Sample records for theoretical calculation based

  1. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  2. Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1991-01-01

    Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…

  3. A Theoretical Trombone

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2014-01-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that…

  4. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  5. A passive microwave technique for estimating rainfall and vertical structure information from space. Part 1: Algorithm description

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1994-01-01

    This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicity accounting for diverse hydrometeor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. It is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.

  6. Finite area combustor theoretical rocket performance

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Mcbride, Bonnie J.

    1988-01-01

    Previous to this report, the computer program of NASA SP-273 and NASA TM-86885 was capable of calculating theoretical rocket performance based only on the assumption of an infinite area combustion chamber (IAC). An option was added to this program which now also permits the calculation of rocket performance based on the assumption of a finite area combustion chamber (FAC). In the FAC model, the combustion process in the cylindrical chamber is assumed to be adiabatic, but nonisentropic. This results in a stagnation pressure drop from the injector face to the end of the chamber and a lower calculated performance for the FAC model than the IAC model.

  7. Medication competency of nurses according to theoretical and drug calculation online exams: A descriptive correlational study.

    PubMed

    Sneck, Sami; Saarnio, Reetta; Isola, Arja; Boigu, Risto

    2016-01-01

    Medication administration is an important task of registered nurses. According to previous studies, nurses lack theoretical knowledge and drug calculation skills and knowledge-based mistakes do occur in clinical practice. Finnish health care organizations started to develop a systematic verification processes for medication competence at the end of the last decade. No studies have yet been made of nurses' theoretical knowledge and drug calculation skills according to these online exams. The aim of this study was to describe the medication competence of Finnish nurses according to theoretical and drug calculation exams. A descriptive correlation design was adopted. Participants and settings All nurses who participated in the online exam in three Finnish hospitals between 1.1.2009 and 31.05.2014 were selected to the study (n=2479). Quantitative methods like Pearson's chi-squared tests, analysis of variance (ANOVA) with post hoc Tukey tests and Pearson's correlation coefficient were used to test the existence of relationships between dependent and independent variables. The majority of nurses mastered the theoretical knowledge needed in medication administration, but 5% of the nurses struggled with passing the drug calculation exam. Theoretical knowledge and drug calculation skills were better in acute care units than in the other units and younger nurses achieved better results in both exams than their older colleagues. The differences found in this study were statistically significant, but not high. Nevertheless, even the tiniest deficiency in theoretical knowledge and drug calculation skills should be focused on. It is important to identify the nurses who struggle in the exams and to plan targeted educational interventions for supporting them. The next step is to study if verification of medication competence has an effect on patient safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  9. Theoretical and experimental research on laser-beam homogenization based on metal gauze

    NASA Astrophysics Data System (ADS)

    Liu, Libao; Zhang, Shanshan; Wang, Ling; Zhang, Yanchao; Tian, Zhaoshuo

    2018-03-01

    Method of homogenization of CO2 laser heating by means of metal gauze is researched theoretically and experimentally. Distribution of light-field of expanded beam passing through metal gauze was numerically calculated with diffractive optical theory and the conclusion is that method is effective, with comparing the results to the situation without metal gauze. Experimentally, using the 30W DC discharge laser as source and enlarging beam by concave lens, with and without metal gauze, beam intensity distributions in thermal paper were compared, meanwhile the experiments based on thermal imager were performed. The experimental result was compatible with theoretical calculation, and all these show that the homogeneity of CO2 laser heating could be enhanced by metal gauze.

  10. A theoretical trombone

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2014-09-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that compare well to both the desired frequencies of the musical pitches and those actually played on a real trombone.

  11. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  12. A formula for calculating theoretical photoelectron fluxes resulting from the He/+/ 304 A solar spectral line

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.

    1981-01-01

    A simplified method for the evaluation of theoretical photoelectron fluxes in the upper atmosphere resulting from the solar radiation at 304 A is presented. The calculation is based on considerations of primary and cascade (secondary) photoelectron production in the two-stream model, where photoelectron transport is described by two electron streams, one moving up and one moving down, and of loss rates due to collisions with neutral gases and thermal electrons. The calculation is illustrated for the case of photoelectrons at an energy of 24.5 eV, and it is noted that the 24.5-eV photoelectron flux may be used to monitor variations in the solar 304 A flux. Theoretical calculations based on various ionization and excitation cross sections of Banks et al. (1974) are shown to be in generally good agreement with AE-E measurements taken between 200 and 235 km, however the use of more recent, larger cross sections leads to photoelectron values a factor of two smaller than observations but in agreement with previous calculations. It is concluded that a final resolution of the photoelectron problem may depend on a reevaluation of the inelastic electron collision cross sections.

  13. The crystallographic, spectroscopic and theoretical studies on (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol molecules

    NASA Astrophysics Data System (ADS)

    Demirtaş, Güneş; Dege, Necmi; Ağar, Erbil; Uzun, Sümeyye Gümüş

    2018-01-01

    Two new salicylideneaniline (SA) derivative compounds (E)-2-(((4-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (I), and (E)-2-(((3-chlorophenyl)imino)methyl)-5-(diethylamino)phenol, compound (II), have been synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, 1H NMR, 13C NMR and theoretical methods. Both of the compounds which are Schiff base derivatives are isomer of each other. While the compound (I) crystallizes in centrosymmetric monoclinic space group P 21/c, the compound (II) crystallizes in orthorhombic space group P 212121. The theoretical parameters of the molecules have been calculated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) with 6-31G (d,p) basis set. These theoretical parameters have been compared with the experimental parameters obtained by XRD. The experimental geometries of the compounds have been superimposed with the theoretical geometries calculated by HF and DFT methods. Furthermore, the theoretical IR calculations, molecular electrostatic potential maps (MEP) and frontier molecular orbitals have been created for the compounds.

  14. Optical properties of B12P2 crystals: Ab initio calculation and EELS

    NASA Astrophysics Data System (ADS)

    Reshetniak, V. V.; Mavrin, B. N.; Medvedev, V. V.; Perezhogin, I. A.; Kulnitskiy, B. A.

    2018-05-01

    We report an experimental and theoretical investigation of the electronic structure and optical properties of B12P2 crystals in the energy range up to 60 eV. Experimental studies are performed by the method of electron energy loss spectroscopy, and theoretical studies are carried out using density functional theory and the GW approximation. The calculated dependence of the energy loss function is in agreement with the experiment. Based on the results of the calculations, we determine the optical properties of B12P2 crystals and investigate their anisotropy. The dispersion and density of electronic states are calculated and analyzed.

  15. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  16. Nonlinear elastic response of strong solids: First-principles calculations of the third-order elastic constants of diamond

    DOE PAGES

    Hmiel, A.; Winey, J. M.; Gupta, Y. M.; ...

    2016-05-23

    Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elasticmore » constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Lastly, our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.« less

  17. Synthesis, tautomeric stability, spectroscopy and computational study of a potential molecular switch of (Z)-4-(phenylamino)pent-3-en-2-one

    NASA Astrophysics Data System (ADS)

    Fahid, Farzaneh; Kanaani, Ayoub; Pourmousavi, Seied Ali; Ajloo, Davood

    2017-04-01

    The (Z)-4-(phenylamino) pent-3-en-2-one (PAPO) was synthesised applying carbon-based solid acid and described by experimental techniques. Calculated results reveal that its keto-amine form is more stable than its enol-imine form. A relaxed potential energy surface scan has been accomplished based on the optimised geometry of NH tautomeric form to depict the potential energy barrier related to intramolecular proton transfer. The spectroscopic results and theoretical calculations demonstrate that the intramolecular hydrogen bonding strength of PAPO is stronger than that in 4-amino-3-penten-2-one)APO(. In addition, molecular electrostatic potential, total and partial density of stats (TDOS, PDOS) and non-linear optical properties of the compound were studied using same theoretical calculations. Our calculations show that the title molecule has the potential to be used as molecular switch.

  18. Dipole moments and solvatochromism of metal complexes: principle photophysical and theoretical approach.

    PubMed

    Loukova, Galina V; Milov, Alexey A; Vasiliev, Vladimir P; Minkin, Vladimir I

    2016-07-21

    For metal-based compounds, the ground- and excited-state dipole moments and the difference thereof are, for the first time, obtained both experimentally and theoretically using solvatochromic equations and DFT/B3LYP/QZVP calculations. The approach is suggested to be promising and easily accessible, and can be universal to elucidate the electronic properties of metal-based compounds.

  19. Time-correlated gust loads using matched filter theory and random process theory - A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    This paper describes and illustrates two ways of performing time-correlated gust-load calculations. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  20. Time-correlated gust loads using Matched-Filter Theory and Random-Process Theory: A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    Two ways of performing time-correlated gust-load calculations are described and illustrated. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  1. Physical and Chemical Processing in Flames

    DTIC Science & Technology

    2013-08-12

    hydrogen-air flames. It order to evaluate the closeness of theoretical limit based on the Sivashinsky criterion with the experimental results we have... experimental H2-O2 results, and it is seen that the experimental transition regime does span around the neighborhood of the theoretical boundary, suggesting...for hydrogen–oxygen flames with the calculated theoretical boundary superimposed 13 In Fig. II-4 we plot the experimentally measured

  2. Theoretical Evaluation of Electromagnetic Emissions from GSM900 Mobile Telephony Base Stations in the West Bank and Gaza Strip-Palestine.

    PubMed

    Lahham, Adnan; Alkbash, Jehad Abu; ALMasri, Hussien

    2017-04-20

    Theoretical assessments of power density in far-field conditions were used to evaluate the levels of environmental electromagnetic frequencies from selected GSM900 macrocell base stations in the West Bank and Gaza Strip. Assessments were based on calculating the power densities using commercially available software (RF-Map from Telstra Research Laboratories-Australia). Calculations were carried out for single base stations with multiantenna systems and also for multiple base stations with multiantenna systems at 1.7 m above the ground level. More than 100 power density levels were calculated at different locations around the investigated base stations. These locations include areas accessible to the general public (schools, parks, residential areas, streets and areas around kindergartens). The maximum calculated electromagnetic emission level resulted from a single site was 0.413 μW cm-2 and found at Hizma town near Jerusalem. Average maximum power density from all single sites was 0.16 μW cm-2. The results of all calculated power density levels in 100 locations distributed over the West Bank and Gaza were nearly normally distributed with a peak value of ~0.01% of the International Commission on Non-Ionizing Radiation Protection's limit recommended for general public. Comparison between calculated and experimentally measured value of maximum power density from a base station showed that calculations overestimate the actual measured power density by ~27%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery.

    PubMed

    San, Haisheng; Yao, Shulin; Wang, Xiang; Cheng, Zaijun; Chen, Xuyuan

    2013-10-01

    The current paper presents a theoretical analysis of Ni-63 nuclear micro-battery based on a wide-band gap semiconductor GaN thin-film covered with thin Ni/Au films to form Schottky barrier for carrier separation. The total energy deposition in GaN was calculated using Monte Carlo methods by taking into account the full beta spectral energy, which provided an optimal design on Schottky barrier width. The calculated results show that an 8 μm thick Schottky barrier can collect about 95% of the incident beta particle energy. Considering the actual limitations of current GaN growth technique, a Fe-doped compensation technique by MOCVD method can be used to realize the n-type GaN with a carrier concentration of 1×10(15) cm(-3), by which a GaN based Schottky betavoltaic micro-battery can achieve an energy conversion efficiency of 2.25% based on the theoretical calculations of semiconductor device physics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Theoretical study of the kinetics of chlorine atom abstraction from chloromethanes by atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-10-01

    Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.

  5. Relational Reasoning about Numbers and Operations--Foundation for Calculation Strategy Use in Multi-Digit Multiplication and Division

    ERIC Educational Resources Information Center

    Schulz, Andreas

    2018-01-01

    Theoretical analysis of whole number-based calculation strategies and digit-based algorithms for multi-digit multiplication and division reveals that strategy use includes two kinds of reasoning: reasoning about the relations between numbers and reasoning about the relations between operations. In contrast, algorithms aim to reduce the necessary…

  6. Theoretical study of the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 - Implications for the N2 afterglow

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1988-01-01

    Theoretical spectroscopic constants are reported for the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 based on CASSCF/MRCI calculations using large ANO Gaussian basis sets. The calculated A prime Sigma(+)g potential differs qualitatively from previous calculations in that the inner well is significantly deeper (De = 3450/cm). This deeper well provides considerable support for the suggestion of Berkowitz et al. (1956) that A prime 5Sigma(+)g is the primary precursor state involved in the yellow Lewis-Rayleigh afterglow of N2.

  7. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    NASA Astrophysics Data System (ADS)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  8. Density functional calculations of the Mössbauer parameters in hexagonal ferrite SrFe12O19

    NASA Astrophysics Data System (ADS)

    Ikeno, Hidekazu

    2018-03-01

    Mössbauer parameters in a magnetoplumbite-type hexagonal ferrite, SrFe12O19, are computed using the all-electron band structure calculation based on the density functional theory. The theoretical isomer shift and quadrupole splitting are consistent with experimentally obtained values. The absolute values of hyperfine splitting parameters are found to be underestimated, but the relative scale can be reproduced. The present results validate the site-dependence of Mössbauer parameters obtained by analyzing experimental spectra of hexagonal ferrites. The results also show the usefulness of theoretical calculations for increasing the reliability of interpretation of the Mössbauer spectra.

  9. Exchange coupling and magnetic anisotropy of exchanged-biased quantum tunnelling single-molecule magnet Ni3Mn2 complexes using theoretical methods based on Density Functional Theory.

    PubMed

    Gómez-Coca, Silvia; Ruiz, Eliseo

    2012-03-07

    The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.

  10. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  11. Theoretical tuning of the firefly bioluminescence spectra by the modification of oxyluciferin

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan-Yuan; Zhu, Jia; Liu, Ya-Jun

    2014-01-01

    Extending the firefly bioluminescence is of practical significance for the improved visualization of living cells and the development of a multicolor reporter. Tuning the color of bioluminescence in fireflies mainly involves the modification of luciferase and luciferin. In this Letter, we theoretically studied the emission spectra of 9 firefly oxyluciferin analogs in the gas phase and in solutions. Three density functionals, including B3LYP, CAM-B3LYP and M06-2X, were employed to theoretically predict the efficiently luminescent analogs. The reliable functionals for calculating the targeted systems were suggested. The luminescence efficiency, solvent effects, and substituent effects are discussed based on the calculated results.

  12. A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Yalçın, Ergin; Alkış, Meltem; Seferoğlu, Nurgül; Seferoğlu, Zeynel

    2018-03-01

    A novel fluorescence coumarin-pyrazole-triazine based chemosensor (CPT) bearing 5-hydroxypyrazole as a receptoric part was synthesized and characterized by using IR, 1H/13C NMR and HRMS for the purpose of recognition of anions in DMSO. The most stable tautomeric form of CPT was determined by experimental techniques and theoretical calculations. The selectivity and sensitivity of CPT towards anions (CN-, F-, Cl-, Br-, I-, AcO-, HSO4-, H2PO4- and ClO4-) were determined using spectrophotometric and 1H NMR titration techniques as the experimental approach, and the results were explained by employing theoretical calculations. It was found to be suitable for the selective detection of F- in the presence of CN- and AcO- as competing anions. In addition, CPT exhibits significant "light-up" effect after interaction with TFA in CH2Cl2.

  13. Numerical calculation of the Fresnel transform.

    PubMed

    Kelly, Damien P

    2014-04-01

    In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.

  14. Examinations of electron temperature calculation methods in Thomson scattering diagnostics.

    PubMed

    Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin

    2012-10-01

    Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. χ-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the χ-square test are examined and scale factor test is proposed as an alternative method.

  15. Median infectious dose (ID₅₀) of porcine reproductive and respiratory syndrome virus isolate MN-184 via aerosol exposure.

    PubMed

    Cutler, Timothy D; Wang, Chong; Hoff, Steven J; Kittawornrat, Apisit; Zimmerman, Jeffrey J

    2011-08-05

    The median infectious dose (ID(50)) of porcine reproductive and respiratory syndrome (PRRS) virus isolate MN-184 was determined for aerosol exposure. In 7 replicates, 3-week-old pigs (n=58) respired 10l of airborne PRRS virus from a dynamic aerosol toroid (DAT) maintained at -4°C. Thereafter, pigs were housed in isolation and monitored for evidence of infection. Infection occurred at virus concentrations too low to quantify by microinfectivity assays. Therefore, exposure dose was determined using two indirect methods ("calculated" and "theoretical"). "Calculated" virus dose was derived from the concentration of rhodamine B monitored over the exposure sequence. "Theoretical" virus dose was based on the continuous stirred-tank reactor model. The ID(50) estimate was modeled on the proportion of pigs that became infected using the probit and logit link functions for both "calculated" and "theoretical" exposure doses. Based on "calculated" doses, the probit and logit ID(50) estimates were 1 × 10(-0.13)TCID(50) and 1 × 10(-0.14)TCID(50), respectively. Based on "theoretical" doses, the probit and logit ID(50) were 1 × 10(0.26)TCID(50) and 1 × 10(0.24)TCID(50), respectively. For each point estimate, the 95% confidence interval included the other three point estimates. The results indicated that MN-184 was far more infectious than PRRS virus isolate VR-2332, the only other PRRS virus isolate for which ID(50) has been estimated for airborne exposure. Since aerosol ID(50) estimates are available for only these two isolates, it is uncertain whether one or both of these isolates represent the normal range of PRRS virus infectivity by this route. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Errors in the Calculation of 27Al Nuclear Magnetic Resonance Chemical Shifts

    PubMed Central

    Wang, Xianlong; Wang, Chengfei; Zhao, Hui

    2012-01-01

    Computational chemistry is an important tool for signal assignment of 27Al nuclear magnetic resonance spectra in order to elucidate the species of aluminum(III) in aqueous solutions. The accuracy of the popular theoretical models for computing the 27Al chemical shifts was evaluated by comparing the calculated and experimental chemical shifts in more than one hundred aluminum(III) complexes. In order to differentiate the error due to the chemical shielding tensor calculation from that due to the inadequacy of the molecular geometry prediction, single-crystal X-ray diffraction determined structures were used to build the isolated molecule models for calculating the chemical shifts. The results were compared with those obtained using the calculated geometries at the B3LYP/6-31G(d) level. The isotropic chemical shielding constants computed at different levels have strong linear correlations even though the absolute values differ in tens of ppm. The root-mean-square difference between the experimental chemical shifts and the calculated values is approximately 5 ppm for the calculations based on the X-ray structures, but more than 10 ppm for the calculations based on the computed geometries. The result indicates that the popular theoretical models are adequate in calculating the chemical shifts while an accurate molecular geometry is more critical. PMID:23203134

  17. Theoretical Evaluation of Crosslink Density of Chain Extended Polyurethane Networks Based on Hydroxyl Terminated Polybutadiene and Butanediol and Comparison with Experimental Data

    NASA Astrophysics Data System (ADS)

    Sekkar, Venkataraman; Alex, Ancy Smitha; Kumar, Vijendra; Bandyopadhyay, G. G.

    2018-01-01

    Polyurethane networks between hydroxyl terminated polybutadiene (HTPB) and butanediol (BD) were prepared using toluene diisocyanate (TDI) as the curative. HTPB and BD were taken at equivalent ratios viz.: 1:0, 1:1, 1:2, 1:4, and 1:8. Crosslink density (CLD) was theoretically calculated using α-model equations developed by Marsh. CLD for the polyurethane networks was experimentally evaluated from equilibrium swell and stress-strain data. Young's modulus and Mooney-Rivlin approaches were adopted to calculate CLD from stress-strain data. Experimentally obtained CLD values were enormously higher than theoretical values especially at higher BD/HTPB equivalent ratios. The difference in the theoretical and experimental values for CLD was explained in terms of local crystallization due to the formation of hard segments and hydrogen bonded interactions.

  18. Synthesis and spectroscopical study of rhodanine derivative using DFT approaches

    NASA Astrophysics Data System (ADS)

    Anbarasan, R.; Dhandapani, A.; Manivarman, S.; Subashchandrabose, S.; Saleem, H.

    2015-07-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of (E)-5-benzylidene-2-thioxothiazolidine-4-one (E5BTTO) have been investigated experimentally and theoretically based on Density Functional Theory (DFT) approach. The FT-Raman and FT-IR spectra of E5BTTO were recorded in solid phase. Theoretical calculations were performed at the DFT level using the Gaussian 03 program. The experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumber by their Total Energy Distribution (TED). The results of the calculation were applied to simulate infrared and raman spectra of the title compound which showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Stability arising from hyperconjugative interactions leading to its NLO activity and charge delocalization were analyzed using Natural Bond Orbital (NBO) analysis.

  19. A theoretical and experimental investigation of cylindrical electrostatic probes at arbitrary incidence in flowing plasma

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Jones, W. L., Jr.

    1974-01-01

    The theory for calculating the current collected by a negatively biased cylindrical electrostatic probe at an arbitrary angle of attack in a weakley ionized flowing plasma is presented. The theory was constructed by considering both random and directed motion simultaneous with dynamic coupling of the flow properties and of the electric field of the probe. This direct approach yielded a theory that is more general than static plasma theories modified to account for flow. Theoretical calculations are compared with experimental electrostatic probe data obtained in the free stream of an arc-heated hypersonic wind tunnel. The theoretical calculations are based on flow conditions and plasma electron densities measured by an independent microwave interferometer technique. In addition, the theory is compared with laboratory and satellite data previously published by other investigators. In each case the comparison gives good agreement.

  20. The harmonic force field of benzene. A local density functional study

    NASA Astrophysics Data System (ADS)

    Bérces, Attila; Ziegler, Tom

    1993-03-01

    The harmonic force field of benzene has been calculated by a method based on local density functional theory (LDF). The calculations were carried out employing a triple zeta basis set with triple polarization on hydrogen and double polarization on carbon. The LDF force field was compared to the empirical field due to Ozkabak, Goodman, and Thakur [A. G. Ozkabak, L. Goodman, and S. N. Thakur, J. Phys. Chem. 95, 9044 (1991)], which has served as a benchmark for theoretical calculations as well as the theoretical field based on scaled Hartree-Fock ab initio calculation due to Pulay, Fogarasi, and Boggs [P. Pulay, G. Fogarasi, and J. E. Boggs, J. Chem. Phys. 74, 3999 (1981)]. The calculated LDF force field is in excellent qualitative and very good quantitative agreement with the theoretical field proposed by Pulay, Fogarasi, and Boggs as well as the empirical field due to Ozkabak, Goodman, and Thakur. The LDF field is closest to the values of Pulay and co-workers in those cases where the force constants due to Pulay, Fogarasi, and Boggs and to Ozkabak, Goodman, and Thakur differ in sign or magnitude. The accuracy of the LDF force field was investigated by evaluating a number of eigenvalue and eigenfunction dependent quantities from the the LDF force constants. The quantities under investigation include vibrational frequencies of seven isotopomers, isotopic shifts, as well as absorption intensities. The calculations were performed at both theoretical optimized and approximate equilibrium reference geometries. The predicted frequencies are usually within 1%-2% compared to the empirical harmonic frequencies. The least accurate frequency deviates by 5% from the experimental value. The average deviations from the empirical harmonic frequencies of C6H6 and C6D6 are 16.7 cm-1 (1.5%) and 15.2 cm-1 (1.7%), respectively, not including CH stretching frequencies, in the case where a theoretical reference geometry was used. The accuracy of the out-of-plane force field is especially remarkable; the average deviations for the C6H6 and C6D6 frequencies, based on the LDF force field, are 9.4 cm-1 (1.2%) and 7.3 cm-1 (1.2%), respectively. The absorption intensities were not predicted as accurately as it was expected based on the size of the basis set applied. An analysis is provided to ensure that the force constants are not significantly affected by numerical errors due to the numerical integration scheme employed.

  1. Excitation and Ionization Cross Sections for Electron-Beam Energy Deposition in High Temperature Air

    DTIC Science & Technology

    1987-07-09

    are given and compared to existing experimental results or other theoretical approaches. This information can readily be used as input for a deposition...of the doubly-differential, singly- differential and total ionization cross sections which subsequently served to guide theoretical calculations on...coworkers have been leaders in developing a theoretical base for studying electron production and energy deposition in atmospheric gases such as He, N2

  2. A theoretical study of the electronic transition moment for the C2 Swan band system

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Langhoff, S. R.

    1978-01-01

    Large-scale self-consistent-field plus configuration-interaction calculations have been performed for the a 3Pi u and d 3Pi g states of C2. The theoretical potential curves are in good agreement with those found by a Klein-Dunham analysis of measured molecular constants in terms of shape and excitation energy. The sum of the squares of the theoretical transition moments between the states at 2.44 bohr is 4.12 a.u. which agrees with the results of shock tube measurements. The variation in the sum of the squares of the theoretical moments with internuclear separation agrees with the values of Danylewych and Nicholls (1974). Based on the data for C2 and mother molecules, it is suggested that CI calculations using near Hartree-Fock quality Slater basis sets produce highly reliable transition moments.

  3. Absorption coefficients of silicon: A theoretical treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  4. Effect of the delegation of GP-home visits on the development of the number of patients in an ambulatory healthcare centre in Germany

    PubMed Central

    2012-01-01

    Background The AGnES-concept (AGnES: GP-supporting, community-based, e-health-assisted, systemic intervention) was developed to support general practitioners (GPs) in undersupplied regions. The project aims to delegate GP-home visits to qualified AGnES-practice assistants, to increase the number of patients for whom medical care can be provided. This paper focuses on the effect of delegating GP-home visits on the total number of patients treated. First, the theoretical number of additional patients treated by delegating home visits to AGnES-practice assistants was calculated. Second, actual changes in the number of patients in participating GP-practices were analyzed. Methods The calculation of the theoretical increase in the number of patients was based on project data, data which were provided by the Association of Statutory Health Insurance Physicians, or which came from the literature. Setting of the project was an ambulatory healthcare centre in the rural county Oberspreewald-Lausitz in the Federal State of Brandenburg, which employed six GPs, four of which participated in the AGnES project. The analysis of changes in the number of patients in the participating GP-practices was based on the practices’ reimbursement data. Results The calculated mean capacity of AGnES-practice assistants was 1376.5 home visits/year. GPs perform on average 1200 home visits/year. Since home visits with an urgent medical reason cannot be delegated, we included only half the capacity of the AGnES-practice assistants in the analysis (corresponding to a 20 hour-work week). Considering all parameters in the calculation model, 360.1 GP-working hours/year can be saved. These GP-hours could be used to treat 170 additional patients/quarter year. In the four participating GP-practices the number of patients increased on average by 133 patients/quarter year during the project period, which corresponds to 78% of the theoretically possible number of patients. Conclusions The empirical findings on the potential to increase the number of patients in GP-practices through delegation of tasks come close to the theoretical calculations. Differences between the calculated and the real values may be due to differences in the age and mortality distribution of the patients. The results indicate that a support system based on practice assistants can alleviate the consequences of GP-shortages in rural areas. PMID:23046512

  5. The influence of anharmonic and solvent effects on the theoretical vibrational spectra of the guanine-cytosine base pairs in Watson-Crick and Hoogsteen configurations.

    PubMed

    Bende, Attila; Muntean, Cristina M

    2014-03-01

    The theoretical IR and Raman spectra of the guanine-cytosine DNA base pairs in Watson-Crick and Hoogsteen configurations were computed using DFT method with M06-2X meta-hybrid GGA exchange-correlation functional, including the anharmonic corrections and solvent effects. The results for harmonic frequencies and their anharmonic corrections were compared with our previously calculated values obtained with the B3PW91 hybrid GGA functional. Significant differences were obtained for the anharmonic corrections calculated with the two different DFT functionals, especially for the stretching modes, while the corresponding harmonic frequencies did not differ considerable. For the Hoogtseen case the H⁺ vibration between the G-C base pair can be characterized as an asymmetric Duffing oscillator and therefore unrealistic anharmonic corrections for normal modes where this proton vibration is involved have been obtained. The spectral modification due to the anharmonic corrections, solvent effects and the influence of sugar-phosphate group for the Watson-Crick and Hoogsteen base pair configurations, respectively, were also discussed. For the Watson-Crick case also the influence of the stacking interaction on the theoretical IR and Raman spectra was analyzed. Including the anharmonic correction in our normal mode analysis is essential if one wants to obtain correct assignments of the theoretical frequency values as compared with the experimental spectra.

  6. Electron collisions with small esters: A joint experimental-theoretical investigation

    NASA Astrophysics Data System (ADS)

    de Souza, G. L. C.; da Silva, L. A.; de Sousa, W. J. C.; Sugohara, R. T.; Iga, I.; dos Santos, A. S.; Machado, L. E.; Homem, M. G. P.; Brescansin, L. M.; Lucchese, R. R.; Lee, M.-T.

    2016-03-01

    A theoretical and experimental investigation on elastic electron scattering by two small esters, namely, methyl formate and ethyl acetate, is reported. Experimental differential, integral, and momentum-transfer cross sections are given in the 30-1000 eV and 10∘-120∘ ranges. The relative-flow technique was used to determine such quantities. Particularly for methyl formate, a theoretical study was also carried out in the 1-500 eV range. A complex optical potential derived from a Hartree-Fock molecular wave function was used to represent the collision dynamics, whereas the Padé approximation was used to solve the scattering equations. In addition, calculations based on the framework of the independent-atom model (IAM) were also performed for both targets. In general, there is good agreement between our experimental data and the present theoretical results calculated using the Padé approximation. The theoretical results using the IAM also agree well with the experimental data at 200 eV and above. Moreover, for methyl formate, our calculations reveal a 2A'' (π*) resonance at about 3.0 eV and a σ*-type resonance centered at about 8.0 eV in the 2A' scattering channel. The π* resonance is also seen in other targets containing a carbonyl group.

  7. Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom(s) in rock-salt phase- a first principle based theoretical initiative

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.

  8. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    NASA Astrophysics Data System (ADS)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saurov, A. N.; Bulyarskiy, S. V.; Risovaniy, V. D.

    An analysis of available and promising developments is carried out in the field of power elements based on β decay. The possible fabrication technologies are described, and the efficiency of the power sources manufactured with them is calculated. The possibility of designing a self-charging supercapacitor based on carbon nanotubes is considered with the use of {sup 63}Ni and {sup 14}C isotopes, and theoretical calculation confirms the promising nature of this line of research.

  10. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  11. Finite Element Analysis of Walking Beam of a New Compound Adjustment Balance Pumping Unit

    NASA Astrophysics Data System (ADS)

    Wu, Jufei; Wang, Qian; Han, Yunfei

    2017-12-01

    In this paper, taking the designer of the new compound balance pumping unit beam as our research target, the three-dimensional model is established by Solid Works, the load and the constraint are determined. ANSYS Workbench is used to analyze the tail and the whole of the beam, the stress and deformation are obtained to meet the strength requirements. The finite element simulation and theoretical calculation of the moment of the center axis beam are carried out. The finite element simulation results are compared with the calculated results of the theoretical mechanics model to verify the correctness of the theoretical calculation. Finally, the finite element analysis is consistent with the theoretical calculation results. The theoretical calculation results are preferable, and the bending moment value provides the theoretical reference for the follow-up optimization and research design.

  12. Scaling Cross Sections for Ion-atom Impact Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation,more » and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.« less

  13. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    PubMed

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  14. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    ERIC Educational Resources Information Center

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  15. Joint Services Electronics Program.

    DTIC Science & Technology

    1985-12-31

    year a comprehensive experimental study of the collision- enhanced Hanle-type resonances in Na vapor with various buffer gases has been completed...demonstrated theoretically that the collision-enhanced Hanle resonances are equivalent to the phenomenon of collision-induced transverse optical pumping. The...for the sensitivity of the mean sojourn times. We also developed a set of new equations based on perturbation analysis which calculates theoretically

  16. Minimizing the IOL power error induced by keratometric power.

    PubMed

    Camps, Vicente J; Piñero, David P; de Fez, Dolores; Mateo, Verónica

    2013-07-01

    To evaluate theoretically in normal eyes the influence on IOL power (PIOL) calculation of the use of a keratometric index (nk) and to analyze and validate preliminarily the use of an adjusted keratometric index (nkadj) in the IOL power calculation (PIOLadj). A model of variable keratometric index (nkadj) for corneal power calculation (Pc) was used for IOL power calculation (named PIOLadj). Theoretical differences (ΔPIOL) between the new proposed formula (PIOLadj) and which is obtained through Gaussian optics ((Equation is included in full-text article.)) were determined using Gullstrand and Le Grand eye models. The proposed new formula for IOL power calculation (PIOLadj) was prevalidated clinically in 81 eyes of 81 candidates for corneal refractive surgery and compared with Haigis, HofferQ, Holladay, and SRK/T formulas. A theoretical PIOL underestimation greater than 0.5 diopters was present in most of the cases when nk = 1.3375 was used. If nkadj was used for Pc calculation, a maximal calculated error in ΔPIOL of ±0.5 diopters at corneal vertex in most cases was observed independently from the eye model, r1c, and the desired postoperative refraction. The use of nkadj in IOL power calculation (PIOLadj) could be valid with effective lens position optimization nondependent of the corneal power. The use of a single value of nk for Pc calculation can lead to significant errors in PIOL calculation that may explain some IOL power overestimations with conventional formulas. These inaccuracies can be minimized by using the new PIOLadj based on the algorithm of nkadj.

  17. Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing

    NASA Astrophysics Data System (ADS)

    Tian, Q.; Fainman, Y.; Lee, Sing H.

    1989-02-01

    The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.

  18. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Theoretical study of diaquamalonatozinc(II) single crystal for applications in non-linear optical devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mitesh; Rai, Vineet Kumar

    2017-12-01

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM) with the microscopic spin-Hamiltonian (MSH) theory and the coefficient of fractional parentage have been employed to investigate the dopant manganese(II) ion substitution in the diaquamalonatozinc(II) (DAMZ) single crystal. The magnetic parameters, viz. g-tensor and D-tensor, has been determined by using the ORCA program package developed by F Neese et al. The unrestricted Kohn-Sham orbitals-based Pederson-Khanna (PK) as the unperturbed wave function is observed to be the most suitable for the computational calculation of spin-orbit tensor (D^{SO}) of the axial ZFS parameter D. The effects of spin-spin dipolar couplings are taken into account. The unrestricted natural orbital (UNO) is used for the calculation of spin-spin dipolar contributions to the ZFS tensor. A comparative study of the quantum mechanical treatment of Pederson-Khanna (PK) with coupled perturbation (CP) is reported in the present study. The unrestricted Kohn-Sham-based natural orbital with Pederson-Khanna-type of perturbation approach validates the experimental results in the evaluation of ZFS parameters. The theoretical results are appropriate with the experimental ones and indicate the interstitial occupancy of Mn^{2+} ion in the host matrix.

  20. Comparison of the observed and calculated coherent forward scattering spectra of the 842.5 nm Ar I and 844.6 nm O I lines in a radio frequency glow discharge

    NASA Astrophysics Data System (ADS)

    Matsuta, Hideyuki

    2017-06-01

    The coherent forward scattering (CFS) spectra of O I 844.6 nm and Ar I 842.5 nm lines in a radio frequency (RF) glow discharge were measured using a CFS spectrometer that functions in the Faraday configuration with permanent double-ring magnets and a diode-laser source. A significant change in the CFS spectrum of the Ar I 842.5 nm line was observed when the partial pressures of argon in a Hesbnd Ar RF glow discharge were changed . Based on the theoretical calculations of the CFS spectra performed using Faraday functions, a comparison between the observed and calculated spectra was performed. The CFS line profile of O I 844.6 nm and changes in the Ar I 842.5 nm CFS spectrum are explained by theoretical calculations.

  1. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    PubMed

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.

  2. Theoretical Conversions of Different Hardness and Tensile Strength for Ductile Materials Based on Stress-Strain Curves

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Cai, Li-Xun

    2018-04-01

    Based on the power-law stress-strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength ( σ b ) and Hollomon parameters ( K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength ( σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -( K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.

  3. Effect Of Auger Recombination In An Ion Track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1993-01-01

    Report presents theoretical calculations of contribution of Auger recombination to depletion of charge carriers from ionization track left by passage of energetic heavy ion through silicon-based electronic device.

  4. Theoretical studies of the EPR parameters and local structures for Cu2+-doped cobalt ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2015-11-01

    High-order perturbation formulas for a 3d9 ion in rhombically elongated octahedral was applied to calculate the electron paramagnetic resonance (EPR) parameters (the g factors, gi, and the hyperfine structure constants Ai, i = x, y, z) of the rhombic Cu2+ center in CoNH4PO4.6H2O. In the calculations, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the EPR parameters with the local structure of the rhombic Cu2+ center. Based on the calculations, the ligand octahedral (i.e. [Cu(H2O)6]2+ cluster) are found to experience the local bond length variations ΔZ (≈0.213 Å) and δr (≈0.132 Å) along axial and perpendicular directions due to the Jahn-Teller effect. Theoretical EPR parameters based on the above local structure are in good agreement with the observed values; the results are discussed.

  5. A Combined Theoretical and Experimental Study for Silver Electroplating

    PubMed Central

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  6. Interplay between theory and experiment: computational organometallic and transition metal chemistry.

    PubMed

    Lin, Zhenyang

    2010-05-18

    Computational and theoretical chemistry provide fundamental insights into the structures, properties, and reactivities of molecules. As a result, theoretical calculations have become indispensable in various fields of chemical research and development. In this Account, we present our research in the area of computational transition metal chemistry, using examples to illustrate how theory impacts our understanding of experimental results and how close collaboration between theoreticians and experimental chemists can be mutually beneficial. We begin by examining the use of computational chemistry to elucidate the details of some unusual chemical bonds. We consider the three-center, two-electron bonding in titanocene sigma-borane complexes and the five-center, four-electron bonding in a rhodium-bismuth complex. The bonding in metallabenzene complexes is also examined. In each case, theoretical calculations provide particular insight into the electronic structure of the chemical bonds. We then give an example of how theoretical calculations aided the structural determination of a kappa(2)-N,N chelate ruthenium complex formed upon heating an intermediate benzonitrile-coordinated complex. An initial X-ray diffraction structure proposed on the basis of a reasonable mechanism appeared to fit well, with an apparently acceptable R value of 0.0478. But when DFT calculations were applied, the optimized geometry differed significantly from the experimental data. By combining experimental and theoretical outlooks, we posited a new structure. Remarkably, a re-refining of the X-ray diffraction data based on the new structure resulted in a slightly lower R value of 0.0453. We further examine the use of computational chemistry in providing new insight into C-H bond activation mechanisms and in understanding the reactivity properties of nucleophilic boryl ligands, addressing experimental difficulties with calculations and vice versa. Finally, we consider the impact of theoretical insights in three very specific experimental studies of chemical reactions, illustrating how theoretical results prompt further experimental studies: (i) diboration of aldehydes catalyzed by copper(I) boryl complexes, (ii) ruthenium-catalyzed C-H amination of arylazides, and (iii) zinc reduction of a vinylcarbyne complex. The concepts and examples presented here are intended for nonspecialists, particularly experimentalists. Together, they illustrate some of the achievements that are possible with a fruitful union of experiment and theory.

  7. X-ray diffraction, crystal structure, and spectral features of the optical susceptibilities of single crystals of the ternary borate oxide lead bismuth tetraoxide, PbBiBO4.

    PubMed

    Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean

    2009-05-14

    The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.

  8. Characterization of local atomic structure in Co/Zn based ZIFs by XAFS

    NASA Astrophysics Data System (ADS)

    Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo

    2018-03-01

    The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.

  9. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates.

    PubMed

    Swiderski, G; Kalinowska, M; Wojtulewski, S; Lewandowski, W

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg-->Ca-->Sr-->Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the pi delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  10. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates

    NASA Astrophysics Data System (ADS)

    Świderski, G.; Kalinowska, M.; Wojtulewski, S.; Lewandowski, W.

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg → Ca → Sr → Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the π delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  11. A Method for the Calculation of Lattice Energies of Complex Crystals with Application to the Oxides of Molybdenum

    NASA Technical Reports Server (NTRS)

    Chaney, William S.

    1961-01-01

    A theoretical study has been made of molybdenum dioxide and molybdenum trioxide in order to extend the knowledge of factors Involved in the oxidation of molybdenum. New methods were developed for calculating the lattice energies based on electrostatic valence theory, and the coulombic, polarization, Van der Waals, and repulsion energie's were calculated. The crystal structure was examined and structure details were correlated with lattice energy.

  12. Synthesis of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer molecule and its characterization by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Cankaya, N.; Kurt, M.

    2018-06-01

    In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.

  13. A coumarin-pyrazolone based fluorescent probe for selective colorimetric and fluorimetric fluoride detection: Synthesis, spectroscopic properties and DFT calculations

    NASA Astrophysics Data System (ADS)

    Babür, Banu; Seferoğlu, Nurgül; Seferoğlu, Zeynel

    2018-06-01

    A novel coumarin based fluorescence anion chemosensor (P-1) bearing pyrazolone as a receptoric part was synthesized and characterized by using FT-IR, 1H/13C NMR and HRMS for the purpose of recognition of anions in DMSO. P-1 has four tautomeric structures and the most stable tautomeric form of P-1 was determined experimentally and theoretically. The chemosensor P-1 consists two receptoric parts as free amide Nsbnd H and enamine Nsbnd H which is stabilized intramolecular H-bonding with coumarin carbonyl oxygen. P-1 interacts selectively with fluoride anion via amide Nsbnd H. The selectivity and sensitivity of probe to various anions were determined with spectrophotometric and 1H NMR titration techniques as experimentally and all results were also explained by theoretical calculations.

  14. Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione

    NASA Astrophysics Data System (ADS)

    Joshi, Rachana; Pandey, Nidhi; Yadav, Swatantra Kumar; Tilak, Ragini; Mishra, Hirdyesh; Pokharia, Sandeep

    2018-07-01

    The hydrazino Schiff base (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione was synthesized and structurally characterized by elemental analysis, FT-IR, Raman, 1H and 13C-NMR and UV-Vis studies. A density functional theory (DFT) based electronic structure calculations were accomplished at B3LYP/6-311++G(d,p) level of theory. A comparative analysis of calculated vibrational frequencies with experimental vibrational frequencies was carried out and significant bands were assigned. The results indicate a good correlation (R2 = 0.9974) between experimental and theoretical IR frequencies. The experimental 1H and 13C-NMR resonance signals were also compared to the calculated values. The theoretical UV-Vis spectral studies were carried out using time dependent-DFT method in gas phase and IEFPCM model in solvent field calculation. The geometrical parameters were calculated in the gas phase. Atomic charges at selected atoms were calculated by Mulliken population analysis (MPA), Hirshfeld population analysis (HPA) and Natural population analysis (NPA) schemes. The molecular electrostatic potential (MEP) map was calculated to assign reactive site on the surface of the molecule. The conceptual-DFT based global and local reactivity descriptors were calculated to obtain an insight into the reactivity behaviour. The frontier molecular orbital analysis was carried out to study the charge transfer within the molecule. The detailed natural bond orbital (NBO) analysis was performed to obtain an insight into the intramolecular conjugative electronic interactions. The titled compound was screened for in vitro antifungal activity against four fungal strains and the results obtained are explained through in silico molecular docking studies.

  15. Theoretical and experimental analyses to determine the effects of crystal orientation and grain size on the thermoelectric properties of oblique deposited bismuth telluride thin films

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki

    2018-06-01

    The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.

  16. Prediction of Forming Limit Diagram for Seamed Tube Hydroforming Based on Thickness Gradient Criterion

    NASA Astrophysics Data System (ADS)

    Chen, Xianfeng; Lin, Zhongqin; Yu, Zhongqi; Chen, Xinping; Li, Shuhui

    2011-08-01

    This study establishes the forming limit diagram (FLD) for QSTE340 seamed tube hydroforming by finite element method (FEM) simulation. FLD is commonly obtained from experiment, theoretical calculation and FEM simulation. But for tube hydroforming, both of the experimental and theoretical means are restricted in the application due to the equipment costs and the lack of authoritative theoretical knowledge. In this paper, a novel approach of predicting forming limit using thickness gradient criterion (TGC) is presented for seamed tube hydroforming. Firstly, tube bulge tests and uniaxial tensile tests are performed to obtain the stress-strain curve for tube three parts. Then one FE model for a classical tube free hydroforming and another FE model for a novel experimental apparatus by applying the lateral compression force and the internal pressure are constructed. After that, the forming limit strain is calculated based on TGC in the FEM simulation. Good agreement between the simulation and experimental results is indicated. By combining the TGC and FEM, an alternative way of predicting forming limit with enough accuracy and convenience is provided.

  17. Assessment of two theoretical methods to estimate potentiometrictitration curves of peptides: comparison with experiment

    PubMed Central

    Makowska, Joanna; Bagiñska, Katarzyna; Makowski, Mariusz; Jagielska, Anna; Liwo, Adam; Kasprzykowski, Franciszek; Chmurzyñski, Lech; Scheraga, Harold A.

    2008-01-01

    We compared the ability of two theoretical methods of pH-dependent conformational calculations to reproduce experimental potentiometric-titration curves of two models of peptides: Ac-K5-NHMe in 95% methanol (MeOH)/5% water mixture and Ac-XX(A)7OO-NH2 (XAO) (where X is diaminobutyric acid, A is alanine, and O is ornithine) in water, methanol (MeOH) and dimethylsulfoxide (DMSO), respectively. The titration curve of the former was taken from the literature, and the curve of the latter was determined in this work. The first theoretical method involves a conformational search using the Electrostatically Driven Monte Carlo (EDMC) method with a low-cost energy function (ECEPP/3 plus the SRFOPT surface-solvation model, assumming that all titratable groups are uncharged) and subsequent reevaluation of the free energy at a given pH with the Poisson-Boltzmann equation, considering variable protonation states. In the second procedure, MD simulations are run with the AMBER force field and the Generalized-Born model of electrostatic solvation, and the protonation states are sampled during constant-pH MD runs. In all three solvents, the first pKa of XAO is strongly downshifted compared to the value for the reference compounds (ethyl amine and propyl amine, respectively); the water and methanol curves have one, and the DMSO curve has two jumps characteristic of remarkable differences in the dissociation constants of acidic groups. The predicted titration curves of Ac-K5-NHMe are in good agreement with the experimental ones; better agreement is achieved with the MD-based method. The titration curves of XAO in methanol and DMSO, calculated using the MD-based approach, trace the shape of the experimental curves, reproducing the pH jump, while those calculated with the EDMC-based approach, and the titration curve in water calculated using the MD-based approach, have smooth shapes characteristic of the titration of weak multifunctional acids with small differences between the dissociation constants. Nevertheless, quantitative agreement between theoretically predicted and experimental titration curves is not achieved in all three solvents even with the MD-based approach which is manifested by a smaller pH range of the calculated titration curves with respect to the experimental curves. The poorer agreement obtained for water than for the non-aqueous solvents suggests a significant role of specific solvation in water, which cannot be accounted for by the mean-field solvation models. PMID:16509748

  18. Assessment of two theoretical methods to estimate potentiometric titration curves of peptides: comparison with experiment.

    PubMed

    Makowska, Joanna; Bagiñska, Katarzyna; Makowski, Mariusz; Jagielska, Anna; Liwo, Adam; Kasprzykowski, Franciszek; Chmurzyñski, Lech; Scheraga, Harold A

    2006-03-09

    We compared the ability of two theoretical methods of pH-dependent conformational calculations to reproduce experimental potentiometric titration curves of two models of peptides: Ac-K5-NHMe in 95% methanol (MeOH)/5% water mixture and Ac-XX(A)7OO-NH2 (XAO) (where X is diaminobutyric acid, A is alanine, and O is ornithine) in water, methanol (MeOH), and dimethyl sulfoxide (DMSO), respectively. The titration curve of the former was taken from the literature, and the curve of the latter was determined in this work. The first theoretical method involves a conformational search using the electrostatically driven Monte Carlo (EDMC) method with a low-cost energy function (ECEPP/3 plus the SRFOPT surface-solvation model, assumming that all titratable groups are uncharged) and subsequent reevaluation of the free energy at a given pH with the Poisson-Boltzmann equation, considering variable protonation states. In the second procedure, molecular dynamics (MD) simulations are run with the AMBER force field and the generalized Born model of electrostatic solvation, and the protonation states are sampled during constant-pH MD runs. In all three solvents, the first pKa of XAO is strongly downshifted compared to the value for the reference compounds (ethylamine and propylamine, respectively); the water and methanol curves have one, and the DMSO curve has two jumps characteristic of remarkable differences in the dissociation constants of acidic groups. The predicted titration curves of Ac-K5-NHMe are in good agreement with the experimental ones; better agreement is achieved with the MD-based method. The titration curves of XAO in methanol and DMSO, calculated using the MD-based approach, trace the shape of the experimental curves, reproducing the pH jump, while those calculated with the EDMC-based approach and the titration curve in water calculated using the MD-based approach have smooth shapes characteristic of the titration of weak multifunctional acids with small differences between the dissociation constants. Nevertheless, quantitative agreement between theoretically predicted and experimental titration curves is not achieved in all three solvents even with the MD-based approach, which is manifested by a smaller pH range of the calculated titration curves with respect to the experimental curves. The poorer agreement obtained for water than for the nonaqueous solvents suggests a significant role of specific solvation in water, which cannot be accounted for by the mean-field solvation models.

  19. Analytical modeling and feasibility study of a multi-GPU cloud-based server (MGCS) framework for non-voxel-based dose calculations.

    PubMed

    Neylon, J; Min, Y; Kupelian, P; Low, D A; Santhanam, A

    2017-04-01

    In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies. An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect. The analytically predicted computation time predicted matched experimentally observations within 1-5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies. The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.

  20. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  1. Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1-x ternary alloys

    NASA Astrophysics Data System (ADS)

    Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.

    2018-06-01

    In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.

  2. Microscopic Study of the 6Li(p, α)3He Reaction at Low Energies

    NASA Astrophysics Data System (ADS)

    Solovyev, Alexander; Igashov, Sergey

    2018-01-01

    The 6Li(p, α)3He reaction important for nuclear astrophysics is studied in the framework of a microscopic approach based on a multichannel algebraic version of the resonating group model. Astrophysical S-factor for the reaction is calculated at low energies. The obtained result is compared with experimental data and other theoretical calculations.

  3. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  4. Antibacterial activity, thermal stability and ab initio study of copolymer containing sulfobetaine and carboxybetaine groups

    NASA Astrophysics Data System (ADS)

    Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.

    2017-10-01

    Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.

  5. Synthesis, characterization, and DFT studies of a new chiral ionic liquid from (S)-1-phenylethylamine

    NASA Astrophysics Data System (ADS)

    Cui, Shuya; Wang, Tao; Hu, Xiaoli

    2014-12-01

    A new chiral ionic liquid was synthesized from (S)-1-phenylethylamine and it was studied by IR, Raman, polarimetry, NMR and X-ray crystal diffraction. Its vibrational spectral bands are precisely ascribed to the studied structure with the aid of DFT theoretical calculations. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from IR and Raman spectra are assigned based on the results of the theoretical calculations by the DFT-B3LYP method at 6-311G(d,p) level. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The vibrational modes assignments were performed by using the animation option of GaussView5.0 graphical interface for Gaussian program.

  6. Theoretical calculation of coherent Laue-case conversion between x-rays and ALPs for an x-ray light-shining-through-a-wall experiment

    NASA Astrophysics Data System (ADS)

    Yamaji, T.; Yamazaki, T.; Tamasaku, K.; Namba, T.

    2017-12-01

    Single crystals have high atomic electric fields as much as 1 011 V /m , which correspond to magnetic fields of ˜103 T . These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up to O (10 keV ) can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.

  7. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  8. Theoretical Studies of Liquid He-4 Near the Superfluid Transition

    NASA Technical Reports Server (NTRS)

    Manousakis, Efstratios

    2002-01-01

    We performed theoretical studies of liquid helium by applying state of the art simulation and finite-size scaling techniques. We calculated universal scaling functions for the specific heat and superfluid density for various confining geometries relevant for experiments such as the confined helium experiment and other ground based studies. We also studied microscopically how the substrate imposes a boundary condition on the superfluid order parameter as the superfluid film grows layer by layer. Using path-integral Monte Carlo, a quantum Monte Carlo simulation method, we investigated the rich phase diagram of helium monolayer, bilayer and multilayer on a substrate such as graphite. We find excellent agreement with the experimental results using no free parameters. Finally, we carried out preliminary calculations of transport coefficients such as the thermal conductivity for bulk or confined helium systems and of their scaling properties. All our studies provide theoretical support for various experimental studies in microgravity.

  9. Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.

    2018-02-01

    Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.

  10. Theoretical and experimental NMR study of protopine hydrochloride isomers.

    PubMed

    Tousek, Jaromír; Malináková, Katerina; Dostál, Jirí; Marek, Radek

    2005-07-01

    The 1H and 13C NMR chemical shifts of cis- and trans-protopinium salts were measured and calculated. The calculations of the chemical shifts consisted of conformational analysis, geometry optimization (RHF/6-31G** method) and shielding constants calculations (B3LYP/6-31G** method). Based on the results of the quantum chemical calculations, two sets of experimental chemical shifts were assigned to the particular isomers. According to the experimental results, the trans-isomer is more stable and its population is approximately 68%. Copyright 2005 John Wiley & Sons, Ltd

  11. Design method of redundancy of brace-anchor sharing supporting based on cooperative deformation

    NASA Astrophysics Data System (ADS)

    Liu, Jun-yan; Li, Bing; Liu, Yan; Cai, Shan-bing

    2017-11-01

    Because of the complicated environment requirement, the support form of foundation pit is diversified, and the brace-anchor sharing support is widely used. However, the research on the force deformation characteristics and the related aspects of the cooperative response of the brace-anchor sharing support is insufficient. The application of redundancy theory in structural engineering has been more mature, but there is little theoretical research on redundancy theory in underground engineering. Based on the idea of collaborative deformation, the paper calculates the ratio of the redundancy degree of the cooperative deformation by using the local reinforcement design method and the structural component redundancy parameter calculation formula based on Frangopol. Combined with the engineering case, through the calculation of the ratio of cooperative deformation redundancy in the joint of brace-anchor sharing support. This paper explores the optimal anchor distribution form under the condition of cooperative deformation, and through the analysis and research of displacement field and stress field, the results of the collaborative deformation are validated by comparing the field monitoring data. It provides theoretical basis for the design of this kind of foundation pit in the future.

  12. Neutrino oscillation processes in a quantum-field-theoretical approach

    NASA Astrophysics Data System (ADS)

    Egorov, Vadim O.; Volobuev, Igor P.

    2018-05-01

    It is shown that neutrino oscillation processes can be consistently described in the framework of quantum field theory using only the plane wave states of the particles. Namely, the oscillating electron survival probabilities in experiments with neutrino detection by charged-current and neutral-current interactions are calculated in the quantum field-theoretical approach to neutrino oscillations based on a modification of the Feynman propagator in the momentum representation. The approach is most similar to the standard Feynman diagram technique. It is found that the oscillating distance-dependent probabilities of detecting an electron in experiments with neutrino detection by charged-current and neutral-current interactions exactly coincide with the corresponding probabilities calculated in the standard approach.

  13. Electrostatics of electron-hole interactions in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.

    2018-03-01

    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.

  14. Self-assembly in Dipolar Fluids

    NASA Astrophysics Data System (ADS)

    Ronti, Michela; Kantorovich, Sofia

    We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  15. Crystal structure and theoretical calculations of Julocrotine, a natural product with antileishmanial activity

    NASA Astrophysics Data System (ADS)

    Moreira, Rafael Y. O.; Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Santos, Lourivaldo S.; Arruda, Mara S. P.; Müller, Adolfo H.; Barbosa, Patrícia S.; Abreu, Alcicley S.; Silva, Edilene O.; Rumjanek, Victor M.; Souza, Jaime, Jr.; da Silva, Albérico B. F.; Santos, Regina H. De A.

    Julocrotine, N-(2,6-dioxo-1-phenethyl-piperidin-3-yl)-2-methyl-butyramide, is a potent antiproliferative agent against the promastigote and amastigote forms of Leishmania amazonensis (L.). In this work, the crystal structure of Julocrotine was solved by X-ray diffraction, and its geometrical parameters were compared with theoretical calculations at the B3LYP and HF level of theory. IR and NMR spectra also have been obtained and compared with theoretical calculations. IR absorptions calculated with the B3LYP level of theory employed together with the 6-311G+(d,p) basis set, are close to those observed experimentally. Theoretical NMR calculations show little deviation from experimental results. The results show that the theory is in accordance with the experimental data.0

  16. A physically interpretable quantum-theoretic QSAR for some carbonic anhydrase inhibitors with diverse aromatic rings, obtained by a new QSAR procedure.

    PubMed

    Clare, Brian W; Supuran, Claudiu T

    2005-03-15

    A QSAR based almost entirely on quantum theoretically calculated descriptors has been developed for a large and heterogeneous group of aromatic and heteroaromatic carbonic anhydrase inhibitors, using orbital energies, nodal angles, atomic charges, and some other intuitively appealing descriptors. Most calculations have been done at the B3LYP/6-31G* level of theory. For the first time we have treated five-membered rings by the same means that we have used for benzene rings in the past. Our flip regression technique has been expanded to encompass automatic variable selection. The statistical quality of the results, while not equal to those we have had with benzene derivatives, is very good considering the noncongeneric nature of the compounds. The most significant correlation was with charge on the atoms of the sulfonamide group, followed by the nodal orientation and the solvation energy calculated by COSMO and the charge polarization of the molecule calculated as the mean absolute Mulliken charge over all atoms.

  17. Measurements and calculations of transport AC loss in second generation high temperature superconducting pancake coils

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Coombs, T. A.; Kim, Jae-Ho; Han Kim, Chul; Kvitkovic, Jozef; Pamidi, Sastry

    2011-12-01

    Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil.

  18. Theoretical foundations for quantitative paleogenetics. III - The molecular divergence of nucleic acids and proteins for the case of genetic events of unequal probability

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Pearl, D.

    1980-01-01

    Theoretical equations are derived for molecular divergence with respect to gene and protein structure in the presence of genetic events with unequal probabilities: amino acid and base compositions, the frequencies of nucleotide replacements, the usage of degenerate codons, the distribution of fixed base replacements within codons and the distribution of fixed base replacements among codons. Results are presented in the form of tables relating the probabilities of given numbers of codon base changes with respect to the original codon for the alpha hemoglobin, beta hemoglobin, myoglobin, cytochrome c and parvalbumin group gene families. Application of the calculations to the rabbit alpha and beta hemoglobin mRNAs and proteins indicates that the genes are separated by about 425 fixed based replacements distributed over 114 codon sites, which is a factor of two greater than previous estimates. The theoretical results also suggest that many more base replacements are required to effect a given gene or protein structural change than previously believed.

  19. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    PubMed

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  20. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  1. Theoretical and material studies on thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.

  2. Insight into the C-F bond mechanism of molecular analogs for antibacterial drug design.

    PubMed

    Liu, Junna; Lv, Biyu; Liu, Huaqing; Li, Xin; Yin, Weiping

    2018-06-01

    The activities of biological molecules usually rely on both of intra-molecular and intermolecular interactions between their function groups. These interactions include interonic attraction theory, Van der Waal's forces and the function of geometry on the individual molecules, whether they are naturally or synthetic. The purpose of this study was to evaluate the antibacterial activity of C-F bond compound using combination of experiments verification and theoretical calculation. We target on the insect natural products from the maggots of Chrysomyis megacephala Fabricius. Based on density functional theory(DFT) and B3LYP method, a theoretical study of the C-F bond on fluoride was designed to explore compounds 2 and 4 antibacterial structure-activity relationship. With the progress in DFT, first-principle calculation based on DFT has gradually become a routine method for drug design, quantum chemistry and other science fields.

  3. Sound radiation from randomly vibrating beams of finite circular cross section

    NASA Technical Reports Server (NTRS)

    Sutterlin, M. W.; Pierce, A. D.

    1976-01-01

    The radiation of sound from vibrating cylindrical beams is analyzed based on the frequency of the beam vibrations and the physical characteristics of the beam and its surroundings. A statistical analysis of random beam vibrations allows this result to be independent of the boundary conditions at the ends of the beam. The acoustic power radiated by the beam can be determined from a knowledge of the frequency band vibration data without a knowledge of the individual modal vibration amplitudes. A practical example of the usefulness of this technique is provided by the application of the theoretical calculations to the prediction of the octave band acoustic power output of the picking sticks of an automatic textile loom. Calculations are made of the expected octave band sound pressure levels based on measured acceleration data. These theoretical levels are subsequently compared with actual sound pressure level measurements of loom noise.

  4. Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-12-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  5. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  6. Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Cao, Siyu; Zhao, Yue; ur Rehman, Sajid; Feng, Shuai; Zuo, Yuhua; Li, Chuanbo; Zhang, Lichun; Cheng, Buwen; Wang, Qiming

    2018-05-01

    In this paper, we provide a detailed insight on InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and a theoretical model of APDs is built. Through theoretical analysis and two-dimensional (2D) simulation, the influence of charge layer and tunneling effect on the APDs is fully understood. The design of charge layer (including doping level and thickness) can be calculated by our predictive model for different multiplication thickness. We find that as the thickness of charge layer increases, the suitable doping level range in charge layer decreases. Compared to thinner charge layer, performance of APD varies significantly via several percent deviations of doping concentrations in thicker charge layer. Moreover, the generation rate ( G btt ) of band-to-band tunnel is calculated, and the influence of tunneling effect on avalanche field was analyzed. We confirm that avalanche field and multiplication factor ( M n ) in multiplication will decrease by the tunneling effect. The theoretical model and analysis are based on InGaAs/InAlAs APD; however, they are applicable to other APD material systems as well.

  7. Photoelectrical, photophysical and photocatalytic properties of Al based MOFs: MIL-53(Al) and MIL-53-NH{sub 2}(Al)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Yang; Li, Huiliang; Liu, Yuanyuan, E-mail: yyliu@sdu.edu.cn

    Two Al based MOFs (MIL-53(Al) and MIL-53-NH{sub 2} (Al)) were synthesized, and their photoelectrical, photophysical and photocatalytic properties towards oxygen evolution from water were investigated. Different from the ligand to metal charge transfer process previously reported, we proposes a new photocatalytic mechanism based on electron tunneling according to the results of theoretical calculation, steady state and time resolved fluorescence spectra. The organic linkers absorb photons, giving rise to electrons and holes. Then, the photogenerated electrons tunnel through the AlO{sub 6}-octahedra, which not only inhibit the recombination of photogenerated charge carriers, but also is a key factor to the photocatalytic activitymore » of Al based MOFs. - Graphical abstract: The photoelectrical, photophysical and photocatalytic properties towards oxygen evolution from water of two Al based MOFs were investigated. A new photocatalytic mechanism was proposed based on electron tunneling according to the results of both theoretical calculation and steady state, time resolved fluorescence spectra. The electron tunneling process not only inhibit the recombination of photogenerated charge carriers, but also is a key factor to the photocatalytic activity of Al based MOFs.« less

  8. Prediction of stress- and strain-based forming limits of automotive thin sheets by numerical, theoretical and experimental methods

    NASA Astrophysics Data System (ADS)

    Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós

    2018-05-01

    Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.

    The report presents the basic results of some calculations, theoretical and experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov instabilities and the turbulent mixing which is caused by their evolution. Since the late forties the VNIIEF has been conducting these investigations. This report is based on the data which were published in different times in Russian and foreign journals. The first part of the report deals with calculations an theoretical techniques for the description of hydrodynamic instabilities applied currently, as well as with the results of several individual problems and their comparison with the experiment. These methods can bemore » divided into two types: direct numerical simulation methods and phenomenological methods. The first type includes the regular 2D and 3D gasdynamical techniques as well as the techniques based on small perturbation approximation and on incompressible liquid approximation. The second type comprises the techniques based on various phenomenological turbulence models. The second part of the report describes the experimental methods and cites the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies as well as of turbulent mixing. The applied methods were based on thin-film gaseous models, on jelly models and liquid layer models. The research was done for plane and cylindrical geometries. As drivers, the shock tubes of different designs were used as well as gaseous explosive mixtures, compressed air and electric wire explosions. The experimental results were applied in calculational-theoretical technique calibrations. The authors did not aim at covering all VNIIEF research done in this field of science. To a great extent the choice of the material depended on the personal contribution of the author in these studies.« less

  10. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sundaraganesan, N.; Manoharan, S.

    2009-10-01

    Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of ferulic acid (FA) (4-hydroxy-3-methoxycinnamic acid) were carried out by using density functional (DFT/B3LYP/BLYP) method with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the FA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of FA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have been constructed.

  11. Annular electromagnetic pumps-construction and testing-theory, and comparison with experimental results; Pompes electromagnetiques annulaires - construction et essais - theorie et confrontation avec l'experience (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambillard, Etienne P.; Schwab, Bernard L.

    1964-07-15

    This report consists of three sections. the first is concerned with the description of different pumps which have been constructed, tests on these which have been completed, and the results obtained. The second section presents a theoretical method for the determination of the coefficients, taking in account the break of the magnetic circuit. It is shown that the preliminary design calculations of the annular pumps can be made, neglecting the break of the magnetic circuit, by further assigning essential magnitudes (pressure, losses) with easily calculated coefficients. the third section of this report uses the theoretical bases exposed in the secondmore » section, and develops a new annular pump calculation method which takes into account bot the current out of balance and any type of winding.« less

  12. Synthesis, characterization, and DFT studies of a new chiral ionic liquid from (S)-1-phenylethylamine.

    PubMed

    Cui, Shuya; Wang, Tao; Hu, Xiaoli

    2014-12-10

    A new chiral ionic liquid was synthesized from (S)-1-phenylethylamine and it was studied by IR, Raman, polarimetry, NMR and X-ray crystal diffraction. Its vibrational spectral bands are precisely ascribed to the studied structure with the aid of DFT theoretical calculations. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from IR and Raman spectra are assigned based on the results of the theoretical calculations by the DFT-B3LYP method at 6-311G(d,p) level. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies.The vibrational modes assignments were performed by using the animation option of GaussView5.0 graphical interface for Gaussian program. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis, structural characterization and theoretical studies of a new Schiff base 4-(((3-(tert-Butyl)-(1-phenyl)pyrazol-5-yl) imino)methyl)phenol

    NASA Astrophysics Data System (ADS)

    Cuenú, Fernando; Londoño-Salazar, Jennifer; Torres, John Eduard; Abonia, Rodrigo; D'Vries, Richard F.

    2018-01-01

    4-(((3-(tert-Butyl)-(1-phenyl)pyrazol-5-yl)imino)methyl)phenol (4-OHFPz) was synthesized and characterized by FT-IR, MS, NMR, and single-crystal X-ray diffraction. Optimization of molecular geometry, vibrational frequencies, and chemical shifts were calculated by using the methods of density functional theory (DFT) with B3LYP and B3PW91 as functionals and Hartree-Fock with 6-311G++(d,p) as basis set using the GAUSSIAN 09 program package. With the VEDA 4 software, the vibrational frequencies were assigned in terms of the potential energy distribution (PED). The equilibrium geometries calculated by all methods were compared with X-ray diffraction results, indicating that the theoretical results matches well with the experimental ones. The data obtained from the vibrational analysis and the calculated NMR are consistent with the experimental spectra.

  14. Calculating the social cost of illegal drugs: a theoretical approach.

    PubMed

    Diomidous, Marianna; Zimeras, Stelios; Mechili, Aggelos

    2013-01-01

    The use of illegal drugs generates a wide range of social harms depending on various ways, according to the policy definition of the problem. The challenge is the way to model the impact of illegal drugs use during a long time period considering the factors that affects the process. Based on these models, estimation could be measured and prediction could be achieved. The illegal drugs use might affect the economic and social structure of the public system leading to direct and effective decisions to overcome the problematic. For that reason, calculation of social cost related to the use of illegal could be introduced over time (t) as a proposed social measure to define the variability of social indicator on society. In this work, a theoretical approach for the calculation of social cost of illegal drugs is proposed and models over time are defined.

  15. Experimental and theoretical research of the interaction between high-strength supercavitation impactors and monolithic barriers in water

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. N.; Afanas'eva, S. A.; Burkin, V. V.; Diachkovskii, A. S.; Zykova, A. I.; Khabibullin, M. V.; Chupashev, A. V.; Yugov, N. T.

    2017-09-01

    The article describes experimental and theoretical research of the interaction between supercavitating impactors and underwater aluminum alloy and steel barriers. Strong alloys are used for making impactors. An experimental research technique based on a high-velocity hydro-ballistic complex was developed. Mathematical simulation of the collision the impactor and barrier is based on the continuum mechanics inclusive of the deformation and destruction of interacting bodies. Calculated and experimental data on the ultimate penetration thickness of barriers made of aluminum alloy D16T and steel for the developed supercavitating impactor are obtained.

  16. Surface Tension of Liquid Alkali, Alkaline, and Main Group Metals: Theoretical Treatment and Relationship Investigations

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-09-01

    An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.

  17. Research on Sustainable Development Level Evaluation of Resource-based Cities Based on Shapely Entropy and Chouqet Integral

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qu, Weilu; Qiu, Weiting

    2018-03-01

    In order to evaluate sustainable development level of resource-based cities, an evaluation method with Shapely entropy and Choquet integral is proposed. First of all, a systematic index system is constructed, the importance of each attribute is calculated based on the maximum Shapely entropy principle, and then the Choquet integral is introduced to calculate the comprehensive evaluation value of each city from the bottom up, finally apply this method to 10 typical resource-based cities in China. The empirical results show that the evaluation method is scientific and reasonable, which provides theoretical support for the sustainable development path and reform direction of resource-based cities.

  18. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  19. Theoretical Analysis on Mechanical Deformation of Membrane-Based Photomask Blanks

    NASA Astrophysics Data System (ADS)

    Marumoto, Kenji; Aya, Sunao; Yabe, Hedeki; Okada, Tatsunori; Sumitani, Hiroaki

    2012-04-01

    Membrane-based photomask is used in proximity X-ray lithography including that in LIGA (Lithographie, Galvanoformung und Abformung) process, and near-field photolithography. In this article, out-of-plane deformation (OPD) and in-plane displacement (IPD) of membrane-based photomask blanks are theoretically analyzed to obtain the mask blanks with flat front surface and low stress absorber film. First, we derived the equations of OPD and IPD for the processing steps of membrane-based photomask such as film deposition, back-etching and bonding, using a theory of symmetrical bending of circular plates with a coaxial circular hole and that of deformation of cylinder under hydrostatic pressure. The validity of the equations was proved by comparing the calculation results with experimental ones. Using these equations, we investigated the relation between the geometry of the mask blanks and the distortions generally, and gave the criterion to attain the flat front surface. Moreover, the absorber stress-bias required to obtain zero-stress on finished mask blanks was also calculated and it has been found that only little stress-bias was required for adequate hole size of support plate.

  20. Uncertainties Associated with Theoretically Calculated N2-Broadened Half-Widths of H2O Lines

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Gamache, R. R.

    2010-01-01

    With different choices of the cut-offs used in theoretical calculations, we have carried out extensive numerical calculations of the N2-broadend Lorentzian half-widths of the H2O lines using the modified Robert-Bonamy formalism. Based on these results, we are able to thoroughly check for convergence. We find that, with the low-order cut-offs commonly used in the literature, one is able to obtain converged values only for lines with large half-widths. Conversely, for lines with small half-widths, much higher cut-offs are necessary to guarantee convergence. We also analyse the uncertainties associated with calculated half-widths, and these are correlated as above. In general, the smaller the half-widths, the poorer the convergence and the larger the uncertainty associated with them. For convenience, one can divide all H2O lines into three categories, large, intermediate, and small, according to their half-width values. One can use this division to judge whether the calculated half-widths are converged or not, based on the cut-offs used, and also to estimate how large their uncertainties are. We conclude that with the current Robert- Bonamy formalism, for lines in category lone can achieve the accuracy requirement set by HITRAN, whereas for lines in category 3, it 'is impossible to meet this goal.

  1. Computational studies of molecular charge transfer complexes of heterocyclic 4-methylepyridine-2-azomethine-p-benzene derivatives with picric acid and m-dinitrobenzene.

    PubMed

    Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H

    2014-01-01

    Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Theoretical study on the vibrational spectra of methoxy- and formyl-dihydroxy- trans-stilbenes and their hydrolytic equilibria

    NASA Astrophysics Data System (ADS)

    Molnár, Viktor; Billes, Ferenc; Tyihák, Ernő; Mikosch, Hans

    2008-02-01

    Compounds formed by exchanging one of the resveratrol hydroxy groups to methoxy or formyl groups are biologically important. Quantum chemical DFT calculations were applied for the simulation of some of their properties. Their optimized structures and charge distributions were computed. Based on the calculated vibrational force constants and optimized molecular structure infrared and Raman spectra were calculated. The characteristics of the vibrational modes were determined by normal coordinate analysis. Applying the calculated thermodynamic functions also for resveratrol, methanol, formaldehyde and water, thermodynamic equilibria were calculated for the equilibria between resveratrol and its methyl and formyl substituted derivatives, respectively.

  3. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  4. Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    PubMed Central

    2014-01-01

    We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264

  5. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    PubMed

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-09-15

    Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.

  7. Theoretical nozzle performance of a microwave electrothermal thruster using experimental data

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.

    1992-01-01

    Research aimed at developing a fundamental understanding of the plasma processes as applied to spacecraft propulsion is presented. Calorimetric, photographic, and spectrophotometric measurements based on the TM011 and TM012 modes in the resonance cavity have been performed. The efficiency of a thruster has been calculated using a theoretical model for predicting temperature, velocity, and species density within the propellant. It is concluded that the microwave electrothermal thruster is a viable alternative to electrode thrusters.

  8. Theoretical validation for changing magnetic fields of systems of permanent magnets of drum separators

    NASA Astrophysics Data System (ADS)

    Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.

    2018-03-01

    This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.

  9. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  10. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghumman, S. S.

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  11. 17 CFR 240.15c3-1a - Options (Appendix A to 17 CFR 240.15c3-1).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... terms theoretical gains and losses shall mean the gain and loss in the value of individual option series... paragraph (a)(1)(iii) of this section). Theoretical gains and losses shall be calculated using a theoretical... models. Any such model shall calculate theoretical gains and losses as described in paragraph (a)(1)(i)(A...

  12. Metal artifact reduction through MVCBCT and kVCT in radiotherapy

    NASA Astrophysics Data System (ADS)

    Liugang, Gao; Hongfei, Sun; Xinye, Ni; Mingming, Fang; Zheng, Cao; Tao, Lin

    2016-11-01

    This study proposes a new method for removal of metal artifacts from megavoltage cone beam computed tomography (MVCBCT) and kilovoltage CT (kVCT) images. Both images were combined to obtain prior image, which was forward projected to obtain surrogate data and replace metal trace in the uncorrected kVCT image. The corrected image was then reconstructed through filtered back projection. A similar radiotherapy plan was designed using the theoretical CT image, the uncorrected kVCT image, and the corrected image. The corrected images removed most metal artifacts, and the CT values were accurate. The corrected image also distinguished the hollow circular hole at the center of the metal. The uncorrected kVCT image did not display the internal structure of the metal, and the hole was misclassified as metal portion. Dose distribution calculated based on the corrected image was similar to that based on the theoretical CT image. The calculated dose distribution also evidently differed between the uncorrected kVCT image and the theoretical CT image. The use of the combined kVCT and MVCBCT to obtain the prior image can distinctly improve the quality of CT images containing large metal implants.

  13. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  14. Probing the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters by density functional calculations

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Jie

    2018-05-01

    We present a theoretical investigation on the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters using density functional theoretical calculations. The results showed that both anionic and neutral PtnC2 (n = 1-7) clusters primarily adopt 2D planar chain-shaped or ring-based structures. The two C atoms directly interact with each other to form a Csbnd C bond for n = 1-3, while the two C atoms are separated by the Pt atoms for n = 4-7, except for neutral Pt5C2. Pt4C2- anion and Pt4C2 neutral both show σ plus π double delocalized bonding patterns.

  15. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  16. Calculation of density functional theory (DFT) vibrational parameters of nucleotides for use in theoretical optical calculations: Herein applied to circular dichroism (CD) and absorption of polynucleotides

    NASA Astrophysics Data System (ADS)

    Ferber, Steven Dwight

    2005-11-01

    The Vibrational Circular Dichroism (VCD) of Nucleic Acids is a sensitive function of their conformation. DeVoe's classically derived polarizability theory allows the calculation of polymer absorption and circular dichroism spectra in any frequency range. Following the approach of Tinoco and Cech as modified by Moore and Self, calculations were done in the infrared (IR) region with theoretically derived monomer input parameters. Presented herein are calculated absorption and CD spectra for nucleic acid oligomers and polymers. These calculations improve upon earlier attempts, which utilized frequencies, intensities and normal modes from empirical analysis of the nitrogenous base of the monomers. These more complete input polarizability parameters include all contributions to specific vibrational normal modes for the entire nucleotide structure. They are derived from density functional theory (DFT) vibrational analysis on quasi-nucleotide monomers using the GAUSSIAN '98/'03 program. The normal modes are "integrated" for the first time into single virtual (DeVoe) oscillators by incorporating "fixed partial charges" in the manner of Schellman. The results include the complete set of monomer normal modes. All of these modes may be analyzed, in a manner similar to those demonstrated here (for the 1500-1800 cm-1 region). A model is utilized for the polymer/oligomer monomers which maintains the actual electrostatic charge on the adjacent protonated phosphoryl groups (hydrogen phosphate, a mono-anion). This deters the optimization from "collapsing" into a hydrogen-bonded "ball" and thereby maintains the extended (polymer-like) conformation. As well, the precise C2 "endo" conformation of the sugar ring is maintained in the DNA monomers. The analogous C3 "endo" conformation is also maintained for the RNA monomers, which are constrained by massive "anchors" at the phosphates. The complete IR absorbance spectra (0-4,000 cm-1) are calculated directly in Gaussian. Calculated VCD and Absorbance Spectra for the eight standard Ribonucleic and Deoxy-ribonucleic acid homo-polymers in the nitrogenous base absorbing region 1550-1750 cm-1 are presented. These spectra match measured spectra at least as well as spectra calculated from empirical parameters. These results demonstrate that the purely theoretical calculation, an example given herein, should serve to provide more transferable, universal parameters for the polarizability treatment of the optical properties of oligomers and polymers.

  17. National Bureau Of Standards Data Base Of Photon Absorption Cross Sections From 10 eV To 100 deV

    NASA Astrophysics Data System (ADS)

    Saloman, E. B.; Hubbell, J. H.; Berger, M. J.

    1988-07-01

    The National Bureau of Standards (NBS) has maintained a data base of experimental and theoretical photon absorption cross sections (attenuation coefficients) since 1950. Currently the measured data include more than 20,000 data points abstracted from more than 500 independen.t literature sources including both published and unpublished reports and private communications. We have recently completed a systematic comparison over the energy range 0.1-100 keV of the measured cross sections in the NBS data base with cross sections obtained using the photoionization cross sections calculated by Scofield and the semi-empirical set of recommended photoionization cross section values of Henke et al. Cross sections for coherent and incoherent scattering were added to that of photoionization to obtain a value which could be compared to the experimental results. At energies above 1 keV, agreement between theory and experiment is rather good except for some special situations which prevent the accurate description of the measured samples as free atoms. These include molecular effects near absorption edges and solid state and crystal effects (such as for silicon). Below 1 keV the comparison indicates the range of atomic numbers and energies where the theory becomes inapplicable. The results obtained using Henke et al. agree well with the measured data when such data exist, but there are many elements for which data are not available over a wide range of energies. Comparisons with other theoretical data are in progress. This study also enabled us to show that a suggested renormalization procedure to the Scofield calculation (from dartree-Slater to Hartree-Fock) worsened the agreement between the theory and experiment. We have recently developed a PC-based computer program to generate theoretical cross section values based on Scofield's calculation. We have also completed a related program to enable a user to extract selected data from the measured data base.

  18. Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory.

    PubMed

    Mariappan, G; Sundaraganesan, N; Manoharan, S

    2012-11-01

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of anticancer drug of rosmarinic acid. The optimized molecular structure, atomic charges, vibrational frequencies, natural bond orbital analysis and ultraviolet-visible spectral interpretation of rosmarinic acid have been studied by performing HF and DFT/B3LYP/6-31G(d,p) level of theory. The FT-IR (solid and solution phase), FT-Raman (solid phase) spectra were recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The UV-Visible absorption spectra of the compound that dissolved in ethanol were recorded in the range of 200-800 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Calculation of solar wind flows about terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1982-01-01

    A computational model was developed for the determination of the plasma and magnetic field properties of the global interaction of the solar wind with terrestrial planetary magneto/ionospheres. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super Alfvenic solar wind flow past terrestrial planets. A summary is provided of the important research results.

  20. Friction torque in thrust ball bearings grease lubricated

    NASA Astrophysics Data System (ADS)

    Ianuş, G.; Dumitraşcu, A. C.; Cârlescu, V.; Olaru, D. N.

    2016-08-01

    The authors investigated experimentally and theoretically the friction torque in a modified thrust ball bearing having only 3 balls operating at low axial load and lubricated with NGLI-00 and NGLI-2 greases. The experiments were made by using spin-down methodology and the results were compared with the theoretical values based on Biboulet&Houpert's rolling friction equations. Also, the results were compared with the theoretical values obtained with SKF friction model adapted for 3 balls. A very good correlation between experiments and Biboulet_&_Houpert's predicted results was obtained for the two greases. Also was observed that the theoretical values for the friction torque calculated with SKF model adapted for a thrust ball bearing having only 3 balls are smaller that the experimental values.

  1. Wear Calculation Approach for Sliding - Friction Pairs

    NASA Astrophysics Data System (ADS)

    Springis, G.; Rudzitis, J.; Lungevics, J.; Berzins, K.

    2017-05-01

    One of the most important things how to predict the service life of different products is always connected with the choice of adequate method. With the development of production technologies and measuring devices and with ever increasing precision one can get the appropriate data to be used in analytic calculations. Historically one can find several theoretical wear calculation methods but still there are no exact wear calculation model that could be applied to all cases of wear processes because of difficulties connected with a variety of parameters that are involved in wear process of two or several surfaces. Analysing the wear prediction theories that could be classified into definite groups one can state that each of them has shortcomings that might impact the results thus making unnecessary theoretical calculations. The offered wear calculation method is based on the theories of different branches of science. It includes the description of 3D surface micro-topography using standardized roughness parameters, explains the regularities of particle separation from the material in the wear process using fatigue theory and takes into account material’s physical and mechanical characteristics and definite conditions of product’s working time. The proposed wear calculation model could be of value for prediction of the exploitation time for sliding friction pairs thus allowing the best technologies to be chosen for many mechanical details.

  2. Computer program determines chemical equilibria in complex systems

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Zeleznik, F. J.

    1966-01-01

    Computer program numerically solves nonlinear algebraic equations for chemical equilibrium based on iteration equations independent of choice of components. This program calculates theoretical performance for frozen and equilibrium composition during expansion and Chapman-Jouguet flame properties, studies combustion, and designs hardware.

  3. DFT calculation of pKa’s for dimethoxypyrimidinylsalicylic based herbicides

    NASA Astrophysics Data System (ADS)

    Delgado, Eduardo J.

    2009-03-01

    Dimethoxypyrimidinylsalicylic derived compounds show potent herbicidal activity as a result of the inhibition of acetohydroxyacid synthase, the first common enzyme in the biosynthetic pathway of the branched-chain aminoacids (valine, leucine and isoleucine) in plants, bacteria and fungi. Despite its practical importance, this family of compounds have been poorly characterized from a physico-chemical point of view. Thus for instance, their pK a's have not been reported earlier neither experimentally nor theoretically. In this study, the acid-dissociation constants of 39 dimethoxypyrimidinylsalicylic derived herbicides are calculated by DFT methods at B3LYP/6-31G(d,p) level of theory. The calculated values are validated by two checking tests based on the Hammett equation.

  4. Impact of stoichiometry and disorder on the electronic structure of the PbBi2Te4 -xSex topological insulator

    NASA Astrophysics Data System (ADS)

    Shvets, I. A.; Klimovskikh, I. I.; Aliev, Z. S.; Babanly, M. B.; Sánchez-Barriga, J.; Krivenkov, M.; Shikin, A. M.; Chulkov, E. V.

    2017-12-01

    Detailed comparative theoretical and experimental study of electronic properties and spin structure was carried out for a series of Pb-based quaternary compounds PbBi2Te4 -xSex . For all values of x , these compounds are theoretically predicted to be topological insulators, possessing at high Se content a remarkably large band gap and a Dirac point isolated from bulk states. Using spin- and angle-resolved photoemission spectroscopy, it was shown that the PbBi2Te2Se2 and PbBi2Te1.4Se2.6 compounds are characterized by well-defined spin-polarized topological surface state in the bulk gap. To define the probable distribution of atoms over the atomic sites for these samples, we performed ab initio calculations in ordered and disordered configurations of the unit cell. We found that theoretical calculations better reproduce photoemission data when Te atoms are placed in the outermost layers of the septuple layer block.

  5. On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir

    2015-10-01

    A numerical method for calculating the wavenumbers of axisymmetric plane waves in rigid-walled low-Mach-number turbulent flows is proposed, which is based on solving the linearized Navier-Stokes equations with an eddy-viscosity model. In addition, theoretical models for the wavenumbers are reviewed, and the main effects (the viscothermal effects, the mean flow convection and refraction effects, the turbulent absorption, and the moderate compressibility effects) which may influence the sound propagation are discussed. Compared to the theoretical models, the proposed numerical method has the advantage of potentially including more effects in the computed wavenumbers. The numerical results of the wavenumbers are compared with the reviewed theoretical models, as well as experimental data from the literature. It shows that the proposed numerical method can give satisfactory prediction of both the real part (phase shift) and the imaginary part (attenuation) of the measured wavenumbers, especially when the refraction effects or the turbulent absorption effects become important.

  6. Theoretical and computational analyses of LNG evaporator

    NASA Astrophysics Data System (ADS)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  7. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  8. Interpretation of the silver L X-ray spectrum

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1977-01-01

    Silver L X-ray energies were calculated using theoretical binding energies from relaxed orbital relativistic Hartree-Fock-Slater calculations. Theoretical X-ray energies are compared with experimental results.

  9. The Triangle Technique: a new evidence-based educational tool for pediatric medication calculations.

    PubMed

    Sredl, Darlene

    2006-01-01

    Many nursing student verbalize an aversion to mathematical concepts and experience math anxiety whenever a mathematical problem is confronted. Since nurses confront mathematical problems on a daily basis, they must learn to feel comfortable with their ability to perform these calculations correctly. The Triangle Technique, a new educational tool available to nurse educators, incorporates evidence-based concepts within a graphic model using visual, auditory, and kinesthetic learning styles to demonstrate pediatric medication calculations of normal therapeutic ranges. The theoretical framework for the technique is presented, as is a pilot study examining the efficacy of the educational tool. Statistically significant results obtained by Pearson's product-moment correlation indicate that students are better able to calculate accurate pediatric therapeutic dosage ranges after participation in the educational intervention of learning the Triangle Technique.

  10. Induced drag of multiplanes

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1924-01-01

    The most important part of the resistance or drag of a wing system,the induced drag, can be calculated theoretically, when the distribution of lift on the individual wings is known. The calculation is based upon the assumption that the lift on the wings is distributed along the wing in proportion to the ordinates of a semi-ellipse. Formulas and numerical tables are given for calculating the drag. In this connection, the most favorable arrangements of biplanes and triplanes are discussed and the results are further elucidated by means of numerical examples.

  11. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  12. Theoretical Grounds for the Propagation of Uncertainties in Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    Saracco, Paolo; Pia, Maria Grazia; Batic, Matej

    2014-04-01

    We introduce a theoretical framework for the calculation of uncertainties affecting observables produced by Monte Carlo particle transport, which derive from uncertainties in physical parameters input into simulation. The theoretical developments are complemented by a heuristic application, which illustrates the method of calculation in a streamlined simulation environment.

  13. Micro-satellite for space debris observation by optical sensors

    NASA Astrophysics Data System (ADS)

    Thillot, Marc; Brenière, Xavier; Midavaine, Thierry

    2017-11-01

    The purpose of this theoretical study carried out under CNES contract is to analyze the feasibility of small space debris detection and classification with an optical sensor on-board micro-satellite. Technical solutions based on active and passive sensors are analyzed and compared. For the most appropriated concept an optimization was made and theoretical performances in terms of number of detection versus class of diameter were calculated. Finally we give some preliminary physical sensor features to illustrate the concept (weight, volume, consumption,…).

  14. Information Clustering Based on Fuzzy Multisets.

    ERIC Educational Resources Information Center

    Miyamoto, Sadaaki

    2003-01-01

    Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…

  15. Configurations of base-pair complexes in solutions. [nucleotide chemistry

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Nir, S.; Rein, R.; Macelroy, R.

    1978-01-01

    A theoretical search for the most stable conformations (i.e., stacked or hydrogen bonded) of the base pairs A-U and G-C in water, CCl4, and CHCl3 solutions is presented. The calculations of free energies indicate a significant role of the solvent in determining the conformations of the base-pair complexes. The application of the continuum method yields preferred conformations in good agreement with experiment. Results of the calculations with this method emphasize the importance of both the electrostatic interactions between the two bases in a complex, and the dipolar interaction of the complex with the entire medium. In calculations with the solvation shell method, the last term, i.e., dipolar interaction of the complex with the entire medium, was added. With this modification the prediction of the solvation shell model agrees both with the continuum model and with experiment, i.e., in water the stacked conformation of the bases is preferred.

  16. New size-expanded RNA nucleobase analogs: a detailed theoretical study.

    PubMed

    Zhang, Laibin; Zhang, Zhenwei; Ren, Tingqi; Tian, Jianxiang; Wang, Mei

    2015-04-05

    Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komppula, J., E-mail: jani.komppula@jyu.fi; Tarvainen, O.

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  18. Methods for Evaluating Flammability Characteristics of Shipboard Materials

    DTIC Science & Technology

    1994-02-28

    E 23 • smoke optical properties; and • (toxic) gas production rates. In general, the prediction of these full-scale burning characteristics requires ...Method. The ASTM Room/Corner Test Method can be used to calculate the heat release rate of a material based upon oxygen depletion calorimetry. As can be...Clearly, more validation is required for the theoretical calculations . All are consistent in the use of calorimeter and UFT-type property data, all show

  19. Center for Research on Infrared Detectors (CENTROID)

    DTIC Science & Technology

    2006-09-30

    calculations to reevaluate the band-to-band Auger-1lifetime inn-type LWIR HgCdTe because the Auger-1lifetime can be measured in long-wavelength...infrared ( LWIR ) HgCdTe. Our calculations of the electronic band structure are based on a fourteen-band bulk basis, including spin-orbit splitting. The...within better than a factor of two between theoretically and experimentally determined Auger rates for a wide variety of MWIR and LWIR superlattices

  20. Structure and dynamics of the peptide strand KRFK from the thrombospondin TSP-1 in water.

    PubMed

    Taleb Bendiab, W; Benomrane, B; Bounaceur, B; Dauchez, M; Krallafa, A M

    2018-02-14

    Theoretical investigations of a solute in liquid water at normal temperature and pressure can be performed at different levels of theory. Static quantum calculations as well as classical and ab initio molecular dynamics are used to completely explore the conformational space for large solvated molecular systems. In the classical approach, it is essential to describe all of the interactions of the solute and the solvent in detail. Water molecules are very often described as rigid bodies when the most commonly used interaction potentials, such as the SPCE and the TIP4P models, are employed. Recently, a physical model based upon a cluster of rigid water molecules with a tetrahedral architecture (AB 4 ) was proposed that describes liquid water as a mixture of both TIP4P and SPCE molecular species that occur in the proportions implied by the tetrahedral architecture (one central molecule versus four outer molecules; i.e., 20% TIP4P versus 80% SPCE molecules). In this work, theoretical spectroscopic data for a peptide strand were correlated with the structural properties of the peptide strand solvated in water, based on data calculated using different theoretical approaches and physical models. We focused on a particular peptide strand, KRFK (lysine-arginine-phenylalanine-lysine), found in the thrombospondin TSP-1, due to its interesting properties. As the activity and electronic structure of this system is strongly linked to its structure, we correlated its structure with charge-density maps obtained using different semi-empirical charge Q eq equations. The structural and thermodynamic properties obtained from classical simulations were correlated with ab initio molecular dynamics (AIMD) data. Structural changes in the peptide strand were rationalized in terms of the motions of atoms and groups of atoms. To achieve this, conformational changes were investigated using calculated infrared spectra for the peptide in the gas phase and in water solvent. The calculated AIMD infrared spectrum for the peptide was correlated with static quantum calculations of the molecular system based on a harmonic approach as well as the VDOS (vibrational density of states) spectra obtained using various classical solvent models (SPCE, TIP4P, and AB 4 ) and charge maps.

  1. Intensity of emission lines of the quiescent solar corona: comparison between calculated and observed values

    NASA Astrophysics Data System (ADS)

    Krissinel, Boris

    2018-03-01

    The paper reports the results of calculations of the center-to-limb intensity of optically thin line emission in EUV and FUV wavelength ranges. The calculations employ a multicomponent model for the quiescent solar corona. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. Theoretical intensity values are found from probabilities of encountering parts of loops in the line of sight with respect to the probability of absence of other coronal components. The model uses 12 loops with sizes from 3200 to 210000 km with different values of rarefaction index and pressure at the loop base and apex. The temperature at loop apices is 1 400 000 K. The calculations utilize the CHIANTI database. The comparison between theoretical and observed emission intensity values for coronal and transition region lines obtained by the SUMER, CDS, and EIS telescopes shows quite satisfactory agreement between them, particularly for the solar disk center. For the data acquired above the limb, the enhanced discrepancies after the analysis refer to errors in EIS measurements.

  2. Optical properties of extended-chain polymers under stress

    NASA Astrophysics Data System (ADS)

    Ramirez, Rafael G.; Eby, R. K.

    1995-09-01

    Birefringence and x-ray diffraction experiments have been carried out on Kevlar 49(superscript R) fibers under tensile stress to monitor structure changes under the stress field. The origin of the observed birefringence is discussed in some detail. Results from theoretical calculations using semi-empirical molecular orbital techniques are presented and contrasted to the experimental observations. The calculations involved the estimation of chain polarizability and were performed under simulated stress conditions using the AM1 Hamiltonian in MOPAC. Polarizability is then used to calculate the birefringence as a function of tensile stress, by using existing internal field theory. This theoretical approach is applied to predict the optical properties of highly oriented extended-chain polyethylene, as well as those for poly(p' phenylene therephtalamide); the latter being the base polymer in Kevlar fibers. Results reveal reasonable birefringence predictions when compared to available experimental results in the literature. Also, it is found that the contribution from orienting crystallites under the stress field, to the measured birefringence in Kevlar fibers, is only a small fraction of the total. However, the calculations predict a significant contribution from deformation (extension) at the molecular level.

  3. Proposed software system for atomic-structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, C.F.

    1981-07-01

    Atomic structure calculations are understood well enough that, at a routine level, an atomic structure software package can be developed. At the Atomic Physics Conference in Riga, 1978 L.V. Chernysheva and M.Y. Amusia of Leningrad University, presented a paper on Software for Atomic Calculations. Their system, called ATOM is based on the Hartree-Fock approximation and correlation is included within the framework of RPAE. Energy level calculations, transition probabilities, photo-ionization cross-sections, electron scattering cross-sections are some of the physical properties that can be evaluated by their system. The MCHF method, together with CI techniques and the Breit-Pauli approximation also provides amore » sound theoretical basis for atomic structure calculations.« less

  4. Comparative theoretical and experimental study on novel tri-quinoline system and its anticancer studies

    NASA Astrophysics Data System (ADS)

    Gayathri, Kasirajan; Radhika, Ramachandran; Shankar, Ramasamy; Malathi, Mahalingam; Savithiri, Krishnaswamy; Sparkes, Hazel A.; Howard, Judith A. K.; Mohan, Palathurai Subramaniam

    2017-04-01

    A novel compound 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline 3 bearing a tri-quinoline moiety has been synthesized from 2-chloro-3,6-dimethyl quinoline 1 and 8-hydroxy quinoline 2 using dry acetone and K2CO3 as a base. 3 has been characterized by using FT-IR, FT-Raman, UV-Vis, 1H NMR, 13C NMR spectra and single crystal X-ray diffraction methods. We have also made a combined experimental and theoretical study on the molecular structure, vibrational spectra, NMR, FT-IR, FT-Raman and UV-Vis spectra of 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline. The theoretical studies of the title compound have been evaluated by using density functional theory calculations using B3LYP/6-31+G(d,p) and M06-2X/6-31+G(d,p) level of theories. The calculated theoretical values were found to be in good agreement with the experimental findings. The single crystal structure 3 crystallized in the orthorhombic space group Pna21. The compound 3 exhibits higher cytotoxicity in human cervical cancer cell lines (HeLa) than human breast cancer cell lines (MCF7).

  5. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies.

    PubMed

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2017-11-05

    The vibrational spectra of solid-state acyclovir, fumaric acid and their cocrystal have been investigated by using terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy at room temperature. In experimental THz spectra, the cocrystal has absorption peaks in 0.65, 0.94 and 1.10THz respectively, while the raw materials are absolutely different in this region. Raman spectra also show similar results about differences between the cocrystal and raw materials. Density functional theory (DFT) was performed to simulate vibrational modes of different theoretical forms between acyclovir and fumaric acid. The calculation of theoretical THz spectra shows that O8C7N1H27 and the carboxyl group COOH establish a dimer theoretical cocrystal form by the hydrogen bonding effect, which makes contributions to the formation of absorption peaks in 0.70, 1.01 and 1.34THz, and agrees well with experimental observations. The theoretical Raman result also indicates that this dimer form matches with experimental results. The characteristic bands of the cocrystal between acyclovir and fumaric acid are also assigned based on the simulation results from the DFT calculation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2017-11-01

    The vibrational spectra of solid-state acyclovir, fumaric acid and their cocrystal have been investigated by using terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy at room temperature. In experimental THz spectra, the cocrystal has absorption peaks in 0.65, 0.94 and 1.10 THz respectively, while the raw materials are absolutely different in this region. Raman spectra also show similar results about differences between the cocrystal and raw materials. Density functional theory (DFT) was performed to simulate vibrational modes of different theoretical forms between acyclovir and fumaric acid. The calculation of theoretical THz spectra shows that O8dbnd C7sbnd N1sbnd H27 and the carboxyl group sbnd COOH establish a dimer theoretical cocrystal form by the hydrogen bonding effect, which makes contributions to the formation of absorption peaks in 0.70, 1.01 and 1.34 THz, and agrees well with experimental observations. The theoretical Raman result also indicates that this dimer form matches with experimental results. The characteristic bands of the cocrystal between acyclovir and fumaric acid are also assigned based on the simulation results from the DFT calculation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herraiz, Joaquin Lopez

    Experimental coincidence cross section and transverse-longitudinal asymmetry ATL have been obtained for the quasielastic (e,e'p) reaction in 16O, 12C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p miss < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A TL asymmetrymore » have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A TL measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A TL, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.« less

  8. First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.

    PubMed

    Bandura, Andrei V; Evarestov, Robert A

    2012-07-05

    The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.

  9. Actinometric measurements and theoretical calculations of j/O3/, the rate of photolysis of ozone to O/1D/

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.; Chameides, W. L.; Crutzen, P. J.; Fishman, J.

    1979-01-01

    The paper presents an experimental technique which measures j/O3-O(1-D)/, the rate of solar photolysis of ozone to singlet oxygen atoms. It is shown that a flow actinometer carries dilute O3 in N2O into direct sunlight where the O(1D) formed reacts with N2O to form NO which chemiluminescence detects, with a time resolution of about one minute. Measurements indicate a photolysis rate of 1.2 (+ or - .2) x 10 to the -5/s for a cloudless sky, 45 deg zenith angle, 0.345 cm ozone column and zero albedo. Finally, ground level results compare with theoretical calculations based on the UV actinic flux as a function of ozone column and solar zenith angle.

  10. Calculating lattice thermal conductivity: a synopsis

    NASA Astrophysics Data System (ADS)

    Fugallo, Giorgia; Colombo, Luciano

    2018-04-01

    We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.

  11. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    NASA Astrophysics Data System (ADS)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  12. Viscosity and diffusivity in melts: from unary to multicomponent systems

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  13. Theoretical Investigation of Calculating Temperatures in the Combining Zone of Cu/Fe Composite Plate Jointed by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.

    2016-03-01

    The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.

  14. Measurement of the cleavage energy of graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wen; Dai, Shuyang; Li, Xide

    Here, the basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m –2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitivemore » to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m –2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.« less

  15. Measurement of the cleavage energy of graphite

    DOE PAGES

    Wang, Wen; Dai, Shuyang; Li, Xide; ...

    2015-08-28

    Here, the basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m –2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitivemore » to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m –2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.« less

  16. Neutron die-away experiment for remote analysis of the surface of the moon and the planets, phase 3

    NASA Technical Reports Server (NTRS)

    Mills, W. R.; Allen, L. S.

    1972-01-01

    Continuing work on the two die-away measurements proposed to be made in the combined pulsed neutron experiment (CPNE) for analysis of lunar and planetary surfaces is described. This report documents research done during Phase 3. A general exposition of data analysis by the least-squares method and the related problem of the prediction of variance is given. A data analysis procedure for epithermal die-away data has been formulated. In order to facilitate the analysis, the number of independent material variables has been reduced to two: the hydrogen density and an effective oxygen density, the latter being determined uniquely from the nonhydrogeneous elemental composition. Justification for this reduction in the number of variables is based on a set of 27 new theoretical calculations. Work is described related to experimental calibration of the epithermal die-away measurement. An interim data analysis technique based solely on theoretical calculations seems to be adequate and will be used for future CPNE field tests.

  17. Design study of beam position monitors for measuring second-order moments of charged particle beams

    NASA Astrophysics Data System (ADS)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  18. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids

    NASA Astrophysics Data System (ADS)

    Koczoń, P.; Dobrowolski, J. Cz.; Lewandowski, W.; Mazurek, A. P.

    2003-07-01

    The experimental and theoretical (B3PW91/6-311++G**) vibrational (IR and Raman) spectra of picolinic, nicotinic and isonicotinic acids (pyridine-2-, -3-, and -4-carboxylic acid, respectively) were studied. Three stable calculated structures were found for picolinic acid: the structure with intramolecular hydrogen COOH⋯N bond, and the two without hydrogen bond. For the nicotinic acid two stable theoretical structures differ in orientation of the COOH group with respect to the nitrogen atom, whereas for the isonicotinic acid only one form was stable. The theoretical vibrational spectra of the three acids were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. Next, selected experimental bands were assigned based on the scaled theoretical wavenumbers. Finally, the wavenumbers and intensities for the three isomeric acids were compared and discussed in terms of location of the carboxylic group.

  19. Virial Coefficients for the Liquid Argon

    NASA Astrophysics Data System (ADS)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  20. Numerical calculation of aerodynamics wind turbine blade S809 airfoil and comparison of theoretical calculations with experimental measurements and confirming with NREL data

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.

  1. Binaphthyl-containing Schiff base complexes with carboxyl groups for dye sensitized solar cell: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tsaturyan, Arshak; Machida, Yosuke; Akitsu, Takashiro; Gozhikova, Inna; Shcherbakov, Igor

    2018-06-01

    We report on synthesis and characterization of binaphthyl containing Schiff base Ni(II), Cu(II), and Zn(II) complexes as promising photosensitizers for dye-sensitized solar cells (DSSC). Based on theoretical and experimental data, the possibility of their application in DSSC was confirmed. To our knowledge, we find dye performance of complex is steric and rigid structure widely spread to efficiency. The spatial and electronic structures of the complexes were studied by means of the quantum chemical modeling using DFT and TD-DFT approaches. The adsorption energies of the complexes on TiO2 cluster were calculated and appeared to be very close in value. The Zn(II) complex has the biggest value of molar extinction.

  2. Effect of p-GaN layer doping on the photoresponse of GaN-based p-i-n ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Wanjun; Wang, Guosheng; Wu, Haoran; Wang, Tanglin; Song, Man

    2015-08-01

    We report on two-dimensional (2D) numerical simulations of photoresponse characteristics for GaN based p-i-n ultraviolet (UV) photodetectors. Effects of doping density of p-GaN layer on the photoresponse have been investigated. In order to accurately simulate the device performance, the theoretical calculation includes doping-dependent mobility degradation by Arora model and high field saturation model. Theoretical modeling shows that the doping density of p- GaN layer can significantly affect the photoresponse of GaN based p-i-n UV photodetectors, especially at schottky contact. We have to make a suitable choice of the doping in the device design according to the simulation results.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yu; Liu Jinliang; Fan Xuliang

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effectsmore » of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.« less

  4. Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.

    PubMed

    Wan, Songbo; Liu, Shasha; Zhao, Guangjiu; Chen, Maodu; Han, Keli; Sun, Mengtao

    2007-09-01

    Photoabsorption properties of green and red fluorescent protein chromophore anions in vacuo were investigated theoretically, based on the experimental results in gas phase [Phys. Rev. Lett. 2001, 87, 228102; Phys. Rev. Lett. 2003, 90, 118103]. Their calculated transition energies in absorption with TD-DFT and ZINDO methods are directly compared to the experimental reports in gas phase, and the calculations with ZINDO method can correctly reproduce the absorption spectra. The orientation and strength of their transition dipole moments were revealed with transition density. We also showed the orientation and result of their intramolecular charge transfer with transition difference density. The calculated results show that with the increase of the extended conjugated system, the orientation of transition dipole moments and the orientation of charge transfer can be reversed. They are the linear responds with the external electric fields. These theoretical results reveal the insight understanding of the photoinduced dynamics of green and red fluorescent protein chromophore anions and cations in vacuo.

  5. Josephson flux-flow oscillator: The microscopic tunneling approach

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Koshelets, V. P.; Kusmartsev, F. V.

    2017-07-01

    We elaborate a theoretical description of large Josephson junctions which is based on Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does not involve the phenomenological damping parameter, rather the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of different lengths.

  6. Influence of channel base current and varying return stroke speed on the calculated fields of three important return stroke models

    NASA Technical Reports Server (NTRS)

    Thottappillil, Rajeev; Uman, Martin A.; Diendorfer, Gerhard

    1991-01-01

    Compared here are the calculated fields of the Traveling Current Source (TCS), Modified Transmission Line (MTL), and the Diendorfer-Uman (DU) models with a channel base current assumed in Nucci et al. on the one hand and with the channel base current assumed in Diendorfer and Uman on the other hand. The characteristics of the field wave shapes are shown to be very sensitive to the channel base current, especially the field zero crossing at 100 km for the TCS and DU models, and the magnetic hump after the initial peak at close range for the TCS models. Also, the DU model is theoretically extended to include any arbitrarily varying return stroke speed with height. A brief discussion is presented on the effects of an exponentially decreasing speed with height on the calculated fields for the TCS, MTL, and DU models.

  7. Theoretical Study on Vibrational Spectra, Detonation Properties and Pyrolysis Mechanism for Cyclic 2-Diazo-4,6-dinitrophenol

    NASA Astrophysics Data System (ADS)

    Li, Xiao-hong; Yin, Geng-xin; Zhang, Xian-zhou

    2012-10-01

    Based on the full optimized molecular geometrical structures at the DFT-B3LYP/6-311+G** level, there exists intramolecular hydrogen bond interaction for cyclic 2-diazo-4,6-dinitrophenol. The assigned infrared spectrum is obtained and used to compute the thermodynamic properties. The results show that there are four main characteristic regions in the calculated IR spectra of the title compound. The detonation velocities and pressures are also evaluated by using Kamlet-Jacobs equations based on the calculated density and condensed phase heat of formation. Thermal stability and the pyrolysis mechanism of 2-diazo-4,6-dinitrophenol are investigated by calculating the bond dissociation energies at the B3LYP/6-311+G** level.

  8. Equilibrium Phase Behavior of the Square-Well Linear Microphase-Forming Model.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2016-07-07

    We have recently developed a simulation approach to calculate the equilibrium phase diagram of particle-based microphase formers. Here, this approach is used to calculate the phase behavior of the square-well linear model for different strengths and ranges of the linear long-range repulsive component. The results are compared with various theoretical predictions for microphase formation. The analysis further allows us to better understand the mechanism for microphase formation in colloidal suspensions.

  9. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  10. Precise predictions for V+jets dark matter backgrounds

    NASA Astrophysics Data System (ADS)

    Lindert, J. M.; Pozzorini, S.; Boughezal, R.; Campbell, J. M.; Denner, A.; Dittmaier, S.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, N.; Huss, A.; Kallweit, S.; Maierhöfer, P.; Mangano, M. L.; Morgan, T. A.; Mück, A.; Petriello, F.; Salam, G. P.; Schönherr, M.; Williams, C.

    2017-12-01

    High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the Z(ν {\\bar{ν }})+ jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by Z(ℓ ^+ℓ ^-)+ jet, W(ℓ ν )+ jet and γ + jet production, and extrapolating to the Z(ν {\\bar{ν }})+ jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant V+ jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different V+ jet processes play a key role. The anticipated theoretical uncertainty in the Z(ν {\\bar{ν }})+ jet background is at the few percent level up to the TeV range.

  11. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  12. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  13. Theoretical and experimental studies of electronic, optical and luminescent properties for Tb-based garnet materials

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Zhang, Haotian; Dou, Renqin; Liu, Wenpeng; Sun, Dunlu; Zhang, Qingli

    2018-07-01

    Terbium-aluminum (Tb3Al5O12: TAG) as well as Terbium-scandium-aluminum (Tb3Sc2Al3O12: TSAG) garnet materials have attracted tremendous attention around the world owing to their multifunctional applications. However, the electronic structure, optical and luminescent properties for TAG and TSAG are still requiring elucidation. To solve these intriguing problems, firstly, a systematic theoretical calculation based on the density functional theory methods were carried out on them and their electronic structure and optical properties were obtained. The calculated results indicating that both TAG and TSAG belongs to direct band gap materials category with band gap of 4.46 and 4.05 eV, respectively. Secondly, we compared the calculated results with the experimental results (including band gap, refractive index and reflectivity) and found that they were in good coincident. Lastly, we investigated the luminescence properties of TSAG and evaluated its probability for using as visible phosphor and laser matrix. In addition, a Judd-Ofelt theory calculation was performed on TSAG to reveal the radioactive transition of Tb-4f configuration and the three Judd-Ofelt intense parameters were obtained to be 4.47, 1.37 and 4.23 × 10-20 cm2, respectively. All of the obtained results can provide an essential understanding of TAG and TSAG garnet materials and also useful for the further exploration of them.

  14. Correlations among experimental and theoretical NMR data to determine the absolute stereochemistry of darcyribeirine, a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora

    NASA Astrophysics Data System (ADS)

    Cancelieri, Náuvia Maria; Ferreira, Thiago Resende; Vieira, Ivo José Curcino; Braz-Filho, Raimundo; Piló-Veloso, Dorila; Alcântara, Antônio Flávio de Carvalho

    2015-10-01

    Darcyribeirine (1) is a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora. Stereochemistry of 1 was previously proposed based on 1D (coupling constant data) and 2D (NOESY correlations) NMR techniques, having been established a configuration 3R, 15S, and 20R (isomer 1a). Stereoisomers of 1 (i.e., 1a-1h) can be grouped into four sets of enantiomers. Carbon chemical shifts and hydrogen coupling constants were calculated using BLYP/6-31G* theory level for the eight isomers of 1. Calculated NMR data of 1a-1h were correlated with the corresponding experimental data of 1. The best correlations between theoretical and experimental carbon chemical shift data were obtained for the set of enantiomers 1e/1f to structures in the gaseous phase and considering solvent effects (using PCM and explicit models). Similar results were obtained when the same procedure was performed to correlations between theoretical and experimental coupling constant data. Finally, optical rotation calculations indicate 1e as its absolute stereochemistry. Orbital population analysis indicates that the hydrogen bonding between N-H of 1e and DMSO is due to contributions of its frontier unoccupied molecular orbitals, mainly LUMO+1, LUMO+2, and LUMO+3.

  15. Compaction Behavior of Granular Materials

    NASA Astrophysics Data System (ADS)

    Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.

    1996-03-01

    We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.

  16. a Protocol for High-Accuracy Theoretical Thermochemistry

    NASA Astrophysics Data System (ADS)

    Welch, Bradley; Dawes, Richard

    2017-06-01

    Theoretical studies of spectroscopy and reaction dynamics including the necessary development of potential energy surfaces rely on accurate thermochemical information. The Active Thermochemical Tables (ATcT) approach by Ruscic^{1} incorporates data for a large number of chemical species from a variety of sources (both experimental and theoretical) and derives a self-consistent network capable of making extremely accurate estimates of quantities such as temperature dependent enthalpies of formation. The network provides rigorous uncertainties, and since the values don't rely on a single measurement or calculation, the provenance of each quantity is also obtained. To expand and improve the network it is desirable to have a reliable protocol such as the HEAT approach^{2} for calculating accurate theoretical data. Here we present and benchmark an approach based on explicitly-correlated coupled-cluster theory and vibrational perturbation theory (VPT2). Methyldioxy and Methyl Hydroperoxide are important and well-characterized species in combustion processes and begin the family of (ethyl-, propyl-based, etc) similar compounds (much less is known about the larger members). Accurate anharmonic frequencies are essential to accurately describe even the 0 K enthalpies of formation, but are especially important for finite temperature studies. Here we benchmark the spectroscopic and thermochemical accuracy of the approach, comparing with available data for the smallest systems, and comment on the outlook for larger systems that are less well-known and characterized. ^{1}B. Ruscic, Active Thermochemical Tables (ATcT) values based on ver. 1.118 of the Thermochemical Network (2015); available at ATcT.anl.gov ^{2}A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton. JCP 121, (2004): 11599.

  17. Effect of wave function on the proton induced L XRP cross sections for 62Sm and 74W

    NASA Astrophysics Data System (ADS)

    Shehla, Kaur, Rajnish; Kumar, Anil; Puri, Sanjiv

    2015-08-01

    The Lk(k= 1, α, β, γ) X-ray production cross sections have been calculated for 74W and 62Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared with the measured cross sections reported in the recent compilation to check the reliability of the calculated values.

  18. Magnetocrystalline anisotropy in UMn 2 Ge 2 and related Mn-based actinide ferromagnets

    DOE PAGES

    Parker, David S.; Ghimire, Nirmal; Singleton, John; ...

    2015-05-04

    We presenmore » t magnetization isotherms in pulsed magnetic fields up to 62 Tesla, supported by first principles calculations, demonstrating a huge uniaxial magnetocrystalline anisotropy energy - approximately 20 MJ/m 3 - in UMn 2 Ge 2 . This large anisotropy results from the extremely strong spin-orbit coupling affecting the uranium 5 f electrons, which in the calculations exhibit a substantial orbital moment exceeding 2 μ B. Finally, we also find from theoretical calculations that a number of isostructural Mn-actinide compounds are expected to have similarly large anisotropy.« less

  19. Calculation of the Intensity of Physical Time Fluctuations Using the Standard Solar Model and its Comparison with the Results of Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Morozov, A. N.

    2017-11-01

    The article reviews the possibility of describing physical time as a random Poisson process. An equation allowing the intensity of physical time fluctuations to be calculated depending on the entropy production density within irreversible natural processes has been proposed. Based on the standard solar model the work calculates the entropy production density inside the Sun and the dependence of the intensity of physical time fluctuations on the distance to the centre of the Sun. A free model parameter has been established, and the method of its evaluation has been suggested. The calculations of the entropy production density inside the Sun showed that it differs by 2-3 orders of magnitude in different parts of the Sun. The intensity of physical time fluctuations on the Earth's surface depending on the entropy production density during the sunlight-to-Earth's thermal radiation conversion has been theoretically predicted. A method of evaluation of the Kullback's measure of voltage fluctuations in small amounts of electrolyte has been proposed. Using a simple model of the Earth's surface heat transfer to the upper atmosphere, the effective Earth's thermal radiation temperature has been determined. A comparison between the theoretical values of the Kullback's measure derived from the fluctuating physical time model and the experimentally measured values of this measure for two independent electrolytic cells showed a good qualitative and quantitative concurrence of predictions of both theoretical model and experimental data.

  20. Energy levels, oscillator strengths, and transition probabilities for sulfur-like scandium, Sc VI

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.; Abou Halaka, M. M.; Saddeek, Yasser B.

    2017-09-01

    Energy levels, Oscillator strengths, and transition probabilities for sulfur-like scandium are calculated using CIV3 code. The calculations have been executed in an intermediate coupling scheme using Breit-Pauli Hamiltonian. The present calculations have been compared with the experimental data and other theoretical calculations. LANL code has been used to confirm the accuracy of the present calculations, where the calculations using CIV3 code agree well with the corresponding values by LANL code. The calculated energy levels and oscillator strengths are in reasonable agreement with the published experimental data and theoretical values. We have calculated lifetimes of some excited levels, as well.

  1. Theoretical investigation of metal magnetic memory testing technique for detection of magnetic flux leakage signals from buried defect

    NASA Astrophysics Data System (ADS)

    Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai

    2018-01-01

    The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.

  2. Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis

    NASA Astrophysics Data System (ADS)

    Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel

    2017-01-01

    An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.

  3. Electron Capture in Slow Collision of He^2++H : Revisited

    NASA Astrophysics Data System (ADS)

    Krstic, Ps

    2003-05-01

    Very early experimental data (Fite et al. al., Proc. R. Soc. A 268, 527 (1962)) for He^2++H, recent ORNL measurements for Ne^2+ + H and our theoretical estimates suggest that the electron capture cross sections for these strongly exoergic collision systems drop slower toward low collision energies than expected from previous theories. We perform a theoretical study to establish and understand the true nature of this controversy. The calculations are based on the Hidden Crossings MOCC method, augmented with rotational and turning point effects.

  4. Electronic structure of disordered CuPd alloys: A two-dimensional positron-annihilation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.

    1987-11-23

    Two-dimensional--angular-correlation experiments using posi- tron-annihilation spectroscopy were performed on a series of disordered Cu-rich CuPd-alloy single crystals. The results are compared with theoretical calculations based on the Korringa-Kohn-Rostoker coherent-potential approximation. Our experiments confirm the theoretically predicted flattening of the alloy Fermi surface near (110) with increasing Pd concentration. The momentum densities and the two-dimensional--angular-correlation spectra around zero momentum exhibit a characteristic signature of the electronic states near the valence-band edge in the alloy.

  5. A calibration method of infrared LVF based spectroradiometer

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqing; Han, Shunli; Liu, Lei; Hu, Dexin

    2017-10-01

    In this paper, a calibration method of LVF-based spectroradiometer is summarize, including spectral calibration and radiometric calibration. The spectral calibration process as follow: first, the relationship between stepping motor's step number and transmission wavelength is derivative by theoretical calculation, including a non-linearity correction of LVF;second, a line-to-line method was used to corrected the theoretical wavelength; Finally, the 3.39 μm and 10.69 μm laser is used for spectral calibration validation, show the sought 0.1% accuracy or better is achieved.A new sub-region multi-point calibration method is used for radiometric calibration to improving accuracy, results show the sought 1% accuracy or better is achieved.

  6. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  7. Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    Gunawardana, K. G. S. H.; Song, Xueyu

    2018-05-01

    The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory. In this paper, we show that the classical nucleation theory is capable of predicting the nucleation barrier with excellent agreement to the simulated results when the curvature correction to the interfacial free energy is accounted for.

  8. The effect of long-range order on the elastic properties of Cu3Au

    NASA Astrophysics Data System (ADS)

    Wang, Gui-Sheng; Krisztina Delczeg-Czirjak, Erna; Hu, Qing-Miao; Kokko, Kalevi; Johansson, Börje; Vitos, Levente

    2013-02-01

    Ab initio calculations, based on the exact muffin-tin orbitals method are used to determine the elastic properties of Cu-Au alloys with Au/Cu ratio 1/3. The compositional disorder is treated within the coherent potential approximation. The lattice parameters and single-crystal elastic constants are calculated for different partially ordered structures ranging from the fully ordered L12 to the random face centered cubic lattice. It is shown that the theoretical elastic constants follow a clear trend with the degree of chemical order: namely, C11 and C12 decrease, whereas C44 remains nearly constant with increasing disorder. The present results are in line with the experimental findings that the impact of the chemical ordering on the fundamental elastic parameters is close to the resolution of the available experimental and theoretical tools.

  9. Intersubband Transitions in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Li, J.; Koloklov, K.; Ning, C. Z.; Larraber, D. C.; Khodaparast, G. A.; Kono, J.; Ueda, K.; Nakajima, Y.; Sasa, S.; Inoue, M.

    2003-01-01

    We have studied intersubband transitions in InAs/AlSb quantum wells experimentally and theoretically. Experimentally, we performed polarization-resolved infrared absorption spectroscopy to measure intersubband absorption peak frequencies and linewidths as functions of temperature (from 4 K to room temperature) and quantum well width (from a few nm to 10 nm). To understand experimental results, we performed a self-consistent 8-band k-p band-structure calculation including spatial charge separation. Based on the calculated band structure, we developed a set of density matrix equations to compute TE and TM optical transitions self-consistently, including both interband and intersubband channels. This density matrix formalism is also ideal for the inclusion of various many-body effects, which are known to be important for intersubband transitions. Detailed comparison between experimental data and theoretical simulations is presented.

  10. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  11. Bicarbonate Values for Healthy Residents Living in Cities Above 1500 Meters of Altitude: A Theoretical Model and Systematic Review.

    PubMed

    Ramirez-Sandoval, Juan C; Castilla-Peón, Maria F; Gotés-Palazuelos, José; Vázquez-García, Juan C; Wagner, Michael P; Merelo-Arias, Carlos A; Vega-Vega, Olynka; Rincón-Pedrero, Rodolfo; Correa-Rotter, Ricardo

    2016-06-01

    Ramirez-Sandoval, Juan C., Maria F. Castilla-Peón, José Gotés-Palazuelos, Juan C. Vázquez-García, Michael P. Wagner, Carlos A. Merelo-Arias, Olynka Vega-Vega, Rodolfo Rincón-Pedrero, and Ricardo Correa-Rotter. Bicarbonate values for healthy residents living in cities above 1500 m of altitude: a theoretical model and systematic review. High Alt Med Biol. 17:85-92, 2016.-Plasma bicarbonate (HCO3(-)) concentration is the main value used to assess the metabolic component of the acid-base status. There is limited information regarding plasma HCO3(-) values adjusted for altitude for people living in cities at high altitude defined as 1500 m (4921 ft) or more above sea level. Our aim was to estimate the plasma HCO3(-) concentration in residents of cities at these altitudes using a theoretical model and compare these values with HCO3(-) values found on a systematic review, and with those venous CO2 values obtained in a sample of 633 healthy individuals living at an altitude of 2240 m (7350 ft). We calculated the PCO2 using linear regression models and calculated plasma HCO3(-) according to the Henderson-Hasselbalch equation. Results show that HCO3(-) concentration falls as the altitude of the cities increase. For each 1000 m of altitude above sea level, HCO3(-) decreases to 0.55 and 1.5 mEq/L in subjects living at sea level with acute exposure to altitude and in subjects acclimatized to altitude, respectively. Estimated HCO3(-) values from the theoretical model were not different to HCO3(-) values found in publications of a systematic review or with venous total CO2 measurements in our sample. Altitude has to be taken into consideration in the calculation of HCO3(-) concentrations in cities above 1500 m to avoid an overdiagnosis of acid-base disorders in a given individual.

  12. Origin of SMM behaviour in an asymmetric Er(III) Schiff base complex: a combined experimental and theoretical study.

    PubMed

    Das, Chinmoy; Upadhyay, Apoorva; Vaidya, Shefali; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2015-04-11

    An asymmetric erbium(III) Schiff base complex [Er(HL)2(NO3)3] was synthesized which shows SMM behaviour with an Ueff of 5.2 K. Dipolar interaction in 1 significantly reduced upon dilution which increases the barrier height to 51.5 K. Ab initio calculations were performed to shed light on the mechanism of magnetization relaxation.

  13. A theoretical analysis of deformation behavior of auxetic plied yarn structure

    NASA Astrophysics Data System (ADS)

    Zeng, Jifang; Hu, Hong

    2018-07-01

    This paper presents a theoretical analysis of the auxetic plied yarn (APY) structure formed with two types of single yarns having different diameter and modulus. A model which can be used to predict its deformation behavior under axial extension is developed based on the theoretical analysis. The developed model is first compared with the experimental data obtained in the previous study, and then used to predict the effects of different structural and material parameters on the auxetic behavior of the APY. The calculation results show that the developed model can correctly predict the variation trend of the auxetic behavior of the APY, which first increases and then decrease with the increase of the axial strain. The calculation results also indicate that the auxetic behavior of the APY simultaneously depends on the diameter ratio of the soft yarn and stiff yarn as well as the ratio between the pitch length and stiff yarn diameter. The study provides a way to design and fabricate APYs with the same auxetic behavior by using different soft and stiff yarns as long as these two ratios are kept unchanged.

  14. Investigation of structural stability and elastic properties of CrH and MnH: A first principles study

    NASA Astrophysics Data System (ADS)

    Kanagaprabha, S.; Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Murugan, A.; Santhosh, M.; Iyakutti, K.

    2015-06-01

    The structural and mechanical properties of CrH and MnH are investigated using first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. A structural phase transition from NaCl to NiAs phase at a pressure of 76 GPa is predicted for both CrH and MnH.

  15. A satellite technique for quantitatively mapping rainfall rates over the oceans

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T.; Roa, M. S. V.; Chang, T. C.; Rodgers, E. B.; Theon, J. S.

    1975-01-01

    A theoretical model for calculating microwave radiative transfer in raining atmospheres is developed. These calculations are compared with microwave brightness temperatures at a wavelength of 1.55 cm measured on the Nimbus-5 satellite and rain rates derived from WSR-57 meteorological radar measurements. A specially designed ground based verification experiment was also performed wherein upward viewing microwave brightness temperature measurements at wavelengths of 1.55 cm and 0.81 cm were compared with directly measured rain rates.

  16. Moment of Inertia of a Ping-Pong Ball

    ERIC Educational Resources Information Center

    Cao, Xian-Sheng

    2012-01-01

    This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.

  17. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states

    NASA Astrophysics Data System (ADS)

    Chan, GuoXuan; Wang, Xin

    2018-04-01

    We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.

  18. Communication: Electron ionization of DNA bases.

    PubMed

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  19. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.

    PubMed

    Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-12-16

    CONSPECTUS: Quantum chemistry and electronic structure theory have proven to be essential tools to the experimental chemist, in terms of both a priori predictions that pave the way for designing new experiments and rationalizing experimental observations a posteriori. Translating the well-established success of electronic structure theory in obtaining the structures and energies of small chemical systems to increasingly larger molecules is an exciting and ongoing central theme of research in quantum chemistry. However, the prohibitive computational scaling of highly accurate ab initio electronic structure methods poses a fundamental challenge to this research endeavor. This scenario necessitates an indirect fragment-based approach wherein a large molecule is divided into small fragments and is subsequently reassembled to compute its energy accurately. In our quest to further reduce the computational expense associated with the fragment-based methods and overall enhance the applicability of electronic structure methods to large molecules, we realized that the broad ideas involved in a different area, theoretical thermochemistry, are transferable to the area of fragment-based methods. This Account focuses on the effective merger of these two disparate frontiers in quantum chemistry and how new concepts inspired by theoretical thermochemistry significantly reduce the total number of electronic structure calculations needed to be performed as part of a fragment-based method without any appreciable loss of accuracy. Throughout, the generalized connectivity based hierarchy (CBH), which we developed to solve a long-standing problem in theoretical thermochemistry, serves as the linchpin in this merger. The accuracy of our method is based on two strong foundations: (a) the apt utilization of systematic and sophisticated error-canceling schemes via CBH that result in an optimal cutting scheme at any given level of fragmentation and (b) the use of a less expensive second layer of electronic structure method to recover all the missing long-range interactions in the parent large molecule. Overall, the work featured here dramatically decreases the computational expense and empowers the execution of very accurate ab initio calculations (gold-standard CCSD(T)) on large molecules and thereby facilitates sophisticated electronic structure applications to a wide range of important chemical problems.

  20. Discovery of a diamond-based photonic crystal structure in beetle scales.

    PubMed

    Galusha, Jeremy W; Richey, Lauren R; Gardner, John S; Cha, Jennifer N; Bartl, Michael H

    2008-05-01

    We investigated the photonic crystal structure inside iridescent scales of the weevil Lamprocyphus augustus. By combining a high-resolution structure analysis technique based on sequential focused ion beam milling and scanning electron microscopy imaging with theoretical modeling and photonic band-structure calculations, we discovered a natural three-dimensional photonic structure with a diamond-based crystal lattice operating at visible wavelengths. Moreover, we found that within individual scales, the diamond-based structure is assembled in the form of differently oriented single-crystalline micrometer-sized pixels with only selected lattice planes facing the scales' top surface. A comparison of results obtained from optical microreflectance measurements with photonic band-structure calculations reveals that it is this sophisticated microassembly of the diamond-based crystal lattice that lends Lamprocyphus augustus its macroscopically near angle-independent green coloration.

  1. A /sup 1/Pi--X /sup 1/. sigma. /sup +/ band system in CH/sup +/ and CD/sup +/: theoretical spectroscopic constants and lifetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elander, N.; Oddershede, J.; Beebe, N.H.F.

    1977-08-15

    Polarization propagator calculation of spectroscopic constants and radiative lifetimes for the A /sup 1/Pi--X /sup 1/..sigma../sup +/ band system are presented. The spectroscopic constants agree well with experimental and other theoretical values. We have also performed an iterative Rydberg-Klein-Rees (RKR) calculation of B/sub e/, ..omega../sub e/, and ..omega../sub e/x/sub e/ for the experimental X /sup 1/..sigma../sup +/ state.The calculated radiative lifetime for the A /sup 1/Pi state (v'=0) is 660 ns and 598 ns, with theoretical and experimental potential energy curves, respectively. This difference (about 60 ns) indicates the inaccuracy in the present calculation. Experimentally the most recent estimate ofmore » the A /sup 1/Pi (v'=0) state is 630 +- 50 ns, and theoretically the Yoshimine et al. transition moment gives tau (A /sup 1/Pi, v'=0) =722 ns.The radiative lifetimes calculated for CD/sup +/ are between 1.3% and 3.9% larger than the corresponding CH/sup +/ lifetimes.« less

  2. A novel coherent optical en/decoder for optical label processing of OCDM-based optical packets switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2007-11-01

    A coherent optical en/decoder based on photonic crystal (PhC) for optical code-division-multiple (OCDM)-based optical label (OCDM-OL) optical packets switching (OPS) networks is proposed in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by the photonic crystal phase shifter and delayer using the appropriate design of fabrication. In this design, the combination calculation of the impurity and normal period layers is applied, according to the PhC transmission matrix theorem. The design and theoretical analysis of the PhC-based optical coherent en/decoder is mainly focused. In addition, the performances of the PhC-based optical en/decoders are analyzed in detail. The reflection, the transmission, delay characteristic and the optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by the numerical calculation, taking into account 1-Dimension (1D) PhC. Theoretical analysis and numerical results show that optical pulse is achieved to properly phase modulation and time delay by the proposed scheme, optical label based on OCDM is rewrote successfully by new code for OCDM-based OPS (OCDM-OPS), and an over 8.5 dB ration of auto- and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  3. Impact of Patient and Procedure Mix on Finances of Perinatal Centres – Theoretical Models for Economic Strategies in Perinatal Centres

    PubMed Central

    Hildebrandt, T.; Kraml, F.; Wagner, S.; Hack, C. C.; Thiel, F. C.; Kehl, S.; Winkler, M.; Frobenius, W.; Faschingbauer, F.; Beckmann, M. W.; Lux, M. P.

    2013-01-01

    Introduction: In Germany, cost and revenue structures of hospitals with defined treatment priorities are currently being discussed to identify uneconomic services. This discussion has also affected perinatal centres (PNCs) and represents a new economic challenge for PNCs. In addition to optimising the time spent in hospital, the hospital management needs to define the “best” patient mix based on costs and revenues. Method: Different theoretical models were proposed based on the cost and revenue structures of the University Perinatal Centre for Franconia (UPF). Multi-step marginal costing was then used to show the impact on operating profits of changes in services and bed occupancy rates. The current contribution margin accounting used by the UPF served as the basis for the calculations. The models demonstrated the impact of changes in services on costs and revenues of a level 1 PNC. Results: Contribution margin analysis was used to calculate profitable and unprofitable DRGs based on average inpatient cost per day. Nineteen theoretical models were created. The current direct costing used by the UPF and a theoretical model with a 100 % bed occupancy rate were used as reference models. Significantly higher operating profits could be achieved by doubling the number of profitable DRGs and halving the number of less profitable DRGs. Operating profits could be increased even more by changing the rates of profitable DRGs per bed occupancy. The exclusive specialisation on pathological and high-risk pregnancies resulted in operating losses. All models which increased the numbers of caesarean sections or focused exclusively on c-sections resulted in operating losses. Conclusion: These theoretical models offer a basis for economic planning. They illustrate the enormous impact potential changes can have on the operating profits of PNCs. Level 1 PNCs require high bed occupancy rates and a profitable patient mix to cover the extremely high costs incurred due to the services they are legally required to offer. Based on our theoretical models it must be stated that spontaneous vaginal births (not caesarean sections) were the most profitable procedures in the current DRG system. Overall, it currently makes economic sense for level I PNCs to treat as many low-risk pregnancies and neonates as possible to cover costs. PMID:24771932

  4. Electron Energy Deposition in Atomic Nitrogen

    DTIC Science & Technology

    1987-10-06

    knovn theoretical results, and their relative accuracy in comparison to existing measurements and calculations is given elsevhere. 20 2.1 The Source Term...with the proper choice of parameters, reduces to vell-known theoretical results. 20 Table 2 gives the parameters for collisional excitation of the...calculations of McGuire 36 and experimental measurements of Brook et al.3 7 Additional theoretical and experimental results are discussed in detail elsevhere

  5. Optical gain coefficients of silicon: a theoretical study

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model is presented and an explicit formula is derived for calculating the optical gain coefficients of indirect band-gap semiconductors. This model is based on the second-order time-dependent perturbation theory of quantum mechanics by incorporating all the eight processes of photon/phonon emission and absorption between the band edges of the conduction and valence bands. Numerical calculation results are given for Si. The calculated absorption coefficients agree well with the existing fitting formula of experiment data with two modes of phonons: optical phonons with energy of 57.73 meV and acoustic phonons with energy of 18.27 meV near (but not exactly at) the zone edge of the X-point in the dispersion relation of phonons. These closely match with existing data of 57.5 meV transverse optical (TO) phonons at the X4-point and 18.6 meV transverse acoustic (TA) phonons at the X3-point of the zone edge. The calculated results show that the material optical gain of Si will overcome free-carrier absorption if the energy separation of quasi-Fermi levels between electrons and holes exceeds 1.15 eV.

  6. A first-principle calculation of the XANES spectrum of Cu2+ in water

    NASA Astrophysics Data System (ADS)

    La Penna, G.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2015-09-01

    The progress in high performance computing we are witnessing today offers the possibility of accurate electron density calculations of systems in realistic physico-chemical conditions. In this paper, we present a strategy aimed at performing a first-principle computation of the low energy part of the X-ray Absorption Spectroscopy (XAS) spectrum based on the density functional theory calculation of the electronic potential. To test its effectiveness, we apply the method to the computation of the X-ray absorption near edge structure part of the XAS spectrum in the paradigmatic, but simple case of Cu2+ in water. In order to keep into account the effect of the metal site structure fluctuations in determining the experimental signal, the theoretical spectrum is evaluated as the average over the computed spectra of a statistically significant number of simulated metal site configurations. The comparison of experimental data with theoretical calculations suggests that Cu2+ lives preferentially in a square-pyramidal geometry. The remarkable success of this approach in the interpretation of XAS data makes us optimistic about the possibility of extending the computational strategy we have outlined to the more interesting case of molecules of biological relevance bound to transition metal ions.

  7. Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Xi; Hao, Qing-Li; Yu, Zong-Xue; Jiang, Wen-Jun; Lu, Lu-De; Wang, Xin

    2009-09-01

    This work deals with the IR and Raman spectroscopy of 4-(2-furanylmethyleneamino) antipyrine (FAP), 4-benzylideneaminoantipyrine (BAP) and 4-cinnamilideneaminoantipyrine (CAP) by means of experimental and quantum chemical calculations. The equilibrium geometries, harmonic frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-31G(d) basis set. The comparisons between the calculated and experimental results covering molecular structures, assignments of fundamental vibrational modes and thermodynamic properties were investigated. The optimized molecular geometries have been compared with the experimental data obtained from XRD data, which indicates that the theoretical results agree well with the corresponding experimental values. For the three compounds, comparisons and assignments of the vibrational frequencies indicate that the calculated frequencies are close to the experimental data, and the IR spectra are comparable with some slight differences, whereas the Raman spectra are different clearly and the strongest Raman scattering actives are relative tightly to the molecular conjugative moieties linked through their Schiff base imines. The thermodynamic properties (heat capacities, entropies and enthalpy changes) and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized strucutres.

  8. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    DOE PAGES

    Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; ...

    2016-04-12

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. Furthermore, this observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less

  9. Deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems: Theoretical calculations and experimental measurements

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Pelzel, Rodney I.; Nosho, Brett Z.; Weinberg, W. Henry; Maroudas, Dimitrios

    2001-09-01

    A comprehensive, quantitative analysis is presented of the deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems. The analysis combines a hierarchical theoretical approach with experimental measurements. Continuum linear elasticity theory is linked with atomic-scale calculations of structural relaxation for detailed theoretical studies of deformation in systems consisting of InAs thin films on thin GaAs(111)A substrates that are mechanically unconstrained at their bases. Molecular-beam epitaxy is used to grow very thin InAs films on both thick and thin GaAs buffer layers on epi-ready GaAs(111)A substrates. The deformation state of these samples is characterized by x-ray diffraction (XRD). The interplanar distances of thin GaAs buffer layers along the [220] and [111] crystallographic directions obtained from the corresponding XRD spectra indicate clearly that thin buffer layers deform parallel to the InAs/GaAs(111)A interfacial plane, thus aiding in the accommodation of the strain induced by lattice mismatch. The experimental measurements are in excellent agreement with the calculated lattice interplanar distances and the corresponding strain fields in the thin mechanically unconstrained substrates considered in the theoretical analysis. Therefore, this work contributes direct evidence in support of our earlier proposal that thin buffer layers in layer-by-layer semiconductor heteroepitaxy exhibit mechanical behavior similar to that of compliant substrates [see, e.g., B. Z. Nosho, L. A. Zepeda-Ruiz, R. I. Pelzel, W. H. Weinberg, and D. Maroudas, Appl. Phys. Lett. 75, 829 (1999)].

  10. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    NASA Astrophysics Data System (ADS)

    Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; Christensen, Steven T.; Diercks, David; Schwartz, Craig P.; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S.; Tumas, William; Perkins, John D.; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M.; Zakutayev, Andriy

    2016-04-01

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  11. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures.

    PubMed

    Caskey, Christopher M; Holder, Aaron; Shulda, Sarah; Christensen, Steven T; Diercks, David; Schwartz, Craig P; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S; Tumas, William; Perkins, John D; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M; Zakutayev, Andriy

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  12. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caskey, Christopher M.; Colorado School of Mines, Golden, Colorado 80401; Larix Chemical Science, Golden, Colorado 80401

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less

  13. UNO DMRG CASCI calculations of effective exchange integrals for m-phenylene-bis-methylene spin clusters

    NASA Astrophysics Data System (ADS)

    Kawakami, Takashi; Sano, Shinsuke; Saito, Toru; Sharma, Sandeep; Shoji, Mitsuo; Yamada, Satoru; Takano, Yu; Yamanaka, Shusuke; Okumura, Mitsutaka; Nakajima, Takahito; Yamaguchi, Kizashi

    2017-09-01

    Theoretical examinations of the ferromagnetic coupling in the m-phenylene-bis-methylene molecule and its oligomer were carried out. These systems are good candidates for exchange-coupled systems to investigate strong electronic correlations. We studied effective exchange integrals (J), which indicated magnetic coupling between interacting spins in these species. First, theoretical calculations based on a broken-symmetry single-reference procedure, i.e. the UHF, UMP2, UMP4, UCCSD(T) and UB3LYP methods, were carried out with a GAUSSIAN program code under an SR wave function. From these results, the J value by the UHF method was largely positive because of the strong ferromagnetic spin polarisation effect. The J value by the UCCSD(T) and UB3LYP methods improved an overestimation problem by correcting the dynamical electronic correlation. Next, magnetic coupling among these spins was studied using the CAS-based method of the symmetry-adapted multireference methods procedure. Thus, the UNO DMRG CASCI (UNO, unrestricted natural orbital; DMRG, density matrix renormalised group; CASCI, complete active space configuration interaction) method was mainly employed with a combination of ORCA and BLOCK program codes. DMRG CASCI calculations in valence electron counting, which included all orbitals to full valence CI, provided the most reliable result, and support the UB3LYP method for extended systems.

  14. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalosh, R.G.; Bajpai, S.N.; Short, T.P.

    1980-04-01

    An evaluation of the hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries is presented. Since commercial batteries are not yet available, this hazard assessment is based both on theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate. Six spill tests involving chlorine hydrate indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm road surface. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion modelmore » and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model has been combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fatality rates are several times higher in a city with a warm and calm climate than in a colder and windier city. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatility rates due to fires and asphyxiations.« less

  15. Thermophysical properties of paramagnetic Fe from first principles

    NASA Astrophysics Data System (ADS)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    A computationally efficient, yet general, free-energy modeling scheme is developed based on first-principles calculations. Finite-temperature disorder associated with the fast (electronic and magnetic) degrees of freedom is directly included in the electronic structure calculations, whereas the vibrational free energy is evaluated by a proposed model that uses elastic constants to calculate average sound velocity of the quasiharmonic Debye model. The proposed scheme is tested by calculating the lattice parameter, heat capacity, and single-crystal elastic constants of α -, γ -, and δ -iron as functions of temperature in the range 1000-1800 K. The calculations accurately reproduce the well-established experimental data on thermal expansion and heat capacity of γ - and δ -iron. Electronic and magnetic excitations are shown to account for about 20% of the heat capacity for the two phases. Nonphonon contributions to thermal expansion are 12% and 10% for α - and δ -Fe and about 30% for γ -Fe. The elastic properties predicted by the model are in good agreement with those obtained in previous theoretical treatments of paramagnetic phases of iron, as well as with the bulk moduli derived from isothermal compressibility measurements [N. Tsujino et al., Earth Planet. Sci. Lett. 375, 244 (2013), 10.1016/j.epsl.2013.05.040]. Less agreement is found between theoretically calculated and experimentally derived single-crystal elastic constants of γ - and δ -iron.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Kuo-Hsing; Meyer, Kristin De; Department of Electrical Engineering, KU Leuven, Leuven

    Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined withmore » a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.« less

  17. Evaluation of steam sterilization processes: comparing calculations using temperature data and biointegrator reduction data and calculation of theoretical temperature difference.

    PubMed

    Lundahl, Gunnel

    2007-01-01

    When calculating of the physical F121.1 degrees c-value by the equation F121.1 degrees C = t x 10(T-121.1/z the temperature (T), in combination with the z-value, influences the F121.1 degrees c-value exponentially. Because the z-value for spores of Geobacillus stearothermophilus often varies between 6 and 9, the biological F-value (F(Bio) will not always correspond to the F0-value based on temperature records from the sterilization process calculated with a z-value of 10, even if the calibration of both of them are correct. Consequently an error in calibration of thermocouples and difference in z-values influences the F121.1 degrees c-values logarithmically. The paper describes how results from measurements with different z-values can be compared. The first part describes the mathematics of a calculation program, which makes it easily possible to compare F0-values based on temperature records with the F(BIO)-value based on analysis of bioindicators such as glycerin-water-suspension sensors. For biological measurements, a suitable bioindicator with a high D121-value can be used (such a bioindicator can be manufactured as described in the article "A Method of Increasing Test Range and Accuracy of Bioindicators-Geobacillus stearothermophilus Spores"). By the mathematics and calculations described in this macro program it is possible to calculate for every position the theoretical temperature difference (deltaT(th)) needed to explain the difference in results between the thermocouple and the biointegrator. Since the temperature difference is a linear function and constant all over the process this value is an indication of the magnitude of an error. A graph and table from these calculations gives a picture of the run. The second part deals with product characteristics, the sterilization processes, loading patterns. Appropriate safety margins have to be chosen in the development phase of a sterilization process to achieve acceptable safety limits. Case studies are discussed and experiences are shared.

  18. Probabilistic Meteorological Characterization for Turbine Loads

    NASA Astrophysics Data System (ADS)

    Kelly, M.; Larsen, G.; Dimitrov, N. K.; Natarajan, A.

    2014-06-01

    Beyond the existing, limited IEC prescription to describe fatigue loads on wind turbines, we look towards probabilistic characterization of the loads via analogous characterization of the atmospheric flow, particularly for today's "taller" turbines with rotors well above the atmospheric surface layer. Based on both data from multiple sites as well as theoretical bases from boundary-layer meteorology and atmospheric turbulence, we offer probabilistic descriptions of shear and turbulence intensity, elucidating the connection of each to the other as well as to atmospheric stability and terrain. These are used as input to loads calculation, and with a statistical loads output description, they allow for improved design and loads calculations.

  19. Unconventional field induced phases in a quantum magnet formed by free radical tetramers

    NASA Astrophysics Data System (ADS)

    Saúl, Andrés; Gauthier, Nicolas; Askari, Reza Moosavi; Côté, Michel; Maris, Thierry; Reber, Christian; Lannes, Anthony; Luneau, Dominique; Nicklas, Michael; Law, Joseph M.; Green, Elizabeth Lauren; Wosnitza, Jochen; Bianchi, Andrea Daniele; Feiguin, Adrian

    2018-02-01

    We report experimental and theoretical studies on the magnetic and thermodynamic properties of NIT-2Py, a free radical based organic magnet. From magnetization and specific-heat measurements we establish the temperature versus magnetic field phase diagram which includes two Bose-Einstein condensates (BEC) and an infrequent half-magnetization plateau. Calculations based on density functional theory demonstrate that magnetically this system can be mapped to a quasi-two-dimensional structure of weakly coupled tetramers. Density matrix renormalization group calculations show the unusual characteristics of the BECs where the spins forming the low-field condensate are different than those participating in the high-field one.

  20. Vicinage effect in the energy loss of H2 dimers: Experiment and calculations based on time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Koval, N. E.; Borisov, A. G.; Rosa, L. F. S.; Stori, E. M.; Dias, J. F.; Grande, P. L.; Sánchez-Portal, D.; Muiño, R. Díez

    2017-06-01

    We present a combined theoretical and experimental study of the energy loss of H2+ molecular ions interacting with thin oxide and carbon films. As a result of quantum mechanical interference of the target electrons, the energy loss of a molecular projectile differs from the sum of the energy losses of individual atomic projectiles. This difference is known as the vicinage effect. Calculations based on the time-dependent density functional theory allow the first-principles description of the dynamics of target excitations produced by the correlated motion of the nucleons forming the molecule. We investigate in detail the dependence of the vicinage effect on the speed and charge state of the projectile and find an excellent agreement between calculated and measured data.

  1. Experimental and theoretical studies on tautomeric structures of a newly synthesized 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Cukurovali, Alaaddin; Subasi, Nuriye Tuna; Onaran, Abdurrahman; Ece, Abdulilah; Eker, Sıtkı; Kani, Ibrahim

    2018-02-01

    In the present study, a single crystal of a Schiff base, 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol, was synthesized. The structure of the synthesized crystal was confirmed by 1H and 13C NMR spectroscopic and X-ray diffraction analysis techniques. Experimental and theoretical studies were carried out on two tautomeric structures. It has been observed that the title compound studied can be in two different tautomeric forms, phenol-imine and keto-amine. Theoretical calculations have been performed to support experimental results. Accordingly, the geometric parameters of the compound were optimized by the density functional theory (DFT) method using the Gaussian 09 and Quantum Espresso (QE) packet program was used for periodic boundary conditions (PBC) studies. Furthermore, the compound was also tested for in vitro antifungal activity against Sclerotinia sclerotiorum, Alternaria solani, Fusarium oxysporum f. sp. lycopersici and Monilinia fructigena plant pathogens. Promising inhibition profiles were observed especially towards A. solani. Finally, molecular docking studies and post-docking procedure based on Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) were also carried out to get insight into the compound's binding interactions with the potential. Although theoretical calculations showed that the phenol-imine form was more stable, keto-amine form was predicted to have better binding affinity which was concluded to result from loss of rotational entropy in phenol-imine upon binding. The results obtained here from both experimental and computational methods might serve as a potential lead in the development of novel anti-fungal agents.

  2. Theoretical investigation of structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys using DFT based FP-LAPW approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-11-01

    Density functional theory (DFT) based full-potential linearized augmented plane wave (FP-LAPW) methodology has been employed to investigate theoretically the structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys for 0 ≤ x ≤ 1 in their rock-salt (B1) crystallographic phase. The exchange-correlation potentials for the structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using both the WC-GGA and the recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) schemes. The thermodynamic stability of all the ternary alloys have been investigated by calculating their respective enthalpy of formation. The atomic and orbital origin of different electronic states in the band structure of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  3. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Theoretical calculation of pKa reveals an important role of Arg205 in the activity and stability of Streptomyces sp. N174 chitosanase.

    PubMed

    Fukamizo, T; Juffer, A H; Vogel, H J; Honda, Y; Tremblay, H; Boucher, I; Neugebauer, W A; Brzezinski, R

    2000-08-18

    Based on the crystal structure of chitosanase from Streptomyces sp. N174, we have calculated theoretical pK(a) values of the ionizable groups of this protein using a combination of the boundary element method and continuum electrostatics. The pK(a) value obtained for Arg(205), which is located in the catalytic cleft, was abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. Chitosanases possessing mutations in this position (R205A, R205H, and R205Y), produced by Streptomyces lividans expression system, were found to have less than 0.3% of the activity of the wild type enzyme and to possess thermal stabilities 4-5 kcal/mol lower than that of the wild type protein. In the crystal structure, the Arg(205) side chain is in close proximity to the Asp(145) side chain (theoretical pK(a), -1.6), which is in turn close to the Arg(190) side chain (theoretical pK(a), 17.7). These theoretical pK(a) values are abnormal, suggesting that both of these residues may participate in the Arg(205) interaction network. Activity and stability experiments using Asp(145)- and Arg(190)-mutated chitosanases (D145A and R190A) provide experimental data supporting the hypothesis derived from the theoretical pK(a) data and prompt the conclusion that Arg(205) forms a strong interaction network with Asp(145) and Arg(190) that stabilizes the catalytic cleft.

  5. Effect of wave function on the proton induced L XRP cross sections for {sub 62}Sm and {sub 74}W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shehla,; Kaur, Rajnish; Kumar, Anil

    The L{sub k}(k= 1, α, β, γ) X-ray production cross sections have been calculated for {sub 74}W and {sub 62}Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared withmore » the measured cross sections reported in the recent compilation to check the reliability of the calculated values.« less

  6. Ab-Initio Calculation of the Magnetic Properties of Metal-Doped Boron-Nitrogen Nanoribbon

    NASA Astrophysics Data System (ADS)

    Rufinus, J.

    2017-10-01

    The field of spintronics has been continuously attracting researchers. Tremendous efforts have been made in the quest to find good candidates for future spintronic devices. One particular type of material called graphene is under extensive theoretical study as a feasible component for practical applications. However, pristine graphene is diamagnetic. Thus, a lot of research has been performed to modify the graphene-based structure to achieve meaningful magnetic properties. Recently, a new type of graphene-based one-dimensional material called Boron Nitrogen nanoribbon (BNNR) has been of interest, due to the theoretical predictions that this type of material shows half-metallic property. Here we present the results of the theoretical and computational study of M-doped (M = Cr, Mn) Zigzag BNNR (ZBNNR), the objective of which is to determine whether the presence of these dopants will give rise to ferromagnetism. We have found that the concentration and the atomic distance among the dopants affect the magnetic ordering of this type of material. These results provide a meaningful theoretical prediction of M-doped ZBNNR as a basic candidate of future spintronic devices.

  7. Lattice and Valence Electronic Structures of Crystalline Octahedral Molybdenum Halide Clusters-Based Compounds, Cs2[Mo6X14] (X = Cl, Br, I), Studied by Density Functional Theory Calculations.

    PubMed

    Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki

    2017-06-05

    The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.

  8. Calculated quantum yield of photosynthesis of phytoplankton in the Marine Light-Mixed Layers (59 deg N, 21 deg W)

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.

    1995-01-01

    The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.

  9. Calculations of Hubbard U from first-principles

    NASA Astrophysics Data System (ADS)

    Aryasetiawan, F.; Karlsson, K.; Jepsen, O.; Schönberger, U.

    2006-09-01

    The Hubbard U of the 3d transition metal series as well as SrVO3 , YTiO3 , Ce, and Gd has been estimated using a recently proposed scheme based on the random-phase approximation. The values obtained are generally in good accord with the values often used in model calculations but for some cases the estimated values are somewhat smaller than those used in the literature. We have also calculated the frequency-dependent U for some of the materials. The strong frequency dependence of U in some of the cases considered in this paper suggests that the static value of U may not be the most appropriate one to use in model calculations. We have also made comparison with the constrained local density approximation (LDA) method and found some discrepancies in a number of cases. We emphasize that our scheme and the constrained local density approximation LDA method theoretically ought to give similar results and the discrepancies may be attributed to technical difficulties in performing calculations based on currently implemented constrained LDA schemes.

  10. Momentum distributions for H 2 ( e , e ' p )

    DOE PAGES

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-29

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less

  11. Vibrational spectroscopy investigation and density functional theory calculations on (E)-N‧-(4-methoxybenzylidene) benzohydrazide

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Subashchandrabose, S.; Ramesh Babu, N.; Syed Ali Padusha, M.

    2015-05-01

    The FT-IR, FT-Raman and UV-Vis spectra of the Schiff base compound (E)-N‧-(4-methoxybenzylidene) benzohydrazide (MBBH) have been recorded and analyzed. The optimized geometrical parameters were calculated. The complete vibrational assignments were performed on the basis of TED of the vibrational modes, calculated with the help of SQM method. NBO analysis has been carried out to explore the hyperconjugative interactions and their second order stabilization energy within the molecule. The molecular orbitals (MO's) and its energy gap were studied. The first order hyperpolarizability (β0) and related properties (β, α0, Δα) of MBBH are also calculated. All theoretical calculations were performed on the basis of B3LYP/6-311++G(d,p) level of theory.

  12. Very high power THz radiation sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  13. Tuning the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions based on colorimetric principle

    NASA Astrophysics Data System (ADS)

    Zhang, Aiqin; Yang, Yamin; Zhai, Guangmei; Jia, Husheng; Xu, Bingshe

    2016-02-01

    In this work, a method of tuning the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions based on colorimetric principle was proposed. The technological route from coordination to copolymerization was employed to obtain the white light macromolecular phosphor. The three primary color monomers have been synthesized and their Commission Internationale de L'Eclairage (CIE) coordinates are respectively (0.540, 0.314), (0.231, 0.463), and (0.161, 0.054). The molar feed ratios of the three primary color monomers were calculated from the CIE coordinates based on colorimetric principle. Serial copolymers have been synthesized by free radical copolymerization of the three primary color monomers and methyl methacrylate. The quantum efficiency of the copolymers was higher than that of the complex monomers. The complexes were directly boned to the polymer chain, in which the energy transfer was reduced significantly compared to the doped-polymers. The experimental values of copolymers' CIE coordinates were located in the white light region in good agreement with theoretical values. The results indicate that the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions could be tuned by theoretical calculation based on colorimetric principle.

  14. Fast algorithm for bilinear transforms in optics

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Andrey S.; Martinez-Niconoff, Gabriel C.; Ramos Romero, Obdulio; Cortes, Liliana

    2000-10-01

    The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is partially coherent. Numerical examples are studied and compared with the theoretical results.

  15. Calculation of the bending stresses in helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    De Guillenchmidt, P

    1951-01-01

    A comparatively rapid method is presented for determining theoretically the bending stresses of helicopter rotor blades in forward flight. The method is based on the analysis of the properties of a vibrating beam, and its uniqueness lies in the simple solution of the differential equation which governs the motion of the bent blades.

  16. Detection Identification and Quantification of Keto-Hydroperoxides in Low-Temperature Oxidation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Nils; Moshammer, Kai; Jasper, Ahren W.

    2017-07-01

    Keto-hydroperoxides are reactive partially oxidized intermediates that play a central role in chain-branching reactions during the low-temperature oxidation of hydrocarbons. In this Perspective, we outline how these short lived species can be detected, identified, and quantified using integrated experimental and theoretical approaches. The procedures are based on direct molecular-beam sampling from reactive environments, followed by mass spectrometry with single-photon ionization, identification of fragmentation patterns, and theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. Using the oxidation of neo-pentane and tetrahydrofuran as examples, the individual steps of the experimental approaches are described in depth together with amore » detailed description of the theoretical efforts. For neo-pentane, the experimental data are consistent with the calculated ionization and fragment appearance energies of the keto-hydroperoxide, thus adding confidence to the analysis routines and the employed levels of theory. For tetrahydrofuran, multiple keto-hydroperoxide isomers are possible due to the presence of nonequivalent O 2 addition sites. Despite this additional complexity, the experimental data allow for the identification of two to four keto-hydroperoxides. Mole fraction profiles of the keto-hydroperoxides, which are quantified using calculated photoionization cross sections, are provided together with estimated uncertainties as function of the temperature of the reactive mixture and can serve as validation targets for chemically detailed mechanisms.« less

  17. Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study.

    PubMed

    Sun, Hao; Lee, Hui Hui; Blakey, Idriss; Dargaville, Bronwin; Chirila, Traian V; Whittaker, Andrew K; Smith, Sean C

    2011-09-29

    In the present work, the electronic structures and properties of a series of 2-ureido-4[1H]-pyrimidinone(UPy)-based monomers and dimers in various environments (vacuum, chloroform, and water) are studied by density functional theoretical methods. Most dimers prefer to form a DDAA-AADD (D, H-bond donor; A, H-bond acceptor) array in both vacuum and solvents. Topological analysis proved that intramolecular and intermolecular hydrogen bonds coexist in the dimers. Frequency and NBO calculations show that all the hydrogen bonds exhibit an obvious red shift in their stretching vibrational frequencies. Larger substituents at position 6 of the pyrimidinone ring with stronger electron-donating ability favor the total binding energy and free energy of dimerization. Calculations on the solvent effect show that dimerization is discouraged by the stronger polarity of the solvent. Further computations show that Dimer-1 may be formed in chloroform, but water molecules may interact with the donor or acceptor sites and hence disrupt the hydrogen bonds of Dimer-1. © 2011 American Chemical Society

  18. Theoretical study of the dielectronic recombination process of Li-like Xe51+ ions

    NASA Astrophysics Data System (ADS)

    Dou, Lijun; Xie, Luyou; Zhang, Denghong; Dong, Chenzhong; Wen, Weiqiang; Huang, Zhongkui; Ma, Xinwen

    2017-05-01

    The dielectronic recombination of Li-like Xe51+ (2s) ions was studied using the flexible atomic code based on the relativistic configuration interaction method. The resonance energies, radiative and autoionization rates, and resonance strengths were calculated systematically for the doubly excited states (2p1/2nlj)J(n = 18-32) and (2p3/2n'lj)J(n' = 9-27) of Be-like Xe50+ ions. For the higher Rydberg resonance states with n ≥ 33 and n' ≥ 28, the resonance energies and strengths were obtained by extrapolation based on quantum defect theory. The theoretical rate coefficients, covering the center-of-mass energy range 0-505 eV, are in a better agreement with the experimental results measured at the heavy-ion storage ring ESR than the Multi-Configuration Dirac-Fock calculations, especially at the resonance energy range close to the series limits. Contribution to the Topical Issue: "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  19. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry.

    PubMed

    Matsuo, Yosuke

    2017-01-01

    In recent years, plant polyphenols have attracted great attention due to their wide range of biological activities. Certain kinds of polyphenols have complex structures; therefore, it is difficult to elucidate their total structure, including stereochemistry. In this study, we reinvestigated the stereostructures of two major C-glycosidic ellagitannins contained in Quercus plants, vescalagin and castalagin, and revised their stereostructures based on theoretical calculations of spectroscopic data. We also determined the structures of quercusnins A and B, isolated from the sapwood of Quercus crispula, based on theoretical calculations of NMR data. The oxidation mechanism of polyphenols has not been entirely elucidated. Therefore, we have also studied the oxidation mechanism of tea catechins during black tea production. Our investigation of the oxidation mechanism of black tea pigment theaflavins revealed that the difference in the position of the galloyl ester affords different oxidation products of theaflavins. In addition, oxidation products of pyrogallol-type catechins could be classified into three types-dehydrotheasinensins, theacitrins, and proepitheaflagallins; their detailed production and degradation mechanisms were also examined.

  20. Theoretical studies on anisotropic electrical conductivity of trans-polyacetylene doped with n-type dopants

    NASA Astrophysics Data System (ADS)

    Wang, Cunguo; Wang, Rongshun

    2000-12-01

    Based on energy band theory of solid states, extended Hückel molecular orbital methods (EHMO/CO) were used to calculate the two-dimensional (2D) energy band structures of highly oriented trans-polyacetylene (PA) undoped and doped with n-type dopant (Li, Na, K). The band gaps ( Eg) of undoped PA in directions parallel and perpendicular to the oriented direction were 1.195 and 3.040 eV, respectively. When PA was doped with n-type dopant, the corresponding band gaps Eg1 and Eg2 decreased significantly. Based on the calculated results, we could successfully account for the changes of electrical anisotropy of PA from the undoped state to the doped form. The conductivity anisotropy ratio σ1/ σ2 decreased when PA was doped with n-type dopant, because the PA chains and the dopant showed a strong interchain coupling. It was the interchain coupling that acted as a bridge between two neighboring chains, and made the charge-carrier transport easier between the interchains. The theoretical results for undoped and doped PA are in good agreement with the experiment.

  1. Structural characterization, surface characteristics and non covalent interactions of a heterocyclic Schiff base: Evaluation of antioxidant potential by UV-visible spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M. A.

    2017-06-01

    A heterocyclic Schiff base, (E)-4-(1-((pyridin-2-ylmethyl)imino)ethyl)benzene-1,3-diol (L) was synthesized and isolated as single crystals. Its structure was characterized by FT-IR, UV, 1H and 13C NMR, and further confirmed by X-ray crystallography. Qualitatively and quantitatively the various interactions in the crystal structure of L has been analyzed by Hirshfeld surfaces and 2D fingerprint plots. Non covalent interactions have been studied by electron localization function (ELF) and mapped with reduced density gradient (RDG) analysis. The molecular structure was studied computationally by DFT-B3LYP/6-311G(d,p) calculations. HOMO-LUMO energy levels, chemical reactivity descriptors and thermodynamic parameters have been investigated at the same level of theory. The antioxidant potential of L was evaluated experimentally by measuring DPPH free radical scavenging effect using UV-visible spectroscopy and theoretically by DFT. Theoretical parameters, such as bond dissociation enthalpy (BDE) and spin density calculated suggests that antioxidant potential of L is due to H atom abstraction from the sbnd OH group.

  2. Relativistic quantum mechanical calculations of electron-impact broadening for spectral lines in Be-like ions

    NASA Astrophysics Data System (ADS)

    Duan, B.; Bari, M. A.; Wu, Z. Q.; Jun, Y.; Li, Y. M.; Wang, J. G.

    2012-11-01

    Aims: We present relativistic quantum mechanical calculations of electron-impact broadening of the singlet and triplet transition 2s3s ← 2s3p in four Be-like ions from N IV to Ne VII. Methods: In our theoretical calculations, the K-matrix and related symmetry information determined by the colliding systems are generated by the DARC codes. Results: A careful comparison between our calculations and experimental results shows good agreement. Our calculated widths of spectral lines also agree with earlier theoretical results. Our investigations provide new methods of calculating electron-impact broadening parameters for plasma diagnostics.

  3. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  4. Theoretical Calculation of Electronic Circular Dichroism of a Hexahydroxydiphenoyl-Containing Flavanone Glycoside

    USDA-ARS?s Scientific Manuscript database

    Time-dependent density functional theory (TDDFT) was employed for theoretical calculation of electronic circular dichroism (ECD) of a hexahydroxydiphenoyl (HHDP)-containing flavanone glycoside, mattucinol-7-O-[4'',6''-O-(aS)-hexahydroxydiphenoyl]-ß-d-glucopyranoside (2). It identified the roles of t...

  5. Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Xu, Zhenli

    2018-02-01

    An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.

  6. Identification of Second Shell Coordination in Transition Metal Species Using Theoretical XANES: Example of Ti–O–(C, Si, Ge) Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Guillo, Pascal; Tilley, T. Don

    X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti–O–(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique featuresmore » for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O–X (X = C, Si, or Ge) antibonding orbitals.« less

  7. Calculations and experiments concerning lifting force and power in TEMPUS

    NASA Technical Reports Server (NTRS)

    Zong, J. H.; Szekely, J.; Lohofer, G.

    1993-01-01

    A critical comparison is reported between the theoretically predicted and experimentally measured values for the electromagnetic lifting force and the heating rates which may be achieved, under simulated microgravity conditions, using the TEMPUS electromagnetic levitation device. The experiments involved the suspending of a metallic sample from one arm of a recording balance, such that it was carefully positioned between the heating and the positioning coils of the levitation device. The net force exerted by the sample was measured as a function of position, the coil currents, and the nature of the sample. Some calculations are also reported regarding the power absorption by the sample. The theoretical predictions, based on the numerical solution of Maxwell's equations using the volume integral technique, were found to be in excellent agreement with the measurements. For the idealized case of a spherical sample, analytical solutions describing the lifting force were also found to agree very well with the computed results.

  8. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong; Duan, Lian; Lan, Hui

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressedmore » as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.« less

  9. Towards unsupervised polyaromatic hydrocarbons structural assignment from SA-TIMS-FTMS data.

    PubMed

    Benigni, Paolo; Marin, Rebecca; Fernandez-Lima, Francisco

    2015-10-01

    With the advent of high resolution ion mobility analyzers and their coupling to ultrahigh resolution mass spectrometers, there is a need to further develop a theoretical workflow capable of correlating experimental accurate mass and mobility measurements with tridimensional candidate structures. In the present work, a general workflow is described for unsupervised tridimensional structural assignment based on accurate mass measurements, mobility measurements, in silico 2D-3D structure generation, and theoretical mobility calculations. In particular, the potential of this workflow will be shown for the analysis of polyaromatic hydrocarbons from Coal Tar SRM 1597a using selected accumulation - trapped ion mobility spectrometry (SA-TIMS) coupled to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The proposed workflow can be adapted to different IMS scenarios, can utilize different collisional cross-section calculators and has the potential to include MS n and IMS n measurements for faster and more accurate tridimensional structural assignment.

  10. Vector and Tensor Analyzing Powers in Deuteron-Proton Breakup

    NASA Astrophysics Data System (ADS)

    Stephan, E.; Kistryn, St.; Kalantar-Nayestanaki, N.; Biegun, A.; Bodek, K.; Ciepał, I.; Deltuva, A.; Eslami-Kalantari, M.; Fonseca, A. C.; Gasparić, I.; Golak, J.; Jamróz, B.; Joulaeizadeh, L.; Kamada, H.; Kiš, M.; Kłos, B.; Kozela, A.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J.; Micherdzińska, A.; Moeini, H.; Nogga, A.; Ramazani-Moghaddam-Arani, A.; Skibiński, R.; Sworst, R.; Witała, H.; Zejma, J.

    2011-05-01

    High precision data for vector and tensor analyzing powers of the {^1{H}({d},{{pp}}){n}} breakup reaction at 130 and 100 MeV deuteron beam energies have been measured in a large fraction of the phase space. They are compared to the theoretical predictions based on various approaches to describe the three nucleon (3N) system dynamics. Theoretical predictions describe very well the vector analyzing power data, with no need to include any three-nucleon force effects for these observables. Tensor analyzing powers can be also very well reproduced by calculations in most of the studied region, but locally certain discrepancies are observed. At 130 MeV for A xy such discrepancies usually appear, or are enhanced, when model 3N forces are included. Predicted effects of 3NFs are much lower at 100 MeV and at this energy equally good consistency between the data and the calculations is obtained with or without 3NFs.

  11. Observation of an all-boron fullerene

    NASA Astrophysics Data System (ADS)

    Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li; Chen, Qiang; Bai, Hui; Hu, Han-Shi; Piazza, Zachary A.; Tian, Wen-Juan; Lu, Hai-Gang; Wu, Yan-Bo; Mu, Yue-Wen; Wei, Guang-Feng; Liu, Zhi-Pan; Li, Jun; Li, Si-Dian; Wang, Lai-Sheng

    2014-08-01

    After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40- with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40- with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.

  12. Observation of an all-boron fullerene.

    PubMed

    Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li; Chen, Qiang; Bai, Hui; Hu, Han-Shi; Piazza, Zachary A; Tian, Wen-Juan; Lu, Hai-Gang; Wu, Yan-Bo; Mu, Yue-Wen; Wei, Guang-Feng; Liu, Zhi-Pan; Li, Jun; Li, Si-Dian; Wang, Lai-Sheng

    2014-08-01

    After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40(-) with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40(-) with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.

  13. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  14. Progress on single barrier varactors for submillimeter wave power generation

    NASA Technical Reports Server (NTRS)

    Nilsen, Svein M.; Groenqvist, Hans; Hjelmgren, Hans; Rydberg, Anders; Kollberg, Erik L.

    1992-01-01

    Theoretical work on Single Barrier Varactor (SBV) diodes, indicate that the efficiency for a multiplier has a maximum for a considerably smaller capacitance variation than previously thought. The theoretical calculations are performed, both with a simple theoretical model and a complete computer simulation using the method of harmonic balance. Modeling of the SBV is carried out in two steps. First, the semiconductor transport equations are solved simultaneously using a finite difference scheme in one dimension. Secondly, the calculated I-V, and C-V characteristics are input to a multiplier simulator which calculates the optimum impedances, and output powers at the frequencies of interest. Multiple barrier varactors can also be modeled in this way. Several examples on how to design the semiconductor layers to obtain certain characteristics are given. The calculated conversion efficiencies of the modeled structures, in a multiplier circuit, are also presented. Computer simulations for a case study of a 750 GHz multiplier show that InAs diodes perform favorably compared to GaAs diodes. InAs and InGaAs SBV diodes have been fabricated and their current vs. voltage characteristics are presented. In the InAs diode, was the large bandgap semiconductor AlSb used as barrier. The InGaAs diode was grown lattice matched to an InP substrate with InAlAs as a barrier material. The current density is greatly reduced for these two material combinations, compared to that of GaAs/AlGaAs SBV diodes. GaAs based diodes can be biased to higher voltages than InAs diodes.

  15. Computer-aided molecular modeling techniques for predicting the stability of drug cyclodextrin inclusion complexes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Faucci, Maria Teresa; Melani, Fabrizio; Mura, Paola

    2002-06-01

    Molecular modeling was used to investigate factors influencing complex formation between cyclodextrins and guest molecules and predict their stability through a theoretical model based on the search for a correlation between experimental stability constants ( Ks) and some theoretical parameters describing complexation (docking energy, host-guest contact surfaces, intermolecular interaction fields) calculated from complex structures at a minimum conformational energy, obtained through stochastic methods based on molecular dynamic simulations. Naproxen, ibuprofen, ketoprofen and ibuproxam were used as model drug molecules. Multiple Regression Analysis allowed identification of the significant factors for the complex stability. A mathematical model ( r=0.897) related log Ks with complex docking energy and lipophilic molecular fields of cyclodextrin and drug.

  16. Spectroscopic and DFT studies of bis-3-hydroxypyridinium and bis-3-hydroxymethylpyridinium dibromides with tetramethylene linker

    NASA Astrophysics Data System (ADS)

    Komasa, Anna

    2018-01-01

    Experimental and theoretical IR, Raman, UV-Vis, 1H and 13C NMR spectra of 1,4-di(3-hydroxypyridinium)butane dibromide and 1,4-di(3-hydroxymethylpyridinium)butane dibromide were obtained and analyzed. Optimized geometrical structures of the studied compounds were calculated by B3LYP method using 6-311++G(d,p) basis set and employed to determine the theoretical wavenumbers and intensities of IR and Raman spectra. The frequency assignments were supported by the potential energy distribution (PED) analysis. The significant role of the intermolecular interactions and the hydrogen bond was revealed on the basis of IR spectra. The calculated GIAO/B3LYP/6-311++G(d,p) isotropic magnetic shielding constants were used to predict the 1H and 13C chemical shifts for the optimized structures. Accuracy of the prediction of 1H and 13C chemical shifts was significantly improved by a simulation of the solvent in calculations. On the basis of UV-Vis spectra the acid-base equilibrium in the water solution of 1,4-di(3-hydroxypyridinium)butane dibromide was found.

  17. Spectroscopic and vibrational analysis of the methoxypsoralen system: A comparative experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yuan, H.; Vo-Dinh, T.

    2013-03-01

    Raman spectra measurements and density functional theory (DFT) calculations were performed to investigate three psoralens: 5-amino-8-methoxypsoralen (5-A-8-MOP), 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) with the aim of differentiating these similar bioactive molecules. The Raman spectra were recorded in the region 300-3500 cm-1. All three psoralens were found to have similar Raman spectrum in the region 1500-1650 cm-1. 5-A-8-MOP can be easily differentiated from 5-MOP or 8-MOP based on the Raman spectrum. The Raman spectrum differences at 651 and 795 cm-1 can be used to identify 5-MOP from 8-MOP. The theoretically computed vibrational frequencies and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-311++G(d,p) basis set were found to yield results that are very comparable to experimental Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program.

  18. A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang

    2018-04-01

    The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.

  19. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple model of a nanocrystal with spherical shape and centro-symmetric strain at the surface shell we obtain theoretical alp-Q values which match very well the alp-Q plots determined experimentally for Sic, GaN, and diamond nanopowders. The theoretical models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the surface shell. According to our calculations, the part of the diffraction pattern measured at relatively low diffraction vectors Q (below 10/angstrom) provides information on the surface strain, whle determination of the lattice parameters in the grain core requires measurements at large Q-values (above 15 - 20/angstrom).

  20. The lack of theoretical support for using person trade-offs in QALY-type models.

    PubMed

    Østerdal, Lars Peter

    2009-10-01

    Considerable support for the use of person trade-off methods to assess the quality-adjustment factor in quality-adjusted life years (QALY) models has been expressed in the literature. The WHO has occasionally used similar methods to assess the disability weights for calculation of disability-adjusted life years (DALYs). This paper discusses the theoretical support for the use of person trade-offs in QALY-type measurement of (changes in) population health. It argues that measures of this type based on such quality-adjustment factors almost always violate the Pareto principle, and so lack normative justification.

  1. Measurements and predictions of the 6s6p{sup 1,3}P{sub 1} lifetimes in the Hg isoelectronic sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, L. J.; Irving, R. E.; Henderson, M.

    2001-04-01

    Experimental and theoretical values for the lifetimes of the 6s6p{sup 1}P{sub 1} and {sup 3}P{sub 1} levels in the Hg isoelectronic sequence are examined in the context of a data-based isoelectronic systematization. New beam-foil measurements for lifetimes in Pb III and Bi IV are reported and included in a critical evaluation of the available database. These results are combined with ab initio theoretical calculations and linearizing parametrizations to make predictive extrapolations for ions with 84{<=}Z{le}92.

  2. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  3. Calculative techniques for transonic flows about certain classes of wing-body combinations, phase 2

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1972-01-01

    Theoretical analysis and associated computer programs were developed for predicting properties of transonic flows about certain classes of wing-body combinations. The procedures used are based on the transonic equivalence rule and employ either an arbitrarily-specified solution or the local linerization method for determining the nonlifting transonic flow about the equivalent body. The class of wind planform shapes include wings having sweptback trailing edges and finite tip chord. Theoretical results are presented for surface and flow-field pressure distributions for both nonlifting and lifting situations at Mach number one.

  4. Communication: Electron ionization of DNA bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less

  5. Ab initio electron propagator calculations of transverse conduction through DNA nucleotide bases in 1-nm nanopore corroborate third generation sequencing.

    PubMed

    Kletsov, Aleksey A; Glukhovskoy, Evgeny G; Chumakov, Aleksey S; Ortiz, Joseph V

    2016-01-01

    The conduction properties of DNA molecule, particularly its transverse conductance (electron transfer through nucleotide bridges), represent a point of interest for DNA chemistry community, especially for DNA sequencing. However, there is no fully developed first-principles theory for molecular conductance and current that allows one to analyze the transverse flow of electrical charge through a nucleotide base. We theoretically investigate the transverse electron transport through all four DNA nucleotide bases by implementing an unbiased ab initio theoretical approach, namely, the electron propagator theory. The electrical conductance and current through DNA nucleobases (guanine [G], cytosine [C], adenine [A] and thymine [T]) inserted into a model 1-nm Ag-Ag nanogap are calculated. The magnitudes of the calculated conductance and current are ordered in the following hierarchies: gA>gG>gC>gT and IG>IA>IT>IC correspondingly. The new distinguishing parameter for the nucleobase identification is proposed, namely, the onset bias magnitude. Nucleobases exhibit the following hierarchy with respect to this parameter: Vonset(A)

  6. Use of an expert system data analysis manager for space shuttle main engine test evaluation

    NASA Technical Reports Server (NTRS)

    Abernethy, Ken

    1988-01-01

    The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.

  7. Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities.

    NASA Astrophysics Data System (ADS)

    Mitchell, David L.

    1996-06-01

    Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived.A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Best number. Terminal velocities were calculated from Re.Alternatively, four Re-X power-law expressions were extracted from the theoretical Re-X relationship. These expressions collectively describe the terminal velocities of all ice particle types. These were parameterized using mass- and area-dimensional power laws, yielding four theoretically based power-law expressions predicting fall speeds in terms of ice particle maximum dimension. When parameterized for a given ice particle type, the theoretical fall speed power law can be compared directly with empirical fall speed-dimensional power laws in the literature for the appropriate Re range. This provides a means of comparing theory with observations.Terminal velocities predicted by this method were compared with fall speeds given by empirical fall speed expressions for the same ice particle type, which were curve fits to measured fall speeds. Such comparisons were done for nine types of ice particles. Fall speeds predicted by this method differed from those based on measurements by no more than 20%.The features that distinguish this method of determining fall speeds from others are that it does not represent particles as spheroids, it is general for any ice particle shape and size, it is conceptually and mathematically simple, it appears accurate, and it provides for physical insight. This method also allows fall speeds to be determined from aircraft measurements of ice particle mass and projected area, rather than directly measuring fall speeds. This approach may be useful for ice crystals characterizing cirrus clouds, for which direct fall speed measurements are difficult.

  8. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1989-03-01

    Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.

  9. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1990-05-01

    Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.

  10. High-level theoretical rovibrational spectroscopy beyond fc-CCSD(T): The C3 molecule.

    PubMed

    Schröder, Benjamin; Sebald, Peter

    2016-01-28

    An accurate local (near-equilibrium) potential energy surface (PES) is reported for the C3 molecule in its electronic ground state (X̃(1)Σg (+)). Special care has been taken in the convergence of the potential relative to high-order correlation effects, core-valence correlation, basis set size, and scalar relativity. Based on the aforementioned PES, several rovibrational states of all (12)C and (13)C substituted isotopologues have been investigated, and spectroscopic parameters based on term energies up to J = 30 have been calculated. Available experimental vibrational term energies are reproduced to better than 1 cm(-1) and rotational constants show relative errors of not more than 0.01%. The equilibrium bond length has been determined in a mixed experimental/theoretical approach to be 1.294 07(10) Å in excellent agreement with the ab initio composite value of 1.293 97 Å. Theoretical band intensities based on a newly developed electric dipole moment function also suggest that the infrared active (1, 1(1), 0)←(0, 0(0), 0) combination band might be observable by high-resolution spectroscopy.

  11. Effect of temperature on the acid-base properties of the alumina surface: microcalorimetry and acid-base titration experiments.

    PubMed

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2006-06-15

    Sorption reactions on natural or synthetic materials that can attenuate the migration of pollutants in the geosphere could be affected by temperature variations. Nevertheless, most of the theoretical models describing sorption reactions are at 25 degrees C. To check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive microcalorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration microcalorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 degrees C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 degrees C) and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpic variations associated respectively to first and second deprotonation of the alumina surface. Values obtained are deltaH1 = 80+/-10 kJ mol(-1) and deltaH2 = 5+/-3 kJ mol(-1). In a second step, these enthalpy values were used to calculate the alumina surface acidity constants at 50 degrees C via the van't Hoff equation. Then a theoretical titration curve at 50 degrees C was calculated and compared to the experimental alumina surface titration curve. Good agreement between the predicted acid-base titration curve and the experimental one was observed.

  12. First-principles Theory of Inelastic Transport and Local Heating in Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-04-01

    We present theoretical calculations of the inelastic transport properties in atomic gold wires. Our method is based on a combination of density functional theory and non-equilibrium Green's functions. The vibrational spectra for extensive series of wire geometries have been calculated using SIESTA, and the corresponding effects in the conductance are analyzed. In particular, we focus on the heating of the active vibrational modes. By a detailed comparison with experiments we are able to estimate an order of magnitude for the external damping of the active vibrations.

  13. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  14. A fluctuating quantum model of the CO vibration in carboxyhemoglobin.

    PubMed

    Falvo, Cyril; Meier, Christoph

    2011-06-07

    In this paper, we present a theoretical approach to construct a fluctuating quantum model of the CO vibration in heme-CO proteins and its interaction with external laser fields. The methodology consists of mixed quantum-classical calculations for a restricted number of snapshots, which are then used to construct a parametrized quantum model. As an example, we calculate the infrared absorption spectrum of carboxy-hemoglobin, based on a simplified protein model, and found the absorption linewidth in good agreement with the experimental results. © 2011 American Institute of Physics

  15. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  16. Theoretical calculations of positron annihilation characteristics in inorganic solids -- Recent advances and problems

    NASA Astrophysics Data System (ADS)

    Sob, M.; Sormann, H.; Kuriplach, J.

    Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is demonstrated for the case of nanocrystalline Ni where realistic atomic configurations are taken from large-scale molecular dynamics simulations.

  17. The returns and risks of investment portfolio in a financial market

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2014-07-01

    The returns and risks of investment portfolio in a financial system was investigated by constructing a theoretical model based on the Heston model. After the theoretical model and analysis of portfolio were calculated and analyzed, we find the following: (i) The statistical properties (i.e., the probability distribution, the variance and loss rate of equity portfolio return) between simulation results of the theoretical model and the real financial data obtained from Dow Jones Industrial Average are in good agreement; (ii) The maximum dispersion of the investment portfolio is associated with the maximum stability of the equity portfolio return and minimal investment risks; (iii) An increase of the investment period and a worst investment period are associated with a decrease of stability of the equity portfolio return and a maximum investment risk, respectively.

  18. Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions

    NASA Astrophysics Data System (ADS)

    Ufimtcev, E. M.

    2017-11-01

    The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.

  19. Possibility designing XNOR and NAND molecular logic gates by using single benzene ring

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2017-09-01

    This study focused on examining electronic transport through single benzene ring and suggested how such ring can be employed to design XNOR and NAND molecular logic gates. The single benzene ring was threaded by a magnetic flux. The magnetic flux and applied gate voltages were considered as the key tuning parameter in the XNOR and NAND gates operation. All the calculations are achieved by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The transmission probability and the electric current are calculated as functions of electron energy and bias voltage, respectively. The application of the anticipated results can be a base for the progress of molecular electronics.

  20. Structural and spectral comparisons between isomeric benzisothiazole and benzothiazole based aromatic heterocyclic dyes

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ge; Wang, Yue-Hua; Tao, Tao; Qian, Hui-Fen; Huang, Wei

    2015-09-01

    A pair of isomeric heterocyclic compounds, namely 3-amino-5-nitro-[2,1]-benzisothiazole and 2-amino-6-nitrobenzothiazole, are used as the diazonium components to couple with two N-substituted 4-aminobenzene derivatives. As a result, two pairs of isomeric aromatic heterocyclic azo dyes have been produced and they are structurally and spectrally characterized and compared including single-crystal structures, electronic spectra, solvatochromism and reversible acid-base discoloration, thermal stability and theoretically calculations. It is concluded that both benzisothiazole and benzothiazole based dyes show planar molecular structures and offset π-π stacking interactions, solvatochromism and reversible acid-base discoloration. Furthermore, benzisothiazole based aromatic heterocyclic dyes exhibit higher thermal stability, larger solvatochromic effects and maximum absorption wavelengths than corresponding benzothiazole based ones, which can be explained successfully by the differences of their calculated isomerization energy, dipole moment and molecular band gaps.

  1. Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Kirchner, T.; Schulz, M.

    2010-04-01

    We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double ionization of atoms by ion impact. Conventional theoretical approaches aim at a direct calculation of the corresponding cross sections. This has the important shortcoming that it is difficult to account for the experimental conditions when comparing results to measured data. In contrast, the present code generates theoretical event files of the same type as are obtained in a real experiment. From these event files any type of cross sections can be easily extracted. The theoretical schemes are based on distorted wave formalisms for both processes of interest. Solution method: The codes employ a Monte Carlo Event Generator based on theoretical formalisms to generate event files for both single and double ionization. One of the main advantages of having access to theoretical event files is the possibility of adding the conditions present in real experiments (parameter uncertainties, environmental conditions, etc.) and to incorporate additional physics in the resulting event files (e.g. elastic scattering or other interactions absent in the underlying calculations). Additional comments: The computational time can be dramatically reduced if a large number of processors is used. Since the codes has no communication between processes it is possible to achieve an efficiency of a 100% (this number certainly will be penalized by the queuing waiting time). Running time: Times vary according to the process, single or double ionization, to be simulated, the number of processors and the type of theoretical model. The typical running time is between several hours and up to a few weeks.

  2. Ab initio calculations on the initial stages of GaN and ZnO growth on lattice-matched ScAlMgO4 (0001) substrates

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Wang, Yanfei; Li, Chengbo; Li, Xianchang; Niu, Yongsheng; Hou, Shaogang

    2016-12-01

    The initial stages of GaN and ZnO epitaxial growth on lattice-matched ScAlMgO4 substrates have been investigated by ab initio calculation. The geometrical parameters and electronic structure of ScAlMgO4 bulk and (0001) surface have been investigated by density-functional first-principles study. The effects of different surface terminations have been examined through surface energy and relaxation calculations. The O-Mg-O termination is more favorable than other terminations by comparing the calculated surface energies. It should be accepted as the appropriate surface structure in subsequent calculation. The initial stages of GaN and ZnO epitaxial growths are discussed based on the adsorption and diffusion of the adatoms on reconstructed ScAlMgO4 (0001) surface. According to theoretical characterizations, N adatom on the surface is more stable than Ga. O adatom is more favorable than Zn. These observations lead to the formation of GaN and ZnO epilayer and explain experimentally-confirmed in-plane alignment mechanisms of GaN and ZnO on ScAlMgO4 substrates. Furthermore, the polarity of GaN and ZnO surfaces on ScAlMgO4 (0001) at the initial growth stage have been explored by ab initio calculation. Theoretical studies indicate that the predominant growths of Ga-polar GaN and Zn-polar ZnO are determined by the initial growth stage.

  3. Poster 2:Ab initio calculations of low temperature hydrocarbon spectra for astrophysics: application to the modeling of methane absorption in the Titan atmosphere in a wide IR range

    NASA Astrophysics Data System (ADS)

    Rey, Michael; Nikitin, Andrei; Bezard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir

    2016-06-01

    Knowledge of intensities of spectral transitions in various temperature ranges including very low-T conditions is essential for the modeling of optical properties of planetary atmospheres and for other astrophysical applications. The temperature dependence of spectral features is crucial, but quantified experimental information in a wide spectral range is generally missing. A significant progress has been recently achieved in first principles quantum mechanical predictions (ab initio electronic structure + variational nuclear motion calculations) of rotationally resolved spectra for hydrocarbon molecules such as methane , ethylene and their isotopic species [1,2] . We have recently reported the TheoReTS information system (theorets.univ-reims.fr, theorets.tsu.ru) for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces [3] that permits online simulation of radiative properties including low-T conditions of cold planets. In this work, we apply ab initio predictions of the spectra of methane isotopologues down to T=80 K for the modeling of the transmittance in the atmosphere of Titan, Saturn's largest satellite explored by the Cassini-Huygens space mission. A very good agreement over the whole infrared range from 6,000 to 11,000 cm-1 compared with observations obtained by the Descent Imager / Spectral Radiometer (DISR) on the Huygens probe [4,5] at various altitudes will be reported.

  4. K and L X-ray production cross sections and intensity ratios of rare-earth elements for proton impact in the energy range 20-25 MeV

    NASA Astrophysics Data System (ADS)

    Hajivaliei, M.; Puri, Sanjiv; Garg, M. L.; Mehta, D.; Kumar, A.; Chamoli, S. K.; Avasthi, D. K.; Mandal, A.; Nandi, T. K.; Singh, K. P.; Singh, Nirmal; Govil, I. M.

    2000-02-01

    The Kα1, Kα2, Kβ1, Kβ2, and the Lℓ, Lα, Lβ and Lγ X-ray production (XRP) cross sections and the relative intensity ratios for seven rare-earth elements with 60⩽Z⩽70 have been measured for 20, 22 and 25 MeV proton impact. The experimental data on the L-shell XRP cross sections for high energy proton impact have been reported for the first time. The measured XRP cross sections for all the K-lines and the relative intensity ratios Kα1/Kα, Kα2/Kα, Kβ1/Kα, Kβ2/Kα and Kβ/Kα are in good agreement with the theoretical ones calculated using ECPSSR ionisation cross sections for all the elements investigated at the three beam energies. The Lℓ, Lα, Lβ, and Lγ XRP cross sections measured at the three proton energies are found to be in general higher than the theoretical values calculated using the ECPSSR ionisation cross sections and the RDHS model-based Li sub-shell fluorescence and Coster-Kronig (CK) yields. The measured relative intensity ratios Lβ/Lα, and Lγ/Lα exhibit good agreement with the theoretical ones for all the elements under investigation, whereas the Lℓ/Lα ratios are found to deviate from the theoretical ones.

  5. Shear properties of pultruded fiber reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.

    2018-06-01

    This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.

  6. Theoretical Prediction of Magnetism in C-doped TlBr

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhi; Haller, E. E.; Chrzan, D. C.

    2014-05-01

    We predict that C, N, and O dopants in TlBr can display large, localized magnetic moments. Density functional theory based electronic structure calculations show that the moments arise from partial filling of the crystal-field-split localized p states of the dopant atoms. A simple model is introduced to explain the magnitude of the moments.

  7. The Attributive Theory of Quality: A Model for Quality Measurement in Higher Education.

    ERIC Educational Resources Information Center

    Afshar, Arash

    A theoretical basis for defining and measuring the quality of institutions of higher education, namely for accreditation purposes, is developed. The theory, the Attributive Theory of Quality, is illustrated using a calculation model that is based on general systems theory. The theory postulates that quality only exists in relation to the…

  8. Evaporative segregation in 80% Ni-20% Cr and 60% Fe-40% Ni alloys

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Mukherjee, J. L.; Li, C. H.

    1974-01-01

    An analytical approach is outlined to calculate the evaporative segregation behavior in metallic alloys. The theoretical predictions are based on a 'normal' evaporation model and have been examined for Fe-Ni and Ni-Cr alloys. A fairly good agreement has been found between the predicted values and the experimental results found in the literature.

  9. Combinatorics of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  10. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  11. The prospect of modern thermomechanics in structural integrity calculations of large-scale pressure vessels

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás

    2018-05-01

    Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well-grounded theoretical foundation for a new modeling framework of structural integrity. This paper presents the first findings of the research project.

  12. On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1997-01-01

    The final report discusses work completed on proposals to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. We suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical, chromosphere-wind models, and investigate the origin of "dividing lines" in the H-R diagram. In the report, we list the following six specific goals for the first and second year of the proposed research and then describe the completed work: (1) To calculate the acoustic and magnetic wave energy fluxes for stars located in different regions of the H-R diagram; (2) To investigate the transfer of this non-radiative energy through stellar photospheres and to estimate the amount of energy that reaches the chromosphere; (3) To identify major sources of radiative losses in stellar chromospheres and calculate the amount of emitted energy; (4) To use (1) through (3) to construct purely theoretical, two-component, chromospheric models based on the local energy balance. The models will be constructed for stars of different spectral types and different evolutionary status; (5) To explain theoretically the "basal flux", the location of stellar temperature minima and the observed range of chromospheric activity for stars of the same spectral type; and (6) To construct self-consistent, time-dependent stellar wind models based on the momentum deposition by finite amplitude Alfven waves.

  13. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  14. Theoretical and experimental studies on vibrational and nonlinear optic properties of guanidinium 3-nitrobenzoate. Differences and similarity between guanidinium 3-nitrobenzoate and guanidinium 4-nitrobenzoate complexes

    NASA Astrophysics Data System (ADS)

    Drozd, Marek

    2018-03-01

    According to literature data two structures of guanidine with nitrobenzoic acids are known. For guanidinium 4-nitrobenzoate the detailed studies of X-ray structure, vibrational and theoretical properties were performed. This compound was classified as second harmonic generator with efficiency of 3.3 times that KDP, standard crystal. On the contrary to mentioned above results for the guanidinium 3-nitrobenzoate the basic X-ray diffraction study was performed, only. On the basis of established crystallographic results, the detailed investigation of geometry and vibrational properties were made on the basis of theoretical calculation. According to this data the equilibrium geometry of investigated molecule was established. On the basis of this calculation the detailed computational studies of vibrational properties were performed. The theoretical IR and Raman frequencies, intensities and PED analysis are presented. Additionally, the NBO charges, HOMO and LUMO shapes and NLO properties of titled crystal were calculated. On the basis of these results the crystal was classified as second order generator in NLO but with bigger efficiency that guanidinium 4-nitorobenzoate compound. The obtained data are compared with experimental crystallographic and vibrational results for real crystal of guanidinium 3-nitrobenzoate. Additionally, the theoretical vibrational spectra are compared with literature calculations of guanidinium 4-nitrobenzoate compound.

  15. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA.

  16. Development of Quantum Chemical Method to Calculate Half Maximal Inhibitory Concentration (IC50 ).

    PubMed

    Bag, Arijit; Ghorai, Pradip Kr

    2016-05-01

    Till date theoretical calculation of the half maximal inhibitory concentration (IC50 ) of a compound is based on different Quantitative Structure Activity Relationship (QSAR) models which are empirical methods. By using the Cheng-Prusoff equation it may be possible to compute IC50 , but this will be computationally very expensive as it requires explicit calculation of binding free energy of an inhibitor with respective protein or enzyme. In this article, for the first time we report an ab initio method to compute IC50 of a compound based only on the inhibitor itself where the effect of the protein is reflected through a proportionality constant. By using basic enzyme inhibition kinetics and thermodynamic relations, we derive an expression of IC50 in terms of hydrophobicity, electric dipole moment (μ) and reactivity descriptor (ω) of an inhibitor. We implement this theory to compute IC50 of 15 HIV-1 capsid inhibitors and compared them with experimental results and available other QASR based empirical results. Calculated values using our method are in very good agreement with the experimental values compared to the values calculated using other methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  18. Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves

    NASA Astrophysics Data System (ADS)

    Voronovich, A. G.; Zavorotny, V. U.

    2001-07-01

    A small-slope approximation (SSA) is used for numerical calculations of a radar backscattering cross section of the ocean surface for both Ku- and C-bands for various wind speeds and incident angles. Both the lowest order of the SSA and the one that includes the next-order correction to it are considered. The calculations were made by assuming the surface-height spectrum of Elfouhaily et al for fully developed seas. Empirical scattering models CMOD2-I3 and SASS-II are used for comparison. Theoretical calculations are in good overall agreement with the experimental data represented by the empirical models, with the exception of HH-polarization in the upwind direction. It was assumed that steep breaking waves are responsible for this effect, and the probability density function of large slopes was calculated based on this assumption. The logarithm of this function in the upwind direction can be approximated by a linear combination of wind speed and the appropriate slope. The resulting backscattering cross section for upwind, downwind and cross-wind directions, for winds ranging between 5 and 15 m s-1, and for both polarizations in both wave bands corresponds to experimental results within 1-2 dB accuracy.

  19. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  20. Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map

    PubMed Central

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  1. Synthesis, characterization, computational studies and biological evaluation of S-benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate

    NASA Astrophysics Data System (ADS)

    Bhat, Rayees A.; Kumar, D.; Malla, Manzoor A.; Bhat, Sami U.; Khan, Md Shahzad; Manzoor, Ovais; Srivastava, Anurag; Naikoo, Rawoof A.; Mohsin, Mohd; Mir, Muzzaffar A.

    2018-03-01

    S-Benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate (HL1), Schiff base of S-benzyl dithiocarbazate, was synthesized by 1:1 condensation between S-benzyl dithiocarbazate and 4-hydroxy-3-methoxy cinnamaldehyde. The nitrogen-sulfur Schiff base (HL1) was characterized by Mass, FT-IR, H1-NMR, Raman, and UV-VIS spectroscopic techniques. Theoretical quantum chemical calculations were performed using DFT in combination with B3LYP exchange correlation functional and 6-311++ G (d, p) basis sets level. The calculated values of chemical potential (μ), HOMO-LUMO energy gap, chemical hardness, softness (S), ionization energy (IE), electron affinity (EA), dipole moment (D) and relative stabilization energy of the compound were 0.14881 eV, 0.12542 eV, 0.06271 eV, 3.37299 eV, -0.21152 eV, -0.08610 eV, 4.4090 Debye and -1753.350 eV respectively. Theoretically calculated parameters like H1-NMR, FT-IR, UV-VIS, Raman, electrostatic potential and HOMO-LUMO energy gap are in good agreement with experimental results. Also, in-vitro cytotoxicity studies were done against two habitually infection causing bacteria strains including gram-positive (S. aureus) and gram-negative (E. coli) for antibacterial activity. The results showed appreciable biological activity and the activity increased with increase in dose.

  2. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ma, Q.

    2015-12-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS and IOS models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  3. Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.

    PubMed

    Klippenstein, Stephen J; Harding, Lawrence B; Ruscic, Branko

    2017-09-07

    The fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds to essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2 , CH 4 , H 2 O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zero-point energy, core-valence, relativistic, and diagonal Born-Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0-1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.

  4. Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klippenstein, Stephen J.; Harding, Lawrence B.; Ruscic, Branko

    Here, the fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds tomore » essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2, CH 4, H 2O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zeropoint energy, core–valence, relativistic, and diagonal Born–Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0–1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.« less

  5. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    PubMed Central

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation. PMID:24899803

  6. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    PubMed

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation.

  7. Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species

    DOE PAGES

    Klippenstein, Stephen J.; Harding, Lawrence B.; Ruscic, Branko

    2017-07-31

    Here, the fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds tomore » essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2, CH 4, H 2O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zeropoint energy, core–valence, relativistic, and diagonal Born–Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0–1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.« less

  8. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  9. First principles investigation of structural, mechanical, dynamical and thermodynamic properties of AgMg under pressure

    NASA Astrophysics Data System (ADS)

    Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong

    2017-12-01

    The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.

  10. Simulation of electron transport in GaAs/AlAs superlattices with a small number of periods for the THz frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavelyev, D. G., E-mail: pavelev@rf.unn.ru, E-mail: obolensk@rf.unn.ru; Vasilev, A. P., E-mail: vasiljev@mail.ioffe.ru; Kozlov, V. A., E-mail: kozlov@ipm.sci-nnov.ru

    2016-11-15

    The electron transport in superlattices based on GaAs/AlAs heterostructures with a small number of periods (6 periods) is calculated by the Monte Carlo method. These superlattices are used in terahertz diodes for the frequency stabilization of quantum cascade lasers in the range up to 4.7 THz. The band structure of superlattices with different numbers of AlAs monolayers is considered and their current–voltage characteristics are calculated. The calculated current–voltage characteristics are compared with the experimental data. The possibility of the efficient application of these superlattices in the THz frequency range is established both theoretically and experimentally.

  11. Lift developed on unrestrained rectangular wings entering gusts at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1954-01-01

    The object of this report is to provide an estimate, based on theoretical calculations, of the forces induced on a wing that is flying at a constant forward speed and suddenly enters a vertical gust. The calculations illustrate the effects of Mach number (from 0 to 2) and aspect ratio (2 to infinity), and solutions are given by means of which the response to gusts having arbitrary distributions of velocity can be calculated. The effects of pitching and wing bending are neglected and only wings of rectangular plan form are considered. Specific results are presented for sharp-edged and triangular gusts and various wing-air density ratios.

  12. Effect of strain on thermoelectric properties of SrTiO3: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Zou, Daifeng; Liu, Yunya; Xie, Shuhong; Lin, Jianguo; Li, Jiangyu

    2013-10-01

    The electronic structures of strained SrTiO3 were investigated by using first-principles calculations, and the anisotropic thermoelectric properties of n-type SrTiO3 under biaxial strain were calculated on the base of the semi-classical Boltzmann transport theory. It was theoretically found that the in-plane and out-of-plane power factors of n-type SrTiO3 can be increased under compressive and tensile strains, respectively, and such dependence can be explained by the strain-induced redistribution of electrons. To further optimize the thermoelectric performance of n-type SrTiO3, the maximum power factors and the corresponding optimal n-type doping levels were evaluated.

  13. Polarization study about a telescope-based transmitter for quantum communication.

    PubMed

    Wu, Jincai; He, Zhiping; Zhang, Liang; Yuan, Liyin; Wang, Tianhong; Jia, Jianjun; Shu, Rong; Wang, Jianyu

    2017-10-20

    We studied the polarization evolution of a reflective telescope designed for the quantum satellite Micius. The change in polarization extinction ratio (PER) of quantum light was derived and calculated. The PER deterioration caused by increase of incidence angle was calculated to determine the boundary conditions for the system design. The performance of the Micius prototype was evaluated both theoretically and experimentally to verify the viability of our optical design. Minimum and maximum PERs of 38 and 55 dB, respectively, were recorded, which were mostly in good agreement with the numerical calculations. Our investigations have contributed to the success of Micius, which is a significant milestone for building a global security network.

  14. Comment on ``Symmetry and structure of quantized vortices in superfluid 3'

    NASA Astrophysics Data System (ADS)

    Sauls, J. A.; Serene, J. W.

    1985-10-01

    Recent theoretical attempts to explain the observed vortex-core phase transition in superfluid 3B yield conflicting results. Variational calculations by Fetter and Theodrakis, based on realistic strong-coupling parameters, yield a phase transition in the Ginzburg-Landau region that is in qualitative agreement with the phase diagram. Numerically precise calculations by Salomaa and Volivil (SV), based on the Brinkman-Serene-Anderson (BSA) parameters, do not yield a phase transition between axially symmetric vortices. The ambiguity of these results is in part due to the large differences between the β parameters, which are inputs to the vortex free-energy functional. We comment on the relative merits of the β parameters based on recent improvements in the quasiparticle scattering amplitude and the BSA parameters used by SV.

  15. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  16. TheoReTS - An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces

    NASA Astrophysics Data System (ADS)

    Rey, Michaël; Nikitin, Andrei V.; Babikov, Yurii L.; Tyuterev, Vladimir G.

    2016-09-01

    Knowledge of intensities of rovibrational transitions of various molecules and theirs isotopic species in wide spectral and temperature ranges is essential for the modeling of optical properties of planetary atmospheres, brown dwarfs and for other astrophysical applications. TheoReTS ("Theoretical Reims-Tomsk Spectral data") is an Internet accessible information system devoted to ab initio based rotationally resolved spectra predictions for some relevant molecular species. All data were generated from potential energy and dipole moment surfaces computed via high-level electronic structure calculations using variational methods for vibration-rotation energy levels and transitions. When available, empirical corrections to band centers were applied, all line intensities remaining purely ab initio. The current TheoReTS implementation contains information on four-to-six atomic molecules, including phosphine, methane, ethylene, silane, methyl-fluoride, and their isotopic species 13CH4 , 12CH3D , 12CH2D2 , 12CD4 , 13C2H4, … . Predicted hot methane line lists up to T = 2000 K are included. The information system provides the associated software for spectra simulation including absorption coefficient, absorption and emission cross-sections, transmittance and radiance. The simulations allow Lorentz, Gauss and Voight line shapes. Rectangular, triangular, Lorentzian, Gaussian, sinc and sinc squared apparatus function can be used with user-defined specifications for broadening parameters and spectral resolution. All information is organized as a relational database with the user-friendly graphical interface according to Model-View-Controller architectural tools. The full-featured web application is written on PHP using Yii framework and C++ software modules. In case of very large high-temperature line lists, a data compression is implemented for fast interactive spectra simulations of a quasi-continual absorption due to big line density. Applications for the TheoReTS may include: education/training in molecular absorption/emission, radiative and non-LTE processes, spectroscopic applications, opacity calculations for planetary and astrophysical applications. The system is freely accessible via internet on the two mirror sites: in Reims, France

  17. Designing a Double-Pole Nanoscale Relay Based on a Carbon Nanotube: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Ou-Yang, Zhong-can; Dresselhaus, Mildred S.

    2017-08-01

    We theoretically investigate a novel and powerful double-pole nanoscale relay based on a carbon nanotube, which is one of the nanoelectromechanical switches being able to work under the strong nuclear radiation, and analyze the physical mechanism of the operating stages in the operation, including "pull in," "connection," and "pull back," as well as the key factors influencing the efficiency of the devices. We explicitly provide the analytical expression of the two important operation voltages, Vpull in and Vpull back , therefore clearly showing the dependence of the material properties and geometry of the present devices by the analytical method from basic physics, avoiding complex numerical calculations. Our method is easy to use in preparing the design guide for fabricating the present device and other nanoelectromechanical devices.

  18. Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation.

    PubMed

    Dash, Bibek

    2018-04-26

    The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO 2 capture. In this study, first principle calculations were performed for CO 2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO 2 and nitrogen gas. Binding energies (BEs) of CO 2 and N 2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO 2 and N 2 interactions was studied using quantum calculations.

  19. Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu

    2016-05-01

    Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)

  20. Diffraction Studies of the Atomic Vibrations of Bulk and Surface Atoms in the Reciprocal and Real Spaces of Nanocrystalline SiC

    NASA Technical Reports Server (NTRS)

    Stelmakh, S.; Grzanka, E.; Weber, H.-P.; Vogel, S.; Palosz, B.; Palosz, B.

    2004-01-01

    To describe and evaluate the vibrational properties of nanoparticles it is necessary to distinguish between the surface and the core of the particles. Theoretical calculations show that vibrational density of states of the inner atoms of nanograins is similar to bulk material but shifted to higher energies which can be explained by the fact that the gain core is stressed (hardened) due to the presence of internal pressure. Theoretical calculations also show that there is a difference between vibrational properties of a crystal lattice of the grain interior in isolated particles and in a dense (sintered) nanocrystalline material. This is probably due to a coupling of the modes inside the grains via the grain boundaries in dense nanocrystalline bodies. We examined strains present in the surface shell based on examination of diamond and Sic nanocrystals in reciprocal (Bragg-type scattering) and real (PDF analysis) space analysis of neutron diffraction data. Recently we examined the atomic thermal motions in nanocrystalline Sic based on the assumption of a simple Einstein model for uncorrelated atomic notions. According to this model, the Bragg intensity is attenuated as a function of scattering angle by the Debye-Waller factor. Based on this assumption overall temperature factors were determined from the Wilson plots.

  1. Synthesis, characterization, and spectroscopic investigation of benzoxazole conjugated Schiff bases.

    PubMed

    Santos, Fabiano S; Costa, Tania M H; Stefani, Valter; Gonçalves, Paulo F B; Descalzo, Rodrigo R; Benvenutti, Edilson V; Rodembusch, Fabiano S

    2011-11-24

    Two Schiff bases were synthesized by reaction of 2-(4'-aminophenyl)benzoxazole derivatives with 4-N,N-diethylaminobenzaldehyde. UV-visible (UV-vis) and steady-state fluorescence in solution were applied in order to characterize its photophysical behavior. The Schiff bases present absorption in the UV region with fluorescence emission in the blue-green region, with a large Stokes' shift. The UV-vis data indicates that each dye behaves as two different chromophores in solution in the ground state. The fluorescence emission spectra of the dye 5a show that an intramolecular proton transfer (ESIPT) mechanism takes place in the excited state, whereas a twisted internal charge transfer (TICT) state is observed for the dye 5b. Theoretical calculations were performed in order to study the conformation and polarity of the molecules at their ground and excited electronic states. Using density functional theory (DFT) methods at theoretical levels BLYP/Aug-SV(P) for geometry optimizations and B3LYP/6-311++G(2d,p) for single-point energy evaluations, the calculations indicate that the lowest energy conformations are in all cases nonplanar and that the dipole moments of the excited state relaxed structures are much larger than those of the ground state structures, which corroborates the experimental UV-vis absorption results.

  2. HCl dissociating on a rigid Au(111) surface: A six-dimensional quantum mechanical study on a new potential energy surface based on the RPBE functional.

    PubMed

    Liu, Tianhui; Fu, Bina; Zhang, Dong H

    2017-04-28

    The dissociative chemisorption of HCl on the Au(111) surface has recently been an interesting and important subject, regarding the discrepancy between the theoretical dissociation probabilities and the experimental sticking probabilities. We here constructed an accurate full-dimensional (six-dimensional (6D)) potential energy surface (PES) based on the density functional theory (DFT) with the revised Perdew-Burke-Ernzerhof (RPBE) functional, and performed 6D quantum mechanical (QM) calculations for HCl dissociating on a rigid Au(111) surface. The effects of vibrational excitations, rotational orientations, and site-averaging approximation on the present RPBE PES are investigated. Due to the much higher barrier height obtained on the RPBE PES than on the PW91 PES, the agreement between the present theoretical and experimental results is greatly improved. In particular, at the very low kinetic energy, the QM-RPBE dissociation probability agrees well with the experimental data. However, the computed QM-RPBE reaction probabilities are still markedly different from the experimental values at most of the energy regions. In addition, the QM-RPBE results achieve good agreement with the recent ab initio molecular dynamics calculations based on the RPBE functional at high kinetic energies.

  3. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    NASA Technical Reports Server (NTRS)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  4. Theoretical Study of Watershed Eco-Compensation Standards

    NASA Astrophysics Data System (ADS)

    Yan, Dandan; Fu, Yicheng; Liu, Biu; Sha, Jinxia

    2018-01-01

    Watershed eco-compensation is an effective way to solve conflicts over water allocation and ecological destruction problems in the exploitation of water resources. Despite an increasing interest in the topic, the researches has neglected the effect of water quality and lacked systematic calculation method. In this study we reviewed and analyzed the current literature and proposedatheoretical framework to improve the calculation of co-compensation standard.Considering the perspectives of the river ecosystems, forest ecosystems and wetland ecosystems, the benefit compensation standard was determined by the input-output corresponding relationship. Based on the opportunity costs related to limiting development and water conservation loss, the eco-compensation standard was calculated.In order to eliminate the defects of eco-compensation implementation, the improvement suggestions were proposed for the compensation standard calculation and implementation.

  5. Theoretical study of dissociative recombination of Cl{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Mingwu; Graduate School of Chinese Academy of Sciences, Beijing 100039; Department of Physics, Stockholm University, S-106 91 Stockholm

    Theoretical studies of low-energy electron collisions with Cl{sub 2}{sup +} leading to direct dissociative recombination are presented. The relevant potential energy curves and autoionization widths are calculated by combining electron scattering calculations using the complex Kohn variational method with multireference configuration interaction structure calculations. The dynamics on the four lowest resonant states of all symmetries is studied by the solution of a driven Schroedinger equation. The thermal rate coefficient for dissociative recombination of Cl{sub 2}{sup +} is calculated and the influence on the thermal rate coefficient from vibrational excited target ions is investigated.

  6. Theoretical study of thorium monoxide for the electron electric dipole moment search: electronic properties of H(3)Δ(1) in ThO.

    PubMed

    Skripnikov, L V; Titov, A V

    2015-01-14

    Recently, improved limits on the electron electric dipole moment, and dimensionless constant, kT,P, characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction in the H(3)Δ1 state of ThO molecule were obtained by the ACME collaboration [J. Baron et al., Science 343, 269 (2014)]. The interpretation of the experiment in terms of these fundamental quantities is based on the results of theoretical study of appropriate ThO characteristics, the effective electric field acting on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT,P, given in Skripnikov et al. [J. Chem. Phys. 139, 221103 (2013)] by St. Petersburg group. To reduce the uncertainties of the given limits, we report improved calculations of the molecular state-specific quantities Eeff, 81.5 GV/cm, and WT,P, 112 kHz, with the uncertainty within 7% of the magnitudes. Thus, the values recommended to use for the upper limits of the quantities are 75.8 GV/cm and 104 kHz, correspondingly. The hyperfine structure constant, molecule-frame dipole moment of the H(3)Δ1 state, and the H(3)Δ1 → X(1)Σ(+) transition energy which, in general, can serve as a measure of reliability of the obtained Eeff and WT,P values are also calculated. In addition, we report the first calculation of g-factor for the H(3)Δ1 state of ThO. The results are compared to the earlier experimental and theoretical studies, and a detailed analysis of uncertainties of the calculations is given.

  7. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2.

    PubMed

    Ben Ahmed, A; Feki, H; Abid, Y

    2014-12-10

    A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Equation of state of zircon- and scheelite-type dysprosium orthovanadates: a combined experimental and theoretical study.

    PubMed

    Paszkowicz, Wojciech; Ermakova, Olga; López-Solano, Javier; Mujica, Andrés; Muñoz, Alfonso; Minikayev, Roman; Lathe, Christian; Gierlotka, Stanisław; Nikolaenko, Irina; Dabkowska, Hanna

    2014-01-15

    Dysprosium orthovanadate, DyVO4, belongs to a family of zircon-type orthovanadates showing a phase transition to scheelite-type structures at moderate pressures below 10 GPa. In the present study, the equations of state (EOSs) for both these phases were determined for the first time using high-pressure x-ray diffraction experiments and ab initio calculations based on the density functional theory. Structural parameters for scheelite-type DyVO4 were calculated from x-ray powder diffraction data as well. The high-pressure experiments were performed under pseudo-hydrostatic conditions at pressures up to 8.44 GPa and 5.5 GPa for the stable zircon-type and metastable (quenched) scheelite-type samples, respectively. Assuming as a compression model the Birch-Murnaghan EOS, we obtained the EOS parameters for both phases. The experimental bulk moduli (K0) for zircon-type and scheelite-type DyVO4 are 118(4) GPa and 153(6) GPa, respectively. Theoretical equations of state were determined by ab initio calculations using the PBE exchange-correlation energy functional of Perdew, Burke, and Ernzerhof. These calculations provide K0 values of 126.1 GPa and 142.9 GPa for zircon-type and scheelite-type DyVO4, respectively. The reliability of the present experimental and theoretical results is supported by (i) the consistency between the values yielded by the two methods (the discrepancy in K0 is as low as about 7% for each of the studied polymorphs) and (ii) their similarity to results obtained under similar compression conditions (hydrostatic or pseudo-hydrostatic) for other rare-earth orthovanadates, such as YVO4 and TbVO4.

  9. Consistent Pl Analysis of Aqueous Uranium-235 Critical Assemblies

    NASA Technical Reports Server (NTRS)

    Fieno, Daniel

    1961-01-01

    The lethargy-dependent equations of the consistent Pl approximation to the Boltzmann transport equation for slowing down neutrons have been used as the basis of an IBM 704 computer program. Some of the effects included are (1) linearly anisotropic center of mass elastic scattering, (2) heavy element inelastic scattering based on the evaporation model of the nucleus, and (3) optional variation of the buckling with lethargy. The microscopic cross-section data developed for this program covered 473 lethargy points from lethargy u = 0 (10 Mev) to u = 19.8 (0.025 ev). The value of the fission neutron age in water calculated here is 26.5 square centimeters; this value is to be compared with the recent experimental value given as 27.86 square centimeters. The Fourier transform of the slowing-down kernel for water to indium resonance energy calculated here compared well with the Fourier transform of the kernel for water as measured by Hill, Roberts, and Fitch. This method of calculation has been applied to uranyl fluoride - water solution critical assemblies. Theoretical results established for both unreflected and fully reflected critical assemblies have been compared with available experimental data. The theoretical buckling curve derived as a function of the hydrogen to uranium-235 atom concentration for an energy-independent extrapolation distance was successful in predicting the critical heights of various unreflected cylindrical assemblies. The critical dimensions of fully water-reflected cylindrical assemblies were reasonably well predicted using the theoretical buckling curve and reflector savings for equivalent spherical assemblies.

  10. On the methods for determining the transverse dispersion coefficient in river mixing

    NASA Astrophysics Data System (ADS)

    Baek, Kyong Oh; Seo, Il Won

    2016-04-01

    In this study, the strengths and weaknesses of existing methods for determining the dispersion coefficient in the two-dimensional river mixing model were assessed based on hydraulic and tracer data sets acquired from experiments conducted on either laboratory channels or natural rivers. From the results of this study, it can be concluded that, when the longitudinal dispersion coefficient as well as the transverse dispersion coefficients must be determined in the transient concentration situation, the two-dimensional routing procedures, 2D RP and 2D STRP, can be employed to calculate dispersion coefficients among the observation methods. For the steady concentration situation, the STRP can be applied to calculate the transverse dispersion coefficient. When the tracer data are not available, either theoretical or empirical equations by the estimation method can be used to calculate the dispersion coefficient using the geometric and hydraulic data sets. Application of the theoretical and empirical equations to the laboratory channel showed that equations by Baek and Seo [[3], 2011] predicted reasonable values while equations by Fischer [23] and Boxwall and Guymer (2003) overestimated by factors of ten to one hundred. Among existing empirical equations, those by Jeon et al. [28] and Baek and Seo [6] gave the agreeable values of the transverse dispersion coefficient for most cases of natural rivers. Further, the theoretical equation by Baek and Seo [5] has the potential to be broadly applied to both laboratory and natural channels.

  11. A computational perspective of vibrational and electronic analysis of potential photosensitizer 2-chlorothioxanthone

    NASA Astrophysics Data System (ADS)

    Ali, Narmeen; Mansha, Asim; Asim, Sadia; Zahoor, Ameer Fawad; Ghafoor, Sidra; Akbar, Muhammad Usman

    2018-03-01

    This paper deals with combined theoretical and experimental study of geometric, electronic and vibrational properties of 2-chlorothioxanthone (CTX) molecule which is potential photosensitizer. The FT-IR spectrum of CTX in solid phase was recorded in 4000-400 cm-1 region. The UV-Vis. absorption spectrum was also recorded in the laboratory as well as computed at DFT/B3LYP level in five different phases viz. gas, water, DMSO, acetone and ethanol. The quantum mechanics based theoretical IR and Raman spectra were also calculated for the title compound employing HF and DFT functional with 3-21G+, 6-31G+ and 6-311G+, 6-311G++ basis sets, respectively, and assignment of each vibrational frequency has been done on the basis of potential energy distribution (PED). A comparison has been made between theoretical and experimental vibrational spectra as well as for the UV-Vis. absorption spectra. The computed infra red & Raman spectra by DFT compared with experimental spectra along with reliable vibrational assignment based on PED. The calculated electronic properties, results of natural bonding orbital (NBO) analysis, charge distribution, dipole moment and energies have been reported in the paper. Bimolecular quenching of triplet state of CTX in the presence of triethylamine, 2-propanol triethylamine and diazobicyclooctane (DABCO) reflect the interactions between them. The bimolecular quenching rate constant is fastest for interaction of 3CTX in the presence of DABCO reflecting their stronger interactions.

  12. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Refractive indices of superlattices made of III-V semiconductor compounds and their solid solutions and semiconductor waveguide laser structures

    NASA Astrophysics Data System (ADS)

    Unger, K.

    1988-11-01

    An analysis is made of the theoretical problems encountered in precision calculations of refractive indices of semiconductor materials arising in connection with the use of superlattices as active layers in double-heterostructure lasers and in connection with the use of the impurity-induced disordering effect, i.e., the ability to transform selectively a superlattice into a corresponding solid solution. This can be done by diffusion or ion implantation. A review is given of calculations of refractive indices based on the knowledge of the energy band structure and the role of disorder is considered particularly. An anomaly observed in the (InAl)As system is considered. It is shown that the local field effects and exciton transitions are important. A reasonable approach is clearly a direct calculation of the difference between the refractive indices of superlattices based on compounds and of those based on their solid solutions.

  13. Valence electronic properties of porphyrin derivatives.

    PubMed

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  14. Relative populations of excited levels within the ground configuration of Si-like Cu, Zn, Ge and Se ions

    NASA Technical Reports Server (NTRS)

    Datla, R. U.; Roberts, J. R.; Bhatia, A. K.

    1991-01-01

    Populations of 3p2 1D2, 3P1, 3P2 levels in Si-like Cu, Zn, Ge, and Se ions have been deduced from the measurements of absolute intensities of magnetic dipole transitions within the 3s2 3p2 ground configuration. The measured population ratios are compared with theoretical calculations based on the distorted-wave approximation for the electron collisions and a semiclassical approximation for the proton collisions. The observed deviation from the statistical distribution for the excited-level populations within the ground configuration along the silicon isoelectronic sequence is in agreement with theoretical prediction.

  15. Investigations regarding the evaluation of specific intellectual property production risks within Quality Management System

    NASA Astrophysics Data System (ADS)

    Pakocs, R.; Lupulescu, N. B.

    2016-11-01

    This paper is a theoretical research concerning methods for risk assessment of specific intellectual property production risks that are identified in the product achievement stage within the Quality Management System. In order to realize this, we will start by identifying the specific intellectual property production risks and by proposing some new calculating formulas for minimalizing their negative effects. The theoretical model proposed assessment of specific intellectual property production risks, will be realized based on 3 hypothetical situations. This study intends to reduce the intellectual property risks identified in the production process of commercial societies that have an industrial profile.

  16. Preface: Special Topic: From Quantum Mechanics to Force Fields.

    PubMed

    Piquemal, Jean-Philip; Jordan, Kenneth D

    2017-10-28

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  17. Preface: Special Topic: From Quantum Mechanics to Force Fields

    NASA Astrophysics Data System (ADS)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  18. Theoretical White Dwarf Spectra on Demand: TheoSSA

    NASA Astrophysics Data System (ADS)

    Ringat, E.; Rauch, T.

    2010-11-01

    In the last decades, a lot of progress was made in spectral analysis. The quality (e.g. resolution, S/N ratio) of observed spectra has improved much and several model-atmosphere codes were developed. One of these is the ``Tübingen NLTE Model-Atmosphere Package'' (TMAP), that is a highly developed program for the calculation of model atmospheres of hot, compact objects. In the framework of the German Astrophysical Virtual Observatory (GAVO), theoretical spectral energy distributions (SEDs) can be downloaded via TheoSSA. In a pilot phase, TheoSSA is based on TMAP model atmospheres. We present the current state of this VO service.

  19. Experimental and Theoretical Studies of Interstellar Grains. Ph.D. Thesis - Maryland Univ., College Park, 1982

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III

    1981-01-01

    Steady state vibrational populations of SiO and CO in dilute black body radiation fields were calculated as a function of total pressure, kinetic temperature and chemical composition of the gas. Approximate calculations for polyatomic molecules are presented. Vibrational disequilibrium becomes increasingly significant as total pressure and radiation density decrease. Many regions of postulated grain formation are found to be far from thermal equilibrium before the onset of nucleation. Calculations based upon classical nucleation theory or equilibrium thermodynamics are expected to be of dubious value in such regions. Laboratory measurements of the extinction of small iron and magnetite grains were made from 195 nm to 830 nm and found to be consistent with predictions based upon published optical constants. This implies that small iron particles are not responsible for the 220 nm interstellar extinction features. Additional measurements are discussed.

  20. Simple and universal model for electron-impact ionization of complex biomolecules

    NASA Astrophysics Data System (ADS)

    Tan, Hong Qi; Mi, Zhaohong; Bettiol, Andrew A.

    2018-03-01

    We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.

  1. Relationships between thermal maturity indices calculated using Arrhenius equation and Lopatin method: implications for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, D.A.

    1988-02-01

    Thermal maturity can be calculated with time-temperature indices (TTI) based on the Arrhenius equation using kinetics applicable to a range of Types II and III kerogens. These TTIs are compared with TTI calculations based on the Lopatin method and are related theoretically (and empirically via vitrinite reflectance) to the petroleum-generation window. The TTIs for both methods are expressed mathematically as integrals of temperature combined with variable linear heating rates for selected temperature intervals. Heating rates control the thermal-maturation trends of buried sediments. Relative to Arrhenius TTIs, Lopatin TTIs tend to underestimate thermal maturity at high heating rates and overestimate itmore » as low heating rates. Complex burial histories applicable to a range of tectonic environments illustrate the different exploration decisions that might be made on the basis of independent results of these two thermal-maturation models. 15 figures, 8 tables.« less

  2. A theoretical study of the structure and thermochemical properties of alkali metal fluoroplumbates MPbF3.

    PubMed

    Boltalin, A I; Korenev, Yu M; Sipachev, V A

    2007-07-19

    Molecular constants of MPbF3 (M=Li, Na, K, Rb, and Cs) were calculated theoretically at the MP2(full) and B3LYP levels with the SDD (Pb, K, Rb, and Cs) and cc-aug-pVQZ (F, Li, and Na) basis sets to determine the thermochemical characteristics of the substances. Satisfactory agreement with experiment was obtained, including the unexpected nonmonotonic dependence of substance dissociation energies on the alkali metal atomic number. The bond lengths of the theoretical CsPbF3 model were substantially elongated compared with experimental estimates, likely because of errors in both theoretical calculations and electron diffraction data processing.

  3. Positron lifetime calculation for the elements of the periodic table.

    PubMed

    Campillo Robles, J M; Ogando, E; Plazaola, F

    2007-04-30

    Theoretical positron lifetime values have been calculated systematically for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, as well as different parametrizations for the positron enhancement factor and correlation energy. The results obtained have been studied and compared with experimental data, confirming the theoretical trends. As is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The effects of enhancement factors used in calculations have been commented upon. Finally, we have analysed the effects that f and d electrons have on positron lifetimes.

  4. Numerical modeling of solar irradiance on earth's surface

    NASA Astrophysics Data System (ADS)

    Mera, E.; Gutierez, L.; Da Silva, L.; Miranda, E.

    2016-05-01

    Modeling studies and estimation of solar radiation in base area, touch from the problems of estimating equation of time, distance equation solar space, solar declination, calculation of surface irradiance, considering that there are a lot of studies you reported the inability of these theoretical equations to be accurate estimates of radiation, many authors have proceeded to make corrections through calibrations with Pyranometers field (solarimeters) or the use of satellites, this being very poor technique last because there a differentiation between radiation and radiant kinetic effects. Because of the above and considering that there is a weather station properly calibrated ground in the Susques Salar in the Jujuy Province, Republic of Argentina, proceeded to make the following modeling of the variable in question, it proceeded to perform the following process: 1. Theoretical Modeling, 2. graphic study of the theoretical and actual data, 3. Adjust primary calibration data through data segmentation on an hourly basis, through horizontal and adding asymptotic constant, 4. Analysis of scatter plot and contrast series. Based on the above steps, the modeling data obtained: Step One: Theoretical data were generated, Step Two: The theoretical data moved 5 hours, Step Three: an asymptote of all negative emissivity values applied, Solve Excel algorithm was applied to least squares minimization between actual and modeled values, obtaining new values of asymptotes with the corresponding theoretical reformulation of data. Add a constant value by month, over time range set (4:00 pm to 6:00 pm). Step Four: The modeling equation coefficients had monthly correlation between actual and theoretical data ranging from 0.7 to 0.9.

  5. Cross section parameterizations for cosmic ray nuclei. 1: Single nucleon removal

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Parameterizations of single nucleon removal from electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available to date. They should be very suitable for use in cosmic ray propagation through interstellar space, the Earth's atmosphere, lunar samples, meteorites, spacecraft walls and lunar and martian habitats.

  6. Risk-Based Decision Making in a Scientific Issue: A Study of Teachers Discussing a Dilemma through a Microworld

    ERIC Educational Resources Information Center

    Levinson, Ralph; Kent, Phillip; Pratt, David; Kapadia, Ramesh; Yogui, Cristina

    2012-01-01

    Risk has now become a feature of science curricula in many industrialized countries. While risk is conceptualized within a number of different theoretical frameworks, the predominant model used in examination specifications is a utility model in which risk calculations are deemed to be objective through technical expert assessment and where the…

  7. A Comprehensive Application to Assist in Acid-Base Titration Self-Learning: An Approach for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Gonza´lez-Go´mez, David; Rodríguez, Diego Airado; Can~ada-Can~ada, Florentina; Jeong, Jin Su

    2015-01-01

    Currently, there are a number of educational applications that allow students to reinforce theoretical or numerical concepts through an interactive way. More precisely, in the field of the analytical chemistry, MATLAB has been widely used to write easy-to-implement code, facilitating complex performances and/or tedious calculations. The main…

  8. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  9. Triphenylamine-based fluorescent NLO phores with ICT characteristics: Solvatochromic and theoretical study

    NASA Astrophysics Data System (ADS)

    Katariya, Santosh B.; Patil, Dinesh; Rhyman, Lydia; Alswaidan, Ibrahim A.; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2017-12-01

    The static first and second hyperpolarizability and their related properties were calculated for triphenylamine-based "push-pull" dyes using the B3LYP, CAM-B3LYP and BHHLYP functionals in conjunction with the 6-311+G(d,p) basis set. The electronic coupling for the electron transfer reaction of the dyes were calculated with the generalized Mulliken-Hush method. The results obtained were correlated with the polarizability parameter αCT , first hyperpolarizability parameter βCT, and the solvatochromic descriptor of 〈 γ〉 SD obtained by the solvatochromic method. The dyes studied show a high total first order hyperpolarizability (70-238 times) and second order hyperpolarizability (412-778 times) compared to urea. Among the three functionals, the CAM-B3LYP and BHHLYP functionals show hyperpolarizability values closer to experimental values. Experimental absorption and emission wavelengths measured for all the synthesized dyes are in good agreement with those predicted using the time-dependent density functional theory. The theoretical examination on non-linear optical properties was performed on the key parameters of polarizability and hyperpolarizability. A remarkable increase in non-linear optical response is observed on insertion of benzothiazole unit compared to benzimidazole unit.

  10. A method of increasing the depth of the plastically deformed layer in the roller burnishing process

    NASA Astrophysics Data System (ADS)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    The subject of this paper is an analysis of the determination of the depth of the plastically deformed layer in the process of roller burnishing a shaft using a newly developed method in which a braking moment is applied to the roller. It is possible to increase the depth of the plastically deformed layer by applying the braking moment to the roller during the burnishing process. The theoretical considerations presented are based on the Hertz-Bielayev and Huber-Mises theories and permit the calculation of the depth of plastic deformation of the top layer of the burnished shaft. The theoretical analysis has been verified experimentally and using numerical calculations based on the finite element method using the Msc.MARC program. Experimental tests were carried out on ring-shaped samples made of C45 carbon steel. The samples were burnished at different values of roller force and different values of braking moment. A significant increase was found in the depth of the plastically deformed surface layer of roller burnished shafts. Usage of the phenomenon of strain hardening of steel allows the technology presented here to increase the fatigue life of the shafts.

  11. Experimental characterization of pairwise correlations from triple quantum correlated beams generated by cascaded four-wave mixing processes

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cao, Leiming; Lou, Yanbo; Du, Jinjian; Jing, Jietai

    2018-01-01

    We theoretically and experimentally characterize the performance of the pairwise correlations from triple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The pairwise correlations between any two of the beams are theoretically calculated and experimentally measured. The experimental and theoretical results are in good agreement. We find that two of the three pairwise correlations can be in the quantum regime. The other pairwise correlation is always in the classical regime. In addition, we also measure the triple-beam correlation which is always in the quantum regime. Such unbalanced and controllable pairwise correlation structures may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. Our results also open the way for the classification and application of quantum states generated from the cascaded FWM processes.

  12. Water-equivalence of gel dosimeters for radiology medical imaging.

    PubMed

    Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P

    2018-03-08

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Charge transfer between O6+ and atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.

    2011-05-01

    The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.

  14. Synthesis, theoretical studies and molecular docking of a novel chlorinated tetracyclic: (Z/E)-3-(1,8-dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde

    NASA Astrophysics Data System (ADS)

    Sultan, Mujeeb A.; Almansour, Abdulrahman I.; Pillai, Renjith Raveendran; Kumar, Raju Suresh; Arumugam, Natarajan; Armaković, Stevan; Armaković, Sanja J.; Soliman, Saied M.

    2017-12-01

    (Z/E)-3-(1,8-Dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde 2 has been investigated experimentally and theoretically. The Wittig reaction of 1,8-dichloro-9,10-dihydro-9,10-ethanoanthracene-11-carbaldehyde 1 and (triphenylphosphoranylidene) acetaldehyde in toluene under reflux conditions resulted in compound 2. Spectroscopic characterization of compound 2 was performed by the Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectroscopy techniques. Density functional theory (DFT) calculations were conducted to study various global and local reactive properties. The spectra were also obtained by DFT calculations and corresponding comparisons were performed to validate the level of theory. Using DFT calculations, reactivity has been studied based on frontier molecular orbitals, charge distribution, average local ionization energies, Fukui functions, and bond dissociation energies for hydrogen abstraction. Molecular dynamics simulations have been used to investigate the influence of water as a solvent for compound 2. Finally, compound 2 was docked into the central and allosteric binding sites of the serotonin transporter enzyme and was found to be a good candidate as an antidepressant-like compound.

  15. Detection of tautomer proportions of dimedone in solution: a new approach based on theoretical and FT-IR viewpoint

    NASA Astrophysics Data System (ADS)

    Karabulut, Sedat; Namli, Hilmi; Leszczynski, Jerzy

    2013-08-01

    Molecular structures of stable tautomers of dimedone [5,5-dimethyl-cyclohexane-1,3-dione ( 1) and 3-hydroxy-5,5-dimethylcyclohex-2-enone ( 2)] were optimized and vibrational frequencies were calculated in five different organic solvents (dimethylsulfoxide, methanol, acetonitrile, dichloromethane and chloroform). Geometry optimizations and harmonic vibrational frequency calculations were performed at DFT 6-31+G(d,p), DFT 6-311++G(2d,2p), MP2 6-311++G (2d,2p) and MP2 aug-cc-pVDZ levels for both stable forms of dimedone. Experimental FT-IR spectra of dimedone have also been recorded in the same solvents. A new approach was developed in order to determine tautomers' ratio using both experimental and theoretical data in Lambert-Beer equation. Obtained results were compared with experimental results published in literature. It has been concluded that while DFT 6-31+G(d,p) method provides accurate enol ratio in DMSO, MeOH, and DCM, in order to obtain accurate results for the other solvents the MP2 aug-cc-pVDZ level calculations should be used for CH3CN and CHCl3 solutions.

  16. Association of 2-acylaminopyridines and benzoic acids. Steric and electronic substituent effect studied by XRD, solution and solid-state NMR and calculations

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys; Kolehmainen, Erkki; Ejsmont, Krzysztof; Ikonen, Satu; Valkonen, Arto; Rissanen, Kari; Nonappa

    2013-12-01

    Eight single crystal X-ray structures, solid-state NMR spectroscopic, and theoretical studies utilizing QTAIM methodology were used to characterize the 2-acyl (alkyl in acyl = methyl, ethyl, t-butyl, and 1-adamantyl) amino-6-R-pyridine/4-R‧-benzoic acid (R,R‧ = H or Me) cocrystals. As expected among alkyl groups 1-adamantyl due to its bulkiness has the most significant effect on the relative positions of molecules in cocrystals. In addition, the subtle electronic and steric effects by the methyl substituents were observed. The theoretical calculations with full geometry optimizations are in agreement with the experimental findings (geometry, energy of hydrogen bonds). Based on the crystal structures and calculations it is concluded that p-methyl substituent in benzoic acid increase the hydrogen bond accepting ability of the CO oxygen and decreases the hydrogen bond donating ability of OH proton. The 15N solid-state (CP MAS) NMR chemical shifts prove that molecules in cocrystal are held together by hydrogen bonding. The biggest variation in the 15N chemical shift of acylamino nitrogen can be related with the size of the alkyl group in acyl moiety.

  17. Strain of optic-fiber/giant magnetostrictive film structure in magnetic field by finite element analysis

    NASA Astrophysics Data System (ADS)

    Hu, Jiafei; Pan, Mengchun; Xin, Jianguang; Chen, Dixiang

    2008-12-01

    The magnetostrictive transducer is the most important part of the optic-fiber magnetic field sensor, and the optic-fiber/giant magnetostrictive(GMS) film coupled structure is a novel coupling form of the magnetostrictive transducer. Always we analyze the coupled structure based on the entire coupled structure being sputtered GMS material without tail-fibers. In practical application, the coupled structure has tail-fibers without films at two ends. When the entire coupled structure is immersed in the detected magnetic field, the detected magnetic field causes the GMS film strain then causing optic-fiber strain. This strain transmission process is different from it in the coupled structure entirely with GMS films without tail-fibers. The strain transmission relationship can be calculated theoretically in the coupled structure without tail-fibers, but it's complicated to theoretically calculate the strain transmission relationship in the coupled structure with tail-fibers. After large numbers of calculations and analyses by ANSYS software, we figure out some relationships of the two strain transmission processes in the respective structures and the stress distribution in the tail-fibers. These results are helpful to the practical application of the optic-fiber/ GMS film coupled structure.

  18. Vibrational and UV spectroscopic studies of 2-coumaranone by experimental and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Priya, Y. Sushma; Rao, K. Ramachandra; Chalapathi, P. V.; Satyavani, M.; Veeraiah, A.

    2017-09-01

    The vibrational and electronic properties of 2-coumaranone have been reported in the ground state using experimental techniques (FT-IR, FT-Raman, UV spectra and fluorescence microscopic imaging) and density functional theory (DFT) employing B3LYP correlation with the 6-31G(d, p) basis set. The theoretically reported optimized parameters, vibrational frequencies etc., were compared with the experimental values, which yielded good concurrence between the experimental and calculated values. The assignments of the vibrational spectra were done with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field(SQMFF) methodology. The whole assignments of fundamental modes were based on the potential energy distribution (PED) matrix. The electric dipole moment and the first order hyperpolarizability of the 2-coumaranone have been computed using quantum mechanical calculations. NBO and HOMO, LUMO analyses have been carried out. UV spectrum of 2-coumaranone was recorded in the region 100-300 nm and compared with the theoretical UV spectrum using TD-DFT and SAC-CI methods by which a good agreement is observed. Fluorescence microscopic imaging study reflects that the compound fluoresces in the green-yellow region.

  19. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM)

    NASA Astrophysics Data System (ADS)

    Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi

    2018-05-01

    The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.

  20. Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Dufek, Jan

    2014-06-01

    This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.

  1. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  2. Accurate Bit Error Rate Calculation for Asynchronous Chaos-Based DS-CDMA over Multipath Channel

    NASA Astrophysics Data System (ADS)

    Kaddoum, Georges; Roviras, Daniel; Chargé, Pascal; Fournier-Prunaret, Daniele

    2009-12-01

    An accurate approach to compute the bit error rate expression for multiuser chaosbased DS-CDMA system is presented in this paper. For more realistic communication system a slow fading multipath channel is considered. A simple RAKE receiver structure is considered. Based on the bit energy distribution, this approach compared to others computation methods existing in literature gives accurate results with low computation charge. Perfect estimation of the channel coefficients with the associated delays and chaos synchronization is assumed. The bit error rate is derived in terms of the bit energy distribution, the number of paths, the noise variance, and the number of users. Results are illustrated by theoretical calculations and numerical simulations which point out the accuracy of our approach.

  3. The pressure and entropy of a unitary Fermi gas with particle-hole fluctuation

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Ruan, Xiao-Xia; Zong, Hong-Shi

    2018-01-01

    We calculate the pressure and entropy of a unitary Fermi gas based on universal relations combined with our previous prediction of energy which was calculated within the framework of the non-self-consistent T-matrix approximation with particle-hole fluctuation. The resulting entropy and pressure are compared with the experimental data and the theoretical results without induced interaction. For entropy, we find good agreement between our results with particle-hole fluctuation and the experimental measurements reported by ENS group and MIT experiment. For pressure, our results suffer from a systematic upshift compared to MIT data.

  4. Theoretical modelling of AFM for bimetallic tip-substrate interactions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Recently, a new technique for calculating the defect energetics of alloys based on Equivalent Crystal Theory was developed. This new technique successfully predicts the bulk properties for binary alloys as well as segregation energies in the dilute limit. The authors apply this limit for the calculation of energy and force as a function of separation of an atomic force microscope (AFM) tip and substrate. The study was done for different combinations of tip and sample materials. The validity of the universality discovered for the same metal interfaces is examined for the case of different metal interactions.

  5. Calculation and Comparative Analysis of the IR Spectra of Homobrassinolide and (22S,23S)-Homobrassinolide

    NASA Astrophysics Data System (ADS)

    Andrianov, V. M.; Korolevich, M. V.

    2015-09-01

    Normal vibrational frequencies and absolute IR band intensities of the biologically active steroid phytohormones homobrassinolide and (22S,23S)-homobrassinolide were calculated in the framework of an original approach that combined classical analysis of normal modes using molecular mechanics with quantum-chemical estimation of the absolute intensities. IR absorption bands were interpreted based on a comparison of the experimental and theoretical absorption spectra. The impact of structural differences in the side chains of these molecules on the formation of their IR spectra in the region 1500-950 cm -1 was estimated.

  6. Stabilization of flat aromatic Si6 rings analogous to benzene: ab initio theoretical prediction.

    PubMed

    Zdetsis, Aristides D

    2007-12-07

    It is shown by ab initio calculations, based on density functional (DFT/B3LYP), and high level coupled-cluster [CCSD(T)] and quadratic CI [QCISD(T)] methods, that flat aromatic silicon structures analogous to benzene (C6H6) can be stabilized in the presence of lithium. The resulting planar Si6Li6 structure is both stable and aromatic, sharing many key characteristics with benzene. To facilitate possible synthesis and characterization of these species, routes of formation with high exothermicity are suggested and several spectral properties (including optical absorption, infrared, and Raman) are calculated.

  7. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  8. Non-equilibrium Green's function calculation for GaN-based terahertz-quantum cascade laser structures

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.

    2012-04-01

    We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.

  9. An Information-Theoretic-Cluster Visualization for Self-Organizing Maps.

    PubMed

    Brito da Silva, Leonardo Enzo; Wunsch, Donald C

    2018-06-01

    Improved data visualization will be a significant tool to enhance cluster analysis. In this paper, an information-theoretic-based method for cluster visualization using self-organizing maps (SOMs) is presented. The information-theoretic visualization (IT-vis) has the same structure as the unified distance matrix, but instead of depicting Euclidean distances between adjacent neurons, it displays the similarity between the distributions associated with adjacent neurons. Each SOM neuron has an associated subset of the data set whose cardinality controls the granularity of the IT-vis and with which the first- and second-order statistics are computed and used to estimate their probability density functions. These are used to calculate the similarity measure, based on Renyi's quadratic cross entropy and cross information potential (CIP). The introduced visualizations combine the low computational cost and kernel estimation properties of the representative CIP and the data structure representation of a single-linkage-based grouping algorithm to generate an enhanced SOM-based visualization. The visual quality of the IT-vis is assessed by comparing it with other visualization methods for several real-world and synthetic benchmark data sets. Thus, this paper also contains a significant literature survey. The experiments demonstrate the IT-vis cluster revealing capabilities, in which cluster boundaries are sharply captured. Additionally, the information-theoretic visualizations are used to perform clustering of the SOM. Compared with other methods, IT-vis of large SOMs yielded the best results in this paper, for which the quality of the final partitions was evaluated using external validity indices.

  10. Theoretical development and first-principles analysis of strongly correlated systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chen

    A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated anmore » alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.« less

  11. The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction.

    PubMed

    Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad

    2016-05-01

    To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.

  12. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark

    2015-11-05

    Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential ofmore » naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.« less

  13. A theoretical study on hot charge-transfer states and dimensional effects of organic photocells based on an ideal diode model.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2017-05-21

    This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.

  14. Application of theoretical models to active and passive remote sensing of saline ice

    NASA Technical Reports Server (NTRS)

    Han, H. C.; Kong, J. A.; Shin, R. T.; Nghiem, S. V.; Kwok, R.

    1992-01-01

    The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is used to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. Thermal emissions based on the reciprocity and energy conservation principles are calculated. The effects of the random roughness at the air-ice, and ice-water interfaces are explained by adding the surface scattering to the volume scattering return incoherently. The theoretical model, which has been successfully applied to analyze the radar backscatter data of first-year sea ice, is used to interpret the measurements performed in the Cold Regions Research and Engineering Laboratory's CRRELEX program.

  15. Theoretical studies on atmospheric chemistry of HFE-245mc and perfluoro-ethyl formate: Reaction with OH radicals, atmospheric fate of alkoxy radical and global warming potential

    NASA Astrophysics Data System (ADS)

    Lily, Makroni; Baidya, Bidisha; Chandra, Asit K.

    2017-02-01

    Theoretical studies have been performed on the kinetics, mechanism and thermochemistry of the hydrogen abstraction reactions of CF3CF2OCH3 (HFE-245mc) and CF3CF2OCHO with OH radical using DFT based M06-2X method. IRC calculation shows that both hydrogen abstraction reactions proceed via weakly bound hydrogen-bonded complex preceding to the formation of transition state. The rate coefficients calculated by canonical transition state theory along with Eckart's tunnelling correction at 298 K: k1(CF3CF2OCH3 + OH) = 1.09 × 10-14 and k2(CF3CF2OCHO + OH) = 1.03 × 10-14 cm3 molecule-1 s-1 are in very good agreement with the experimental values. The atmospheric implications of CF3CF2OCH3 and CF3CF2OCHO are also discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callear, Samantha K.; Imberti, Silvia; Johnston, Andrew

    The aqueous solution of dopamine hydrochloride has been investigated using neutron and X-ray total scattering data together with Monte-Carlo based modelling using Empirical Potential Structure Refinement. The conformation of the protonated dopamine molecule is presented and the results compared to the conformations found in crystal structures, dopamine-complexed protein crystal structures and predicted from theoretical calculations and pharmacophoric models. It is found that protonated dopamine adopts a range of conformations in solution, highlighting the low rotational energy barrier between different conformations, with the preferred conformation being trans-perpendicular. The interactions between each of the species present (protonated dopamine molecules, water molecules, andmore » chloride anions) have been determined and are discussed with reference to interactions observed in similar systems both in the liquid and crystalline state, and predicted from theoretical calculations. The expected strong hydrogen bonds between the strong hydrogen bond donors and acceptors are observed, together with evidence of weaker CH hydrogen bonds and π interactions also playing a significant role in determining the arrangement of adjacent molecules.« less

  17. A novel series of 1, 4-Dihydropyridine (DHP) derivatives bearing thiazolidin-4-one: From synthesis to structure

    NASA Astrophysics Data System (ADS)

    Bade, Tahseen S.; Ebrahimi, Hossein Pasha; Alsalim, Tahseen A.; Titinchi, Salam J. J.; Abbo, Hanna S.; Bolandnazar, Zeinab; Ebrahimi, Amirpasha

    2017-06-01

    A novel series of 1, 4-Dihydropyridine (DHP) thiazolidin-4-one compounds derived from dihydropyridine hydrazones Schiff bases with thioglycolic acid were synthesized through an efficient Hantzsch reaction and experimentally characterized by spectral methods using IR, 1H NMR, 13C NMR, and mass spectroscopic methods. Herein, DHPs were synthesized by an improved Hantzsch procedure in the excellent yields by three different conditions including reflux condensation, fusion, and the microwave irradiation. An additional comparison of applied methodology routes was used to confirm the advantages including short reaction time, good yields, and operational simplicity. Furthermore, the structural and electronic properties of the studied molecules were theoretically investigated by performing density functional theory (DFT) to access reliable results to the experimental values. The molecular geometry, HOMO, and LUMO of the studied compounds were calculated. The theoretical 13C chemical shift results were also calculated using the gauge independent atomic orbital (GIAO) approach and their respective linear correlations were obtained.

  18. Calculation of ground vibration spectra from heavy military vehicles

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  19. SO2 absorption in EmimCl-TEG deep eutectic solvents.

    PubMed

    Yang, Dezhong; Zhang, Shaoze; Jiang, De-En; Dai, Sheng

    2018-06-06

    Deep eutectic solvents (DESs) based on 1-ethyl-3-methylimidazolium chloride (EmimCl) and triethylene glycol (TEG) with different molar ratios (from 6 : 1 to 1 : 1) were prepared. FTIR and theoretical calculation indicated that the C2-H on the imidazolium ring form hydrogen bonds with the hydroxyl group rather than the ether O atom of the TEG. The EmimCl-TEG DESs can efficiently capture SO2; in particular, EmimCl-TEG (6 : 1) can capture 0.54 g SO2 per gram of solvent at 0.10 atm and 20 °C, the highest absorption amount for DESs under the same conditions. Theoretical calculation showed that the high SO2 absorption capacity was mainly due to the strong charge-transfer interaction between SO2 and the anion Cl-. Moreover, SO2 desorption in the DESs can be controlled by tuning the interaction between EmimCl and TEG, and the DESs can be cycled many times.

  20. Synthesis, characterization and theoretical study in gaseous and solid phases of the imine 4-Acetyl-N-(4-methoxybenzylidene)aniline

    NASA Astrophysics Data System (ADS)

    Batista, J. F. N.; Cruz, J. W.; Doriguetto, A. C.; Torres, C.; de Almeida, E. T.; Camps, I.

    2017-11-01

    In the present paper we describe the synthesis and characterization of the Schiff's base or imine 4-Acetyl-N-(4-methoxybenzylidene)aniline (1), which provided experimental support for the theoretical calculations. The imine was characterized by infrared spectroscopy and single crystal XRD techniques. The computational studies were performed using the density functional theory (DFT) for the gaseous and solid phases. As similar compounds already shown biological activity, the pharmacokinetic properties of (1) were evaluated. Our results shown that (1), in its gaseous form, it is electronically stable and has pharmacological drug like properties. Due to its structural similarity with commercial drugs, it is a promise candidate to act as a nonsteroidal anti-inflammatory and to treat dementia, sleep disorders, alcohol dependence, and psychosis. From the solid state calculations we obtain that (1) is a low gap semiconductor and can act as an absorber for electromagnetic radiations with energy greater that ∼ 0.9eV .

  1. Topologically nontrivial electronic states in CaSn3

    NASA Astrophysics Data System (ADS)

    Gupta, Sunny; Juneja, Rinkle; Shinde, Ravindra; Singh, Abhishek K.

    2017-06-01

    Based on the first-principles calculations, we theoretically propose topologically non-trivial states in a recently experimentally discovered superconducting material CaSn3. When the spin-orbit coupling (SOC) is ignored, the material is a host to three-dimensional topological nodal-line semimetal states. Drumhead like surface states protected by the coexistence of time-reversal and mirror symmetry emerge within the two-dimensional regions of the surface Brillouin zone connecting the nodal lines. When SOC is included, unexpectedly, each nodal line evolves into two Weyl nodes (W1 and W2) in this centrosymmetric material. Berry curvature calculations show that these nodes occur in a pair and act as either a source or a sink of Berry flux. This material also has unique surface states in the form of Fermi arcs, which unlike other known Weyl semimetals forms closed loops of surface states on the Fermi surface. Our theoretical realization of topologically non-trivial states in a superconducting material paves the way towards unraveling the interconnection between topological physics and superconductivity.

  2. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  3. Nuclear half-lives for {alpha}-radioactivity of elements with 100 {<=} Z {<=} 130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, P. Roy; Samanta, C.; Physics Department, Gottwald Science Center, University of Richmond, Richmond, VA 23173

    2008-11-15

    Theoretical estimates for the half-lives of about 1700 isotopes of heavy elements with 100 {<=} Z {<=} 130 are tabulated using theoretical Q-values. The quantum mechanical tunneling probabilities are calculated within a WKB framework using microscopic nuclear potentials. The microscopic nucleus-nucleus potentials are obtained by folding the densities of interacting nuclei with a density-dependent M3Y effective nucleon-nucleon interaction. The {alpha}-decay half-lives calculated in this formalism using the experimental Q-values were found to be in good agreement over a wide range of experimental data spanning about 20 orders of magnitude. The theoretical Q-values used for the present calculations are extracted frommore » three different mass estimates viz. Myers-Swiatecki, Muntian-Hofmann-Patyk-Sobiczewski, and Koura-Tachibana-Uno-Yamada.« less

  4. Theoretical study on the dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Shen, Zuochun; Lu, Jianye; Gao, Huide; Lü, Zhiwei

    2005-11-01

    Dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides, CF 3I, C 2F 5I, and i-C 3F 7I are calculated accurately with B3LYP, MP n ( n = 2-4), QCISD, QCISD(T), CCSD, and CCSD(T) methods. Calculations are performed by using large-core correlation-consistent pseudopotential basis set (SDB-aug-cc-pVTZ) for iodine atom. In all energy calculations, the zero point vibration energy is corrected. And the basis set superposition error is corrected by counterpoise method in the calculation of dissociation energy. Theoretical results are compared with the experimental values.

  5. Prediction of energy balance and utilization for solar electric cars

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  6. Enhancing AFLOW Visualization using Jmol

    NASA Astrophysics Data System (ADS)

    Lanasa, Jacob; New, Elizabeth; Stefek, Patrik; Honaker, Brigette; Hanson, Robert; Aflow Collaboration

    The AFLOW library is a database of theoretical solid-state structures and calculated properties created using high-throughput ab initio calculations. Jmol is a Java-based program capable of visualizing and analyzing complex molecular structures and energy landscapes. In collaboration with the AFLOW consortium, our goal is the enhancement of the AFLOWLIB database through the extension of Jmol's capabilities in the area of materials science. Modifications made to Jmol include the ability to read and visualize AFLOW binary alloy data files, the ability to extract from these files information using Jmol scripting macros that can be utilized in the creation of interactive web-based convex hull graphs, the capability to identify and classify local atomic environments by symmetry, and the ability to search one or more related crystal structures for atomic environments using a novel extension of inorganic polyhedron-based SMILES strings

  7. Cross-validation of the osmotic pressure based on Pitzer model with air humidity osmometry at high concentration of ammonium sulfate solutions.

    PubMed

    Wang, Xiao-Lan; Zhan, Ting-Ting; Zhan, Xian-Cheng; Tan, Xiao-Ying; Qu, Xiao-You; Wang, Xin-Yue; Li, Cheng-Rong

    2014-01-01

    The osmotic pressure of ammonium sulfate solutions has been measured by the well-established freezing point osmometry in dilute solutions and we recently reported air humidity osmometry in a much wider range of concentration. Air humidity osmometry cross-validated the theoretical calculations of osmotic pressure based on the Pitzer model at high concentrations by two one-sided test (TOST) of equivalence with multiple testing corrections, where no other experimental method could serve as a reference for comparison. Although more strict equivalence criteria were established between the measurements of freezing point osmometry and the calculations based on the Pitzer model at low concentration, air humidity osmometry is the only currently available osmometry applicable to high concentration, serves as an economic addition to standard osmometry.

  8. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  9. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  10. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying.

    PubMed

    Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren

    2016-06-10

    A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.

  11. Passive device based on plastic optical fibers to determine the indices of refraction of liquids.

    PubMed

    Zubia, J; Garitaonaindía, G; Arrúe, J

    2000-02-20

    We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.

  12. Organic magnetoresistance based on hopping theory

    NASA Astrophysics Data System (ADS)

    Yang, Fu-Jiang; Xie, Shi-Jie

    2014-09-01

    For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.

  13. Electron shakeoff following the β+ decay of +19Ne and +35Ar trapped ions

    NASA Astrophysics Data System (ADS)

    Fabian, X.; Fléchard, X.; Pons, B.; Liénard, E.; Ban, G.; Breitenfeldt, M.; Couratin, C.; Delahaye, P.; Durand, D.; Finlay, P.; Guillon, B.; Lemière, Y.; Mauger, F.; Méry, A.; Naviliat-Cuncic, O.; Porobic, T.; Quéméner, G.; Severijns, N.; Thomas, J.-C.

    2018-02-01

    The electron shakeoff of 19F and 35Cl atoms resulting from the β+ decay of +19Ne and +35Ar ions has been investigated using a Paul trap coupled to a time of flight recoil-ion spectrometer. The charge-state distributions of the recoiling daughter nuclei were compared to theoretical calculations based on the sudden approximation and accounting for subsequent Auger processes. The excellent agreement obtained for 35Cl is not reproduced in 19F. The shortcoming is attributed to the inaccuracy of the independent particle model employed to calculate the primary shakeoff probabilities in systems with rather low atomic numbers. This calls for more elaborate calculations, including explicitly the electron-electron correlations.

  14. Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.

    2018-04-01

    Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.

  15. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to themore » excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.« less

  16. Quantum Monte Carlo calculation of neutral-current ν -12C inclusive quasielastic scattering

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Lusk, Ewing; Pieper, Steven C.; Schiavilla, R.

    2018-02-01

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, mass hierarchy, and charge-conjugation parity (CP)- violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos off 12C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and antineutrino scattering and the CP-violating phase. We find that the strength and energy dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.

  17. Electron impact collision strengths in Ne VII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, L.; Shi, J.R.; Zhao, G., E-mail: gzhao@bao.ac.cn

    2012-07-15

    The lines of Ne VII have been observed in many astronomical objects, and some transitions from high energy levels were observed both in Seyfert galaxies and stellar coronae. Thus, the atomic data for these transitions are important for modeling. Using the code FAC we calculated the collision strengths based on the distorted-wave method with large configuration interactions included. The Maxwellian averaged effective collision strengths covering the typical temperature range of astronomical and laboratory hot plasmas are presented. We extend the calculation of the energy levels to n=4 and 5. The energy levels, wavelengths, spontaneous transition rates, weighted oscillator strengths, andmore » effective collision strengths were reported. Compared with the results from experiment or previous theoretical calculations a general agreement is found. It is found that the resonance effects are important in calculating the effective collision strengths.« less

  18. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  19. Hydroelectric power plant on a paper strip.

    PubMed

    Das, Sankha Shuvra; Kar, Shantimoy; Anwar, Tarique; Saha, Partha; Chakraborty, Suman

    2018-05-03

    We exploit the combinatorial advantage of electrokinetics and tortuosity of a cellulose-based paper network on laboratory grade filter paper for the development of a simple, inexpensive, yet extremely robust (shows constant performance for 12 days) 'paper-and-pencil'-based device for energy harvesting applications. We successfully achieve harvesting of a maximum output power of ∼640 pW in a single channel, while the same is significantly improved (by ∼100 times) with the use of a multichannel microfluidic array (maximum of up to 20 channels). Furthermore, we also provide theoretical insights into the observed phenomenon and show that the experimentally predicted trends agree well with our theoretical calculations. Thus, we envisage that such ultra-low cost devices may turn out to be extremely useful in energizing analytical microdevices in resource limited settings, for instance, in extreme point of care diagnostic applications.

  20. Application of advanced computational procedures for modeling solar-wind interactions with Venus: Theory and computer code

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.

    1980-01-01

    Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.

  1. Effect of second-order exchange in electron-hydrogen scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, D.H.; Bray, I.; McCarthy, I.

    1990-05-07

    The electron-hydrogen scattering problem has been a nemesis to theoretical atomic physicists due to the fact that even the most sophisticated of theoretical calculations, both perturbative and nonperturbative, do not agree with experiment. The current opinion is that the perturbative approach cannot be used for this problem since recent second-order calculations are not in agreement with the experimental data and higher-order calculations are deemed impractical. However, these second-order calculations neglected second-order exchange. We have now added exchange to the second-order calculation and have found that the primary source of disagreement between experiment and theory for intermediate energies is attributable notmore » to higher-order terms but to second-order exchange.« less

  2. Solar neutrinos and the MSW effect for three-neutrino mixing

    NASA Technical Reports Server (NTRS)

    Shi, X.; Schramm, David N.

    1991-01-01

    Researchers considered three-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mixing, assuming m sub 3 is much greater than m sub 2 is greater than m sub 1 as expected from theoretical consideration if neutrinos have mass. They calculated the corresponding mixing parameter space allowed by the Cl-37 and Kamiokande 2 experiments. They also calculated the expected depletion for the Ga-71 experiment. They explored a range of theoretical uncertainty due to possible astrophysical effects by varying the B-8 neutrino flux and redoing the MSW mixing calculation.

  3. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction.

    PubMed

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin

    2016-10-26

    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  4. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  5. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.

    PubMed

    Kajiya, Daisuke; Saitow, Ken-ichi

    2013-08-07

    Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone < acetophenone < benzophenone. The Mulliken charges of the three solutes and CO2 molecules obtained by using quantum chemistry calculations described the order of the magnitude of the attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of the solute-solvent interactions of the ketones in scCO2.

  6. Demonstration of theoretical and experimental simulations in fiber optics course

    NASA Astrophysics Data System (ADS)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  7. Experimental and Theoretical Investigation of Sodiated Multimers of Steroid Epimers with Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian E.; Yost, Richard A.

    2017-02-01

    Ion mobility-mass spectrometry (IM-MS) has recently seen increased use in the analysis of small molecules, especially in the field of metabolomics, for increased breadth of information and improved separation of isomers. In this study, steroid epimers androsterone and trans-androsterone were analyzed with IM-MS to investigate differences in their relative mobilities. Although sodiated monomers exhibited very similar collision cross-sections (CCS), baseline separation was observed for the sodiated dimer species (RS = 1.81), with measured CCS of 242.6 and 256.3 Å2, respectively. Theoretical modeling was performed to determine the most energetically stable structures of solution-phase and gas-phase monomer and dimer structures. It was revealed that these epimers differ in their preferred dimer binding mode in solution phase: androsterone adopts a R=O - Na+ - OH—R' configuration, whereas trans-androsterone adopts a R=O - Na+ - O=R' configuration. This difference contributes to a significant structural variation, and subsequent CCS calculations based on these structures relaxed in the gas phase were in agreement with experimentally measured values (ΔCCS 5%). Additionally, these calculations accurately predicted the relative difference in mobility between the epimers. This study illustrates the power of combining experimental and theoretical results to better elucidate gas-phase structures.

  8. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  9. Theoretical study of methyl hypofluorite (CH sub 3 OF) and related compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtiss, L.A.; Pople, J.A.

    1991-12-01

    The Gaussian-2 (G2) theoretical procedure, based on {ital ab} {ital initio} molecular orbital theory, is used to calculate the energies of CH{sub 3}OF, CH{sub 3}OF{sup +}, and related compounds. In this study we have found methyl hypofluorite to have a trans {ital C}{sub {ital s}} structure and to be stable with respect to loss of fluorine by 45.9 kcal/mol. The energies of fragmentation processes of methyl hypofluorite calculated from G2 theory are in agreement with those measured by Ruscic, Appelman, and Berkowitz (J. Chem. Phys. {bold 95}, XXX (1991)) and support their interpretation of the photoionization data. The theoretical enthalpymore » of formation {Delta}{ital H}{sup 0}{sub {ital f}0}(CH{sub 3}OF) of {minus}21.0 kcal/mol is in agreement with the experimental value ({ge}{minus}23.0{plus minus}0.7 kcal/mol) derived from the photoionization data. The ordering of the O--F bond strengths in the series of molecules OF, HOF, and CH{sub 3}OF is OF{gt}HOF{gt}CH{sub 3}OF and the C--O bond strength is 6--8 kcal/mol weaker in methyl hypofluorite than in methanol.« less

  10. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  11. Preliminary theoretical acoustic and rf sounding calculations for MILL RACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S.I.; Dubois, P.F.

    1981-11-02

    As participant in DOE/ISA's Ionospheric Monitoring Program, LLNL has the responsibility of providing theoretical understanding and calculational support for experimental activities carried out by Los Alamos National Laboratory in using ionospheric sounders to remotely detect violent atmospheric phenomena. We have developed a system of interconnected computer codes which simulate the entire range of atmospheric and ionospheric processes involved in this remote detection procedure. We are able to model the acoustic pulse shape from an atmospheric explosion, the subsequent nonlinear transport of this energy to all parts of the immediate atmosphere including the ionosphere, and the propagation of high-frequency ratio wavesmore » through the acoustically perturbed ionosphere. Los Alamos' coverage of DNA's MILL RACE event provided an excellent opportunity to assess the credibility of the calculational system to correctly predict how ionospheric sounders would respond to a surface-based chemical explosion. In this experiment, 600 tons of high explosive were detonated at White Sands Missile Range at 12:35:40 local time on 16 September 1981. Vertical incidence rf phase sounders and bistatic oblique incidence rf sounders fielded by Los Alamos and SRI International throughout New Mexico and southern Colorado detected the ionospheric perturbation that ensued. A brief account of preliminary calculations of the acoustic disturbance and the predicted ionospheric sounder signatures for MILL RACE is presented. (WHK)« less

  12. a New Method for Calculating the Fractal Dimension of Surface Topography

    NASA Astrophysics Data System (ADS)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Li, Yan

    2015-06-01

    A new method termed as three-dimensional root-mean-square (3D-RMS) method, is proposed to calculate the fractal dimension (FD) of machined surfaces. The measure of this method is the root-mean-square value of surface data, and the scale is the side length of square in the projection plane. In order to evaluate the calculation accuracy of the proposed method, the isotropic surfaces with deterministic FD are generated based on the fractional Brownian function and Weierstrass-Mandelbrot (WM) fractal function, and two kinds of anisotropic surfaces are generated by stretching or rotating a WM fractal curve. Their FDs are estimated by the proposed method, as well as differential boxing-counting (DBC) method, triangular prism surface area (TPSA) method and variation method (VM). The results show that the 3D-RMS method performs better than the other methods with a lower relative error for both isotropic and anisotropic surfaces, especially for the surfaces with dimensions higher than 2.5, since the relative error between the estimated value and its theoretical value decreases with theoretical FD. Finally, the electrodeposited surface, end-turning surface and grinding surface are chosen as examples to illustrate the application of 3D-RMS method on the real machined surfaces. This method gives a new way to accurately calculate the FD from the surface topographic data.

  13. Recent theoretical progress in top quark pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander

    2013-05-01

    This is a writeup of a plenary talk given at the conference HCP 2012 held November 2012 in Kyoto, Japan. This writeup reviews recent theoretical developments in the following areas of top quark physics at hadron colliders: (a) the forward-backward asymmetry anomaly at the Tevatron, (b) precision top mass determination, (c) state of the art NLO calculations and (d) progress in NNLO calculations.

  14. Guidance for selecting the measurement conditions in the dye-binding method for determining serum protein: theoretical analysis based on the chemical equilibrium of protein error.

    PubMed

    Suzuki, Y

    2001-11-01

    A methodology for selecting the measurement conditions in the dye-binding method for determining serum protein has been studied by a theoretical calculation. This calculation was based on the fact that a protein error occurs because of a reaction between the side chains of a positively charged amino acid residue in a protein molecule and a dissociated dye anion. The calculated characteristics of this method are summarized as follows: (1) Although the reaction between the dye and the protein occurs up to about pH 12, a change in the color shade, called protein error, is observed only in a pH region restricted within narrow limits. (2) Although the apparent absorbance (the absorbance of the test solution measured against a reagent blank) is lower than the true absorbance indicated by the formed dye-protein complex, the apparent absorbance correlates with the true absorbance with a correlation coefficient of 1.0. (3) At a higher dye concentration, the calibration curve is more linear at a higher pH than at a lower pH. Most of these characteristics were similarly observed experimentally in the reactions of BPB, BCG and BCP with human and bovine albumins. It is concluded that in order to ensure the linearity of the calibration curve, the measurement should be performed at a higher dye concentration and sufficiently high pH where the detection sensitivity is satisfied.

  15. Modeling interactions between a β-O-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid.

    PubMed

    Zhu, Youtao; Yan, Jing; Liu, Chengbu; Zhang, Dongju

    2017-08-01

    Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium-based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol-β-guaiacyl ether (VG) with 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π-π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl - anion forms a hydrogen-bonded complex with VG, the imidazolium cation interacts with VG via both the π-π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium-based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution. © 2017 Wiley Periodicals, Inc.

  16. Sibutramine characterization and solubility, a theoretical study

    NASA Astrophysics Data System (ADS)

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  17. Structural stiffness and Coulomb damping in compliant foil journal bearings: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Ku, C.-P. Roger; Heshmat, Hooshang

    1994-07-01

    Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.

  18. Analysis of laser energy characteristics of laser guided weapons based on the hardware-in-the-loop simulation system

    NASA Astrophysics Data System (ADS)

    Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong

    2016-11-01

    The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.

  19. On the systematic approach to the classification of differential equations by group theoretical methods

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Dimas, S.; Leach, P. G. L.; Tsoubelis, D.

    2009-08-01

    Complete symmetry groups enable one to characterise fully a given differential equation. By considering the reversal of an approach based upon complete symmetry groups we construct new classes of differential equations which have the equations of Bateman, Monge-Ampère and Born-Infeld as special cases. We develop a symbolic algorithm to decrease the complexity of the calculations involved.

  20. Statistical properties of several models of fractional random point processes

    NASA Astrophysics Data System (ADS)

    Bendjaballah, C.

    2011-08-01

    Statistical properties of several models of fractional random point processes have been analyzed from the counting and time interval statistics points of view. Based on the criterion of the reduced variance, it is seen that such processes exhibit nonclassical properties. The conditions for these processes to be treated as conditional Poisson processes are examined. Numerical simulations illustrate part of the theoretical calculations.

  1. Investigation of strength characteristics of aluminum alloy under dynamic tension

    NASA Astrophysics Data System (ADS)

    Evstifeev, A. D.

    2018-04-01

    The study presents the results of experimental-theoretical analysis for aluminum alloy subjected to static and dynamic tension on samples of different types. The material was tested under initial coarse-grained (CG) and in ultrafine-grained (UFG) condition. The time dependence of the tensile strength is calculated using an incubation time fracture criterion based on a set of fixed constants of the material.

  2. Nastic Actuation: Electroosmotic Pumping for Shape-Changing Materials

    DTIC Science & Technology

    2012-02-23

    ELECTROOSMOTIC PUMPING FOR SHAPE-CHANGING MATERIALS Sb. GRANT NUMBER FA9550-09-1-0125 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER... Electroosmotic Pumping for Shape-Changing Materials Shapiro, Smela, Fourkas Introduction and Background We had developed a new type of...polymer actuator based on electroosmotic pumping of fluid from one place to another within an elastomeric material. Theoretical calculations showed that

  3. Development and Use of Numerical and Factual Data Bases

    DTIC Science & Technology

    1983-10-01

    the quantitative description of what has been accomplished by their scientific and technical endeavors. 1-3 overhead charge to the national treasury... Molecular properties calculated with the aid of quantum mechanics or the prediction of solar eclipses using celestial mechanics are examples of theoretical...system under study. Examples include phase diagrams, molecular models, geological maps, metabolic pathways. Symbolic data (F3) are data presented in

  4. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Biggs, J. A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W. R.; Budz, J.; Carwardine, J. A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E. A.; Decker, G. A.; Dejus, R. J.; DeLeon, H.; Den Hartog, P. K.; Deriy, B. N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C. L.; Dortwegt, R. J.; Edwards, G. A.; Eidelman, Y.; Erdmann, M. J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J. N.; Gerig, R.; Gilmore, R. L.; Gluskin, E.; Goeppner, G. A.; Goetzen, J.; Gold, C.; Gorski, A. J.; Grelick, A. E.; Hahne, M. W.; Hanuska, S.; Harkay, K. C.; Harris, G.; Hillman, A. L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J. M.; Jansma, W. G.; Jaski, M.; Jones, S. J.; Keane, R. T.; Kelly, A. L.; Keyser, C.; Kim, K.-J.; Kim, S. H.; Kirshenbaum, M.; Klick, J. H.; Knoerzer, K.; Koldenhoven, R. J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E. S.; Lewellen, J. W.; Li, Y.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; McDowell, M.; McDowell, W. P.; McNamara, P. E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S. V.; Moe, H.; Moog, E. R.; Morrison, L.; Nassiri, A.; Noonan, J. R.; Otto, R.; Pace, J.; Pasky, S. J.; Penicka, J. M.; Pietryla, A. F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C. C.; Puttkammer, A. J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E. R.; Russell, E. F.; Sajaev, V.; Sarkar, S.; Scapino, J. C.; Schroeder, K.; Seglem, R. A.; Sereno, N. S.; Sharma, S. K.; Sidarous, J. F.; Singh, O.; Smith, T. L.; Soliday, R.; Sprau, G. A.; Stein, S. J.; Stejskal, B.; Svirtun, V.; Teng, L. C.; Theres, E.; Thompson, K.; Tieman, B. J.; Torres, J. A.; Trakhtenberg, E. M.; Travish, G.; Trento, G. F.; Vacca, J.; Vasserman, I. B.; Vinokurov, N. A.; Walters, D. R.; Wang, J.; Wang, X. J.; Warren, J.; Wesling, S.; Weyer, D. L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.; Wyncott, D.; Xu, S.; Yang, B.-X.; Yoder, W.; Zabel, R. B.

    2001-12-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  5. New stereoselective intramolecular

    PubMed

    Alajarin; Vidal; Tovar; Ramirez De Arellano MC; Cossio; Arrieta; Lecea

    2000-11-03

    Efficient 1,4-asymmetric induction has been achieved in the highly stereocontrolled intramolecular [2 + 2] cycloadditions between ketenimines and imines, leading to 1,2-dihydroazeto[2, 1-b]quinazolines. The chiral methine carbon adjacent to the iminic nitrogen controls the exclusive formation of the cycloadducts with relative trans configuration at C2 and C8. The stepwise mechanistic model, based on theoretical calculations, fully supports the stereochemical outcome of these cycloadditions.

  6. Anharmonic quantum contribution to vibrational dephasing.

    PubMed

    Barik, Debashis; Ray, Deb Shankar

    2004-07-22

    Based on a quantum Langevin equation and its corresponding Hamiltonian within a c-number formalism we calculate the vibrational dephasing rate of a cubic oscillator. It is shown that leading order quantum correction due to anharmonicity of the potential makes a significant contribution to the rate and the frequency shift. We compare our theoretical estimates with those obtained from experiments for small diatomics N(2), O(2), and CO.

  7. Development of a computational model for predicting solar wind flows past nonmagnetic terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1983-01-01

    A computational model for the determination of the detailed plasma and magnetic field properties of the global interaction of the solar wind with nonmagnetic terrestrial planetary obstacles is described. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super-Alfvenic solar wind flow past terrestrial ionospheres.

  8. Vertical electronic transport in van de waals heterostructures

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Zhenhua Qiao's Group Team

    In this work, we will introduce the theoretical investigation of the vertical electronic transport in various heterostructrues by using both tight-binding method and first-principles calculations. Counterintuitively, we find that the maximum electronic transport is achieved at very limited scattering regions but not at large overlapped catering regions. Based on this finding, we design a special setup to measure the tunneling effect in rotated bilayer systems.

  9. Chemical Defects and Electronics States in Organic Semiconductors

    DTIC Science & Technology

    2008-05-31

    from interacting with organic semiconductor devices. An expt./theoretical study of 0 2 in pentacene indicated that a positive gate voltage can cause...dissociative interaction of02 with pentacene . 1S. SUBJECT TERMS organic semiconductors, PBTIT, P3HT, PQT, polythiophenes, pentacene , defects...investigations of the interaction of02 molecules with pentacene were performed. Based on calculations of formation energies of charged defects a model was

  10. New developments in theoretical thermochemistry and electronic structure applications in supramolecular chemistry and cluster science

    NASA Astrophysics Data System (ADS)

    Ramabhadran, Raghunath Ozhapakkam

    In a concise display of the power and diversity of electronic structure theory (EST), the work presented herein involves the development of new computational methods to advance the practical utility of quantum chemistry, as well as solving different types of challenging chemical problems by applying existing EST tools. The research presented is highly interdisciplinary in nature and features synergistic collaborations to solve real-life problems such as regulating toxic chemicals and generating alternative sources of energy. In the first chapter of this dissertation, the solution to a long-standing problem in theoretical thermochemistry is accomplished by the development of the automated, chemically intuitive and generalized thermochemical hierarchy, Connectivity-Based Hierarchy (CBH) to accurately predict the thermochemical properties of organic molecules. The extension of the hierarchy to predict the enthalpies of formations of biomonomers such as amino acids is also presented. The development of a computationally efficient protocol to accurately extrapolate to high CCSD(T) energies based on MP2 and DFT energies using CBH is presented in the second chapter, thus merging theoretical thermochemistry with fragment-based methods in quantum chemistry. This merger drastically reduces the computational cost involved in a CCSD(T) calculation, while retaining the impeccable accuracy it offers. The practical utility of the CH hydrogen bond, commonly thought as being too weak to be used in supramolecular applications has been demonstrated by DFT calculations (along with experimental results from the Flood group) in the third chapter. This is accomplished by systematically studying the binding of monoatomic chloride, diatomic and toxic cyanide and the polyatomic bi-fluoride anions for the first time using only CH hydrogen bonds within a triazolophane macrocycle. The fourth chapter contains the introduction of the concept of fluxionality in the chemical reactions of transition metal oxide clusters. This is useful to develop a systematic paradigm for discussing the mechanisms in the reactions of larger transition metal oxide clusters with small molecules. Additionally, DFT calculations (along with experimental results from the C. C. Jarrold group) are shown to be useful to provide new insights on hydrogen liberation from water, thus aiding in the generation of alternative sources of energy.

  11. Finite Element Analysis of New Crankshaft Automatic Adjustment Mechanism of Pumping Unit

    NASA Astrophysics Data System (ADS)

    Wu, Jufei; Wang, Qian

    2017-12-01

    In this paper, the crankshaft automatic adjustment mechanism designed on CYJY10-4.2-53HF pumping unit is used as the research object. The simulation of the friction and bending moment of the crank is carried out by ANSYS Workbench, and the finite element simulation results are compared with the theoretical calculation results to verify the theoretical calculation. The final result is that the finite element analysis of the friction of the crank is basically consistent with the theoretical calculation; The analysis and calculation of the stress and deformation about the two kinds of ultimate conditions of the guide platform are carried out too; The dynamic state analysis of the mechanism is carried out to obtain the vibration modes and natural frequencies of the vibration of the different parts of the counterweight under the condition of no preload force so that the frequency of the array can avoid the natural frequency, and can effectively avoid the resonance phenomenon, and for different modes we can improve the stiffness of the structure.

  12. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    NASA Astrophysics Data System (ADS)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  13. Direct detection of sub-GeV dark matter with semiconductor targets

    DOE PAGES

    Essig, Rouven; Fernández-Serra, Marivi; Mardon, Jeremy; ...

    2016-05-09

    Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their O(1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcomingmore » several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. In conclusion, the searches we propose will probe vast new regions of unexplored dark matter model and parameter space.« less

  14. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A new deflection solution and application of a fiber Bragg grating-based inclinometer for monitoring internal displacements in slopes

    NASA Astrophysics Data System (ADS)

    Zheng, Yong; Huang, Da; Shi, Lin

    2018-05-01

    Landslide monitoring is critical for predicting the stability of slopes to ensure the safety of life and property. Considering the potential advantages of fiber Bragg gratings (FBGs), such as immunity to electromagnetic interference, resistance to hostile environments, light weight, and high measurement precision and real time response, a self-designed, FBG-based in situ inclinometer combining a traditional inclinometer and FBG technology was designed to monitor the inner deformation of a slope. In practical landslide monitoring, the inclinometer can be regarded as a cantilever beam with one end fixed. Based on the deflection curve equation of a normal beam and the composite Simpson integral equation, a theoretical deflection equation of the FBG-based inclinometer versus longitudinal strain was established. A FBG-based inclinometer was fabricated and calibrated in the laboratory and a calibration strain sensitivity coefficient was obtained. The results of calibration tests show that the displacements measured by dial indicators are in good agreement with the theoretical displacements calculated using the proposed equation. A series of FBG-based inclinometers were installed into three vertical boreholes located at different points on the profile of an actual reinforced slope. The in situ monitoring results show that the FBG-based inclinometer can effectively capture the real-time internal displacements and potential sliding surface of the slope, proving the validity of the proposed theoretical equation as well the reliability and practicality of the proposed FBG-based inclinometer in engineering applications.

  16. Theoretical structures and binding energies of RNA-RNA/cyanine dyes and spectroscopic properties of cyanine dyes

    NASA Astrophysics Data System (ADS)

    Salaeh, Salsabila; Chong, Wei Lim; Dokmaisrijan, Supaporn; Payaka, Apirak; Yana, Janchai; Nimmanpipug, Piyarat; Lee, Vannajan Sanghiran; Dumri, Kanchana; Anh, Dau Hung

    2014-10-01

    Cyanine dyes have been widely used as a fluorescence probe for biomolecules and protein labeling. The mostly used cyanine dyes for nucleic acids labeling are DiSC2(3), DiSC2(5), and DiSC2(7). The possible structures and binding energies of RNA-RNA/Cyanine dyes were predicted theoretically using AutoDock Vina. The results showed that cyanine dyes and bases of RNA-RNA have the van der Waals and pi-pi interactions. The maximum absorption wavelength in the visible region obtained from the TD-DFT calculations of all cyanine dyes in the absence of the RNA-RNA double strand showed the bathochromic shift.

  17. A Fresnel zone plate collimator: potential and aberrations

    NASA Astrophysics Data System (ADS)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution < 0.1n combined with a large active area > 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  18. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface.

    PubMed

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Yamamoto, Naoki; Kim, Yousoo

    2015-09-11

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS.

  19. Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions.

    PubMed

    Akimbekov, Zamirbek; Katsenis, Athanassios D; Nagabhushana, G P; Ayoub, Ghada; Arhangelskis, Mihails; Morris, Andrew J; Friščić, Tomislav; Navrotsky, Alexandra

    2017-06-14

    We provide the first combined experimental and theoretical evaluation of how differences in ligand structure and framework topology affect the relative stabilities of isocompositional (i.e., true polymorph) metal-organic frameworks (MOFs). We used solution calorimetry and periodic DFT calculations to analyze the thermodynamics of two families of topologically distinct polymorphs of zinc zeolitic imidazolate frameworks (ZIFs) based on 2-methyl- and 2-ethylimidazolate linkers, demonstrating a correlation between measured thermodynamic stability and density, and a pronounced effect of the ligand substituent on their stability. The results show that mechanochemical syntheses and transformations of ZIFs are consistent with Ostwald's rule of stages and proceed toward thermodynamically increasingly stable, more dense phases.

  20. Propulsion of Bubble-Based Acoustic Microswimmers

    NASA Astrophysics Data System (ADS)

    Bertin, Nicolas; Spelman, Tamsin A.; Stephan, Olivier; Gredy, Laetitia; Bouriau, Michel; Lauga, Eric; Marmottant, Philippe

    2015-12-01

    Acoustic microswimmers present a great potential for microfluidic applications and targeted drug delivery. Here, we introduce armored microbubbles (size range, 10 - 20 μ m ) made by three-dimensional microfabrication, which allows the bubbles to last for hours even under forced oscillations. The acoustic resonance of the armored microbubbles is found to be dictated by capillary forces and not by gas volume, and its measurements agree with a theoretical calculation. We further measure experimentally and predict theoretically the net propulsive flow generated by the bubble vibration. This flow, due to steady streaming in the fluid, can reach 100 mm /s , and is affected by the presence of nearby walls. Finally, microswimmers in motion are shown, either as spinning devices or free swimmers.

  1. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  2. Theoretical Modeling of Hydrogen Bonding in omolecular Solutions: The Combination of Quantum Mechanics and Molecular Mechanics

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Jiang, Nan; Li, Hui

    Hydrogen bonding interaction takes an important position in solutions. The non-classic nature of hydrogen bonding requires the resource-demanding quantum mechanical (QM) calculations. The molecular mechanics (MM) method, with much lower computational load, is applicable to the large-sized system. The combination of QM and MM is an efficient way in the treatment of solution. Taking advantage of the low-cost energy-based fragmentation QM approach (in which the o-molecule is divided into several subsystems, and QM calculation is carried out on each subsystem that is embedded in the environment of background charges of distant parts), the fragmentation-based QM/MM and polarization models have been implemented for the modeling of o-molecule in aqueous solutions, respectively. Within the framework of the fragmentation-based QM/MM hybrid model, the solute is treated by the fragmentation QM calculation while the numerous solvent molecules are described by MM. In the polarization model, the polarizability is considered by allowing the partial charges and fragment-centered dipole moments to be variables, with values coming from the energy-based fragmentation QM calculations. Applications of these two methods to the solvated long oligomers and cyclic peptides have demonstrated that the hydrogen bonding interaction affects the dynamic change in chain conformations of backbone.

  3. Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.

    PubMed

    Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng

    2016-07-01

    We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.

  4. Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang

    In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.

  5. An assessment of silver copper sulfides for photovoltaic applications: theoretical and experimental insights.

    PubMed

    Savory, Christopher N; Ganose, Alex M; Travis, Will; Atri, Ria S; Palgrave, Robert G; Scanlon, David O

    2016-08-28

    As the worldwide demand for energy increases, low-cost solar cells are being looked to as a solution for the future. To attain this, non-toxic earth-abundant materials are crucial, however cell efficiencies for current materials are limited in many cases. In this article, we examine the two silver copper sulfides AgCuS and Ag 3 CuS 2 as possible solar absorbers using hybrid density functional theory, diffuse reflectance spectroscopy, XPS and Hall effect measurements. We show that both compounds demonstrate promising electronic structures and band gaps for high theoretical efficiency solar cells, based on Shockley-Queisser limits. Detailed analysis of their optical properties, however, indicates that only AgCuS should be of interest for PV applications, with a high theoretical efficiency. From this, we also calculate the band alignment of AgCuS against various buffer layers to aid in future device construction.

  6. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  7. Vibrational, structural and electronic properties investigation by DFT calculations and molecular docking studies with DNA topoisomerase II of strychnobrasiline type alkaloids: A theoretical approach for potentially bioactive molecules

    NASA Astrophysics Data System (ADS)

    Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.

    2017-10-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.

  8. Accurate deuterium spectroscopy for fundamental studies

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Thibault, F.; Zaborowski, M.; Wójtewicz, S.; Cygan, A.; Kowzan, G.; Masłowski, P.; Komasa, J.; Puchalski, M.; Pachucki, K.; Ciuryło, R.; Lisak, D.

    2018-07-01

    We present an accurate measurement of the weak quadrupole S(2) 2-0 line in self-perturbed D2 and theoretical ab initio calculations of both collisional line-shape effects and energy of this rovibrational transition. The spectra were collected at the 247-984 Torr pressure range with a frequency-stabilized cavity ring-down spectrometer linked to an optical frequency comb (OFC) referenced to a primary time standard. Our line-shape modeling employed quantum calculations of molecular scattering (the pressure broadening and shift and their speed dependencies were calculated, while the complex frequency of optical velocity-changing collisions was fitted to experimental spectra). The velocity-changing collisions are handled with the hard-sphere collisional kernel. The experimental and theoretical pressure broadening and shift are consistent within 5% and 27%, respectively (the discrepancy for shift is 8% when referred not to the speed averaged value, which is close to zero, but to the range of variability of the speed-dependent shift). We use our high pressure measurement to determine the energy, ν0, of the S(2) 2-0 transition. The ab initio line-shape calculations allowed us to mitigate the expected collisional systematics reaching the 410 kHz accuracy of ν0. We report theoretical determination of ν0 taking into account relativistic and QED corrections up to α5. Our estimation of the accuracy of the theoretical ν0 is 1.3 MHz. We observe 3.4σ discrepancy between experimental and theoretical ν0.

  9. Theoretical prediction of the band offsets at the ZnO/anatase TiO2 and GaN/ZnO heterojunctions using the self-consistent ab initio DFT/GGA-1/2 method.

    PubMed

    Fang, D Q; Zhang, S L

    2016-01-07

    The band offsets of the ZnO/anatase TiO2 and GaN/ZnO heterojunctions are calculated using the density functional theory/generalized gradient approximation (DFT/GGA)-1/2 method, which takes into account the self-energy corrections and can give an approximate description to the quasiparticle characteristics of the electronic structure of semiconductors. We present the results of the ionization potential (IP)-based and interfacial offset-based band alignments. In the interfacial offset-based band alignment, to get the natural band offset, we use the surface calculations to estimate the change of reference level due to the interfacial strain. Based on the interface models and GGA-1/2 calculations, we find that the valence band maximum and conduction band minimum of ZnO, respectively, lie 0.64 eV and 0.57 eV above those of anatase TiO2, while lie 0.84 eV and 1.09 eV below those of GaN, which agree well with the experimental data. However, a large discrepancy exists between the IP-based band offset and the calculated natural band offset, the mechanism of which is discussed. Our results clarify band alignment of the ZnO/anatase TiO2 heterojunction and show good agreement with the GW calculations for the GaN/ZnO heterojunction.

  10. Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model.

    PubMed

    Wako, Hiroshi; Abe, Haruo

    2016-01-01

    The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding.

  11. Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model

    PubMed Central

    Wako, Hiroshi; Abe, Haruo

    2016-01-01

    The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding. PMID:28409079

  12. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  13. N-Sulfinylimine compounds, R-NSO: a chemistry family with strong temperament

    NASA Astrophysics Data System (ADS)

    Romano, R. M.; Della Védova, C. O.

    2000-04-01

    In this review, an update on the structural properties and theoretical studies of N-sulfinylimine compounds (R-NSO) is reported. They were deduced using several experimental techniques: gas-electron diffraction (GED), X-ray diffraction, 17O NMR, ultraviolet-visible absorption spectroscopy (UV-Vis), FTIR (including matrix studies of molecular randomisation) and Raman (including pre-resonant Raman spectra). Data are compared with those obtained by theoretical calculations. With these tools, excited state geometry using the time-dependent theory was calculated for these kinds of compounds. The existence of pre-resonant Raman effect was reported recently for R-NSO compounds. The configuration of R-NSO compounds was checked for this series confirming the existence of only one syn configuration. This finding is corroborated by theoretical calculations. The method of preparation is also summarised.

  14. Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.

    2012-02-01

    Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

  15. Spherical Harmonic-based Random Fields Based on Real Particle 3D Data: Improved Numerical Algorithm and Quantitative Comparison to Real Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Liu; E Garboczi; m Grigoriu

    Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less

  16. Search for excited states in 25O

    NASA Astrophysics Data System (ADS)

    Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.

    2017-11-01

    Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.

  17. Spherical solid model system: Exact evaluation of the van der Waals interaction between a microscopic or submacroscopic spherical solid and a deformable fluid interface

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Wang, B.; Xiong, X. M.; Zhang, J. X.

    2011-03-01

    In many previous research work associated with studying the deformation of the fluid interface interacting with a solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction surface pressure) is often approximately obtained by using the expression for the interaction energy per unit area (or pressure) between two parallel macroscopic plates, e.g. σ(D) = - A / 12 πD2or π(D) = - A / 6 πD3for the van der Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however would result in over- or even inaccurate-prediction of the interaction force and the corresponding deformation of the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar fluid interface interacting with a sphere, and the interaction forces taking into account its change, is presented in this paper. The validity and advantage of the new mathematical and physical technique is rigorously verified by comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's sphere-flat expression (viz. F = - 2 Aa3 / (3 D2( D + 2 a) 2)), as well as its well-known DA-based general form of F / a = - A / 6z p02.

  18. When combined X-ray and polarized neutron diffraction data challenge high-level calculations: spin-resolved electron density of an organic radical.

    PubMed

    Voufack, Ariste Bolivard; Claiser, Nicolas; Lecomte, Claude; Pillet, Sébastien; Pontillon, Yves; Gillon, Béatrice; Yan, Zeyin; Gillet, Jean Michel; Marazzi, Marco; Genoni, Alessandro; Souhassou, Mohamed

    2017-08-01

    Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.

  19. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2015-01-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS (Energy-Corrected Sudden) and IOS (Infinite-Order Sudden) models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  20. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2015-08-01

    Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.

  1. An Laudau-Lifschitz theory based algorithm on calculating post-buckling configuration of a rod buckling in elastic media

    NASA Astrophysics Data System (ADS)

    Huang, Shicheng; Tan, Likun; Hu, Nan; Grover, Hannah; Chu, Kevin; Chen, Zi

    This reserach introduces a new numerical approach of calculating the post-buckling configuration of a thin rod embedded in elastic media. The theoretical base is the governing ODEs describing the balance of forces and moments, the length conservation, and the physics of bending and twisting by Laudau and Lifschitz. The numerical methods applied in the calculation are continuation method and Newton's method of iteration in combination with spectrum method. To the authors' knowledge, it is the first trial of directly applying the L-L theory to numerically studying the phenomenon of rod buckling in elastic medium. This method accounts for nonlinearity of geometry, thus is capable of calculating large deformation. The stability of this method is another advantage achieved by expressing the governing equations in a set of first-order derivative form. The wave length, amplitude, and decay effect all agree with the experiment without any further assumptions. This program can be applied to different occasions with varying stiffness of the elastic medai and rigidity of the rod.

  2. Theoretical uncertainties in the calculation of supersymmetric dark matter observables

    NASA Astrophysics Data System (ADS)

    Bergeron, Paul; Sandick, Pearl; Sinha, Kuver

    2018-05-01

    We estimate the current theoretical uncertainty in supersymmetric dark matter predictions by comparing several state-of-the-art calculations within the minimal supersymmetric standard model (MSSM). We consider standard neutralino dark matter scenarios — coannihilation, well-tempering, pseudoscalar resonance — and benchmark models both in the pMSSM framework and in frameworks with Grand Unified Theory (GUT)-scale unification of supersymmetric mass parameters. The pipelines we consider are constructed from the publicly available software packages SOFTSUSY, SPheno, FeynHiggs, SusyHD, micrOMEGAs, and DarkSUSY. We find that the theoretical uncertainty in the relic density as calculated by different pipelines, in general, far exceeds the statistical errors reported by the Planck collaboration. In GUT models, in particular, the relative discrepancies in the results reported by different pipelines can be as much as a few orders of magnitude. We find that these discrepancies are especially pronounced for cases where the dark matter physics relies critically on calculations related to electroweak symmetry breaking, which we investigate in detail, and for coannihilation models, where there is heightened sensitivity to the sparticle spectrum. The dark matter annihilation cross section today and the scattering cross section with nuclei also suffer appreciable theoretical uncertainties, which, as experiments reach the relevant sensitivities, could lead to uncertainty in conclusions regarding the viability or exclusion of particular models.

  3. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  4. Influence of defect distribution on the thermoelectric properties of FeNbSb based materials.

    PubMed

    Guo, Shuping; Yang, Kaishuai; Zeng, Zhi; Zhang, Yongsheng

    2018-05-21

    Doping and alloying are important methodologies to improve the thermoelectric performance of FeNbSb based materials. To fully understand the influence of point defects on the thermoelectric properties, we have used density functional calculations in combination with the cluster expansion and Monte Carlo methods to examine the defect distribution behaviors in the mesoscopic FeNb1-xVxSb and FeNb1-xTixSb systems. We find that V and Ti exhibit different distribution behaviors in FeNbSb at low temperature: forming the FeNbSb-FeVSb phase separations in the FeNb1-xVxSb system but two thermodynamically stable phases in FeNb1-xTixSb. Based on the calculated effective mass and band degeneracy, it seems the doping concentration of V or Ti in FeNbSb has little effect on the electrical properties, except for one of the theoretically predicted stable Ti phases (Fe6Nb5Ti1Sb6). Thus, an essential methodology to improve the thermoelectric performance of FeNbSb should rely on phonon scattering to decrease the thermal conductivity. According to the theoretically determined phase diagrams of Fe(Nb,V)Sb and Fe(Nb,Ti)Sb, we propose the (composition, temperature) conditions for the experimental synthesis to improve the thermoelectric performance of FeNbSb based materials: lowering the experimental preparation temperature to around the phase boundary to form a mixture of the solid solution and phase separation. The point defects in the solid solution effectively scatter the short-wavelength phonons and the (coherent or incoherent) interfaces introduced by the phase separation can additionally scatter the middle-wavelength phonons to further decrease the thermal conductivity. Moreover, the induced interfaces could enhance the Seebeck coefficient as well, through the energy filtering effect. Our results give insight into the understanding of the impact of the defect distribution on the thermoelectric performance of materials and strengthen the connection between theoretical predictions and experimental measurements.

  5. CAE "FOCUS" for modelling and simulating electron optics systems: development and application

    NASA Astrophysics Data System (ADS)

    Trubitsyn, Andrey; Grachev, Evgeny; Gurov, Victor; Bochkov, Ilya; Bochkov, Victor

    2017-02-01

    Electron optics is a theoretical base of scientific instrument engineering. Mathematical simulation of occurring processes is a base for contemporary design of complicated devices of the electron optics. Problems of the numerical mathematical simulation are effectively solved by CAE system means. CAE "FOCUS" developed by the authors includes fast and accurate methods: boundary element method (BEM) for the electric field calculation, Runge-Kutta- Fieghlberg method for the charged particle trajectory computation controlling an accuracy of calculations, original methods for search of terms for the angular and time-of-flight focusing. CAE "FOCUS" is organized as a collection of modules each of which solves an independent (sub) task. A range of physical and analytical devices, in particular a microfocus X-ray tube of high power, has been developed using this soft.

  6. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Zhou; Jiang, Teng; Wang, Long; Yang, Hao; Zhang, Sui; Zhou, Ping

    2010-12-01

    Curcumin and its complexes with Zn 2+ and Cu 2+ ions were synthesized and characterized by elemental analysis, mass spectroscopy, IR spectroscopy, UV spectroscopy, solution 1H and solid-state 13C NMR spectroscopy, EPR spectroscopy. In addition, the density functional theory (DFT)-based UV and 13C chemical shift calculations were also performed to view insight into those compound structures and properties. The results show that curcumin easily chelate the metal ions, such as Zn 2+ and Cu 2+, and the Cu(II)-curcumin complex has an ability to scavenge free-radicals. We demonstrated the differences between Zn(II)-curcumin and Cu(II)-curcumin complexes in structure and properties, enhancing the comprehensions about the curcumin roles in the Alzhermer's disease treatment.

  7. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  8. Accurate wavelengths for X-ray spectroscopy and the NIST hydrogen-like ion database

    NASA Astrophysics Data System (ADS)

    Kotochigova, S. A.; Kirby, K. P.; Brickhouse, N. S.; Mohr, P. J.; Tupitsyn, I. I.

    2005-06-01

    We have developed an ab initio multi-configuration Dirac-Fock-Sturm method for the precise calculation of X-ray emission spectra, including energies, transition wavelengths and transition probabilities. The calculations are based on non-orthogonal basis sets, generated by solving the Dirac-Fock and Dirac-Fock-Sturm equations. Inclusion of Sturm functions into the basis set provides an efficient description of correlation effects in highly charged ions and fast convergence of the configuration interaction procedure. A second part of our study is devoted to developing a theoretical procedure and creating an interactive database to generate energies and transition frequencies for hydrogen-like ions. This procedure is highly accurate and based on current knowledge of the relevant theory, which includes relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  9. Polarization-sensitive optical coherence tomography using continuous polarization modulation with arbitrary phase modulation amplitude

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-03-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  10. Slow light generation in single-mode rectangular core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Sandeep; Saini, Than Singh; Kumar, Ajeet, E-mail: ajeetdph@gmail.com

    2016-05-06

    In this paper, we have designed and analyzed a rectangular core photonic crystal fiber (PCF) in Tellurite material. For the designed photonics crystal fiber, we have calculated the values of confinement loss and effective mode area for different values of air filling fraction (d/Λ). For single mode operation of the designed photonic crystal fiber, we have taken d/Λ= 0.4 for the further calculation of stimulated Brillouin scattering based time delay. A maximum time delay of 158 ns has been achieved for input pump power of 39 mW. We feel the detailed theoretical investigations and simulations carried out in the study have themore » potential impact on the design and development of slow light-based photonic devices.« less

  11. On an apparent discrepancy between pulsation and evolution masses for Cepheids.

    NASA Technical Reports Server (NTRS)

    Iben, I., Jr.; Tuggle, R. S.

    1972-01-01

    Results of new theoretical pulsation calculations in the linear nonadiabatic approximation are presented. Emphasis is placed on the location of blue edges (the borderline between stability and instability against pulsation) for pulsation in the fundamental mode. The results of evolutionary calculations for the helium-burning phase are introduced, and a theoretical period-luminosity relationship is obtained for Cepheids that lie on the blue edge of the instability strip. The theoretical results are then compared with current estimates of the intrinsic bulk properties of 13 Cepheids, and it is shown how theoretical and observational properties may be reconciled without assuming significant mass loss or the necessity of major adjustments in the theory. Finally, it is argued that the required revision in Cepheid luminosities lies within the observational uncertainties.

  12. The minimal cost of life in space.

    PubMed

    Drysdale, A E; Rutkze, C J; Albright, L D; LaDue, R L

    2004-01-01

    The cost of keeping people alive in space is assessed from a theoretical viewpoint and using two actual designs for plant growth systems. While life support is theoretically not very demanding, our ability to implement life support is well below theoretical limits. A theoretical limit has been calculated from requirements and the state of the art for plant growth has been calculated using data from the BIO-Plex PDR and from the Cornell CEA prototype system. The very low efficiency of our current approaches results in a high mission impact, though we can still see how to get a significant reduction in cost of food when compared to supplying it from Earth. Seeing the distribution of costs should allow us to improve our current designs. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. The minimal cost of life in space

    NASA Technical Reports Server (NTRS)

    Drysdale, A. E.; Rutkze, C. J.; Albright, L. D.; LaDue, R. L.

    2004-01-01

    The cost of keeping people alive in space is assessed from a theoretical viewpoint and using two actual designs for plant growth systems. While life support is theoretically not very demanding, our ability to implement life support is well below theoretical limits. A theoretical limit has been calculated from requirements and the state of the art for plant growth has been calculated using data from the BIO-Plex PDR and from the Cornell CEA prototype system. The very low efficiency of our current approaches results in a high mission impact, though we can still see how to get a significant reduction in cost of food when compared to supplying it from Earth. Seeing the distribution of costs should allow us to improve our current designs. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Synthesis, Characterization, and Theoretical Considerations of 1,2-bis(oxyamino)ethane Salts

    NASA Technical Reports Server (NTRS)

    Crake, Greg; Hawkins, Tom; Hall, Leslie; Tollison, Kerri; Brand, Adam

    2003-01-01

    The synthesis, characterization, theoretical calculations, and safety studies of energetic salts of 1,2- bis(oxyamino) ethane, (H2N-O-CH2-CH2-O-NH2), were carried out. The salts were characterized by vibrational (infrared, Raman), multinuclear nmr studies (1H, 13C), differential scanning calorimetry (DSC); elemental analysis; and initial safety testing (impact and friction sensitivity) . Theoretical calculations on the neutral, monoprotonated, and doubly protonated species of ethylene bisoxyamine were carried out using xxxx level of theory for the lowest energy structure and these theoretical results compared with the experimentally observed bond distances and vibrational (ir, Raman) frequency values. The single crystal X-ray diffraction study was carried out on the mono-perchlorate salt revealing a high degree of hydrogen bonding with an unexpected structure.

  15. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach.

    PubMed

    Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi

    2014-08-15

    We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.

  16. Tuning the electronic and optical properties of NDT-based conjugated polymers by adopting fused heterocycles as acceptor units: a theoretical study.

    PubMed

    Cheng, Na; Zhang, Changqiao; Liu, Yongjun

    2017-08-01

    Donor-acceptor conjugated polymers have been successfully applied in bulk heterojunction solar cell devices. Tuning their donor and acceptor units allows the design of new polymers with desired electronic and optical properties. Here, to screen new candidate polymers based on a newly synthesized donor unit, dithieo[2,3-d:2',3'-d']naphtho[1,2-b:3,4-b']dithiophene (NDT), a series of model polymers with different acceptor units were designed and denoted NDT-A 0 to NDT-A 12 , and the structures and optical properties of those polymers were investigated using DFT and TDDFT calculations. The results of the calculations revealed that the electronic and optical properties of these polymers depend on the acceptor unit present; specifically, their HOMO energies ranged from -4.89 to -5.38 eV, their HOMO-LUMO gaps ranged from 1.30 to 2.80 eV, and their wavelengths of maximum absorption ranged from 538 to 1212 nm. The absorption spectra of NDT-A 1 to NDT-A 6 , NDT-A 8 , NDT-A 9 , and NDT-A 12 occur within the visible region (<900 nm), indicating that these polymers are potential candidates for use in solar cells. On the other hand, the absorption spectra of NDT-A 7 , NDT-A 10 , and NDT-A 11 extend much further into the near-infrared region, implying that they absorb near-infrared light. These polymers could meet the requirements of donor units for use in tandem and ternary solar cells. Graphical abstract Theoretical calculations by TD-DFT reveal that the optical properties of NDT-based conjugated polymers can be well tuned by adopting different acceptor units, and these ploymers are potential donor materials for tandem and ternary solar cells.

  17. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.

    PubMed

    Pikal, M J; Cardon, S; Bhugra, Chandan; Jameel, F; Rambhatla, S; Mascarenhas, W J; Akay, H U

    2005-01-01

    Theoretical models of the freeze-drying process are potentially useful to guide the design of a freeze-drying process as well as to obtain information not readily accessible by direct experimentation, such as moisture distribution and glass transition temperature, Tg, within a vial during processing. Previous models were either restricted to the steady state and/or to one-dimensional problems. While such models are useful, the restrictions seriously limit applications of the theory. An earlier work from these laboratories presented a nonsteady state, two-dimensional model (which becomes a three-dimensional model with an axis of symmetry) of sublimation and desorption that is quite versatile and allows the user to investigate a wide variety of heat and mass transfer problems in both primary and secondary drying. The earlier treatment focused on the mathematical details of the finite element formulation of the problem and on validation of the calculations. The objective of the current study is to provide the physical rational for the choice of boundary conditions, to validate the model by comparison of calculated results with experimental data, and to discuss several representative pharmaceutical applications. To validate the model and evaluate its utility in studying distribution of moisture and glass transition temperature in a representative product, calculations for a sucrose-based formulation were performed, and selected results were compared with experimental data. THEORETICAL MODEL: The model is based on a set of coupled differential equations resulting from constraints imposed by conservation of energy and mass, where numerical results are obtained using finite element analysis. Use of the model proceeds via a "modular software package" supported by Technalysis Inc. (Passage/ Freeze Drying). This package allows the user to define the problem by inputing shelf temperature, chamber pressure, container properties, product properties, and numerical analysis parameters required for the finite element analysis. Most input data are either available in the literature or may be easily estimated. Product resistance to water vapor flow, mass transfer coefficients describing secondary drying, and container heat transfer coefficients must normally be measured. Each element (i.e., each small subsystem of the product) may be assigned different values of product resistance to accurately describe the nonlinear resistance behavior often shown by real products. During primary drying, the chamber pressure and shelf temperature may be varied in steps. During secondary drying, the change in gas composition from pure water to mostly inert gas is calculated by the model from the instantaneous water vapor flux and the input pumping capacity of the freeze dryer. Comparison of the theoretical results with the experiment data for a 3% sucrose formulation is generally satisfactory. Primary drying times agree within two hours, and the product temperature vs. time curves in primary drying agree within about +/-1 degrees C. The residual moisture vs. time curve is predicted by the theory within the likely experimental error, and the lack of large variation in moisture within the vial (i.e., top vs. side vs. bottom) is also correctly predicted by theory. The theoretical calculations also provide the time variation of "Tg-T" during both primary and secondary drying, where T is product temperature and Tg is the glass transition temperature of the product phase. The calculations demonstrate that with a secondary drying protocol using a rapid ramp of shelf temperature, the product temperature does rise above Tg during early secondary drying, perhaps being a factor in the phenomenon known as "cake shrinkage." The theoretical results of in-process product temperature, primary drying time, and moisture content mapping and history are consistent with the experimental results, suggesting the theoretical model should be useful in process development and "trouble-shooting" applications.

  18. Calculation of evapotranspiration: Recursive and explicit methods

    USDA-ARS?s Scientific Manuscript database

    Crop yield is proportional to crop evapotranspiration (ETc) and it is important to calculate ETc correctly. Methods to calculate ETc have combined empirical and theoretical approaches. The combination method was used to calculate potential ETp. It is a combination method because it combined the ener...

  19. Intercalated graphitic carbon nitride: a fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyi; Huang, Jindou; Yuan, Qing; Dong, Bin

    2014-07-01

    We develop a novel humidity nanosensor based on intercalated graphitic carbon nitride (g-C3N4) nanosheets fabricated by a facile thermal polymerization of common urea in the presence of LiCl as the intercalated guest under air and ambient pressure. The response and recovery times of an optimal nanosensor can reach ~0.9 s and ~1.4 s, respectively, which are superior to most of the traditional oxide ceramic-based humidity nanosensors tested under similar conditions. By combining with the theoretical calculations, it is proposed that the ultrafast response-recovery time for this nanosensor is attributed to their unique 2D intercalated nanostructure by which Li species linked with the ``nitrogen pots'' of g-C3N4 can make the protons conduct in the first adsorbed water layer. Meanwhile, the physically adsorbed water on the surface of LiCl-intercalated g-C3N4 nanosheets can be desorbed rapidly at a relative lower RH environment due to their high adsorption energy and the strong diffusion effect of water molecules.We develop a novel humidity nanosensor based on intercalated graphitic carbon nitride (g-C3N4) nanosheets fabricated by a facile thermal polymerization of common urea in the presence of LiCl as the intercalated guest under air and ambient pressure. The response and recovery times of an optimal nanosensor can reach ~0.9 s and ~1.4 s, respectively, which are superior to most of the traditional oxide ceramic-based humidity nanosensors tested under similar conditions. By combining with the theoretical calculations, it is proposed that the ultrafast response-recovery time for this nanosensor is attributed to their unique 2D intercalated nanostructure by which Li species linked with the ``nitrogen pots'' of g-C3N4 can make the protons conduct in the first adsorbed water layer. Meanwhile, the physically adsorbed water on the surface of LiCl-intercalated g-C3N4 nanosheets can be desorbed rapidly at a relative lower RH environment due to their high adsorption energy and the strong diffusion effect of water molecules. Electronic supplementary information (ESI) available: Fig. S1-S8 and Table S1 including SEM, TEM and theoretical calculations. See DOI: 10.1039/c4nr01570c

  20. An eight-dimensional quantum dynamics study of the Cl + CH{sub 4}→ HCl + CH{sub 3} reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Na; Yang, Minghui, E-mail: yangmh@wipm.ac.cn

    2015-10-07

    In this work, the later-barrier reaction Cl + CH{sub 4} → HCl + CH{sub 3} is investigated with an eight-dimensional quantum dynamics method [R. Liu et al., J. Chem. Phys. 137, 174113 (2012)] on the ab initio potential energy surface of Czakó and Bowman [J. Chem. Phys. 136, 044307 (2012)]. The reaction probabilities with CH{sub 4} initially in its ground and vibrationally excited states are calculated with a time-dependent wavepacket method. The theoretical integral cross sections (ICSs) are extensively compared with the available experimental measurements. For the ground state reaction, the theoretical ICSs excellently agree with the experimental ones. Themore » good agreements are also achieved for ratios between ICSs of excited reactions. For ICS ratios between various states, the theoretical values are also consistent with the experimental observations. The rate constants over 200-2000 K are calculated and the non-Arrhenius effect has been observed which is coincident with the previous experimental observations and theoretical calculations.« less

Top