factor (TNF) alpha with CD 4 cell counts were estimated using ELISA in all subjects. CD4 cell counts were reduced in both patient groups as compared to controls; significantly more in patients with both HIV and candida infections. There was a decrease in Th1 cytokine levels in all patients; lower levels of Th1 cytokines were seen in patients with both infections. Among the Th2 cytokines, there was a significant increase in the levels of IL 6, IL 10 and TNF alpha in both patient groups; IL 10 and TNF alpha values were significantly raised in patients with dual HIV and candida infections as compared to the other patients. There was no difference in IL 4 values across the subject groups. A positive correlation between CD4 cell counts and Th1 cytokine levels and a negative correlation with Th2 cytokines were noted; these were stronger in patients with both HIV and candidiasis. Thus, there was a Th1/Th2 cytokine imbalance with CD4 cell count reduction in all HIV infected patients, which was more pronounced in patients with both infections. It can be concluded that, owing to the depressed CD4 cell count and Th1 response and increased Th2 cytokines in patients with both candidiasis and HIV as compared to patients with only HIV candidiasis may have a synergistic immunosuppressive effect with HIV in patients with dual infections.

  10. A critical role of Gas6/Axl signal in allergic airway responses during RSV vaccine-enhanced disease.

    PubMed

    Shibata, Takehiko; Ato, Manabu

    2017-11-01

    Respiratory syncytial virus (RSV) is a common virus that causes lower respiratory infections across a wide range of ages. A licensed RSV vaccine is not available because vaccination with formalin-inactivated RSV (FI-RSV) and the subsequent RSV infection cause not only insufficient induction of neutralizing antibodies but also severe allergic airway responses, termed FI-RSV vaccine-enhanced disease (FI-RSV VED). However, the underlying mechanism has not been identified, although a Th2-biased immune response is known to be a hallmark of this disease. Our previous studies have shown that growth arrest-specific 6 (Gas6)/Axl signaling leads to Th2-biased immune responses during fungus-induced allergic airway inflammation. Here, we show that Gas6/Axl signaling also leads to FI-RSV VED and partially identify the mechanism in mice. Inhibiting Gas6/Axl signaling using Gas6-deficient mice, neutralizing antibodies, and a specific inhibitor of Axl attenuated allergic airway hyperresponsiveness, including airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, in addition to increasing interferon-γ levels and the production of RSV-neutralizing IgG2a in FI-RSV VED. Gas6 was produced in lymph nodes during immunization with FI-RSV. Lymph node cells derived from immunized mice produced high levels of Gas6 and Th2 cytokines, but not IFN-γ, after restimulation with RSV. Finally, we found that dendritic cells stimulated with RSV-glycoprotein (G protein) produced Gas6 and that Axl signaling suppressed DC maturation and the induction of IL-12 production by the toll-like receptor 4 agonist RSV-fusion protein. Taken together, these results indicate that RSV-G protein-induced Gas6/Axl signaling causes allergic airway responses during FI-RSV VED.

  11. Changes in the immune response after treatment with benznidazole versus no treatment in patients with chronic indeterminate Chagas disease.

    PubMed

    Vallejo, Alejandro; Monge-Maillo, Begoña; Gutiérrez, Carolina; Norman, Francesca F; López-Vélez, Rogelio; Pérez-Molina, José A

    2016-12-01

    Symptomatic chronic Chagas disease affects up to 40% of patients infected with Trypanosoma cruzi. The lack of reliable early markers of cure after therapy hinders disease management and clinical trials with new drugs. We performed a study with 18 months of follow-up to compare changes in immune parameters and T. cruzi-specific immune responses as surrogate markers of response to therapy between patients treated with benznidazole and untreated patients. This was a pilot, open-label, randomised clinical trial of treatment with benznidazole versus no treatment in patients with indeterminate chronic T. cruzi infection. In both groups we investigated changes in T-cell activation, T-cell subpopulations, regulatory T-cell counts, IL6, and sCD14 levels, and T. cruzi-specific immune responses (Th1, Th2, and Th17 responses). Fourteen patients were included in the study (seven in each group). Median age was 35 years (P 25-75 31-43), 57% were female, and 93% were Bolivian. Benznidazole was administered at 5mg/kg/day for 60days. Three patients discontinued benznidazole owing to adverse reactions and were not evaluated. At the end of the follow-up period, treated patients showed significantly less immune activation and lower regulatory T-cell counts, with an increased Th17 and Th1 response. This randomised pilot clinical trial administering benznidazole to patients with indeterminate chronic Chagas disease brings about changes in the adaptive immunity, leading to a general decrease in inflammatory status. This apparently beneficial response could act as the basis for monitoring new antiparasitic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Role of IL-22– and TNF-α–Producing Th22 Cells in Uveitis Patients with Behçet’s Disease

    PubMed Central

    Kawazoe, Yuko; Imai, Ayano; Kawaguchi, Tatsushi; Horie, Shintaro; Keino, Hiroshi; Takahashi, Masayo; Mochizuki, Manabu

    2013-01-01

    Behçet’s disease is a systemic inflammatory disorder with recurrent episodes of oral ulceration, skin lesions, genital ulceration, and intraocular inflammation (uveitis). The intraocular inflammation is strictly associated with Th effector cells. IL-22 is a member of the IL-10 cytokine family that is involved in inflammatory processes. Recently, Th22 cells were identified as a Th cell population that produces IL-22 and TNF-α and are distinct from Th1, Th2, and Th17 cells. In this study, we established Th22-type T cell clones from ocular samples taken from Behçet’s disease patients with active uveitis. These clones produced large amounts of IL-22 and TNF-α but not the Th1 cytokine IFN-γ and the Th17 cytokine IL-17. CD4+ T cells from the peripheral blood of Behçet’s disease patients differentiated into Th22 cells in the presence of IL-6 and TNF-α in vitro. The polarized Th22 cell lines produced large amounts of IL-22, and the polarized Th1 and Th17 cells also produced IL-22. In the presence of anti–TNF-α– and anti–IL-6–blocking Abs, Behçet’s disease Th22-type T cells failed to produce IL-22. In addition, infliximab-pretreated Th22 cells and Th22-type ocular T cells produced less IL-22 and TNF-α. Moreover, IL-22–producing T cells were isolated from mice with experimental autoimmune uveitis, an animal model of Behçet’s disease, and the intraocular T cells from uveitis models produced large amounts of IL-22 in the presence of retinal Ags. Our results suggest that inflammatory cytokines IL-22 and TNF-α may play a key role in the ocular immune response in Behçet’s disease. PMID:23630362

  13. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness

    PubMed Central

    Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.

    2009-01-01

    Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246

  14. T cell cytokine synthesis at the single-cell level in BALB/c and C57BL/6 mice infected with ectromelia virus.

    PubMed

    Szulc, Lidia; Gieryńska, Małgorzata; Winnicka, Anna; Martyniszyn, Lech; Boratyńska-Jasińska, Anna; Niemiałtowski, Marek

    2012-04-20

    The purpose of the study was to evaluate synthesis of IFN-γ, IL-2, TNF-α (Th1/Tc1) and IL-4 (Th2/Tc2) at CD4+ T and CD8+ T cell level in BALB/c and C57BL/6 mice in the course of infection with ectromelia virus Moscow strain (ECTV-MOS). Synthesis of IFN-γ, IL-2, TNF-α and IL-4 in CD4+ T and CD8+ T cells in draining lymph nodes (DLNs) and spleens of BALB/c and C57BL/6 mice was detected by intracellular staining and flow cytometry analysis. Our results showed an increase in percentage of IFN-γ -synthesizing CD8+ T cells only in DLNs and spleens of C57BL/6 mice at the early stages of infection. Moreover, synthesis of IL-2 by CD4+ and CD8+ T cells occurred earlier and was stronger in C57BL/6 mice compared to BALB/c mice. The increase in TNF-α synthesis by CD4+ T and CD8+ T cells was detected mainly in DLNs of infected animals. We did not observe any changes in the percentage of IL-4-synthesizing T cells (Th2 and Tc2) during ECTV-MOS infection in both strains of mice. Results presented in this study confirmed that during the early phase of infection, C57BL/6 mice mounted a strong Th1 and Tc1 immune response against ECTV-MOS. BALB/c mice that survived the acute stage of mousepox, were able to mount an adequate cellular response to ECTV-MOS, however successful elimination of the virus in susceptible mice may occur more slowly compared to resistant strains of mice. Intracellular detection of IL-4 by flow cytometry was not sensitive enough to distinguish the differences in IL-4-synthesizing Th2 and Tc2 cells between susceptible and resistant strains of mice during ECTV-MOS infection.

  15. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants

    PubMed Central

    Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J.; Shih, J. Wai-Kuo

    2017-01-01

    Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-γ-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biasedpathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-γ demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins. PMID:18675871

  16. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants.

    PubMed

    Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J; Shih, J Wai-Kuo

    2008-10-09

    Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.

  17. Exogenous C3 protein enhances the adaptive immune response to polymicrobial sepsis through down-regulation of regulatory T cells.

    PubMed

    Yuan, Yujie; Ren, Jianan; Cao, Shougen; Zhang, Weiwei; Li, Jieshou

    2012-01-01

    The role of complement system in bridging innate and adaptive immunity has been confirmed in various invasive pathogens. It is still obscure how complement proteins promote T cell-mediated immune response during sepsis. The aim of this study is to investigate the role of exogenous C3 protein in the T-cell responses to sepsis. Sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type C57BL/6 mice, sham-operated mice for control. Human purified C3 protein (HuC3, 1 mg) was intraperitoneally injected at 6 h post-surgery, with 200 μl phosphate-buffered saline as control. The levels of C3 and cytokines, the expression of FOXP3 and NF-κB, and the percentages of CD4(+) T-cell subsets were compared among the groups at given time points. The polymicrobial sepsis produced considerable release of TNF-α and IL-10, and caused complement C3 exhaustion. Exogenous C3 administration markedly improved the 48 h survival rate, as compared with nontreatment (40% vs. 5%, P<0.01). The expression of FOXP3 protein was increased during sepsis, but can be suppressed by HuC3 administration. A single injection of HuC3 postponed the decline of differentiated Th1 cells, and depressed the activation of Th2/Th17 cells. Besides, the Th1-Th2 shift in late stage of sepsis can be controlled under C3 supplementation. The suppression of NF-κB pathway might be related to the appearance of immunocompromise. The study confirmed the important role of exogenous C3 in up-regulation of adaptive immune response to sepsis. The complement pathway would be a pivotal target for severe sepsis management. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. An epitope-specific DerG-PG70 LEAPS vaccine modulates T cell responses and suppresses arthritis progression in two related murine models of rheumatoid arthritis.

    PubMed

    Mikecz, Katalin; Glant, Tibor T; Markovics, Adrienn; Rosenthal, Kenneth S; Kurko, Julia; Carambula, Roy E; Cress, Steve; Steiner, Harold L; Zimmerman, Daniel H

    2017-07-13

    Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Measuring T cell cytokines in allergic upper and lower airway inflammation: can we move to the clinic?

    PubMed

    Bullens, Dominique M A

    2007-06-01

    Recent insights regarding the development of allergic diseases such as allergic rhinitis, asthma and atopic eczema are based on the functional diversity of T helper (Th)1 and Th2 lymphocytes. Th2 cells (secreting Interleukin (IL)-4, IL-5, IL-9 and IL-13) are considered to be responsible for the induction and for many of the manifestations of atopic diseases. Local overproduction of Th2 cytokines at the site of allergic inflammation, and an intrinsic defect in the production of IFN-gamma by Th1 cells in atopic individuals, have now been reported by several authors. Both IFN-gamma and IL-10 have been suggested to play a modulatory role in the induction and maintenance of allergen-specific tolerance in healthy individuals. However, recent studies indicate that Th1 cells, secreting IFN-gamma might cause severe airway inflammation. On the other hand, 'inflammatory T cells' or Th17 cells, producing IL-17, could represent a link between T cell inflammation and granulocytic influx as observed in allergic airway inflammation. We focus in this review on local (at the side of inflammation) T cell cytokine production and cytokine production by circulating T cells (after in vitro restimulation) from individuals with allergic airway disease, rhinitis and/or asthma. We furthermore review the changes in local T cell cytokine production and/or cytokine production by circulating T cells (after restimulation in vitro) from allergic/asthmatic individuals after treatment with anti-inflammatory agents or immunotherapy. Finally, we discuss whether measuring these T cell cytokines in the airways might be of diagnostic importance or could help to follow-up patients with allergy/asthma.

  20. Pattern of Serum Cytokine Expression and T-Cell Subsets in Sickle Cell Disease Patients in Vaso-Occlusive Crisis▿

    PubMed Central

    Musa, Bolanle O. P.; Onyemelukwe, Geoffrey C.; Hambolu, Joseph O.; Mamman, Aisha I.; Isa, Albarka H.

    2010-01-01

    The pathogenesis of sickle vaso-occlusive crisis (VOC) in sickle cell disease (SCD) patients involves the accumulation of rigid sickle cells and the stimulation of an ongoing inflammatory response, as well as the stress of infections. The immune response, via cytokine imbalances and deregulated T-cell subsets, also has been proposed to contribute to the development of VOC. In this study, a panel of high-sensitivity cytokine kits was used to investigate cytokines in the sera of SCD patients in VOC. The results were compared primarily with those for stable SCD patients and secondarily with those for normal healthy people who served as controls. The cytokines studied included interleukin-2 (IL-2), IL-4, and IL-10. Lymphocyte subsets of patients with VOC were also studied and were compared with those of both control groups (20 stable patients without crisis [SCD group] and 20 normal healthy controls [NHC]). The VOC group was notable for remarkably elevated levels of IL-4, among the three cytokines tested, compared with those for the SCD and NHC groups. Patients with VOC also differed from stable SCD patients and NHC by having notably lower IL-10 levels, as well as the lowest ratio of CD4+ to CD8+ T cells (0.7). The patterns of the proinflammatory cytokine IL-2 did not differ between VOC and stable SCD patients, but NHC had significantly lower IL-2 levels than both the VOC and SCD groups. Our results demonstrate coexisting levels, both high and low, of TH1- and TH2-type cytokines, as well as diminished levels of T-cell subsets in VOC. These results are discussed in an effort to better understand the importance of the immune system profile in the pathogenesis of sickle cell VOC. Since the possibility that a cytokine imbalance is implicated in the pathogenesis of sickle cell crisis has been raised, our results should prompt further investigation of the host immune response in terms of TH1 and TH2 balance in sickle cell crisis. PMID:20130127

  1. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections.

    PubMed

    Conti, Heather R; Peterson, Alanna C; Brane, Lucas; Huppler, Anna R; Hernández-Santos, Nydiaris; Whibley, Natasha; Garg, Abhishek V; Simpson-Abelson, Michelle R; Gibson, Gregory A; Mamo, Anna J; Osborne, Lisa C; Bishu, Shrinivas; Ghilardi, Nico; Siebenlist, Ulrich; Watkins, Simon C; Artis, David; McGeachy, Mandy J; Gaffen, Sarah L

    2014-09-22

    Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα(-/-), and Rag1(-/-) mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1-2 d by tongue-resident populations of γδ T cells and CD3(+)CD4(+)CD44(hi)TCRβ(+)CCR6(+) natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-β(-/-) and TCR-δ(-/-) mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-β clonal diversity, and was absent in Rag1(-/-), IL-7Rα(-/-), and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens. © 2014 Conti et al.

  2. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  3. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon.

    PubMed

    Bettini, Sarah; Boutet-Robinet, Elisa; Cartier, Christel; Coméra, Christine; Gaultier, Eric; Dupuy, Jacques; Naud, Nathalie; Taché, Sylviane; Grysan, Patrick; Reguer, Solenn; Thieriet, Nathalie; Réfrégiers, Matthieu; Thiaudière, Dominique; Cravedi, Jean-Pierre; Carrière, Marie; Audinot, Jean-Nicolas; Pierre, Fabrice H; Guzylack-Piriou, Laurence; Houdeau, Eric

    2017-01-20

    Food-grade titanium dioxide (TiO 2 ) containing a nanoscale particle fraction (TiO 2 -NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO 2 -NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer's patches (PP) as observed with the TiO 2 -NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO 2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO 2 -treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO 2 from dietary sources.

  4. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon

    PubMed Central

    Bettini, Sarah; Boutet-Robinet, Elisa; Cartier, Christel; Coméra, Christine; Gaultier, Eric; Dupuy, Jacques; Naud, Nathalie; Taché, Sylviane; Grysan, Patrick; Reguer, Solenn; Thieriet, Nathalie; Réfrégiers, Matthieu; Thiaudière, Dominique; Cravedi, Jean-Pierre; Carrière, Marie; Audinot, Jean-Nicolas; Pierre, Fabrice H.; Guzylack-Piriou, Laurence; Houdeau, Eric

    2017-01-01

    Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer’s patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources. PMID:28106049

  5. Aberrant T-cell function in vitro and impaired T-cell dependent antibody response in vivo in vitamin A-deficient rats.

    PubMed Central

    Wiedermann, U; Hanson, L A; Kahu, H; Dahlgren, U I

    1993-01-01

    We have previously reported that vitamin A deficiency resulted in a reduced IgA antibody response to cholera toxin (CT) after per-oral immunization. In the present investigation we have studied the in vivo and in vitro immune response in vitamin A-deficient rats to two parenterally applied antigens, beta-lactoglobulin (beta-LG) and picrylsulphonic acid (TNP)-Ficoll. The serum IgG and IgM antibody responses to the T-cell dependent antigen beta-LG were significantly lower in the vitamin A-deficient rats than in the pair-fed control rats. No such differences were seen with the IgG and IgM responses to the T-cell independent antigen TNP-Ficoll. However, the biliary IgA and the serum IgE antibodies against both antigens were decreased in the vitamin A-deficient rats. In vitro lymphocyte stimulation with concanavalin A (Con A) or beta-LG gave higher T-cell proliferation rates in the vitamin A-deficient than in the control rats. Interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) levels in supernatants from Con A-stimulated mesenteric lymph node cells were also higher in the vitamin A-deficient rats, while IL-6 levels were decreased, which is consistent with an up-regulated Th1 activity. Proliferation studies on purified accessory cells and T cells from the deficient and the control rats, mixed in different combinations, showed that the T cells, but not the accessory cells, were disturbed in the vitamin A-deficient rats. Despite the increased T-cell activity in vitro the vitamin A-deficient rats had a lower delayed-type hypersensitivity (DTH) reaction than the pair-fed control rats. In conclusion, the increased IL-2 and IFN-gamma levels may reflect an up-regulation of Th1 cell function, while the decreased IgA, IgE and IL-6 levels indicate a suppression of Th2 cells. The disturbed T-lymphocyte function is manifested in vivo as a decreased DTH reaction and suppressed antibody production, the latter possibly due to a lack of B-cell switching and proliferation factors in vitamin A-deficient rats. PMID:8307607

  6. Immunochemoradiotherapy for patients with oral squamous cell carcinoma: augmentation of OK-432-induced helper T cell 1 response by 5-FU and X-ray irradiation.

    PubMed

    Tano, Tomoyuki; Okamoto, Masato; Kan, Shin; Bando, Takashi; Goda, Hiroyuki; Nakashiro, Koh-ichi; Shimodaira, Shigetaka; Koido, Shigeo; Homma, Sadamu; Fujita, Tomonobu; Sato, Mitsunobu; Yamashita, Naomi; Hamakawa, Hiroyuki; Kawakami, Yutaka

    2013-07-01

    Eighty-one patients with oral squamous cell carcinoma (OSCC) received oral fluoropyrimidine UFT and radiotherapy (RT) with or without an immunotherapeutic agent OK-432. Both overall survival and progression-free survival of patients who received RT + UFT + OK-432 were significantly longer than those of patients who received RT + UFT (P = .0075 and P = .0175, respectively). Clinical response was also more favorable in RT + UFT + OK-432 group than in RT + UFT group (P = .0066). Next, in vitro experiments were conducted to examine the effect of 5-fluorouracil (5-FU) and X-ray irradiation in OK-432-induced immunity. Human peripheral blood mononuclear cells stimulated with OK-432 produced helper T cell 1 (Th1)-type cytokines as well as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), which are produced by Th2 and regulatory T cells (Tregs), respectively, and are inhibitory in antitumor immunity. OK-432-induced IL-10 and TGF-β but not Th1 cytokines were significantly inhibited by 5-FU and/or X-ray. 5-FU and X-ray also inhibited the expression of mRNAs for GATA-3 and Foxp3, which are transcription factors for Th2 and Tregs, respectively, but not for T-bet, a transcription factor for Th1. In addition, 5-FU and X-ray decreased the expression of mRNAs for suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Antisense oligonucleotides for SOCS1 and SOCS3 markedly reduced OK-432-induced IL-10 and TGF-β. This is the first report clearly demonstrating that OK-432-based immunotherapy significantly enhanced the therapeutic effects of chemoradiotherapy in patients with OSCC as well as elucidating the mechanism of the synergistic effect of immunochemoradiotherapy in which 5-FU and radiation enhanced OK-432-induced Th1 response mediated by the inhibition of SOCS1 and SOCS3 gene expression.

  7. Immunochemoradiotherapy for Patients with Oral Squamous Cell Carcinoma: Augmentation of OK-432-Induced Helper T Cell 1 Response by 5-FU and X-ray Irradiation1

    PubMed Central

    Tano, Tomoyuki; Okamoto, Masato; Kan, Shin; Bando, Takashi; Goda, Hiroyuki; Nakashiro, Koh-ichi; Shimodaira, Shigetaka; Koido, Shigeo; Homma, Sadamu; Fujita, Tomonobu; Sato, Mitsunobu; Yamashita, Naomi; Hamakawa, Hiroyuki; Kawakami, Yutaka

    2013-01-01

    Eighty-one patients with oral squamous cell carcinoma (OSCC) received oral fluoropyrimidine UFT and radiotherapy (RT) with or without an immunotherapeutic agent OK-432. Both overall survival and progression-free survival of patients who received RT + UFT + OK-432 were significantly longer than those of patients who received RT + UFT (P = .0075 and P = .0175, respectively). Clinical response was also more favorable in RT + UFT + OK-432 group than in RT + UFT group (P = .0066). Next, in vitro experiments were conducted to examine the effect of 5-fluorouracil (5-FU) and X-ray irradiation in OK-432-induced immunity. Human peripheral blood mononuclear cells stimulated with OK-432 produced helper T cell 1 (Th1)-type cytokines as well as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), which are produced by Th2 and regulatory T cells (Tregs), respectively, and are inhibitory in antitumor immunity. OK-432-induced IL-10 and TGF-β but not Th1 cytokines were significantly inhibited by 5-FU and/or X-ray. 5-FU and X-ray also inhibited the expression of mRNAs for GATA-3 and Foxp3, which are transcription factors for Th2 and Tregs, respectively, but not for T-bet, a transcription factor for Th1. In addition, 5-FU and X-ray decreased the expression of mRNAs for suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Antisense oligonucleotides for SOCS1 and SOCS3 markedly reduced OK-432-induced IL-10 and TGF-β. This is the first report clearly demonstrating that OK-432-based immunotherapy significantly enhanced the therapeutic effects of chemoradiotherapy in patients with OSCC as well as elucidating the mechanism of the synergistic effect of immunochemoradiotherapy in which 5-FU and radiation enhanced OK-432-induced Th1 response mediated by the inhibition of SOCS1 and SOCS3 gene expression. PMID:23814492

  8. Blocking Junctional Adhesion Molecule C Enhances Dendritic Cell Migration and Boosts the Immune Responses against Leishmania major

    PubMed Central

    Ballet, Romain; Emre, Yalin; Jemelin, Stéphane; Charmoy, Mélanie; Tacchini-Cottier, Fabienne; Imhof, Beat A.

    2014-01-01

    The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response. PMID:25474593

  9. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family

    PubMed Central

    Hasegawa, Hideaki; Mizoguchi, Izuru; Chiba, Yukino; Ohashi, Mio; Xu, Mingli; Yoshimoto, Takayuki

    2016-01-01

    The interleukin (IL)-6/IL-12 family cytokines have pleiotropic functions and play critical roles in multiple immune responses. This cytokine family has very unique characteristics in that they comprise two distinct subunits forming a heterodimer and each cytokine and receptor subunit shares with each other. The members of this cytokine family are increasing; currently, there are more than six cytokines, including the tentatively named cytokines IL-Y (p28/p40), IL-12 (p35/p40), IL-23 (p19/p40), IL-27 [p28/Epstein–Barr virus-induced protein 3 (EBI3)], IL-35 (p35/EBI3), and IL-39 (p19/EBI3). This family of cytokines covers a very broad range of immune responses, including pro-inflammatory responses, such as helper T (Th)1, Th2, and Th17, to anti-inflammatory responses, such as regulatory T (Treg) cells and IL-10-producing Treg cells. IL-12 is the first member of this family, and IL-12, IL-23, and IL-27 are mainly produced by activated antigen-presenting cells, such as dendritic cells and macrophages. IL-12 plays a critical role in the promotion of Th1 immune responses by inducing interferon-γ production to combat pathogens and malignant tumors. IL-23 induces IL-17 production and is necessary to maintain pathogenic Th17 cells that cause inflammatory and autoimmune diseases. IL-27 was initially reported to play a critical role in promotion of Th1 differentiation; however, subsequent studies revealed that IL-27 has broader stimulatory and inhibitory roles by inducing IL-10-producing Treg cells. IL-35 is produced by forkhead box P3+ Treg cells and activated B cells and has immunosuppressive functions to maintain immune tolerance. The most recently identified cytokine, IL-39, is produced by activated B cells and has pro-inflammatory functions. The cytokine tentatively named IL-Y seems to have anti-inflammatory functions by inhibiting Th1 and Th17 differentiation. In addition, individual cytokine subunits were also shown to have self-standing activities. Thus, promiscuity within the IL-6/IL-12 family cytokines complicates structural and functional clarification and assignment of individual cytokines. A better understanding of the recent advances and expanding diversity in molecular structures and functions of the IL-6/IL-12 family cytokines could allow the creation of novel therapeutic strategies by using them as tools and targeted molecules. PMID:27867385

  11. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies.

    PubMed

    Marciani, Dante J

    2016-06-01

    The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines. © 2016 International Society for Neurochemistry.

  12. BJ-3105, a 6-Alkoxypyridin-3-ol Analog, Impairs T Cell Differentiation and Prevents Experimental Autoimmune Encephalomyelitis Disease Progression

    PubMed Central

    Timilshina, Maheshwor; Kang, Youra; Dahal, Ishmit; You, Zhiwei; Nam, Tae-gyu; Kim, Keuk-Jun

    2017-01-01

    CD4+ T cells are essential in inflammation and autoimmune diseases. Interferon-γ (IFN-γ) secreting T helper (Th1) and IL-17 secreting T helper (Th17) cells are critical for several autoimmune diseases. To assess the inhibitory effect of a given compound on autoimmune disease, we screened many compounds with an in vitro Th differentiation assay. BJ-3105, a 6-alkoxypyridin-3-ol analog, inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells which were activated by T cell receptor (TCR) engagement. BJ-3105 ameliorated the experimental autoimmune encephalomyelitis (EAE) model by reducing Th1 and Th17 generation. Notably, Th cell differentiation was significantly suppressed by BJ-3105 treatment without inhibiting in vitro proliferation of T cells or inducing programmed cell death. Mechanistically, BJ-3105 inhibited the phosphorylation of JAK and its downstream signal transducer and activator of transcription (STAT) that is critical for Th differentiation. These results demonstrated that BJ-3105 inhibits the phosphorylation of STAT in response to cytokine signals and subsequently suppressed the differentiation of Th cell responses. PMID:28095433

  13. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    PubMed Central

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs. PMID:28408906

  14. CD16+ monocytes control T-cell subset development in immune thrombocytopenia

    PubMed Central

    Zhong, Hui; Bao, Weili; Li, Xiaojuan; Miller, Allison; Seery, Caroline; Haq, Naznin; Bussel, James

    2012-01-01

    Immune thrombocytopenia (ITP) results from decreased platelet production and accelerated platelet destruction. Impaired CD4+ regulatory T-cell (Treg) compartment and skewed Th1 and possibly Th17 responses have been described in ITP patients. The trigger for aberrant T-cell polarization remains unknown. Because monocytes have a critical role in development and polarization of T-cell subsets, we explored the contribution of monocyte subsets in control of Treg and Th development in patients with ITP. Unlike circulating classic CD14hiCD16− subpopulation, the CD16+ monocyte subset was expanded in ITP patients with low platelet counts on thrombopoietic agents and positively correlated with T-cell CD4+IFN-γ+ levels, but negatively with circulating CD4+CD25hiFoxp3+ and IL-17+ Th cells. Using a coculture model, we found that CD16+ ITP monocytes promoted the expansion of IFN-γ+CD4+ cells and concomitantly inhibited the proliferation of Tregs and IL-17+ Th cells. Th-1–polarizing cytokine IL-12, secreted after direct contact of patient T-cell and CD16+ monocytes, was responsible for the inhibitory effect on Treg and IL-17+CD4+ cell proliferation. Our findings are consistent with ITP CD16+ monocytes promoting Th1 development, which in turn negatively regulates IL-17 and Treg induction. This underscores the critical role of CD16+ monocytes in the generation of potentially pathogenic Th responses in ITP. PMID:22915651

  15. Different competitive capacities of Stat4- and Stat6-deficient CD4+ T cells during lymphophenia-driven proliferation.

    PubMed

    Sanchez-Guajardo, Vanesa; Borghans, José A M; Marquez, Maria-Elena; Garcia, Sylvie; Freitas, Antonio A

    2005-02-01

    The outcome of an immune response relies on the competitive capacities acquired through differentiation of CD4(+) T cells into Th1 or Th2 effector cells. Because Stat4 and Stat6 proteins are implicated in the Th1 vs Th2 generation and maintenance, respectively, we compare in this study the kinetics of Stat4(-/-) and Stat6(-/-) CD4(+) T cells during competitive bone marrow reconstitution and lymphopenia-driven proliferation. After bone marrow transplantation, both populations reconstitute the peripheral T cell pools equally well. After transfer into lymphopenic hosts, wild-type and Stat6(-/-) CD4(+) T cells show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4(-/-) and Stat6(-/-) CD4(+) T cells are coinjected into the same hosts, the Stat6(-/-) cells become dominant and out-compete Stat4(-/-) cells. These findings suggest that cell activation, through the Stat4 pathway and the down-regulation of Stat6, confers to pro-Th1 T cells a slight proliferation advantage that in a competitive situation has major late repercussions, because it modifies the final homeostatic equilibrium of the populations and favors the establishment of Th1 CD4(+) T cell dominance.

  16. The airway inflammation induced by nasal inoculation of PM2.5 and the treatment of bacterial lysates in rats.

    PubMed

    Shen, Yang; Zhang, Zhi-Hai; Hu, Di; Ke, Xia; Gu, Zheng; Zou, Qi-Yuan; Hu, Guo-Hua; Song, Shang-Hua; Kang, Hou-Yong; Hong, Su-Ling

    2018-06-29

    Particulate matter (PM) is one of the most important environmental issues in China. This study aimed to explore the correlation between PM2.5 and airway inflammation in healthy rats. The PM2.5 group was given an intranasal instillation of PM2.5 suspension on 15 consecutive days, and each received oral saline from day 16 to 90. The BV intervention group was treated as the PM2.5 exposure group, except that BV instead of saline was given daily. A histopathologic examination was performed to evaluate the airway inflammation. The prevalence and function of Th1/Th2/Treg/Th17 cells were detected by flow cytometry and ELISA. The expression of AhR was detected by western blot and real-time PCR. We found that epithelial damage and increased infiltration of inflammatory cell were present in the airways after PM2.5 exposure; there was an immune imbalance of Th cells in the PM2.5 group; the expression of AhR was increased in the airways after PM2.5 exposure. In the PM2.5 + BV group, we demonstrated alleviated immune imbalance and reduced inflammatory cell infiltration in the airways. Our study showed that exposure to PM2.5 induced airway inflammation. The imbalance of Th1/Th2/Treg/Th17 in PM2.5-induced airway inflammation might be associated with activation of the AhR pathway. Oral BV reduces PM2.5-induced airway inflammation and regulates systemic immune responses in rats.

  17. Immunoregulation by Taenia crassiceps and its antigens.

    PubMed

    Peón, Alberto N; Espinoza-Jiménez, Arlett; Terrazas, Luis I

    2013-01-01

    Taenia crassiceps is a cestode parasite of rodents (in its larval stage) and canids (in its adult stage) that can also parasitize immunocompromised humans. We have studied the immune response elicited by this helminth and its antigens in mice and human cells, and have discovered that they have a strong capacity to induce chronic Th2-type responses that are primarily characterized by high levels of Th2 cytokines, low proliferative responses in lymphocytes, an immature and LPS-tolerogenic profile in dendritic cells, the recruitment of myeloid-derived suppressor cells and, specially, alternatively activated macrophages. We also have utilized the immunoregulatory capabilities of this helminth to successfully modulate autoimmune responses and the outcome of other infectious diseases. In the present paper, we review the work of others and ourselves with regard to the immune response induced by T. crassiceps and its antigens, and we compare the advances in our understanding of this parasitic infection model with the knowledge that has been obtained from other selected models.

  18. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Motrich, Ruben D; Breser, María L; Sánchez, Leonardo R; Godoy, Gloria J; Prinz, Immo; Rivero, Virginia E

    2016-03-01

    Pain and inflammation in the absence of infection are hallmarks in chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) patients. The etiology of CP/CPPS is unclear, and autoimmunity has been proposed as a cause. Experimental autoimmune prostatitis (EAP) models have long been used for studying CP/CPPS. Herein, we studied prostate inflammation induction and chronic pelvic pain development in EAP using IL-12p40-KO, IL-4-KO, IL-17-KO, and wild-type (C57BL/6) mice. Prostate antigen (PAg) immunization in C57BL/6 mice induced specific Th1 and Th17 immune responses and severe prostate inflammation and cell infiltration, mainly composed of CD4 T cells and macrophages. Moreover, chronic pelvic pain was evidenced by increased allodynia responses. In immunized IL-17-KO mice, the presence of a prominent PAg-specific Th1 immune response caused similar prostate inflammation and chronic pelvic pain. Furthermore, markedly high PAg-specific Th1 immune responses, exacerbated prostate inflammation, and chronic pelvic pain were detected in immunized IL-4-KO mice. Conversely, immunized IL-12p40-KO mice developed PAg-specific Th2 immune responses, characterized by high IL-4 secretion and neither infiltration nor damage in the prostate. As observed in wild-type control animals, IL12p40-KO mice did not evidence tactile allodynia responses. Our results suggest that, as in patients, chronic pelvic pain is a consequence of prostate inflammation. After PAg immunization, a Th1-associated immune response develops and induces prostate inflammation and chronic pelvic pain. The absence of Th1 or Th2 cytokines, respectively, diminishes or enhances EAP susceptibility. In addition, IL-17 showed not to be essential for pathology induction and chronic pelvic pain development.

  19. Anti-inflammatory potential of a heat-killed Lactobacillus strain isolated from Kimchi on house dust mite-induced atopic dermatitis in NC/Nga mice.

    PubMed

    Choi, C-Y; Kim, Y-H; Oh, S; Lee, H J; Kim, J H; Park, S H; Kim, H J; Lee, S J; Chun, T

    2017-08-01

    Atopic dermatitis (AD) is an allergic skin disease driven by the Th2-prone immune response. Therefore, a fundamental approach to restoring the Th1/Th2 balance is needed to treat AD. Eighteen different Lactobacillus strains isolated from Kimchi were screened to identify those that stimulated immune cells to secret Th1-type or Th2-type cytokines. Lactobacillus brevis NS1401 induced the greatest IFN-γ and IL-12 secretion and the least IL-4 production among the tested Lactobacillus strains. Furthermore, oral administration of heat-killed NS1401 ameliorated the symptoms of dust mite-induced AD in NC/Nga mice by decreasing the serum IgE level and reducing the number of mast cells and eosinophils in lesions. Also, the size and number of cells in the draining lymph nodes of NS1401-administered mice were significantly reduced. In agreement with these results, secretion of a Th1-type cytokine (IFN-γ) and allergen-specific IgG2a were increased, whereas secretion of Th2-type cytokines (IL-4, IL-5, and IL-10) and allergen-specific IgG1 were decreased upon administration of NS1401 in mice. Lactobacillus brevis NS1401 alleviates the symptoms of AD by restoring the Th1/Th2 balance through enhancing Th1-prone immunity. The immunomodulatory function of L. brevis NS1401 may provide effective new therapeutics against AD. © 2017 The Society for Applied Microbiology.

  20. MIF: a down-regulator of early T cell-dependent IFN-γ responses in Plasmodium chabaudi adami (DK) infected mice

    PubMed Central

    Tshikudi Malu, Diane; Bélanger, Benoit; Desautels, François; Kelendji, Karine; Dalko, Esther; Sanchez-Dardon, Jaime; Leng, Lin; Bucala, Richard; Satoskar, Abhay; Scorza, Tatiana

    2012-01-01

    Neutralization of macrophage migration inhibitory factor (MIF) increases anti-tumor cytotoxic T cell responses in vivo and IFN-γ responses in vitro, suggesting a plausible regulatory role for MIF in T cell activation. Considering that IFN-γ production by CD4+ T cells is pivotal to resolve murine malaria and that secretion of MIF is induced by Plasmodium chabaudi adami parasites, we investigated the effect of MIF deficiency on the infection with this pathogen. Infections with P.c. adami DK parasites were more efficiently controlled in MIF-neutralized and MIF-deficient (KO) BALB/c mice. The reduction in parasitemia was associated with reduced production of IL-4 by non-T/non-B cells throughout patent infection. At day 4 post-infection, higher numbers of activated CD4+ cells were measured in MIF KO mice, which secreted more IFN-γ, less IL-4 and less IL-10 than CD4+ T cells from WT mice. Enhanced IFN-γ and decreased IL-4 responses also were measured in MIF KO CD4+ T cells stimulated with or without IL-12 and anti-IL-4 blocking antibody to induce Th1 polarization. However, MIF KO CD4+ T cells efficiently acquired a Th2 phenotype when stimulated in the presence of IL-4 and anti-IL-12 antibody, indicating normal responsiveness to IL-4/STAT6 signaling. These results suggest that by promoting IL-4 responses in cells other than T/B cells during early P.c. adami infection, MIF decreases IFN-γ secretion in CD4+ T cells and in addition, has the intrinsic ability to render CD4+ T cells less capable of acquiring a robust Th1 phenotype when stimulated in the presence of IL-12. PMID:21518974

  1. Complementarity-Determining Region 3 Size Spectratypes of T Cell Receptor β Chains in CD8+ T Cells following Antiviral Treatment of Chronic Hepatitis B▿

    PubMed Central

    Ma, Shi-Wu; Li, Yong-Yin; Zhang, Guang-Wen; Huang, Xuan; Sun, Jian; Li, Chris; Abbott, William G. H.; Hou, Jin-Lin

    2011-01-01

    An increased CD8+ T cell response to hepatitis B virus (HBV) peptides occurs between 12 and 24 weeks after starting antiviral therapy for chronic hepatitis B. It is not known whether these cells have antiviral function. The aim of this study was to determine whether clonal expansions of CD8+ T cells at these time points predict the virological response to therapy. Peripheral blood CD8+ T cells were obtained from 20 patients treated with lamivudine or telbivudine for chronic hepatitis B at baseline, 12 weeks, and 24 weeks. The CDR3 spectratype of each T cell receptor (TCR) β chain variable region (Vβ) gene family was analyzed, and the changes in the numbers of Vβ families with clonal expansions were compared in subjects with (n = 12) and without (n = 8) a virological response (52 week HBV DNA < 300 copies/ml). The number of CD8+ TCR Vβ families with clonal expansions at 12 weeks relative to baseline (median [10th to 90th percentile], +2.5 [0 to +7] versus +1 [0 to +2], P = 0.03) and at 24 weeks relative to 12 weeks (+1 [0 to +2] versus −1 [−3 to +4], P = 0.006) was higher in subjects with a virological response versus subjects without a virological response, as were interleukin-2 (IL-2) but not IL-21 mRNA levels in peripheral blood mononuclear cells. The duration of new expansions at 12 weeks was higher (P < 0.0001) in responders. Increased numbers of CD8+ T cell expansions after antiviral therapy are associated with a virological response to treatment. These CD8+ T cells are a potential target for a therapeutic vaccine for chronic hepatitis B. PMID:21098256

  2. Interaction between allergic asthma and atherosclerosis

    PubMed Central

    Liu, Conglin; Zhang, Jingying; Shi, Guo-Ping

    2015-01-01

    Prior studies have established an essential role of mast cells in allergic asthma and atherosclerosis. Mast cell deficiency or inactivation protects mice from allergen-induced airway hyper-responsiveness and diet-induced atherosclerosis, suggesting that mast cells share pathologic activities in both diseases. Allergic asthma and atherosclerosis are inflammatory diseases that contain similar sets of elevated numbers of inflammatory cells in addition to mast cells in the airway and arterial wall, such as macrophages, monocytes, T cells, eosinophils, and smooth muscle cells. Emerging evidence from experimental models and human studies points to a potential interaction between the two seemingly unrelated diseases. Patients or mice with allergic asthma have a high risk of developing atherosclerosis or vice versa, despite the fact that asthma is a Th2-oriented disease, whereas Th1 immunity promotes atherosclerosis. In addition to the preferred Th1/Th2 responses that may differentiate the two diseases, mast cells and many other inflammatory cells also contribute to their pathogenesis by much more than just T cell immunity. Here we summarize the different roles of airway and arterial wall inflammatory cells and vascular cells in asthma and atherosclerosis, and propose an interaction between the two diseases, although limited investigations are available to delineate the molecular and cellular mechanisms by which one disease increases the risk of the other. Results from mouse allergic asthma and atherosclerosis models and from human population studies lead to the hypothesis that patients with atherosclerosis may benefit from anti-asthmatic medications, or that the therapeutic regimens targeting atherosclerosis may also alleviate allergic asthma. PMID:26608212

  3. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.

    PubMed

    Hammer, Leslie A; Waldner, Hanspeter; Zagon, Ian S; McLaughlin, Patricia J

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is the animal model widely utilized to study MS. EAE is mediated by CD4(+) T cells and can be induced in EAE-susceptible mice through immunization with a myelin antigen, such as proteolipid protein 139-151 (PLP139-151) in SJL mice. In this PLP-induced EAE model, autoreactive CD4(+) T cells migrate from peripheral tissues into the CNS where they are reactivated resulting in CNS damage. Th1 and Th17 cells produce the pro-inflammatory cytokines IFNγ and IL-17, respectively, that have been shown to have pathogenic roles in EAE and MS. Anti-inflammatory Th2, IL-4 secreting cells, have been indicated to inhibit EAE exacerbation. However, given the inflammatory environment of EAE, Th2 effector cells are outnumbered by Th1/Th17 cells. Regulatory CD4(+) T cells suppress immune reactions and have been demonstrated to be dysfunctional in MS patients. Opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin, is a negative growth factor that interacts with the OGF receptor. The OGF-OGFr axis can be activated through exogenous administration of OGF or a low dosage of naltrexone (LDN), an opioid antagonist. We have previously demonstrated that modulation of the OGF-OGFr axis results in alleviation from relapse-remitting EAE, and that CNS-infiltrating CD3(+) T cells are diminished with exogenous OGF or intermittent blockade with LDN administration. In this paper, we aimed to determine whether OGF or LDN alter the Th effector responses of CD4(+) T lymphocytes within the CNS in established EAE. We report in these studies that the numbers of CD4(+) T lymphocytes in the CNS of EAE mice are decreased following treatment with OGF for five days but not LDN. However, modulation of the OGF-OGFr axis did not result in changes to CD4(+) Th effector cell responses in the CNS of EAE mice. © 2016 by the Society for Experimental Biology and Medicine.

  4. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    PubMed

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cellmore » responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.« less

  6. Silkworm dropping extract ameliorate trimellitic anhydride-induced allergic contact dermatitis by regulating Th1/Th2 immune response.

    PubMed

    Choi, Dae Woon; Kwon, Da-Ae; Jung, Sung Keun; See, Hye-Jeong; Jung, Sun Young; Shon, Dong-Hwa; Shin, Hee Soon

    2018-05-26

    Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by hapten-specific immune response. Silkworm droppings are known to exert beneficial effects during the treatment of inflammatory diseases. Here, we studied whether topical treatment and oral administration of silkworm dropping extract (SDE) ameliorate trimellitic anhydride (TMA)-induced ACD. In ACD mice model, SDE treatment significantly suppressed the increase in both ear thickness and serum IgE levels. Furthermore, IL-1β and TNF-α levels were reduced by SDE. In allergic responses, SDE treatment significantly attenuated the production of the Th2-associated cytokine IL-4 in both ear tissue and draining lymph nodes. However, it increased the production of the Th1-mediated cytokine IL-12. Thus, these results showed that SDE attenuated TMA-induced ACD symptoms through regulation of Th1/Th2 immune response. Taken together, we suggest that SDE treatment might be a potential agent in the prevention or therapy of Th2-mediated inflammatory skin diseases such as ACD and atopic dermatitis. ACD: allergic contact dermatitis; AD: atopic dermatitis; APC: antigen presenting cells; CCL: chemokine (C-C motif) ligand; CCR: C-C chemokine receptor; Dex: dexamethasone; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; Ig: immunoglobulin; IL: interleukin; OVA: ovalbumin; PS: prednisolone; SDE: silkworm dropping extract; Th: T helper; TMA: trimellitic anhydride; TNF: tumor necrosis factor.

  7. Immunization with Leishmania donovani protein disulfide isomerase DNA construct induces Th1 and Th17 dependent immune response and protection against experimental visceral leishmaniasis in Balb/c mice.

    PubMed

    Amit, Ajay; Vijayamahantesh; Dikhit, Manas R; Singh, Ashish Kumar; Kumar, Vikash; Suman, Shashi S; Singh, Ashu; Kumar, Akhilesh; Thakur, Ajit Kumar; Das, Vidyanand Ravi; Das, Pradeep; Bimal, Sanjiva

    2017-02-01

    In the present study, the efficacy of Leishmania donovani protein disulfide isomerase (LdPDI) as a DNA vaccine was evaluated in BALB/C mice. Mice immunized with the LdPDI-DNA construct were found to be the most immuno-reactive, as the construct induced higher T-cell proliferation. The increased T-cell proliferation was associated with a substantial rise in Th1 and Th17+ CD4 cell response and triggered a higher proportion of CD8+ T cells for the release of interferon-gamma along with a reduced splenic parasite load on Days20 and 60 post challenge (PC). Furthermore, the vaccine construct triggered increased interferon (IFN)-γ, interleukin(IL)-17A, and IL-22 release accompanied by decreased extracellular signal-regulated kinases (ERK) 1/2 signaling and increased mitogen-activated protein kinase (MAPK) signaling coinciding with an increase in the amount of nitrite and reactive oxygen species (ROS)in vaccinating the splenocyts. We summarize from our data that the PDI-DNA construct of Leishmania donovani has the potential to elicit protective immunity through the pro-inflammatory cytokines of CD8+ and CD4+(Th1 and Th17) following an intervention in the downstream signaling event of ERK1/2 (probably through p38MAPK signaling). Therefore, the study suggests a new control against visceral leishmaniasis in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure

    PubMed Central

    Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.

    2017-01-01

    Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice. PMID:28093832

  9. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells

    PubMed Central

    Saito, Masako; Nagasawa, Masayuki; Takada, Hidetoshi; Hara, Toshiro; Tsuchiya, Shigeru; Agematsu, Kazunaga; Yamada, Masafumi; Kawamura, Nobuaki; Ariga, Tadashi; Tsuge, Ikuya; Nonoyama, Shigeaki; Karasuyama, Hajime

    2011-01-01

    Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by recurrent staphylococcal infections and atopic dermatitis associated with elevated serum IgE levels. Although defective differentiation of IL-17–producing CD4+ T cells (Th17) partly accounts for the susceptibility to staphylococcal skin abscesses and pneumonia, the pathogenesis of atopic manifestations in HIES still remains an enigma. In this study, we examined the differentiation and function of Th1, Th2, regulatory T cells (Treg cells), and dendritic cells (DCs) in HIES patients carrying either STAT3 or TYK2 mutations. Although the in vitro differentiation of Th1 and Th2 cells and the number and function of Treg cells in the peripheral blood were normal in HIES patients with STAT3 mutations, primary and monocyte-derived DCs showed defective responses to IL-10 and thus failed to become tolerogenic. When treated with IL-10, patient DCs showed impaired up-regulation of inhibitory molecules on their surface, including PD-L1 and ILT-4, compared with control DCs. Moreover, IL-10–treated DCs from patients displayed impaired ability to induce the differentiation of naive CD4+ T cells to FOXP3+ induced Treg cells (iTreg cells). These results suggest that the defective generation of IL-10–induced tolerogenic DCs and iTreg cells may contribute to inflammatory changes in HIES. PMID:21300911

  10. Immune Senescence Factors Associated with the Immunogenicity of a Live Attenuated Zoster Vaccine (ZV) in Older Adults

    PubMed Central

    Weinberg, Adriana; Schamder, Kenneth; Johnson, Michael; Popmihajlov, Zoran; Tovar-Salazar, Adriana; Caldas, Yupanqui; Pang, Lei; Cho, Alice; Levin, Myron

    2017-01-01

    Abstract Background ZV confers protection against herpes zoster by increasing the cell-mediated immunity (CMI) to varicella-zoster virus (VZV). ZV immunogenicity and protection decrease with increasing age. We investigated effects of age and immune senescence on ZV immunogenicity. Methods 399 adults ≥50 years had VZV T-cell helper 1 (Th1) CMI measured by ex vivo VZV-stimulated IL2/IFNg ELISPOT and blood T-cell nonspecific immune senescence by flow cytometric characterization of FOXP3, CD25, IL10, TGFb, PD1, CD28, CD57 and CD31 expression before and at 1, 6 and 52 weeks after ZV. In a subset of 95 vaccinees, VZV-stimulated T cell expression of CD107, Granzyme B, FOXP3, CD25, IL10, TGFb, CD39 and PD1 were also measured. Multivariate regression analysis was used to identify independent effects of age and immune senescence on VZV Th1 CMI (P < 0.025). Results IL2+ and IL2+IFNg+ Th1 memory VZV CMI peaked at 6 weeks after ZV and remained elevated at 1 year. Effectors, including VZV-specific IFNg+ Th1, and CD8+CD107+% and CD4+/CD8+Granzyme B+% cytotoxic T lymphocytes (CTL), peaked at 1 week, but only the IFNg+ Th1 effectors remained elevated at 1 year. There was also a transient increase in blood CD8+PD1+% exhausted T cells 1 week after ZV. Independent positive effects on peak memory Th1 VZV CMI included the baseline CMI and negative effects included blood CD4+FOXP3+% T regulatory (Treg) and CD8+PD1+% T exhausted cells. Independent positive effects on peak effector Th1 VZV CMI included baseline CMI and negative effects included blood CD8+CD25+FOXP3+% Treg. Age did not have an independent effect on peak CMI. Independent positive effects on persistent (1 year) memory Th1 included baseline CMI and negative effects included age, blood CD4+FOXP3+% Treg and CD8+PD1+% T exhausted cells. Persistent effector Th1 CMI was negatively affected by age only. Conclusion ZV generated VZV-specific Th1 and CTL responses. The early increase of CD8+ exhausted T cells in blood suggested that CTL responses to the vaccine virus may be compromised by immune senescence. The negative of age on VZV Th1 CMI was fully mediated by immune senescence at peak response, but age had a negative effect on CMI persistence that was independent from the markers of immune senescence included in this study. Disclosures A. Weinberg, merck: Grant Investigator, Research grant K. Schamder, merck: Grant Investigator, Research grant Z. Popmihajlov, Merck & Co., Inc.: Employee and Shareholder, Salary L. Pang, Merck: Employee and Shareholder, Salary M. Levin, merck: Grant Investigator and Scientific Advisor, Consulting fee and Research grant

  11. Oral delivery of Brucella spp. recombinant protein U-Omp16 abrogates the IgE-mediated milk allergy.

    PubMed

    Smaldini, Paola Lorena; Ibañez, Andrés Esteban; Fossati, Carlos Alberto; Cassataro, Juliana; Docena, Guillermo Horacio

    2014-01-01

    Food allergies are increasingly common disorders and no therapeutic strategies are yet approved. The unlipidated Omp16 (U-Omp16) is the outer membrane protein of 16 kDa from B. abortus and possesses a mucosal adjuvant property. In this study, we aimed to examine the U-Omp16 capacity to abrogate an allergen-specific Th2 immune response when it is administered as an oral adjuvant in a mouse model of food allergy.   Balb/c mice were sensitized with cholera toxin and cow's milk proteins (CMP) by gavage and simultaneously treated with U-Omp16 and CMP. Oral challenge with CMP was performed to evaluate the allergic status of mice. Symptoms, local (small bowel cytokine and transcription factor gene expression) and systemic (specific isotypes and spleen cell-secreted cytokines) parameters, and skin tests were done to evaluate the immune response. We found that the oral administration of U-Omp16 with CMP during sensitization dampened the allergic symptoms, with negativization of immediate skin test and increased skin DTH response. Serum specific IgE and IL-5 were inhibited and a Th1 response was promoted (specific IgG2a antibodies and CMP-induced IFN-γ secretion). We found at the mucosal site an inhibition of the gene expression corresponding to IL-13 and Gata-3, with an induction of IFN-γ and T-bet. These results indicated that the oral administration of U-Omp16 significantly controlled the allergic response in sensitized mice with a shift of the balance of Th1- and Th2-T cells toward Th1 predominance. These findings suggest that U-Omp16 may be useful as a Th1-directing adjuvant in an oral vaccine.

  12. Oral delivery of Brucella spp. recombinant protein U-Omp16 abrogates the IgE-mediated milk allergy

    PubMed Central

    Smaldini, Paola Lorena; Ibañez, Andrés Esteban; Fossati, Carlos Alberto; Cassataro, Juliana; Docena, Guillermo Horacio

    2014-01-01

    Food allergies are increasingly common disorders and no therapeutic strategies are yet approved. The unlipidated Omp16 (U-Omp16) is the outer membrane protein of 16 kDa from B. abortus and possesses a mucosal adjuvant property. In this study, we aimed to examine the U-Omp16 capacity to abrogate an allergen-specific Th2 immune response when it is administered as an oral adjuvant in a mouse model of food allergy.   Balb/c mice were sensitized with cholera toxin and cow’s milk proteins (CMP) by gavage and simultaneously treated with U-Omp16 and CMP. Oral challenge with CMP was performed to evaluate the allergic status of mice. Symptoms, local (small bowel cytokine and transcription factor gene expression) and systemic (specific isotypes and spleen cell-secreted cytokines) parameters, and skin tests were done to evaluate the immune response. We found that the oral administration of U-Omp16 with CMP during sensitization dampened the allergic symptoms, with negativization of immediate skin test and increased skin DTH response. Serum specific IgE and IL-5 were inhibited and a Th1 response was promoted (specific IgG2a antibodies and CMP-induced IFN-γ secretion). We found at the mucosal site an inhibition of the gene expression corresponding to IL-13 and Gata-3, with an induction of IFN-γ and T-bet. These results indicated that the oral administration of U-Omp16 significantly controlled the allergic response in sensitized mice with a shift of the balance of Th1- and Th2-T cells toward Th1 predominance. These findings suggest that U-Omp16 may be useful as a Th1-directing adjuvant in an oral vaccine. PMID:25424811

  13. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model.

    PubMed

    Wang, Fengyuan; Zhang, Caiyun; Jiang, Yuan; Kou, Caixia; Kong, Qingtao; Long, Nanbiao; Lu, Ling; Sang, Hong

    2017-10-01

    The pathogenesis of chronic pulmonary aspergillosis (CPA) has seldom been studied due partly to a lack of animal models. Since hypha is the main morphology colonizing the airway in CPA, it's critical to study the immune reaction to chronic pulmonary infection of hyphae of Aspergillus fumigatus, which also has seldom been studied in vivo before. We established a novel murine model of chronic pulmonary infection of hyphae by challenging immunocompetent mice with tightly-structured hyphae balls intratracheally, and described the ensuing immunoreaction to hyphae and conidia, and the pathogenesis of CPA. Our experiment proved that the hyphae balls could induce a chronic pulmonary infection for 28 days with a considerable recrudescence at day 28 post-infection. Lungs infected with hyphae balls were remarkable for the many neutrophils and macrophages that flooded into airway lumens, with peribronchiolar infiltration of leukocytes. There was a transient increase of Th2 cells and Th17 cells at day 7 post-infection in the lung tissue. In contrast, lungs infected with conidia showed no peribronchiolar infiltration of leukocytes, but an influx of a great number of macrophages, and a much less number of neutrophils in the lumen. Besides, conidia activated the co-response of Th1, Th2 and Th17 cells with an increase of Treg cells in the lung tissue (quite different from most previous studies). We established a new murine model of chronic infection of hyphae to mimic the formation of CPA, and provide a new marker for different immune responses to hyphae and conidia.

  14. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production.

    PubMed

    Romagnani, Paola; Maggi, Laura; Mazzinghi, Benedetta; Cosmi, Lorenzo; Lasagni, Laura; Liotta, Francesco; Lazzeri, Elena; Angeli, Roberta; Rotondi, Mario; Filì, Lucia; Parronchi, Paola; Serio, Mario; Maggi, Enrico; Romagnani, Sergio; Annunziato, Francesco

    2005-12-01

    Two variants of the CXCR3 receptor exist, one (CXCR3-A) reactive with CXCL9, CXCL10, and CXCL11 and the other (CXCR3-B) also reactive with CXCL4. Both variants are contemporarily expressed by human T cells. We sought to investigate the in vitro effects of CXCL10 and CXCL4 on the production of TH1 or TH2 cytokines. The cytokine profile of antigen-specific human CD4+ T-cell lines obtained in the absence or presence of CXCL10 or CXCL4 was evaluated by means of quantitative RT-PCR, flow cytometry, and ELISA. CXCL10 upregulated IFN-gamma and downregulated IL-4, IL-5, and IL-13 production, whereas CXCL4 downregulated IFN-gamma and upregulated TH2 cytokines. Similar effects were also observed on polyclonally activated pure naive CD4+ T cells. The opposite effects of CXCL10 and CXCL4 on TH1 and TH2 cytokine production were inhibited by an anti-CXCR3 antibody able to neutralize both CXCR3-A and CXCR3-B and were apparently related to the activation of distinct signal transduction pathways. Moreover, CXCL10 upregulated mRNA levels of T-box expressed in T cells and downregulated GATA-3 expression, whereas CXCL4 downregulated T-box expressed in T cells and upregulated GATA-3. Finally, CXCL4, but not CXCL10, induced direct activation of IL-5 and IL-13 promoters. CXCL10 and CXCL4 exert opposite effects on the production of human TH1 and TH2 cytokines, likely through their respective interaction with CXCR3-A or CXCR3-B and the consequent activation of different signal transduction pathways. This might represent an internal regulatory pathway of TH cell responses and might contribute to the modulation of chronic inflammatory reactions, including allergy.

  15. Effects of Acute Low-Dose Exposure to the Chlorinated Flame Retardant Dechlorane 602 and Th1 and Th2 Immune Responses in Adult Male Mice

    PubMed Central

    Feng, Yu; Tian, Jijing; Xie, Heidi Qunhui; She, Jianwen; Xu, Sherry Li; Xu, Tuan; Tian, Wenjing; Fu, Hualing; Li, Shuaizhang; Tao, Wuqun; Wang, Lingyun; Chen, Yangsheng; Zhang, Songyan; Zhang, Wanglong; Guo, Tai L.; Zhao, Bin

    2016-01-01

    Background: Although the chlorinated flame retardant Dechlorane (Dec) 602 has been detected in food, human blood, and breast milk, there is limited information on potential health effects, including possible immunotoxicity. Objectives: We determined the immunotoxic potential of Dec 602 in mice by examining the expression of phenotypic markers on thymocyte and splenic lymphocyte subsets, Th1/Th2 transcription factors, and the production of cytokines and antibodies. Methods: Adult male C57BL/6 mice were orally exposed to environmentally relevant doses of Dec 602 (1 and 10 μg/kg body weight per day) for 7 consecutive days. Thymocyte and splenic CD4 and CD8 subsets and splenocyte apoptosis were examined by flow cytometric analysis. Cytokine expression was measured at both the mRNA and the protein levels. Levels of the transcription factors Th1 (T-bet and STAT1) and Th2 (GATA3) were determined using quantitative real-time polymerase chain reaction (qPCR). Serum levels of immunoglobulins IgG1, IgG2a, IgG2b and IgE were measured by enzyme-linked immunosorbent assay (ELISA). Results: Splenic CD4+ and CD8+ T cell subsets were decreased compared with vehicle controls, and apoptosis was significantly increased in splenic CD4+ T cells. Expression (mRNA and protein) of Th2 cytokines [interleukin (IL)-4, IL-10, and IL-13] increased, and that of Th1 cytokines [IL-2, interferon (IFN)-γ and tumor necrosis factor (TNF)-α] decreased. The Th2 transcriptional factor GATA3 increased, whereas the Th1 transcriptional factors T-bet and STAT1 decreased. As additional indicators of the Th2-Th1 imbalance, production of IgG1 was significantly increased, whereas IgG2a was reduced. Conclusions: To our knowledge, we are the first to report evidence of the effects of Dec 602 on immune function in mice, with findings indicating that Dec 602 exposure favored Th2 responses and reduced Th1 function. Citation: Feng Y, Tian J, Xie HQ, She J, Xu SL, Xu T, Tian W, Fu H, Li S, Tao W, Wang L, Chen Y, Zhang S, Zhang W, Guo TL, Zhao B. 2016. Effects of acute low-dose exposure to the chlorinated flame retardant dechlorane 602 and Th1 and Th2 immune responses in adult male mice. Environ Health Perspect 124:1406–1413; http://dx.doi.org/10.1289/ehp.1510314 PMID:27081854

  16. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate With Borrelia burgdorferi Antibodies During Early Infection and With Autoantibodies Late in the Illness in Patients With Antibiotic-Refractory Lyme Arthritis.

    PubMed

    Strle, Klemen; Sulka, Katherine B; Pianta, Annalisa; Crowley, Jameson T; Arvikar, Sheila L; Anselmo, Anthony; Sadreyev, Ruslan; Steere, Allen C

    2017-04-01

    Control of Lyme disease is attributed predominantly to innate and adaptive T-helper 1 cell (TH1) immune responses, whereas the role of T-helper 17 cell (TH17) responses is less clear. Here we characterized these inflammatory responses in patients with erythema migrans (EM) or Lyme arthritis (LA) to elucidate their role early and late in the infection. Levels of 21 cytokines and chemokines, representative of innate, TH1, and TH17 immune responses, were assessed by Luminex in acute and convalescent sera from 91 EM patients, in serum and synovial fluid from 141 LA patients, and in serum from 57 healthy subjects. Antibodies to Borrelia burgdorferi or autoantigens were measured by enzyme-linked immunosorbent assay. Compared with healthy subjects, EM patients had significantly higher levels of innate, TH1, and TH17-associated mediators (P ≤ .05) in serum. In these patients, the levels of inflammatory mediators, particularly TH17-associated cytokines, correlated directly with B. burgdorferi immunoglobulin G antibodies (P ≤ .02), suggesting a beneficial role for these responses in control of early infection. Late in the disease, in patients with LA, innate and TH1-associated mediators were often >10-fold higher in synovial fluid than serum. In contrast, the levels of TH17-associated mediators were more variable, but correlated strongly with autoantibodies to endothelial cell growth factor, matrix metalloproteinase 10, and apolipoprotein B-100 in joints of patients with antibiotic-refractory LA, implying a shift in TH17 responses toward an autoimmune phenotype. Patients with Lyme disease often develop pronounced TH17 immune responses that may help control early infection. However, late in the disease, excessive TH17 responses may be disadvantageous by contributing to autoimmune responses associated with antibiotic-refractory LA. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    NASA Astrophysics Data System (ADS)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  18. Impairment of T-regulatory cells in cord blood of atopic mothers.

    PubMed

    Schaub, Bianca; Liu, Jing; Höppler, Sabine; Haug, Severine; Sattler, Christine; Lluis, Anna; Illi, Sabina; von Mutius, Erika

    2008-06-01

    Maternal atopy is a strong predictor for the development of childhood allergic diseases. The underlying mechanisms are ill defined, yet regulatory T (Treg) and T(H)17 cells may play a key role potentially shaping the early immune system toward a proallergic or antiallergic immune regulation. We examined T(H)1/T(H)2, Treg, and T(H)17 cell responses to innate (lipid A/peptidoglycan) and mitogen/adaptive (phytohemagglutinin/Dermatophagoides pteronyssinus 1) immune stimulation in cord blood from offspring of atopic/nonatopic mothers. Cord blood mononuclear cells from 161 healthy neonates (59% nonatopic, 41% atopic mothers) were investigated regarding Treg and T(H)17 cells (mRNA/surface markers), suppressive function, and proliferation/cytokine secretion. Cord blood from offspring of atopic mothers showed fewer innate-induced Treg cells (CD4(+)CD25(+)high), lower mRNA expression of associated markers (glucocorticoid-induced tumor necrosis factor receptor-related protein/lymphocyte activation gene 3; P < .05), and a trend toward lower Forkhead box transcription factor 3 (Foxp3) expression. Treg cell function was impaired in mitogen-induced suppression of T effector cells in cord blood of offspring from atopic mothers (P = .03). Furthermore, IL-10 and IFN-gamma secretion were decreased in innate-stimulated cord blood of offspring from atopic mothers (P = .04/.05). Innate-induced IL-17 was independent of maternal atopy and highly correlated with IL-13 secretion. In offspring of atopic mothers, Treg cell numbers, expression, and function were impaired at birth. T(H)17 cells were correlated with T(H)2 cells, independently of maternal atopy.

  19. T(reg) cells may regulate interlukin-17 production by modulating TH1 responses in 1,3-β-glucan-induced lung inflammation in mice.

    PubMed

    Chen, Ying; Liu, Fangwei; Weng, Dong; Song, Laiyu; Li, Cuiying; Tang, Wen; Yu, Ye; Dai, Wujing; Chen, Jie

    2013-01-01

    1,3-β-glucan is considered a fungal biomarker and exposure to this agent can induce lung inflammation. Complement activation plays an important role in early immune responses to β-glucan. Previous studies showed that T-regulatory cells (Tregs) regulated 1,3-β-glucan-induced lung inflammation by modulating the maintenance of immune homeostasis in the lung. Both interleukin (IL)-17 and TH17 cells play pivotal roles in inflammation associated with lung disease and share reciprocal developmental pathways with Tregs. However, the effect of Tregs on IL-17 and TH17 responses in 1,3-β-glucan-induced lung inflammation remains unclear. In this study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the effects of Tregs on IL-17 and TH17 cells in the induced lung inflammation, a Treg-depleted mice model was generated by administration of anti-CD25 mAb. The results indicated that Treg-depleted mice showed more severe pathological inflammatory changes in lung tissues. Tregs depletion reduced IL-17 expression in these tissues, and increased those of TH1 cytokines. The expression of IL-17 increased at the early phase of the inflammation response. There were no significant effects of the Tregs on expression of RORγt and IL-6 or the amount of CD4(+)IL-17(+) cells in the lungs. When taken together, the late phase of the 1,3-β-glucan-induced inflammatory response in the mice was primarily mediated by TH1 cytokines rather than IL-17. In contrast, the early phase of the inflammatory response might be mediated in part by IL-17 along with activated complement. Tregs might be required for IL-17 expression during the late phase inflammatory response in mice. The increased IL-17 mRNA observed during the 1,3-β-glucan induced inflammatory response were attributed to cells other than TH17 cells.

  20. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  1. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease.

    PubMed

    Lafaille, J J; Keere, F V; Hsu, A L; Baron, J L; Haas, W; Raine, C S; Tonegawa, S

    1997-07-21

    Chronic inflammatory autoimmune diseases such as multiple sclerosis, diabetes, and rheumatoid arthritis are caused by CD4(+) Th1 cells. Because Th2 cells antagonize Th1 cell functions in several ways, it is believed that immune deviation towards Th2 can prevent or cure autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease used as a model for multiple sclerosis. Using an adoptive transfer system we assessed the role of Th1 and Th2 cells in EAE. In vitro generated Th1 and Th2 cells from myelin basic protein (MBP)-specific TCR transgenic mice were transferred into normal and immunodeficient mice. Th1 cells caused EAE in all recipients after a brief preclinical phase. Surprisingly, Th2 cells also caused EAE in RAG-1 KO mice and in alphabeta T cell-deficient mice, albeit after a longer preclinical phase. Normal or gammadelta T cell-deficient mice were resistant to EAE induced by Th2 cells. The histopathological features of this disease resembled those of an allergic process. In addition, disease induction by Th1 cells was not altered by coadmininstration of Th2 cells in any of the recipients. These findings indicate that MBP-specific Th2 cells have the potential to induce EAE and that the disease induced by previously activated Th1 cells cannot be prevented by normal lymphocytes nor by previously activated Th2 cells.

  2. The Combination of Early and Rapid Type I IFN, IL-1α, and IL-1β Production Are Essential Mediators of RNA-Like Adjuvant Driven CD4+ Th1 Responses

    PubMed Central

    Madera, Rachel F.; Wang, Jennifer P.; Libraty, Daniel H.

    2011-01-01

    There is a growing need for novel vaccine adjuvants that can provide safe and potent T-helper type 1 (Th1) activity. RNA-like immune response modifiers (IRMs) are candidate T-cell adjuvants that skew acquired immune responses towards a Th1 phenotype. We set out to delineate the essential signaling pathways by which the RNA-like IRMs, resiquimod (R-848) and polyinosinic:polycytidylic acid (poly I:C), augment CD4+ T-helper 1 (Th1) responses. Highly purified murine conventional dendritic cells (cDCs) and conventional CD4+ T-cells were co-cultured in allogeneic and MHC congenic mixed leukocyte reactions. The activation of CD4+ Th1 cells was examined utilizing cells from mice deficient in specific RNA-sensing pattern recognition receptors and signaling mediators. R-848 and poly I:C stimulation of Type I interferon production and signaling in cDCs was essential but not sufficient for driving CD4+ Th1 responses. The early and rapid production of IL-1α and IL-1β was equally critical for the optimal activation of Th1 CD4+ T-cells. R-848 activation of Toll-like receptor 7/MyD88-dependent signaling in cDCs led to a rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C activation of MyD88-independent signaling pathways. The in vitro data show that CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical combination of early and rapid Type I interferon, IL-1α and IL-1β production. These results provide important insights into the key signaling pathways responsible for RNA-like IRM CD4+ Th1 activation. A better understanding of the critical signaling pathways by which RNA-like IRMs stimulate CD4+ Th1 responses is relevant to the rational design of improved vaccine adjuvants. PMID:22206014

  3. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic programming

    PubMed Central

    Yang, Kai; Shrestha, Sharad; Zeng, Hu; Karmaus, Peer W.F.; Neale, Geoffrey; Vogel, Peter; Guertin, David A.; Lamb, Richard F.; Chi, Hongbo

    2014-01-01

    SUMMARY Naïve T cells respond to antigen stimulation by exiting from quiescence and initiating clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor-mTORC1-dependent metabolic programming is a central determinant of this transitional process. Loss of Raptor abrogated T cell priming and Th2 cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinated multiple metabolic programs in T cells including glycolysis, lipid synthesis and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further linked glucose metabolism to the initiation of Th2 cell differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor-mTORC1 integrated T cell receptor and CD28 co-stimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor-mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity. PMID:24315998

  4. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    PubMed

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Immunomodulatory effect of tea saponin in immune T-cells and T-lymphoma cells via regulation of Th1, Th2 immune response and MAPK/ERK2 signaling pathway.

    PubMed

    Bhardwaj, Jyoti; Chaudhary, Narendra; Seo, Hyo-Jin; Kim, Min-Yong; Shin, Tai-Sun; Kim, Jong-Deog

    2014-06-01

    The anti-cancer activity of saponins and phenolic compounds present in green tea was previously reported. However, the immunomodulatory and adjuvanticity activity of tea saponin has never been studied. In this study, we investigated the immunomodulatory effect of tea saponin in T-lymphocytes and EL4 cells via regulation of cytokine response and mitogen-activated protein kinases (MAPK) signaling pathway. Quantitative analysis of mRNA expression level of cytokines were performed by reverse transcription polymerase chain reaction following stimulation with tea saponin, ovalbumin (OVA) alone or tea saponin in combination with OVA. Tea saponin inhibited the proliferation of EL4 cells measured in a dose-dependent manner. No cytotoxicity effect of tea saponin was detected in T-lymphocytes; rather, tea saponin enhanced the proliferation of T-lymphocytes. Tea saponin with OVA increased the expression of interleukin (IL)-1, IL-2, IL-12, interferon-γ and tumor necrosis factor (TNF)-α and decreased the expression level of IL-10 and IL-8 in T-lymphocytes. Furthermore, tea saponin, in the presence of OVA, downregulated the MAPK signaling pathway via inhibition of IL-4, IL-8 and nuclear factor kappaB (NF-κB) in EL4 cells. Th1 cytokines enhancer and Th2 cytokines and NF-κB inhibitor, tea saponin can markedly inhibit the proliferation and invasiveness of T-lymphoma (EL4) cells, possibly due to TNF-α- and NF-κB-mediated regulation of MAPK signaling pathway.

  6. A Minimal Regulatory Network of Extrinsic and Intrinsic Factors Recovers Observed Patterns of CD4+ T Cell Differentiation and Plasticity

    PubMed Central

    Martinez-Sanchez, Mariana Esther; Mendoza, Luis; Villarreal, Carlos; Alvarez-Buylla, Elena R.

    2015-01-01

    CD4+ T cells orchestrate the adaptive immune response in vertebrates. While both experimental and modeling work has been conducted to understand the molecular genetic mechanisms involved in CD4+ T cell responses and fate attainment, the dynamic role of intrinsic (produced by CD4+ T lymphocytes) versus extrinsic (produced by other cells) components remains unclear, and the mechanistic and dynamic understanding of the plastic responses of these cells remains incomplete. In this work, we studied a regulatory network for the core transcription factors involved in CD4+ T cell-fate attainment. We first show that this core is not sufficient to recover common CD4+ T phenotypes. We thus postulate a minimal Boolean regulatory network model derived from a larger and more comprehensive network that is based on experimental data. The minimal network integrates transcriptional regulation, signaling pathways and the micro-environment. This network model recovers reported configurations of most of the characterized cell types (Th0, Th1, Th2, Th17, Tfh, Th9, iTreg, and Foxp3-independent T regulatory cells). This transcriptional-signaling regulatory network is robust and recovers mutant configurations that have been reported experimentally. Additionally, this model recovers many of the plasticity patterns documented for different T CD4+ cell types, as summarized in a cell-fate map. We tested the effects of various micro-environments and transient perturbations on such transitions among CD4+ T cell types. Interestingly, most cell-fate transitions were induced by transient activations, with the opposite behavior associated with transient inhibitions. Finally, we used a novel methodology was used to establish that T-bet, TGF-β and suppressors of cytokine signaling proteins are keys to recovering observed CD4+ T cell plastic responses. In conclusion, the observed CD4+ T cell-types and transition patterns emerge from the feedback between the intrinsic or intracellular regulatory core and the micro-environment. We discuss the broader use of this approach for other plastic systems and possible therapeutic interventions. PMID:26090929

  7. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma.

    PubMed

    Markov, Oleg V; Mironova, Nadezhda L; Sennikov, Sergey V; Vlassov, Valentin V; Zenkova, Marina A

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless the antimetastatic effect was less effective in comparison with prophylactic DC vaccine.

  8. B cells have distinct roles in host protection against different nematode parasites

    USDA-ARS?s Scientific Manuscript database

    B cells may mediate protective responses against nematode parasites by supporting Th2 cell development and/or by producing antibodies. To examine this, B cell-deficient mice were inoculated with Nippostrongylus brasiliensis (Nb) or Heligmosomoides polygyrus (Hp). B cell-deficient and wild type (WT...

  9. Utility of Th1-cell immune responses for distinguishing active tuberculosis from non-active tuberculosis: A case-control study

    PubMed Central

    Zhang, Lifan; Cheng, Xinhe; Bian, Sainan; Song, Yanhua; Li, Qiang; Gao, Mengqiu; Zhang, Yueqiu; Shi, Xiaochun

    2017-01-01

    Currently available Interferon-γ release assay (IGRA) cannot reliably differentiate active TB (ATB) from non-active TB (non-ATB). A study was performed to evaluate the value of Mycobacterium tuberculosis (MTB) specific Th1 cell immune responses which test IFN-γ and IL-2 simultaneous for differentiating ATB from non-ATB. Forty-nine newly diagnosed inpatients with ATB (26 pulmonary TB and 23 extrapulmonary TB) were enrolled as the ATB group. Forty-five volunteers with latent tuberculosis infection (LTBI) and twenty with evidence of previous TB were enrolled during the same period as the non-ATB group. Clinical examination and MTB specific Th1 cell immune responses were performed for all participants. After being stimulated with ESAT-6 and CFP-10, the median frequencies of single IL-2-, single IFN-γ-, and dual IFN-γ/IL-2-secreting T-cells were all higher in the ATB group than in the non-ATB group (20(8–45) vs. 7(3–13), P<0.001;131(44–308) vs. 10(6–27), P<0.001;25(9–74) vs. 7(3–23), P = 0.001, respectively). Evaluation of the diagnostic performance of detecting single IFN-γ-secreting T cells for pulmonary TB employed a cutoff value of 35 iSFCs/250,000 PBMC. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were 92.3%, 80.0%, 64.9%, 96.3%, 4.62, and 0.10, respectively. For extrapulmonary TB, using a cutoff value of 23 iSFCs/ 250,000 PBMC, the sensitivity, specificity, PPV, NPV, PLR, and NLR were 91.3%, 76.9%, 58.3%, 96.2%, 3.96, and 0.11, respectively. When combining frequencies and proportion of single IFN-γ-secreting T cells, the test sensitivity was 100% in parallel tests and the specificity was 87.7% in serial tests for pulmonary TB. MTB specific Th1 cell immune responses (FluoroSpot) had value for the differentiation of ATB and non-ATB. Further confirmatory studies are indicated. PMID:28531231

  10. Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans

    PubMed Central

    Sabourin, Carol L.; Schiffer, Jarad M.; Niemuth, Nancy A.; Semenova, Vera A.; Li, Han; Rudge, Thomas L.; Brys, April M.; Mittler, Robert S.; Ibegbu, Chris C.; Wrammert, Jens; Ahmed, Rafi; Parker, Scott D.; Babcock, Janiine; Keitel, Wendy; Poland, Gregory A.; Keyserling, Harry L.; El Sahly, Hana; Jacobson, Robert M.; Marano, Nina; Plikaytis, Brian D.; Wright, Jennifer G.

    2016-01-01

    Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7, r2 = 0.86, P < 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.) PMID:26865594

  11. Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2.

    PubMed

    Schuligoi, Rufina; Sedej, Miriam; Waldhoer, Maria; Vukoja, Anela; Sturm, Eva M; Lippe, Irmgard T; Peskar, Bernhard A; Heinemann, Akos

    2009-01-01

    The major mast cell product PGD2 is released during the allergic response and stimulates the chemotaxis of eosinophils, basophils, and Th2-type T lymphocytes. The chemoattractant receptor homologous molecule of Th2 cells (CRTH2) has been shown to mediate the chemotactic effect of PGD2. PGH2 is the common precursor of all PGs and is produced by several cells that express cyclooxygenases. In this study, we show that PGH2 selectively stimulates human peripheral blood eosinophils and basophils but not neutrophils, and this effect is prevented by the CRTH2 receptor antagonist (+)-3-[[(4-fluorophenyl)sulfonyl] methyl amino]-1,2,3,4-tetrahydro-9H-carbazole-9-acetic acid (Cay10471) but not by the hematopoietic PGD synthase inhibitor 4-benzhydryloxy-1-[3-(1H-tetrazol-5-yl)-propyl]piperidine (HQL79). In chemotaxis assays, eosinophils showed a pronounced migratory response toward PGH2, but eosinophil degranulation was inhibited by PGH2. Moreover, collagen-induced platelet aggregation was inhibited by PGH2 in platelet-rich plasma, which was abrogated in the presence of the D-type prostanoid (DP) receptor antagonist 3-[(2-cyclohexyl-2-hydroxyethyl)amino]-2,5-dioxo-1-(phenylmethyl)-4-imidazolidine-heptanoic acid (BWA868c). Each of these effects of PGH2 was enhanced in the presence of plasma and/or albumin. In eosinophils, PGH2-induced calcium ion (Ca2+) flux was subject to homologous desensitization with PGD2. Human embryo kidney (HEK)293 cells transfected with human CRTH2 or DP likewise responded with Ca2+ flux, and untransfected HEK293 cells showed no response. These data indicate that PGH2 causes activation of the PGD2 receptors CRTH2 and DP via a dual mechanism: by interacting directly with the receptors and/or by giving rise to PGD2 after catalytic conversion by plasma proteins.

  12. Effect of the Purinergic Inhibitor Oxidized ATP in a Model of Islet Allograft Rejection

    PubMed Central

    Vergani, Andrea; Fotino, Carmen; D’Addio, Francesca; Tezza, Sara; Podetta, Michele; Gatti, Francesca; Chin, Melissa; Bassi, Roberto; Molano, Ruth D.; Corradi, Domenico; Gatti, Rita; Ferrero, Maria E.; Secchi, Antonio; Grassi, Fabio; Ricordi, Camillo; Sayegh, Mohamed H.; Maffi, Paola; Pileggi, Antonello; Fiorina, Paolo

    2013-01-01

    The lymphocytic ionotropic purinergic P2X receptors (P2X1R-P2X7R, or P2XRs) sense ATP released during cell damage-activation, thus regulating T-cell activation. We aim to define the role of P2XRs during islet allograft rejection and to establish a novel anti-P2XRs strategy to achieve long-term islet allograft function. Our data demonstrate that P2X1R and P2X7R are induced in islet allograft-infiltrating cells, that only P2X7R is increasingly expressed during alloimmune response, and that P2X1R is augmented in both allogeneic and syngeneic transplantation. In vivo short-term P2X7R targeting (using periodate-oxidized ATP [oATP]) delays islet allograft rejection, reduces the frequency of Th1/Th17 cells, and induces hyporesponsiveness toward donor antigens. oATP-treated mice displayed preserved islet grafts with reduced Th1 transcripts. P2X7R targeting and rapamycin synergized in inducing long-term islet function in 80% of transplanted mice and resulted in reshaping of the recipient immune system. In vitro P2X7R targeting using oATP reduced T-cell activation and diminished Th1/Th17 cytokine production. Peripheral blood mononuclear cells obtained from long-term islet-transplanted patients showed an increased percentage of P2X7R+CD4+ T cells compared with controls. The beneficial effects of oATP treatment revealed a role for the purinergic system in islet allograft rejection, and the targeting of P2X7R is a novel strategy to induce long-term islet allograft function. PMID:23315496

  13. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections

    PubMed Central

    Conti, Heather R.; Peterson, Alanna C.; Brane, Lucas; Huppler, Anna R.; Hernández-Santos, Nydiaris; Whibley, Natasha; Garg, Abhishek V.; Simpson-Abelson, Michelle R.; Gibson, Gregory A.; Mamo, Anna J.; Osborne, Lisa C.; Bishu, Shrinivas; Ghilardi, Nico; Siebenlist, Ulrich; Watkins, Simon C.; Artis, David; McGeachy, Mandy J.

    2014-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα−/−, and Rag1−/− mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1–2 d by tongue-resident populations of γδ T cells and CD3+CD4+CD44hiTCRβ+CCR6+ natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-β−/− and TCR-δ−/− mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-β clonal diversity, and was absent in Rag1−/−, IL-7Rα−/−, and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens. PMID:25200028

  14. Initial immunological changes as predictors for house dust mite immunotherapy response.

    PubMed

    Gómez, E; Fernández, T D; Doña, I; Rondon, C; Campo, P; Gomez, F; Salas, M; Gonzalez, M; Perkins, J R; Palomares, F; Blanca, M; Torres, M J; Mayorga, C

    2015-10-01

    Although specific immunotherapy is the only aetiological treatment for allergic disorders, the underlying mechanisms are not fully understood. Specific immunotherapy induces changes in lymphocyte Th subsets from Th2 to Th1/Treg. Whether differences in immunological patterns underlie patient response to immunotherapy has not yet been established. We studied the immunological changes occurring during a 1-year period of Dermatophagoides pteronyssinus (DP) immunotherapy and their relation with clinical outcome. We included 34 patients with DP allergy who received subcutaneous specific immunotherapy (SCIT) for 1 year. Following treatment, patients were classified as responders or non-responders. Fourteen allergic subjects who did not receive SCIT were included as controls. Peripheral blood was obtained at 0, 1, 3, 6 and 12 months and cultured with nDer p 1. Phenotypic changes, cytokine production and basophil response were analysed by flow cytometry; transcription factors were measured by mRNA quantification. Serum immunoglobulin levels were also measured. After 1 year of SCIT, 82% of cases showed improved symptoms (responders). Although increases in sIgG4 were observed, BAT reactivity was not modified in these patients. Increases in T-BET/FOXP3 as well as nDer p 1-specific Th1/Treg frequencies were also observed, along with a decrease in Th2, Th9 and Th17. These changes corresponded to changes in cytokine levels. Patients who respond well to DP-SCIT show immunological differences compared to non-responders. In responders, basal differences include a lower frequency of Th1 and higher frequencies of Th2, Th9 and Th17 cells. After 1 year of treatment, an increased production of sIgG4 was observed in responders, along with a change in Th2 response towards Th1/Treg. © 2015 John Wiley & Sons Ltd.

  15. Elevated Immune Response Among Children 4 Years of Age With Pronounced Local Adverse Events After the Fifth Diphtheria, Tetanus, Acellular Pertussis Vaccination.

    PubMed

    van der Lee, Saskia; Kemmeren, Jeanet M; de Rond, Lia G H; Öztürk, Kemal; Westerhof, Anneke; de Melker, Hester E; Sanders, Elisabeth A M; Berbers, Guy A M; van der Maas, Nicoline A T; Rümke, Hans C; Buisman, Anne-Marie

    2017-09-01

    In the Netherlands, acellular pertussis vaccines replaced the more reactogenic whole-cell pertussis vaccines. This replacement in the primary immunization schedule of infants coincided with a significant increase in pronounced local adverse events (AEs) in 4 years old children shortly after the administration of a fifth diphtheria, tetanus, acellular pertussis and inactivated polio (DTaP-IPV) vaccine. The objective of this study was to investigate possible differences in vaccine antigen-specific immune responses between children with and without a pronounced local AE after the fifth DTaP-IPV vaccination. Blood was sampled in 2 groups of 4-year-olds: a case group reporting pronounced local swelling and/or erythema up to extensive limb swelling at the injection site (n = 30) and a control group (n = 30). Peripheral blood mononuclear cells were stimulated with individual vaccine antigens. Plasma antigen-specific IgG, IgG subclass and total IgE concentrations and T-cell cytokine [interferon-gamma, interleukin (IL)-13, IL-17 and IL-10] production by stimulated peripheral blood mononuclear cells were determined by multiplex bead-based fluorescent multiplex immunoassays. In children with AEs, significantly higher total IgE and vaccine antigen-specific IgG and IgG4 responses as well as levels of the T-helper 2 (Th2) cytokine IL-13 were found after pertussis, tetanus and diphtheria stimulation compared with controls. Children with pronounced local reactions show higher humoral and cellular immune responses. Acellular vaccines are known to skew toward more Th2 responses. The pronounced local AEs may be associated with more Th2 skewing after the fifth DTaP-IPV vaccination, but other biologic factors may also impact the occurrence of these pronounced local reactions.

  16. Immunostimulation of bronchoalveolar lavage cells from recurrent airway obstruction-affected horses by different CpG-classes bound to gelatin nanoparticles.

    PubMed

    Klier, John; May, Anna; Fuchs, Sebastian; Schillinger, Ulrike; Plank, Christian; Winter, Gerhard; Gehlen, Heidrun; Coester, Conrad

    2011-11-15

    Recurrent airway obstruction (RAO) in horses has become a common problem in stabled horses in industrialized countries and deserves new therapeutic strategies. CpG-oligodeoxynucleotides (CpG-ODNs) were developed as effective immunostimulating agents to induce a Th2/Th1 shift. These agents showed a beneficial therapeutic effect in allergic diseases with predominant Th2 immunoresponse. CpG-ODN delivery by gelatin nanoparticles (GNPs) resulted in enhanced cellular uptake in murine and human in vitro studies and was a starting point for the present trial. The aim of this study was to identify an optimal stimulating CpG motif in horses with regard to species specificity on equine bronchoalveolar lavage (BAL) cells, in terms of a possible specific immunomodulation effect (Th2/Th1 shift) by used CpG-ODN. Accordingly, GNPs were evaluated as a delivery system to improve CpG-ODN immunostimulation in equine BAL cells. BAL fluid (BALF) was obtained from seven horses with moderate RAO and from four healthy horses and was subsequently incubated with five different CpG-ODN sequences (from A-, B- and C-class) and one ODN without any CpG motif. Release of three key cytokines (IL-4, IL-10 and IFN-γ) was quantified by ELISA to detect an allergy mediated Th2 immunoresponse (IL-4) as well as a proinflammatory Th1 response (IFN-γ). Due to its specific anti-inflammatory and anti-allergic effects, IL-10 was considered as a beneficial agent in pathophysiology of RAO. Results showed a significant upregulation of IL-10 and IFN-γ on the one hand and a downregulation of IL-4 on the other hand in RAO affected horses. Cell cultures from healthy horses had a significantly stronger response in cytokine release to all the applied stimuli in contrast to RAO derived cells. Comparing all five CpG sequences, A-class 2216 significantly showed the highest immunomodulatory effects on equine BALF cells and, hence, was chosen for follow-up preliminary clinical studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis.

    PubMed

    Wang, Zhigang; Chen, Zhe; Chen, Tao; Yi, Tao; Zheng, Zhou; Fan, Hong; Chen, Zebin

    2017-02-01

    Berberine, one of the active alkaloids from Rhizoma Coptidis, has been indicated to have anti-inflammatory and immunosuppressive properties. The aim of this study was to determine the role of berberine on ovalbumin (OVA)-induced delayed-type hypersensitivity (DTH) and its potential mechanisms. Berberine treatment significantly reduced footpad swelling, inflammatory cells infiltration, anti-OVA IgG levels, IgE concentration in serum, and the tetramer + CD8 + cells. In homogenized footpad tissue, the production of Th1-mediated cytokines including IFN-γ, TNF-α, and IL-2 were suppressed following the administration of berberine. Detailed studies revealed that berberine prevented differentiation into Th1 cells in the OVA-primed lymphocytes, resulting from suppressing the expression of T-bet and secretion of IFN-γ but not IL-4. Concanavalin A stimulation assay and MTT assay also indicated inhibiting effect of berberine treatment on IFN-γ production and decreased cytotoxicity in lymphocytes proliferation, respectively. Additionally, berberine obviously decreased the cell apoptosis and enzymatic activity of caspase-3, which was further confirmed by the facts that berberine clearly lowered Bax/Bcl-2 ratio and expression of cleaved caspase-3 protein. On correlation analysis, the percentage of apoptotic cells showed a significant positive relationship with IFN-γ/IL-4 ratio of supernatant from footpad tissue in berberine-treated DTH mice. These results demonstrated that berberine attenuated Th1-mediated inflammation in OVA-induced DTH by curbing Th1 response and inhibiting cell apoptosis, suggesting a therapeutic potential for berberine for the treatment of type IV hypersensitivity.

  18. Interleukin-18: a regulator of cancer and autoimmune diseases.

    PubMed

    Esmailbeig, Maryam; Ghaderi, Abbas

    2017-11-01

    Interleukin (IL)-18, structurally similar to IL-1β, is a member of IL-1 superfamily of cytokines. This cytokine, which is expressed by many human lymphoid and nonlymphoid cells, has an important role in inflammatory processes. The main function of IL-18 is mediated through induction of interferon-γ (IFN-γ) secretion from T helper (Th1) cells. This cytokine synergistically with IL-12 contributes to Th1 differentiation and, therefore, is important in host defense mechanisms against intracellular bacteria, viruses, and fungi. Recent evidences showing the involvement of IL-18 in Th2 differentiation and ultimately IgE production from B cells have shed a new insight on the dual effects of IL-18 on Th1 and Th2 inflammatory responses. IL-18 in combination with IL-12 can activate cytotoxic T cells (CTLs), as well as natural killer (NK) cells, to produce IFN-γ and, therefore, may contribute to tumor immunity. The biological activity of IL-18 is not limited to these cells, but it also plays a role in development of Th17 cell responses. IL-18 synergistically with IL-23 can induce IL-17 secretion from Th17 cells. The diverse biological activity of IL-18 on T-cell subsets and other immune cells has made this cytokine a good target for investigating its role in various inflammatory-based diseases. Lately, the discovery of IL-18 binding protein (IL-18BP), a physiological inhibitor of IL-18 and a hallmark of IL-18 biology, made this cytokine an attractive target for studying its pros and cons in the treatment of various diseases. In recent years, the biology, genetics, and pathological role of IL-18 have been studied in a number of diseases. In this article, we aimed to present an updated review on these aspects regarding the contribution of IL-18 to important diseases such as cancer, autoimmunity, and inflammatory-mediated conditions including allergic diseases, metabolic syndrome, and atherosclerosis. Emerging data indicating prognostic, diagnostic, and therapeutic features of IL-18 and its related molecules will also be discussed.

  19. T Helper1/T Helper2 Cells and Resistance/Susceptibility to Leishmania Infection: Is This Paradigm Still Relevant?

    PubMed Central

    Alexander, James; Brombacher, Frank

    2012-01-01

    Work in large part on Leishmania major in the 1980s identified two distinct apparently counter-regulatory CD4+ T cell populations, T helper (h)1 and Th2, that controlled resistance/susceptibility to infection respectively. However, the generation of IL-4−/− mice in the 1990s questioned the paramount role of this Th2 archetypal cytokine in the non-healing response to Leishmania infection. The more recent characterization of CD4+ T cell regulatory populations and further effector CD4+ T helper populations, Th17, Th9, and T follicular (f)h cells as well as the acknowledged plasticity in T helper cell function has further added to the complexity of host pathogen interactions. These interactions are complicated by the multiplicity of cells that respond to CD4+ T cell subset signatory cytokines, as well as the diversity of Leishmania species that are often subject to significantly different immune-regulatory controls. In this article we review current knowledge with regard to the role of CD4+ T cells and their products during Leishmania infection. In particular we update on our studies using conditional IL-4Rα gene-deficient mice that have allowed dissection of the cell interplay dictating the disease outcomes of the major Leishmania species infecting humans. PMID:22566961

  20. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus.

    PubMed

    Azevedo, Raimunda S S; de Sousa, Jorge R; Araujo, Marialva T F; Martins Filho, Arnaldo J; de Alcantara, Bianca N; Araujo, Fernanda M C; Queiroz, Maria G L; Cruz, Ana C R; Vasconcelos, Beatriz H Baldez; Chiang, Jannifer O; Martins, Lívia C; Casseb, Livia M N; da Silva, Eliana V; Carvalho, Valéria L; Vasconcelos, Barbara C Baldez; Rodrigues, Sueli G; Oliveira, Consuelo S; Quaresma, Juarez A S; Vasconcelos, Pedro F C

    2018-01-08

    Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.

  1. Respiratory Francisella tularensis live vaccine strain infection induces Th17 cells and prostaglandin E2, which inhibits generation of gamma interferon-positive T cells.

    PubMed

    Woolard, Matthew D; Hensley, Lucinda L; Kawula, Thomas H; Frelinger, Jeffrey A

    2008-06-01

    Two key routes of Francisella tularensis infection are through the skin and airway. We wished to understand how the route of inoculation influenced the primary acute adaptive immune response. We show that an intranasal inoculation of the F. tularensis live vaccine strain (LVS) with a 1,000-fold-smaller dose than an intradermal dose results in similar growth kinetics and peak bacterial burdens. In spite of similar bacterial burdens, we demonstrate a difference in the quality, magnitude, and kinetics of the primary acute T-cell response depending on the route of inoculation. Further, we show that prostaglandin E(2) secretion in the lung is responsible for the difference in the gamma interferon (IFN-gamma) response. Intradermal inoculation led to a large number of IFN-gamma(+) T cells 7 days after infection in both the spleen and the lung. In contrast, intranasal inoculation induced a lower number of IFN-gamma(+) T cells in the spleen and lung but an increased number of Th17 cells in the lung. Intranasal infection also led to a significant increase of prostaglandin E(2) (PGE(2)) in the bronchoalveolar lavage fluid. Inhibition of PGE(2) production with indomethacin treatment resulted in increased numbers of IFN-gamma(+) T cells and decreased bacteremia in the lungs of intranasally inoculated mice. This research illuminates critical differences in acute adaptive immune responses between inhalational and dermal infection with F. tularensis LVS mediated by the innate immune system and PGE(2).

  2. CD4(+) T-cell responses to Epstein-Barr virus (EBV) latent membrane protein 1 in infectious mononucleosis and EBV-associated non-Hodgkin lymphoma: Th1 in active disease but Tr1 in remission.

    PubMed

    Marshall, Neil A; Culligan, Dominic J; Johnston, Peter W; Millar, Colin; Barker, Robert N; Vickers, Mark A

    2007-10-01

    Primary infection with Epstein-Barr virus (EBV) in childhood is usually asymptomatic, whereas infection in adolescence may result in infectious mononucleosis (IM) often followed by a fatigue syndrome. EBV latent membrane protein 1 (LMP1) is expressed in latency and in many EBV-associated tumours, including non-Hodgkin lymphoma (NHL). Given the regulatory nature of the CD4(+) T-cell response against LMP1 previously reported in healthy donors, we investigated whether patients with active EBV-driven disease can nevertheless mount effector [T-helper cell, type 1 (Th1)] anti-LMP1 responses. We therefore performed a longitudinal study of the nature of CD4(+) T-cell responses to LMP1 in four patients with IM, and five patients with NHL. In both groups, responses changed with time. During symptomatic infection or active tumour growth, responses were dominated by a Th1 effector phenotype, but switched to a regulatory interleukin-10 response upon recovery. In addition, the fine specificities of the T cells driving these responses evolved. This study showed the dynamic nature of CD4(+) T-cell responses to LMP1, and demonstrated that, although patients can mount Th1 effector responses, recovery from IM and NHL is associated with regulatory responses.

  3. IL-25 Elicits Innate Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal Ischemic/Reperfusion Injury

    PubMed Central

    Huang, Qingsong; Niu, Zhiguo; Tan, Jing; Yang, Jun; Liu, Yun; Ma, Haijun; Lee, Vincent W.S.; Sun, Shuming; Song, Xiangfeng; Guo, Minghao; Wang, Yiping

    2015-01-01

    IL-25 is an important immune regulator that can promote Th2 immune response-dependent immunity, inflammation, and tissue repair in asthma, intestinal infection, and autoimmune diseases. In this study, we examined the effects of IL-25 in renal ischemic/reperfusion injury (IRI). Treating IRI mice with IL-25 significantly improved renal function and reduced renal injury. Furthermore, IL-25 treatment increased the levels of IL-4, IL-5, and IL-13 in serum and kidney and promoted induction of alternatively activated (M2) macrophages in kidney. Notably, IL-25 treatment also increased the frequency of type 2 innate lymphoid cells (ILC2s) and multipotent progenitor type 2 (MPPtype2) cells in kidney. IL-25–responsive ILC2 and MPPtype2 cells produced greater amounts of Th2 cytokines that associated with the induction of M2 macrophages and suppression of classically activated (M1) macrophages in vitro. Finally, adoptive transfer of ILC2s or MPPtype2 cells not only reduced renal functional and histologic injury in IRI mice but also induced M2 macrophages in kidney. In conclusion, our data identify a mechanism whereby IL-25-elicited ILC2 and MPPtype2 cells regulate macrophage phenotype in kidney and prevent renal IRI. PMID:25556172

  4. Absence of the common gamma chain (γ(c)), a critical component of the Type I IL-4 receptor, increases the severity of allergic lung inflammation.

    PubMed

    Dasgupta, Preeta; Qi, Xiulan; Smith, Elizabeth P; Keegan, Achsah D

    2013-01-01

    The T(H)2 cytokines, IL-4 and IL-13, play critical roles in inducing allergic lung inflammation and drive the alternative activation of macrophages (AAM). Although both cytokines share receptor subunits, IL-4 and IL-13 have differential roles in asthma pathogenesis: IL-4 regulates T(H)2 cell differentiation, while IL-13 regulates airway hyperreactivity and mucus production. Aside from controlling T(H)2 differentiation, the unique contribution of IL-4 signaling via the Type I receptor in airway inflammation remains unclear. Therefore, we analyzed responses in mice deficient in gamma c (γ(c)) to elucidate the role of the Type I IL-4 receptor. OVA primed CD4⁺ OT-II T cells were adoptively transferred into RAG2⁻/⁻ and γ(c)⁻/⁻ mice and allergic lung disease was induced. Both γ(c)⁻/⁻ and γcxRAG2⁻/⁻ mice developed increased pulmonary inflammation and eosinophilia upon OVA challenge, compared to RAG2⁻/⁻ mice. Characteristic AAM proteins FIZZ1 and YM1 were expressed in lung epithelial cells in both mouse strains, but greater numbers of FIZZ1+ or YM1+ airways were present in γ(c)⁻/⁻ mice. Absence of γc in macrophages, however, resulted in reduced YM1 expression. We observed higher T(H)2 cytokine levels in the BAL and an altered DC phenotype in the γ(c)⁻/⁻ recipient mice suggesting the potential for dysregulated T cell and dendritic cell (DC) activation in the γ(c)-deficient environment. These results demonstrate that in absence of the Type I IL-4R, the Type II R can mediate allergic responses in the presence of T(H)2 effectors. However, the Type I R regulates AAM protein expression in macrophages.

  5. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins

    PubMed Central

    Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685

  6. Oral Treatment with Extract of Agaricus blazei Murill Enhanced Th1 Response through Intestinal Epithelial Cells and Suppressed OVA-Sensitized Allergy in Mice

    PubMed Central

    Bouike, Go; Nishitani, Yosuke; Shiomi, Hideyuki; Yoshida, Masaru; Azuma, Takeshi; Hashimoto, Takashi; Kanazawa, Kazuki; Mizuno, Masashi

    2011-01-01

    To clarify the mechanism of the antiallergic activity of Agaricus blazei Murill extract (ABME), the present paper used an in vivo allergy model and an in vitro intestinal gut model. During OVA sensitization, the serum IgE levels decreased significantly in ABME group. Interleukin (IL)-4 and -5 produced from OVA-restimulated splenocytes was significantly decreased, and anti-CD3ε/CD28 antibody treatment also reduced IL-10, -4, and -5 production and increased IFN-γ production in ABME group. These results suggest that oral administration of ABME improves Th1/Th2 balance. Moreover, a coculture system constructed of Caco-2 cells and splenocytes from OT-II mice or RAW 264.7 cells indicated that the significant increases in IFN-γ production by ABME treatment. Therefore, it was concluded that the antiallergic activity of ABME was due to the activation of macrophages by epithelial cells and the promotion of the differentiation of naïve T cells into Th1 cells in the immune. PMID:20953432

  7. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia

    PubMed Central

    Saito, S; Sakai, M; Sasaki, Y; Tanebe, K; Tsuda, H; Michimata, T

    1999-01-01

    We calculated the percentage of Th1, Th2, Th0 cells and the Th1:Th2 cell ratio of peripheral blood from normal pregnant subjects and preeclampsia patients using flow cytometry which can analyse both the surface marker, CD4, and intracellular cytokines, interleukin (IL)-4 and interferon (IFN)-γ. In normal pregnancy, the percentage of Th1 cells was significantly lower in the third trimester, and the ratios of Th1:Th2 were significantly lower in the second and third trimester than in nonpregnant subjects. In contrast, the percentage of Th1 cells and the ratios of Th1:Th2 in preeclampsia were significantly higher than in normal third trimester pregnant subjects. The percentage of Th2 cells in preeclampsia was significantly lower than in third trimester of normal pregnancy. Additionally, peripheral blood mononuclear cells from these subjects and patients were cultured with phytohemagglutinin stimulation, and IL-4 and IFN-γ concentrations were determined in the supernatant by enzymed linked immunosorbent assays. The percentage of Th1 and Th2, and the ratios of Th1:Th2 were correlated with cytokine (IFN-γ and IL-4) secretion level. These results demonstrated that Th2 cells were predominant in the second and third trimesters of normal pregnancy, but Th1 cells predominated in preeclamptic patients. PMID:10469061

  8. Transcription factor RBP-J-mediated signalling regulates basophil immunoregulatory function in mouse asthma model.

    PubMed

    Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui

    2017-09-01

    Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.

  9. Use of a Guinea Pig-Specific Transcriptome Array for Evaluation of Protective Immunity against Genital Chlamydial Infection following Intranasal Vaccination in Guinea Pigs.

    DTIC Science & Technology

    2014-12-11

    modulation in several innate immunity markers particularly associated with NK cells and Th1/Th2 specific cytokines and chemokines in immunized guinea pigs...reduced antigen-specific activation (IL-12 and IFN-c production) of CD4+ T cells isolated from lymphoid tissues and genital tract, and an associated...CD4+ T cells [12, 13]. However, due to differences in immunological responses [23, 24, 25, 26], and chlamydial strain susceptibilities between mice

  10. Immunomodulatory and Immunosuppressive Roles of 1α,25(OH)2D3 in Autoimmune Diseases.

    PubMed

    Alhassan Mohammed, H; Saboor-Yaraghi, A A; Mirshafiey, A; Vahedi, H; Shiri-Shahsavar, M R; Mousavi Nasl Khameneh, A

    2017-02-01

    Autoimmune diseases are pathological conditions characterized by abnormal responses, accompanied by autoantibodies to self-molecules. The role of vitamin D in autoimmune diseases has increased significantly in the recent past from its functions in calcium and phosphate homoeostasis, and it is now involved in the regulations and proliferations of Th1 and Th17 lymphocyte. 1α,25(OH)2D3 is very important in ameliorations of inflammatory disorders arising from autoimmune diseases, but the mechanism by which this is performed is still a bone of contentions. This review aimed to highlight the existing facts about the roles of Vitamin D in the treatment and management of autoimmune diseases. An extensive online literature search was conducted using PubMed, MEDLINE and Scopus. Accumulated bodies of research evidence are available which demonstrates that Vitamin D has a very important part to play in the regulation of immune responses in autoimmune diseases. Some of the authors suggested that Vitamin D3 carry-out its immunosuppressive and immune modulatory action, through its actions on antigen-presenting cells and activated T and B cells with the help of Vitamin D receptors present on the each of these cells. Vitamin D supplementation assists in autoimmune disorders by making qualitative and quantitative changes in the immune system (downregulation of Th1 and upregulations of Th2 cells). This resulted in the body to be more tolerant of self and less likely to mount autoimmune responses. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  11. Modulation of human Th17 cell responses through complement receptor 3 (CD11 b/CD18) ligation on monocyte-derived dendritic cells.

    PubMed

    Nowatzky, Johannes; Manches, Olivier; Khan, Shaukat Ali; Godefroy, Emmanuelle; Bhardwaj, Nina

    2018-06-13

    Apoptotic cell receptors contribute to the induction of tolerance by modulating dendritic cell function following the uptake of apoptotic cells or microparticles. Dendritic cells that have bound or ingested apoptotic cells produce only low amounts of pro-inflammatory cytokines and fail to prime effector T cell responses. Specifically, ligation of the apoptotic cell receptor CR3 (CD11 b/CD18) on human monocyte-derived dendritic cells (moDC) down-modates proinflammatory cytokine secretion, but the consequences for human Th17 cell homeostasis and effector responses remain unknown. Here, we aimed to establish whether CD11b-ligated moDC modulate Th17 cell effector reponses to assess their potential for future use in moDC-based suppressive immunotherapy. We generated a bead-based surrogate system to target CD11b on monocyte-derived human dendritic cells and examined the effects of CD11b ligation on Th17-skewing cytokine secretion, priming, expansion and functional plasticity in DC/T cell co-culture systems at the poly- and monoclonal level. We show that Th17 cell expansion within the human memory CD4 + T cell compartment was efficiently constricted by targeting the CD11b receptor on moDC. This tolerogenic capacity was primarily dependent on cytokine skewing. Furthermore, ligation of CD11b on healthy homozygous carriers of the rs11143679 (ITGAM) variant - a strong genetic susceptibility marker for human systemic lupus erythematosus - also down-modulated the secretion of Th17-skewing cytokines. Overall, our findings underline the potential of targeted CD11b ligation on human dendritic cells for the engineering of suppressive immunotherapy for Th17-related autoimmune disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Increased hepatic Th2 and Treg subsets are associated with biliary fibrosis in different strains of mice caused by Clonorchis sinensis

    PubMed Central

    Fang, Fan; Du, Ying; Ma, Rui; Li, Xiang-Yang; Yu, Qian; Meng, Di; Tang, Ren-Xian; Zheng, Kui-Yang

    2017-01-01

    Previous studies showed that CD4+T cells responses might be involved in the process of biliary fibrosis. However, the underlying mechanism resulting in biliary fibrosis caused by Clonorchis sinensis remains not yet fully elucidated. The objectives of the present study were to investigate the different profiles of hepatic CD4+T cell subsets (Th1, Th2, Th17 and Treg cells) and their possible roles in the biliary fibrosis of different strains of mice (C57BL/6, BALB/c and FVB mice) induced by C. sinensis infection. C57BL/6, BALB/c and FVB mice were orally gavaged with 45 metacercariae. All mice were sacrificed on 28 days post infection in deep anesthesia conditions. The leukocytes in the liver were separated to examine CD4+T cell subsets by flow cytometry and the left lobe of liver was used to observe pathological changes, collagen depositions and the concentrations of hydroxyproline. The most serious cystic and fibrotic changes appeared in FVB infected mice indicated by gross observation, Masson’s trichrome staining and hydroxyproline content detection. In contrast to C57BL/6 infected mice, diffuse nodules and more intensive fibrosis were observed in the BALB/c infected mice. No differences of the hepatic Th1 subset and Th17 subset were found among the three strains, but the hepatic Th2 and Treg cells and their relative cytokines were dramatically increased in the BALB/c and FVB infected groups compared with the C57BL/6 infected group (P<0.01). Importantly, increased Th2 subset and Treg subset all positively correlated with hydroxyproline contents (P<0.01). This result for the first time implied that the increased hepatic Th2 and Treg cell subsets were likely to play potential roles in the formation of biliary fibrosis in C. sinensis-infected mice. PMID:28151995

  13. Excessive expression of miR-27 impairs Treg-mediated immunological tolerance

    PubMed Central

    Cruz, Leilani O.; Hashemifar, Somaye Sadat; Wu, Cheng-Jang; Cho, Sunglim; Nguyen, Duc T.; Lin, Ling-Li; Khan, Aly Azeem

    2017-01-01

    MicroRNAs (miRs) are tightly regulated in the immune system, and aberrant expression of miRs often results in hematopoietic malignancies and autoimmune diseases. Previously, it was suggested that elevated levels of miR-27 in T cells isolated from patients with multiple sclerosis facilitate disease progression by inhibiting Th2 immunity and promoting pathogenic Th1 responses. Here we have demonstrated that, although mice with T cell–specific overexpression of miR-27 harbor dysregulated Th1 responses and develop autoimmune pathology, these disease phenotypes are not driven by miR-27 in effector T cells in a cell-autonomous manner. Rather, dysregulation of Th1 responses and autoimmunity resulted from a perturbed Treg compartment. Excessive miR-27 expression in murine T cells severely impaired Treg differentiation. Moreover, Tregs with exaggerated miR-27–mediated gene regulation exhibited diminished homeostasis and suppressor function in vivo. Mechanistically, we determined that miR-27 represses several known as well as previously uncharacterized targets that play critical roles in controlling multiple aspects of Treg biology. Collectively, our data show that miR-27 functions as a key regulator in Treg development and function and suggest that proper regulation of miR-27 is pivotal to safeguarding Treg-mediated immunological tolerance. PMID:28067667

  14. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity

    PubMed Central

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela

    2014-01-01

    SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780

  15. Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice.

    PubMed

    Washino, Takuya; Moroda, Masataka; Iwakura, Yoichiro; Aosai, Fumie

    2012-04-01

    Interleukin 1 receptor antagonist (IL-1Ra)-deficient BALB/c mice develop spontaneous arthritis resembling human rheumatoid arthritis. We herein report that infection with Toxoplasma gondii, an intracellular protozoan, is capable of ameliorating the spontaneous development of arthritis in IL-1Ra-deficient mice. The onset of arthritis development was delayed and the severity score of arthritis was significantly suppressed in T. gondii-infected mice. Expression of IL-12p40 mRNA from CD11c(+) cells of mesenteric lymph nodes (mLN) and spleen markedly increased at 1 week after peroral infection. While CD11c(+) cells also produced IL-10, IL-1β, and IL-6, CD4(+) T cells from T. gondii-infected mice expressed significantly high levels of T-bet and gamma interferon (IFN-γ) mRNA in both mLN and spleen. Levels of GATA-3/IL-4 mRNA or RORγt/IL-17 mRNA decreased in the infected mice, indicating Th1 cell polarization and the reduction of Th2 and Th17 cell polarization. The severity of arthritis was related to Th1 cell polarization accompanied by Th17 cell reduction, demonstrating the protective role of the T. gondii-derived Th1 response against Th17 cell-mediated arthritis in IL-1Ra-deficient mice.

  16. Triclosan Induces Thymic Stromal Lymphopoietin in Skin Promoting Th2 Allergic Responses

    PubMed Central

    Marshall, Nikki B.; Lukomska, Ewa; Long, Carrie M.; Kashon, Michael L.; Sharpnack, Douglas D.; Nayak, Ajay P.; Anderson, Katie L.; Meade, B. Jean; Anderson, Stacey E.

    2016-01-01

    Triclosan is an antimicrobial chemical incorporated into many personal, medical and household products. Approximately, 75% of the U.S. population has detectable levels of triclosan in their urine, and although it is not typically considered a contact sensitizer, recent studies have begun to link triclosan exposure with augmented allergic disease. We examined the effects of dermal triclosan exposure on the skin and lymph nodes of mice and in a human skin model to identify mechanisms for augmenting allergic responses. Triclosan (0%–3%) was applied topically at 24-h intervals to the ear pinnae of OVA-sensitized BALB/c mice. Skin and draining lymph nodes were evaluated for cellular responses and cytokine expression over time. The effects of triclosan (0%–0.75%) on cytokine expression in a human skin tissue model were also examined. Exposure to triclosan increased the expression of TSLP, IL-1β, and TNF-α in the skin with concomitant decreases in IL-25, IL-33, and IL-1α. Similar changes in TSLP, IL1B, and IL33 expression occurred in human skin. Topical application of triclosan also increased draining lymph node cellularity consisting of activated CD86+GL-7+ B cells, CD80+CD86+ dendritic cells, GATA-3+OX-40+IL-4+IL-13+ Th2 cells and IL-17 A+ CD4 T cells. In vivo antibody blockade of TSLP reduced skin irritation, IL-1β expression, lymph node cellularity, and Th2 responses augmented by triclosan. Repeated dermal exposure to triclosan induces TSLP expression in skin tissue as a potential mechanism for augmenting allergic responses. PMID:26048654

  17. Activation of mixed glia by Abeta-specific Th1 and Th17 cells and its regulation by Th2 cells.

    PubMed

    McQuillan, K; Lynch, Marina A; Mills, Kingston H G

    2010-05-01

    Microglia are innate immune cells of the CNS, that act as antigen-presenting cells (APC) for antigen-specific T cells and respond to inflammatory stimuli, such as amyloid-beta (Abeta), resulting in the release of neurotoxic factors and pro-inflammatory cytokines. Astrocytes can also act as APC and modulate the function of microglia. However, the role of distinct T cell subtypes, in particular Th17 cells, in glial activation and subsequent modulatory effects of Th2 cells are poorly understood. Here, we generated Abeta-specific Th1, Th2, and Th17 cells and examined their role in modulating Abeta-induced activation of microglia in a mixed glial culture, a preparation which mimics the complex APC types in the brain. We demonstrated that mixed glia acted as an effective APC for Abeta-specific Th1 and Th17 cells. Addition of Abeta-specific Th2 cells suppressed the Abeta-induced IFN-gamma production by Th1 cells and IL-17 production by Th17 cells with glia as the APC. Co-culture of Abeta-specific Th1 or Th17 cells with glia markedly enhanced Abeta-induced pro-inflammatory cytokine production and expression of MHC class II and co-stimulatory molecules on the microglia. Addition of Abeta-specific Th2 cells inhibited Th17 cell-induced IL-1beta and IL-6 production by mixed glia and attenuated Th1 cell-induced CD86 and CD40 expression on microglia. The modest enhancement of MHC class II and CD86 expression on astrocytes by Abeta-specific Th1 and Th17 was not attenuated by Th2 cells. These data indicate that Abeta-specific Th1 and Th17 cells induce inflammatory activation of glia, and that this is in part regulated by Th2 cells. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    PubMed

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  19. The Translational Repressor T-cell Intracellular Antigen-1 (TIA-1) is a Key Modulator of Th2 and Th17 Responses Driving Pulmonary Inflammation Induced by Exposure to House Dust Mite

    PubMed Central

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L.; Orduña, Antonio; Boyce, Joshua A.; Anderson, Paul J.

    2012-01-01

    T-cell Intracellular Antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1−/−) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1−/− mice also had higher levels of Df-specific IgE and IgG1 in serum and ex vivo restimulated Tia-1−/− lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. PMID:22525013

  20. The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite.

    PubMed

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J

    2012-08-30

    T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.

Top