Sample records for theoretical atomic physics

  1. Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems

    NASA Astrophysics Data System (ADS)

    Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.

    2017-02-01

    Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.

  2. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.

  3. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  4. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  5. Researcher Supported by Atomic Energy Commission and U.S. Department of

    Science.gov Websites

    Energy is Co-Winner Of 2008 Nobel Prize in Physics October 7, 2008 Researcher Supported by Atomic Energy Commission and U.S. Department of Energy is Co-Winner Of 2008 Nobel Prize in Physics -winning the 2008 Nobel Prize in Physics for their theoretical insights that provide a deeper understanding

  6. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.

  7. Studying Atomic Physics Using the Nighttime Atmosphere as a Laboratory

    NASA Technical Reports Server (NTRS)

    Sharpee, B. D.; Slanger, T. G.; Huestis, D. L.; Cosby, P. C.

    2006-01-01

    A summary of our recent work using terrestrial nightglow spectra, obtained from astronomical instrumentation, to directly measure, or evaluate theoretical values for fundamental parameters of astrophysically important atomic lines.

  8. Electrostatic atomization--Experiment, theory and industrial applications

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Kelly, Arnold J.

    1996-05-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.

  9. Physics Division annual review, 1 April 1980-31 March 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less

  10. Physics in the Twentieth Century

    ERIC Educational Resources Information Center

    Weisskopf, Victor F.

    1970-01-01

    Provides a review of the great discoveries, theoretical concepts and development of physics in the 20th century. The growth and significance of diverse fields such as quantum theory, relativity theory, atomic physics, molecular physics, the physics of the solid state, nuclear physics, astrophysics, plasma physics, and particle physics are…

  11. Physics Division annual review, 1 April 1975--31 March 1976. [ANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, G. T.

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)

  12. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  13. Proposed software system for atomic-structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, C.F.

    1981-07-01

    Atomic structure calculations are understood well enough that, at a routine level, an atomic structure software package can be developed. At the Atomic Physics Conference in Riga, 1978 L.V. Chernysheva and M.Y. Amusia of Leningrad University, presented a paper on Software for Atomic Calculations. Their system, called ATOM is based on the Hartree-Fock approximation and correlation is included within the framework of RPAE. Energy level calculations, transition probabilities, photo-ionization cross-sections, electron scattering cross-sections are some of the physical properties that can be evaluated by their system. The MCHF method, together with CI techniques and the Breit-Pauli approximation also provides amore » sound theoretical basis for atomic structure calculations.« less

  14. Physics Division progress report for period ending June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  15. Theoretical and experimental studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Reeves, E. M.

    1975-01-01

    The processes and parameters in atomic and molecular physics that are relevant to solar physics are investigated. The areas covered include: (1) measurement of atomic and molecular parameters that contribute to discrete and continous sources of opacity and abundance determinations in the sun; (2) line broadening and scattering phenomena; and (3) development of an ion beam spectroscopic source which is used for the measurement of electron excitation cross sections of transition region and coronal ions.

  16. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  17. Physics division progress report for period ending September 30 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  18. Theory of atomic spectral emission intensity

    NASA Astrophysics Data System (ADS)

    Yngström, Sten

    1994-07-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.

  19. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    PubMed Central

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  20. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    NASA Astrophysics Data System (ADS)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  1. Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1991-01-01

    Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…

  2. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  3. Quantum dynamics of a two-atom-qubit system

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  4. Parity and Time-Reversal Violation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.

    2015-10-01

    Studying the violation of parity and time-reversal invariance in atomic systems has proven to be a very effective means of testing the electroweak theory at low energy and searching for physics beyond it. Recent developments in both atomic theory and experimental methods have led to the ability to make extremely precise theoretical calculations and experimental measurements of these effects. Such studies are complementary to direct high-energy searches, and can be performed for only a fraction of the cost. We review the recent progress in the field of parity and time-reversal violation in atoms, molecules, and nuclei, and examine the implications for physics beyond the Standard Model, with an emphasis on possible areas for development in the near future.

  5. An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization

    NASA Technical Reports Server (NTRS)

    Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.

    1997-01-01

    Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.

  6. Benchmarking Attosecond Physics with Atomic Hydrogen

    DTIC Science & Technology

    2015-05-25

    theoretical simulations are available in this regime. We provided accurate reference data on the photoionization yield and the CEP-dependent...this difficulty. This experiment claimed to show that, contrary to current understanding, the photoionization of an atomic electron is not an... photoion yield and transferrable intensity calibration. The dependence of photoionization probability on laser intensity is one of the most

  7. The Strength of Chaos: Accurate Simulation of Resonant Electron Scattering by Many-Electron Ions and Atoms in the Presence of Quantum Chaos

    DTIC Science & Technology

    2017-01-20

    September 2016 PI and Co-PI information: Igor Bray; I.Bray@curtin.edu.au; Curtin University; Department of Physics , Astronomy and Medical Radiation... astrophysics , fusion energy through to cancer imaging and therapy. During the last two decades there has been immense progress in the field of...Theoretical Physics Division, at the Los Alamos National Laboratory. Theory: The underlying theoretical approach to collisions that we use is known as the

  8. Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.

    PubMed

    Bonhommeau, David; Viel, Alexandra; Halberstadt, Nadine

    2004-06-22

    We report a theoretical study of the fragmentation dynamics of Ne(3) (+) inside helium nanodroplets, following vertical ionization of the neutral neon trimer. The motion of the neon atoms is treated classically, while transitions between the electronic states of the ionic cluster are treated quantum mechanically. A diatomics-in-molecules description of the potential energy surfaces is used, in a minimal basis set consisting of three effective p orbitals on each neon atom for the missing electron. The helium environment is modeled by a friction force acting on the neon atoms when their speed exceeds the Landau velocity. A reasonable range of values for the corresponding friction coefficient is obtained by comparison with existing experimental measurements. (c) 2004 American Institute of Physics.

  9. The International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    NASA Technical Reports Server (NTRS)

    Sugar, J.; Leckrone, D.

    1993-01-01

    This was the fourth in a series of colloquia begun at the University of Lund, Sweden in 1983 and subsequently held in Toledo, Ohio and Amsterdam, The Netherlands. The purpose of these meetings is to provide an international forum for communication between major users of atomic spectroscopic data and the providers of these data. These data include atomic wavelengths, line shapes, energy levels, lifetimes, and oscillator strengths. Speakers were selected from a wide variety of disciplines including astrophysics, laboratory plasma research, spectrochemistry, and theoretical and experimental atomic physics.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inokuti, M.; Rau, A. R. P.; Physics

    With the passing of Ugo Fano on 13 February 2001, Comments on Atomic and Molecular Physics lost a longtime correspondent since its founding in 1969. A broader community dearly misses a great theoretical physicist. The present tribute is designed in a special way appropriate for this journal, in view of other documents describing Fano's life and work. It is accompanied by a curriculum vitae, which shows the span of a rich professional life. We shall concentrate on his accomplishments in atomic and molecular physics, leaving aside contributions to radiation physics and other areas. We also present a list of hismore » publications, which should be useful as a resource material.« less

  11. Dipolar and spinor bosonic systems

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.

    2018-05-01

    The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.

  12. Atomic Data Needs for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A. (Editor); Kallman, Timothy R. (Editor); Pradhan, Anil K. (Editor)

    2000-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on "Atomic Data Needs for X-ray Astronomy," which was held at NASA's Goddard Space Flight Center on December 16-17, 1999. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters, Spectra Modeling, and Atomic Databases. These proceedings are expected to be of interest to producers and users of atomic data. Moreover, the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  13. Interacting dark resonances with plasmonic meta-molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj K.; Mrejen, Michael; Kim, Jeongmin

    2014-09-15

    Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We theoretically demonstrate that these plasmonic meta-molecules exhibit sub-natural spectral response, analogous to conventional atomic four-level configuration, by manipulating the evanescent coupling between the bright and dark elements (plasmonic atoms). Using cascaded coupling, we show nearly 4-fold reduction in linewidth of the hybridized resonance compared to a resonantly excited single bright plasmonic atom with same absorbance. In addition, we engineered the geometry of the meta-molecules to realize efficient intramolecularmore » excitation transfer with nearly 80%, on resonant excitation, of the total absorption being localized at the second dark plasmonic atom. An analytical description of the spectral response of the structure is presented with full electrodynamics simulations to corroborate our results. Such multilayered meta-molecules can bring a new dimension to higher quality factor plasmonic resonance, efficient excitation transfer, wavelength demultiplexing, and enhanced non-linearity at nanoscale.« less

  14. Vortices and turbulence in trapped atomic condensates

    PubMed Central

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  15. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  16. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  17. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  18. Theoretical prediction and atomic kinetic Monte Carlo simulations of void superlattice self-organization under irradiation.

    PubMed

    Gao, Yipeng; Zhang, Yongfeng; Schwen, Daniel; Jiang, Chao; Sun, Cheng; Gan, Jian; Bai, Xian-Ming

    2018-04-26

    Nano-structured superlattices may have novel physical properties and irradiation is a powerful mean to drive their self-organization. However, the formation mechanism of superlattice under irradiation is still open for debate. Here we use atomic kinetic Monte Carlo simulations in conjunction with a theoretical analysis to understand and predict the self-organization of nano-void superlattices under irradiation, which have been observed in various types of materials for more than 40 years but yet to be well understood. The superlattice is found to be a result of spontaneous precipitation of voids from the matrix, a process similar to phase separation in regular solid solution, with the symmetry dictated by anisotropic materials properties such as one-dimensional interstitial atom diffusion. This discovery challenges the widely accepted empirical rule of the coherency between the superlattice and host matrix crystal lattice. The atomic scale perspective has enabled a new theoretical analysis to successfully predict the superlattice parameters, which are in good agreement with independent experiments. The theory developed in this work can provide guidelines for designing target experiments to tailor desired microstructure under irradiation. It may also be generalized for situations beyond irradiation, such as spontaneous phase separation with reaction.

  19. Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Dong, Lin

    Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

  20. Hidden symmetry and nonlinear paraxial atom optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impens, Francois

    2009-12-15

    A hidden symmetry of the nonlinear wave equation is exploited to analyze the propagation of paraxial and uniform atom-laser beams in time-independent and quadratic transverse potentials with cylindrical symmetry. The quality factor and the paraxial ABCD formalism are generalized to account exactly for mean-field interaction effects in such beams. Using an approach based on moments, these theoretical tools provide a simple yet exact picture of the interacting beam profile evolution. Guided atom laser experiments are discussed. This treatment addresses simultaneously optical and atomic beams in a unified manner, exploiting the formal analogy between nonlinear optics, nonlinear paraxial atom optics, andmore » the physics of two-dimensional Bose-Einstein condensates.« less

  1. Experimental realization of a subwavelength optical potential based on atomic dark state

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Subhankar, Sarthak; Rolston, Steven; Porto, James

    2017-04-01

    As a well-established tool optical lattice (OL) provides the unique opportunity to exploit the rich manybody physics. However, ``traditional'' OL, either via laser beam interference or direct projection with spatial light modulator, has a length scale around the wavelength (0.1 10 λ) that is set by diffraction, a fundamental limit from the wave nature of the light. Recent theoretical proposals suggest an alternative route, where the geometric potential, stemming from light-atom interaction, can be engineered to generate a much finer potential landscape which is essentially limited by the wave nature of the slow moving cold atoms. We report on the progress towards an experimental realization of these ideas using degenerate fermionic ytterbium atoms. Such subwavelength optical potential could open the gate to study physics beyond currently available parameter regimes, such as enhanced super-exchange coupling, magnetic dipolar coupling, and tunnel junction in atomtronics.

  2. DiffPy-CMI-Python libraries for Complex Modeling Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billinge, Simon; Juhas, Pavol; Farrow, Christopher

    2014-02-01

    Software to manipulate and describe crystal and molecular structures and set up structural refinements from multiple experimental inputs. Calculation and simulation of structure derived physical quantities. Library for creating customized refinements of atomic structures from available experimental and theoretical inputs.

  3. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures

    PubMed Central

    Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.

    2015-01-01

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251

  4. Theoretical prediction of the energy stability of graphene nanoblisters

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Slepchenkov, M. M.; Barkov, P. V.

    2018-04-01

    The paper presents the results of a theoretical prediction of the energy stability of graphene nanoblisters with various geometrical parameters. As a criterion for the evaluation of the stability of investigated carbon objects we propose to consider the value of local stress of the nanoblister atomic grid. Numerical evaluation of stresses experienced by atoms of the graphene blister framework was carried out by means of an original method for calculation of local stresses that is based on energy approach. Atomistic models of graphene nanoblisters corresponding to the natural experiment data were built for the first time in this work. New physical regularities of the influence of topology on the thermodynamic stability of nanoblisters were established as a result of the analysis of the numerical experiment data. We built the distribution of local stresses for graphene blister structures, whose atomic grid contains a variety of structural defects. We have shown how the concentration and location of defects affect the picture of the distribution of the maximum stresses experienced by the atoms of the nanoblisters.

  5. Comment on "Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers"

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Martinazzo, Rocco

    2018-03-01

    It is shown that the theoretical prediction of a transient magnetization in bilayer and multilayer graphene (M. Moaied et al., Phys. Rev. B 91, 155419 (2015), 10.1103/PhysRevB.91.155419) relies on an incorrect physical scenario for adsorption, namely, one in which H atoms adsorb barrierless on graphitic substrates and form a random adsorption pattern of monomers. Rather, according to experimental evidence, H atom sticking is an activated process, and adsorption is under kinetic control, largely ruled by a preferential sticking mechanism that leads to stable, nonmagnetic dimers at all but the smallest coverages (<0.004 ). Theory and experiments are reconciled by reconsidering the hydrogen atom adsorption energetics with the help of van der Waals-inclusive density functional calculations that properly account for the basis set superposition error. It is shown that today van der Waals-density functional theory predicts a shallow physisorption well that nicely agrees with available experimental data and suggests that the hydrogen atom adsorption barrier in graphene is 180 meV high, within ˜5 meV accuracy.

  6. Precise calibration of few-cycle laser pulses with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  7. Database and Related Activities in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Izumi; Kato, Daiji; Kato, Masatoshi

    2011-05-11

    We have constructed and made available atomic and molecular (AM) numerical databases on collision processes such as electron-impact excitation and ionization, recombination and charge transfer of atoms and molecules relevant for plasma physics, fusion research, astrophysics, applied-science plasma, and other related areas. The retrievable data is freely accessible via the internet. We also work on atomic data evaluation and constructing collisional-radiative models for spectroscopic plasma diagnostics. Recently we have worked on Fe ions and W ions theoretically and experimentally. The atomic data and collisional-radiative models for these ions are examined and applied to laboratory plasmas. A visible M1 transition ofmore » W{sup 26+} ion is identified at 389.41 nm by EBIT experiments and theoretical calculations. We have small non-retrievable databases in addition to our main database. Recently we evaluated photo-absorption cross sections for 9 atoms and 23 molecules and we present them as a new database. We established a new association ''Forum of Atomic and Molecular Data and Their Applications'' to exchange information among AM data producers, data providers and data users in Japan and we hope this will help to encourage AM data activities in Japan.« less

  8. Database and Related Activities in Japan

    NASA Astrophysics Data System (ADS)

    Murakami, Izumi; Kato, Daiji; Kato, Masatoshi; Sakaue, Hiroyuki A.; Kato, Takako; Ding, Xiaobin; Morita, Shigeru; Kitajima, Masashi; Koike, Fumihiro; Nakamura, Nobuyuki; Sakamoto, Naoki; Sasaki, Akira; Skobelev, Igor; Tsuchida, Hidetsugu; Ulantsev, Artemiy; Watanabe, Tetsuya; Yamamoto, Norimasa

    2011-05-01

    We have constructed and made available atomic and molecular (AM) numerical databases on collision processes such as electron-impact excitation and ionization, recombination and charge transfer of atoms and molecules relevant for plasma physics, fusion research, astrophysics, applied-science plasma, and other related areas. The retrievable data is freely accessible via the internet. We also work on atomic data evaluation and constructing collisional-radiative models for spectroscopic plasma diagnostics. Recently we have worked on Fe ions and W ions theoretically and experimentally. The atomic data and collisional-radiative models for these ions are examined and applied to laboratory plasmas. A visible M1 transition of W26+ ion is identified at 389.41 nm by EBIT experiments and theoretical calculations. We have small non-retrievable databases in addition to our main database. Recently we evaluated photo-absorption cross sections for 9 atoms and 23 molecules and we present them as a new database. We established a new association "Forum of Atomic and Molecular Data and Their Applications" to exchange information among AM data producers, data providers and data users in Japan and we hope this will help to encourage AM data activities in Japan.

  9. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  10. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  11. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  12. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images

    NASA Astrophysics Data System (ADS)

    Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme; de Los Rios, Paolo; Dietler, Giovanni; Mezzenga, Raffaele

    2010-06-01

    The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.

  13. Agreement of Experiment and Theory on the Single Ionization of Helium by Fast Proton Impact.

    PubMed

    Gassert, H; Chuluunbaatar, O; Waitz, M; Trinter, F; Kim, H-K; Bauer, T; Laucke, A; Müller, Ch; Voigtsberger, J; Weller, M; Rist, J; Pitzer, M; Zeller, S; Jahnke, T; Schmidt, L Ph H; Williams, J B; Zaytsev, S A; Bulychev, A A; Kouzakov, K A; Schmidt-Böcking, H; Dörner, R; Popov, Yu V; Schöffler, M S

    2016-02-19

    Even though the study of ion-atom collisions is a mature field of atomic physics, large discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with high momentum resolution on the single ionization of helium induced by 1-MeV protons, and we compare these to theoretical calculations. The overall agreement is strikingly good, and even the first Born approximation yields good agreement between theory and experiment. This has been expected for several decades, but so far has not been accomplished. The influence of projectile coherence effects on the measured data is briefly discussed in terms of an ongoing dispute on the existence of nodal structures in the electron angular emission distributions.

  14. International Conference on Vacuum Ultraviolet Radiation Physics, 8th, Lunds Universitet, Sweden, Aug. 4-8, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)

    1987-01-01

    The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.

  15. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator.

    PubMed

    Santarelli, G; Audoin, C; Makdissi, A; Laurent, P; Dick, G J; Clairon, A

    1998-01-01

    Atomic frequency standards using trapped ions or cold atoms work intrinsically in a pulsed mode. Theoretically and experimentally, this mode of operation has been shown to lead to a degradation of the frequency stability due to the frequency noise of the interrogation oscillator. In this paper a physical analysis of this effect has been made by evaluating the response of a two-level atom to the interrogation oscillator phase noise in Ramsey and multi-Rabi interrogation schemes using a standard quantum mechanical approach. This response is then used to calculate the degradation of the frequency stability of a pulsed atomic frequency standard such as an atomic fountain or an ion trap standard. Comparison is made to an experimental evaluation of this effect in the LPTF Cs fountain frequency standard, showing excellent agreement.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, P.

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describemore » inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.« less

  17. Atomic Data Needs for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; White, Nicholas E. (Technical Monitor)

    1999-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on Atomic Data Needs for X-ray Astronomy which was held at NASA's Goddard Space Flight Center on December 16-1 7 1999. The idea of hosting such a workshop emerged from an imminent need to update and complete current atomic datasets in anticipation of a new era of high quality X-ray spectra starting with the launching of Chandra and XMM-Newton observatories. At first, our vision of the workshop was of a short and limited attendance event, given the specialization of the topic. But it, was soon realized, from the response to the first workshop announcement, that the topic was of much interest, to researchers working in X-ray spectra (physicists and astronomers). As a result, the workshop grew to approximately 120 participants from several countries. The kind of atomic data that interests us are those parameters needed for analysis and modeling of spectra shortward of about about 100 A and relevant to ionic species of astronomical interest. The physical mechanisms of interest in the formation of spectra include photoionization. collisional ionization, recombination (radiative and dielectronic). collisional excitation (by electrons and protons). and radiative deexcitation. Unique to X-ray spectroscopy are the ionization and excitation processes from inner-closed shells. in addition to the challenges in interpret,ing the medium resolution (epsilon/delta epsilon is about 0.05 - 0.1) data obtained by current X-ray astronomy experiments. Line wavelengths are of interest too, particularly owing to the high resolution spectra from the new experiments. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters. Spectra Modeling, and Atomic Databases. One comforting finding from the work shop is that the enthusiasm felt by X-ray astronomers about the new observational missions seems to be shared by theoretical and experimental physicists. Talks were presented about several exciting new projects and experimental and theoretical techniques devoted to X-ray spectroscopy. Simultaneously, several new tools for spectral analysis and modeling have recently been developed, together with improved atomic databases. These proceeding are expected to be of interests to producers and users of atomic data. Moreover. the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  18. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less

  19. On the way to unveiling the atomic structure of superheavy elements

    NASA Astrophysics Data System (ADS)

    Laatiaoui, Mustapha

    2016-12-01

    Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced "online" by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.

  20. The Mechanism of Atomization Accompanying Solid Injection

    NASA Technical Reports Server (NTRS)

    Castleman, R A , Jr

    1933-01-01

    A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.

  1. Trapping hydrogen atoms from a neon-gas matrix: a theoretical simulation.

    PubMed

    Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A

    2009-08-07

    Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.

  2. Non-Hermitian optics in atomic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-04-01

    A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.

  3. Direct Imaging and First Principles Studies of Si3N4/SiO2 Interface

    NASA Astrophysics Data System (ADS)

    Walkosz, Weronika; Klie, Robert; Ogut, Serdar; Mikijelj, Bilijana; Pennycook, Stephen; Idrobo, Juan C.

    2010-03-01

    It is well known that the composition of the integranular films (IGFs) in sintered polycrystalline silicon nitride (Si3N4) ceramics controls many of their physical and mechanical properties. A considerable effort has been made to characterize these films on the atomic scale using both experimental and theoretical methods. In this talk, we present results from a combined atomic-resolution Z-contrast and annular bright field imaging, electron energy-loss spectroscopy, as well as ab initio studies of the interface between β-Si3N4 (10-10) and SiO2 intergranular film. Our results show that O replaces N at the interface between the two materials in agreement with our theoretical calculations and that N is present in the SiO2 IGF. Moreover, they indicate the presence of atomic columns completing Si3N4 open rings, which have not been observed experimentally at the recently imaged Si3N4/rare-earth oxides interfaces, but have been predicted theoretically on bare Si3N4 surfaces. The structural and electronic variations at the Si3N4/SiO2 interface will be discussed in detail, focusing in particular on bonding characteristics.

  4. Energy level diagrams for black hole orbits

    NASA Astrophysics Data System (ADS)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  5. PREFACE: Atomically controlled fabrication technology: new physics and functional device realization Atomically controlled fabrication technology: new physics and functional device realization

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuji; Kasai, Hideaki

    2011-10-01

    To realize next generation functional devices, atomic level controllability of the application and fabrication techniques is necessary. The conventional route to advance solid state devices, which involves improvement of 'instrumental accuracy', is now facing a major paradigm shift towards 'phenomenal accuracy'. Therefore, to keep up with this critical turn in the development of devices, pioneering research (both theoretical and experimental) on relevant materials, focusing on new physics at the atomic scale, is inevitable. This special section contains articles on the advancements in fabrication of functional devices with an emphasis on the exploration, clarification and understanding of atomistic phenomena. Research articles reporting theoretical and experimental findings on various materials such as semiconductors, metals, magnetic and organic systems, collectively present and 'capture' the appropriate processes and mechanisms of this rapidly developing field. The theoretical investigations employ first-principles quantum-mechanical simulations to clarify and bring about design principles and guidelines, or to develop more reliable computational methods. Experimental studies, on the other hand, introduce novel capabilities to build, view and manipulate materials at the atomic scale by employing pioneering techniques. Thus, the section pays significant attention to novel structures and properties and the accompanying fabrication techniques and design arising from the understanding of properties and structures at the atomic scale. We hope that researchers in the area of physics, materials science and engineering, interested in the development of functional devices via atomic level control, will find valuable information in this collaborative work. We are grateful to all of the authors for their contributions. Atomically controlled fabrication contents On the mechanism of carbon nanotube formation: the role of the catalyst G N Ayre, T Uchino, B Mazumder, A L Hector, J L Hutchison, D C Smith, P Ashburn and C H de Groot Mechanism of atomic-scale passivation and flattening of semiconductor surfaces by wet-chemical preparationsKenta Arima, Katsuyoshi Endo, Kazuto Yamauchi, Kikuji Hirose, Tomoya Ono and Yasuhisa Sano Real-space calculations for electron transport properties of nanostructuresTomoya Ono, Shigeru Tsukamoto, Yoshiyuki Egami and Yoshitaka Fujimoto Thermally activated magnetization reversal in monatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulationsDavid S G Bauer, Phivos Mavropoulos, Samir Lounis and Stefan Blügel An atomically controlled Si film formation process at low temperatures using atmospheric-pressure VHF plasmaK Yasutake, H Kakiuchi, H Ohmi, K Inagaki, Y Oshikane and M Nakano Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrorsKazuto Yamauchi, Hidekazu Mimura, Takashi Kimura, Hirokatsu Yumoto, Soichiro Handa, Satoshi Matsuyama, Kenta Arima, Yasuhisa Sano, Kazuya Yamamura, Koji Inagaki, Hiroki Nakamori, Jangwoo Kim, Kenji Tamasaku, Yoshinori Nishino, Makina Yabashi and Tetsuya Ishikawa Surface magnetism in O2 dissociation—from basics to applicationY Kunisada, M C Escaño and H Kasai Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization methodAkira Sasaki, Masashi Kojo, Kikuji Hirose and Hidekazu Goto Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscopeK Takami, S Tsuruta, Y Miyake, M Akai-Kasaya, A Saito, M Aono and Y Kuwahara

  6. Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modeling living systems.

    PubMed

    Simeonov, Plamen L; Ehresmann, Andrée C

    2017-12-01

    Forty-two years ago, Capra published "The Tao of Physics" (Capra, 1975). In this book (page 17) he writes: "The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts" and that, unlike 'classical' physics, the sub-atomic and quantum "modern physics" shows resonances with Eastern thoughts and "leads us to a view of the world which is very similar to the views held by mystics of all ages and traditions." This article stresses an analogous situation in biology with respect to a new theoretical approach for studying living systems, Integral Biomathics (IB), which also exhibits some resonances with Eastern thought. Stepping on earlier research in cybernetics 1 and theoretical biology, 2 IB has been developed since 2011 by over 100 scientists from a number of disciplines who have been exploring a substantial set of theoretical frameworks. From that effort, the need for a robust core model utilizing advanced mathematics and computation adequate for understanding the behavior of organisms as dynamic wholes was identified. At this end, the authors of this article have proposed WLIMES (Ehresmann and Simeonov, 2012), a formal theory for modeling living systems integrating both the Memory Evolutive Systems (Ehresmann and Vanbremeersch, 2007) and the Wandering Logic Intelligence (Simeonov, 2002b). Its principles will be recalled here with respect to their resonances to Eastern thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Will Allis Prize Talk: Electron Collisions - Experiment, Theory and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-05-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. In this talk, I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  8. Will Allis Prize for the Study of Ionized Gases: Electron Collisions - Experiment, Theory, and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-09-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  9. A physically interpretable quantum-theoretic QSAR for some carbonic anhydrase inhibitors with diverse aromatic rings, obtained by a new QSAR procedure.

    PubMed

    Clare, Brian W; Supuran, Claudiu T

    2005-03-15

    A QSAR based almost entirely on quantum theoretically calculated descriptors has been developed for a large and heterogeneous group of aromatic and heteroaromatic carbonic anhydrase inhibitors, using orbital energies, nodal angles, atomic charges, and some other intuitively appealing descriptors. Most calculations have been done at the B3LYP/6-31G* level of theory. For the first time we have treated five-membered rings by the same means that we have used for benzene rings in the past. Our flip regression technique has been expanded to encompass automatic variable selection. The statistical quality of the results, while not equal to those we have had with benzene derivatives, is very good considering the noncongeneric nature of the compounds. The most significant correlation was with charge on the atoms of the sulfonamide group, followed by the nodal orientation and the solvation energy calculated by COSMO and the charge polarization of the molecule calculated as the mean absolute Mulliken charge over all atoms.

  10. Walter Greiner: In Memoriam

    NASA Astrophysics Data System (ADS)

    Zen Vasconcellos, César; Coelho, Helio T.; Hess, Peter Otto

    Walter Greiner (29 October 1935 - 6 October 2016) was a German theoretical physicist. His scientific research interests include the thematic areas of atomic physics, heavy ion physics, nuclear physics, elementary particle physics (particularly quantum electrodynamics and quantum chromodynamics). He is most known in Germany for his series of books in theoretical physics, but he is also well known around the world. Greiner was born on October 29, 1935, in Neuenbau, Sonnenberg, Germany. He studied physics at the University of Frankfurt (Goethe University in Frankfurt Am Main), receiving in this institution a BSci in physics and a Master’s degree in 1960 with a thesis on plasma-reactors, and a PhD in 1961 at the University of Freiburg under Hans Marshal, with a thesis on the nuclear polarization in μ-mesic atoms. During the period of 1962 to 1964 he was assistant professor at the University of Maryland, followed by a position as research associate at the University of Freiburg, in 1964. Starting in 1965, he became a full professor at the Institute for Theoretical Physics at Goethe University until 2003. Greiner has been a visiting professor to many universities and laboratories, including Florida State University, the University of Virginia, the University of California, the University of Melbourne, Vanderbilt University, Yale University, Oak Ridge National Laboratory and Los Alamos National Laboratory. In 2003, with Wolf Singer, he was the founding Director of the Frankfurt Institute for Advanced Studies (FIAS), and gave lectures and seminars in elementary particle physics. He died on October 6, 2016 at the age of 80. Walter Greiner was an excellent teacher, researcher, friend. And he was a great supporter of the series of events known by the acronyms IWARA - International Workshop on Astronomy and Relativistic Astrophysics, STARS - Caribbean Symposium on Cosmology, Gravitation, Nuclear and Astroparticle Physics, and SMFNS - International Symposium on Strong Electromagnetic Fields and Neutron Stars. Walter Greiner left us. But his memory will remain always alive among us who have had the privilege of knowing him and enjoy his wisdom and joy of living.

  11. On the electrophilic character of molecules through its relation with electronegativity and chemical hardness.

    PubMed

    Islam, Nazmul; Ghosh, Dulal C

    2012-01-01

    Electrophilicity is an intrinsic property of atoms and molecules. It probably originates logistically with the involvement in the physical process of electrostatics of soaked charge in electronic shells and the screened nuclear charge of atoms. Motivated by the existing view of conceptual density functional theory that similar to electronegativity and hardness equalization, there should be a physical process of equalization of electrophilicity during the chemical process of formation of hetero nuclear molecules, we have developed a new theoretical scheme and formula for evaluating the electrophilicity of hetero nuclear molecules. A comparative study with available bench marking reveals that the hypothesis of electrophilicity and equalization, and the present method of evaluating equalized electrophilicity, are scientifically promising.

  12. On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness

    PubMed Central

    Islam, Nazmul; Ghosh, Dulal C.

    2012-01-01

    Electrophilicity is an intrinsic property of atoms and molecules. It probably originates logistically with the involvement in the physical process of electrostatics of soaked charge in electronic shells and the screened nuclear charge of atoms. Motivated by the existing view of conceptual density functional theory that similar to electronegativity and hardness equalization, there should be a physical process of equalization of electrophilicity during the chemical process of formation of hetero nuclear molecules, we have developed a new theoretical scheme and formula for evaluating the electrophilicity of hetero nuclear molecules. A comparative study with available bench marking reveals that the hypothesis of electrophilicity and equalization, and the present method of evaluating equalized electrophilicity, are scientifically promising. PMID:22408445

  13. Exciton Rydberg series in mono- and few-layer WS2

    NASA Astrophysics Data System (ADS)

    Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Özgur B.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.

    2014-03-01

    Considered a long-awaited semiconducting analogue to graphene, the family of atomically thin transition metal dichalcogenides (TMDs) attracted intense interest in the scientific community due to their remarkable physical properties resulting from the reduced dimensionality. A fundamental manifestation of the two-dimensional nature is a strong increase in the Coulomb interaction. The resulting formation of tightly bound excitons plays a crucial role for a majority of optical and transport phenomena. In our work, we investigate the excitons in atomically thin TMDs by optical micro-spectroscopy and apply a microscopic, ab-initio theoretical approach. We observe a full sequence of excited exciton states, i.e., the Rydberg series, in the monolayer WS2, identifying tightly bound excitons with energies exceeding 0.3 eV - almost an order of magnitude higher than in the corresponding, three-dimensional crystal. We also find significant deviations of the excitonic properties from the conventional hydrogenic physics - a direct evidence of a non-uniform dielectric environment. Finally, an excellent quantitative agreement is obtained between the experimental findings and the developed theoretical approach.

  14. Estimation of the viscosities of liquid binary alloys

    NASA Astrophysics Data System (ADS)

    Wu, Min; Su, Xiang-Yu

    2018-01-01

    As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.

  15. The importance of multi-level Rydberg interaction in electric field tuned Förster resonances

    NASA Astrophysics Data System (ADS)

    Kondo, Jorge; Booth, Donald; Gonçalves, Luis; Shaffer, James; Marcassa, Luis

    2016-05-01

    Many-body physics has been investigated in ultracold Rydberg atom systems, mainly because important parameters, such as density and interaction strength, can be controlled. Several puzzling experimental observations on Förster resonances have been associated to many-body effects, usually by comparison to complex theoretical models. In this work, we investigate the dc electric field dependence of 2 Förster resonant processes in ultracold 85 Rb, 37D5 / 2 + 37D5 / 2 --> 35 L(L = O , Q) + 39P3 / 2 , as a function of the atomic density in an optical dipole trap. At low densities, the 39 P yield as a function of electric field exhibits resonances. With increasing density, the linewidths increase until the peaks merge. Even under these extreme conditions, where many-body effects were expected to play a role, the 39 P population depends quadratically on the total Rydberg atom population. In order to explain our results, we implement a theoretical model which takes into account the multi-level character of the interactions and Rydberg atom blockade process using only atom pair interactions. The comparison between the experimental data and the model is very good, suggesting that the Förster resonant processes are dominated by 2-body interactions. This work is supported by FAPESP, AFOSR, NSF, INCT-IQ and CNPq.

  16. Atomic Covalent Functionalization of Graphene

    PubMed Central

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two-dimensional materials with fundamentally different electronic and physical properties. Specifically, we focus on recent studies of the addition of atomic hydrogen, fluorine, and oxygen to the basal plane of graphene. In each of these reactions a high energy, activating step initiates the process, breaking the local π structure and distorting the surrounding lattice. Scanning tunneling microscopy experiments reveal that substrate mediated interactions often dominate when the initial binding event occurs. We then compare these substrate effects with the results of theoretical studies that typically assume a vacuum environment. As the surface coverage increases, clusters often form around the initial distortion, and the stoichiometric composition of the saturated end product depends strongly on both the substrate and reactant species. In addition to these chemical and structural observations, we review how covalent modification can extend the range of physical properties that are achievable in two-dimensional materials. PMID:23030800

  17. Magnetic field dependence of the atomic collapse state in graphene

    NASA Astrophysics Data System (ADS)

    Moldovan, D.; Ramezani Masir, M.; Peeters, F. M.

    2018-01-01

    Quantum electrodynamics predicts that heavy atoms (Z > Zc ≈ 170 ) will undergo the process of atomic collapse where electrons sink into the positron continuum and a new family of so-called collapsing states emerges. The relativistic electrons in graphene exhibit the same physics but at a much lower critical charge (Zc ≈ 1 ) which has made it possible to confirm this phenomenon experimentally. However, there exist conflicting predictions on the effect of a magnetic field on atomic collapse. These theoretical predictions are based on the continuum Dirac-Weyl equation, which does not have an exact analytical solution for the interplay of a supercritical Coulomb potential and the magnetic field. Approximative solutions have been proposed, but because the two effects compete on similar energy scales, the theoretical treatment varies depending on the regime which is being considered. These limitations are overcome here by starting from a tight-binding approach and computing exact numerical results. By avoiding special limit cases, we found a smooth evolution between the different regimes. We predict that the atomic collapse effect persists even after the magnetic field is activated and that the critical charge remains unchanged. We show that the atomic collapse regime is characterized: (1) by a series of Landau level anticrossings and (2) by the absence of \\sqrt{B} scaling of the Landau levels with regard to magnetic field strength.

  18. The interaction of excited atoms and few-cycle laser pulses

    PubMed Central

    Calvert, J. E.; Xu, Han; Palmer, A. J.; Glover, R. D.; Laban, D. E.; Tong, X. M.; Kheifets, A. S.; Bartschat, K.; Litvinyuk, I. V.; Kielpinski, D.; Sang, R. T.

    2016-01-01

    This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and measure the ionisation rate as the a function of different steady-state populations in the fine structure of the target state which shows significant ionisation rate dependence on populations of spin-polarised states. The physical mechanism for this effect is unknown. PMID:27666403

  19. The interaction of excited atoms and few-cycle laser pulses.

    PubMed

    Calvert, J E; Xu, Han; Palmer, A J; Glover, R D; Laban, D E; Tong, X M; Kheifets, A S; Bartschat, K; Litvinyuk, I V; Kielpinski, D; Sang, R T

    2016-09-26

    This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and measure the ionisation rate as the a function of different steady-state populations in the fine structure of the target state which shows significant ionisation rate dependence on populations of spin-polarised states. The physical mechanism for this effect is unknown.

  20. James Franck and the 1919 Discovery of Metastable States

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton

    Today physicists associate metastable states in atoms with theoretical selection rules and transition probabilities. But these states were first discovered experimentally, at a time when such theories were in their infancy. In 1914, James Franck and Gustav Hertz published their experiments on inelastic collisions of slow electrons with helium and mercury vapor atoms. Famously, they thought they were measuring ionization energies, and not, as we understand it today, excitation energies. During the Great War, experimentalists in North America showed that Franck and Hertz had not seen ionization, and also measured the correct ionization energy of mercury vapor atoms. As Franck resumed work after the war, he and his associates at Fritz Haber's Institute for Physical Chemistry returned to experiments on and theoretical analyses of the collisions of slow electrons with helium atoms, in brisk competition with others in England and America. They were able to measure the ionization energy and to throw new light on the non-combining singlet and ``doublet'' (later found to be triplet) spectral series in helium. In the process, they proposed for the first time the existence of metastable states, first in helium, and later in mercury.

  1. Huygens triviality of the time-independent Schrödinger equation. Applications to atomic and high energy physics

    NASA Astrophysics Data System (ADS)

    Kholodenko, Arkady L.; Kauffman, Louis H.

    2018-03-01

    Huygens triviality - a concept invented by Jacques Hadamard - describes an equivalence class connecting those 2nd order partial differential equations which are transformable into the wave equation. In this work it is demonstrated, that the Schrödinger equation with the time-independent Hamiltonian belongs to such an equivalence class. The wave equation is the equation for which Huygens' principle (HP) holds. The HP was a subject of confusion in both physics and mathematics literature for a long time. Not surprisingly, the role of this principle was obscured from the beginnings of quantum mechanics causing some theoretical and experimental misunderstandings. The purpose of this work is to bring the full clarity into this topic. By doing so, we obtained a large amount of new results related to uses of Lie sphere geometry, of twistors, of Dupin cyclides, of null electromagnetic fields, of AdS-CFT correspondence, of Penrose limits, of geometric algebra, etc. in physical problems ranging from the atomic to high energy physics and cosmology.

  2. Peculiar bonding associated with atomic doping and hidden honeycombs in borophene

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Cheng; Feng, Baojie; D'angelo, Marie; Yukawa, Ryu; Liu, Ro-Ya; Kondo, Takahiro; Kumigashira, Hiroshi; Matsuda, Iwao; Ozaki, Taisuke

    2018-02-01

    Engineering atomic-scale structures allows great manipulation of physical properties and chemical processes for advanced technology. We show that the B atoms deployed at the centers of honeycombs in boron sheets, borophene, behave as nearly perfect electron donors for filling the graphitic σ bonding states without forming additional in-plane bonds by first-principles calculations. The dilute electron density distribution owing to the weak bonding surrounding the center atoms provides easier atomic-scale engineering and is highly tunable via in-plane strain, promising for practical applications, such as modulating the extraordinarily high thermal conductance that exceeds the reported value in graphene. The hidden honeycomb bonding structure suggests an unusual energy sequence of core electrons that has been verified by our high-resolution core-level photoelectron spectroscopy measurements. With the experimental and theoretical evidence, we demonstrate that borophene exhibits a peculiar bonding structure and is distinctive among two-dimensional materials.

  3. Energetics and structural properties of twist grain boundaries in Cu

    NASA Technical Reports Server (NTRS)

    Karimi, Majid

    1992-01-01

    Structural and energetics properties of atoms near a grain boundary are of great importance from theoretical and experimental standpoints. From various experimental work it is concluded that diffusion at low temperatures at polycrystalline materials take place near grain boundary. Experimental and theoretical results also indicate changes of up to 70 percent in physical properties near a grain boundary. The Embedded Atom Method (EAM) calculations on structural properties of Au twist grain boundaries are in quite good agreement with their experimental counterparts. The EAM is believed to predict reliable values for the single vacancy formation energy as well as migration energy. However, it is not clear whether the EAM functions which are fitted to the bulk properties of a perfect crystalline solid can produce reliable results on grain boundaries. One of the objectives of this work is to construct the EAM functions for Cu and use them in conjunction with the molecular static simulation to study structures and energetics of atoms near twist grain boundaries in Cu. This provides tests of the EAM functions near a grain boundary. In particular, we determine structure, single vacancy formation energy, migration energy, single vacancy activation energy, and interlayer spacing as a function of distance from grain boundary. Our results are compared with the available experimental and theoretical results from grain boundaries and bulk.

  4. Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale

    NASA Astrophysics Data System (ADS)

    Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Yu. N.; Zhakhovsky, V. V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Rudenko, A. A.; Inogamov, N. A.

    2017-10-01

    Subwavelength structures (meta-atoms) with artificially engineered permittivity and permeability have shown promising applications for guiding and controlling the flow of electromagnetic energy on the nanoscale. Ultrafast laser nanoprinting emerges as a promising single-step, green and flexible technology in fabricating large-area arrays of meta-atoms through the translative or ablative modification of noble-metal thin films. Ultrafast laser energy deposition in noble-metal films produces irreversible, intricate nanoscale translative mass redistributions after resolidification of the transient thermally assisted hydrodynamic melt perturbations. Such mass redistribution results in the formation of a radially symmetric frozen surface with modified hidden nanofeatures, which strongly affect the optical response harnessed in plasmonic sensing and nonlinear optical applications. Here, we demonstrate that side-view electron microscopy and ion-beam cross sections together with low-energy electron x-ray dispersion microscopy provide exact information about such three-dimensional patterns, enabling an accurate acquisition of their cross-sectional mass distributions. Such nanoscale solidified structures are theoretically modeled, considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation, and hydrodynamic flows. A theoretical approach, separating slow and fast physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semianalytical thin-shell model is synergistically applied. These advanced characterization approaches are required for a detailed modeling of near-field electromagnetic response and pave the way to a fully automated noninvasive in-line control of a high-throughput and large-scale laser fabrication. This theoretical modeling provides an accurate prediction of scales and topographies of the laser-fabricated meta-atoms and metasurfaces.

  5. Theoretical modeling of laser-induced plasmas using the ATOMIC code

    NASA Astrophysics Data System (ADS)

    Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle

    2014-10-01

    We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  6. Rydberg phases of Hydrogen and low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  7. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  8. Towards Polarized Antiprotons at FAIR

    NASA Astrophysics Data System (ADS)

    Rathmann, Frank

    2007-06-01

    Understanding the interplay of the nuclear interaction with polarized protons and the electromagnetic interaction with polarized electrons in polarized atoms is crucial to progress towards the PAX goal to eventually produce stored polarized antiproton beams at FAIR. Presently, there exist two competing theoretical scenarios: one with substantial spin filtering of (anti)protons by atomic electrons, and a second one suggesting a self-cancellation of the electron contribution to spin filtering. After a brief review of the PAX physics case for polarized antiprotons at FAIR, a detailed discussion of future investigations, including spin-filtering experiments at COSY-Jülich and at the AD of CERN is presented.

  9. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.-W, E-mail: attwl@asu.edu; An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  10. Changing optical band structure with single photons

    NASA Astrophysics Data System (ADS)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  11. Efimov-driven phase transitions of the unitary Bose gas.

    PubMed

    Piatecki, Swann; Krauth, Werner

    2014-03-20

    Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.

  12. Optical-bistability-enabled control of resonant light transmission for an atom-cavity system

    NASA Astrophysics Data System (ADS)

    Sawant, Rahul; Rangwala, S. A.

    2016-02-01

    The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.

  13. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Finkenthal, M.; Soukhanovskii, V.

    In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less

  14. Model for diffuse interstellar clouds: improvements to the theory of molecular hydrogen photodestruction and to the gas phase chemistry of carbon monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federman, S.R.

    1979-01-01

    A theoretical model has been developed to determine physical processes in conjunction with astrophysical observation. The calculations are based on isobaric, steady-state, plane-parallel conditions. In the model, the cloud is illuminated by ultraviolet radiation from one side. The density and temperature of the gas are derived by invoking energy conservation in terms of thermal balance. The derived values for density and temperature then are used to determine the abundances of approximately fifty atomic and molecular species, including important ionic species and simple carbon and oxygen bearing molecules. Except for molecular hydrogen formation on dust grains, binary gas phase reactions aremore » used to develop the chemistry of the model cloud. The theoretical model has been found to be appropriate for a particular range of physical parameters. The results of the steady-state calculations have been compared to ultraviolet observations, predominantly those made with the Copernicus satellite. The theory of molecular hydrogen photodestruction has been reexamined so that improvements to the model can be made. By analyzing the region where the atomic to molecuar hydrogen transition occurs, several processes have been found to contribute to dissociation.« less

  15. Dr. Nicholas Ionescu-Pallas at His 70-th Anniversary

    NASA Astrophysics Data System (ADS)

    Vlad, Valentin I.

    The article is devoted to 70-th Anniversary of Dr. Nicholas Ionescu-Pallas (borne on July 30, 1932 in Pallas village close to the town of Constanţa, Romania as the son of Ion Ionescu and Maria Dincă), an outstanding Romanian physicist with contributuions in a large area of theoretical and experimental physics, from Theoretical Classical and Quantum Mechanics to General Relativity and Gravitation. He was graduated from the University of Bucharest (1955), a disciple of Professor Ion Agârbiceanu, Doctor of Physics in 1971. He is the author of more than 300 scientific papers and 3 fundamental monographs in these areas, unique in Romania, and of great international circulation. He was one of the creators of the First Romanian Laser. He was elected the Honorary President of the Romanian Society on Genereal Relativity and Gravitation. A great erudition by Ionescu-Pallas allowed him to make also contributions in History of Sciencs. He has been a member of the Academic Commitee for the Philosophy and history of science, of the European Physical Society (1971), of the European Group for Atomic spectroscopy (1970), of the Institute for Scientific Culture E. Majorana (1976), of the International Society of Gravitation and General Relativity (1978) and of the Astronomical Society of India (1982). He was a representative of the intellectuals in the Scientific Council of the Institute for Atomic Physics, 1970-1975; a member of the National Commitee for physics in 1970, and a member of the Coordinating Commitee for the Romanian Enclclopaedia of Physics in 1983. His biographical data are available in Men of Achievement, Who's Who in the World, and Short History of the Romanian Scientific and Technical Creativeness.

  16. Many-Body Physics in Long-Range Interacting Quantum Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Bihui

    Ultracold atomic and molecular systems provide a useful platform for understanding quantum many-body physics. Recent progresses in AMO experiments enable access to systems exhibiting long-range interactions, opening a window for exploring the interplay between long-range interactions and dissipation. In this thesis, I develop theoretical approaches to study non-equilibrium dynamics in systems where such interplay is crucial. I first focus on a system of KRb molecules, where dipolar interactions and fast chemical reactions coexist. Using a classical kinetic theory and Monte Carlo methods, I study the evaporative cooling in a quasi-two-dimensional trap, and develop a protocol to reach quantum degeneracy. I also study the case where molecules are loaded into an optical lattice, and show that the strong dissipation induces a quantum Zeno effect, which suppresses the molecule loss. The analysis requires including multiple bands to explain recent experimental measurements, and can be used to determine the molecular filling fraction. I also investigate a system of radiating atoms, which experience long-range elastic and dissipative interactions. I explore the collective behavior of atoms and the role of atomic motion. The model is validated by comparison with a recent light scattering experiment using Sr atoms. I also show that incoherently pumped dipoles can undergo a dynamical phase transition to synchronization, and study its signature in the quantum regime.

  17. Collisions involving antiprotons and antihydrogen: an overview

    NASA Astrophysics Data System (ADS)

    Jonsell, S.

    2018-03-01

    I give an overview of experimental and theoretical results for antiproton and antihydrogen scattering with atoms and molecules (in particular H, He). At low energies (>1 keV) there are practically no experimental data available. Instead I compare the results from different theoretical calculations, of various degrees of sophistication. At energies up to a few tens of eV, I focus on simple approximations that give reasonably accurate results, as these allow quick estimates of collision rates without embarking on a research project. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  18. Intermediate-energy nuclear chemistry workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  19. Enhanced etching of tin-doped indium oxide due to surface modification by hydrogen ion injection

    NASA Astrophysics Data System (ADS)

    Li, Hu; Karahashi, Kazuhiro; Friederich, Pascal; Fink, Karin; Fukasawa, Masanaga; Hirata, Akiko; Nagahata, Kazunori; Tatsumi, Tetsuya; Wenzel, Wolfgang; Hamaguchi, Satoshi

    2018-06-01

    It is known that the etching yield (i.e., sputtering yield) of tin-doped indium oxide (ITO) by hydrocarbon ions (CH x +) is higher than its corresponding physical sputtering yield [H. Li et al., J. Vac. Sci. Technol. A 33, 060606 (2015)]. In this study, the effects of hydrogen in the incident hydrocarbon ion beam on the etching yield of ITO have been examined experimentally and theoretically with the use of a mass-selected ion beam system and by first-principles quantum mechanical (QM) simulation. As in the case of ZnO [H. Li et al., J. Vac. Sci. Technol. A 35, 05C303 (2017)], mass-selected ion beam experiments have shown that the physical sputtering yield of ITO by chemically inert Ne ions increases after a pretreatment of the ITO film by energetic hydrogen ion injection. First-principles QM simulation of the interaction of In2O3 with hydrogen atoms shows that hydrogen atoms embedded in In2O3 readily form hydroxyl (OH) groups and weaken or break In–O bonds around the hydrogen atoms, making the In2O3 film less resistant to physical sputtering. This is consistent with experimental observation of the enhanced etching yields of ITO by CH x + ions, considering the fact that hydrogen atoms of the incident CH x + ions are embedded into ITO during the etching process.

  20. Rapid generation of Mott insulators from arrays of noncondensed atoms

    NASA Astrophysics Data System (ADS)

    Sturm, M. R.; Schlosser, M.; Birkl, G.; Walser, R.

    2018-06-01

    We theoretically analyze a scheme for a fast adiabatic transfer of cold atoms from the atomic limit of isolated traps to a Mott insulator close to the superfluid phase. This gives access to the Bose-Hubbard physics without the need of a prior Bose-Einstein condensate. The initial state can be prepared by combining the deterministic assembly of atomic arrays with resolved Raman-sideband cooling. In the subsequent transfer the trap depth is reduced significantly. We derive conditions for the adiabaticity of this process and calculate optimal adiabatic ramp shapes. Using available experimental parameters, we estimate the impact of heating due to photon scattering and compute the fidelity of the transfer scheme. Finally, we discuss the particle number scaling behavior of the method for preparing low-entropy states. Our findings demonstrate the feasibility of the proposed scheme with state-of-the-art technology.

  1. Interaction-induced decay of a heteronuclear two-atom system

    PubMed Central

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  2. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  3. Prediction of a new graphenelike Si2BN solid

    NASA Astrophysics Data System (ADS)

    Andriotis, Antonis N.; Richter, Ernst; Menon, Madhu

    2016-02-01

    While the possibility to create a single-atom-thick two-dimensional layer from any material remains, only a few such structures have been obtained other than graphene and a monolayer of boron nitride. Here, based upon ab initio theoretical simulations, we propose a new stable graphenelike single-atomic-layer Si2BN structure that has all of its atoms with s p2 bonding with no out-of-plane buckling. The structure is found to be metallic with a finite density of states at the Fermi level. This structure can be rolled into nanotubes in a manner similar to graphene. Combining first- and second-row elements in the Periodic Table to form a one-atom-thick material that is also flat opens up the possibility for studying new physics beyond graphene. The presence of Si will make the surface more reactive and therefore a promising candidate for hydrogen storage.

  4. Relativistic Collisions of Highly-Charged Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, Dorin; Belkacem, Ali

    1998-11-19

    The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less

  5. Applications of Atomic Systems in Quantum Simulation, Quantum Computation and Topological Phases of Matter

    NASA Astrophysics Data System (ADS)

    Wang, Shengtao

    The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation and simulation. Trapped atomic ions are one of the leading platforms to build a scalable, universal quantum computer. The common one-dimensional setup, however, greatly limits the system's scalability. By solving the critical problem of micromotion, we propose a two-dimensional architecture for scalable trapped-ion quantum computation. Hamiltonian tomography for many-body quantum systems is essential for benchmarking quantum computation and simulation. By employing dynamical decoupling, we propose a scalable scheme for full Hamiltonian tomography. The required number of measurements increases only polynomially with the system size, in contrast to an exponential scaling in common methods. Finally, we work toward the goal of demonstrating quantum supremacy. A number of sampling tasks, such as the boson sampling problem, have been proposed to be classically intractable under mild assumptions. An intermediate quantum computer can efficiently solve the sampling problem, but the correct operation of the device is not known to be classically verifiable. Toward practical verification, we present an experimental friendly scheme to extract useful and robust information from the quantum boson samplers based on coarse-grained measurements. In a separate study, we introduce a new model built from translation-invariant Ising-interacting spins. This model possesses several advantageous properties, catalyzing the ultimate experimental demonstration of quantum supremacy.

  6. On the Reasonable and Unreasonable Effectiveness of Mathematics in Classical and Quantum Physics

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2011-03-01

    The point of departure for this article is Werner Heisenberg's remark, made in 1929: "It is not surprising that our language [or conceptuality] should be incapable of describing processes occurring within atoms, for … it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. … Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme—the quantum theory [quantum mechanics]—which seems entirely adequate for the treatment of atomic processes." The cost of this discovery, at least in Heisenberg's and related interpretations of quantum mechanics (such as that of Niels Bohr), is that, in contrast to classical mechanics, the mathematical scheme in question no longer offers a description, even an idealized one, of quantum objects and processes. This scheme only enables predictions, in general, probabilistic in character, of the outcomes of quantum experiments. As a result, a new type of the relationships between mathematics and physics is established, which, in the language of Eugene Wigner adopted in my title, indeed makes the effectiveness of mathematics unreasonable in quantum but, as I shall explain, not in classical physics. The article discusses these new relationships between mathematics and physics in quantum theory and their implications for theoretical physics—past, present, and future.

  7. Physical explanation of the periodic table.

    PubMed

    Ostrovsky, V N

    2003-05-01

    The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.

  8. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  9. Synthetic electromagnetic knot in a three-dimensional skyrmion

    PubMed Central

    Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.

    2018-01-01

    Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735

  10. The Zero-Point Field and the NASA Challenge to Create the Space Drive

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard; Rueda, Alfonso

    1999-01-01

    This NASA Breakthrough Propulsion Physics Workshop seeks to explore concepts that could someday enable interstellar travel. The effective superluminal motion proposed by Alcubierre (1994) to be a possibility owing to theoretically allowed space-time metric distortions within general relativity has since been shown by Pfenning and Ford (1997) to be physically unattainable. A number of other hypothetical possibilities have been summarized by Millis (1997). We present herein an overview of a concept that has implications for radically new propulsion possibilities and has a basis in theoretical physics: the hypothesis that the inertia and gravitation of matter originate in electromagnetic interactions between the zero-point field (ZPF) and the quarks and electrons constituting atoms. A new derivation of the connection between the ZPF and inertia has been carried through that is properly co-variant, yielding the relativistic equation of motion from Maxwell's equations. This opens new possibilities, but also rules out the basis of one hypothetical propulsion mechanism: Bondi's "negative inertial mass," appears to be an impossibility.

  11. Lanthanide/Actinide Opacities

    NASA Astrophysics Data System (ADS)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  12. Progress in Applied Surface, Interface and Thin Film Science 2015. Solar Renewable Energy News IV, November 23-26, 2015, Florence, Italy (SURFINT-SREN IV)

    NASA Astrophysics Data System (ADS)

    2017-02-01

    The main goal of the conference is to contribute to new knowledge in surface, interface, ultra-thin films and very-thin films science of inorganic and organic materials by the most rapid interactive manner - by direct communication among scientists of corresponding research fields. The list of topics indicates that conference interests cover the development of basic theoretical physical and chemical principles and performance of surfaces-, thin films-, and interface-related procedures, and corresponding experimental research on atomic scale. Topical results are applied at development of new inventive industrial equipments needed for investigation of electrical, optical, and structural properties, and other parameters of atomic-size research objects. The conference range spreads, from physical point of view, from fundamental research done on sub-atomic and quantum level to production of devices built on new physical principles. The conference topics include also presentation of principally new devices in following fields: solar cells, liquid crystal displays, high-temperature superconductivity, and sensors. During the event, special attention will be given to evaluation of scientific and technical quality of works prepared by PhD students, to deep ecological meaning of solar cell energy production, and to exhibitions of companies.

  13. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part IV

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    This report presents a theoretical treatment of the vaporization process of medium and heavy oils. The results of this investigation, which were mostly obtained from the lighter components of the heavy fuels, require a 10- or 16-fold vaporization in comparison with gasoline. We must attain a still finer degree of atomization, in order to include the heavier components.

  14. How an interacting many-body system tunnels through a potential barrier to open space

    PubMed Central

    Lode, Axel U.J.; Streltsov, Alexej I.; Sakmann, Kaspar; Alon, Ofir E.; Cederbaum, Lorenz S.

    2012-01-01

    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes. PMID:22869703

  15. Elastic constants and pressure derivative of elastic constants of Si1-xGex solid solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Baria, J. K.; Vyas, P. S.; Jani, A. R.

    2013-02-01

    Elastic properties of Si1-xGex solid solution with arbitrary (atomic) concentration (x) are studied using the pseudo-alloy atom model based on the pseudopotential theory and on the higher-order perturbation scheme with the application of our own proposed model potential. We have used local-field correction function proposed by Sarkar et al to study Si-Ge system. The Elastic constants and pressure derivatives of elastic constants of the solid solution is investigated with different concentration x of Ge. It is found in the present study that the calculated numerical values of the aforesaid physical properties of Si-Ge system are function of x. The elastic constants (C11, C12 and C44) decrease linearly with increase in concentration x and pressure derivative of elastic constants (C11, C12 and C44) increase with the concentration x of Ge. This study provides better set of theoretical results for such solid solution for further comparison either with theoretical or experimental results.

  16. Reducing the surface roughness beyond the pulsed-laser-deposition limit.

    PubMed

    Vasco, E; Polop, C; Sacedón, J L

    2009-10-01

    Here, we outline the theoretical fundamentals of a promising growth kinetics of films from the vapor phase, in which pulsed fluxes are combined with temperature transients to enable short-range surface relaxations (e.g., species rearrangements) and to inhibit long-range relaxations (atomic exchange between species). A group of physical techniques (fully pulsed thermal and/or laser depositions) based on this kinetics is developed that can be used to prepare films with roughnesses even lower than those obtained with pulsed-laser deposition, which is the physical vapor-phase deposition technique that has produced the flattest films reported so far.

  17. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.

    PubMed

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-03-23

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.

  18. Metasurface-Enabled Remote Quantum Interference.

    PubMed

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  19. Modeling and Reality in Early Twentieth-Century Physics

    NASA Astrophysics Data System (ADS)

    Seth, Suman

    2011-04-01

    Towards the end of 1913, Arnold Sommerfeld, Professor of theoretical physics at Munich University, sent a letter of congratulations to a young Niels Bohr. The Dane's now-classic trilogy of papers, which coupled Rutherford's conception of the atom with a ``planetary'' configuration of electrons, had just appeared. Sommerfeld saw the calculation of the Rydberg constant as a singular triumph and immediately spotted an opportunity to try to explain the Zeeman effect. Yet he also sounded a note of caution, confessing that he remained ``somewhat skeptical'' of atomic models in general. In this, of course, he was hardly alone. Bohr's atom was a particularly egregious example of a peculiar model, one requiring what even its creator considered ``horrid assumptions.'' Nonetheless, success bred conviction. Expanding upon Bohr's original ideas, Sommerfeld soon produced the so-called ``Bohr-Sommerfeld quantization conditions,'' using them to calculate a myriad of results. Experimental evidence, Sommerfeld argued in 1915, showed that quantised electron-paths ``correspond exactly to reality'' and possess ``real existence.'' This kind of realism would not, of course, last long. In 1925, Werner Heisenberg (earlier a student of Sommerfeld's) made scepticism about the details of the Bohr model into a methodological dictum, one later enshrined in the ``Copenhagen interpretation'' of quantum mechanics. This paper uses Sommerfeld's work from the turn of the twentieth century to the mid-1920s as a window onto a landscape involving multiple contestations over the legitimacy of atomic modelling. The surprise that greeted Heisenberg's and others' phenomenological insistences, we will see, can only be understood with reference to what should be considered a ``realist interlude'' in the history of twentieth century atomic physics, one inspired by the astonishing successes of Rutherford's and Bohr's imaginings.

  20. Evaluating experimental molecular physics studies of radiation damage in DNA*

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  1. Topological interface physics in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus; Ruostekoski, Janne

    2013-05-01

    We present an experimentally viable scheme whereby the physics of coherent interfaces between topologically distinct regions can be studied in an atomic quantum gas. The interface engineering is achieved using the internal spin structures of atoms together with local control over interaction strengths. We consider a coherent interface between polar and ferromagnetic regions of a spin-1 Bose-Einstein condensate and show that defects representing different topologies can connect continuously across the boundary. We show that energy minimization leads to nontrivial interface-crossing defect structures, demonstrating how the method can be used to study stability properties of field-theoretical solitons. We demonstrate, e.g., the formation of a half-quantum vortex arch, an Alice arch, on the interface, exhibiting the topological charge of a point defect. We also demonstrate an energetically stable connection of a coreless vortex to two half-quantum vortices. Our method can be extended to study interface physics in spin-2 and spin-3 BECs with richer phenomenology, or in strongly correlated optical-lattice systems. We acknowledge financial support from the Leverhulme Trust.

  2. Cohesive Relations for Surface Atoms in the Iron-Technetium Binary System

    DOE PAGES

    Taylor, Christopher D.

    2011-01-01

    Iron-technetium alloys are of relevance to the development of waste forms for disposition of radioactive technetium-99 obtained from spent nuclear fuel. Corrosion of candidate waste forms is a function of the local cohesive energy () of surface atoms. A theoretical model for calculating is developed. Density functional theory was used to construct a modified embedded atom (MEAM) potential for iron-technetium. Materials properties determined for the iron-technetium system were in good agreement with the literature. To explore the relationship between local structure and corrosion, MEAM simulations were performed on representative iron-technetium alloys and intermetallics. Technetium-rich phases have lower , suggesting thatmore » these phases will be more noble than iron-rich ones. Quantitative estimates of based on numbers of nearest neighbors alone can lead to errors up to 0.5 eV. Consequently, atomistic corrosion simulations for alloy systems should utilize physics-based models that consider not only neighbor counts, but also local compositions and atomic arrangements.« less

  3. Attosecond physics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Landsman, A. S.; Okell, W. A.; Zherebtsov, S.; Förg, B.; Schötz, J.; Seiffert, L.; Fennel, T.; Shaaran, T.; Zimmermann, T.; Chacón, A.; Guichard, R.; Zaïr, A.; Tisch, J. W. G.; Marangos, J. P.; Witting, T.; Braun, A.; Maier, S. A.; Roso, L.; Krüger, M.; Hommelhoff, P.; Kling, M. F.; Krausz, F.; Lewenstein, M.

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ˜152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.

  4. Attosecond physics at the nanoscale.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10 -18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.

  5. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  6. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  7. Particle Physics in High School: A Diagnose Study

    PubMed Central

    Solbes, Jordi

    2016-01-01

    The science learning process improves when the contents are connected to students’ lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students’ answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum. PMID:27253377

  8. Particle Physics in High School: A Diagnose Study.

    PubMed

    Tuzón, Paula; Solbes, Jordi

    2016-01-01

    The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

  9. PREFACE: The International Conference on Theoretical Physics `Dubna-Nano2008'

    NASA Astrophysics Data System (ADS)

    Osipov, V. A.; Nesterenko, V. O.; Shukrinov, Y. M.

    2008-07-01

    The International Conference on Theoretical Physics `Dubna-Nano2008' was held on 7-11 July 2008 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of the nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (fullerenes, nanotubes, graphene), quantum dots, electron and spin transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, bio-complexes, and applications of nanosystems. Approximately 90 scientists from 16 countries participated in the conference. The program included 48 oral talks and 40 posters. The 51 contributions are included in this proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference so successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, S Datta, A V Eletskii, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about `Dubna-Nano2008' is available at the homepage http://theor.jinr.ru/~nano08. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  10. PREFACE International Conference on Theoretical Physics Dubna-Nano 2010

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury

    2010-11-01

    The International Conference on Theoretical Physics 'Dubna-Nano2010' was held on 5-10 July 2010, at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The previous conference of this series was at Dubna in 2008. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (graphene, nanotubes, fullerenes), quantum dots, quantum transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, modelling, applications and perspectives. Approximately 120 scientists from 26 countries participated in the conference. The program included 63 oral talks and 70 posters. The 62 contributions are included in these proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference indeed successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about 'Dubna-Nano2010' is available at the homepage http://theor.jinr.ru/~nano10. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  11. Average M shell fluorescence yields for elements with 70≤Z≤92

    NASA Astrophysics Data System (ADS)

    Kahoul, A.; Deghfel, B.; Aylikci, V.; Aylikci, N. K.; Nekkab, M.

    2015-03-01

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω¯M ) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.

  12. Atomic Layer Epitaxy of Aluminum Nitride: Unraveling the Connection between Hydrogen Plasma and Carbon Contamination.

    PubMed

    Erwin, Steven C; Lyons, John L

    2018-06-13

    Atomistic control over the growth of semiconductor thin films, such as aluminum nitride, is a long-sought goal in materials physics. One promising approach is plasma-assisted atomic layer epitaxy, in which separate reactant precursors are employed to grow the cation and anion layers in alternating deposition steps. The use of a plasma during the growth-most often a hydrogen plasma-is now routine and generally considered critical, but the precise role of the plasma is not well-understood. We propose a theoretical atomistic model and elucidate its consequences using analytical rate equations, density functional theory, and kinetic Monte Carlo statistical simulations. We show that using a plasma has two important consequences, one beneficial and one detrimental. The plasma produces atomic hydrogen in the gas phase, which is important for removing methyl radicals left over from the aluminum precursor molecules. However, atomic hydrogen also leads to atomic carbon on the surface and, moreover, opens a channel for trapping these carbon atoms as impurities in the subsurface region, where they remain as unwanted contaminants. Understanding this dual role leads us to propose a solution for the carbon contamination problem which leaves the main benefit of the plasma largely unaffected.

  13. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  14. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; Santana, J. A.

    2017-10-01

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all the L-shell ions of silicon and sulfur. We present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.

  15. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization

    PubMed Central

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-01-01

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp3 bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752

  16. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  17. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    DOE PAGES

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; ...

    2017-04-20

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all themore » L-shell ions of silicon and sulfur. Here, we present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.« less

  18. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  19. Proton-hydrogen collisions for Rydberg n,l-changing transitions in the early Universe

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel

    2013-05-01

    Cosmic Microwave Background (CMB) is a vestige radiation generated during the Recombination era, some 390,000 years after the Big Bang, when the Universe had become transparent for the first time. Initial observations of CMB made by the Wilkinson Microwave Anisotropy Probe (WMAP) led to determining the age of the Universe. The mechanisms that drove the recombination have been discovered by using modeling of the primordial plasma and seeking agreement with the observations. The new Plank Surveyor Instrument launched in 2009 is expected to produce data about the recombination era of an unprecedented accuracy, that require including better information regarding the basic atomic physics processes into the present models. In this talk, I will review the results for various Rydberg atom - charge particle collisions and establish their relative importance during the stages of recombination era, with respect to each other and to radiative processes. Energy changing and angular momentum changing collisions with electrons and ions are considered. This work has been supported by NSF through grants to the Institute for Theoretical Atomic and Molecular Physics at Harvard Smithsonian Center for Astrophysics and to the Center for Research on Complex Networks at Texas Southern University.

  20. Self-organized pattern formation at organic-inorganic interfaces during deposition: Experiment versus modeling

    NASA Astrophysics Data System (ADS)

    Szillat, F.; Mayr, S. G.

    2011-09-01

    Self-organized pattern formation during physical vapor deposition of organic materials onto rough inorganic substrates is characterized by a complex morphological evolution as a function of film thickness. We employ a combined experimental-theoretical study using atomic force microscopy and numerically solved continuum rate equations to address morphological evolution in the model system: poly(bisphenol A carbonate) on polycrystalline Cu. As the key ingredients for pattern formation, (i) curvature and interface potential driven surface diffusion, (ii) deposition noise, and (iii) interface boundary effects are identified. Good agreement of experiments and theory, fitting only the Hamaker constant and diffusivity within narrow physical parameter windows, corroborates the underlying physics and paves the way for computer-assisted interface engineering.

  1. Model-Based Reasoning in Upper-division Lab Courses

    NASA Astrophysics Data System (ADS)

    Lewandowski, Heather

    2015-05-01

    Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.

  2. Watching Silica's Dance: Imaging the Structure and Dynamics of the Atomic (Re-) Arrangements in 2D Glass

    NASA Astrophysics Data System (ADS)

    Muller, David

    2014-03-01

    Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov, A. Srivastava, V. Skakalova, J. C. Meyer, and J.H. Smet. This work was supported by the NSF through the Cornell Center for Materials Research (NSF DMR-1120296).

  3. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new database intended to assist interpretation of soft x-ray astronomical spectra, such as from the Chandra X-ray Observatory. These data will be available soon on the World Wide Web [7].

  4. Coupled Atom-Polar Molecule Condensate Systems: A Theoretical Adventure

    DTIC Science & Technology

    2014-07-14

    second uses the linear-response theory more familiar to people working in the �eld of condensed-matter physics. We have introduced a quasiparticle ...picture and found that in this picture the bare EIT model in Fig. 2 (a) can be compared to a double EIT system shown in Fig. 2 (b). The quasiparticle ...energy levels consists of a particle (with positive quasiparticle energy ) and a hole (with negative quasiparticle energy) branch. The double EIT

  5. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    PubMed

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2017-05-01

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  6. Electron collisions—experiment, theory, and applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2018-07-01

    Electron collisions with atoms, ions, and molecules have represented an important area of ‘applied quantum mechanics’ for more than a century. This Topical Review is the write-up of the Allis Prize Lecture given by the author at the 2016 meeting of the Division of Atomic, Molecular, and Optical Physics of the American Physical Society and the 2017 Gaseous Electronics Conference. In light of the enormous size of the field, the examples presented were selected in order to tell the story of how experimental and theoretical/numerical methods have developed over time, how fruitful collaborations between data producers (experimentalists and theorists) and data users have led to significant progress, and how the results of these studies, which were often designed for fundamental research in order to push both experiment and theory to new frontiers, continue to be highly sought after for modeling applications in a variety of fields. The impact of electron collision studies on other fields, such as photoinduced processes and quantum information, is also discussed.

  7. Recent progress on borophene: Growth and structures

    NASA Astrophysics Data System (ADS)

    Kong, Longjuan; Wu, Kehui; Chen, Lan

    2018-06-01

    Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp 2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.

  8. Failure of Local Thermal Equilibrium in Quantum Friction

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.

    2016-09-01

    Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.

  9. Editorial

    NASA Astrophysics Data System (ADS)

    Rudolph, Dirk; Elding, Lars-Ivar; Fahlander, Claes; Åberg, Sven

    2016-12-01

    Science often develops most vigorously through challenging studies of extreme phenomena. Superheavy elements fall into such a category. What is the heaviest element that can exist in Nature? Driven by the continued search for an anticipated "island of stability" of superheavy atomic nuclei and the understanding of their underlying nuclear (in)stability and atomic structure hence chemical properties, the past decades have seen a tremendous progress in experimental ingenuity and theoretical methodology to study and characterize superheavy elements. Therefore, we are very grateful that the Nobel Foundation [1] approved and, jointly with the Knut and Alice Wallenberg Foundation [2], provided the financial resources to organize and conduct the Nobel Symposium NS160, entitled Chemistry and Physics of Heavy and Superheavy Elements. These symposia "are devoted to areas of science where breakthroughs are occurring or deal with other topics of primary cultural or social significance" [1]. About three symposia are held each year, roughly every fourth symposium promotes a topic in physics as primary research area, and from about every third symposium a contemporary Nobel Price is being awarded.

  10. The interactions of high-energy, highly-charged ions with fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The highmore » values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.« less

  11. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    DOE PAGES

    Shinde, D.; Arnoldi, L.; Devaraj, A.; ...

    2016-10-28

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion insidemore » the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites. Published by AIP Publishing.« less

  12. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    PubMed Central

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  13. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory.

    PubMed

    Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.

  14. Theoretical survey on positronium formation and ionisation in positron atom scattering

    NASA Technical Reports Server (NTRS)

    Basu, Madhumita; Ghosh, A. S.

    1990-01-01

    The recent theoretical studies are surveyed and reported on the formation of exotic atoms in positron-hydrogen, positron-helium and positron-lithium scattering specially at intermediate energy region. The ionizations of these targets by positron impact was also considered. Theoretical predictions for both the processes are compared with existing measured values.

  15. PREFACE: Sixth International Conference on Dissociative Recombination: Theory, Experiments and Applications

    NASA Astrophysics Data System (ADS)

    Wolf, Andreas; Lammich, Lutz; Schmelcher, Peter

    2005-01-01

    Dissociative recombination between electrons and molecular ions is an elementary reaction in electron-induced chemistry attracting strong attention across discipline boundaries, from fundamental questions of intramolecular dynamics to astrophysics, plasma science, as well as atmospheric and planetary physics. The process is explored on the level of atomic quantum dynamics both experimentally and theoretically, employing cold collisions at temperatures down to 10 Kelvin involving small molecules or also very large systems ranging up to biomolecules. Dissociative recombination (DR) and related processes, such as dissociative excitation, collisional cooling of vibrations and rotations, photodissociation via high-lying electronic states, resonant electron attachment, and electron-induced processes in large molecules and clusters, are studied by a variety of experimental methods, including stored and trapped molecular ions, plasma techniques such as stationary and flowing afterglow, and laser spectroscopic diagnostic of molecular excitations. The Sixth International Conference on Dissociative Recombination: Theory, Experiments and Applications (DR2004) was organized by the Research Group on Atomic and Molecular Physics with Stored Ions at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany, and held near Heidelberg in the town of Mosbach in July 2004. It was attended by about 90 scientists working in atomic and molecular physics, astrophysics, plasma- and biophysics. International Conferences on Dissociative Recombination and related processes were held before at Lake Louise, Alberta, Canada (1988), Saint Jacut, Brittany, France (1992), Ein Gedi, Israel (1995), Nässlingen, Stockholm Archipelago, Sweden (1999), and last within a symposium at the American Chemical Society meeting in Chicago, USA (2001). The presentations of this conference document a strong development of theoretical ideas towards the understanding of DR in particular in polyatomic systems. Strong attention was given to the elementary triatomic benchmark system H3+, characterized by ambitious, complementary experimental projects. Interaction of experiment and theory improves in particular the understanding of non-adiabatic molecular interactions involving electronic continuum states. New experimental techniques focus on a detailed control of the internal molecular excitation on the level of single quantum states, which gives increasing importance to laser interactions and ion storage at cryogenic temperatures. Apart from its place in the series of "DR conferences", this meeting is also the final assembly of the EU Research Training Network "Electron Transfer Reactions" (ETR) which in the period from 2000 to 2004 helped to establish many invaluable links between 15 experimental and theoretical institutes active in the field of DR and related processes. We express our gratitude to the EU for the support through the Research Training Network Programme, which has made possible the attendance of many students and young researchers. Furthermore, generous financial support for this conference was provided by the Max-Planck Institute for Nuclear Physics in Heidelberg. The efficient support of the conference center "Alte Mälzerei", operated by the city of Mosbach, is gratefully acknowledged. Finally we warmly thank the staff and the students of the Max-Planck Institute for Nuclear Physics for the dedicated help during the conference.

  16. Beyond low beta-decay Q values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustonen, M. T.; Suhonen, J.

    Beta decays with low Q values can be utilized in the quest to determine the neutrino mass scale. This is being realized in two experiments, KATRIN and MARE, using tritium and {sup 187}Re, respectively. The beta-decay of {sup 187}Re had the lowest known Q value until 2005, when the beta decay of {sup 115}In to the first excited state of {sup 115}Sn was discovered in Gran Sasso underground laboratory. Last year two independent ion trap measurements confirmed that this decay breaks the former record by an order of magnitude.Our theoretical study on this tiny decay channel complemented the experimental effortmore » by the JYFLTRAP group in Finland and HADES underground laboratory in Belgium. A significant discrepancy between the experimental and theoretical results was found. This might be explained by various atomic contributions known to grow larger as the Q value decreases. However, the traditional recipes for taking these effects into account break down on this new ultra-low Q value regime, providing new challenges for theorists on the borderline between nuclear and atomic physics.« less

  17. Studies for the Loss of Atomic and Molecular Species from Io

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1997-01-01

    The general objective of this project has been to advance our theoretical understanding of Io's atmosphere and how various atomic and molecular species are lost from this atmosphere and are distributed in the circumplanetary environment of Jupiter. The scientific objectives of the larger collaborative program between AER, Inc., and the University of Michigan have been to undertake theoretical modeling studies to simulate the distributions of the exospheric gases in Io's corona and extended clouds, to investigate the importance of the various physical processes that shape their relative abundances, and with these tools to analyze observations of O, S and Na obtained by four observers: M.A. McGrath of the Space Telescope Science Institute and G.E. Ballester of the University of Michigan who each have obtained Hubble Space Telescope observations of O and S near Io, F. Scherb who continues an effort to obtain 6300 A OI observations as part of the University of Wisconsin Fabry-Perot program, and N.M. Schneider of the University of Colorado who obtained an extensive set of spectral and spatial observations of the Na emission near Io in the D-lines.

  18. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less

  19. Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays

    NASA Astrophysics Data System (ADS)

    Kapaklis, Vassilios

    2015-03-01

    Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.

  20. [Carl Friedrich von Weizsäcker's philosophy of the mind].

    PubMed

    Lyre, Holger

    2014-01-01

    The paper deals with Carl Friedrich von Weizsäcker's position within the philosophy of mind. It turns out that Weizsäcker's ontology is based on an unorthodox conception both in the philosophy of physics and in the philosophy of mind. His quantum information theoretic reductionism is based on a subtle combination of atomism and holism, his philosophy of mind connected to this is a neutral monism, which proposes a bold intertwining of mind, matter, and space.

  1. Charge Exchange: Velocity Dependent X-ray Emission Modeling

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2017-06-01

    Atomic collisions play a fundamental role in astrophysics, plasma physics, and fusion physics. Here, we focus on charge exchange (CX) between hot ions and neutral atoms and molecules. Even though charge exchange calculations can provide vital information, including neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in the environments considered, both theoretical calculations and laboratory studies of these processes lack the necessary reliability and/or coverage. In order to better understand the spectra we observe in astrophysical environments in which both hot plasma and neutral gas are present, including comets, the heliosphere, supernova remnants, galaxy clusters, star forming galaxies, the outflows of starburst galaxies, and cooling flows of hot gas in the intracluster medium, a thorough CX X-ray model is needed. Included in this model should be a complete set of X-ray line ratios for relevant ion and neutral interactions for a range of energies.In this work, theoretical charge exchange emission spectra are produced using cross sections calculated with widely applied approaches including the quantum mechanical molecular orbital close coupling (QMOCC), atomic orbital close coupling (AOCC), classical trajectory Monte Carlo (CTMC), and the multichannel Landau-Zener (MCLZ) methods. When possible, theoretical data are benchmarked to experiments. Using a comprehensive, but still far from complete, CX database, new models are performed for a variety of X-ray emitting environments. In an attempt to describe the excess emission in X-rays of the starburst galaxy M82, Ne X CX line ratios are compared to line ratios observed in the region. A more complete XSPEC X-ray emission model is produced for H-like and He-like C-Al ions colliding with H and He for a range of energies; 200 to 5000 eV/u. This model is applied to the northeast rim of the Cygnus Loop supernova remnant in an attempt to determine the contribution of CX within that region.This work was partially supported by NASA grants NNX09AC46G and NNG09WF24I and accomplished with the help of many collaborators including Phillip C. Stancil, David Lyons, Patrick Mullen, and Robin L. Shelton.

  2. Average M shell fluorescence yields for elements with 70≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahoul, A., E-mail: ka-abdelhalim@yahoo.fr; LPMRN laboratory, Department of Materials Science, Faculty of Sciences and Technology, Mohamed El Bachir El Ibrahimi University, Bordj-Bou-Arreridj 34030; Deghfel, B.

    2015-03-30

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω{sup ¯}{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement wasmore » typically obtained between our result and other works.« less

  3. Two-potential approach for electron-molecular collisions at intermediate and high energies - Application to e-N2 scatterings

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.

    1979-01-01

    A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.

  4. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    PubMed

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Special issue on the spectroscopy of transient plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-01-01

    Experimental and theoretical papers are invited for a special issue of Journal of Physics B: Atomic, Molecular and Optical Physics on Spectroscopy of Transient Plasmas, covering plasma conditions produced by pulsed laboratory sources including for example, short and long pulse lasers; pulsed power devices; FELs; XFELs and ion beams. The full range of plasma spectroscopy from the optical range up to high energy bremsstrahlung radiation will be covered. The deadline for submitting to this special issue is 1 March 2015. (Expected web publication: autumn 2015). Late submissions will be considered for the journal, but may not be included in the special issue. All submitted articles will be fully refereed to the journal's usual high standards. Upon publication, the issue will be widely promoted to the atomic, molecular and optical physics community, ensuring that your work receives maximum visibility. Articles should be submitted at http://mc04.manuscriptcentral.com/jphysb-iop. Should you have any questions regarding the preparation of manuscripts or the suitability of your work for this Issue, please do not hesitate to contact the J. Phys. B: At. Mol. Opt. Editorial team (jphysb@iop.org). We look forward to hearing from you and hope that we can welcome you as a contributing author.

  6. Kinetics of Fast Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)

    2002-01-01

    This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.

  7. A New Look to Nuclear Data

    DOE PAGES

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    2017-03-30

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  8. A New Look to Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  9. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng; Liu, Xinjuan

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the bandmore » gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.« less

  10. Theoretical studies of association and dissociation of Feshbach molecules in a microgravity environment

    NASA Astrophysics Data System (ADS)

    D'Incao, Jose; Williams, Jason

    2017-04-01

    NASA's Cold Atom Laboratory (CAL) is a multi-user facility scheduled for launch to the ISS in 2017. Our flight experiments with CAL will characterize and mitigate leading-order systematics in dual-atomic-species atom interferometers in microgravity relevant for future fundamental physics missions in space. As part of the initial state preparation for interferometry studies, here, we study the RF association and dissociation of weakly bound heteronuclear Feshbach molecules for expected parameters relevant for the microgravity environment of CAL. This includes temperatures on the pico-Kelvin range and atomic densities as low as 108/cm3. We show that under such conditions, thermal and loss effects can be greatly suppressed, resulting in high efficiency in both association and dissociation of extremely weakly bound Feshbach molecules and allowing for high accuracy determination coherent properties of such processes. In addition we study the possibility to implement delta-kick cooling techniques for weakly bound heteronuclear molecules and explore numerically other methods for molecular association and dissociation including the effects of three-body interactions. This research is supported by the National Aeronautics and Space Administration.

  11. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  12. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    PubMed

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  13. Equation of State of the Two-Dimensional Hubbard Model

    NASA Astrophysics Data System (ADS)

    Cocchi, Eugenio; Miller, Luke A.; Drewes, Jan H.; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael

    2016-04-01

    The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0 ≲U /t ≲20 and temperatures, down to kBT /t =0.63 (2 ) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches.

  14. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr04678e

  15. Large Frequency Change with Thickness in Interlayer Breathing Mode—Significant Interlayer Interactions in Few Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H.; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-01

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A3g shows a large redshift with increasing thickness; the experimental and theoretical results agreeing well. This thickness dependence is two times larger than that in the chalcogenide materials such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that in graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers, and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP, and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  16. Large Frequency Change with Thickness in Interlayer Breathing Mode--Significant Interlayer Interactions in Few Layer Black Phosphorus.

    PubMed

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-10

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A(3)g shows a large redshift with increasing thickness; the experimental and theoretical results agree well. This thickness dependence is two times larger than that in the chalcogenide materials, such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that of graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  17. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  18. Spectr-W3 Online Database On Atomic Properties Of Atoms And Ions

    NASA Astrophysics Data System (ADS)

    Faenov, A. Ya.; Magunov, A. I.; Pikuz, T. A.; Skobelev, I. Yu.; Loboda, P. A.; Bakshayev, N. N.; Gagarin, S. V.; Komosko, V. V.; Kuznetsov, K. S.; Markelenkov, S. A.

    2002-10-01

    Recent progress in the novel information technologies based on the World-Wide Web (WWW) gives a new possibility for a worldwide exchange of atomic spectral and collisional data. This facilitates joint efforts of the international scientific community in basic and applied research, promising technological developments, and university education programs. Special-purpose atomic databases (ADBs) are needed for an effective employment of large-scale datasets. The ADB SPECTR developed at MISDC of VNIIFTRI has been used during the last decade in several laboratories in the world, including RFNC-VNIITF. The DB SPECTR accumulates a considerable amount of atomic data (about 500,000 records). These data were extracted from publications on experimental and theoretical studies in atomic physics, astrophysics, and plasma spectroscopy during the last few decades. The information for atoms and ions comprises the ionization potentials, the energy levels, the wavelengths and transition probabilities, and, to a lesser extent, -- also the autoionization rates, and the electron-ion collision cross-sections and rates. The data are supplied with source references and comments elucidating the details of computations or measurements. Our goal is to create an interactive WWW information resource based on the extended and updated Web-oriented database version SPECTR-W3 and its further integration into the family of specialized atomic databases on the Internet. The version will incorporate novel experimental and theoretical data. An appropriate revision of the previously accumulated data will be performed from the viewpoint of their consistency to the current state-of-the-art. We are particularly interested in cooperation for storing the atomic collision data. Presently, a software shell with the up-to-date Web-interface is being developed to work with the SPECTR-W3 database. The shell would include the subsystems of information retrieval, input, update, and output in/from the database and present the users a handful of capabilities to formulate the queries with various modes of the search prescriptions, to present the information in tabular, graphic, and alphanumeric form using the formats of the text and HTML documents. The SPECTR-W3 Website is being arranged now and is supposed to be freely accessible round-the-clock on a dedicated Web server at RFNC VNIITF. The Website is being created with the employment of the advanced Internet technologies and database development techniques by using the up-to-date software of the world leading software manufacturers. The SPECTR-W3 ADB FrontPage would also include a feedback channel for the user comments and proposals as well as the hyperlinks to the Websites of the other ADBs and research centers in Europe, the USA, the Middle and Far East, running the investigations in atomic physics, plasma spectroscopy, astrophysics, and in adjacent areas. The effort is being supported by the International Science and Technology Center under the project sharp/mesh/hash1785-01.

  19. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms

    NASA Astrophysics Data System (ADS)

    Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman

    2018-04-01

    We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.

  20. Solitary waves in a chain of repelling magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molerón, Miguel; Leonard, Andrea; Daraio, Chiara, E-mail: daraio@ethz.ch

    2014-05-14

    We study experimentally, numerically, and theoretically the dynamics of a one dimensional array of repelling magnets. We demonstrate that such systems support solitary waves with a profile and propagation speed that depend on the amplitude. The system belongs to the kind of nonlinear lattices studied in [Friesecke and Matthies, Physica D 171, 211–220 (2002)] and exhibits a sech{sup 2} profile in the low energy regime and atomic scale localization in the high energy regime. Such systems may find potential applications in the design of novel devices for shock absorption, energy localization and focusing. Furthermore, due to the similarity of themore » magnetic potential with the potentials governing atomic forces, the system could be used for a better understanding of important problems in physics and chemistry.« less

  1. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, Regina; Baker, Sherry L.; Windt, David L.

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less

  2. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    NASA Astrophysics Data System (ADS)

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  3. A theoretical model describing the one-dimensional growth of single crystals on free sustained substrates

    NASA Astrophysics Data System (ADS)

    Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang

    2018-03-01

    We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.

  4. The physics and early history of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan; Loeb, Abraham

    2007-04-01

    The intergalactic medium—the cosmic gas that fills the great spaces between the galaxies—is affected by processes ranging from quantum fluctuations in the very early Universe to radiative emission from newly formed stars. This gives the intergalactic medium a dual role as a powerful probe both of fundamental physics and of astrophysics. The heading of fundamental physics includes conditions in the very early Universe and cosmological parameters that determine the age of the Universe and its matter content. The astrophysics refers to chapters of the long cosmic history of stars and galaxies that are being revealed through the effects of stellar feedback on the cosmic gas. This review describes the physics of the intergalactic medium, focusing on recent theoretical and observational developments in understanding early cosmic history. In particular, the earliest generation of stars is thought to have transformed the Universe from darkness to light and to have had an enormous impact on the intergalactic medium. Half a million years after the Big Bang the Universe was filled with atomic hydrogen. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms back into free electrons and ions. From the observed spectral absorption signatures of the gas between us and distant sources, we know that the process of reionization pervaded most of space a billion years after the Big Bang, so that only a small fraction of the primordial hydrogen atoms remained between galaxies. Knowing exactly when and how the reionization process happened is a primary goal of cosmologists, because this would tell us when the early stars and black holes formed and in what kinds of galaxies. The distribution and clustering of these galaxies is particularly interesting since it is driven by primordial density fluctuations in the dark matter. Cosmic reionization is beginning to be understood with the help of theoretical models and computer simulations. Numerical simulations of reionization are computationally challenging, as they require radiative transfer across large cosmological volumes as well as sufficiently high resolution to identify the sources of the ionizing radiation in the infant Universe. Rapid progress in our understanding is expected with additional observational input. A wide variety of instruments currently under design—including large-aperture infrared telescopes on the ground or in space (JWST), and low-frequency radio telescope arrays for the detection of redshifted 21 cm radiation—will probe the first sources of light during an epoch in cosmic history that has been largely unexplored so far. The new observations and the challenges for theoretical models and numerical simulations will motivate intense work in this field over the coming decade.

  5. Photoionization of water molecules by a train of attosecond pulses assisted by a near-infrared laser: delay and polarization control

    NASA Astrophysics Data System (ADS)

    Martini, Lara; Boll, Diego I. R.; Fojón, Omar A.

    2017-08-01

    Basic reactions involving water molecules are essential to understand the interaction between radiation and the biological tissue because living cells are composed mostly by water. Therefore, the knowledge of ionization of the latter is crucial in many domains of Biology and Physics. So, we study theoretically the photoionization of water molecules by extreme ultraviolet attopulse trains assisted by lasers in the near-infrared range. We use a separable Coulomb-Volkov model in which the temporal evolution of the system can be divided into three stages allowing spatial and temporal separation for the Coulomb and Volkov final state wavefunctions. First, we analyze photoelectron angular distributions for different delays between the attopulse train and the assistant laser field. We compare our results for water and Ne atoms as they belong to the same isoelectronic series. Moreover, we contrast our calculations with previous theoretical and experimental work for Ar atoms due to the similarities of the orbitals involved in the reaction. Second, we study the effect of varying the relative orientations of the attopulse and laser field polarizations and we compare our predictions with other theories and experiments. We expect these studies contribute to the improvement of polarization experiments and the development of the attopulse trains and assistant laser fields technologies. Finally, we hope our work promote progress on the control of the chemical reactivity of water molecules since this could be useful in different fields such as radiobiology and medical physics.

  6. Dark State Optical Lattice with a Subwavelength Spatial Structure

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Subhankar, S.; Bienias, P.; ŁÄ cki, M.; Tsui, T.-C.; Baranov, M. A.; Gorshkov, A. V.; Zoller, P.; Porto, J. V.; Rolston, S. L.

    2018-02-01

    We report on the experimental realization of a conservative optical lattice for cold atoms with a subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than 10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We study the band structure and dissipation of this lattice and find good agreement with theoretical predictions. Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 1 05 times the excited state lifetime, and could be further improved with more laser intensity. The potential is readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with subwavelength spacings.

  7. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  8. Advances in atomic physics: Four decades of contribution of the Cairo University - Atomic Physics Group.

    PubMed

    El-Sherbini, Tharwat M

    2015-09-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University - Atomic Physics Group. Starting from the late 1960s - when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  9. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  10. Mg I as a probe of the solar chromosphere - The atomic model

    NASA Technical Reports Server (NTRS)

    Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf

    1988-01-01

    This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.

  11. Fermi surfaces and electronic topological transitions in metallic solid solutions

    NASA Astrophysics Data System (ADS)

    Bruno, E.; Ginatempo, B.; Guiliano, E. S.; Ruban, A. V.; Vekilov, Yu. Kh.

    1994-12-01

    Notwithstanding the substitutional disorder, the Fermi surface of metallic alloys can be measured and computed. We show that, from the theoretical point of view, it is defined as the locus of the peaks of the Bloch Spectral Function (BSF). Such Fermi surfaces, on varying the atomic concentrations, may undergo changes of their topology, known as Electronic Topological Transitions (ETT). Thus, for instance, pockets of electrons or holes may appear or disappear, necks may open or close. ETTs cause anomalous behaviours of thermodynamic, transport and elastic properties of metals and constitute a fascinating field in the study of Fermi liquid systems. Although ETTs could be studied on pure systems as a function of the thermodynamic variables, nevertheless such a study would often require extreme conditions, and would lead to experimental difficulties. On the other hand, it is possible to explore the variations of atomic concentration, i.e. the valence electron per atom ratio, in metallic solid solutions with a relative experimental ease. In this paper we review the theoretical techniques for the determination of Fermi surfaces in metallic solid solutions and discuss some examples of ETTs, namely LiMg, ZrNb, NbMo, MoRe, AgPd, CdMg, NiW and NiTi alloys, also in connection with experimental data as thermoelectric power, resistivity, elastic constants and electron-phonon coupling and with the determinations of the electron momentum distribution function from Compton scattering and positron annihilation experiments. We show that the ab initio calculations of the electronic structure for the quoted systems, together with a careful determination of the BSF, are able to predict quantitatively ETTs at those concentrations where physical quantities display anomalies, so confirming directly ETT theory. Although it is not the purpose of the present review to give a full account of electronic structure calculation schemes, however, we briefly discuss the ideas and the main physical approximations underlying theories of substitutional disorder in alloys. We shall pay some more attention to the Coherent Potential Approximation (CPA) in the Korringa-Kohn-Rostoker (KKR) multiple scattering framework and the Hohenberg and Kohn Density Functional Theory in the Local Density Approximation (LDA) for the exchange-correlation potential. The above choice is supported by the numerical versatility of the LDAKKRCPA theory, and, more important, by the a fortiori evidence that essentially equivalent results are obtained from different theoretical frameworks, provided the same basic physical approximations are used. Accordingly, when convenient, we present new LDAKKRCPA determinations of the Fermi surfaces, as for the ZrNbMoRe series.

  12. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected when a prediction or estimation method is proposed.

  13. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  14. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments.

    PubMed

    Prasai, Binay; Wilson, A R; Wiley, B J; Ren, Y; Petkov, Valeri

    2015-11-14

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.

  15. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  16. FROM THE HISTORY OF PHYSICS: The nuclear shield in the 'thirty-year war' of physicists against ignorant criticism of modern physical theories

    NASA Astrophysics Data System (ADS)

    Vizgin, Vladimir P.

    1999-12-01

    This article deals with the almost 'thirty-year war' led by physicists against the authorities' incompetent philosophical and ideological interference with science. The 'war' is shown to have been related to the history of Soviet nuclear weapons. Theoretical milestones of 20th century physics, to wit, theory of relativity and quantum mechanics, suffered endless 'attacks on philosophical grounds'. The theories were proclaimed idealistic as well as unduly abstract and out of touch with practice; their authors and followers were labelled 'physical idealists', and later, in the 1940s and 1950s, even 'cosmopolitans without kith or kin'. Meanwhile, quantum and relativistic theories, as is widely known, had become the basis of nuclear physics and of the means of studying the atomic nucleus (charged particle accelerators, for instance). The two theories thus served, to a great extent, as a basis for both peaceful and military uses of nuclear energy, made possible by the discovery of uranium nuclear fission under the action of neutrons. In the first part, the article recounts how prominent physicists led the way to resisting philosophical and ideological pressure and standing up for relativity, quantum theories and nuclear physics, thus enabling the launch of the atomic project. The second part contains extensive material proving the point that physicists effectively used the 'nuclear shield' in the 1940s and 1950s against the 'philosophical-cosmopolitan' pressure, indeed saving physics from a tragic fate as that of biology at the Academy of Agricultural Sciences (VASKhNIL) session in 1948.

  17. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  18. An Experimental and Theoretical Study of the Variation of 4f Hybridization Across the La1-xCexIn3 Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gout, Delphine J; Gourdon, Olivier; Bauer, E. D.

    2008-01-01

    Crystal structures of a series of La1−xCexIn3 (x = 0.02, 0.2, 0.5, or 0.8) intermetallic compounds have been investigated by both neutron and X-ray diffraction, and their physical properties have been characterized by magnetic susceptibility and specific heat measurements. Our results emphasize atypical atomic displacement parameters (ADP) for the In and the rare-earth sites. Depending on the x value, the In ADP presents either an ellipsoidal elongation (La-rich compounds) or a butterfly-like distortion (Ce-rich compounds). These deformations have been understood by theoretical techniques based on the band theory and are the result of hybridization between conduction electrons and 4f-electrons.

  19. Single atom emission in an optical resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, J.J.; An, K.; Dasari, R.R.

    A single atom coupled to a single mode of a radiation field is a fundamental system for studying the interaction of radiation with matter. The study of such systems has come to be called cavity quantum electrodynamics (QED). Atoms coupled to a single mode of a resonator have been studied experimentally and theoretically in several interesting regimes since this basic system was first considered theoretically by Janes and Cummings. The objective of the present chapter is to provide a theoretical framework and present a unifying picture of the various phenomena which can occur in such a system. 35 refs., 11more » figs.« less

  20. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Qin, Feiyu; Sanson, Andrea

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortionmore » presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.« less

  1. Failure of local thermal equilibrium in quantum friction

    DOE PAGES

    Intravaia, Francesco; Behunin, Ryan; Henkel, Carsten; ...

    2016-09-01

    Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. Whilemore » this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Here, our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.« less

  2. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.

    PubMed

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-03-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  3. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene

    PubMed Central

    Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research. PMID:27505418

  4. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene.

    PubMed

    Ericsson, Jonas; Husmark, Teodor; Mathiesen, Christoffer; Sepahvand, Benjamin; Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär; Schröder, Elsebeth

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.

  5. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  6. Optical spectra, electronic structure and aromaticity of benzannulated N-heterocyclic carbene and its analogues of the type C6H4(NR)2E: (E = Si, Ge, Sn, Pb).

    PubMed

    Aysin, Rinat R; Bukalov, Sergey S; Leites, Larissa A; Zabula, Alexander V

    2017-07-11

    A series of benzannulated N-heterocyclic compounds containing divalent 14 group atoms, C 6 H 4 (NR) 2 E II , E = C, Si, Ge, Sn, Pb, have been studied by various experimental (vibrational and UV-vis spectroscopy) and theoretical (NICS, ISE, ACID) techniques. The methods used confirm 10 π-electron delocalization (aromaticity) in these heterocycles, however, the aromaticity sequences estimated by the criteria based on different physical properties do not coincide.

  7. Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

    DOE PAGES

    Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.

    2014-10-29

    Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.

  8. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    NASA Astrophysics Data System (ADS)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  9. Subradiant spontaneous undulator emission through collective suppression of shot noise

    DOE PAGES

    Ratner, D.; Hemsing, E.; Gover, A.; ...

    2015-05-01

    The phenomenon of Dicke’s subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting “quiet” beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulatormore » radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.« less

  10. Measurement of the Equation of State of the Two-Dimensional Hubbard Model

    NASA Astrophysics Data System (ADS)

    Miller, Luke; Cocchi, Eugenio; Drewes, Jan; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2016-05-01

    The subtle interplay between kinetic energy, interactions and dimensionality challenges our comprehension of strongly-correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions, 0 <= U / t <= 20 , and temperatures, down to kB T / t = 0 . 63(2) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities and double occupancies over the whole doping range, and hence our results constitute benchmarks for state-of-the-art theoretical approaches.

  11. Subradiant spontaneous undulator emission through collective suppression of shot noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, D.; Hemsing, E.; Gover, A.

    The phenomenon of Dicke’s subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting “quiet” beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulatormore » radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.« less

  12. Nonequilibrium Fractional Hall Response After a Topological Quench

    NASA Astrophysics Data System (ADS)

    Unal, Nur; Mueller, Erich; Oktel, M. O.

    When a system is suddenly driven between two topologically different phases, aspects of the original topology survive the quench, but most physical observables (edge currents, Hall conductivity) appear to be non-universal. I will present the non-equilibrium Hall response of a Chern insulator following a quench where the mass term of a single Dirac cone changes sign. In the limit where the physics is dominated by a single Dirac cone, we theoretically find that the Hall conductivity universally changes by two-thirds of the quantum of conductivity. I will analyze this universal behavior by considering the Haldane model, and discuss experimental aspects for its observation in cold atoms. This work is supported by TUBITAK, NSFPHY-1508300, ARO-MURI W9111NF-14-1-0003.

  13. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation.

    PubMed

    Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei

    2016-07-25

    We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.

  14. EDITORIAL: Attosecond and x-ray free-electron laser physics Attosecond and x-ray free-electron laser physics

    NASA Astrophysics Data System (ADS)

    Moshammer, R.; Ullrich, J.

    2009-07-01

    Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is investigated bridging the gap from atoms and molecules to solids introduced to intense FEL radiation. Beyond the basic interest in many-particle dynamics in finite systems, these studies are of enormous practical relevance for upcoming research at X-ray FELs. Here, realizing the dream of coherent imaging of the structure of single bio-molecules in the gas phase with atomic resolution is critically dependent on ultra-fast dynamics initiated by the pulse. In other words, it is reduced to the simple question of whether the molecule is first imaged and then destroyed or vice versa! During the preparation of this Editorial, the first lasing at the Stanford Linac Coherent Light Source (LCLS) was achieved at a photon energy of about 8 keV - a further milestone in this exciting revolution in the science related to light.

  15. FOREWORD: 4th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Leckrone, David S.; Sugar, Jack

    1993-01-01

    In 1983 the Atomic Spectroscopy Group at the University of Lund organized a conference at Lund the purpose of which was to establish a dialogue between scientists whose research made use of basic atomic data, and scientists whose research produced such data. The data in question include complete descriptions of atomic and ionic spectra, accurate transition wavelengths and relative intensities, energy levels, lifetimes, oscillator strengths, line shapes, and nuclear effects (hyperfine structure and isotope shifts). The "consumers" in urgent need of new or improved atomic data included astrophysicsts, laboratory plasma physicists, and spectrochemists. The synergism between these specialists and the theoretical and experimental atomic physicists resulted in a highly successful meeting, attended by approximately 70 people. The rapid advances foreseen at that time in all of these areas of observational, experimental and theoretical science stimulated planning for a second conference on this subject in 1986 at the University of Toledo, and subsequently a third meeting was held at the Royal Netherlands Academy of Arts and Sciences in Amsterdam in 1989. Again attendance at the latter two meetings totaled approximately 70 researchers. The participants in Amsterdam agreed to re-convene at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, in 1992, maintaining the frequency of these conferences at one every three years. The present Topical Issue of Physica Scripta consists of 31 invited reviews given at the Gaithersburg meeting. Extended abstracts of 63 poster papers from the meeting are being published in NIST Special Publication SP850. Approximately 170 scientists attended the Gaithersburg conference, representing a substantial growth in the size of meetings in this series. One session of the conference was devoted to an informal workshop, at which any participant could give a brief oral statement about his or her most immediate data need or about work currently in progress. This resulted in a number of interesting exchanges, and served to facilitate the coordination of work to be done in the near term. Over the past 15 years we have witnessed the explosive growth of astrophysical spectroscopic observations in both the ultraviolet and infrared bands. Recently, with the launch of the Hubble Space Telescope, the precision and resolution of such data have reached remarkable levels, giving one the sense that the body of atomic data currently to be found in the literature lags far behind what is needed to adequately interpret the observations. Similarly, high temperature laboratory experiments in plasma physics, e.g. fusion energy and x-ray lasers, are demanding larger quantities of atomic data over a wide range of ionization states. Fortunately, the experimental and computational techniques of atomic physics have kept pace. One may cite, for example, the extraordinary precision inherent in recent laboratory work with laser-induced fluorescence spectroscopy and with Fourier transform spectrometers, and for data of highly-ionized atoms, with ion traps and tokamak plasmas. The major challenge is to nurture and support expanded activity in those sub-disciplines of atomic physics that apply such modern techniques to the production of extensive volumes of atomic data, and to reinvigorate such "old fashioned" subjects as the term analysis of new, more accurate laboratory spectra. This series of conferences has a very special character. It is not sponsored or supported by any particular institution, government organization or professional society. The meetings occur only because they serve the common scientific interests of a broad and diverse group of people from around the world. They have had the delightful effect of stimulating professional collaborations and friendships among astronomers, physicists, chemists, mathematicians, and others, who might not have initially realized that they shared so much in common. The series has also demonstrated that the dialogue between "users" and "providers" of atomic data is a two-way conversation, with atomic physicists beginning to view astrophysical and laboratory plasmas as unique sources of new information about the structure of complex atomic species. The fifth International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas is scheduled to take place in Meudon, France in 1995.

  16. PHYSICAL MODEL FOR RECOGNITION TUNNELING

    PubMed Central

    Krstić, Predrag; Ashcroft, Brian; Lindsay, Stuart

    2015-01-01

    Recognition tunneling (RT) identifies target molecules trapped between tunneling electrodes functionalized with recognition molecules that serve as specific chemical linkages between the metal electrodes and the trapped target molecule. Possible applications include single molecule DNA and protein sequencing. This paper addresses several fundamental aspects of RT by multiscale theory, applying both all-atom and coarse-grained DNA models: (1) We show that the magnitude of the observed currents are consistent with the results of non-equilibrium Green's function calculations carried out on a solvated all-atom model. (2) Brownian fluctuations in hydrogen bond-lengths lead to current spikes that are similar to what is observed experimentally. (3) The frequency characteristics of these fluctuations can be used to identify the trapped molecules with a machine-learning algorithm, giving a theoretical underpinning to this new method of identifying single molecule signals. PMID:25650375

  17. The electron screening puzzle and nuclear clustering

    DOE PAGES

    Spitaleri, C.; Bertulani, C. A.; Fortunato, L.; ...

    2016-02-12

    Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the Gamow peak show evidence of an unexpected effect attributed to the presence of atomic electrons in the target. The experiments need to include an effective "screening" potential to explain the enhancement of the cross sections at the lowest measurable energies. Despite various theoretical studies conducted over the past 20 years and numerous experimental measurements, a theory has not yet been found that can explain the cause of the exceedingly high values of the screening potential needed to explain the data. Furthermore, in this letter we show thatmore » instead of an atomic physics solution of the "electron screening puzzle", the reason for the large screening potential values is in fact due to clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.« less

  18. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  19. Phil Wallace and Theoretical Physics at McGill in the 1950's: A Personal Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, John David

    In 1946 Philip (Phil) Russell Wallace joined the Mathematics Department of McGill University as an Associate Professor of Applied Mathematics, apparently because A. H. S. Gillson, Dean of Arts and Science, wanted theoretical physicists to be in the Mathematics Department. He came with the dream of creating a theoretical physics group at McGill. By the spring of 1949, Phil was authorized to recruit two junior faculty in Mathematics. He hired Theodore (Ted) F. Morris from U. Toronto, who joined in September 1949, and me, who came in January 1950. The group had begun. Phil Wallace was born in Toronto inmore » 1915 and grew up there. He entered the University of Toronto in 1933, earned a B.A. in mathematics in 1937, a M.A. in 1938, and a Ph.D. in applied mathematics in 1940 under Leopold Infeld. His Ph.D. thesis in general relativity was entitled 'On the relativistic equations of motion in electromagnetic theory.' In 1940 World War II had engulfed Europe and was having its effect on Canada, but the US was still at peace. L. J. Synge, Head of the Applied Mathematics Department at Toronto, told Wallace that people such as he would be needed in war work, but things were not ready quite yet. Hold yourself ready. Phil took a two-year position as lecturer in mathematics at the University of Cincinnati (1940-42); in the fall of 1942 he became a lecturer in mathematics at M.I.T. It was from there that he was recruited by Synge to join the war effort from 1943 to 1946 at N.R.C.'s Montreal Laboratory, the genesis of the Canadian Atomic Energy Project. Phil has described those heady wartime years in these pages. Much of the effort of the theoretical physicists was on nuclear reactor theory and the properties of relevant materials, such as graphite, under long and intense neutron bombardment. In late 1945 Phil was sent for four months to Bristol to learn about the properties of graphite from the esteemed N. F. Mott. This exposure led Phil to a life-long interest in graphite and in condensed matter physics in general. After the war, the group of Montreal Lab theorists dissolved - some had already left for Los Alamos; some went to Chalk River; Volkoff returned to UBC to foster theoretical physics as part of physics in the West; Wallace to do the same in the East. But the path at McGill was not smooth. As a singular anomaly in a pure math department, Phil was tucked away in the corner of some engineering building, remote from the bulk of the mathematicians. And there was no welcoming mat from Physics. As Wallace remarks, 'I took a post at McGill, not surprisingly in the department of Mathematics. Certain complications of academic politics followed, such as jurisdictional disputes over course assignments. Theoretical physicists were treated more or less as foreigners or rivals by at least a segment of the physics department.' 'Why was that?' McGill's attitude about theoretical physics was colored for fifty years by the lingering influence of Ernest Rutherford, who was a faculty member from 1898 to 1907. In his essay about the beginnings of theoretical physics in Canada, Wallace quotes examples of Rutherford's views about theoretical physics. In short, theoretical physics is applied mathematics and has no place in a department devoted to the study of natural phenomena. Because of his eminence and connection to McGill, numerous physics graduates went to the 'Mecca' of Manchester then Cambridge to do a Ph.D. with the great man. Some then returned to the McGill Physics faculty to teach and perpetuate the Rutherfordian view of theory. Although the theoretical physics group at McGill in the 1950s had no official standing and no statutory leader, Phil Wallace was that leader and builder of the group. An inspiration to students and junior colleagues alike, he protected and nurtured us in the sometimes difficult circumstances of citizens without a country.« less

  20. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  1. SPIRE, the ``Spin Triangle'': Athens, Hamburg, Buenos Aires: Advancing Nanospintronics and Nanomagnetism

    NASA Astrophysics Data System (ADS)

    Smith, Arthur R.

    2012-02-01

    Future technological advances at the frontier of `elec'tronics will increasingly rely on the use of the spin property of the electron at ever smaller length scales. As a result, it is critical to make substantial efforts towards understanding and ultimately controlling spin and magnetism at the nanoscale. In SPIRE, the goal is to achieve these important scientific advancements through a unique combination of experimental and theoretical techniques, as well as complementary expertise and coherent efforts across three continents. The key experimental tool of choice is spin-polarized scanning tunneling microscopy -- the premier method for accessing the spin structure of surfaces and nanostructures with resolution down to the atomic scale. At the same time, atom and molecule deposition and manipulation schemes are added in order to both atomically engineer, and precisely investigate, novel nanoscale spin structures. These efforts are being applied to an array of physical systems, including single magnetic atomic layers, self-assembled 2-D molecular arrays, single adatoms and molecules, and alloyed spintronic materials. Efforts are aimed at exploring complex spin structures and phenomena occurring in these systems. At the same time, the problems are approached, and in some cases guided, by the use of leading theoretical tools, including analytical approaches such as renormalization group theory, and computational approaches such as first principles density functional theory. The scientific goals of the project are achieved by a collaborative effort with the international partners, engaging students at all levels who, through their research experiences both at home and abroad, gain international research outlooks as well as understandings of cultural differences, by working on intriguing problems of mutual interest. A novel scientific journalism internship program based at Ohio University furthers the project's broader impacts.

  2. PyNeb: a new tool for analyzing emission lines. I. Code description and validation of results

    NASA Astrophysics Data System (ADS)

    Luridiana, V.; Morisset, C.; Shaw, R. A.

    2015-01-01

    Analysis of emission lines in gaseous nebulae yields direct measures of physical conditions and chemical abundances and is the cornerstone of nebular astrophysics. Although the physical problem is conceptually simple, its practical complexity can be overwhelming since the amount of data to be analyzed steadily increases; furthermore, results depend crucially on the input atomic data, whose determination also improves each year. To address these challenges we created PyNeb, an innovative code for analyzing emission lines. PyNeb computes physical conditions and ionic and elemental abundances and produces both theoretical and observational diagnostic plots. It is designed to be portable, modular, and largely customizable in aspects such as the atomic data used, the format of the observational data to be analyzed, and the graphical output. It gives full access to the intermediate quantities of the calculation, making it possible to write scripts tailored to the specific type of analysis one wants to carry out. In the case of collisionally excited lines, PyNeb works by solving the equilibrium equations for an n-level atom; in the case of recombination lines, it works by interpolation in emissivity tables. The code offers a choice of extinction laws and ionization correction factors, which can be complemented by user-provided recipes. It is entirely written in the python programming language and uses standard python libraries. It is fully vectorized, making it apt for analyzing huge amounts of data. The code is stable and has been benchmarked against IRAF/NEBULAR. It is public, fully documented, and has already been satisfactorily used in a number of published papers.

  3. Distribution of Rb atoms on the antirelaxation RbH coating

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Zhiguo; Xia, Tao

    2017-04-01

    We observe the extension of relaxation time of 131Xe with RbH coating, and compare the different depositions of Rb atoms on the inner surface of the vapor cell with and without RbH coating respectively to research the mechanism of coating prolongation. From the 5*5 um2 images of microscopy, we find that on the bare glass surface the Rb atoms form large random separated islands, and to the contrary they deposite as many regular longitudinal stripe of small islands on the RbH coating. We attribute these different distributions to the different molecular interactions between RbH coating and bare glass to Rb atom and build a simple rational physical model to explain this phenomenon. On the one hand, the small islands, or in other words, the relative uniform distribution on RbH coating may result from the relative stronger interaction of Rb to RbH than to the bare glass. On the other hand, the regular longitudinal stripe may stem from the grain boundaries which is related to the macroscopic shape of the vapor cell. And this longitudinal distribution can generate cylindrically electric gradient as used in some theoretically references before.

  4. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    NASA Astrophysics Data System (ADS)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  5. Physics division. Progress report for period ending September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Divisionmore » have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.« less

  6. Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2005-03-01

    Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.

  7. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1991-01-01

    Over the past six months, experimental investigations were continued and theoretical work on the secondary atomization process was begun. Final shakedown of the sizing/velocity measuring system was completed and the aluminum combustion detection system was modified and tested. Atomizer operation was improved to allow steady state operation over long periods of time for several slurries. To validate the theoretical modeling, work involving carbon slurry atomization and combustion was begun and qualitative observations were made. Simultaneous measurements of aluminum slurry droplet size distributions and detection of burning aluminum particles were performed at several axial locations above the burner. The principle theoretical effort was the application of a rigid shell formation model to aluminum slurries and an investigation of the effects of various parameters on the shell formation process. This shell formation model was extended to include the process leading up to droplet disruption, and previously developed analytical models were applied to yield theoretical aluminum agglomerate ignition and combustion times. The several theoretical times were compared with the experimental results.

  8. From optical lattice clocks to the measurement of forces in the Casimir regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Peter; Bureau International des Poids et Mesures, 92312 Sevres Cedex; Lemonde, Pierre

    2007-06-15

    We describe an experiment based on atoms trapped close to a macroscopic surface, to study the interactions between the atoms and the surface at very small separations (0.6-10 {mu}m). In this range the dominant potential is the QED interaction (Casimir-Polder and van der Waals) between the surface and the atom. Additionally, several theoretical models suggest the possibility of Yukawa-type potentials with sub-millimeter range, arising from new physics related to gravity. The proposed setup is very similar to neutral atom optical lattice clocks, but with the atoms trapped in lattice sites close to the reflecting mirror. A sequence of pulses ofmore » the probe laser at different frequencies is then used to create an interferometer with a coherent superposition between atomic states at different distances from the mirror (in different lattice sites). Assuming atom interferometry state-of-the-art measurement of the phase difference and a duration of the superposition of about 0.1 s, we expect to be able to measure the potential difference between separated states with an uncertainty of {approx_equal}10{sup -4} Hz. An analysis of systematic effects for different atoms and surfaces indicates no fundamentally limiting effect at the same level of uncertainty, but does influence the choice of atom and surface material. Based on those estimates, we expect that such an experiment would improve the best existing measurements of the atom-wall QED interaction by {>=} 2 orders of magnitude, while gaining up to four orders of magnitude on the best present limits on new interactions in the range between 100 nm and 100 {mu}m.« less

  9. Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development

    NASA Astrophysics Data System (ADS)

    Warren, Zachary Aron

    Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).

  10. Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures

    PubMed Central

    Sadan, Maya Bar; Houben, Lothar; Enyashin, Andrey N.; Seifert, Gotthard; Tenne, Reshef

    2008-01-01

    The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS2 nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS2 nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism. PMID:18838681

  11. Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures.

    PubMed

    Bar Sadan, Maya; Houben, Lothar; Enyashin, Andrey N; Seifert, Gotthard; Tenne, Reshef

    2008-10-14

    The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS(2) nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS(2) nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism.

  12. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  13. Modeling virus capsids and their protein binding -- the search for weak regions within the HIV capsid

    NASA Astrophysics Data System (ADS)

    Sankey, Otto; Benson, Daryn

    2010-10-01

    Viruses remain a threat to the health of humans worldwide with 33 million infected with AIDS. Viruses are ubiquitous infecting animals, plants, and bacteria. Each virus infects in its own unique manner making the problem seem intractable. However, some general physical steps apply to many viruses and the application of basic physical modeling can potentially have great impact. The aim of this theoretical study is to investigate the stability of the HIV viral capsid (protein shell). The structural shell can be compromised by physical probes such as pulsed laser light. But what are the weakest regions of the capsid so that we can begin to understand vulnerabilities of these deadly materials? The atomic structure of HIV capsids is not precisely known and we begin by describing our work to model the capsid structure. Next we describe a course grained model to investigate protein interactions within the capsid.

  14. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition.

    PubMed

    Richter, Gunther; Hillerich, Karla; Gianola, Daniel S; Mönig, Reiner; Kraft, Oliver; Volkert, Cynthia A

    2009-08-01

    The strength of metal crystals is reduced below the theoretical value by the presence of dislocations or by flaws that allow easy nucleation of dislocations. A straightforward method to minimize the number of defects and flaws and to presumably increase its strength is to increase the crystal quality or to reduce the crystal size. Here, we describe the successful fabrication of high aspect ratio nanowhiskers from a variety of face-centered cubic metals using a high temperature molecular beam epitaxy method. The presence of atomically smooth, faceted surfaces and absence of dislocations is confirmed using transmission electron microscopy investigations. Tensile tests performed in situ in a focused-ion beam scanning electron microscope on Cu nanowhiskers reveal strengths close to the theoretical upper limit and confirm that the properties of nanomaterials can be engineered by controlling defect and flaw densities.

  15. Atomic x-ray production by relativistic heavy ions. [Cross sections, K and L shells, ionization 3 and 4. 88 GEV holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protonsmore » and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.« less

  16. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  17. Theoretical and Experimental Investigation of Heterojunction Interfaces

    DTIC Science & Technology

    1983-11-01

    every two surface atoms at the junction. In terms of our theoretical alchemy one proton must be added for every two surface atoms. Note that this...Chye. I. Lindau. P PianetU, C. M. Gamer , and W E Spicer, Phys Rev. B 17, 2682 11978|. "J. R. Waldrop and R W. Grant. Appl. Phys. Lett. 34. 630

  18. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  19. INTRODUCTION: The 8th International Conference on Vacuum Ultraviolet Radiation Physics

    NASA Astrophysics Data System (ADS)

    Nilsson, Per Olof; Hedin, Lars

    1987-01-01

    The VUV conferences series The international conferences on vacuum ultraviolet radiation physics started in 1962, and are now being held every third year. VUV-8 took place at Lund University, August 4-8, 1986. VUV-9 will be arranged at the University of Hawaii, USA, August 14-18, 1989, with Prof. C S Fadley as conference chairman. Chairman of the international advisory board for the period 1986-89 is Prof. L Hedin. The theme of the series can be summarized as experimental and theoretical progress in research fields utilizing the interaction of VUV radiation with matter. The topics cover broad areas within atomic and molecular physics, solid state physics and VUV instrumentation. The conferences emphasize interdisciplinary aspects. To these belong common experimental techniques as, e.g., synchrotron radiation instrumentation, and common theoretical foundations for the description of photon interactions with matter. The VUV-8 conference The VUV-8 conference in Lund was attended by 300 participants from 26 countries. An address list of the participants is given at the end of this volume. There were 33 invited papers given as plenary or key-note talks. As many as 229 posters were presented; 49 of them were also given orally. These numbers are typical for the VUV conferences, except for the number of posters, which was unusually large. In the conference planning the poster sessions were stressed, and particular care was taken to provide a good atmosphere at these sessions. Thus the posters were kept up during the whole conference, coffee was served in the hail with the posters and there were convenient places to sit down close to the posters. Considering the wide scope of the conference it was necessary to emphasize a limited number of topics of high current interest and importance. Thus besides traditional topics, several rapidly expanding fields were discussed in special sessions. At VUV-8 there were the following sessions. Theory of atoms and molecules photoabsorption and -ionization of atoms and molecules and related phenomena multiphoton and other dynamical processes plasma physics VUV lasers time resolved spectroscopy instrumentation for VUV radiation synchrotron radiation centres solid state spectroscopy dynamical processes involving localized levels fundamental aspects of photoemission spin-polarized photoemission inverse photoemission semiconductors organic materials adsorbates Proceedings of VUV-8 The present volume contains most of the invited papers (28 out of 33). Regarding the contributed papers, over 50 are now being published in regular issues of PHYSICA SCRIPTA. These papers will also appear in a reprint volume, PHYSICA SCRIPTA RS4, which soon will be available. Abstracts of invited and contributed papers appeared in three conference volumes as follows: Volume I: Atomic and molecular physics. Instrumentation. Volume II: Solid state physics. Volume III: Post deadline papers. These books have been registered in an international data base and can thus be cited as published documents. Copies may be received from the conference secretary.* Acknowledgements We would like to thank our sponsors, which are listed on the following page, the members of the international program committee, and all others who helped in the planning of the program. Above all we like to thank those who worked with the local organization. Due to their dedicated efforts the conference ran very smoothly with a pleasant atmosphere.

  20. Diffraction and quantum control of wave functions in nonresonant two-photon absorption

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Pang, Huafeng; Wang, Doudou; Zhang, Tao; Dong, Ruifang; Li, Yongfang

    2018-03-01

    In this study, the nonresonant two-photon absorption process in a two-level atom, induced by a weak chirped pulse, is theoretically investigated in the frequency domain. An analytical expression of the wave function expressed by Fresnel functions is obtained, and the two-photon transition probability (TPTP) versus the integral bandwidth, spectral width, and chirp parameter is analyzed. The results indicate that the oscillation evolution of the TPTP result from quantum diffraction of the wave function, which can be explained by analogy with Fresnel diffraction from a wide slit in the spatial domain. Moreover, the ratio between the real and imaginary parts of the excited state wave function and, hence, the atomic polarization, can be controlled by the initial phase of the excitation pulse. In some special initial phase of the excitation pulse, the wave functions with purely real or imaginary parts can be obtained by measuring the population probability. This work provides a novel perspective for understanding the physical details of the interactions between atoms and chirped light pulses in the multiphoton process.

  1. Real-time observation of fluctuations at the driven-dissipative Dicke phase transition

    PubMed Central

    Brennecke, Ferdinand; Mottl, Rafael; Baumann, Kristian; Landig, Renate; Donner, Tobias; Esslinger, Tilman

    2013-01-01

    We experimentally study the influence of dissipation on the driven Dicke quantum phase transition, realized by coupling external degrees of freedom of a Bose–Einstein condensate to the light field of a high-finesse optical cavity. The cavity provides a natural dissipation channel, which gives rise to vacuum-induced fluctuations and allows us to observe density fluctuations of the gas in real-time. We monitor the divergence of these fluctuations over two orders of magnitude while approaching the phase transition, and observe a behavior that deviates significantly from that expected for a closed system. A correlation analysis of the fluctuations reveals the diverging time scale of the atomic dynamics and allows us to extract a damping rate for the external degree of freedom of the atoms. We find good agreement with our theoretical model including dissipation via both the cavity field and the atomic field. Using a dissipation channel to nondestructively gain information about a quantum many-body system provides a unique path to study the physics of driven-dissipative systems. PMID:23818599

  2. A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM).

    PubMed

    Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu

    2018-06-04

    Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.

  3. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  4. Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase

    NASA Astrophysics Data System (ADS)

    Yin, Yanning; Xu, Supeng; Xia, Meng; Xia, Yong; Yin, Jianping

    2018-04-01

    Polar heavy-atom molecules have been well recognized as promising candidates for precision measurements and tests of fundamental physics. A much slower molecular beam to increase the interaction time should lead to a more sensitive measurement. Here we theoretically demonstrate the possibility of the stimulated longitudinal slowing of heavy-atom molecules by the coherent optical bichromatic force with a constant beat phase. Taking the YbF meolecule as an example, we show that a rapid and short-distance deceleration of heavy molecules by a phase-compensation method is feasible with moderate conditions. A molecular beam of YbF with a forward velocity of 120 m/s can be decelerated below 10 m/s within a distance of 3.5 cm and with a laser irradiance for each traveling wave of 107.2 W/cm 2 . Our proposed slowing method could be a promising approach to break through the space constraint or the limited capture efficiency of molecules loadable into a magneto-optical trap in traditional deceleration schemes, opening the possibility for a significant improvement of the precision measurement sensitivity.

  5. The Iron Project

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    2000-01-01

    Recent advances in theoretical atomic physics have enabled large-scale calculation of atomic parameters for a variety of atomic processes with high degree of precision. The development and application of these methods is the aim of the Iron Project. At present the primary focus is on collisional processes for all ions of iron, Fe I - FeXXVI, and other iron-peak elements; new work on radiative processes has also been initiated. Varied applications of the Iron Project work to X-ray astronomy are discussed, and more general applications to other spectral ranges are pointed out. The IP work forms the basis for more specialized projects such as the RmaX Project, and the work on photoionization/recombination, and aims to provide a comprehensive and self-consistent set of accurate collisional and radiative cross sections, and transition probabilities, within the framework of relativistic close coupling formulation using the Breit-Pauli R-Matrix method. An illustrative example is presented of how the IP data may be utilized in the formation of X-ray spectra of the K alpha complex at 6.7 keV from He-like Fe XXV.

  6. Dimensional crossover and cold-atom realization of topological Mott insulators

    PubMed Central

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-01-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431

  7. Benchmarking transition energies and emission strengths for X-ray astrophysics with measurements at the Livermore EBITs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hell, Natalie

    K-shell transitions in astrophysically abundant metals and L-shell transitions in Fe group elements show characteristic signatures in the soft X-ray spectrum in the energy range 0.1–10 keV. These signatures have great diagnostic value for plasma parameters such as electron and ion temperatures and densities, and can thus help understand the physics controlling the energetic processes in astrophysical sources. This diagnostic power increases with advances in spectral resolution and effective area of the employed X-ray observatories. However, to make optimal use of the diagnostic potential – whether through global spectral modeling or through diagnostics from local modeling of individual lines –more » the underlying atomic physics has to be complete and well known. With the next generation of soft X-ray observatories featuring micro-calorimeters such as the SXS on Astro- H/Hitomi and the X-IFU on Athena, broadband high-resolution spectroscopy with large effective area will become more commonly available in the next decade. With these spectrometers, the accuracy of the plasma parameters derived from spectral modeling will be limited by the uncertainty of the reference atomic data rather than by instrumental factors, as is sometimes already the case for the high-resolution grating observations with Chandra-HETG and XMM-Newton-RGS. To take full advantage of the measured spectra, assessment of the accuracy of and improvements to the available atomic reference data are therefore important. Dedicated measurements in the laboratory are essential to benchmark the theoretical calculations providing the bulk of the reference data used in astrophysics. Experiments at the Lawrence Livermore National Laboratory electron beam ion traps (EBIT-I and SuperEBIT) have a long history of providing this service. In this work, I present new measurements of transition energies and absolute electron impact excitation cross sections geared towards currently open atomic physics data needs.« less

  8. Exotic objects of atomic physics

    NASA Astrophysics Data System (ADS)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  9. Theoretical investigations of plasma processes in the ion bombardment thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    A physical model for a thruster discharge was developed, consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field. The associated boundary-value problem for the coupled partial differential equations with mixed boundary conditions, which describe the electric potential and the plasma velocity fields, was solved in closed form. By means of quantum-mechanical perturbation theory, a formula for the number S(E) of atoms sputtered on the average by an ion of energy E was derived from first principles. The boundary-value problem describing the diffusion of the sputtered atoms through the surrounding rarefied electron-ion plasma to the system surfaces of ion propulsion systems was formulated and treated analytically. It is shown that outer boundary-value problems of this type lead to a complex integral equation, which requires numerical resolution.

  10. Atomic and electronic structure of Mo6S9-xIx nanowires

    NASA Astrophysics Data System (ADS)

    Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.

    2005-09-01

    Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578

  11. Three-Body Recombination near a Narrow Feshbach Resonance in Li 6

    NASA Astrophysics Data System (ADS)

    Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo

    2018-05-01

    We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s -wave magnetic Feshbach resonance of Li 6 - Li 6 at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μ K to above 200 μ K , we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures.

  12. Ultimately short ballistic vertical graphene Josephson junctions

    PubMed Central

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  13. Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2.

    PubMed

    Li, Meng; Shi, Jialin; Liu, Lianqing; Yu, Peng; Xi, Ning; Wang, Yuechao

    2016-01-01

    Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS 2 ) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS 2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS 2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials.

  14. The emergence of Quantum Schools: Munich, Göttingen and Copenhagen as new centers of atomic theory

    NASA Astrophysics Data System (ADS)

    Eckert, M.

    2001-01-01

    The institutes of Arnold Sommerfeld in Munich, Niels Bohr in Copenhagen, and Max Born in Göttingen became the leading centers for the study of quantum theory in the first decades of the twentieth century. Although founded for a broader range of theoretical physics, the quantum became the major topic of research in Munich after the Bohr-Sommerfeld-model of the atom (1913-16). The heyday came in the 1920s, when Bohr's and Born's institutes started operation and became further attractive centers for ambitious theorists all over the world. The discovery of quantum mechanics (1925) should be regarded not only as the achievement of a few young geniuses (in particular Werner Heisenberg and Wolfgang Pauli) but also as the result of a collaborative effort emerging in the new social and intellectual environment of their teachers' schools in Munich, Göttingen and Copenhagen.

  15. Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, E. J.; He, Q.; Ghosh, S.

    Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less

  16. Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach

    NASA Astrophysics Data System (ADS)

    Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.

    2015-10-01

    In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.

  17. Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures

    DOE PAGES

    Moon, E. J.; He, Q.; Ghosh, S.; ...

    2017-11-08

    Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less

  18. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.

    2017-11-01

    Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.

  19. Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory.

    PubMed

    Yan, Yanfa; Noufi, R; Al-Jassim, M M

    2006-05-26

    Current studies have attributed the remarkable performance of polycrystalline CuInSe2 (CIS) to anomalous grain-boundary (GB) physics in CIS. The recent theory predicts that GBs in CIS are hole barriers, which prevent GB electrons from recombining. We examine the atomic structure and chemical composition of (112) GBs in Cu(In,Ga)Se2 (CIGS) using high-resolution Z-contrast imaging and nanoprobe x-ray energy-dispersive spectroscopy. We show that the theoretically predicted Cu-vacancy rows are not observed in (112) GBs in CIGS. Our first-principles modeling further reveals that the (112) GBs in CIS do not act as hole barriers. Our results suggest that the superior performance of polycrystalline CIS should not be explained solely by the GB behaviors.

  20. Condensed matter physics of planets - Puzzles, progress and predictions

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1984-01-01

    Attention is given to some of the major unresolved issues concerned with the physics of planetary interiors. The important advances in observations, and experimental and theoretical investigations are briefly reviewed, and some areas for further study are identified, including: the characteristics of atomic and electronic degrees of freedom at the high pressures and temperatures typical of a condensed planetary core; the behavior of water at megabar pressures; and the nature of the core-alloy in the earth and in the core mantle phase boundary. Consideration is also given to the behavior of carbon at high pressures and temperatures in the presence of oxygen and hydrogen; the behavior of the volatile ice assemblage in Titan at pressures of 2-40 kbar; and the electrical conductivities of matter under planetary core conditions.

  1. Electrons on a spherical surface: Physical properties and hollow spherical clusters

    NASA Astrophysics Data System (ADS)

    Cricchio, Dario; Fiordilino, Emilio; Persico, Franco

    2012-07-01

    We discuss the physical properties of a noninteracting electron gas constrained to a spherical surface. In particular we consider its chemical potentials, its ionization potential, and its electric static polarizability. All these properties are discussed analytically as functions of the number N of electrons. The trends obtained with increasing N are compared with those of the corresponding properties experimentally measured or theoretically evaluated for quasispherical hollow atomic and molecular clusters. Most of the properties investigated display similar trends, characterized by a prominence of shell effects. This leads to the definition of a scale-invariant distribution of magic numbers which follows a power law with critical exponent -0.5. We conclude that our completely mechanistic and analytically tractable model can be useful for the analysis of self-assembling complex systems.

  2. Stability of a Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Fletcher, Richard J.; Gaunt, Alexander L.; Navon, Nir; Smith, Robert P.; Hadzibabic, Zoran

    2013-09-01

    We study the stability of a thermal K39 Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a≪λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L3∝λ4, is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes K39 particularly promising for studies of many-body physics in a unitary Bose gas.

  3. First-principles Theory of Magnetic Multipoles in Condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.

    2018-04-01

    The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.

  4. Fabricatable nanopore sensors with an atomic thickness

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Bai, Jingwei; Stolovitzky, Gustavo

    2013-10-01

    When analyzing biological molecules (such as DNA and proteins) transported through a nanopore sensor, the pore length limits both the sensitivity and the spatial resolution. Atomically thin as a graphene nanopore is, it is difficult to make graphene pores and the scalable-fabrication of those pores has not yet been possible. We theoretically studied a type of atomically thin nanopores that are formed by intersection of two perpendicular nano-slits. Based on theoretical analyses, we demonstrate that slit nanopores behave similarly to graphene pores and can be manufactured at a wafer scale.

  5. Structural secrets of multiferroic interfaces.

    PubMed

    Meyerheim, H L; Klimenta, F; Ernst, A; Mohseni, K; Ostanin, S; Fechner, M; Parihar, S; Maznichenko, I V; Mertig, I; Kirschner, J

    2011-02-25

    We present an experimental and theoretical study of the geometric structure of ultrathin BaTiO(3) films grown on Fe(001). Surface x-ray diffraction reveals that the films are terminated by a BaO layer, while the TiO(2) layer is next to the top Fe layer. Cations in termination layers have incomplete oxygen shells inducing strong vertical relaxations. Onset of polarization is observed at a minimum thickness of two unit cells. Our findings are supported by first-principles calculations providing a quantitative insight into the multiferroic properties on the atomic scale. © 2011 American Physical Society

  6. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  7. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    NASA Technical Reports Server (NTRS)

    Xu, Yu-Lin

    2016-01-01

    Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of scattered intensities are cross sections, such as for extinction, scattering, absorption, and radiation pressure, as a critical type of key quantity addressed in most theoretical and experimental studies of radiative scattering. Cross sections predicted from different scattering theories are supposed to be in general agreement. For objects of irregular shape, the GMM-PA solutions can be compared with the highly flexible Discrete Dipole Approximation (DDA) [4,5] when dividing a target to no more than 106 unit cells. Also, there are different ways to calculate the cross sections in the GMM-PA, providing an additional means to examine the accuracy of the numerical solutions and to unveil potential issues concerning the theoretical formulations and numerical aspects. To solve multiple scattering by an assembly of material volumes through classical theories such as the GMM-PA, the radiative properties of the component scatterers, the complex refractive index in particular, must be provided as input parameters. When using a PA to characterize a material body, this involves the use of an adequate theoretical tool, an effective medium theory, to connect Maxwell's phenomenogical theory with the atomistic theory of matter. In the atomic theory, one regards matter as composed of interacting particles (atoms and molecules) embedded in the vacuum [6]. However, the radiative properties of atomic-scaled particles are known to be substantially different from bulk materials. Intensive research efforts in the fields of cluster science and nanoscience attempt to bridge the gap between bulk and atom and to understand the transition from classical to quantum physics. The GMM-PA calculations, which place virtually no restriction on the component-particle size, might help to gain certain insight into the transition.

  8. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  9. Remarkable NO oxidation on single supported platinum atoms

    DOE PAGES

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; ...

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-alumina-supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al 2O 3-supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Ptmore » atoms are as active as fully formed platinum particles. The overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.« less

  10. Collision of impurities with Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.

    2018-04-01

    Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.

  11. Theory of rotational transition in atom-diatom chemical reaction

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Nakamura, Hiroki

    1989-05-01

    Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.

  12. Carrier-Envelope Phase Effect on Atomic Excitation by Few-Cycle rf Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hebin; Welch, George R.; Sautenkov, Vladimir A.

    2010-03-12

    We present an experimental and theoretical study of the carrier-envelope phase effects on population transfer between two bound atomic states interacting with intense ultrashort pulses. Radio frequency pulses are used to transfer population among the ground state hyperfine levels in rubidium atoms. These pulses are only a few cycles in duration and have Rabi frequencies of the order of the carrier frequency. The phase difference between the carrier and the envelope of the pulses has a significant effect on the excitation of atomic coherence and population transfer. We provide a theoretical description of this phenomenon using density matrix equations. Wemore » discuss the implications and possible applications of our results.« less

  13. Fluorescent Fe K Emission from High Density Accretion Disks

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  14. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.

    PubMed

    Zeng, F; Jiang, M Q; Dai, L H

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  15. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  16. Tuning the physical properties of organic sensitizers by replacing triphenylamine with new donors for dye sensitized solar cells - a theoretical approach.

    PubMed

    Ramkumar, Sekar; Manidurai, Paulraj

    2017-02-15

    New donor molecules with low ionization potential have been theoretically designed by replacing the benzene moieties in triphenylamine (TPA) with thiophene as well as furan. The designed new donors also exhibited planar structure, making an angle of 120° around the nitrogen atom that results in resonance effects through π-bonds of aryl rings. New sensitizers have been theoretically studied using DFT and TD-DFT by adopting these designed donors. UV-Vis absorption spectra, light harvesting ability (LHE) and electron injection ability (ΔG inject ) of the designed sensitizers have been calculated by taking L0 as reference. Orbital overlapping between donor and acceptor facilitates intra-molecular charge transfer, thereby increasing the interfacial electron injection from the sensitizer to the semiconductor nanoparticles. Our theoretical results demonstrate that sensitizers DTPA-AA and DFPA-AA have broader absorption and lower ΔG inject respectively compare to L0, this opens a new way for designing sensitizers for dye sensitized solar cells (DSSCs). All the dyes designed were found to be good light harvesters. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  18. Superlubricity and friction
  19. Electronic and phononic contributions to friction
  20. Friction on the atomic and molecular scales
  21. van der Waals friction and Casimir force
  22. Molecular motor and friction
  23. Friction and adhesion in soft matter systems
  24. Wear and crack on the nanoscale
  25. Theoretical studies on the atomic scale friction and energy dissipation
  26. Friction and chaos
  27. Mechanical properties of nanoscale contacts
  28. Friction of powder
  29. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  30. Precision Tests of the Electroweak Interaction using Trapped Atoms and Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melconian, Daniel George

    The objective of the proposed research is to study fundamental aspects of the electroweak interaction via precision measurements in beta decay to test our current understanding of fundamental particles and forces as contained in the so-called "Standard Model" of particle physics. By comparing elegant experiments to rigorous theoretical predictions, we will either confirm the Standard Model to a higher degree and rule out models which seek to extend it, or find evidence of new physics and help guide theorists in developing the New Standard Model. The use of ion and neutral atom traps at radioactive ion beam facilities has openedmore » up a new vista in precision low-energy nuclear physics experiments. Traps provide an ideal source of decaying atoms: they can be extremely cold (~1 mK); they are compact (~1 mm^3); and perhaps most importantly, the daughter particles escape with negligible distortions to their momenta in a scattering-free, open environment. The project is taking advantage of these technologies and applying them to precision beta-decay studies at radioactive beam facilities. The program consists of two complementary efforts: 1) Ion traps are an extremely versatile tool for purifying, cooling and bunching low-energy beams of short-lived nuclei. A large-bore (210~mm) superconducting 7-Tesla solenoid is at the heart of a Penning trap system for which there is a dedicated beamline at T-REX, the upgraded radioactive beam facility at the Cyclotron Institute, Texas A&M University. In addition to providing a general-purpose decay station, the flagship program for this system is measuring the ft-values and beta-neutrino correlation parameters from isospin T=2 superallowed beta-delayed proton decays, complimenting and expanding the already strong program in fundamental interactions at the Institute. 2) A magneto-optical trap is being used at the TRIUMF Neutral Atom Trap facility to observe the (un)polarized angular distribution parameters of isotopes of potassium. We are able to highly polarize laser-cooled atoms and observe their decay with unprecedented precision. The correlation of the daughter beta particle with the initial nuclear spin as well as other correlations are sensitive to physics beyond the Standard Model. Both of these cutting-edge and exciting research efforts will test our understanding of the fundamental symmetries underlying our current theory of electroweak interactions. Complementary to high-energy collider experiments, these low-energy nuclear physics "table-top" experiments will search for new particles and interactions which are not already described by the Standard Model of particle physics. The value of this research is recognized to be cross-disciplinary, exciting and potentially revolutionary in our understanding of nature's fundamental interactions. Accordingly, it has been endorsed by the recent (2007) Nuclear Science Advisory Committee's Long Range Plan as part of their recommendation for a "New Standard Model Initiative." In addition to the near-term benefits of scholarly publications and visibility through description of this work at international conferences, an important benefit of this research program is the training of new, young and enthusiastic nuclear physicists. Participants in this demanding and rewarding field develop a very strong background in physics with experience in a range of its subfields since we use atomic techniques and apply them to a nuclear physics experiment which in the end tests the theories of high-energy physics.« less

  31. Scaling Cross Sections for Ion-atom Impact Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation,more » and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.« less

  32. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  1. Effects of doping of calcium atom(s) on structural, electronic and optical properties of binary strontium chalcogenides - A theoretical investigation using DFT based FP-LAPW methodology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-09-01

    The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  2. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    PubMed

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data.

  3. Medical physics is alive and well and growing in South East Asia.

    PubMed

    Ng, K; Pirabul, R; Peralta, A; Soejoko, D

    1997-03-01

    In recent years there has been a significant economic growth in South East Asia, along with it a concurrent development of medical physics. The status of four countries--Malaysia, Thailand, the Philippines and Indonesia are presented. Medical physicists in these countries have been experiencing the usual problems of lack of recognition, low salaries, and insufficient facilities for education and training opportunities. However the situation has improved recently through the initiative of local enthusiastic medical physicists who have started MS graduate programs in medical physics and begun organizing professional activities to raise the profile of medical physics. The tremendous support and catalytic roles of the American Association of Physicists in Medicine (AAPM) and international organizations such as International Organization for Medical Physics (IOMP), International Atomic Energy Agency (IAEA), World Health Organization (WHO), and International Center for Theoretical Physics (ICTP) have been instrumental in achieving progress. Contributions by these organizations include co-sponsorship of workshops and conferences, travel grants, medical physics libraries programs, and providing experts and educators. The demand for medical physicists is expected to rise in tandem with the increased emphasis on innovative technology for health care, stringent governmental regulation, and acceptance by the medical community of the important role of medical physicists.

  4. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    PubMed Central

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2015-01-01

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670

  5. Au133(SPh-tBu)52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the “nanostructure problem”. Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than inmore » the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.« less

  6. Au 133 (SPh - t Bu) 52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au-133(SPh-tBu)(52), was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than inmore » the slightly larger Au-144(SCH2CH2Ph)(60). Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.« less

  7. Experimental and Theoretical Investigation of Thiazolyl Blue as a Corrosion Inhibitor for Copper in Neutral Sodium Chloride Solution.

    PubMed

    Feng, Li; Zhang, Shengtao; Qiang, Yujie; Xu, Yue; Guo, Lei; Madkour, Loutfy H; Chen, Shijin

    2018-06-19

    The anticorrosion effect of thiazolyl blue (MTT) for copper in 3% NaCl at 298 K was researched by electrochemical methods, scanning electron-microscopy (SEM), and atomic force microscopy (AFM). The results reveal that MTT can protect copper efficiently, with a maximum efficiency of 95.7%. The corrosion inhibition mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectral (FT-IR), and theoretical calculation. The results suggest that the MTT molecules are adsorbed on metal surface forming a hydrophobic protective film to prevent copper corrosion. It also indicates that the MTT and copper form covalent bonds. The molecular dynamic simulation further gives the evidence for adsorption. The adsorption isotherm studies demonstrate that a spontaneous, mixed physical and chemical adsorption occurs, which obeys Langmuir adsorption isotherm. The present research can help us better understand the corrosion inhibition process and improve it.

  8. Do dielectric nanostructures turn metallic in high-electric dc fields?

    PubMed

    Silaeva, E P; Arnoldi, L; Karahka, M L; Deconihout, B; Menand, A; Kreuzer, H J; Vella, A

    2014-11-12

    Three-dimensional dielectric nanostructures have been analyzed using field ion microscopy (FIM) to study the electric dc field penetration inside these structures. The field is proved to be screened within a few nanometers as theoretically calculated taking into account the high-field impact ionization process. Moreover, the strong dc field of the order of 0.1 V/Å at the surface inside a dielectric nanostructure modifies its band structure leading to a strong band gap shrinkage and thus to a strong metal-like optical absorption near the surface. This metal-like behavior was theoretically predicted using first-principle calculations and experimentally proved using laser-assisted atom probe tomography (APT). This work opens up interesting perspectives for the study of the performance of all field-effect nanodevices, such as nanotransistor or super capacitor, and for the understanding of the physical mechanisms of field evaporation of dielectric nanotips in APT.

  9. Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis.

    PubMed

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

  10. New phenomena in non-equilibrium quantum physics

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takuya

    From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.

  11. Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations

    NASA Astrophysics Data System (ADS)

    Niu, Tianchao; Zhang, Jialin; Chen, Wei

    2017-12-01

    Chemical vapor deposition (CVD) is the most promising approach for producing low-cost, high-quality, and large area graphene. Revealing the graphene growth mechanism at the atomic-scale is of great importance for realizing single crystal graphene (SCG) over wafer scale. Density functional theoretical (DFT) calculations are playing an increasingly important role in revealing the structure of the most stable carbon species, understanding the evolution processes, and disclosing the active sites. Scanning tunneling microscopy (STM) is a powerful surface characterization tool to illustrate the real space distribution and atomic structures of growth intermediates during the CVD process. Combining them together can provide valuable information to improve the atomically controlled growth of SCG. Starting from a basic concept of the substrate effect on realizing SCG, this review covers the progress made in theoretical investigations on various carbon species during graphene growth on different transition metal substrates, in the STM study of the structural intermediates on transition metal surfaces, and in synthesizing graphene nanoribbons with atomic-precise width and edge structure, ending with a perspective on the future development of 2D materials beyond graphene.

  12. Theoretical Calculations for Electron Impact Ionization of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Amami, Sadek Mohamed Fituri

    In the last twenty years, significant progress has been made for the theoretical treatment of electron impact ionization (e,2e) of atoms and molecules and, for some cases, very nice agreement between experiment and theory has been achieved. In particular, excellent agreement between theory and experiment and theory has been achieved for ionization of hydrogen and helium. However, agreement between experiment and theory is not nearly as good for ionization of larger atoms and molecules. In the first part of this dissertation, different theoretical approaches will be employed to study the triply differential cross section (TDCS) for low and intermediate energy electron-impact ionization of Neon and Argon for different orbital states. There is a very recent interest in studying ionization of Laser aligned atoms in order to get a better understanding about electron impact ionization of molecules. In the next part of this dissertation, results will be presented for electron-impact ionization of three laser aligned atoms, Mg, Ca, and Na. The comparison between the theory and experiment showed that our three body distorted wave (3DW) model gave excellent agreement with experiment in the scattering plane but very poor agreement perpendicular to the scattering plane. An explanation for this poor agreement out of the scattering plane has been provided by comparing our theoretical results with those of the time depended close coupling (TDCC) model and this explanation is also provided in this dissertation. Recently, significant attention has been directed towards obtaining a better under-standing of electron-impact ionization of molecules which are significantly more challenging than atoms. In the last part of this dissertation, results will be presented for electron-impact ionization of three different molecules (N2 , H2O, and CH4) which have been studied comprehensively using different theoretical approximations for different types of geometries. The published papers in section two contain a detailed analysis and discussion for each of these topics.

  13. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi superfluids. Although a non-magnetic impurity does not change macroscopic properties of s-wave Fermi superfluids, depending on its shape and strength, a magnetic impurity can induce single or multiple mid-gap bound states. The multiple mid-gap states could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase within the superfluid. As an analog of the Scanning Tunneling Microscope, we proposed a modified radio frequency spectroscopic method to measure the focal density of states which can be employed to detect these states and other quantum phases of cold atoms. A key result of our self consistent Bogoliubov-de Gennes calculations is that a magnetic impurity can controllably induce an FFLO state at currently accessible experimental parameters.

  14. High-temperature site preference and atomic short-range ordering characteristics of ternary alloying elements in γ'-Ni3Al intermetallics

    NASA Astrophysics Data System (ADS)

    Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2017-10-01

    Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.

  15. Generalized uncertainty principle and quantum gravity phenomenology

    NASA Astrophysics Data System (ADS)

    Bosso, Pasquale

    The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.

  16. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  17. Phase modulation atomic force microscope with true atomic resolution

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.

    2006-12-01

    We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.

  18. Energy Levels and Spectral Lines of Li Atoms in White Dwarf Strength Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.

    2018-04-01

    A theoretical approach based on B-splines has been developed to calculate atomic structures and discrete spectra of Li atoms in a strong magnetic field typical of magnetic white dwarf stars. Energy levels are presented for 20 electronic states with the symmetries 20+, 20‑, 2(‑1)+, 2(‑1)‑, and 2(‑2)+. The magnetic field strengths involved range from 0 to 2350 MG. The wavelengths and oscillator strengths for the electric dipole transitions relevant to these magnetized atomic states are reported. The current results are compared to the limited theoretical data in the literature. A good agreement has been found for the lower energy levels, but a significant discrepancy is clearly visible for the higher energy levels. The existing discrepancies of the wavelengths and oscillator strengths are also discussed. Our investigation shows that the spectrum data of magnetized Li atoms previously published are obviously far from meeting requirements of analyzing discrete atomic spectra of magnetic white dwarfs with lithium atmospheres.

  19. GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS THE WHITE DOME STRUCTURE. THE SHED-LIKE STRUCTURE TO THE LEFT IS THE SEARCH-LIGHT BUILDING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Atomic Physics Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  20. Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom(s) in rock-salt phase- a first principle based theoretical initiative

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.

  1. Adiabatic Quantum Computing with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Hankin, Aaron; Biedermann, Grant; Burns, George; Jau, Yuan-Yu; Johnson, Cort; Kemme, Shanalyn; Landahl, Andrew; Mangan, Michael; Parazzoli, L. Paul; Schwindt, Peter; Armstrong, Darrell

    2012-06-01

    We are developing, both theoretically and experimentally, a neutral atom qubit approach to adiabatic quantum computation. Using our microfabricated diffractive optical elements, we plan to implement an array of optical traps for cesium atoms and use Rydberg-dressed ground states to provide a controlled atom-atom interaction. We will develop this experimental capability to generate a two-qubit adiabatic evolution aimed specifically toward demonstrating the two-qubit quadratic unconstrained binary optimization (QUBO) routine.

  2. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  3. The paraphysical principles of natural philosophy

    NASA Astrophysics Data System (ADS)

    Beichler, James Edward

    The word `paraphysics' has never been precisely defined. To establish paraphysics as a true science, the word is first defined and its scope and limits identified. The natural phenomena which are studied in paraphysics, psi phenomena, are distinguished by their common physical properties. The historical roots of paraphysics are also discussed. Paraphysics can be defined, represented by a specific body of natural phenomena and it has a historical basis. Therefore, paraphysics is a distinguishable science. It only needs a theoretical foundation. Rather than using a quantum approach, a new theory of physical reality can be based upon a field theoretical point of view. This approach dispels philosophical questions regarding the continuity/discrete debate and the wave/particle paradox. Starting from a basic Einstein-Kaluza geometrical structure and assuming a real fifth dimension, a comprehensive and complete theory emerges. The four forces of nature are unified as are the quantum and relativity. Life, mind, consciousness and psi emerge as natural consequences of the physics. The scientific concept of consciousness, ambiguous at best, has become an increasingly important factor in modern physics. No one has ever defined consciousness in an acceptable manner let alone develop a workable theory of consciousness while no viable physical theories of life and mind are even being considered even though they are prerequisites of consciousness. In the five-dimensional model, life, mind and consciousness are explained as increasingly complex `entanglements' or patterns of density variation within the single unified field. Psi is intimately connected to consciousness, giving the science of paranormal phenomena a theoretical basis in the physics of hyperspace. Psi results from different modes of consciousness interacting non-locally via the fifth dimension. Several distinct areas of future research are suggested which will lead to falsification of the theory. A new theory of the atomic nucleus is clearly indicated as is a simple theory of the predominant spiral shape of galaxies. A quantifiable theory of life is also suggested. And finally, this model strongly implies a direct correspondence between emotional states and psi phenomena which should render the existence of psi verifiable.

  4. Ab-initio study of superconducting state in intercalated MoSe2 and WSe2 bilayers

    NASA Astrophysics Data System (ADS)

    Szcześniak, R.; Durajski, A. P.; Jarosik, M. W.

    2018-05-01

    A two-dimensional systems have attracted significant interest due to their outstanding physical, chemical and optoelectronic properties. This paper focuses on the detailed investigations of the electronic, phononic and superconducting properties of transition-metal dichalcogenide bilayers MSe 2 (M = Mo, W) intercalated by calcium atoms. The first-principles calculations show that (MoSe2)2Ca and (WSe2)2Ca systems exhibit metallic behavior and weak phonon-mediated superconductivity with low critical temperature of 0.51 and 0.30 K, respectively. These results confirm other theoretical predictions and suggest that the investigated materials cannot be a good candidates for a nanoscale superconductors.

  5. Quantum Universe

    NASA Astrophysics Data System (ADS)

    Mukhanov, V. F.

    2016-10-01

    In March 2013, following an accurate processing of available measurement data, the Planck Scientific Collaboration published the highest-resolution photograph ever of the early Universe when it was only a few hundred thousand years old. The photograph showed galactic seeds in sufficient detail to test some nontrivial theoretical predictions made more than thirty years ago. Most amazing was that all predictions were confirmed to be remarkably accurate. With no exaggeration, we may consider it established experimentally that quantum physics, which is normally assumed to be relevant on the atomic and subatomic scale, also works on the scale of the entire Universe, determining its structure with all its galaxies, stars, and planets.

  6. In the name of science: don't tamper with the deceptive truth...

    PubMed

    Reis, Helton J; Mukhamedyarov, Marat A; Rizvanov, Albert A; Palotás, András

    2009-12-01

    Werner Heisenberg (1901-1976) is one of the most controversial, most ambivalent and most important figures in the history of modern science. The debate surrounding him with respect to nuclear weapons and National Socialism appears unending. Even though Heisenberg's uncertainty principle of the quantum system and his involvement in the Nazi atomic bomb project have been thoroughly discussed in various journals over the past decades, no communication has ever been published at a holistic level of his greatest Nobel-prize winning achievement in theoretical physics. In order to fill up this hole, this piece explicitly communicates the Heisenberg's paradox at all levels of science.

  7. Studies of the Stability and Dynamics of Levitated Drops

    NASA Technical Reports Server (NTRS)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  8. Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing

    DTIC Science & Technology

    2016-02-03

    goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole

  9. Mathematics and Physics: The Idea of a Pre-Established Harmony

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2015-07-01

    For more than a century the notion of a pre-established harmony between the mathematical and physical sciences has played an important role not only in the rhetoric of mathematicians and theoretical physicists, but also as a doctrine guiding much of their research. Strongly mathematized branches of physics, such as the vortex theory of atoms popular in Victorian Britain, were not unknown in the nineteenth century, but it was only in the environment of fin-de-siècle Germany that the idea of a pre-established harmony really took off and became part of the mathematicians' ideology. Important historical figures were in this respect David Hilbert, Hermann Minkowski and, somewhat later, Albert Einstein. Roughly similar ideas can be found also among British theorists, among whom Arthur Eddington, Arthur Milne, and Paul Dirac are singled out. Although largely limited to the period 1870-1940, the paper also considers Max Tegmark's recent hypothesis of the universe (or multiverse) being a one-to-one reflection of mathematical structures.

  10. Professional Ethics for Astronomers

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2005-05-01

    There is a growing recognition that professional ethics is an important topic for all professional scientists, especially physical scientists. Situations at the National Laboratories have dramatically proven this point. Professional ethics is usually only considered important for the health sciences and the legal and medical professions. However, certain aspects of the day to day work of professional astronomers can be impacted by ethical issues. Examples include refereeing scientific papers, serving on grant panels or telescope allocation committees, submitting grant proposals, providing proper references in publications, proposals or talks and even writing recommendation letters for job candidates or serving on search committees. This session will feature several speakers on a variety of topics and provide time for questions and answers from the audience. Confirmed speakers include: Kate Kirby, Director Institute for Theoretical Atomic and Molecular Physics - Professional Ethics in the Physical Sciences: An Overview Rob Kennicutt, Astrophysical Journal Editor - Ethical Issues for Publishing Astronomers Peggy Fischer, Office of the NSF Inspector General - Professional Ethics from the NSF Inspector General's Point of View

  11. Sam Goudsmit--His Physics and His Statesmanship

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2010-03-01

    Sam Goudsmit was already a famous theoretical physicist in his thirties, mainly because of his co-discovery of electron spin with George Uhlenbeck while both were students of Paul Ehrenfest in Holland in 1925. He and Uhlenbeck continued their thriving careers at the University of Michigan. Goudsmit's style as a physicist was always to make as close a connection between theory and experiment as possible. Thus, for example, his development with his student Robert Bacher of the technique called ``fractional parentage'' used fruitfully in both atomic and nuclear physics to compute energy levels of unknown states in terms of know ones. He also delved deeply into problems related to determinations of nuclear spins and moments. Partly because of his service as scientific leader of the Alsos project at the end of WWII he became a leading statesman of science. I will describe some of his achievements both as a physicist and as a statesman, prior to his becoming Editor in Chief of the American Physical Society.

  12. Atomic and molecular far-infrared lines from high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.

    2015-03-01

    The advent of Atacama Large Millimeter-submillimeter Array (ALMA), with its unprecedented sensitivity, makes it possible the detection of far-infrared (FIR) metal cooling and molecular lines from the first galaxies that formed after the Big Bang. These lines represent a powerful tool to shed light on the physical properties of the interstellar medium (ISM) in high-redshift sources. In what follows we show the potential of a physically motivated theoretical approach that we developed to predict the ISM properties of high redshift galaxies. The model allows to infer, as a function of the metallicity, the luminosities of various FIR lines observable with ALMA. It is based on high resolution cosmological simulations of star-forming galaxies at the end of the Epoch of Reionization (z˜eq6) , further implemented with sub-grid physics describing the cooling and the heating processes that take place in the neutral diffuse ISM. Finally we show how a different approach based on semi-analytical calculations can allow to predict the CO flux function at z>6.

  13. Approaching the Limit in Atomic Spectrochemical Analysis.

    ERIC Educational Resources Information Center

    Hieftje, Gary M.

    1982-01-01

    To assess the ability of current analytical methods to approach the single-atom detection level, theoretical and experimentally determined detection levels are presented for several chemical elements. A comparison of these methods shows that the most sensitive atomic spectrochemical technique currently available is based on emission from…

  14. STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials

    DTIC Science & Technology

    2016-11-02

    STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of

  15. Is there a Stobbs factor in atomic-resolution STEM-EELS mapping?

    PubMed

    Xin, Huolin L; Dwyer, Christian; Muller, David A

    2014-04-01

    Recent work has convincingly argued that the Stobbs factor-disagreement in contrast between simulated and experimental atomic-resolution images-in ADF-STEM imaging can be accounted for by including the incoherent source size in simulation. However, less progress has been made for atomic-resolution STEM-EELS mapping. Here we have performed carefully calibrated EELS mapping experiments of a [101] DyScO3 single-crystal specimen, allowing atomic-resolution EELS signals to be extracted on an absolute scale for a large range of thicknesses. By simultaneously recording the elastic signal, also on an absolute scale, and using it to characterize the source size, sample thickness and inelastic mean free path, we eliminate all free parameters in the simulation of the core-loss signals. Coupled with double channeling simulations that incorporate both core-loss inelastic scattering and dynamical elastic and thermal diffuse scattering, the present work enables a close scrutiny of the scattering physics in the inelastic channel. We found that by taking into account the effective source distribution determined from the ADF images, both the absolute signal and the contrast in atomic-resolution Dy-M5 maps can be closely reproduced by the double-channeling simulations. At lower energy losses, discrepancies are present in the Sc-L2,3 and Dy-N4,5 maps due to the energy-dependent spatial distribution of the background spectrum, core-hole effects, and omitted complexities in the final states. This work has demonstrated the possibility of using quantitative STEM-EELS for element-specific column-by-column atom counting at higher energy losses and for atomic-like final states, and has elucidated several possible improvements for future theoretical work. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Geant4 Simulations for the Radon Electric Dipole Moment Search at TRIUMF

    NASA Astrophysics Data System (ADS)

    Rand, Evan; Bangay, Jack; Bianco, Laura; Dunlop, Ryan; Finlay, Paul; Garrett, Paul; Leach, Kyle; Phillips, Andrew; Svensson, Carl; Sumithrarachchi, Chandana; Wong, James

    2010-11-01

    The existence of a permanent electric dipole moment (EDM) requires the violation of time-reversal symmetry (T) or, equivalently, the violation of charge conjugation C and parity P (CP). Although no particle EDM has yet been found, current theories beyond the Standard Model, e.g. multiple-Higgs theories, left-right symmetry, and supersymmetry, predict EDMs within current experimental reach. In fact, present limits on the EDMs of the neutron, electron and ^199Hg atom have significantly reduced the parameter spaces of these models. The measurement of a non-zero EDM would be a direct measurement of the violation of time-reversal symmetry, and would represent a clear signal of new physics beyond the Standard Model. Recent theoretical calculations predict large enhancements in the atomic EDMs for atoms with octupole-deformed nuclei, making odd-A Rn isotopes prime candidates for the EDM search. The Geant4 simulations presented here are essential for the development towards an EDM measurement. They provide an accurate description of γ-ray scattering and backgrounds in the experimental apparatus, and are being used to study the overall sensitivity of the RnEDM experiment at TRIUMF in Vancouver, B.C.

  17. A New One-dimensional Quantum Material - Ta2Pd3Se8 Atomic Chain

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Antipina, Liubov; Sorokin, Pavel; Sanchez, Ana

    Since the discovery of carbon nanotube, there has been a persistent effort to search for other one dimensional (1D) quantum systems. However, only a few examples have been found. We report a new 1D example - semiconducting Ta2Pd3Se8. We demonstrate that the Ta2Pd3Se8 nanowire as thin as 1.3nm can be easily obtained by applying simple mechanical exfoliation from its bulk counterpart. High resolution TEM shows an intrinsic 1D chain-like crystalline morphology on these nano wires, indicating weak bonding between these atomic chains. Theoretical calculation shows a direct bandgap structure, which evolves from 0.53eV in the bulk to 1.04eV in single atomic chain. The field effect transistor based on Ta2Pd3Se8 nanowire achieved a promising performance with 104On/Off ratio and 80 cm2V-1s-1 mobility. Low temperature transport study reflects two different mechanisms, variable range hopping and thermal activation, which dominate the transport properties at different temperature regimes. Ta2Pd3Se8 nanowire provides an intrinsic 1D material system for the study low dimensional condensed matter physics.

  18. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X.

    PubMed

    Wang, Xuefeng; Shen, Xi; Gao, Yurui; Wang, Zhaoxiang; Yu, Richeng; Chen, Liquan

    2015-02-25

    MXenes represent a large family of functionalized two-dimensional (2D) transition-metal carbides and carbonitrides. However, most of the understanding on their unique structures and applications stops at the theoretical suggestion and lack of experimental support. Herein, the surface structure and intercalation chemistry of Ti3C2X are clarified at the atomic scale by aberration-corrected scanning transmission electron microscope (STEM) and density functional theory (DFT) calculations. The STEM studies show that the functional groups (e.g., OH(-), F(-), O(-)) and the intercalated sodium (Na) ions prefer to stay on the top sites of the centro-Ti atoms and the C atoms of the Ti3C2 monolayer, respectively. Double Na-atomic layers are found within the Ti3C2X interlayer upon extensive Na intercalation via two-phase transition and solid-solution reactions. In addition, aluminum (Al)-ion intercalation leads to horizontal sliding of the Ti3C2X monolayer. On the basis of these observations, the previous monolayer surface model of Ti3C2X is modified. DFT calculations using the new modeling help to understand more about their physical and chemical properties. These findings enrich the understanding of the MXenes and shed light on future material design and applications. Moreover, the Ti3C2X exhibits prominent rate performance and long-term cycling stability as an anode material for Na-ion batteries.

  19. Characterization of local atomic structure in Co/Zn based ZIFs by XAFS

    NASA Astrophysics Data System (ADS)

    Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo

    2018-03-01

    The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.

  20. Structure and dynamics of the peptide strand KRFK from the thrombospondin TSP-1 in water.

    PubMed

    Taleb Bendiab, W; Benomrane, B; Bounaceur, B; Dauchez, M; Krallafa, A M

    2018-02-14

    Theoretical investigations of a solute in liquid water at normal temperature and pressure can be performed at different levels of theory. Static quantum calculations as well as classical and ab initio molecular dynamics are used to completely explore the conformational space for large solvated molecular systems. In the classical approach, it is essential to describe all of the interactions of the solute and the solvent in detail. Water molecules are very often described as rigid bodies when the most commonly used interaction potentials, such as the SPCE and the TIP4P models, are employed. Recently, a physical model based upon a cluster of rigid water molecules with a tetrahedral architecture (AB 4 ) was proposed that describes liquid water as a mixture of both TIP4P and SPCE molecular species that occur in the proportions implied by the tetrahedral architecture (one central molecule versus four outer molecules; i.e., 20% TIP4P versus 80% SPCE molecules). In this work, theoretical spectroscopic data for a peptide strand were correlated with the structural properties of the peptide strand solvated in water, based on data calculated using different theoretical approaches and physical models. We focused on a particular peptide strand, KRFK (lysine-arginine-phenylalanine-lysine), found in the thrombospondin TSP-1, due to its interesting properties. As the activity and electronic structure of this system is strongly linked to its structure, we correlated its structure with charge-density maps obtained using different semi-empirical charge Q eq equations. The structural and thermodynamic properties obtained from classical simulations were correlated with ab initio molecular dynamics (AIMD) data. Structural changes in the peptide strand were rationalized in terms of the motions of atoms and groups of atoms. To achieve this, conformational changes were investigated using calculated infrared spectra for the peptide in the gas phase and in water solvent. The calculated AIMD infrared spectrum for the peptide was correlated with static quantum calculations of the molecular system based on a harmonic approach as well as the VDOS (vibrational density of states) spectra obtained using various classical solvent models (SPCE, TIP4P, and AB 4 ) and charge maps.

  1. PREFACE: International Conference on Theoretical Physics: Dubna-Nano 2012

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury M.

    2012-11-01

    The International Conference 'Dubna-Nano2012' was held on 9-14 July 2012 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference was the third one in the series started in 2008. 'Dubna-Nano2012' provided an opportunity for presentations and discussions about theoretical and experimental advances in the rapidly growing area of nanophysics. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: graphene and other carbon nanostructures, topological insulators, quantum transport, quantum dots, atomic clusters, Josephson junctions and applications of nanosystems. About 100 scientists from 22 countries participated in the conference. The program included 38 oral talks and 39 posters. This volume contains 35 contributions. We would like to express our gratitude to all participants for their presentations and discussions. We are deeply indebted to the members of the International Advisory Committee Professors K S Novoselov, T Ando, T Chakraborty, J Fabian, V M Galitski, F Guinea, M Z Hasan, P Hawrylak, K Kadowaki, R Kleiner, T Koyama, Yu I Latyshev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G. Reinhard, J M Rost and A Ya Vul. Financial support from BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Further information about 'Dubna-Nano2012' is available on the homepage http://theor.jinr.ru/~nano12. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  2. Neural network consistent empirical physical formula construction for density functional theory based nonlinear vibrational absorbance and intensity of 6-choloronicotinic acid molecule

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan

    2012-05-01

    Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar tensor calculations to contribute to the identification of the molecule.

  3. Neural network consistent empirical physical formula construction for density functional theory based nonlinear vibrational absorbance and intensity of 6-choloronicotinic acid molecule.

    PubMed

    Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan

    2012-05-01

    Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar tensor calculations to contribute to the identification of the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  5. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE PAGES

    Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; ...

    2015-03-16

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this study, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. Although, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. In conclusion, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  6. Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today

    NASA Astrophysics Data System (ADS)

    Calonico, Davide

    2013-09-01

    The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.

  7. Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2

    PubMed Central

    Li, Meng; Shi, Jialin; Liu, Lianqing; Yu, Peng; Xi, Ning; Wang, Yuechao

    2016-01-01

    Abstract Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS2) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials. PMID:27877869

  8. Current and future constraints on extended Bekenstein-type models for a varying fine-structure constant

    NASA Astrophysics Data System (ADS)

    Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.

    2018-01-01

    There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.

  9. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  10. Engineering Matter Interactions Using Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoǧlu, Sina; Imamoǧlu, Ataç; Huber, Sebastian

    2017-04-01

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the vacuum fluctuations can be used to engineer the strength and the range of interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or wave guides, which modify the electromagnetic fluctuations. Here, we show theoretically that the enhanced fluctuations in the antisqueezed quadrature of a squeezed vacuum state allow for engineering interactions between electric dipoles without the need for a photonic structure. Thus, the strength and range of the interactions can be engineered in a time-dependent way by changing the spatial profile of the squeezed vacuum in a traveling-wave geometry, which also allows the implementation of chiral dissipative interactions. Using experimentally realized squeezing parameters and including realistic losses, we predict single-atom cooperativities C of up to 10 for the squeezed-vacuum-enhanced interactions.

  11. Observation of Resonant Effects in Ultracold Collisions between Heteronuclear Feshbach Molecules

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Wang, Fudong; Zhu, Bing; Guo, Mingyang; Lu, Bo; Wang, Dajun

    2016-05-01

    Magnetic field dependent dimer-dimer collisional losses are studied with ultracold 23 Na87 Rb Feshbach molecules. By ramping the magnetic field across the 347.8 G inter-species Feshbach resonance and removing residual atoms with a magnetic field gradient, ~ 8000 pure NaRb Feshbach molecules with a temperature below 1 μK are produced. By holding the pure molecule sample in a crossed optical dipole trap and measuring the time-dependent loss curves under different magnetic fields near the Feshbach resonance, the dimer-dimer loss rates with respect to the atomic scattering length a are mapped out. We observe a resonant feature at around a = 600a0 and a rising tail at above a = 1600a0 . This behavior resembles previous theoretical works on homonuclear Feshbach molecule, where resonant effects between dimer-dimer collisions tied to tetramer bound states were predicted. Our work shows the possibility of exploring four-body physics within a heteronuclear system. We are supported by Hong Kong RGC General Research Fund no. CUHK403813.

  12. Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt.

    PubMed

    Wang, Yeliang; Li, Linfei; Yao, Wei; Song, Shiru; Sun, J T; Pan, Jinbo; Ren, Xiao; Li, Chen; Okunishi, Eiji; Wang, Yu-Qi; Wang, Eryin; Shao, Yan; Zhang, Y Y; Yang, Hai-tao; Schwier, Eike F; Iwasawa, Hideaki; Shimada, Kenya; Taniguchi, Masaki; Cheng, Zhaohua; Zhou, Shuyun; Du, Shixuan; Pennycook, Stephen J; Pantelides, Sokrates T; Gao, Hong-Jun

    2015-06-10

    Single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. A combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrast to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.

  13. Theoretical studies of chromospheres and winds in cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A.

    1983-01-01

    The formation of spectral lines in expanding spherical atmospheres was determined in a physically realistic way, taking into account multilevel atomic processes, partial frequency redistribution, and other non-LTE transfer effects that affect the formation of optically thick lines. The formation of MgII and Ca II circumstellar absorption lines in late type giants and supergiants is investigated. The radiative cooling rate as a function of density and temperature was calculated from the results of plane parallel chromospheric models and these results were used to approximate the radiative cooling in an extended wind. The run of temperature was calculated along with the density and velocity profiles. The most important prediction of these models is that a warm zone in the wind must exist as a result of the wave heating. Within this zone, the Ca II and Mg II atoms can be ionized to Ca III and Mg III, so that the gas is transparent in the resonance transitions.

  14. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced-density-matrix formulation. It will become apparent that the full atomic data needs for the precise modeling of extreme non-equilibrium plasma environments extend beyond the conventional radiative-transition-probability and collisional-cross-section data sets.

  15. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  16. Applications of statistical and atomic physics to the spectral line broadening and stock markets

    NASA Astrophysics Data System (ADS)

    Volodko, Dmitriy

    The purpose of this investigation is the application of time correlation function methodology on the theoretical research of the shift of hydrogen and hydrogen-like spectral lines due to electrons and ions interaction with the spectral line emitters-dipole ionic-electronic shift (DIES) and the describing a behavior of stock-market in terms of a simple physical model simulation which obeys Levy statistical distribution---the same as that of the real stock-market index. Using Generalized Theory of Stark broadening of electrons in plasma we discovered a new source of the shift of hydrogen and hydrogen-like spectral lines that we called a dipole ionic-electronic shift (DIES). This shift results from the indirect coupling of electron and ion microfields in plasmas which is facilitated by the radiating atom/ion. We have shown that the DIES, unlike all previously known shifts, is highly nonlinear and has a different sign for different ranges of plasma parameters. The most favorable conditions for observing the DIES correspond to plasmas of high densities, but of relatively low temperature. For the Balmer-alpha line of hydrogen with the most favorable observational conditions Ne > 1018 cm-3, T < 2 eV, the DIES has been already confirmed experimentally. Based on the study of the time correlations and of the probability distribution of fluctuations in the stock market, we developed a relatively simple physical model, which simulates the Dow Jones Industrials index and makes short-term (a couple of days) predictions of its trend.

  17. Scattering of fast electrons by vapour-atoms and by solid-atoms - A comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshipura, K.N.; Mohanan, S.

    1988-08-01

    A comparative theoretical study has been done on the scattering of fast electrons by free (vapour) atoms and bound (solid) atoms, in particular, the alkali atoms, Al and Cu. The Born differential cross-sections (DCS), calculated with the static plus polarization electron-atom potential, are found in general, to be larger for free atoms that for bound atoms, at least at small angles of scattering. For Rb and Cs the two DCS tend to merge at very large angles only. The sample incident energies chosen are 400 eV and above.

  18. Applications of quantum measurement techniques: Counterfactual quantum computation, spin hall effect of light, and atomic-vapor-based photon detectors

    NASA Astrophysics Data System (ADS)

    Hosten, Onur

    This dissertation investigates several physical phenomena in atomic and optical physics, and quantum information science, by utilizing various types and techniques of quantum measurements. It is the deeper concepts of these measurements, and the way they are integrated into the seemingly unrelated topics investigated, which binds together the research presented here. The research comprises three different topics: Counterfactual quantum computation, the spin Hall effect of light, and ultra-high-efficiency photon detectors based on atomic vapors. Counterfactual computation entails obtaining answers from a quantum computer without actually running it, and is accomplished by preparing the computer as a whole into a superposition of being activated and not activated. The first experimental demonstration is presented, including the best performing implementation of Grover's quantum search algorithm to date. In addition, we develop new counterfactual computation protocols that enable unconditional and completely deterministic operation. These methods stimulated a debate in the literature, on the meaning of counterfactuality in quantum processes, which we also discuss. The spin Hall effect of light entails tiny spin-dependent displacements, unsuspected until 2004, of a beam of light when it changes propagation direction. The first experimental demonstration of the effect during refraction at an air-glass interface is presented, together with a novel enabling metrological tool relying on the concepts of quantum weak measurements. Extensions of the effect to smoothly varying media are also presented, along with utilization of a time-varying version of the weak measurement techniques. Our approach to ultra-high-efficiency photon detection develops and extends a recent novel non-solid-state scheme for photo-detection based on atomic vapors. This approach is in principle capable of resolving the number of photons in a pulse, can be extended to non-destructive detection of photons, and most importantly is proposed to operate with single-photon detection efficiencies exceeding 99%, ideally without dark counts. Such a detector would have tremendous implications, e.g., for optical quantum information processing. The feasibility of operation of this approach at the desired level is studied theoretically and several promising physical systems are investigated.

  19. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-09-15

    Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.

  20. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less

  1. Atomic and molecular physics in the gas phase

    NASA Astrophysics Data System (ADS)

    Toburen, L. H.

    1990-09-01

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets.

  2. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    PubMed Central

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation. PMID:24899803

  3. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    PubMed

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation.

  4. Superfluid Fermi atomic gas as a quantum simulator for the study of the neutron-star equation of state in the low-density region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji

    2018-01-01

    We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.

  5. Isotopic Shift of Atom-Dimer Efimov Resonances in K-Rb Mixtures: Critical Effect of Multichannel Feshbach Physics.

    PubMed

    Kato, K; Wang, Yujun; Kobayashi, J; Julienne, P S; Inouye, S

    2017-04-21

    Multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the ^{41}K-^{87}Rb system relative to the position of the previously observed atom-dimer resonance in the ^{40}K-^{87}Rb system. This shift is well explained by our calculations with a three-body model including van der Waals interactions, and, more importantly, multichannel spinor physics. With only minor differences in the atomic masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the isolated and overlapping Feshbach resonances in the ^{40}K-^{87}Rb and ^{41}K-^{87}Rb systems, respectively. Our study demonstrates the role of multichannel Feshbach physics in determining Efimov resonances in heteronuclear three-body systems.

  6. Fusion programs in applied plasma physics

    NASA Astrophysics Data System (ADS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.

  7. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  8. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Hahn, Michael; Vincena, Steve

    2017-06-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfven speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfven speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  9. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.

  10. Underground atom gradiometer array for mass distribution monitoring and advanced geodesy

    NASA Astrophysics Data System (ADS)

    Canuel, B.

    2015-12-01

    After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences

  11. Nuclear analytical techniques in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and tomore » map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.« less

  12. Normal mode analysis and applications in biological physics.

    PubMed

    Dykeman, Eric C; Sankey, Otto F

    2010-10-27

    Normal mode analysis has become a popular and often used theoretical tool in the study of functional motions in enzymes, viruses, and large protein assemblies. The use of normal modes in the study of these motions is often extremely fruitful since many of the functional motions of large proteins can be described using just a few normal modes which are intimately related to the overall structure of the protein. In this review, we present a broad overview of several popular methods used in the study of normal modes in biological physics including continuum elastic theory, the elastic network model, and a new all-atom method, recently developed, which is capable of computing a subset of the low frequency vibrational modes exactly. After a review of the various methods, we present several examples of applications of normal modes in the study of functional motions, with an emphasis on viral capsids.

  13. Approach to thermal equilibrium in atomic collisions.

    PubMed

    Zhang, P; Kharchenko, V; Dalgarno, A; Matsumi, Y; Nakayama, T; Takahashi, K

    2008-03-14

    The energy relaxation of fast atoms moving in a thermal bath gas is explored experimentally and theoretically. Two time scales characterize the equilibration, one a short time, in which the isotropic energy distribution profile relaxes to a Maxwellian shape at some intermediate effective temperature, and the second, a longer time in which the relaxation preserves a Maxwellian distribution and its effective temperature decreases continuously to the bath gas temperature. The formation and preservation of a Maxwellian distribution does not depend on the projectile to bath gas atom mass ratio. This two-stage behavior arises due to the dominance of small angle scattering and small energy transfer in the collisions of neutral particles. Measurements of the evolving Doppler profiles of emission from excited initially energetic nitrogen atoms traversing bath gases of helium and argon confirm the theoretical predictions.

  14. Theoretical research program to predict the properties of molecules and clusters containing transition metal atoms

    NASA Technical Reports Server (NTRS)

    Walch, S.

    1984-01-01

    The primary focus of this research has been the theoretical study of transition metal (TM) chemistry. A major goal of this work is to provide reliable information about the interaction of H atoms with iron metal. This information is needed to understand the effect of H atoms on the processes of embrittlement and crack propagation in iron. The method in the iron hydrogen studies is the cluster method in which the bulk metal is modelled by a finite number of iron atoms. There are several difficulties in the application of this approach to the hydrogen iron system. First the nature of TM-TM and TM-H bonding for even diatomic molecules was not well understood when these studies were started. Secondly relatively large iron clusters are needed to provide reasonable results.

  15. Physics Division annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in researchmore » at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less

  16. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  17. Atomic dynamics and the problem of the structural stability of free clusters of solidified inert gases

    NASA Astrophysics Data System (ADS)

    Verkhovtseva, É. T.; Gospodarev, I. A.; Grishaev, A. V.; Kovalenko, S. I.; Solnyshkin, D. D.; Syrkin, E. S.; Feodos'ev, S. B.

    2003-05-01

    The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the cluster size is investigated theoretically and experimentally. Free clusters are produced by homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters was found. This was necessary to determine the character of the formation and the stability conditions of the crystal structure. It wass shown that for clusters consisting of less than N˜103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly than expected from the increase in the specific contribution of the surface. It is also established that an fcc structure of a free cluster, as a rule, contains twinning defects (nuclei of an hcp phase). One reason for the appearance of such defects is the so-called vertex instability (anomalously large oscillation amplitudes) of the atoms in coordination spheres.

  18. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface.

    PubMed

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Yamamoto, Naoki; Kim, Yousoo

    2015-09-11

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS.

  19. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    NASA Astrophysics Data System (ADS)

    Block, Michael

    2017-11-01

    The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  20. Project Physics Text 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…

  1. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    NASA Astrophysics Data System (ADS)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  2. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    PubMed

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  3. Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si3N4

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.; Rulis, Paul; Ouyang, Lizhi; Aryal, Sitaram; Misra, Anil.

    2010-06-01

    Microstructures such as intergranular glassy films (IGFs) are ubiquitous in many structural ceramics. They control many of the important physical properties of polycrystalline ceramics and can be influenced during processing to modify the performance of devices that contain them. In recent years, there has been intense research, both experimentally and computationally, on the structure and properties of IGFs. Unlike grain boundaries or dislocations with well-defined crystalline planes, the atomic scale structure of IGFs, their fundamental electronic interactions, and their bonding characteristics are far more complicated and not well known. In this paper, we present the results of theoretical simulations using ab initio methods on an IGF model in β-Si3N4 with prismatic crystalline planes. The 907-atom model has a dimension of 14.533Å×15.225Å×47.420Å . The IGF layer is perpendicular to the z axis, 16.4Å wide, and contains 72 Si, 32 N, and 124 O atoms. Based on this model, the mechanical and elastic properties, the electronic structure, the interatomic bonding, the localization of defective states, the distribution of electrostatic potential, and the optical dielectric function are evaluated and compared with crystalline β-Si3N4 . We have also performed a theoretical tensile experiment on this model by incrementally extending the structure in the direction perpendicular to the IGF plane until the model fully separated. It is shown that fracture occurs at a strain of 9.42% with a maximum stress of 13.9 GPa. The fractured segments show plastic behavior and the formation of surfacial films on the β-Si3N4 . These results are very different from those of a previously studied basal plane model [J. Chen , Phys. Rev. Lett. 95, 256103 (2005)10.1103/PhysRevLett.95.256103] and add insights to the structure and behavior of IGFs in polycrystalline ceramics. The implications of these results and the need for further investigations are discussed.

  4. Source-Independent Quantum Random Number Generation

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based onmore » the atom-atom polarizability.« less

  6. Comparison of Theoretically Predicted Electromagnetic Heavy Ion Cross Sections with CERN SPS and RHIC Data

    NASA Astrophysics Data System (ADS)

    Baltz, Anthony J.

    2002-10-01

    Theoretical predictions for a number of electromagnetically induced reactions have been compared with available ultrarelativistic heavy ion data. Calculations for three atomic process have been confronted with CERN SPS data. Theoretically predicted rates are in good agreement with data[1] for bound-electron positron pairs and ionization of single electron heavy ions. Furthermore, the exact solution of the semi-classical Dirac equation in the ultrarelativistic limit reproduces the perturbative scaling result seen in data[2] for continuum pairs (i.e. cross sections go as Z_1^2 Z_2^2). In the area of electromagnetically induced nuclear and hadronic physics, mutual Coulomb dissociation predictions are in good agreement with RHIC Zero Degree Calorimeter measurements[3], and calculations of coherent vector meson production accompanied by mutual Coulomb dissociation[4] are in good agreement with RHIC STAR data[5]. [1] H. F. Krause et al., Phys. Rev. Lett., 80, 1190 (1998). [2] C. R. Vane et al., Phys. Rev. A 56, 3682 (1997). [3] Mickey Chiu et al., Phys. Rev. Lett. 89, 012302 (2002). [4] Anthony J. Baltz, Spencer R. Klein, and Joakim Nystrand, Phys. Rev. Lett. 89, 012301 (2002). [5] C. Adler et al., STAR Collaboration, arXiv:nucl-ex/206004.

  7. Gamma dosimetric parameters in some skeletal muscle relaxants

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  8. The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties.

    PubMed

    Usman, Muhammad; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; O'Reilly, Eoin P; Klimeck, Gerhard; Passaseo, Adriana

    2012-04-27

    III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.

  9. Contemporary Aspects of Atomic Physics

    ERIC Educational Resources Information Center

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  10. Theoretical and Experimental Spectroscopic Analysis of Cyano-Substituted Styrylpyridine Compounds

    PubMed Central

    Castro, Maria Eugenia; Percino, Maria Judith; Chapela, Victor M.; Ceron, Margarita; Soriano-Moro, Guillermo; Lopez-Cruz, Jorge; Melendez, Francisco J.

    2013-01-01

    A combined theoretical and experimental study on the structure, infrared, UV-Vis and 1H NMR data of trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)] pyridine and trans-4-(m-cyanostyryl)pyridine is presented. The synthesis was carried out with an efficient Knoevenagel condensation using green chemistry conditions. Theoretical geometry optimizations and their IR spectra were carried out using the Density Functional Theory (DFT) in both gas and solution phases. For theoretical UV-Vis and 1H NMR spectra, the Time-Dependent DFT (TD-DFT) and the Gauge-Including Atomic Orbital (GIAO) methods were used, respectively. The theoretical characterization matched the experimental measurements, showing a good correlation. The effect of cyano- and methyl-substituents, as well as of the N-atom position in the pyridine ring on the UV-Vis, IR and NMR spectra, was evaluated. The UV-Vis results showed no significant effect due to electron-withdrawing cyano- and electron-donating methyl-substituents. The N-atom position, however, caused a slight change in the maximum absorption wavelengths. The IR normal modes were assigned for the cyano- and methyl-groups. 1H NMR spectra showed the typical doublet signals due to protons in the trans position of a double bond. The theoretical characterization was visibly useful to assign accurately the signals in IR and 1H NMR spectra, as well as to identify the most probable conformation that could be present in the formation of the styrylpyridine-like compounds. PMID:23429190

  11. On the Correct Analysis of the Foundations of Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2007-04-01

    The problem of truth in science -- the most urgent problem of our time -- is discussed. The correct theoretical analysis of the foundations of theoretical physics is proposed. The principle of the unity of formal logic and rational dialectics is a methodological basis of the analysis. The main result is as follows: the generally accepted foundations of theoretical physics (i.e. Newtonian mechanics, Maxwell electrodynamics, thermodynamics, statistical physics and physical kinetics, the theory of relativity, quantum mechanics) contain the set of logical errors. These errors are explained by existence of the global cause: the errors are a collateral and inevitable result of the inductive way of cognition of the Nature, i.e. result of movement from formation of separate concepts to formation of the system of concepts. Consequently, theoretical physics enters the greatest crisis. It means that physics as a science of phenomenon leaves the progress stage for a science of essence (information). Acknowledgment: The books ``Surprises in Theoretical Physics'' (1979) and ``More Surprises in Theoretical Physics'' (1991) by Sir Rudolf Peierls stimulated my 25-year work.

  12. Single-Particle Properties of a Strongly Interacting Bose-Fermi Mixture Above the BEC Phase Transition Temperature

    NASA Astrophysics Data System (ADS)

    Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.

  13. Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources

    NASA Astrophysics Data System (ADS)

    Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.

    2016-02-01

    Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.

  14. Vanadium supersaturated silicon system: a theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Garcia-Hemme, Eric; García, Gregorio; Palacios, Pablo; Montero, Daniel; García-Hernansanz, Rodrigo; Gonzalez-Diaz, Germán; Wahnon, Perla

    2017-12-01

    The effect of high dose vanadium ion implantation and pulsed laser annealing on the crystal structure and sub-bandgap optical absorption features of V-supersaturated silicon samples has been studied through the combination of experimental and theoretical approaches. Interest in V-supersaturated Si focusses on its potential as a material having a new band within the Si bandgap. Rutherford backscattering spectrometry measurements and formation energies computed through quantum calculations provide evidence that V atoms are mainly located at interstitial positions. The response of sub-bandgap spectral photoconductance is extended far into the infrared region of the spectrum. Theoretical simulations (based on density functional theory and many-body perturbation in GW approximation) bring to light that, in addition to V atoms at interstitial positions, Si defects should also be taken into account in explaining the experimental profile of the spectral photoconductance. The combination of experimental and theoretical methods provides evidence that the improved spectral photoconductance up to 6.2 µm (0.2 eV) is due to new sub-bandgap transitions, for which the new band due to V atoms within the Si bandgap plays an essential role. This enables the use of V-supersaturated silicon in the third generation of photovoltaic devices.

  15. New Experimental Approaches and Theoretical Modeling Methods for Laser Cooling Atoms and Molecules

    DTIC Science & Technology

    2006-07-27

    support of experimental efforts in various laboratories to produce ultracold molecules by laser -induced photoassociation of laser -cooled atoms. We are......temperatures so far have been 25mK [7], rather than tens of µK as one can achieve with laser cooling of atoms. Thus an approach that begins with cold

  16. Phase-insensitive storage of coherences by reversible mapping onto long-lived populations

    NASA Astrophysics Data System (ADS)

    Mieth, Simon; Genov, Genko T.; Yatsenko, Leonid P.; Vitanov, Nikolay V.; Halfmann, Thomas

    2016-01-01

    We theoretically develop and experimentally demonstrate a coherence population mapping (CPM) protocol to store atomic coherences in long-lived populations, enabling storage times far beyond the typically very short decoherence times of quantum systems. The amplitude and phase of an atomic coherence is written onto the populations of a three-state system by specifically designed sequences of radiation pulses from two coupling fields. As an important feature, the CPM sequences enable a retrieval efficiency, which is insensitive to the phase of the initial coherence. The information is preserved in every individual atom of the medium, enabling applications in purely homogeneously or inhomogeneously broadened ensembles even when stochastic phase jumps are the main source of decoherence. We experimentally confirm the theoretical predictions by applying CPM for storage of atomic coherences in a doped solid, reaching storage times in the regime of 1 min.

  17. Charge exchange collisions of slow C6 + with atomic and molecular H

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve

    2016-04-01

    Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.

  18. Impact of stoichiometry and disorder on the electronic structure of the PbBi2Te4 -xSex topological insulator

    NASA Astrophysics Data System (ADS)

    Shvets, I. A.; Klimovskikh, I. I.; Aliev, Z. S.; Babanly, M. B.; Sánchez-Barriga, J.; Krivenkov, M.; Shikin, A. M.; Chulkov, E. V.

    2017-12-01

    Detailed comparative theoretical and experimental study of electronic properties and spin structure was carried out for a series of Pb-based quaternary compounds PbBi2Te4 -xSex . For all values of x , these compounds are theoretically predicted to be topological insulators, possessing at high Se content a remarkably large band gap and a Dirac point isolated from bulk states. Using spin- and angle-resolved photoemission spectroscopy, it was shown that the PbBi2Te2Se2 and PbBi2Te1.4Se2.6 compounds are characterized by well-defined spin-polarized topological surface state in the bulk gap. To define the probable distribution of atoms over the atomic sites for these samples, we performed ab initio calculations in ordered and disordered configurations of the unit cell. We found that theoretical calculations better reproduce photoemission data when Te atoms are placed in the outermost layers of the septuple layer block.

  19. Experimental and theoretical oscillator strengths of Mg I for accurate abundance analysis

    NASA Astrophysics Data System (ADS)

    Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.

    2017-02-01

    Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg I lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg I optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg I optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.

  20. Enhancing light-atom interactions via atomic bunching

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-07-01

    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.

  1. Cosmology beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Wells, Christopher M.

    The Standard Model of Cosmology, like its particle physics counterpart, is incomplete in its present form theoretically and observationally. Additional structure, in the form of an early period of accelerated expansion (inflation), is suggested by the special initial conditions required to produce the visible universe. Furthermore, a wide variety of indirect observations indicate that 80% of the mass in the universe is dark. In this thesis, we construct a class of inflation models free from the usual pathologies. In particular, we build a novel realization of hybrid inflation, in which both the inflaton and waterfall degrees of freedom are moduli of a higher dimensional compactification. Because the inflationary fields are realized as global degrees of freedom in the extra dimension, they are protected from the 4D quantum corrections that would otherwise spoil inflation. Via the Ads/CFT correspondence we can relate our construction to a dual theory of composite inflationary degrees of freedom. We then turn to studying the problem of missing matter in the Standard Cosmology. Despite an abundance of indirect observations of dark matter, direct detection experiments have produced conflicting results which seem to point to a more complicated dark sector. In this thesis, we propose that dark matter be made up primarily of non-relativistic bound states, i.e. dark atoms. We explore the atomic parameter space allowed by the demands that dark matter is predominantly atomic and that the dark atoms and ions satisfy observational bounds on dark matter self-interactions. We then study possible interactions between dark matter and normal matter such that dark atoms scatter inelastically from nuclei in direct detection experiments.

  2. Atomization off thin water films generated by high-frequency substrate wave vibrations.

    PubMed

    Collins, David J; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R; Yeo, Leslie Y

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  3. NASA GSFC Science Symposium on Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K. (Editor)

    2007-01-01

    This document is the proceedings of a conference on atomic and molecular physics in honor of the retirements of Dr. Aaron Temkin and Dr. Richard Drachman. The conference contained discussions on electron, positron, atomic, and positronium physics, as well as a discussion on muon catalyzed fusion. This proceedings document also contains photographs taken at the symposium, as well as speeches and a short biography made in tribute to the retirees.

  4. Information-theoretic measures of hydrogen-like ions in weakly coupled Debye plasmas

    NASA Astrophysics Data System (ADS)

    Zan, Li Rong; Jiao, Li Guang; Ma, Jia; Ho, Yew Kam

    2017-12-01

    Recent development of information theory provides researchers an alternative and useful tool to quantitatively investigate the variation of the electronic structure when atoms interact with the external environment. In this work, we make systematic studies on the information-theoretic measures for hydrogen-like ions immersed in weakly coupled plasmas modeled by Debye-Hückel potential. Shannon entropy, Fisher information, and Fisher-Shannon complexity in both position and momentum spaces are quantified in high accuracy for the hydrogen atom in a large number of stationary states. The plasma screening effect on embedded atoms can significantly affect the electronic density distributions, in both conjugate spaces, and it is quantified by the variation of information quantities. It is shown that the composite quantities (the Shannon entropy sum and the Fisher information product in combined spaces and Fisher-Shannon complexity in individual space) give a more comprehensive description of the atomic structure information than single ones. The nodes of wave functions play a significant role in the changes of composite information quantities caused by plasmas. With the continuously increasing screening strength, all composite quantities in circular states increase monotonously, while in higher-lying excited states where nodal structures exist, they first decrease to a minimum and then increase rapidly before the bound state approaches the continuum limit. The minimum represents the most reduction of uncertainty properties of the atom in plasmas. The lower bounds for the uncertainty product of the system based on composite information quantities are discussed. Our research presents a comprehensive survey in the investigation of information-theoretic measures for simple atoms embedded in Debye model plasmas.

  5. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  6. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE PAGES

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  7. Improving atomic displacement and replacement calculations with physically realistic damage models.

    PubMed

    Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

  8. Size dependence of single-photon superradiance of cold and dilute atomic ensembles

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.

    2017-11-01

    We report a theoretical investigation of angular distribution of a single-photon superradiance from cold and dilute atomic clouds. In the present work we focus our attention on the dependence of superradiance on the size and shape of the cloud. We analyze the dynamics of the afterglow of atomic ensemble excited by pulse radiation. Two theoretical approaches are used. The first is the quantum microscopic approach based on a coupled-dipole model. The second approach is random walk approximation. We show that the results obtained in both approaches coincide with a good accuracy for incoherent fluorescence excited by short resonant pulses. We also show that the superradiance decay rate changes with size differently for radiation emitted into different directions.

  9. Probing the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters by density functional calculations

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Jie

    2018-05-01

    We present a theoretical investigation on the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters using density functional theoretical calculations. The results showed that both anionic and neutral PtnC2 (n = 1-7) clusters primarily adopt 2D planar chain-shaped or ring-based structures. The two C atoms directly interact with each other to form a Csbnd C bond for n = 1-3, while the two C atoms are separated by the Pt atoms for n = 4-7, except for neutral Pt5C2. Pt4C2- anion and Pt4C2 neutral both show σ plus π double delocalized bonding patterns.

  10. Dynamic regime of coherent population trapping and optimization of frequency modulation parameters in atomic clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V

    2017-02-06

    We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.

  11. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    PubMed

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  12. Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Kirchner, T.; Schulz, M.

    2010-04-01

    We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double ionization of atoms by ion impact. Conventional theoretical approaches aim at a direct calculation of the corresponding cross sections. This has the important shortcoming that it is difficult to account for the experimental conditions when comparing results to measured data. In contrast, the present code generates theoretical event files of the same type as are obtained in a real experiment. From these event files any type of cross sections can be easily extracted. The theoretical schemes are based on distorted wave formalisms for both processes of interest. Solution method: The codes employ a Monte Carlo Event Generator based on theoretical formalisms to generate event files for both single and double ionization. One of the main advantages of having access to theoretical event files is the possibility of adding the conditions present in real experiments (parameter uncertainties, environmental conditions, etc.) and to incorporate additional physics in the resulting event files (e.g. elastic scattering or other interactions absent in the underlying calculations). Additional comments: The computational time can be dramatically reduced if a large number of processors is used. Since the codes has no communication between processes it is possible to achieve an efficiency of a 100% (this number certainly will be penalized by the queuing waiting time). Running time: Times vary according to the process, single or double ionization, to be simulated, the number of processors and the type of theoretical model. The typical running time is between several hours and up to a few weeks.

  13. Excited helium under high pressures in the bulk and in nanobubbles

    NASA Astrophysics Data System (ADS)

    Pyper, N. C.; Naginey, T. C.; Nellist, P. D.; Whelan, Colm T.

    2017-08-01

    We systematically investigate the effects of intense pressures on the excitation energies of helium trapped in bubbles in order to deepen our understanding of the fundamental physics of atoms in extreme conditions. The ? excitation energy of a confined helium atom is known to differ from that of a free atom being greater in both the bulk liquid or solid or a bubble confined in a metallic matrix state. We compare calculations for the energy shift with both laboratory experiments for bulk systems and results derived from scanning transmission electron microscope (STEM) studies of helium nanobubbles embedded in different matrices. We find excellent agreement between our calculations and the latest extensive measurements in the bulk. However, we find significant discrepancies when we compare with results deduced using the 'standard' approach for analysing STEM data. Here, we show the scattering matrix element determining the intensity of this excitation in a STEM experiment is significantly affected by the same environmental factors that shift the excitation energy. Consequently, there is a serious theoretical inconsistency in the way the STEM results are calculated, in that the 'standard' approach depends on a supposedly known ? scattering cross section, whereas we show here that this cross section is itself dependent on the environment. Correcting for this inconsistency does not, in itself, improve agreement.

  14. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    NASA Astrophysics Data System (ADS)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  15. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  16. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

    NASA Astrophysics Data System (ADS)

    Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.

    2018-03-01

    All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.

  17. Theoretical study on the photocatalytic properties of graphene oxide with single Au atom adsorption

    NASA Astrophysics Data System (ADS)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Jin, Cui; Huang, Baibiao

    2018-03-01

    The photocatalytic properties of graphene oxide (GO) with single Au atom adsorption are studied via the first-principles calculations based on the density functional theory. The present study addresses the origin of enhancement in photocatalytic efficiency of GO derived from single Au atom depositing. Compared with the clean one, the work function of the single Au atom adsorbed GO is lowered due to the charge transfer from Au to GO, indicating enhanced surface activity. The Au atom plays as an electron trapping center and a mediating role in charge transfer from photon excited GO to target species. The photogenerated electron-hole pairs can be separated effectively. For the GO configuration with atomic Au dispersion, there are some states introduced in the band gap, which are predominantly composed of Au 6s states. Through the in-gap state, the photo-generated electron transfer from the valence band of clean GO to the conductive band more easily. In addition, the reduction of the gap in the system is also presented in the current work, which indicates that the single Au atom adsorption improves light absorption for the GO based photocatalyst. These theoretical results are valuable for the future applications of GO materials as photocatalyst for water splitting.

  18. Obituary: Douglas H. Sampson, 1925-2002

    NASA Astrophysics Data System (ADS)

    Mészáros, Peter; Clark, Robert E. H.; Zhang, Honglin; Fontes, Christopher J.

    2003-12-01

    Douglas H. Sampson, a renowned theoretical atomic physicist and a professor emeritus of astronomy and astrophysics at The Pennsylvania State University, passed away on 8 December 2002, in State College, Pennsylvania, of a hemorrhagic stroke. He had retired in 1997 after 32 years of service to the University and had maintained an active research program up to the day of his death. Doug, as he was universally known to his friends and colleagues, was born in Devils Lake, North Dakota on 19 May 1925. His parents, Abner and Mabel Sampson, were farmers. He was raised without running water or electricity on a farm, homesteaded by his ancestors in Edmore, North Dakota. He was one of two children in his class at a two-room rural elementary school and graduated as valedictorian from Edmore High School in 1944. No physics classes or advanced mathematics classes were offered in his small high school. In 1956, he was married to Carlyn Grutzner. During Doug Sampson's military service in the United States Army from February 1945 until December 1946, he was selected as a MP (Military Policeman) in the Philippines. His military experience provided him with the opportunity to attend college under the GI Bill. Because he had to work on the family farm, he started college a month later every fall and took exams a month earlier each spring. Nevertheless, Sampson graduated as co-salutatorian from Concordia College, Moorhead, Minnesota in 1951 with a BA degree with majors in physics and mathematics. Afterwards he received his MS and PhD degrees in theoretical physics from Yale University in 1953 and 1956 under the guidance of Henry Margenau. Sampson then became a staff member of the Theoretical Division of the Los Alamos National Laboratory until 1961. While there he performed calculations of fundamental atomic cross sections used in the determination of opacities for radiation transport simulations. The calculation of high quality atomic data would end up being a life long pursuit. During this period he was also a visiting staff member in the Theoretical Division, National Aeronautics and Space Administration. During the interval 1961--1964, he worked at the Valley Forge Space Center of the General Electric Company, where he became leader of the atomic and radiation physics group. While working there, he took advanced courses in relativistic quantum mechanics and field theory at the University of Pennsylvania. He joined the faculty of Penn State in 1965 as an associate professor in the recently created department of astronomy and became a full professor in 1969. During his career at Penn State, he contributed a substantial share toward the unprecedented growth in the intellectual stature of the department. Doug's research at Penn State focused on developing theory and corresponding computer programs for calculating cross sections or rates for various atomic processes in very high-temperature gases, or plasmas, which commonly occur in astrophysics, fusion-energy research, and X-ray lasers. The atomic data for these processes help scientists understand high-temperature plasmas and predict the spectra that emerge from them. His early work primarily involved electron-impact processes for nonrelativistic ions. A goal of this research was to perform large-scale, computer-intensive calculations of the fundamental cross sections, and then fit these results to various functional forms so the data could be obtained quickly and accurately by plasma modelers. Doug had noted that for a hydrogenic ion, the relevant matrix elements used in the calculation of cross sections for excitation, scale with the nuclear charge. He realized that it would be possible to obtain quite accurate cross sections for more complex ions by scaling the hydrogenic results by an effective charge. Furthermore, he worked out angular algebra coupling for complex ions with many bound electrons and included the effects of configuration and intermediate coupling mixing in the target states. In this way, he was able to generate cross sections for iso-electronic sequences with affordable computational time. He applied this method to both electron-impact excitation and ionization. This important work took place when computational power was a small fraction of current standards and it allowed relatively massive amounts of cross section data to be calculated for a variety of ions with application to astrophysics and fusion research. By 1985 Doug turned his attention to treating the electron-ion collision problem in a fully relativistic manner, in support of X-ray laser research. He and his research group developed an approach and associated computer programs, including an atomic structure program and electron-impact excitation and ionization programs that were based on solving the Dirac equation. His efforts were also devoted to making the computer codes very efficient so they could rapidly produce large amounts of data. At this time supercomputers were becoming more accessible, which provided much-needed computer power for a fully relativistic treatment of heavier elements. However, a brute force approach was still not feasible and Doug was able to apply a number of numerical procedures that greatly reduced the required computing time while preserving the accuracy of the calculations. This sustained effort (spanning about 17 years) resulted in a suite of robust codes that can be used to determine fundamental atomic cross sections or rates for a wide variety of plasma modeling applications. In addition, Sampson applied the fitting procedures to vast quantities of these relativistic data, making them readily available to a broad audience of researchers. Both of these non-relativistic and fully relativistic approaches, along with the associated computer codes, are currently in use at the Los Alamos National Laboratory, Lawrence Livermore National Laboratory and the Naval Research Laboratory to model the high-temperature plasmas produced there. Although his major efforts were directed toward the rapid production of large amounts of atomic data, Doug had always been a serious researcher, verifying the calculations against experimental data whenever possible. In the course of his work Doug guided a number of PhD students through the Astronomy and Astrophysics Department and the Physics Department. He was always available for discussions of all aspects of the work and willing to listen to his students. A lasting legacy of his work was the care he took in ensuring the accuracy of each step, down to careful reading of the gallery proofs from the journals. He emphasized that even if one had the best theory, but made an error in computer coding, or in producing a table, the resulting incorrect data were of no value. This emphasis on accuracy and faithful reproduction of the theory in the application to a plasma modeling calculation has served his students well. At least three of these students went on to work on data applications at Los Alamos National Laboratory, continuing the tradition of careful application of atomic theory to plasma modeling. Doug was an active graduate and undergraduate teacher, developing a number of upper-level courses in astrophysics, and serving as chairman or member of many departmental and university committees. Undergraduate students invariably commented on his accessibility, patience and human warmth. Sampson presented papers and seminars at numerous conferences and institutions in the United States and abroad, and authored or coauthored over 110 research papers in refereed journals. He was also the author of a book, "Radiative Contributions to Energy and Momentum Transport in a Gas", published by Wiley-Interscience. He consulted with Gulf General Atomic Incorporated; Systems, Science, and Software; the Los Alamos National Laboratory; and the Lawrence Livermore National Laboratory. He was a Fellow of the American Physical Society, and a member of the American Astronomical Society and the International Astronomical Union. He spent his last sabbatical leave before his retirement at The Mathematical Institute, University of Oxford. At the time of his death he was working on a manuscript for Physics Reports, summarizing his research in relativistic atomic theory. Doug had an unobtrusive but keen sense of humor, as well as a positive outlook on life, and remained physically active throughout his life. His colleagues will remember him for his willingness to listen and to help, as well as for his strong sense of pioneer values and humanity. His hobbies included the study of American history and the history of Western Civilization. He is survived by his wife Carlyn, their four children and ten grandchildren.

  19. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    PubMed

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  20. Nonequilibrium statistical mechanics Brussels-Austin style

    NASA Astrophysics Data System (ADS)

    Bishop, Robert C.

    The fundamental problem on which Ilya Prigogine and the Brussels-Austin Group have focused can be stated briefly as follows. Our observations indicate that there is an arrow of time in our experience of the world (e.g., decay of unstable radioactive atoms like uranium, or the mixing of cream in coffee). Most of the fundamental equations of physics are time reversible, however, presenting an apparent conflict between our theoretical descriptions and experimental observations. Many have thought that the observed arrow of time was either an artifact of our observations or due to very special initial conditions. An alternative approach, followed by the Brussels-Austin Group, is to consider the observed direction of time to be a basic physical phenomenon due to the dynamics of physical systems. This essay focuses mainly on recent developments in the Brussels-Austin Group after the mid-1980s. The fundamental concerns are the same as in their earlier approaches (subdynamics, similarity transformations), but the contemporary approach utilizes rigged Hilbert space (whereas the older approaches used Hilbert space). While the emphasis on nonequilibrium statistical mechanics remains the same, their more recent approach addresses the physical features of large Poincaré systems, nonlinear dynamics and the mathematical tools necessary to analyze them.

  1. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-07-01

    FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.

  2. Analysis of surface sputtering on a quantum statistical basis

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.

  3. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  4. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  5. Quantum technologies with hybrid systems

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  6. Relativistic covariance of Ohm's law

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2016-04-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response law, which is written in terms of the fundamental response tensor χμ ν relating induced four-currents to external four-potentials. By showing the equivalence of this description to Ohm's law, we prove the validity of Ohm's law in every inertial frame. We further use the universal relation between χμ ν and the microscopic conductivity tensor σkℓ to derive a fully relativistic transformation law for the latter, which includes all effects of anisotropy and relativistic retardation. In the special case of a constant, scalar conductivity, this transformation law can be used to rederive a standard textbook generalization of Ohm's law.

  7. QED theory of multiphoton transitions in atoms and ions

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  8. Energetic Neutral Atom Emissions From Venus: VEX Observations and Theoretical Modeling

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.

    2007-01-01

    Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.

  9. Relativistic effects in photoionization: Wigner time delay for the noble gases and IIB atoms

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven

    2017-04-01

    Time delay in atomic photoionization has been observed in several experiments, and various theoretical and experimental approaches are developing rapidly to obtain a better understanding of this phenomena. Theoretical methods that account for many body correlations include the relativistic random phase approximation (RRPA) and its non-relativistic analogue, RPAE. Calculations using RRPA are performed and the impact of relativistic interactions on Wigner time delay are explored via comparison of this result with RPAE results. In addition, results on Wigner time delay for Zn Cd and Hg are presented.

  10. Comparison of theoretical and experimental values of the number of metallic orbitals per atom in hypoelectronic and hyperelectronic metals

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1985-01-01

    The statistical resonating-valence-bond theory of metals is applied in the purely theoretical calculation of the composition of the Ni-Cu alloy at the foot of the curve of saturation ferromagnetic moment, which marks the boundary between hypoelectronic and hyperelectronic metals and determines the value of the number of metallic orbitals per atom. The results, Ni44Cu56 and 0.722 metallic orbitals, agree with the observed values. This agreement provides strong support of the theory. PMID:16593633

  11. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    PubMed

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  12. Recent Theoretical Studies On Excitation and Recombination

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    2000-01-01

    New advances in the theoretical treatment of atomic processes in plasmas are described. These enable not only an integrated, unified, and self-consistent treatment of important radiative and collisional processes, but also large-scale computation of atomic data with high accuracy. An extension of the R-matrix work, from excitation and photoionization to electron-ion recombination, includes a unified method that subsumes both the radiative and the di-electronic recombination processes in an ab initio manner. The extensive collisional calculations for iron and iron-peak elements under the Iron Project are also discussed.

  13. Book Review: A history of the ideas of theoretical physics: Essays on the 19th and 20th century physics (Vol. 213 of Boston Studies in the Philosophy of Science). Salvo d'Agostino; Kluwer Academic Publishers, Dordrecht, Boston, London, 2000, 381pp., 173.00 US, ISBN 0-7923-6094-X

    NASA Astrophysics Data System (ADS)

    Nordmann, Alfred

    2003-12-01

    The title of Salvo d'Agostino's book suggests that it may contain a collection of various and sundry ideas from the history of theoretical physics. However, d'Agostino pursues something far more specific and compelling, yet also far more controversial: a history of the idea of theoretical physics. When, how, and why did physics become theoretical physics, and what did this shift mean? While some would argue that physics became theoretical at a time of stasis and sterility, perhaps decadence or crisis, d'Agostino considers the epistemological turn of physics liberating, productive, even empowering.

  14. My 65 years in protein chemistry.

    PubMed

    Scheraga, Harold A

    2015-05-01

    This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein-protein interactions and to nucleic acids and to protein-nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena.

  15. Modeling and simulation of protein-surface interactions: achievements and challenges.

    PubMed

    Ozboyaci, Musa; Kokh, Daria B; Corni, Stefano; Wade, Rebecca C

    2016-01-01

    Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse-grained approaches. We examine uses of different sampling methods, as well as free energy calculations. Furthermore, we review computational studies of protein-surface interactions and discuss the successes and limitations of current approaches.

  16. On the quantum mechanics of consciousness, with application to anomalous phenomena

    NASA Astrophysics Data System (ADS)

    Jahn, Robert G.; Dunne, Brenda J.

    1986-08-01

    Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts and formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrödinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition. With these established, a number of the generic features of quantum mechanics, such as the wave/particle duality, and the uncertainty, indistinguishability, and exclusion principles, display metaphoric relevance to familiar individual and collective experiences. Similarly, such traditional quantum theoretic exercises as the central force field and atomic structure, covalent molecular bonds, barrier penetration, and quantum statistical collective behavior become useful analogies for representation of a variety of consciousness experiences, both normal and anomalous, and for the design of experiments to study these systematically.

  17. My 65 years in protein chemistry

    PubMed Central

    Scheraga, Harold A.

    2015-01-01

    This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein–protein interactions and to nucleic acids and to protein–nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena. PMID:25850343

  18. Solid State Division progress report for period ending September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less

  19. Isomer and Fluorination Effects among Fluorine Substituted Hydrocarbon C3/C4 Molecules in Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Patel, U. R.; Joshipura, K. N.

    2015-05-01

    Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.

  20. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    NASA Astrophysics Data System (ADS)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of the Institute of Physics. The support from the IOPCS staff made this publication possible. The 8th AISAMP was sponsored primarily by the University of Western Australia and Curtin University of Technology, both in Perth, Western Australia, and by Journal of Physics: Conference Series. Support was also received from the International Council of Science, ICSU. Guidance and active participation from colleagues, particularly from the University of Western Australia, and Curtin University, and from the Australian National University and Melbourne University were sources of strength for the actual organization of the conference. Dr Elena Semidelova receives special thanks for her organizing abilities. We hope that this issue of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between all scientists and their countries. Evan Bieske, Stephen Buckman and Jim F Williams Guest Editors

  1. Faculty Member for Research in an Undergraduate Institution Prize Talk: Research and Teaching through high-precision spectroscopy of heavy atoms

    NASA Astrophysics Data System (ADS)

    Majumder, Tiku

    2017-04-01

    In recent decades, substantial experimental effort has centered on heavy (high-Z) atomic and molecular systems for atomic-physics-based tests of standard model physics, through (for example) measurements of atomic parity nonconservation and searches for permanent electric dipole moments. In all of this work, a crucial role is played by atomic theorists, whose accurate wave function calculations are essential in connecting experimental observables to tests of relevant fundamental physics parameters. At Williams College, with essential contributions from dozens of undergraduate students, we have pursued a series of precise atomic structure measurements in heavy metal atoms such as thallium, indium, and lead. These include measurements of hyperfine structure, transition amplitudes, and atomic polarizability. This work, involving diode lasers, heated vapor cells, and an atomic beam apparatus, has both tested the accuracy and helped guide the refinement of new atomic theory calculations. I will discuss a number of our recent experimental results, emphasizing the role played by students and the opportunities that have been afforded for research-training in this undergraduate environment. Work supported by Research Corporation, the NIST Precision Measurement Grants program, and the National Science Foundation.

  2. Nonlocality in many-body quantum systems detected with two-body correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tura, J., E-mail: jordi.tura@icfo.es; Augusiak, R.; Sainz, A.B.

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however,more » we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.« less

  3. Astronomy and Cancer Research: X-Rays and Nanotechnology from Black Holes to Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil K.; Nahar, Sultana N.

    It seems highly unlikely that any connection is to be found between astronomy and medicine. But then it also appears to be obvious: X-rays. However, that is quite superficial because the nature of X-rays in the two disciplines is quite different. Nevertheless, we describe recent research on exactly that kind of link. Furthermore, the linkage lies in atomic physics, and via spectroscopy which is a vital tool in astronomy and may also be equally valuable in biomedical research. This review begins with the physics of black hole environments as viewed through X-ray spectroscopy. It is then shown that similar physics can be applied to spectroscopic imaging and therapeutics using heavy-element (high-Z) moieties designed to target cancerous tumors. X-ray irradiation of high-Z nanomaterials as radiosensitizing agents should be extremely efficient for therapy and diagnostics (theranostics). However, broadband radiation from conventional X-ray sources (such as CT scanners) results in vast and unnecessary radiation exposure. Monochromatic X-ray sources are expected to be considerably more efficient. We have developed a new and comprehensive methodology—Resonant Nano-Plasma Theranostics (RNPT)—that encompasses the use of monochromatic X-ray sources and high-Z nanoparticles. Ongoing research entails theoretical computations, numerical simulations, and in vitro and in vivo biomedical experiments. Stemming from basic theoretical studies of Kα resonant photoabsorption and fluorescence in all elements of the Periodic Table, we have established a comprehensive multi-disciplinary program involving researchers from physics, chemistry, astronomy, pathology, radiation oncology and radiology. Large-scale calculations necessary for theory and modeling are done at a variety of computational platforms at the Ohio Supercomputer Center. The final goal is the implementation of RNPT for clinical applications.

  4. PREFACE: Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008) Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki

    2009-03-01

    Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more-or-less independently by the two communities. The three-day workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) was planned to help remedy this situation. It aimed to demonstrate capability of state-of-the-art theoretical techniques to explain and predict ELNES and XANES spectra, and to allow deep discussion between scientists in the two communities. It also provided an excellent opportunity to introduce experimentalists to the computational techniques available. Invited talks and poster presentations by leading scientists were given on the first day, which was followed by tutorial sessions for five computer programs on the second and third days. Excellent lectures were given by Peter Blaha (Vienna, Austria) on the WIEN2k code, Chris J Pickard (St Andrews, UK) on the CASTEP code, John J Rehr (Seattle, USA) on the FEFF8 code, Frank de Groot (Utrecht, The Netherlands) on the CTM4XAS code, and Hidekazu Ikeno (Kyoto, Japan) on the first-principles CI-multiplet code. Thanks to the enthusiastic participation of more than 100 scientists from around the world, the workshop was a complete success. The aim of this special issue in Journal of Physics: Condensed Matter is to share with the readers the most up-to-date knowledge presented at the workshop. We believe this will prove useful as a reference for researchers in many different fields, as well as an overview of the current status and future directions of theoretical calculations for ELNES and XANES. TEX2008 was a satellite meeting of the First International Symposium on Advanced Microscopy and Theoretical Calculations (AMTC1) (Nagoya, Japan, 29-30 June 2008), which was held in commemoration of the establishment of the Nanostuctures Research Laboratory (NSRL) at the Japan Fine Ceramics Center (JFCC) and as a daughter event of EXPO 2005, Aichi, Japan. A Grant-in-Aid for Scientific Research on Priority Areas 'Nano Materials Science for Atomic-Scale Modification' from the Ministry of Education, Culture, Sports and Technology (MEXT) and support from the Chubu Economic Federation for the workshop are gratefully acknowledged.

  5. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study

    NASA Astrophysics Data System (ADS)

    Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.

    2009-06-01

    Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.

  6. The Effects of Heteroatoms Si and S on Tuning the Optical Properties of Rhodamine- and Fluorescein-Based Fluorescence Probes: A Theoretical Analysis.

    PubMed

    Zhou, Panwang; Ning, Cai; Alsaedi, Ahmed; Han, Keli

    2016-10-05

    The effects of the incorporated heteroatoms Si and S on tuning the optical properties of rhodamine- and fluorescein-based fluorescence probes is investigated using DFT and time-dependent DFT with four different functionals. As previously proposed, the large redshift (90 nm) produced by a Si atom in both the absorption and emission spectra can be attributed to the σ*-π* conjugation between the σ* orbital of the Si atom and the π* orbital of the adjacent carbon atoms. However, the presence of a Si atom does not alter the fluorescence quenching mechanism of the nonfluorescent forms of the investigated compounds. For the first time, these theoretical results indicate that the n orbital of the S atom plays an important role in determining the optical properties of the nonfluorescent form of rhodamine-based fluorescence probes. It alters the fluorescence quenching mechanism by lowering the energy of the dark nπ* state, which is due to breakage of the C10-S52 bond upon photoexcitation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antropov, Vladimir P; Antonov, Victor N

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li 2(Li 1-xM x)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropymore » of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L 2,3 spectra in LiFeN are also predicted.« less

  8. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.

    2012-01-01

    Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.

  9. Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems

    NASA Astrophysics Data System (ADS)

    Young, Jeremy T.; Boulier, Thomas; Magnan, Eric; Goldschmidt, Elizabeth A.; Wilson, Ryan M.; Rolston, Steven L.; Porto, James V.; Gorshkov, Alexey V.

    2018-02-01

    We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt et al., Phys. Rev. Lett. 116, 113001 (2016), 10.1103/PhysRevLett.116.113001] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.

  10. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…

  11. Cooperative effects between color centers in diamond: applications to optical tweezers and optomechanics

    NASA Astrophysics Data System (ADS)

    Bradac, Carlo; Prasanna Venkatesh, B.; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas; Juan, Mathieu L.

    2017-08-01

    Since the early work by Ashkin in 1970,1 optical trapping has become one of the most powerful tools for manipulating small particles, such as micron sized beads2 or single atoms.3 Interestingly, both an atom and a lump of dielectric material can be manipulated through the same mechanism: the interaction energy of a dipole and the electric field of the laser light. In the case of atom trapping, the dominant contribution typically comes from the allowed optical transition closest to the laser wavelength while it is given by the bulk polarisability for mesoscopic particles. This difference lead to two very different contexts of applications: one being the trapping of small objects mainly in biological settings,4 the other one being dipole traps for individual neutral atoms5 in the field of quantum optics. In this context, solid state artificial atoms present the interesting opportunity to combine these two aspects of optical manipulation. We are particularly interested in nanodiamonds as they constitute a bulk dielectric object by themselves, but also contain artificial atoms such as nitrogen-vacancy (NV) or silicon-vacancy (SiV) colour centers. With this system, both regimes of optical trapping can be observed at the same time even at room temperature. In this work, we demonstrate that the resonant force from the optical transition of NV centres at 637 nm can be measured in a nanodiamond trapped in water. This additional contribution to the total force is significant, reaching up to 10%. In addition, due to the very large density of NV centres in a sub-wavelength crystal, collective effects between centres have an important effect on the magnitude of the resonant force.6 The possibility to observe such cooperatively enhanced optical force at room temperature is also theoretically confirmed.7 This approach may enable the study of cooperativity in various nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation and opto-mechanics.

  12. Metallic Properties of the Si(111) - 5 × 2 - Au Surface from Infrared Plasmon Polaritons and Ab Initio Theory.

    PubMed

    Hötzel, Fabian; Seino, Kaori; Huck, Christian; Skibbe, Olaf; Bechstedt, Friedhelm; Pucci, Annemarie

    2015-06-10

    The metal-atom chains on the Si(111) - 5 × 2 - Au surface represent an exceedingly interesting system for the understanding of one-dimensional electrical interconnects. While other metal-atom chain structures on silicon suffer from metal-to-insulator transitions, Si(111) - 5 × 2 - Au stays metallic at least down to 20 K as we have proven by the anisotropic absorption from localized plasmon polaritons in the infrared. A quantitative analysis of the infrared plasmonic signal done here for the first time yields valuable band structure information in agreement with the theoretically derived data. The experimental and theoretical results are consistently explained in the framework of the atomic geometry, electronic structure, and IR spectra of the recent Kwon-Kang model.

  13. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    ERIC Educational Resources Information Center

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  14. Scaling laws of Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.

    2017-09-01

    Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to assess the susceptibility of Rydberg excitons to the external fields: The crossover field strength in magnetic field from a hydrogenlike exciton to a magnetoexciton dominated by electron and hole Landau level quantization scales as n-3. In electric field, on the other hand, we observe the exciton polarizability to scale as n7. At higher fields, the exciton ionization can be studied with ionization voltages that demonstrate an n-4 scaling law. Particularly interesting is the field dependence of the width of the absorption lines which remains constant before dissociation for high enough n , while for small n ≲12 an exponential increase is found. These results are in excellent agreement with theoretical predictions.

  15. Physics with Trapped Antihydrogen

    NASA Astrophysics Data System (ADS)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  16. Theoretical study of the kinetics of chlorine atom abstraction from chloromethanes by atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-10-01

    Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.

  17. Atomic resolution images of graphite in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  18. Experimental study of the role of trap symmetry in an atom-chip interferometer above the Bose–Einstein condensation threshold

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, M.; Demur, R.; Westbrook, C. I.; Schwartz, S.

    2018-04-01

    We report the experimental study of an atom-chip interferometer using ultracold rubidium 87 atoms above the Bose–Einstein condensation threshold. The observed dependence of the contrast decay time with temperature and with the degree of symmetry of the traps during the interferometer sequence is in good agreement with theoretical predictions published in Dupont-Nivet et al (2016 New J. Phys. 18 113012). These results pave the way for precision measurements with trapped thermal atoms.

  19. Theory of ionizing neutrino-atom collisions: The role of atomic recoil

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-04-01

    We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.

  20. Mechanisms for the reactions of group 10 transition metal complexes with metal-group 14 element bonds, Bbt(Br)E═M(PCy3)2 (E = C, Si, Ge, Sn, Pb; M = Pd and Pt).

    PubMed

    Liao, Wei-Hung; Ho, Pei-Yun; Su, Ming-Der

    2013-02-04

    The electronic structures of the Bbt(Br)E═M(PCy(3))(2) (E = C, Si, Ge, Sn, Pb and M = Pt, Pd) complexes and their potential energy surfaces for the formation and water addition reactions were studied using density functional theory (B3LYP/LANL2DZ). The theoretical evidence suggests that the bonding character of the E═M double bond between the six valence-electron Bbt(Br)E: species and the 14 valence-electron (PCy(3))(2)M complexes has a predominantly high s-character. That is, on the basis of the NBO, this theoretical study indicates that the σ-donation from the E element to the M atom prevails. Also, theoretical computations suggest that the relative reactivity decreases in the order: Bbt(Br)C═M(PCy(3))(2) > Bbt(Br)Si═M(PCy(3))(2) > Bbt(Br)Ge═M(PCy(3))(2) > Bbt(Br)Sn═M(PCy(3))(2) > Bbt(Br)Pb═M(PCy(3))(2), irrespective of whether M = Pt or M = Pd is chosen. Namely, the greater the atomic weight of the group 14 atom (E), the larger is the atomic radius of E and the more stable is its Bbt(Br)E═M(PCy(3))(2) doubly bonded species toward chemical reactions. The computational results show good agreement with the available experimental observations. The theoretical results obtained in this work allow a number of predictions to be made.

  1. Recent Development on O(+) - O Collision Frequency and Ionosphere-Thermosphere Coupling

    NASA Technical Reports Server (NTRS)

    Omidvar, K.; Menard, R.

    1999-01-01

    The collision frequency between an oxygen atom and its singly charged ion controls the momentum transfer between the ionosphere and the thermosphere. There has been a long standing discrepancy, extending over a decade, between the theoretical and empirical determination of this frequency: the empirical value of this frequency exceeded the theoretical value by a factor of 1.7. Recent improvements in theory were obtained by using accurate oxygen ion-oxygen atom potential energy curves, and partial wave quantum mechanical calculations. We now have applied three independent statistical methods to the observational data, obtained at the MIT/Millstone Hill Observatory, consisting of two sets A and B. These methods give results consistent with each other, and together with the recent theoretical improvements, bring the ratio close to unity, as it should be. The three statistical methods lead to an average for the ratio of the empirical to the theoretical values equal to 0.98, with an uncertainty of +/-8%, resolving the old discrepancy between theory and observation. The Hines statistics, and the lognormal distribution statistics, both give lower and upper bounds for the Set A equal to 0.89 and 1.02, respectively. The related bounds for the Set B are 1.06 and 1.17. The average values of these bounds thus bracket the ideal value of the ratio which should be equal to unity. The main source of uncertainties are errors in the profile of the oxygen atom density, which is of the order of 11%. An alternative method to find the oxygen atom density is being suggested.

  2. Solving the electron and electron-nuclear Schroedinger equations for the excited states of helium atom with the free iterative-complement-interaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi

    2008-04-21

    Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less

  3. Quantum Dynamics in the HMF Model

    NASA Astrophysics Data System (ADS)

    Plestid, Ryan; O'Dell, Duncan

    2017-04-01

    The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.

  4. Strength and stability analysis of a single-walled black phosphorus tube under axial compression

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Wan, Jing; Wei, Ning; Qin, Qing H.

    2016-07-01

    Few-layered black phosphorus materials currently attract much attention due to their special electronic properties. As a consequence, a single-layer black phosphorus (SLBP) nanotube has been theoretically built. The corresponding electronic properties of such a black phosphorus nanotube (BPNT) were also evaluated numerically. However, unlike graphene formed with 2sp2 covalent carbon atoms, SLBP is formed with 3sp3 bonded atoms. It means that the structure from SLBP will possess lower Young’s modulus and mechanical strength than those of carbon nanotubes. In this study, molecular dynamics simulation is performed to investigate the strength and stability of BPNTs affected by the factors of diameter, length, loading speed and temperature. Results are fundamental for investigating the other physical properties of a BPNT acting as a component in a nanodevice. For example, buckling of the BPNT happens earlier than fracture, before which the nanostructure has very small axial strain. For the same BPNT, a higher load speed results in lower critical axial strain and a nanotube with lower axial strain can still be stable at a higher temperature.

  5. A density-functional study on the electronic and vibrational properties of layered antimony telluride.

    PubMed

    Stoffel, Ralf P; Deringer, Volker L; Simon, Ronnie E; Hermann, Raphaël P; Dronskowski, Richard

    2015-03-04

    We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated-including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.

  6. Distortion in the thermal noise spectrum and quality factor of nanomechanical devices due to finite frequency resolution with applications to the atomic force microscope.

    PubMed

    Sader, John E; Sanelli, Julian; Hughes, Barry D; Monty, Jason P; Bieske, Evan J

    2011-09-01

    The thermal noise spectrum of nanomechanical devices is commonly used to characterize their mechanical properties and energy dissipation. This spectrum is measured from finite time series of Brownian motion of the device, which is windowed and Fourier transformed. Here, we present a theoretical and experimental investigation of the effect of such finite sampling on the measured device quality factor. We prove that if no spectral window is used, the thermal noise spectrum retains its original Lorentzian distribution but with a reduced quality factor, indicating an apparent enhancement in energy dissipation. A simple analytical formula is derived connecting the true and measured quality factors - this enables extraction of the true device quality factor from measured data. Common windows used to reduce spectral leakage are found to distort the (true) Lorentzian shape, potentially making fitting problematic. These findings are expected to be of particular importance for devices with high quality factors, where spectral resolution can be limited in practice. Comparison and validation using measurements on atomic force microscope cantilevers are presented. © 2011 American Institute of Physics

  7. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  8. Monolayer PtSe 2 , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt

    DOE PAGES

    Wang, Yeliang; Li, Linfei; Yao, Wei; ...

    2015-05-21

    For single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. We found that a combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrastmore » to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.« less

  9. Optical Precursor with Four-Wave Mixing and Storage Based on a Cold-Atom Ensemble

    NASA Astrophysics Data System (ADS)

    Ding, Dong-Sheng; Jiang, Yun Kun; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2015-03-01

    We observed optical precursors in four-wave mixing based on a cold-atom gas. Optical precursors appear at the edges of pulses of the generated optical field, and propagate through the atomic medium without absorption. Theoretical analysis suggests that these precursors correspond to high-frequency components of the signal pulse, which means the atoms cannot respond quickly to rapid changes in the electromagnetic field. In contrast, the low-frequency signal components are absorbed by the atoms during transmission. We also showed experimentally that the backward precursor can be stored using a Raman transition of the atomic ensemble and retrieved later.

  10. Controlling single-photon transport in an optical waveguide coupled to an optomechanical cavity with a Λ-type three-level atom

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei

    2018-06-01

    We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.

  11. Single-photon nonlinearities in the propagation of focused beams through dense atomic clouds

    NASA Astrophysics Data System (ADS)

    Wang, Yidan; Gorshkov, Alexey; Gullans, Michael

    2017-04-01

    We theoretically study single-photon nonlinearities realized when a highly focused Gaussian beam passes through a dense atomic cloud. In this system, strong dipole-dipole interactions arise between closely spaced atoms and significantly affect light propagation. We find that the highly focused Gaussian beam can be treated as an effective one-dimensional waveguide, which simplifies the calculation of photon transmission and correlation functions. The formalism we develop is also applicable to the case where additional atom-atom interactions, such as interactions between Rydberg atoms, are involved. This work was supported by the ARL, NSF PFC at the JQI, AFOSR, NSF PIF, ARO, and AFOSR MURI.

  12. Efficient atom localization via probe absorption in an inverted-Y atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  13. A Physics Finale.

    ERIC Educational Resources Information Center

    Haynes, Gail E.

    1991-01-01

    A third-semester physics course that covers the topics of atomic physics, the theory of relativity, and nuclear energy is described. Activities that include the phenomenon of radioactivity, field trips to a nuclear power plant, a simulation of a chain reaction, and comparing the size of atomic particles are presented. (KR)

  14. Nuclear chemistry. Annual report, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.

    1975-07-01

    The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

  15. Positron total scattering cross-sections for alkali atoms

    NASA Astrophysics Data System (ADS)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  16. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.

    2017-03-01

    Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.

  17. New determination of the fine structure constant and test of the quantum electrodynamics.

    PubMed

    Bouchendira, Rym; Cladé, Pierre; Guellati-Khélifa, Saïda; Nez, François; Biraben, François

    2011-02-25

    We report a new measurement of the ratio h/m(Rb) between the Planck constant and the mass of (87)Rb atom. A new value of the fine structure constant is deduced, α(-1)=137.035999037(91) with a relative uncertainty of 6.6×10(-10). Using this determination, we obtain a theoretical value of the electron anomaly a(e)=0.00115965218113(84), which is in agreement with the experimental measurement of Gabrielse [a(e)=0.00115965218073(28)]. The comparison of these values provides the most stringent test of the QED. Moreover, the precision is large enough to verify for the first time the muonic and hadronic contributions to this anomaly. © 2011 American Physical Society

  18. Simplicity and complexity

    NASA Astrophysics Data System (ADS)

    Crutchfield, James; Wiesner, Karoline

    2010-02-01

    Is anything ever simple? When confronted with a complicated system, scientists typically strive to identify underlying simplicity, which we articulate as natural laws and fundamental principles. This simplicity is what makes nature appear so organized. Atomic physics, for example, approached a solid theoretical foundation when Niels Bohr uncovered the organization of electronic energy levels, which only later were redescribed as quantum wavefunctions. Charles Darwin's revolutionary idea about the "origin" of species emerged by mapping how species are organized and discovering why they came to be that way. And James Watson and Francis Crick's interpretation of DNA diffraction spectra was a discovery of the structural organization of genetic information - it was neither about the molecule's disorder (thermodynamic entropy) nor about the statistical randomness of its base-pair sequences.

  19. Nonequilibrium Hall Response After a Topological Quench

    NASA Astrophysics Data System (ADS)

    Unal, F. Nur; Mueller, Erich; Oktel, M. O.

    2017-04-01

    We theoretically study the Hall response of a lattice system following a quench where the topology of a filled band is suddenly changed. In the limit where the physics is dominated by a single Dirac cone, we find that the change in the Hall conductivity is two-thirds of the quantum of conductivity. We explore this universal behavior in the Haldane model, and discuss cold-atom experiments for its observation. Beyond linear response, the Hall effect crosses over from fractional to integer values. We investigate finite-size effects, and the role of the harmonic confinement. Furthermore, we explore the magnetic field quenches in ladders formed in synthetic dimensions. This work is supported by TUBITAK, NSFPHY-1508300, ARO-MURI W9111NF-14-1-0003.

  20. Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.

    PubMed

    Selesnick, S A; Rawling, J P; Piccinini, Gualtiero

    2017-09-01

    Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.

  1. Theoretical study of hydrogen absorption-desorption on LaNi3.8Al1.2-xMnx using statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb

    2017-11-01

    The hydrogen absorption-desorption isotherms on LaNi3.8Al1.2-xMnx alloy at temperature T = 433 K is studied through various theoretical models. The analytical expressions of these models were deduced exploiting the grand canonical ensemble in statistical physics by taking some simplifying hypotheses. Among these models an adequate model which presents a good correlation with the experimental curves has been selected. The physicochemical parameters intervening in the absorption-desorption processes and involved in the model expressions could be directly deduced from the experimental isotherms by numerical simulation. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site n1 and n2, the receptor site densities N1m and N2m, and the energetic parameters P1 and P2. The behaviors of these parameters are discussed in relation with absorption and desorption processes to better understand and compare these phenomena. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 266 and 269.4 KJ/mol for absorption process and between 267 and 269.5 KJ/mol for desorption process comparable to usual chemical bond energies. Using the adopted model expression, the thermodynamic potential functions which govern the absorption/desorption process such as internal energy Eint, free enthalpy of Gibbs G and entropy Sa are derived.

  2. Atomic calculations for the Fe XX X-ray lines

    NASA Technical Reports Server (NTRS)

    Mason, H. E.; Bhatia, A. K.

    1983-01-01

    The atomic data presented here and in Bhatia and Mason (1980) allow the calculation of theoretical intensity ratios for all the EUV, UV, and X-ray lines from Fe XX. Tabulations are presently given for the transitions between levels in the 2s2 2p3, 2s2 2p2 3s, and 2s2 2p2 3d configurations of Fe(19+), and electron collision strengths are calculated by means of the 'distorted wave' approximation. In addition to the theoretical X-ray line intensity ratios, new spectral line identifications from a solar flare are presented.

  3. Surface Magnetism on pristine silicon thin film for spin and valley transport

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Tao

    The spin and valley degree of freedom for an electron have received tremendous attention in condensed matters physics because of the potential application for spintronics and valleytronics. It has been widely accepted that d0 light elemental materials of single component are not taken as ferromagnetic candidates because of the absence of odd paired electrons. The ferromagnetism has to be introduced by ferromagnetic impurity, edge functionalization, or proximity with ferromagnetic neighbors etc. These special surface or interface structures require atomically precise control which significantly increases experimental uncertainty and theoretical understanding. By means of density functional theory (DFT) computations, we found that the spin- and valley- polarized state can be introduced in pristine silicon thin films without any alien components. The key point to this aim is the formation of graphene-like hexagonal structures making a spin-polarized Dirac fermion with half-filling. The resulting fundamental physics such as quantum valley Hall effect (QVHE), quantum anomalous Hall effect (QAHE) and magnetoelectric effect will be discussed.

  4. On the Connection between Kinetic Monte Carlo and the Burton-Cabrera-Frank Theory

    NASA Astrophysics Data System (ADS)

    Patrone, Paul; Margetis, Dionisios; Einstein, T. L.

    2013-03-01

    In the many years since it was first proposed, the Burton- Cabrera-Frank (BCF) model of step-flow has been experimentally established as one of the cornerstones of surface physics. However, many questions remain regarding the underlying physical processes and theoretical assumptions that give rise to the BCF theory. In this work, we formally derive the BCF theory from an atomistic, kinetic Monte Carlo model of the surface in 1 +1 dimensions with one step. Our analysis (i) shows how the BCF theory describes a surface with a low density of adsorbed atoms, and (ii) establishes a set of near-equilibrium conditions ensuring that the theory remains valid for all times. Support for PP was provided by the NIST-ARRA Fellowship Award No. 70NANB10H026 through UMD. Support for TLE and PP was also provided by the CMTC at UMD, with ancillary support from the UMD MRSEC. Support for DM was provided by NSF DMS0847587 at UMD.

  5. Recent theoretical advances on superradiant phase transitions

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-03-01

    The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.

  6. Reality-Theoretical Models-Mathematics: A Ternary Perspective on Physics Lessons in Upper-Secondary School

    ERIC Educational Resources Information Center

    Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas

    2015-01-01

    This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…

  7. Nonmonotonic velocity dependence of atomic friction.

    PubMed

    Reimann, Peter; Evstigneev, Mykhaylo

    2004-12-03

    We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.

  8. Probing Electronic States of Magnetic Semiconductors Using Atomic Scale Microscopy & Spectroscopy

    DTIC Science & Technology

    2013-12-01

    the metal- insulator transition, a feature that has long been predicted theoretically. We showed that a similar picture is at play in magnetic doping of... magnetic atoms on the surface of a superconductor can be used as a versatile platform for creating a topological superconductor . These initial...topological superconductivity and Majorana fermions in a chain of magnetic atoms on the surface of a superconductor Students and postdocs supported

  9. Theoretical Studies of Nanoclusters (Briefing Charts)

    DTIC Science & Technology

    2015-07-23

    nanoclusters. However, scanning transmission electron microscopy ( STEM ) measures show cluster inversion occurred to produce MgyCux(!) a) copper atoms b...methane (née CLL -1) as a potential explosive ingredient: a theoretical study”, Propellants, Explosives, Pyrotechnics 38, 9-13 (2013). Jesus Paulo L

  10. Atomic oxygen recombination on quartz at high temperature: experiments and molecular dynamics simulation.

    PubMed

    Bedra, L; Rutigliano, M; Balat-Pichelin, M; Cacciatore, M

    2006-08-15

    A joint experimental and theoretical approach has been developed to study oxygen atom recombination on a beta-quartz surface. The experimental MESOX setup has been applied for the direct measurement of the atomic oxygen recombination coefficient gamma at T(S) = 1000 K. The time evolution of the relative atomic oxygen concentration in the cell is described by the diffusion equation because the mean free path of the atoms is less than the characteristic dimension of the reactor. The recombination coefficient gamma is then calculated from the concentration profile obtained by visible spectroscopy. We get an experimental value of gamma = 0.008, which is a factor of about 3 less than the gamma value reported for O recombination over beta-cristobalite. The experimental results are discussed and compared with the semiclassical collision dynamics calculations performed on the same catalytic system aimed at determining the basic features of the surface catalytic activity. Agreement, both qualitative and quantitative, between the experimental and the theoretical recombination coefficients has been found that supports the Eley-Rideal recombination mechanism and gives more evidence of the impact that surface crystallographic variation has on catalytic activity. Also, several interesting aspects concerning the energetics and the mechanism of the surface processes involving the oxygen atoms are pointed out and discussed.

  11. PREFACE: Atomic Spectra and Oscillator Strengths (ASOS9) Atomic Spectra and Oscillator Strengths (ASOS9)

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2009-05-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are being used to determine fundamental quantities. Atomic data for programs in astronomical infrared spectroscopy were highlighted by both oral and poster contributions as being an important area in the near future. As part of ASOS9 we were honored to celebrate the retirement of Professor Sveneric Johansson. At a special session on the spectroscopy of iron, which was conducted in his honor, he presented his insights into the Fe II term system and his most recent work with astrophysical applications. Professor Johansson was also honored with heart-felt acknowledgments at the conference dinner on an unusually warm Lund summer evening. Prior to the publication of these proceedings, we were extremely saddened to learn of Sveneric's passing on 10 October 2008. Sveneric Johansson, a founding father of the ASOS conference series, was widely known for his pioneering work on the atomic structure of heavy elements as a well as for his leadership of the international FERRUM Project, which successfully determined a definitive set of spectroscopic data for Fe II. His knowledge of spectroscopy, his leadership qualities and his friendship will be sadly missed. Acknowledgments The spirit of ASOS has been maintained by the dedication of the organizing committees that have kept a tight focus on the nature of the conference yet allowed for the incorporation of new areas of research in the field. The International Program Committee for ASOS9 are to be commended for their efforts in providing an interesting program. They have also served as the primary source of manuscript referees, who along with other referees have performed a valuable service. Many thanks must be given to the local organizing committee, who made the return of ASOS to Lund a memorable experience, both through the many opportunities for social gatherings during the conference and a post-conference outing through Skåne. We would also like to express our appreciation to the Royal Swedish Academy of Sciences, the Royal Physiographic Society in Lund, the Wenner-Gren Foundation and the Lund Laser Centre and Department of Physics for their generous support in making ASOS9 possible. Sveneric Johansson 1942-2008. Professor Sveneric Johansson 1942-2008.

  12. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  13. Theory and applications of free-electron vortex states

    NASA Astrophysics Data System (ADS)

    Bliokh, K. Y.; Ivanov, I. P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M. A.; Schattschneider, P.; Nori, F.; Verbeeck, J.

    2017-05-01

    Both classical and quantum waves can form vortices : entities with helical phase fronts and circulating current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translating theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.

  14. Mathematics, Experiments, and Theoretical Physics: The Early Days of the Sommerfeld School

    NASA Astrophysics Data System (ADS)

    Eckert, Michael

    1999-10-01

    The names of his students read like a Who's Who of the pioneers in modern physics Peter Debye, Peter Paul Ewald, Wolfgang Pauli, Werner Heisenberg, Hans A. Bethe - to name only the most prominent. In retrospect, the success of Sommerfeld's school of modern theoretical physics tends to overshadow its less glorious beginnings. A century ago, theoretical physics was not yet considered as a distinct discipline. In this article I emphasize more the haphazard beginnings than the later achievements of Sommerfeld's school, which mirrored the state of theoretical physics before it became an independent discipline.

  15. News UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2014-05-01

    UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

  16. Studies of Highly Excited Atoms.

    DTIC Science & Technology

    1986-04-02

    R 2 o i86 Chemical Physics Laboratory " i 0. R . Abrahamson i Vice President Physical Fciences Division ri" - c. -:OP...34 - men I IN RO U TI, .. . . . . . . . . . - .... .... o .. . . . o ......... - TI R SOPA T C LLIS OWZ.... ... . 6 ... ... oo ... .... ... .... . - A...by WA =W + 1ns- 0 (3a) and R = 1’np + ’(n-l)p (3b) .* 7_7. ’ P. z Atom 2 ’b y tom1 SA-846 1-30A FIGURE 2 GEOMETRY OF THE COLLISION OF TWO ATOMS Atom I

  17. A Framework to Learn Physics from Atomically Resolved Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, L.; Maksov, A.; Pan, M.

    Here, we present a generalized framework for physics extraction, i.e., knowledge, from atomically resolved images, and show its utility by applying it to a model system of segregation of chalcogen atoms in an FeSe 0.45Te 0.55 superconductor system. We emphasize that the framework can be used for any imaging data for which a generative physical model exists. Consider that a generative physical model can produce a very large number of configurations, not all of which are observable. By applying a microscope function to a sub-set of this generated data, we form a simulated dataset on which statistics can be computed.

  18. Theoretical study on the interactions between chlordecone hydrate and acidic surface groups of activated carbon under basic pH conditions.

    PubMed

    Melchor-Rodríguez, Kenia; Gamboa-Carballo, Juan José; Ferino-Pérez, Anthuan; Passé-Coutrin, Nady; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2018-05-01

    A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO - and O - ), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO - and O - groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O - ⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Opacity of iron, nickel, and copper plasmas in the x-ray wavelength range: Theoretical interpretation of 2p-3d absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenski, T.; Loisel, G.; Poirier, M.

    2011-09-15

    This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm{sup 3}. The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code sco and with the fine-structure atomic physics codes hullac and fac. A new mixed version of the sco code allowing one to treatmore » part of the configurations by detailed calculation based on the Cowan's code rcg has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by sco. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code scric. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the {Delta}n=0 absorption in medium-Z plasmas for astrophysical applications.« less

  20. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.

  1. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  2. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  3. PREFACE: 2nd International Workshop on Theoretical and Computational Physics (IWTCP-2): Modern Methods and Latest Results in Particle Physics, Nuclear Physics and Astrophysics and the 39th National Conference on Theoretical Physics (NCTP-39)

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh Xuan; Ky, Nguyen Anh; Lan, Nguyen Tri; Viet, Nguyen Ai

    2015-06-01

    This volume contains selected papers presented at the 2nd International Workshop on Theoretical and Computational Physics (IWTCP-2): Modern Methods and Latest Results in Particle Physics, Nuclear Physics and Astrophysics and the 39th National Conference on Theoretical Physics (NCTP-39). Both the workshop and the conference were held from 28th - 31st July 2014 in Dakruco Hotel, Buon Ma Thuot, Dak Lak, Vietnam. The NCTP-39 and the IWTCP-2 were organized under the support of the Vietnamese Theoretical Physics Society, with a motivation to foster scientific exchanges between the theoretical and computational physicists in Vietnam and worldwide, as well as to promote high-standard level of research and education activities for young physicists in the country. The IWTCP-2 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). About 100 participants coming from nine countries participated in the workshop and the conference. At the IWTCP-2 workshop, we had 16 invited talks presented by international experts, together with eight oral and ten poster contributions. At the NCTP-39, three invited talks, 15 oral contributions and 39 posters were presented. We would like to thank all invited speakers, participants and sponsors for making the workshop and the conference successful. Trinh Xuan Hoang, Nguyen Anh Ky, Nguyen Tri Lan and Nguyen Ai Viet

  4. PREFACE: 7th Asian International Seminar on Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Chakraborty, Purushottam; Williams, Jim F.

    2007-09-01

    These proceedings arose from the 7th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the Indian Institute of Technology, Madras from 4-7 December 2006. The history of the AISAMP has been reviewed by Takayanagi http://www.physics.iitm.ac.in/~aisamp7/history.html. This international seminar/conference series grew out of the Japan-China meetings which were launched in 1985, the fourth of which was held in 1992 and carried a second title: The First Asian International Seminar on Atomic and Molecular Physics (AISAMP), thus providing a formal medium for scientists in this part of the world to report periodically and exchange their scientific thoughts. The founding nations of Japan and China were joined subsequently by Korea, Taiwan, India and Australia. The aims of the symposia included bringing together leading experts and students of atomic and molecular physics, the discussion of important problems, learning and sharing modern techniques and expanding the horizons of modern atomic and molecular physics. The fields of interest ranged from atomic and molecular structure and dynamics to photon, electron and positron scattering, to quantum information processing, the effects of symmetry and many body interactions, laser cooling, cold traps, electric and magnetic fields and to atomic and molecular physics with synchrotron radiation. Particular interest was evident in new techniques and the changes of the physical properties from atomic to condensed matter. Details of the 7th AISAMP, including the topics for the special sessions and the full programme, are available online at the conference website http://www.physics.iitm.ac.in/~aisamp7/. In total, 95 presentations were made at the 7th AISAMP, these included the Invited Talks and Contributed Poster Presentations, of which 52 appear in the present Proceedings after review by expert referees, refereed to the usual standard of the Institute of Physics journal: Journal of Physics B: Atomic, Molecular and Optical Physics. We received extensive support from the Journal of Physics: Conference Series staff; Graham Douglas, in particular, has been of tremendous help. The 7th AISAMP was very well attended and was sponsored primarily by the host Indian Institute of Technology, Madras (Chennai), the Board of Research in Nuclear Sciences, (Department of Atomic Energy, Government of India), the Department of Science and Technology, (Government of India), and the Asian Office of Aerospace Research and Development (AOARD) of the US Air Force. There was support from various quarters—each was invaluable and added to the success of the 7th AISAMP. We are very grateful to all the sponsors. It is superfluous to add that guidance and active participation from several colleagues within the host Institute was the primary source of strength for the actual organization of the conference and the multitude of arrangements for the organization came from the young graduate students at the IIT-Madras. We hope that this volume of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between various countries in the region in and around Asia, and also of course to all scientists in this field the world over. Pranawa C Deshmukh, Purushottam Chakraborty and Jim F Williams Editors Conference photograph

  5. Electron collisions with coherently prepared atomic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trajmar, S.; Kanik, I.; LeClair, L.R.

    1998-02-01

    The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can bemore » expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.« less

  6. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  7. Nanoscale decomposition of Nb-Ru-O

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Chen, Yen-Ting

    2016-11-01

    A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.

  8. The Charm of Theoretical Physics (1958-1993)

    NASA Astrophysics Data System (ADS)

    Maiani, Luciano; Bonolis, Luisa

    2017-12-01

    Personal recollections on theoretical particle physics in the years when the Standard Theory was formed. In the background, the remarkable development of Italian theoretical physics in the second part of the last century, with great personalities like Bruno Touschek, Raoul Gatto, Nicola Cabibbo and their schools.

  9. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    PubMed

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the <110> direction, which is theoretically predicted to produce a high Curie temperature.

  10. EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Hemmerich, A.; Arimondo, E.

    2003-04-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by the Dutch Foundation for Fundamental Research on Matter (FOM) and by the Dutch Gelderland province. We thank all these sponsors and the members of the International Programme Committee for making the Workshop such a success. At this point we take the opportunity to express our gratitude to both authors and reviewers, for their efforts in preparing and ensuring the high quality of the papers in this special issue. Wim Vassen Vrije Universiteit, Amsterdam Andreas Hemmerich Universität Hamburg Ennio Arimondo Università di Pisa Guest Editors International Programme Committee A Aspect Orsay, France E Cornell Boulder, USA W Ertmer Hannover, Germany T W Haensch Munich, Germany A Hemmerich Hamburg, Germany W Hogervorst Amsterdam, The Netherlands D Kleppner Cambridge, USA C Salomon Paris, France G V Shlyapnikov Amsterdam, Paris, Moscow S Stringari Trento, Italy W Vassen Amsterdam, The Netherlands J T M Walraven Amsterdam, The Netherlands

  11. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties.

    PubMed

    Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young

    2015-04-28

    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.

  12. Theoretical considerations on the optogalvanic detection of laser induced fluorescence in atmospheric pressure atomizers

    NASA Astrophysics Data System (ADS)

    Omenetto, N.; Smith, B. W.; Winefordner, J. D.

    1989-01-01

    Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.

  13. EMPIRICAL DETERMINATION OF EINSTEIN A-COEFFICIENT RATIOS OF BRIGHT [Fe II] LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannini, T.; Antoniucci, S.; Nisini, B.

    The Einstein spontaneous rates (A-coefficients) of Fe{sup +} lines have been computed by several authors with results that differ from each other by up to 40%. Consequently, models for line emissivities suffer from uncertainties that in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines that would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-Very Large Telescope X-shooter instrument between 3000 Å and 24700 Å, we obtainedmore » a spectrum of the bright Herbig-Haro object HH 1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratios ≥100. Among these latter lines, we selected those emitted by the same level, whose dereddened intensity ratios are direct functions of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH 1 through intensity ratios of atomic species, H I  recombination lines and H{sub 2} ro-vibrational transitions. We provide seven reliable A-coefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (λ12570/λ16440 and λ13209/λ16440) are in better agreement with the predictions by the Quinet et al. relativistic Hartree-Fock model. However, none of the theoretical models predict A-coefficient ratios in agreement with all of our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.« less

  14. Ab Initio Density Functional Calculations and Infra-Red Study of CO Interaction with Pd Atoms on θ-Al2O3 (010) Surface.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili

    2017-07-24

    The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O 2 . The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.

  15. 1978 bibliography of atomic and molecular processes. [Bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  16. Density functional theory calculations establish the experimental evidence of the DX center atomic structure in CdTe.

    PubMed

    Lany, Stephan; Wolf, Herbert; Wichert, Thomas

    2004-06-04

    The In DX center and the DX-like configuration of the Cd host atom in CdTe are investigated using density functional theory. The simultaneous calculation of the atomic structure and the electric field gradient (EFG) allows one to correlate the theoretically predicted structure of the DX center with an experimental observable, namely, the EFG obtained from radioactive 111In/111Cd probe atoms in In doped CdTe. In this way, the experimental identification of the DX center structure is established.

  17. Electromagnetically Induced Transparency In Rydberg Atomic Medium

    NASA Astrophysics Data System (ADS)

    Deng, Li; Cong, Lu; Chen, Ai-Xi

    2018-03-01

    Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.

  18. 1979 bibliography of atomic and molecular processes. [Bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  19. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  20. Sixteenth International Conference on the physics of electronic and atomic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

Top