Sample records for theoretical model capable

  1. An Astrosociological Perspective on Space-Capable vs. Spacefaring Societies

    NASA Astrophysics Data System (ADS)

    Pass, J.

    As with any academic field, astrosociology allows for an endless number of competing theoretical models and hypotheses. One possible theoretical model is presented here that starts with the premise that even the most advanced societies today are extremely far from achieving a spacefaring status. The most advanced nation states are, in fact, space-capable societies because they have the capacity to send cargo and humans into low Earth orbit and beyond. However, their social structures and cultures lack fundamental characteristics that would allow for their designation as spacefaring societies. This article describes the characteristics of a theoretical spacefaring society and argues that getting there from our current status as space-capable societies is a long and arduous process, and it is not a definite outcome whatsoever. While a continuum is offered, it represents an imprecise path that can retrograde or fall apart at any time. Thus, this theoretical model provides one possible series of an unfolding of events that result in the creation of characteristics of the social fabric that may result in movement along the continuum toward a spacefaring society. Movement along the continuum results in an accumulation of coordinated spacefaring characteristics for a given society. Simultaneously, strictly terrestrial characteristics disappear or transform themselves into hybrid forms that include spacefaring features. This exercise demonstrates that this theoretical exercise has a number of benefits for astrosociologists conducting research in the area of spacefaring theory. Moreover, it makes the case for the idea that the study of the theoretical transformation from a space-capable to a spacefaring society includes implications for current and future 1) space policy in the public sector and 2) corporate decision-making related to space in the private sector.

  2. The role of outside-school factors in science education: a two-stage theoretical model linking Bourdieu and Sen, with a case study

    NASA Astrophysics Data System (ADS)

    Gokpinar, Tuba; Reiss, Michael

    2016-05-01

    The literature in science education highlights the potentially significant role of outside-school factors such as parents, cultural contexts and role models in students' formation of science attitudes and aspirations, and their attainment in science classes. In this paper, building on and linking Bourdieu's key concepts of habitus, cultural and social capital, and field with Sen's capability approach, we develop a model of students' science-related capability development. Our model proposes that the role of outside-school factors is twofold, first, in providing an initial set of science-related resources (i.e. habitus, cultural and social capital), and then in conversion of these resources to science-related capabilities. The model also highlights the distinction between science-related functionings (outcomes achieved by individuals) and science-related capabilities (ability to achieve desired functionings), and argues that it is necessary to consider science-related capability development in evaluating the effectiveness of science education. We then test our theoretical model with an account of three Turkish immigrant students' science-related capabilities and the role of outside-school factors in forming and extending these capabilities. We use student and parent interviews, student questionnaires and in-class observations to provide an analysis of how outside-school factors influence these students' attitudes, aspirations and attainment in science.

  3. A preliminary theoretical line-blanketed model solar photosphere

    NASA Technical Reports Server (NTRS)

    Kurucz, R. L.

    1974-01-01

    In the theoretical approach to model-atmosphere construction, all opacities are computed theoretically and the temperature-pressure structure is determined by conservation of energy. Until recently, this has not been a very useful method for later type stars, because the line opacity was both poorly known and difficult to calculate. However, methods have now been developed that are capable of representing the line opacity well enough for construction of realistic models. A preliminary theoretical solar model is presented that produces closer agreement with observation than has been heretofore possible. The qualitative advantages and shortcomings of this model are discussued and projected improvements are outlined.

  4. Innovation value chain capability in Malaysian-owned company: A theoretical framework

    NASA Astrophysics Data System (ADS)

    Abidin, Norkisme Zainal; Suradi, Nur Riza Mohd

    2014-09-01

    Good quality products or services are no longer adequate to guarantee the sustainability of a company in the present competitive business. Prior research has developed various innovation models with the hope to better understand the innovativeness of the company. Due to countless definitions, indicators, factors, parameter and approaches in the study of innovation, it is difficult to ensure which one will best suit the Malaysian-owned company innovativeness. This paper aims to provide a theoretical background to support the framework of the innovation value chain capability in Malaysian-owned Company. The theoretical framework was based on the literature reviews, expert interviews and focus group study. The framework will be used to predict and assess the innovation value chain capability in Malaysian-owned company.

  5. Modeling of propulsive jet plumes--extension of modeling capabilities by utilizing wall curvature effects

    NASA Astrophysics Data System (ADS)

    Doerr, S. E.

    1984-06-01

    Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.

  6. Two Temperature Modeling and Experimental Measurements of Laser Sustained Hydrogen Plasmas

    DTIC Science & Technology

    1993-05-01

    4 1.3 Theoretical Background .................................................................. 7 1.4...typically produce low specific impulses with an upper limit of approximately 450 seconds. The theoretical chamber temperature in such a system can be as...systems are theoretically capable of producing moderate thrusts (> 1 kN) with specific impulses in excess of 1000 seconds for 10 MW input power. This

  7. Health Capability: Conceptualization and Operationalization

    PubMed Central

    2010-01-01

    Current theoretical approaches to bioethics and public health ethics propose varied justifications as the basis for health care and public health, yet none captures a fundamental reality: people seek good health and the ability to pursue it. Existing models do not effectively address these twin goals. The approach I espouse captures both of these orientations through a concept here called health capability. Conceptually, health capability illuminates the conditions that affect health and one's ability to make health choices. By respecting the health consequences individuals face and their health agency, health capability offers promise for finding a balance between paternalism and autonomy. I offer a conceptual model of health capability and present a health capability profile to identify and address health capability gaps. PMID:19965570

  8. ANSYS tools in modeling tires

    NASA Technical Reports Server (NTRS)

    Ali, Ashraf; Lovell, Michael

    1995-01-01

    This presentation summarizes the capabilities in the ANSYS program that relate to the computational modeling of tires. The power and the difficulties associated with modeling nearly incompressible rubber-like materials using hyperelastic constitutive relationships are highlighted from a developer's point of view. The topics covered include a hyperelastic material constitutive model for rubber-like materials, a general overview of contact-friction capabilities, and the acoustic fluid-structure interaction problem for noise prediction. Brief theoretical development and example problems are presented for each topic.

  9. A Theoretical Manpower Optimization Model for the Air Force Installation Contracting Agency (AFICA)

    DTIC Science & Technology

    2017-12-01

    development and enterprise-wide market intelligence. The theoretical manpower model proposed by this project optimizes manpower in respect to contracting...procurement needs and/or more effectively leverage spend, market position, market knowledge (e.g., price benchmarks), and capabilities (e.g., IT...CONS level because the process savings are not clearly traceable to a contract action. For example, to augment the market intelligence of category

  10. Analysis of NASA JP-4 fire tests data and development of a simple fire model

    NASA Technical Reports Server (NTRS)

    Raj, P.

    1980-01-01

    The temperature, velocity and species concentration data obtained during the NASA fire tests (3m, 7.5m and 15m diameter JP-4 fires) were analyzed. Utilizing the data analysis, a sample theoretical model was formulated to predict the temperature and velocity profiles in JP-4 fires. The theoretical model, which does not take into account the detailed chemistry of combustion, is capable of predicting the extent of necking of the fire near its base.

  11. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    NASA Astrophysics Data System (ADS)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  12. Piezoelectric transformer structural modeling--a review.

    PubMed

    Yang, Jiashi

    2007-06-01

    A review on piezoelectric transformer structural modeling is presented. The operating principle and the basic behavior of piezoelectric transformers as governed by the linear theory of piezoelectricity are shown by a simple, theoretical analysis on a Rosen transformer based on extensional modes of a nonhomogeneous ceramic rod. Various transformers are classified according to their structural shapes, operating modes, and voltage transforming capability. Theoretical and numerical modeling results from the theory of piezoelectricity are reviewed. More advances modeling on thermal and nonlinear effects also are discussed. The article contains 167 references.

  13. VIM: A Platform for Violent Intent Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Schryver, Jack C.; Whitney, Paul D.

    2009-03-31

    Radical and contentious political/religious activism may or may not evolve into violent behavior depending on contextual factors related to social, political, cultural and infrastructural conditions. Significant theoretical advances have been made in understanding these contextual factors and the import of their interrelations. However, there has been relative little progress in the development of processes and capabilities which leverage such theoretical advances to automate the anticipatory analysis of violent intent. In this paper, we describe a framework which implements such processes and capabilities, and discuss the implications of using the resulting system to assess the emergence of radicalization leading to violence.

  14. SIR rumor spreading model considering the effect of difference in nodes’ identification capabilities

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qi; Wang, Jing

    In this paper, we study the effect of difference in network nodes’ identification capabilities on rumor propagation. A novel susceptible-infected-removed (SIR) model is proposed, based on the mean-field theory, to investigate the dynamical behaviors of such model on homogeneous networks and inhomogeneous networks, respectively. Theoretical analysis and simulation results demonstrate that when we consider the influence of difference in nodes’ identification capabilities, the critical thresholds obviously increase, but the final rumor sizes are apparently reduced. We also find that the difference in nodes’ identification capabilities prolongs the time of rumor propagation reaching a steady state, and decreases the number of nodes that finally accept rumors. Additionally, under the influence of difference of nodes’ identification capabilities, compared with the homogeneous networks, the rumor transmission rate on the inhomogeneous networks is relatively large.

  15. Estimating wildfire behavior and effects

    Treesearch

    Frank A. Albini

    1976-01-01

    This paper presents a brief survey of the research literature on wildfire behavior and effects and assembles formulae and graphical computation aids based on selected theoretical and empirical models. The uses of mathematical fire behavior models are discussed, and the general capabilities and limitations of currently available models are outlined.

  16. Individual Differences in Boys' and Girls' Timing and Tempo of Puberty: Modeling Development with Nonlinear Growth Models

    ERIC Educational Resources Information Center

    Marceau, Kristine; Ram, Nilam; Houts, Renate M.; Grimm, Kevin J.; Susman, Elizabeth J.

    2011-01-01

    Pubertal development is a nonlinear process progressing from prepubescent beginnings through biological, physical, and psychological changes to full sexual maturity. To tether theoretical concepts of puberty with sophisticated longitudinal, analytical models capable of articulating pubertal development more accurately, we used nonlinear…

  17. Characterization of few transient black hole candidates during their X-ray outbursts with TCAF Solution

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Mondal, S.; Chakrabarti, S. K.; Jana, A.; Molla, A. A.; Chatterjee, D.

    The theoretical concept of Chakrabarti-Titarchuk two Component Advective Flow (TCAF) model was introduced around two decades ago in mid-90s. Recently after the inclusion of TCAF model into XSPEC as an additive table model, we find that it is quite capable to fit spectra from different phases of few transient black hole candidates (TBHCs) during their outbursts. This quite agrees with our theoretical understanding. Here, a brief summary of our recent studies of spectral and temporal properties of few TBHCs during their X-ray outbursts with TCAF will be discussed.

  18. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lower knuckle should be supplemented by results from a more refined ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions.« less

  19. Multiple-Group Analysis Using the sem Package in the R System

    ERIC Educational Resources Information Center

    Evermann, Joerg

    2010-01-01

    Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…

  20. Reconnecting Proficiency, Literacy, and Culture: From Theory to Practice

    ERIC Educational Resources Information Center

    Warford, Mark K.; White, William L.

    2012-01-01

    What does it mean to capably communicate across languages? This article introduces two theoretical models and a lesson plan format designed to facilitate the integration of proficiency, literacy, and culture teaching in foreign language teaching. The Second Symbolic Competencies Model configures proficiency and literacy as subordinate clusters of…

  1. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies.

    PubMed

    Yin, Lu; Yan, Mingjian; Han, Zhigang; Wang, Hailin; Shen, Hua; Zhu, Rihong

    2017-04-17

    We present the segmented corrosion method that uses hydrofluoric acid to etch the fiber of a fiber laser for removing high-power cladding light to improve stripping uniformity and power handling capability. For theoretical guidelines, we propose a simulation model of etched-fiber stripping to evaluate the relationship between the etched-fiber parameters and cladding light attenuation and to analyze the stripping uniformity achieved with segmented corrosion. A two-segment etched fiber is fabricated with cladding light attenuation of 19.8 dB and power handling capability up to 670 W. We find that the cladding light is stripped uniformly and the temperature distribution is uniform without the formation of hot spots.

  2. Threshold Capabilities: Threshold Concepts and Knowledge Capability Linked through Variation Theory

    ERIC Educational Resources Information Center

    Baillie, Caroline; Bowden, John A.; Meyer, Jan H. F.

    2013-01-01

    The Threshold Capability Integrated Theoretical Framework (TCITF) is presented as a framework for the design of university curricula, aimed at developing graduates' capability to deal with previously unseen situations in their professional, social, and personal lives. The TCITF is a new theoretical framework derived from, and heavily dependent…

  3. Characterising an implementation intervention in terms of behaviour change techniques and theory: the 'Sepsis Six' clinical care bundle.

    PubMed

    Steinmo, Siri; Fuller, Christopher; Stone, Sheldon P; Michie, Susan

    2015-08-08

    Sepsis is a major cause of death from infection, with a mortality rate of 36 %. This can be halved by implementing the 'Sepsis Six' evidence-based care bundle within 1 h of presentation. A UK audit has shown that median implementation rates are 27-47 % and interventions to improve this have demonstrated minimal effects. In order to develop more effective implementation interventions, it is helpful to obtain detailed characterisations of current interventions and to draw on behavioural theory to identify mechanisms of change. The aim of this study was to illustrate this process by using the Behaviour Change Wheel; Behaviour Change Technique (BCT) Taxonomy; Capability, Opportunity, Motivation model of behaviour; and Theoretical Domains Framework to characterise the content and theoretical mechanisms of action of an existing intervention to implement Sepsis Six. Data came from documentary, interview and observational analyses of intervention delivery in several wards of a UK hospital. A broad description of the intervention was created using the Template for Intervention Description and Replication framework. Content was specified in terms of (i) component BCTs using the BCT Taxonomy and (ii) intervention functions using the Behaviour Change Wheel. Mechanisms of action were specified using the Capability, Opportunity, Motivation model and the Theoretical Domains Framework. The intervention consisted of 19 BCTs, with eight identified using all three data sources. The BCTs were delivered via seven functions of the Behaviour Change Wheel, with four ('education', 'enablement', 'training' and 'environmental restructuring') supported by the three data sources. The most frequent mechanisms of action were reflective motivation (especially 'beliefs about consequences' and 'beliefs about capabilities') and psychological capability (especially 'knowledge'). The intervention consisted of a wide range of BCTs targeting a wide range of mechanisms of action. This study demonstrates the utility of the Behaviour Change Wheel, the BCT Taxonomy and the Theoretical Domains Framework, tools recognised for providing guidance for intervention design, for characterising an existing intervention to implement evidence-based care.

  4. Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes

    NASA Astrophysics Data System (ADS)

    Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.

    2018-03-01

    A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.

  5. Using Indigenous Materials for Construction

    DTIC Science & Technology

    2015-07-01

    Theoretical models were devised for prediction of the structural attributes of indigenous ferrocement sheets and sandwich composite panels comprising the...indigenous ferrocement skins and aerated concrete core. Structural designs were developed for these indigenous sandwich composite panels in typical...indigenous materials and building systems developed in the project were evaluated. Numerical modeling capabilities were developed for structural

  6. A Game-Theoretical Model to Improve Process Plant Protection from Terrorist Attacks.

    PubMed

    Zhang, Laobing; Reniers, Genserik

    2016-12-01

    The New York City 9/11 terrorist attacks urged people from academia as well as from industry to pay more attention to operational security research. The required focus in this type of research is human intention. Unlike safety-related accidents, security-related accidents have a deliberate nature, and one has to face intelligent adversaries with characteristics that traditional probabilistic risk assessment techniques are not capable of dealing with. In recent years, the mathematical tool of game theory, being capable to handle intelligent players, has been used in a variety of ways in terrorism risk assessment. In this article, we analyze the general intrusion detection system in process plants, and propose a game-theoretical model for security management in such plants. Players in our model are assumed to be rational and they play the game with complete information. Both the pure strategy and the mixed strategy solutions are explored and explained. We illustrate our model by an illustrative case, and find that in our case, no pure strategy but, instead, a mixed strategy Nash equilibrium exists. © 2016 Society for Risk Analysis.

  7. Finite area combustor theoretical rocket performance

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Mcbride, Bonnie J.

    1988-01-01

    Previous to this report, the computer program of NASA SP-273 and NASA TM-86885 was capable of calculating theoretical rocket performance based only on the assumption of an infinite area combustion chamber (IAC). An option was added to this program which now also permits the calculation of rocket performance based on the assumption of a finite area combustion chamber (FAC). In the FAC model, the combustion process in the cylindrical chamber is assumed to be adiabatic, but nonisentropic. This results in a stagnation pressure drop from the injector face to the end of the chamber and a lower calculated performance for the FAC model than the IAC model.

  8. Re-Framing Inclusive Education through the Capability Approach: An Elaboration of the Model of Relational Inclusion

    ERIC Educational Resources Information Center

    Dalkilic, Maryam; Vadeboncoeur, Jennifer A.

    2016-01-01

    Scholars have called for the articulation of new frameworks in special education that are responsive to culture and context and that address the limitations of medical and social models of disability. In this article, we advance a theoretical and practical framework for inclusive education based on the integration of a model of relational…

  9. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2016-05-01

    Recent experiments have demonstrated that the metamaterial approach is capable of a drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al -A l2O3 ENZ core-shell metamaterials. Here, we perform theoretical modeling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modeling and experimental results in both aluminum- and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium-, Mg B2- , and H2S -based metamaterial superconductors is evaluated. The Mg B2 -based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of a H2S -based metamaterial Tc appears to reach ˜250 K.

  10. Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.

    1992-01-01

    Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.

  11. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less

  12. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  13. Target Revitalization for Espionage in American Industry: New Directions for the Coming Decade

    DTIC Science & Technology

    1993-09-01

    Peninsular Malaysia X Spratly Islands X Paracel Islands X Senkaku Islands X Sabah "V Nuclear Armed, Nuclear Capability, or Threshold Nuclear Capability X...Territories "+ Bosnia-Herzegovina, Croatia, Yugoslavia "+ Kuril Islands Canrt-The Oirneg1P WOU-4..22 "+ Peninsular Malaysia "+ Spratly Islands "+ Paracel...Intelligence 22 THE THEORETICAL DIMENSION 24 Figure 3-1: Continuum of Social Stability 25 Differential Social Disintegration 26 Figure 3-2: Model of

  14. Modeling Psychobiological Development in the Post-Genomic Era

    ERIC Educational Resources Information Center

    Lickliter, Robert

    2013-01-01

    Psychobiological systems theory is a relational approach to development that challenges the longstanding views that (1) genetic and environmental influences on the phenotype can be meaningfully partitioned and that (2) genes are capable of directly specifying phenotypes. Gilbert Gottlieb's theoretical innovations including the notion of…

  15. Readability and Recall of Short Prose Passages: A Theoretical Analysis.

    ERIC Educational Resources Information Center

    Miller, James R.; Kintsch, Walter

    1980-01-01

    To support the view of readability as an interaction between a text and the reader's prose-processing capabilities, this article applies an extended and formalized version of the Kintch and van Dijk prose-processing model to 20 texts of varying readability. (Author/GSK)

  16. Calculation of ground vibration spectra from heavy military vehicles

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  17. Theoretical Modeling of Molecular and Electron Kinetic Processes. Volume I. Theoretical Formulation of Analysis and Description of Computer Program.

    DTIC Science & Technology

    1979-01-01

    syn- thesis proceed s by ignoring unacceptable syntax or other errors , pro- tection against subsequent execution of a faulty reaction scheme can be...resulting TAPE9 . During subroutine syn thesis and reaction processing, a search is made (fo r each secondary electron collision encountered) to...program library, which can be cat- alogued and saved if any future specialized modifications (beyond the scope of the syn thesis capability of LASER

  18. Patient Experiences of Swallowing Exercises After Head and Neck Cancer: A Qualitative Study Examining Barriers and Facilitators Using Behaviour Change Theory.

    PubMed

    Govender, Roganie; Wood, Caroline E; Taylor, Stuart A; Smith, Christina H; Barratt, Helen; Gardner, Benjamin

    2017-08-01

    Poor patient adherence to swallowing exercises is commonly reported in the dysphagia literature on patients treated for head and neck cancer. Establishing the effectiveness of exercise interventions for this population may be undermined by patient non-adherence. The purpose of this study was to explore the barriers and facilitators to exercise adherence from a patient perspective, and to determine the best strategies to reduce the barriers and enhance the facilitators. In-depth interviews were conducted on thirteen patients. We used a behaviour change framework and model [Theoretical domains framework and COM-B (Capability-opportunity-motivation-behaviour) model] to inform our interview schedule and structure our results, using a content analysis approach. The most frequent barrier identified was psychological capability. This was highlighted by patient reports of not clearly understanding reasons for the exercises, forgetting to do the exercises and not having a system to keep track. Other barriers included feeling overwhelmed by information at a difficult time (lack of automatic motivation) and pain and fatigue (lack of physical capability). Main facilitators included having social support from family and friends, the desire to prevent negative consequences such as long-term tube feeding (reflective motivation), having the skills to do the exercises (physical capability), having a routine or trigger and receiving feedback on the outcome of doing exercises (automatic motivation). Linking these findings back to the theoretical model allows for a more systematic selection of theory-based strategies that may enhance the design of future swallowing exercise interventions for patients with head and neck cancer.

  19. Theoretical prediction of honeycomb carbon as Li-ion batteries anode material

    NASA Astrophysics Data System (ADS)

    Hu, Junping; Zhang, Xiaohang

    2018-05-01

    First principles calculations are performed to study the electronic properties and Li storage capability of honeycomb carbon. We find its right model consistent with the experimental result, the honeycomb carbon and its Li-intercalated configurations are all metallic which is beneficial to the electrode materials for lithium-ion batteries. The model 1 configuration shows fast Li diffusion and theoretical Li storage capacity of 319 mAh/g. Moreover, the average intercalation potentials for honeycomb carbon material is calculated to be low relatively. Our results suggest that the honeycomb carbon would be a new promising pure carbon anode material for Li-ion batteries.

  20. One-Dimensional Contact Mode Interdigitated Center of Pressure Sensor (CMIPS)

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Kang, Jinho; Park, Cheol; Harrison, Joycelyn S.; Guerreiro, Nelson M.; Hubbard, James E.

    2009-01-01

    A one dimensional contact mode interdigitated center of pressure sensor (CMIPS) has been developed. The experimental study demonstrated that the CMIPS has the capability to measure the overall pressure as well as the center of pressure in one dimension, simultaneously. A theoretical model for the CMIPS is established here based on the equivalent circuit of the configuration of the CMIPS as well as the material properties of the sensor. The experimental results match well with theoretical modeling predictions. A system mapped with two or more pieces of the CMIPS can be used to obtain information from the pressure distribution in multi-dimensions.

  1. Approaches for scalable modeling and emulation of cyber systems : LDRD final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.

    2009-09-01

    The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminarymore » theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.« less

  2. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  3. Multi-scale Modeling of Chromosomal DNA in Living Cells

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  4. Early Estimation of Solar Activity Cycle: Potential Capability and Limits

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy S.

    2017-01-01

    The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and longterm sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.

  5. Theoretical Bases for Using Virtual Reality in Education

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2009-01-01

    This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…

  6. Adaptive multisensor fusion for planetary exploration rovers

    NASA Technical Reports Server (NTRS)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  7. Theoretical and experimental research on diversity reception technology in NLOS UV communication system.

    PubMed

    Han, Dahai; Liu, Yile; Zhang, Kai; Luo, Pengfei; Zhang, Min

    2012-07-02

    Diversity reception technology is introduced into ultraviolet communication area in this article with theory analysis and practical experiment. The idea of diversity reception was known as a critical effective method in wireless communication area that improves the Gain significantly especially for the multi-scattering channel. A theoretical modeling and simulation method are proposed to depict the principle and feasibility of diversity reception adopted in UV communication. Besides, an experimental test-bed using ultraviolet LED and dual receiver of photomultiplier tube is setup to characterize the effects of diversity receiving in non-line-of-sight (NLOS) ultraviolet communication system. The experiment results are compared with the theoretical ones to verify the accuracy of theoretical modeling and the effect of diversity reception. Equal gain combining (EGC) method was adopted as the diversity mechanism in this paper. The research results of theory and experiment provide insight into the channel characteristics and achievable capabilities of ultraviolet communication system with diversity receiving method.

  8. Development of a magnetic catheter with rotating multi-magnets to achieve unclogging motions with enhanced steering capability

    NASA Astrophysics Data System (ADS)

    Kim, N.; Lee, S.; Lee, W.; Jang, G.

    2018-05-01

    We developed a novel magnetic catheter structure that can selectively generate steering and unclogging motions. The proposed magnetic catheter is composed of a flexible tube and two modules with ring magnets that can axially rotate in a way that enables the catheter to independently steer and unclog blood clots by controlling external magnetic fields. We mathematically modeled the deflection of the catheter using the large deflection Euler-Bernoulli beam model and developed a design method to determine the optimal distance between magnets in order to maximize steering performance. Finally, we prototyped the proposed magnetic catheter and conducted several experiments to verify the theoretical model and assess its steering and unclogging capabilities.

  9. Application of free energy minimization to the design of adaptive multi-agent teams

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel

    2017-05-01

    Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.

  10. Modeling of information diffusion in Twitter-like social networks under information overload.

    PubMed

    Li, Pei; Li, Wei; Wang, Hui; Zhang, Xin

    2014-01-01

    Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations.

  11. Modeling of Information Diffusion in Twitter-Like Social Networks under Information Overload

    PubMed Central

    Li, Wei

    2014-01-01

    Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations. PMID:24795541

  12. Two-Dimensional Simulation of Left-Handed Metamaterial Flat Lens Using Remcon XFDTD

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Reinert, Jason M.

    2006-01-01

    Remcom's XFDTD software was used to model the properties of a two-dimensional left-handed metamaterial (LHM) flat lens. The focusing capability and attenuation of the material were examined. The results showed strong agreement with experimental results and theoretical predictions of focusing effects and focal length. The inherent attenuation in the model corresponds well with the experimental results and implies that the code does a reasonably accurate job of modeling the actual metamaterial.

  13. Load transfer of nanocomposite film on aluminum substrate.

    PubMed

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2018-01-01

    Nanocomposite films have attracted much attention in recent years. Depending on the composition of the film and fabrication method, a large range of applications has been employed for nanocomposite films. In this study, nanocomposite films reinforced with multi-walled carbon nanotubes (MWCNTs) were deposited on the aluminum substrate through hot press processing. A shear lag model and Euler beam theory were employed to evaluate the stress distribution and load carrying capability of the nanocomposite film subjected to tensile load and bending moment. The influence of MWCNT on the Young's modulus and load carrying capability of the nanocomposite film was investigated through a parametric study. The theoretical predictions were verified by comparison with experimental tests. A close agreement with difference less than 6% was achieved between the theoretical prediction and experimental measurements. The Young's modulus and load transfer of the nanocomposite film reinforced with MWCNTs increases with the increase of the MWCNT loading. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 20% in both the Young's modulus and load carrying capability.

  14. Factors related to reducing free sugar intake among white ethnic adults in the UK: a qualitative study.

    PubMed

    Rawahi, Said Harith Al; Asimakopoulou, Koula; Newton, Jonathon Timothy

    2018-01-01

    To determine the barriers and enablers to behavioural change to reduce free sugar intake related to dental caries in a sample of UK adults who identify their ethnicity as White. Qualitative study comprising semi-structured interviews of 27 participants. Interviews were recorded, transcribed and analysed using thematic analysis methods. The Capability-Opportunity-Motivation-Behaviour model (COM-B) and the Theoretical Domains Framework (TDF) were used to guide the derivation of themes. Data saturation occurred at 27 interviews. The COM-B Model and TDF domains captured various factors that may influence the consumption of free sugar. TDF elements which are reflected in the study are: Knowledge; Psychological skills; Memory, attention, and decision processes; Behavioural regulation; Physical skills; Social influence; Environmental context and resources; Social and professional role and identity; Beliefs about capabilities; Beliefs about consequence; Intentions and goals reinforcement; and Emotions. COM-B Model elements which are reflected in the study are: psychological capabilities, physical capabilities, social opportunities, physical opportunities, reflective motivation, and automatic motivation. The COM-B model and TDF framework provided a comprehensive account of the barriers and facilitators of reducing sugar intake among white ethnic groups.

  15. Quantitative model of diffuse speckle contrast analysis for flow measurement.

    PubMed

    Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-07-01

    Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be presented. We deduced the theoretical relationship between speckle contrast and exposure time and further simplified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian diffusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to be equal to the inverse of correlation time of the speckle.

  16. A Game Theoretic Model of Thermonuclear Cyberwar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soper, Braden C.

    In this paper we propose a formal game theoretic model of thermonuclear cyberwar based on ideas found in [1] and [2]. Our intention is that such a game will act as a first step toward building more complete formal models of Cross-Domain Deterrence (CDD). We believe the proposed thermonuclear cyberwar game is an ideal place to start on such an endeavor because the game can be fashioned in a way that is closely related to the classical models of nuclear deterrence [4–6], but with obvious modifications that will help to elucidate the complexities introduced by a second domain. We startmore » with the classical bimatrix nuclear deterrence game based on the game of chicken, but introduce uncertainty via a left-of-launch cyber capability that one or both players may possess.« less

  17. Magneto-rheological fluid shock absorbers for HMMWV

    NASA Astrophysics Data System (ADS)

    Gordaninejad, Faramarz; Kelso, Shawn P.

    2000-04-01

    This paper presents the development and evaluation of a controllable, semi-active magneto-rheological fluid (MRF) shock absorber for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV). The University of Nevada, Reno (UNR) MRF damper is tailored for structures and ground vehicles that undergo a wide range of dynamic loading. It also has the capability for unique rebound and compression characteristics. The new MRF shock absorber emulates the original equipment manufacturer (OEM) shock absorber behavior in passive mode, and provides a wide controllable damping force range. A theoretical study is performed to evaluate the UNR MRF shock absorber. The Bingham plastic theory is employed to model the nonlinear behavior of the MR fluid. A fluid-mechanics-based theoretical model along with a three-dimensional finite element electromagnetic analysis is utilized to predict the MRF damper performance. The theoretical results are compared with experimental data and are demonstrated to be in excellent agreement.

  18. Workshop on the Thermophysical Properties of Molten Materials

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans.

  19. The physics of the unconventional motility strategy of euglenids

    NASA Astrophysics Data System (ADS)

    Arroyo, Marino; Noselli, Giovanni; Desimone, Antonio

    Euglenids are a family of unicellular protists, which use flagella to move in a fluid. However, they are also capable of performing elegantly concerted large amplitude deformations of the cell shape, in what is known as metaboly. To perform metaboly, euglenids use an elaborate cortical complex capable of actively imposing spatially modulated shear deformations on the cell surface. This mode of cell deformation has been linked to motility, but biophysical studies have demonstrated that it leads to very small swimming velocities as compared to flagellar locomotion. Furthermore, why would these cells possess two elaborate apparatus for the same function remains unclear. In this work, we combine experimental observations of euglena gracilis cells with theoretical models to shed light into the function of metaboly. The theoretical models account for the force generation and shape evolution at the cell envelop, together with the mechanical interaction of the cell with its environment. We characterize the efficiency of the two modes of locomotion of this cells in terms of the physical nature of their environment. ERC AdG 340685 MicroMotility.

  20. Modeling sand wave characteristics on the Belgian Continental Shelf and in the Calais-Dover Strait

    NASA Astrophysics Data System (ADS)

    Cherlet, J.; Besio, G.; Blondeaux, P.; van Lancker, V.; Verfaillie, E.; Vittori, G.

    2007-06-01

    The capability of the model of Besio et al. (2006) to predict the main geometrical characteristics (crest orientation, wavelength,…) of tidal sand waves is tested by comparing the theoretical predictions with field data. In particular the field observations carried out by Mouchet (1990) and Van Lancker et al. (2005) along the continental shelf of Belgium are used. Additional comparisons are carried out against the field measurements described by Le Bot (2001) and Le Bot and Trenteseaux (2004) which were carried out in an adjacent region. Attention is focused on the prediction of the wavelength of the bottom forms. Indeed, the capability of a linear stability analysis to predict the occurrence of sand waves has been already tested by Hulscher and van den Brink (2001) and more recently by van der Veen et al. (2006). The obtained results show that the theoretical predictions fairly agree with field observations even though some of the comparisons suggest that the accuracy of the predictions depends on the accurate evaluation of the local current and sediment characteristics.

  1. Characteristic investigation and control of a modular multilevel converter-based HVDC system under single-line-to-ground fault conditions

    DOE PAGES

    Shi, Xiaojie; Wang, Zhiqiang; Liu, Bo; ...

    2014-05-16

    This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDCmore » system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.« less

  2. Software-as-a-Service Vendors: Are They Ready to Successfully Deliver?

    NASA Astrophysics Data System (ADS)

    Heart, Tsipi; Tsur, Noa Shamir; Pliskin, Nava

    Software as a service (SaaS) is a software sourcing option that allows organizations to remotely access enterprise applications, without having to install the application in-house. In this work we study vendors' readiness to deliver SaaS, a topic scarcely studied before. The innovation classification (evolutionary vs. revolutionary) and a new, Seven Fundamental Organizational Capabilities (FOCs) Model, are used as the theoretical frameworks. The Seven FOCs model suggests generic yet comprehensive set of capabilities that are required for organizational success: 1) sensing the stakeholders, 2) sensing the business environment, 3) sensing the knowledge environment, 4) process control, 5) process improvement, 6) new process development, and 7) appropriate resolution.

  3. Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing

    NASA Astrophysics Data System (ADS)

    Rabbitt, Christopher

    This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.

  4. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    PubMed Central

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322

  5. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    NASA Astrophysics Data System (ADS)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  6. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.

    PubMed

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-26

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  7. Including resonances in the multiperipheral model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsky, S.S.; Snider, D.R.; Thomas, G.H.

    1973-10-01

    A simple generalization of the multiperipheral model (MPM) and the Mueller--Regge Model (MRM) is given which has improved phenomenological capabilities by explicitly incorporating resonance phenomena, and still is simple enough to be an important theoretical laboratory. The model is discussed both with and without charge. In addition, the one channel, two channel, three channel and N channel cases are explicitly treated. Particular attention is paid to the constraints of charge conservation and positivity in the MRM. The recently proven equivalence between the MRM and MPM is extended to this model, and is used extensively. (auth)

  8. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  9. The capability approach: a guiding framework to improve population health and the attainment of the Sustainable Developmental Goals.

    PubMed

    Hirani, Shela Akbar Ali; Richter, Solina

    2017-02-21

    The world is progressing in terms of communication, innovative technology and cure of various diseases through advanced pharmacological preparations. Unfortunately, populations are still struggling with ill-health, disabilities, poverty, hunger, inequality, gender disparities and conflicts. Several questions come to mind in this regard: why are prosperity, health, peace and progress not evenly distributed and what is the best approach to address the issues associated with population health? The capability approach may offer a possible model. This approach is a blend of 5 key concepts: capabilities, functioning, agency, endowment, and conversion factors. It proposes an innovative approach to examine and enhance the quality of life and wellbeing of individuals. This reflective paper provides an overview of the capability approach, critically analyses population health from the theoretical lens of the capability approach and highlights the relevance of this approach to achieving the Sustainable Developmental Goals.

  10. Implementation of a Goal-Based Systems Engineering Process Using the Systems Modeling Language (SysML)

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.; Breckenridge, Jonathan T.; Johnson, Stephen B.

    2013-01-01

    Building upon the purpose, theoretical approach, and use of a Goal-Function Tree (GFT) being presented by Dr. Stephen B. Johnson, described in a related Infotech 2013 ISHM abstract titled "Goal-Function Tree Modeling for Systems Engineering and Fault Management", this paper will describe the core framework used to implement the GFTbased systems engineering process using the Systems Modeling Language (SysML). These two papers are ideally accepted and presented together in the same Infotech session. Statement of problem: SysML, as a tool, is currently not capable of implementing the theoretical approach described within the "Goal-Function Tree Modeling for Systems Engineering and Fault Management" paper cited above. More generally, SysML's current capabilities to model functional decompositions in the rigorous manner required in the GFT approach are limited. The GFT is a new Model-Based Systems Engineering (MBSE) approach to the development of goals and requirements, functions, and its linkage to design. As a growing standard for systems engineering, it is important to develop methods to implement GFT in SysML. Proposed Method of Solution: Many of the central concepts of the SysML language are needed to implement a GFT for large complex systems. In the implementation of those central concepts, the following will be described in detail: changes to the nominal SysML process, model view definitions and examples, diagram definitions and examples, and detailed SysML construct and stereotype definitions.

  11. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs).

    PubMed

    Nesvold, Håvard; Kristoffersen, Anja Bråthen; Holst-Jensen, Arne; Berdal, Knut G

    2005-05-01

    Unknown genetically modified organisms (GMOs) have not undergone a risk evaluation, and hence might pose a danger to health and environment. There are, today, no methods for detecting unknown GMOs. In this paper we propose a novel method intended as a first step in an approach for detecting unknown genetically modified (GM) material in a single plant. A model is designed where biological and combinatorial reduction rules are applied to a set of DNA chip probes containing all possible sequences of uniform length n, creating probes capable of detecting unknown GMOs. The model is theoretically tested for Arabidopsis thaliana Columbia, and the probabilities for detecting inserts and receiving false positives are assessed for various parameters for this organism. From a theoretical standpoint, the model looks very promising but should be tested further in the laboratory. The model and algorithms will be available upon request to the corresponding author.

  12. Enhanced modeling and simulation of EO/IR sensor systems

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Miller, Brian; May, Christopher

    2015-05-01

    The testing and evaluation process developed by the Night Vision and Electronic Sensors Directorate (NVESD) Modeling and Simulation Division (MSD) provides end to end systems evaluation, testing, and training of EO/IR sensors. By combining NV-LabCap, the Night Vision Integrated Performance Model (NV-IPM), One Semi-Automated Forces (OneSAF) input sensor file generation, and the Night Vision Image Generator (NVIG) capabilities, NVESD provides confidence to the M&S community that EO/IR sensor developmental and operational testing and evaluation are accurately represented throughout the lifecycle of an EO/IR system. This new process allows for both theoretical and actual sensor testing. A sensor can be theoretically designed in NV-IPM, modeled in NV-IPM, and then seamlessly input into the wargames for operational analysis. After theoretical design, prototype sensors can be measured by using NV-LabCap, then modeled in NV-IPM and input into wargames for further evaluation. The measurement process to high fidelity modeling and simulation can then be repeated again and again throughout the entire life cycle of an EO/IR sensor as needed, to include LRIP, full rate production, and even after Depot Level Maintenance. This is a prototypical example of how an engineering level model and higher level simulations can share models to mutual benefit.

  13. US-guided application of Nd:YAG laser in porcine pancreatic tissue: an ex vivo study and numerical simulation.

    PubMed

    Di Matteo, Francesco; Martino, Margareth; Rea, Roberta; Pandolfi, Monica; Panzera, Francesco; Stigliano, Egidio; Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio; Pacella, Claudio Maurizio; Breschi, Luca; Perrone, Giuseppe; Coppola, Roberto; Costamagna, Guido

    2013-11-01

    Laser ablation (LA) with a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is a minimally invasive approach able to achieve a high rate of complete tissue necrosis. In a previous study we described the feasibility of EUS-guided Nd:YAG pancreas LA performed in vivo in a porcine model. To establish the best laser setting of Nd:YAG lasers for pancreatic tissue ablation. A secondary aim was to investigate the prediction capability of a mathematical model on ablation volume. Ex vivo animal study. Hospital animal laboratory. Explanted pancreatic glands from 60 healthy farm pigs. Laser output powers (OP) of 1.5, 3, 6, 10, 15, and 20 W were supplied. Ten trials for each OP were performed under US guidance on ex vivo healthy porcine pancreatic tissue. Ablation volume (Va) and central carbonization volume (Vc) were measured on histologic specimens as the sum of the lesion areas multiplied by the thickness of each slide. The theoretical model of the laser-tissue interaction was based on the Pennes equation. A circumscribed ablation zone was observed in all histologic specimens. Va values grow with the increase of the OP up to 10 W and reach a plateau between 10 and 20 W. The trend of Vc values rises constantly until 20 W. The theoretical model shows a good agreement with experimental Va and Vc for OP between 1.5 and 10 W. Ex vivo study. Volumes recorded suggest that the best laser OP could be the lowest one to obtain similar Va with smaller Vc in order to avoid the risk of thermal injury to the surrounding tissue. The good agreement between the two models demonstrates the prediction capability of the theoretical model on laser-induced ablation volume in an ex vivo animal model and supports its potential use for estimating the ablation size at different laser OPs. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  14. Electrode Coverage Optimization for Piezoelectric Energy Harvesting from Tip Excitation

    PubMed Central

    Chen, Guangzhu; Bai, Nan

    2018-01-01

    Piezoelectric energy harvesting using cantilever-type structures has been extensively investigated due to its potential application in providing power supplies for wireless sensor networks, but the low output power has been a bottleneck for its further commercialization. To improve the power conversion capability, a piezoelectric beam with different electrode coverage ratios is studied theoretically and experimentally in this paper. A distributed-parameter theoretical model is established for a bimorph piezoelectric beam with the consideration of the electrode coverage area. The impact of the electrode coverage on the capacitance, the output power and the optimal load resistance are analyzed, showing that the piezoelectric beam has the best performance with an electrode coverage of 66.1%. An experimental study was then carried out to validate the theoretical results using a piezoelectric beam fabricated with segmented electrodes. The experimental results fit well with the theoretical model. A 12% improvement on the Root-Mean-Square (RMS) output power was achieved with the optimized electrode converge ratio (66.1%). This work provides a simple approach to utilizing piezoelectric beams in a more efficient way. PMID:29518934

  15. Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navid, A; Almaas, E

    2009-01-13

    The gram-negative bacterium Yersinia pestis, the aetiological agent of bubonic plague, is one the deadliest pathogens known to man. Despite its historical reputation, plague is a modern disease which annually afflicts thousands of people. Public safety considerations greatly limit clinical experimentation on this organism and thus development of theoretical tools to analyze the capabilities of this pathogen is of utmost importance. Here, we report the first genome-scale metabolic model of Yersinia pestis biovar Mediaevalis based both on its recently annotated genome, and physiological and biochemical data from literature. Our model demonstrates excellent agreement with Y. pestis known metabolic needs andmore » capabilities. Since Y. pestis is a meiotrophic organism, we have developed CryptFind, a systematic approach to identify all candidate cryptic genes responsible for known and theoretical meiotrophic phenomena. In addition to uncovering every known cryptic gene for Y. pestis, our analysis of the rhamnose fermentation pathway suggests that betB is the responsible cryptic gene. Despite all of our medical advances, we still do not have a vaccine for bubonic plague. Recent discoveries of antibiotic resistant strains of Yersinia pestis coupled with the threat of plague being used as a bioterrorism weapon compel us to develop new tools for studying the physiology of this deadly pathogen. Using our theoretical model, we can study the cell's phenotypic behavior under different circumstances and identify metabolic weaknesses which may be harnessed for the development of therapeutics. Additionally, the automatic identification of cryptic genes expands the usage of genomic data for pharmaceutical purposes.« less

  16. Development INTERDATA 8/32 computer system

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1983-01-01

    The capabilities of the Interdata 8/32 minicomputer were examined regarding data and word processing, editing, retrieval, and budgeting as well as data management demands of the user groups in the network. Based on four projected needs: (1) a hands on (open shop) computer for data analysis with large core and disc capability; (2) the expected requirements of the NASA data networks; (3) the need for intermittent large core capacity for theoretical modeling; (4) the ability to access data rapidly either directly from tape or from core onto hard copy, the system proved useful and adequate for the planned requirements.

  17. Lagrangian turbulence near walls: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, J. M.

    1989-05-01

    The general objective of work during this period was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: a perturbed Kelvin cat eyes flow, and prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: production flows capable of producing complex distributions of vorticity, and constructed flow fields, based on solutions of the Navier Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence.

  18. Densities and Viscosities of the Quinary System: Cyclohexane (1) + \\varvec{m} -Xylene (2) + Cyclooctane (3) + Chlorobenzene (4) + Decane (5) and Its Quaternary Subsystems at 308.15 K and 313.15 K

    NASA Astrophysics Data System (ADS)

    Hamzehlouia, Sepehr; Asfour, Abdul-Fattah A.

    2013-06-01

    The volumetric and viscometric properties of the quinary system: cyclohexane + m -xylene + cyclooctane + chlorobenzene + decane, were measured over the entire composition range at 308.15 K and 313.15 K. The experimental data obtained in the course of the present study were employed to analyze the predictive capability of six semi-theoretical and empirical well-known viscosity models reported in the literature, namely, the generalized McAllister three-body interaction model, the pseudo- binary McAllister model, the group contribution model, the generalized corresponding states principle model, the Allan and Teja correlation, and the Grunberg and Nissan law of viscosity. The predictive capabilities of the models were compared using the percentage average absolute deviation (%AAD). The final results showed that the generalized McAllister model gives the lowest AADs of 3.3 % and 3.7 % at 308.15 K and 313.15 K, respectively.

  19. Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2007-01-01

    We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.

  20. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    NASA Technical Reports Server (NTRS)

    Johnson, Donald R.

    2001-01-01

    This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.

  1. Implementing hospital innovation in Taiwan: the perspectives of institutional theory and social capital.

    PubMed

    Yang, Chen-Wei

    2015-01-01

    The main purpose of this study is to develop an innovation model for hospital organisations. For this purpose, this study explores and examines the determinants, capabilities and performance in the hospital sector. First, this discusses three categories of determinants that affect hospitals' innovative capability studies: (1) knowledge stock; (2) social ties; and (3) institutional pressures. Then, this study examines the idea of innovative hospital capabilities, defined as the ability of the hospital organisation to innovate their knowledge. Finally, the hospital evaluation rating, which identifies performance in the hospital sector, was examined. This study empirically tested the theoretical model at the organisation level. The findings suggest that a hospital's innovative capabilities are influenced by its knowledge stock, social ties, institutional pressures and the impact of hospital performance. However, in attempts to keep hospitals aligned with their highly institutionalised environments, it may prove necessary for hospital administrators to pay more attention to both existing knowledge stock and the process of innovation if the institutions are to survive. Finally, implications for theory and practitioners complete this study. Copyright © 2014 John Wiley & Sons, Ltd.

  2. A High Performance Computing Framework for Physics-based Modeling and Simulation of Military Ground Vehicles

    DTIC Science & Technology

    2011-03-25

    number one and Nebulae at number three. Both systems rely on GPU co-processing and use Intel Xeon processors cards and NVIDIA Tesla C2050 GPUs. In...spite of a theoretical peak capability of almost 3 Petaflop/s, Nebulae clocked at 1.271 PFlop/s when running the Linpack benchmark, which puts it

  3. Theoretical Technology Research for ISTP/SOLARMAX

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Acuna, Mario (Technical Monitor)

    2000-01-01

    During the last decade, we have been developing theoretical tools to support the scientific objectives of the International Solar Terrestrial Physics (ISTP) program. Results from our mission-oriented theory program have contributed significantly to the development of predictive capabilities by using real upstream solar wind conditions as input to our models and forecasting events observed downstream near Earth. We also developed the capability to unravel the complex information contained in ion velocity distribution functions measured near the Earth to determine their origin and energization process. During solar maximum, solar flares and coronal mass ejections (CMEs) dominate the sun's activity. It is now widely accepted that the impact of CMEs (or magnetic clouds) with the Earth's magnetosphere is the cause of most magnetic storms during solar maximum. One important aspect of a CME is the occurrence of solar energetic particle (SEP) events. During these events, protons, electrons, and heavy ions of solar origin are accelerated to very high energies by shock waves driven out from the sun. We carried out a series of large-scale kinetic (LSK) simulations to model the effect of SEPs on the near-Earth environment and the accessibility of these high-energy particles to the inner magnetosphere. We present the results of these studies.

  4. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    NASA Astrophysics Data System (ADS)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  5. Grounding language in action and perception: From cognitive agents to humanoid robots

    NASA Astrophysics Data System (ADS)

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.

  6. Dynamic modelling and experimental study of asymmetric optothermal microactuator

    NASA Astrophysics Data System (ADS)

    Wang, Shuying; Chun, Qin; You, Qingyang; Wang, Yingda; Zhang, Haijun

    2017-01-01

    This paper reports the dynamic modelling and experimental study of an asymmetric optothermal microactuator (OTMA). According to the principle of thermal flux, a theoretical model for instantaneous temperature distribution of an expansion arm is established and the expression of expansion increment is derived. Dynamic expansion properties of the arm under laser pulse irradiation are theoretically analyzed indicating that both of the maximum expansion and expansion amplitude decrease with the pulse frequency increasing. Experiments have been further carried out on an OTMA fabricated by using an excimer laser micromachining system. It is shown that the OTMA deflects periodically with the same frequency of laser pulse irradiation. Experimental results also prove that both OTMA's maximum deflection and deflection amplitude (related to maximum expansion and expansion amplitude of the arm) decrease as frequency increases, matching with the theoretical model quite well. Even though the OTMA's deflection decrease at higher frequency, it is still capable of generating 8.2 μm maximum deflection and 4.2 μm deflection amplitude under 17 Hz/2 mW laser pulse irradiation. This work improves the potential applications of optothermal microactuators in micro-opto-electro-mechanical system (MOEMS) and micro/nano-technology fields.

  7. An experimental and theoretical analysis of a foil-air bearing rotor system

    NASA Astrophysics Data System (ADS)

    Bonello, P.; Hassan, M. F. Bin

    2018-01-01

    Although there is considerable research on the experimental testing of foil-air bearing (FAB) rotor systems, only a small fraction has been correlated with simulations from a full nonlinear model that links the rotor, air film and foil domains, due to modelling complexity and computational burden. An approach for the simultaneous solution of the three domains as a coupled dynamical system, introduced by the first author and adopted by independent researchers, has recently demonstrated its capability to address this problem. This paper uses this approach, with further developments, in an experimental and theoretical study of a FAB-rotor test rig. The test rig is described in detail, including issues with its commissioning. The theoretical analysis uses a recently introduced modal-based bump foil model that accounts for interaction between the bumps and their inertia. The imposition of pressure constraints on the air film is found to delay the predicted onset of instability speed. The results lend experimental validation to a recent theoretically-based claim that the Gümbel condition may not be appropriate for a practical single-pad FAB. The satisfactory prediction of the salient features of the measured nonlinear behavior shows that the air film is indeed highly influential on the response, in contrast to an earlier finding.

  8. Theoretical study of liquid droplet dispersion in a venturi scrubber.

    PubMed

    Fathikalajahi, J; Talaie, M R; Taheri, M

    1995-03-01

    The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.

  9. The Influence of Individual Driver Characteristics on Congestion Formation

    NASA Astrophysics Data System (ADS)

    Wang, Lanjun; Zhang, Hao; Meng, Huadong; Wang, Xiqin

    Previous works have pointed out that one of the reasons for the formation of traffic congestion is instability in traffic flow. In this study, we investigate theoretically how the characteristics of individual drivers influence the instability of traffic flow. The discussions are based on the optimal velocity model, which has three parameters related to individual driver characteristics. We specify the mappings between the model parameters and driver characteristics in this study. With linear stability analysis, we obtain a condition for when instability occurs and a constraint about how the model parameters influence the unstable traffic flow. Meanwhile, we also determine how the region of unstable flow densities depends on these parameters. Additionally, the Langevin approach theoretically validates that under the constraint, the macroscopic characteristics of the unstable traffic flow becomes a mixture of free flows and congestions. All of these results imply that both overly aggressive and overly conservative drivers are capable of triggering traffic congestion.

  10. Comparison of experimental surface pressures with theoretical predictions on twin two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Pendergraft, O. C., Jr.; Burley, J. R., II

    1986-01-01

    A three-dimensional subsonic aerodynamic panel code (VSAERO) was used to predict the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle pressure coefficient distributions and external nozzle drag of nonaxisymmetric convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine high performance aircraft model. Nozzle static pressure coefficient distributions along the upper and lower surfaces near the model centerline and near the outer edges (corner) of the two surfaces were calculated, and nozzle drag was predicted using these surface pressure distributions. A comparison between the theoretical predictions and experimental wind tunnel data is made to evaluate the utility of the code in calculating the flow about these types of non-axisymmetric afterbody configurations. For free-stream Mach numbers of 0.60 and 0.90, the conditions where the flows were attached on the boattails yielded the best comparison between the theoretical predictions and the experimental data. For the Boattail terminal angles of greater than 15 deg., the experimental data for M = 0.60 and 0.90 indicated areas of separated flow, so the theoretical predictions failed to match the experimental data. Even though calculations of regions of separated flows are within the capabilities of the theoretical method, acceptable solutions were not obtained.

  11. On the absence of a correlation between population size and 'toolkit size' in ethnographic hunter-gatherers.

    PubMed

    Aoki, Kenichi

    2018-04-05

    In apparent contradiction to the theoretically predicted effect of population size on the quality/quantity of material culture, statistical analyses on ethnographic hunter-gatherers have shown an absence of correlation between population size and toolkit size. This has sparked a heated, if sometimes tangential, debate as to the usefulness of the theoretical models and as to what modes of cultural transmission humans are capable of and hunter-gatherers rely on. I review the directly relevant theoretical literature and argue that much of the confusion is caused by a mismatch between the theoretical variable and the empirical observable. I then confirm that a model incorporating the appropriate variable does predict a positive association between population size and toolkit size for random oblique, vertical, best-of- K , conformist, anticonformist, success bias and one-to-many cultural transmission, with the caveat that for all populations sampled, the population size has remained constant and toolkit size has reached the equilibrium for this population size. Finally, I suggest three theoretical scenarios, two of them involving variable population size, that would attenuate or eliminate this association and hence help to explain the empirical absence of correlation.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  12. The use of technology to promote vaccination: A social ecological model based framework.

    PubMed

    Kolff, Chelsea A; Scott, Vanessa P; Stockwell, Melissa S

    2018-05-21

    Vaccinations are an important and effective cornerstone of preventive medical care. Growing technologic capabilities and use by both patients and providers present critical opportunities to leverage these tools to improve vaccination rates and public health. We propose the Social Ecological Model as a useful theoretical framework to identify areas in which technology has been or may be leveraged to target undervaccination across the individual, interpersonal, organizational, community, and society levels and the ways in which these levels interact.

  13. Pulsed CO2 characterization for lidar use

    NASA Technical Reports Server (NTRS)

    Jaenisch, Holger M.

    1992-01-01

    An account is given of a scaled functional testbed laser for space-qualified coherent-detection lidar applications which employs a CO2 laser. This laser has undergone modification and characterization for inherent performance capabilities as a model of coherent detection. While characterization results show good overall performance that is in agreement with theoretical predictions, frequency-stability and pulse-length limitations severely limit the laser's use in coherent detection.

  14. Multidisciplinary analysis and design of printed wiring boards

    NASA Astrophysics Data System (ADS)

    Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin

    1991-04-01

    Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.

  15. Health services management modalities in the Brazilian Unified National Health System: a narrative review of research production in Public Health (2005-2016).

    PubMed

    Ravioli, Antonio Franco; Soárez, Patrícia Coelho De; Scheffer, Mário César

    2018-01-01

    The current study aimed to systematically analyze trends and priorities in the theoretical and conceptual approaches and empirical studies on specific health services management modalities in the Brazilian Unified National Health System. A narrative review of the literature identified, in 33 publications, the location and nature of services, management models, methodological procedures, and study outcomes. The research deals mainly with the models' conceptual and legal characteristics and management practices, in addition to addressing contracts, procurement, human resources, financing, and control mechanisms. In conclusion, the literature is limited and concentrated in the State of São Paulo, showing little theoretical diversity and methodological weaknesses, while it is nonconclusive as to the superiority of one management model over another. New evaluation studies are needed that are capable of comparing different models and assessing their performance and their effects on the quality of health services' provision, the population's health, and the health system's organization.

  16. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  17. A sound and efficient measure of joint congruence.

    PubMed

    Conconi, Michele; Castelli, Vincenzo Parenti

    2014-09-01

    In the medical world, the term "congruence" is used to describe by visual inspection how the articular surfaces mate each other, evaluating the joint capability to distribute an applied load from a purely geometrical perspective. Congruence is commonly employed for assessing articular physiology and for the comparison between normal and pathological states. A measure of it would thus represent a valuable clinical tool. Several approaches for the quantification of joint congruence have been proposed in the biomechanical literature, differing on how the articular contact is modeled. This makes it difficult to compare different measures. In particular, in previous articles a congruence measure has been presented which proved to be efficient and suitable for the clinical practice, but it was still empirically defined. This article aims at providing a sound theoretical support to this congruence measure by means of the Winkler elastic foundation contact model which, with respect to others, has the advantage to hold also for highly conforming surfaces as most of the human articulations are. First, the geometrical relation between the applied load and the resulting peak of pressure is analytically derived from the elastic foundation contact model, providing a theoretically sound approach to the definition of a congruence measure. Then, the capability of congruence measure to capture the same geometrical relation is shown. Finally, the reliability of congruence measure is discussed. © IMechE 2014.

  18. Modeling of rolling element bearing mechanics. Theoretical manual

    NASA Technical Reports Server (NTRS)

    Merchant, David H.; Greenhill, Lyn M.

    1994-01-01

    This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.

  19. Use of an expert system data analysis manager for space shuttle main engine test evaluation

    NASA Technical Reports Server (NTRS)

    Abernethy, Ken

    1988-01-01

    The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.

  20. Orbital maneuvering engine feed system coupled stability investigation

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.

    1975-01-01

    A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.

  1. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  2. Enablers and barriers to physical activity in overweight and obese pregnant women: an analysis informed by the theoretical domains framework and COM-B model.

    PubMed

    Flannery, C; McHugh, S; Anaba, A E; Clifford, E; O'Riordan, M; Kenny, L C; McAuliffe, F M; Kearney, P M; Byrne, M

    2018-05-21

    Obesity during pregnancy is associated with increased risk of gestational diabetes mellitus (GDM) and other complications. Physical activity is a modifiable lifestyle factor that may help to prevent these complications but many women reduce their physical activity levels during pregnancy. Interventions targeting physical activity in pregnancy are on-going but few identify the underlying behaviour change mechanisms by which the intervention is expected to work. To enhance intervention effectiveness, recent tools in behavioural science such as the Theoretical Domains Framework (TDF) and COM-B model (capability, opportunity, motivation and behaviour) have been employed to understand behaviours for intervention development. Using these behaviour change methods, this study aimed to identify the enablers and barriers to physical activity in overweight and obese pregnant women. Semi-structured interviews were conducted with a purposive sample of overweight and obese women at different stages of pregnancy attending a public antenatal clinic in a large academic maternity hospital in Cork, Ireland. Interviews were recorded and transcribed into NVivo V.10 software. Data analysis followed the framework approach, drawing on the TDF and the COM-B model. Twenty one themes were identified and these mapped directly on to the COM-B model of behaviour change and ten of the TDF domains. Having the social opportunity to engage in physical activity was identified as an enabler; pregnant women suggested being active was easier when supported by their partners. Knowledge was a commonly reported barrier with women lacking information on safe activities during pregnancy and describing the information received from their midwife as 'limited'. Having the physical capability and physical opportunity to carry out physical activity were also identified as barriers; experiencing pain, a lack of time, having other children, and working prevented women from being active. A wide range of barriers and enablers were identified which influenced women's capability, motivation and opportunity to engage in physical activity with "knowledge" as the most commonly reported barrier. This study is a theoretical starting point in making a 'behavioural diagnoses' and the results will be used to inform the development of an intervention to increase physical activity levels among overweight and obese pregnant women.

  3. Study of helicopterroll control effectiveness criteria

    NASA Technical Reports Server (NTRS)

    Heffley, Robert K.; Bourne, Simon M.; Curtiss, Howard C., Jr.; Hindson, William S.; Hess, Ronald A.

    1986-01-01

    A study of helicopter roll control effectiveness based on closed-loop task performance measurement and modeling is presented. Roll control critieria are based on task margin, the excess of vehicle task performance capability over the pilot's task performance demand. Appropriate helicopter roll axis dynamic models are defined for use with analytic models for task performance. Both near-earth and up-and-away large-amplitude maneuvering phases are considered. The results of in-flight and moving-base simulation measurements are presented to support the roll control effectiveness criteria offered. This Volume contains the theoretical analysis, simulation results and criteria development.

  4. A Theoretical and Experimental Analysis of the Outside World Perception Process

    NASA Technical Reports Server (NTRS)

    Wewerinke, P. H.

    1978-01-01

    The outside scene is often an important source of information for manual control tasks. Important examples of these are car driving and aircraft control. This paper deals with modelling this visual scene perception process on the basis of linear perspective geometry and the relative motion cues. Model predictions utilizing psychophysical threshold data from base-line experiments and literature of a variety of visual approach tasks are compared with experimental data. Both the performance and workload results illustrate that the model provides a meaningful description of the outside world perception process, with a useful predictive capability.

  5. The Effect of Visual Information on the Manual Approach and Landing

    NASA Technical Reports Server (NTRS)

    Wewerinke, P. H.

    1982-01-01

    The effect of visual information in combination with basic display information on the approach performance. A pre-experimental model analysis was performed in terms of the optimal control model. The resulting aircraft approach performance predictions were compared with the results of a moving base simulator program. The results illustrate that the model provides a meaningful description of the visual (scene) perception process involved in the complex (multi-variable, time varying) manual approach task with a useful predictive capability. The theoretical framework was shown to allow a straight-forward investigation of the complex interaction of a variety of task variables.

  6. STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning

    PubMed Central

    Kappel, David; Nessler, Bernhard; Maass, Wolfgang

    2014-01-01

    In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the model through several computer simulations. The full power of hidden Markov model learning can be attained through reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate learning method for an artificial grammar task. PMID:24675787

  7. Negotiation Support System’s Impact on the Socio-Emotional Environment: A Research Design Framework

    DTIC Science & Technology

    1992-03-01

    conflict environment and develop some proposed effects that Negotiation Support Systems (NSS) have on the socio- emotional climate. This introduction of...assessment of current NSS structure, processes and capabilities. Section IV provides a theoretical discussion of conflict and the socio- emotional environment ...model. First, strict economic rationalization does not take into account social/normative issues present --n the negotiation environment . Thus, in an

  8. The NASTRAN theoretical manual

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis.

  9. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    USGS Publications Warehouse

    Charlton, Scott R.; Parkhurst, David L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.

  10. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    USGS Publications Warehouse

    Charlton, S.R.; Parkhurst, D.L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server-for example, Excel??, Visual Basic??, Python, or MATLAB??. PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations. ?? 2011.

  11. Conceptual models of information processing

    NASA Technical Reports Server (NTRS)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  12. Grounding language in action and perception: from cognitive agents to humanoid robots.

    PubMed

    Cangelosi, Angelo

    2010-06-01

    In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Evidence-based selection of theories for designing behaviour change interventions: using methods based on theoretical construct domains to understand clinicians' blood transfusion behaviour.

    PubMed

    Francis, Jill J; Stockton, Charlotte; Eccles, Martin P; Johnston, Marie; Cuthbertson, Brian H; Grimshaw, Jeremy M; Hyde, Chris; Tinmouth, Alan; Stanworth, Simon J

    2009-11-01

    Many theories of behaviour are potentially relevant to predictive and intervention studies but most studies investigate a narrow range of theories. Michie et al. (2005) agreed 12 'theoretical domains' from 33 theories that explain behaviour change. They developed a 'Theoretical Domains Interview' (TDI) for identifying relevant domains for specific clinical behaviours, but the framework has not been used for selecting theories for predictive studies. It was used here to investigate clinicians' transfusion behaviour in intensive care units (ICU). Evidence suggests that red blood cells transfusion could be reduced for some patients without reducing quality of care. (1) To identify the domains relevant to transfusion practice in ICUs and neonatal intensive care units (NICUs), using the TDI. (2) To use the identified domains to select appropriate theories for a study predicting transfusion behaviour. An adapted TDI about managing a patient with borderline haemoglobin by watching and waiting instead of transfusing red blood cells was used to conduct semi-structured, one-to-one interviews with 18 intensive care consultants and neonatologists across the UK. Relevant theoretical domains were: knowledge, beliefs about capabilities, beliefs about consequences, social influences, behavioural regulation. Further analysis at the construct level resulted in selection of seven theoretical approaches relevant to this context: Knowledge-Attitude-Behaviour Model, Theory of Planned Behaviour, Social Cognitive Theory, Operant Learning Theory, Control Theory, Normative Model of Work Team Effectiveness and Action Planning Approaches. This study illustrated, the use of the TDI to identify relevant domains in a complex area of inpatient care. This approach is potentially valuable for selecting theories relevant to predictive studies and resulted in greater breadth of potential explanations than would be achieved if a single theoretical model had been adopted.

  14. Acoustoelasticity

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1976-01-01

    Internal sound fields are considered. Specifically, the interaction between the (acoustic) sound pressure field and the (elastic) flexible wall of an enclosure is discussed. Such problems frequently arise when the vibrating walls of a transportation vehicle induce a significant internal sound field. Cabin noise in various flight vehicles and the internal sound field in an automobile are representative examples. A mathematical model, simplified solutions, and numerical results and comparisons with representative experimental data are briefly considered. An overall conclusion is that reasonable grounds for optimism exist with respect to available theoretical models and their predictive capability.

  15. An extended car-following model to describe connected traffic dynamics under cyberattacks

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng

    2018-04-01

    In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.

  16. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.

    PubMed

    Tien, Ming-Chun; Bauters, Jared F; Heck, Martijn J R; Blumenthal, Daniel J; Bowers, John E

    2010-11-08

    We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si3N4 core has low loss and high power handling capability, with an effective n2 of about 9×10(-16) cm2/W.

  17. Lagrangian turbulence: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, Julio M.

    1991-12-01

    The goal of our research was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: (1) a perturbed-Kelvin cat eyes flow, and (2) prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: we have been able to produce flows capable of producing complex distributions of vorticity, and we have been able to construct flowfields, based on solutions of the Navier-Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence. These results exemplify typical mechanisms of mixing enhancement in transitional flows.

  18. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  19. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  20. Experimental and theoretical aspects of studying themodynamics and mass transport in polymer-solvent systems

    NASA Astrophysics Data System (ADS)

    Davis, Peter Kennedy

    Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a rather controversial topic about IGC experiments near the polymer glass transition temperature. Using a new IGC model capable of describing both bulk absorption and surface adsorption, IGC behavior around the glass transition was able to be better understood. Finally, Chapter 6 presents an IGC model that can be used to separate bulk effects from surface effects in capillary column IGC experiments.

  1. Observsational Planet Formation

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2017-06-01

    Planets form in gaseous protoplanetary disks surrounding newborn stars. As such, the most direct way to learn how they form from observations, is to directly watch them forming in disks. In the past, this was very difficult due to a lack of observational capabilities; as such, planet formation was largely a subject of pure theoretical astrophysics. Now, thanks to a fleet of new instruments with unprecedented resolving power that have come online recently, we have just started to unveil features in resolve images of protoplanetary disks, such as gaps and spiral arms, that are most likely associated with embedded (unseen) planets. By comparing observations with theoretical models of planet-disk interactions, the masses and orbits of these still forming planets may be constrained. Such planets may help us to directly test various planet formation models. This marks the onset of a new field — observational planet formation. I will introduce the current status of this field.

  2. Development of a jet pump-assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1977-01-01

    The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.

  3. Information Diffusion in Facebook-Like Social Networks Under Information Overload

    NASA Astrophysics Data System (ADS)

    Li, Pei; Xing, Kai; Wang, Dapeng; Zhang, Xin; Wang, Hui

    2013-07-01

    Research on social networks has received remarkable attention, since many people use social networks to broadcast information and stay connected with their friends. However, due to the information overload in social networks, it becomes increasingly difficult for users to find useful information. This paper takes Facebook-like social networks into account, and models the process of information diffusion under information overload. The term view scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated is proposed to characterize the information diffusion efficiency. Through theoretical analysis, we find that factors such as network structure and view scope number have no impact on the information diffusion efficiency, which is a surprising result. To verify the results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly.

  4. Genome-Scale Metabolic Reconstructions and Theoretical Investigation of Methane Conversion in Methylomicrobium buryatense Strain 5G(B1)

    DOE PAGES

    de la Torre, Andrea; Metivier, Aisha; Chu, Frances; ...

    2015-11-25

    Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration.

  5. Letter to the Editor on 'Single-Arc IMRT?'.

    PubMed

    Otto, Karl

    2009-04-21

    In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).

  6. Decompression models: review, relevance and validation capabilities.

    PubMed

    Hugon, J

    2014-01-01

    For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.

  7. Terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  8. The international performance of healthcare systems in population health: capabilities of pooled cross-sectional time series methods.

    PubMed

    Reibling, Nadine

    2013-09-01

    This paper outlines the capabilities of pooled cross-sectional time series methodology for the international comparison of health system performance in population health. It shows how common model specifications can be improved so that they not only better address the specific nature of time series data on population health but are also more closely aligned with our theoretical expectations of the effect of healthcare systems. Three methodological innovations for this field of applied research are discussed: (1) how dynamic models help us understand the timing of effects, (2) how parameter heterogeneity can be used to compare performance across countries, and (3) how multiple imputation can be used to deal with incomplete data. We illustrate these methodological strategies with an analysis of infant mortality rates in 21 OECD countries between 1960 and 2008 using OECD Health Data. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.

    PubMed

    Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang

    2015-10-27

    Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.

  10. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.

  11. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn; Jin, Ke

    2016-04-14

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and themore » approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.« less

  12. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    NASA Astrophysics Data System (ADS)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  13. Model-independent Exoplanet Transit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aronson, Erik; Piskunov, Nikolai

    2018-05-01

    We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.

  14. Indigenous Research Capability in Aotearoa

    ERIC Educational Resources Information Center

    Ormond, Adreanne; Williams, Les R. Tumoana

    2013-01-01

    This article begins by considering the general nature of capability, from some dictionary meanings, then extends to theoretical perspectives related to the capability approach. As a consequence, we arrive at an operational definition that emphasises the ability to solve problems in a systematic way that brings transformation. In these terms,…

  15. Something's got to give: the effects of dual-goal difficulty, goal progress, and expectancies on resource allocation.

    PubMed

    Schmidt, Aaron M; Dolis, Chad M

    2009-05-01

    The current study developed and tested a model of the interplay among goal difficulty, goal progress, and expectancy over time in influencing resource allocation toward competing demands. The results provided broad support for the theoretical model. As predicted, dual-goal expectancy-the perceived likelihood of meeting both goals in competition-played a central role, moderating the relationship between relative goal progress and resource allocation. Dual-goal difficulty was also found to exert an important influence on multiple-goal self-regulation. Although it did not influence total productivity across both tasks combined, it did combine with other model components to influence the relative emphasis of one task over another. These results suggest that the cumulative demands placed by multiple difficult goals may exceed individuals' perceived capabilities and may lead to partial or total abandonment of 1 goal to ensure attainment of the other. The model helps shed light on some of the conflicting theoretical propositions and empirical results obtained in prior work. Implications for theory and research regarding multiple-goal self-regulation are discussed. (c) 2009 APA, all rights reserved.

  16. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.

  17. An experimental and theoretical study of radiative extinction of diffusion flames

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.; Atreya, A.

    1994-01-01

    Our work was primarily theoretical and numerical. We investigated the simplified modeling of heat losses in diffusion flames, then we 'ramped up' the level of complexity in each successive study until the final chapter discussed the general problem of soot/flame interaction. With regard to the specific objective of studying radiative extinction, we conclude that in the steady case a self-extinguishing zero-g flame is unlikely to occur. The soot volume fractions are too small. On the other hand, our work does provide rational means for assessing the mixture of chemical energy release and radiative heat release. It also provides clues for suitable 'tailoring' this balance. Thus heat fluxes to surrounding surfaces can be substantially increased by exploiting and modifying its sooting capability.

  18. Barriers and enablers to delivery of the Healthy Kids Check: an analysis informed by the Theoretical Domains Framework and COM-B model

    PubMed Central

    2014-01-01

    Background More than a fifth of Australian children arrive at school developmentally vulnerable. To counteract this, the Healthy Kids Check (HKC), a one-off health assessment aimed at preschool children, was introduced in 2008 into Australian general practice. Delivery of services has, however, remained low. The Theoretical Domains Framework, which provides a method to understand behaviours theoretically, can be condensed into three core components: capability, opportunity and motivation, and the COM-B model. Utilising this system, this study aimed to determine the barriers and enablers to delivery of the HKC, to inform the design of an intervention to promote provision of HKC services in Australian general practice. Methods Data from 6 focus group discussions with 40 practitioners from general practices in socio-culturally diverse areas of Melbourne, Victoria, were analysed using thematic analysis. Results Many practitioners expressed uncertainty regarding their capabilities and the practicalities of delivering HKCs, but in some cases HKCs had acted as a catalyst for professional development. Key connections between immunisation services and delivery of HKCs prompted practices to have systems of recall and reminder in place. Standardisation of methods for developmental assessment and streamlined referral pathways affected practitioners’ confidence and motivation to perform HKCs. Conclusion Application of a systematic framework effectively demonstrated how a number of behaviours could be targeted to increase delivery of HKCs. Interventions need to target practice systems, the support of office staff and referral options, as well as practitioners’ training. Many behavioural changes could be applied through a single intervention programme delivered by the primary healthcare organisations charged with local healthcare needs (Medicare Locals) providing vital links between general practice, community and the health of young children. PMID:24886520

  19. Modeling AWSoM CMEs with EEGGL: A New Approach for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Jin, M.; Manchester, W.; van der Holst, B.; Sokolov, I.; Toth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.

    2015-12-01

    The major source of destructive space weather is coronal mass ejections (CMEs). However, our understanding of CMEs and their propagation in the heliosphere is limited by the insufficient observations. Therefore, the development of first-principals numerical models plays a vital role in both theoretical investigation and providing space weather forecasts. Here, we present results of the simulation of CME propagation from the Sun to 1AU by combining the analytical Gibson & Low (GL) flux rope model with the state-of-art solar wind model AWSoM. We also provide an approach for transferring this research model to a space weather forecasting tool by demonstrating how the free parameters of the GL flux rope can be prescribed based on remote observations via the new Eruptive Event Generator by Gibson-Low (EEGGL) toolkit. This capability allows us to predict the long-term evolution of the CME in interplanetary space. We perform proof-of-concept case studies to show the capability of the model to capture physical processes that determine CME evolution while also reproducing many observed features both in the corona and at 1 AU. We discuss the potential and limitations of this model as a future space weather forecasting tool.

  20. Self-assembly in Dipolar Fluids

    NASA Astrophysics Data System (ADS)

    Ronti, Michela; Kantorovich, Sofia

    We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  1. Thermostructural Analysis of Carbon Cloth Phenolics "Ply Lifting" and Correlation to LHMEL Test Results

    NASA Technical Reports Server (NTRS)

    Clayton, Louie

    2004-01-01

    This paper provides a discussion of the history of Carbon Cloth Phenolic (CCP) ply lifting in the Redesigned Solid Rocket Motor (RSRM) Program, a brief presentation of theoretical methods used for analytical evaluation, and results of parametric analyses of CCP material subject to test conditions of the Laser Hardened Material Evaluation Laboratory. CCP ply lift can occur in regions of the RSRM nozzle where ply angle to flame surface is generally less than about 20 degrees. There is a heat rate dependence on likelihood and severity of the condition with the higher heating rates generally producing more ply lift. The event occurs in-depth, near the heated surface, where the load necessary to mechanically separate the CCP plies is produced by the initial stages of pyrolysis gas generation due to the thermal decomposition of the phenolic resin matrix. Due to the shallow lay-up angle of the composite, normal components of the indepth mechanical load, due to "pore pressure", are imparted primarily as a cross-ply tensile force on the interlaminar ply boundaries. Tensile capability in the cross-ply (out of plane) direction is solely determined by the matrix material capability. The elevated temperature matrix material capabilities are overcome by pressure induced mechanical normal stress and ply-lift occurs. A theoretical model used for CCP in-depth temperature, pressure, and normal stress prediction, based on first principles, is briefly discussed followed by a parametric evaluation of response variables subject to boundary conditions typical of on-going test programs at the LHMEL facility. Model response demonstrates general trends observed in test and provides insight into the interactivity of material properties and constitutive relationships.

  2. Topological pattern for the search of new active drugs against methicillin resistant Staphylococcus aureus.

    PubMed

    Bueso-Bordils, Jose I; Perez-Gracia, Maria T; Suay-Garcia, Beatriz; Duart, Maria J; Martin Algarra, Rafael V; Lahuerta Zamora, Luis; Anton-Fos, Gerardo M; Aleman Lopez, Pedro A

    2017-09-29

    Molecular topology was used to develop a mathematical model capable of classifying compounds according to antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA). Topological indices were used as structural descriptors and their relation to antimicrobial activity was determined by using linear discriminant analysis. This topological model establishes new structure activity relationships which show that the presence of cyclopropyl, chlorine and ramification pairs at a distance of two bonds favor this activity, while the presence of tertiary amines decreases it. This model was applied to a combinatorial library of a thousand and one 6-fluoroquinolones, from which 117 theoretical active molecules were obtained. The compound 10 and five new quinolones were tested against MRSA. They all showed some activity against MRSA, although compounds 6, 8 and 9 showed anti-MRSA activity similar to ciprofloxacin. This model was also applied to 263 theoretical antibacterial agents described by us in a previous work, from which 34 were predicted as theoretically active. Anti-MRSA activity was found bibliographically in 9 of them (ensuring at least 26% of success), and from the rest, 3 compounds were randomly chosen and tested, finding mitomycin C to be more active than ciprofloxacin. The results demonstrate the utility of the molecular topology approaches for identifying new drugs active against MRSA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Effect of second to first normal stress difference ratio at the die exit on neck-in phenomenon in polymeric flat film production

    NASA Astrophysics Data System (ADS)

    Barborik, Tomas; Zatloukal, Martin

    2017-05-01

    In this study, viscoelastic modeling of the extrusion film casting process, based on the lD membrane model and modified Leonov constitutive equation, was conducted and the effect of the viscoelastic stress state at the die exit (captured here via second to first normal stress difference ratio) on the unwanted neck-in phenomenon has been analyzed for wide range of Deborah numbers and materials having different level of uniaxial and planar extensional strain hardening. Relevant experimental data for LDPE and theoretical predictions based on multimode eXtended Pom-Pom model acquired from the open literature were used for the validation purposes. It was found that firstly, the predicting capabilities of both constitutive equations for given material and processing conditions are comparable even if the single mode modified Leonov model was used and secondly, the agreement between theoretical and experimental data on neck-in is fairly good. Results of the theoretical study revealed that the viscoelastic stress state at the die exit (i.e. -N2/N1 ratio) increases the level of neck-in if uniaxial extensional strain hardening, planar to uniaxial extensional viscosity ratio and Deborah number increases. It has also been revealed that there exists threshold value for Deborah number and extensional strain hardening below which the neck-in becomes independent on the die exit stress state.

  4. Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment.

    PubMed

    Wang, Fei; Liang, Chunhao; Yuan, Yangsheng; Cai, Yangjian

    2014-09-22

    A new kind of partially coherent beam with non-conventional correlation function named generalized multi-Gaussian correlated Schell-model (GMGCSM) beam is proposed. The GMGCSM beam of the first or second kind is capable of producing dark hollow or flat-topped beam profile in the focal plane (or in the far field). Furthermore, we carry out experimental generation of a GMGCSM beam of the first or second kind, and measure its focused intensity. Our experimental results verify theoretical predictions. The GMGCSM beam will be useful for free-space optical communications, material thermal processing, particle or atom trapping.

  5. Lithium and age of pre-main sequence stars: the case of Parenago 1802

    NASA Astrophysics Data System (ADS)

    Giarrusso, M.; Tognelli, E.; Catanzaro, G.; Degl'Innocenti, S.; Dell'Omodarme, M.; Lamia, L.; Leone, F.; Pizzone, R. G.; Prada Moroni, P. G.; Romano, S.; Spitaleri, C.

    2016-04-01

    With the aim to test the present capability of the stellar surface lithium abundance in providing an estimation for the age of PMS stars, we analyze the case of the detached, double-lined, eclipsing binary system PAR 1802. For this system, the lithium age has been compared with the theoretical one, as estimated by applying a Bayesian analysis method on a large grid of stellar evolutionary models. The models have been computed for several values of chemical composition and mixing length, by means of the code FRANEC updated with the Trojan Horse reaction rates involving lithium burning.

  6. Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yiguang Ju; Frederick Dryer

    2009-02-07

    Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

  7. Cropland measurement using Thematic Mapper data and radiometric model

    NASA Technical Reports Server (NTRS)

    Lyon, John G.; Khuwaiter, I. H. S.

    1989-01-01

    To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.

  8. Toward Theoretical Foundations of Resistive Force Theory of Granular-Structural Interaction, with Expansions to Flexible Locomotors

    DTIC Science & Technology

    2015-05-07

    the proper depth-dependent pressure distribution before intruder motion begins. We model the intruder as a rigid surface within the granular body by...assigning corresponding planar nodes to move as a rigid body at a constant rate. This resembles a fully rough surface due to the no-slip condition, no...Stokesian fluids. Despite its remarkable capability to predict experimental locomotion and force distributions on mobile bodies in granular media, there is

  9. Theoretical and experimental investigations of thermal conditions of household biogas plant

    NASA Astrophysics Data System (ADS)

    Zhelykh, Vasil; Furdas, Yura; Dzeryn, Oleksandra

    2016-06-01

    The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented. The graphical and analytical capabilities were represented that can be applied in the design of domestic biogas plants of organic waste recycling.

  10. Additional extensions to the NASCAP computer code, volume 2

    NASA Technical Reports Server (NTRS)

    Stannard, P. R.; Katz, I.; Mandell, M. J.

    1982-01-01

    Particular attention is given to comparison of the actural response of the SCATHA (Spacecraft Charging AT High Altitudes) P78-2 satellite with theoretical (NASCAP) predictions. Extensive comparisons for a variety of environmental conditions confirm the validity of the NASCAP model. A summary of the capabilities and range of validity of NASCAP is presented, with extensive reference to previously published applications. It is shown that NASCAP is capable of providing quantitatively accurate results when the object and environment are adequately represented and fall within the range of conditions for which NASCAP was intended. Three dimensional electric field affects play an important role in determining the potential of dielectric surfaces and electrically isolated conducting surfaces, particularly in the presence of artificially imposed high voltages. A theory for such phenomena is presented and applied to the active control experiments carried out in SCATHA, as well as other space and laboratory experiments. Finally, some preliminary work toward modeling large spacecraft in polar Earth orbit is presented. An initial physical model is presented including charge emission. A simple code based upon the model is described along with code test results.

  11. A 1D-2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem

    NASA Astrophysics Data System (ADS)

    Ferrari, Alessia; Vacondio, Renato; Dazzi, Susanna; Mignosa, Paolo

    2017-09-01

    A novel augmented Riemann Solver capable of handling porosity discontinuities in 1D and 2D Shallow Water Equation (SWE) models is presented. With the aim of accurately approximating the porosity source term, a Generalized Riemann Problem is derived by adding an additional fictitious equation to the SWEs system and imposing mass and momentum conservation across the porosity discontinuity. The modified Shallow Water Equations are theoretically investigated, and the implementation of an augmented Roe Solver in a 1D Godunov-type finite volume scheme is presented. Robust treatment of transonic flows is ensured by introducing an entropy fix based on the wave pattern of the Generalized Riemann Problem. An Exact Riemann Solver is also derived in order to validate the numerical model. As an extension of the 1D scheme, an analogous 2D numerical model is also derived and validated through test cases with radial symmetry. The capability of the 1D and 2D numerical models to capture different wave patterns is assessed against several Riemann Problems with different wave patterns.

  12. Is extreme learning machine feasible? A theoretical assessment (part II).

    PubMed

    Lin, Shaobo; Liu, Xia; Fang, Jian; Xu, Zongben

    2015-01-01

    An extreme learning machine (ELM) can be regarded as a two-stage feed-forward neural network (FNN) learning system that randomly assigns the connections with and within hidden neurons in the first stage and tunes the connections with output neurons in the second stage. Therefore, ELM training is essentially a linear learning problem, which significantly reduces the computational burden. Numerous applications show that such a computation burden reduction does not degrade the generalization capability. It has, however, been open that whether this is true in theory. The aim of this paper is to study the theoretical feasibility of ELM by analyzing the pros and cons of ELM. In the previous part of this topic, we pointed out that via appropriately selected activation functions, ELM does not degrade the generalization capability in the sense of expectation. In this paper, we launch the study in a different direction and show that the randomness of ELM also leads to certain negative consequences. On one hand, we find that the randomness causes an additional uncertainty problem of ELM, both in approximation and learning. On the other hand, we theoretically justify that there also exist activation functions such that the corresponding ELM degrades the generalization capability. In particular, we prove that the generalization capability of ELM with Gaussian kernel is essentially worse than that of FNN with Gaussian kernel. To facilitate the use of ELM, we also provide a remedy to such a degradation. We find that the well-developed coefficient regularization technique can essentially improve the generalization capability. The obtained results reveal the essential characteristic of ELM in a certain sense and give theoretical guidance concerning how to use ELM.

  13. Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models

    PubMed Central

    Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya

    2016-01-01

    Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182

  14. Quantum Computation

    NASA Astrophysics Data System (ADS)

    Aharonov, Dorit

    In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool, capable of performing tasks which seem intractable for classical computers. This review is about to tell the story of theoretical quantum computation. I l out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum communication. As a result of narrowing the scope of this paper, I hope it has gained the benefit of being an almost self contained introduction to the exciting field of quantum computation. The review begins with background on theoretical computer science, Turing machines and Boolean circuits. In light of these models, I define quantum computers, and discuss the issue of universal quantum gates. Quantum algorithms, including Shor's factorization algorithm and Grover's algorithm for searching databases, are explained. I will devote much attention to understanding what the origins of the quantum computational power are, and what the limits of this power are. Finally, I describe the recent theoretical results which show that quantum computers maintain their complexity power even in the presence of noise, inaccuracies and finite precision. This question cannot be separated from that of quantum complexity because any realistic model will inevitably be subjected to such inaccuracies. I tried to put all results in their context, asking what the implications to other issues in computer science and physics are. In the end of this review, I make these connections explicit by discussing the possible implications of quantum computation on fundamental physical questions such as the transition from quantum to classical physics.

  15. Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States.

    PubMed

    Müller, Erich A; Mejía, Andrés

    2017-10-24

    The statistical associating fluid theory of variable range employing a Mie potential (SAFT-VR-Mie) proposed by Lafitte et al. (J. Chem Phys. 2013, 139, 154504) is one of the latest versions of the SAFT family. This particular version has been shown to have a remarkable capability to connect experimental determinations, theoretical calculations, and molecular simulations results. However, the theoretical development restricts the model to chains of beads connected in a linear fashion. In this work, the capabilities of the SAFT-VR Mie equation of state for modeling phase equilibria are extended for the case of planar ring compounds. This modification proposed replaces the Helmholtz energy of chain formation by an empirical contribution based on a parallelism to the second-order thermodynamic perturbation theory for hard sphere trimers. The proposed expression is given in terms of an extra parameter, χ, that depends on the number of beads, m s , and the geometry of the ring. The model is used to describe the phase equilibrium for planar ring compounds formed of Mie isotropic segments for the cases of m s equals to 3, 4, 5 (two configurations), and 7 (two configurations). The resulting molecular model is further parametrized, invoking a corresponding states principle resulting in sets of parameters that can be used indistinctively in theoretical calculations or in molecular simulations without any further refinements. The extent and performance of the methodology has been exemplified by predicting the phase equilibria and vapor pressure curves for aromatic hydrocarbons (benzene, hexafluorobenzene, toluene), heterocyclic molecules (2,5-dimethylfuran, sulfolane, tetrahydro-2H-pyran, tetrahydrofuran), and polycyclic aromatic hydrocarbons (naphthalene, pyrene, anthracene, pentacene, and coronene). An important aspect of the theory is that the parameters of the model can be used directly in molecular dynamics (MD) simulations to calculate equilibrium phase properties and interfacial tensions with an accuracy that rivals other coarse grained and united atom models, for example, liquid densities, are predicted, with a maximum absolute average deviation of 3% from both the theory and the MD simulations, while the interfacial tension is predicted, with a maximum absolute average of 8%. The extension to mixtures is exemplified by considering a binary system of hexane (chain fluid) and tetrahydro-2H-pyran (ring fluid).

  16. Can thermal instabilities drive galactic precipitation and explain observed circumgalactic structure?

    NASA Astrophysics Data System (ADS)

    Silvia, Devin

    2015-10-01

    Understanding the complex nature of the circumgalactic medium (CGM) has been a target of numerous research efforts, both observationally and theoretically. While significant progress has been made in probing the structure and thermodynamic state of the CGM through the detection of metal line absorption systems using the Hubble Space Telescope (HST), a complete picture of the physical mechanisms that produce the observed properties does not yet exist. Recent theoretical work has suggested that a delicate balance between radiative cooling and thermal feedback detemines whether or not the CGM is capable of sustaining a stable, multiphase medium that would allow cool clouds to precipitate out of the galactic halo. This new theoretical framework may provide the explanation for many observational results. In this project, we will detemine whether or not this elegant and simple precipitation model can be supported by physics-rich numerical simulations of isolated galaxies. We will use our simulations to gain a deeper understanding of the precipitation model and explore the ionization and temperature stucture of the CGM. Our analysis will include the comparison of realistic synthetic spectra to those produced by HST, using the newly-developed Trident software package.

  17. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGES

    McDonnell, J. D.; Schunck, N.; Higdon, D.; ...

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  18. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, J. D.; Schunck, N.; Higdon, D.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  19. Analytical coupled modeling of a magneto-based acoustic metamaterial harvester

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Zhu, R.; Chen, J. K.; Tracy, S. L.; Huang, G. L.

    2018-05-01

    Membrane-type acoustic metamaterials (MAMs) have demonstrated unusual capacity in controlling low-frequency sound transmission, reflection, and absorption. In this paper, an analytical vibro-acoustic-electromagnetic coupling model is developed to study MAM harvester sound absorption, energy conversion, and energy harvesting behavior under a normal sound incidence. The MAM harvester is composed of a prestressed membrane with an attached rigid mass, a magnet coil, and a permanent magnet coin. To accurately capture finite-dimension rigid mass effects on the membrane deformation under the variable magnet force, a theoretical model based on the deviating acoustic surface Green’s function approach is developed by considering the acoustic near field and distributed effective shear force along the interfacial boundary between the mass and the membrane. The accuracy and capability of the theoretical model is verified through comparison with the finite element method. In particular, sound absorption, acoustic-electric energy conversion, and harvesting coefficient are quantitatively investigated by varying the weight and size of the attached mass, prestress and thickness of the membrane. It is found that the highest achievable conversion and harvesting coefficients can reach up to 48%, and 36%, respectively. The developed model can serve as an efficient tool for designing MAM harvesters.

  20. A conceptual framework and classification of capability areas for business process maturity

    NASA Astrophysics Data System (ADS)

    Van Looy, Amy; De Backer, Manu; Poels, Geert

    2014-03-01

    The article elaborates on business process maturity, which indicates how well an organisation can perform based on its business processes, i.e. on its way of working. This topic is of paramount importance for managers who try to excel in today's competitive world. Hence, business process maturity is an emerging research field. However, no consensus exists on the capability areas (or skills) needed to excel. Moreover, their theoretical foundation and synergies with other fields are frequently neglected. To overcome this gap, our study presents a conceptual framework with six main capability areas and 17 sub areas. It draws on theories regarding the traditional business process lifecycle, which are supplemented by recognised organisation management theories. The comprehensiveness of this framework is validated by mapping 69 business process maturity models (BPMMs) to the identified capability areas, based on content analysis. Nonetheless, as a consensus neither exists among the collected BPMMs, a classification of different maturity types is proposed, based on cluster analysis and discriminant analysis. Consequently, the findings contribute to the grounding of business process literature. Possible future avenues are evaluating existing BPMMs, directing new BPMMs or investigating which combinations of capability areas (i.e. maturity types) contribute more to performance than others.

  1. Back to BaySICS: a user-friendly program for Bayesian Statistical Inference from Coalescent Simulations.

    PubMed

    Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love

    2014-01-01

    Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.

  2. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, M.H.; Su, M.X.; Dong, L.L.

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluatedmore » on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.« less

  3. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    PubMed Central

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  4. Theoretical interpretation of the nuclear structure of 88Se within the ACM and the QPM models.

    NASA Astrophysics Data System (ADS)

    Gratchev, I. N.; Thiamova, G.; Alexa, P.; Simpson, G. S.; Ramdhane, M.

    2018-02-01

    The four-parameter algebraic collective model (ACM) Hamiltonian is used to describe the nuclear structure of 88Se. It is shown that the ACM is capable of providing a reasonable description of the excitation energies and relative positions of the ground-state band and γ band. The most probable interpretation of the nuclear structure of 88Se is that of a transitional nucleus. The Quasiparticle-plus-Phonon Model (QPM) was also applied to describe the nuclear motion in 88Se. Preliminarily calculations show that the collectivity of second excited state {2}2+ is weak and that this state contains a strong two-quasiparticle component.

  5. An electronic implementation of amoeba anticipation

    NASA Astrophysics Data System (ADS)

    Ziegler, Martin; Ochs, Karlheinz; Hansen, Mirko; Kohlstedt, Hermann

    2014-02-01

    In nature, the capability of memorizing environmental changes and recalling past events can be observed in unicellular organisms like amoebas. Pershin and Di Ventra have shown that such learning behavior can be mimicked in a simple memristive circuit model consisting of an LC (inductance capacitance) contour and a memristive device. Here, we implement this model experimentally by using an Ag/TiO2- x /Al memristive device. A theoretical analysis of the circuit is used to gain insight into the functionality of this model and to give advice for the circuit implementation. In this respect, the transfer function, resonant frequency, and damping behavior for a varying resistance of the memristive device are discussed in detail.

  6. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1979-01-01

    The angle tracking problems in microwave landing system receivers along with a receiver design capable of optimal performance in the multipath environments found in air terminal areas were studied. Included were various theoretical and evaluative studies like: (1) signal model development; (2) derivation of optimal receiver structures; and (3) development and use of computer simulations for receiver algorithm evaluation. The development of an experimental receiver for flight testing is presented. An overview of the work and summary of principal results and conclusions are reported.

  7. Development and application of structural dynamics analysis capabilities

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus W.; Hozaki, Shig

    1994-01-01

    Extensive research activities were performed in the area of multidisciplinary modeling and simulation of aerospace vehicles that are relevant to NASA Dryden Flight Research Facility. The efforts involved theoretical development, computer coding, and debugging of the STARS code. New solution procedures were developed in such areas as structures, CFD, and graphics, among others. Furthermore, systems-oriented codes were developed for rendering the code truly multidisciplinary and rather automated in nature. Also, work was performed in pre- and post-processing of engineering analysis data.

  8. Scientific study in solar and plasma physics relative to rocket and balloon projects

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  9. Development, Verification and Use of Gust Modeling in the NASA Computational Fluid Dynamics Code FUN3D

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.

  10. Electron diffusion through the baffle aperture of a hollow cathode thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1979-01-01

    The use of a hollow cathode in place of an oxide cathode to increase thruster operating lifetimes requires, among other things, the addition of a baffle to restrict the flow of electrons from the hollow cathode. A theoretical model is developed which relates the baffle aperture area of a hollow-cathode thruster to the magnetic flux density and plasma properties in the aperture region, with the result that this model could be used as an aid in thruster design. Extensive Langmuir probing is undertaken to verify the validity of the model and demonstrate its capability. It is shown that the model can be used to calculate the aperture area required to effect discharge operation at a specified discharge voltage and arc current.

  11. Capability evaluation of ultrasonic cavitation peening at different standoff distances.

    PubMed

    Bai, Fushi; Saalbach, Kai-Alexander; Long, Yangyang; Twiefel, Jens; Wallaschek, Jörg

    2018-03-01

    Ultrasonic cavitation peening is a novel surface treatment technology which utilizes the effect of cavitation bubble collapses to improve the properties of metal surfaces. In order to obtain high impact during ultrasonic cavitation peening, a small standoff distance between a sound radiator and a rigid reflector (the surface of treated specimen) is necessary. However, the effects of different standoff distances on the capability of ultrasonic cavitation peening are not yet clear. In this paper, a simplified model was developed to evaluate the cavitation capability at different standoff distances. Meanwhile, to validate the theoretical model, the plastic deformation or erosion on the peening surface before and after treatment were compared. It was found that at a very small standoff distance the impact pressure generated by cavitation bubbles did not cause much deformation or erosion, as the dynamics of cavitation bubbles was limited. At a large standoff distance, due to much attenuation of sound propagation in the bubbly liquid, little impact pressure was generated by the collapse of cavitation bubbles and reached the treated surface. A fixed vibration amplitude, however, corresponded to a standoff distance which caused the largest deformation or erosion on the treated surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Investigating Differences in Gas-Phase Conformations of 25-Hydroxyvitamin D3 Sodiated Epimers using Ion Mobility-Mass Spectrometry and Theoretical Modeling

    NASA Astrophysics Data System (ADS)

    Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Beekman, Christopher R.; Roitberg, Adrian E.; Yost, Richard A.

    2017-08-01

    Drift tube ion mobility coupled with mass spectrometry was used to investigate the gas-phase structure of 25-hydroxyvitamin D3 (25OHD3) and D2 (25OHD2) epimers, and to evaluate its potential in rapid separation of these compounds. Experimental results revealed two distinct drift species for the 25OHD3 sodiated monomer, whereas only one of these conformations was observed for its epimer (epi25OHD3). The unique species allowed 25OHD3 to be readily distinguished, and the same pattern was observed for 25OHD2 epimers. Theoretical modeling of 25OHD3 epimers identified energetically stable gas-phase structures, indicating that both compounds may adopt a compact "closed" conformation, but that 25OHD3 may also adopt a slightly less energetically favorable "open" conformation that is not accessible to its epimer. Calculated theoretical collision cross-sections for these structures agreed with experimental results to <2%. Experimentation indicated that additional energy in the ESI source (i.e., increased temperature, spray voltage) affected the ratio of 25OHD3 conformations, with the less energetically favorable "open" conformation increasing in relative intensity. Finally, LC-IM-MS results yielded linear quantitation of 25OHD3, in the presence of the epimer interference, at biologically relevant concentrations. This study demonstrates that ion mobility can be used in tandem with theoretical modeling to determine structural differences that contribute to drift separation. These separation capabilities provide potential for rapid (<60 ms) identification of 25OHD3 and 25OHD2 in mixtures with their epimers.

  13. Cross-Milieu Terrorist Collaboration: Using Game Theory to Assess the Risk of a Novel Threat.

    PubMed

    Ackerman, Gary A; Zhuang, Jun; Weerasuriya, Sitara

    2017-02-01

    This article uses a game-theoretic approach to analyze the risk of cross-milieu terrorist collaboration-the possibility that, despite marked ideological differences, extremist groups from very different milieus might align to a degree where operational collaboration against Western societies becomes possible. Based upon theoretical insights drawn from a variety of literatures, a bargaining model is constructed that reflects the various benefits and costs for terrorists' collaboration across ideological milieus. Analyzed in both sequential and simultaneous decision-making contexts and through numerical simulations, the model confirms several theoretical arguments. The most important of these is that although likely to be quite rare, successful collaboration across terrorist milieus is indeed feasible in certain circumstances. The model also highlights several structural elements that might play a larger role than previously recognized in the collaboration decision, including that the prospect of nonmaterial gains (amplification of terror and reputational boost) plays at least as important a role in the decision to collaborate as potential increased capabilities does. Numerical simulation further suggests that prospects for successful collaboration over most scenarios (including operational) increase when a large, effective Islamist terrorist organization initiates collaboration with a smaller right-wing group, as compared with the other scenarios considered. Although the small number of historical cases precludes robust statistical validation, the simulation results are supported by existing empirical evidence of collaboration between Islamists and right- or left-wing extremists. The game-theoretic approach, therefore, provides guidance regarding the circumstances under which such an unholy alliance of violent actors is likely to succeed. © 2016 Society for Risk Analysis.

  14. [Managerial performance in public health services: a case study in Mato Grosso do Sul, Brazil].

    PubMed

    Barbieri, Ana Rita; Hortale, Virginia Alonso

    2005-01-01

    This paper presents part of a doctoral dissertation that developed a theoretical model capable of identifying managerial performance in various administrative levels of a Municipal Health Secretariat. The methodology was a case study of the Municipal Health Secretariat in Campo Grande, capital of the State of Mato Grosso do Sul, Brazil. The theoretical model was based on recent debates emphasizing the need to modernize public administration, with an emphasis on efficacy and efficiency in the organizations as a whole. Some 31 interviews were conducted with the objective of identifying the managers' performance, through questions based on their daily practices in planning, organization, direction, and control. Managers from higher hierarchical levels obtained better results, while those in basic health units generally developed activities and complied with decisions passed down by imposition, with limited capacity to plan, organize, or control activities pertaining to their management sphere. These results stem partially from the charismatic leadership and centralizing administration of the current management in the municipal health system.

  15. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  16. A constrained registration problem based on Ciarlet-Geymonat stored energy

    NASA Astrophysics Data System (ADS)

    Derfoul, Ratiba; Le Guyader, Carole

    2014-03-01

    In this paper, we address the issue of designing a theoretically well-motivated registration model capable of handling large deformations and including geometrical constraints, namely landmark points to be matched, in a variational framework. The theory of linear elasticity being unsuitable in this case, since assuming small strains and the validity of Hooke's law, the introduced functional is based on nonlinear elasticity principles. More precisely, the shapes to be matched are viewed as Ciarlet-Geymonat materials. We demonstrate the existence of minimizers of the related functional minimization problem and prove a convergence result when the number of geometric constraints increases. We then describe and analyze a numerical method of resolution based on the introduction of an associated decoupled problem under inequality constraint in which an auxiliary variable simulates the Jacobian matrix of the deformation field. A theoretical result of 􀀀-convergence is established. We then provide preliminary 2D results of the proposed matching model for the registration of mouse brain gene expression data to a neuroanatomical mouse atlas.

  17. Contemporary HRD Research: A Triarchy of Theoretical Perspectives and Their Prescriptions for HRD.

    ERIC Educational Resources Information Center

    Garavan, Thomas N.; Gunnigle, Patrick; Morley, Michael

    2000-01-01

    Presents key debates in human resource development. One table outlines the research focus and methodology of articles in this special issue. Another table compares three theoretical perspectives: capability driven, psychological contract, and learning organization. Contains 253 references. (SK)

  18. Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster

    NASA Astrophysics Data System (ADS)

    Le, YANG; Tianping, ZHANG; Juanjuan, CHEN; Yanhui, JIA

    2018-07-01

    A two-dimensional particle-in-cell plasma model is built in the R–Z plane to investigate the low-frequency plasma oscillations in the discharge channel of a 5 kW LHT-140 Hall thruster. In addition to the elastic, excitation, and ionization collisions between neutral atoms and electrons, the Coulomb collisions between electrons and electrons and between electrons and ions are analyzed. The sheath characteristic distortion is also corrected. Simulation results indicate the capability of the built model to reproduce the low-frequency oscillation with high accuracy. The oscillations of the discharge current and ion density produced by the model are consistent with the existing conclusions. The model predicts a frequency that is consistent with that calculated by the zero-dimensional theoretical model.

  19. Neural network identification of aircraft nonlinear aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Egorchev, M. V.; Tiumentsev, Yu V.

    2018-02-01

    The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.

  20. Theory of the tensile actuation of fiber reinforced coiled muscles

    NASA Astrophysics Data System (ADS)

    Lamuta, C.; Messelot, S.; Tawfick, S.

    2018-05-01

    There is a strong need for compact artificial muscles capable of applying large contractile strokes and lift heavy weights. Coiled fibers recently emerged as attractive candidates for these purposes, owing to their simple construction and the possibility of their thermal, electrical and chemical actuation. An intuitive theoretical understanding of the mechanics of actuation of these muscles is essential for the enhancement of their performance and can pave the way for the development of new applications and technologies. In this paper, a complete theoretical model for the tensile actuation of fiber reinforced artificial muscles is presented and experimentally validated. The model demonstrates that all muscles made from the same material have a universal behavior, which can be described by a single master curve. It enables the systematic design and understanding of coiled muscles for specific performance owing to a comprehensive mathematical correlation among the geometry, materials properties, and actuation. Carbon fibers (CF)/polydimethylsiloxane coiled muscles are demonstrated as simple to fabricate yet powerful muscles owing to the availability of high strength CF. In addition to showing excellent agreement with the theoretical models, they can be actuated by joule heating or chemical swelling, lift up to 12 600 times their own weight, support up to 60 MPa of mechanical stress, provide tensile strokes higher than 25%, and a specific work up to 758 J kg‑1, the latter is more than 18 times higher than that of natural muscles.

  1. Multistatic aerosol-cloud lidar in space: A theoretical perspective

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Alexandrov, M. D.; Brian, C.; Travis, L. D.

    2016-12-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.

  2. Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-01-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.

  3. What Is the Purpose? Reflections on Inclusion and Special Education from a Capability Perspective

    ERIC Educational Resources Information Center

    Reindal, Solveig Magnus

    2010-01-01

    This article investigated what the capability approach developed by Amartya Sen and Martha Nussbaum can contribute to the issue of inclusion as a new theoretical framework for special education. By posing the question: "What is the purpose of inclusion?", I have proposed to answer this query by investigating how the capability approach is able to…

  4. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  5. Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.

    1999-01-01

    Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.

  6. Anticipatory Cognitive Systems: a Theoretical Model

    NASA Astrophysics Data System (ADS)

    Terenzi, Graziano

    This paper deals with the problem of understanding anticipation in biological and cognitive systems. It is argued that a physical theory can be considered as biologically plausible only if it incorporates the ability to describe systems which exhibit anticipatory behaviors. The paper introduces a cognitive level description of anticipation and provides a simple theoretical characterization of anticipatory systems on this level. Specifically, a simple model of a formal anticipatory neuron and a model (i.e. the τ-mirror architecture) of an anticipatory neural network which is based on the former are introduced and discussed. The basic feature of this architecture is that a part of the network learns to represent the behavior of the other part over time, thus constructing an implicit model of its own functioning. As a consequence, the network is capable of self-representation; anticipation, on a oscopic level, is nothing but a consequence of anticipation on a microscopic level. Some learning algorithms are also discussed together with related experimental tasks and possible integrations. The outcome of the paper is a formal characterization of anticipation in cognitive systems which aims at being incorporated in a comprehensive and more general physical theory.

  7. Computational mechanics of viral capsids.

    PubMed

    Gibbons, Melissa M; Perotti, Luigi E; Klug, William S

    2015-01-01

    Viral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent years, a broader approach to study the mechanics of viral capsids has leveraged the theoretical tools proper of continuum mechanics. Even though the theory of continuum elasticity is most commonly used to study deformable bodies at larger macroscopic length scales, it has been shown that this very rich theoretical field can still offer useful insights into the mechanics of viral structures at the nanometer scale. Here we show the construction of viral capsid continuum mechanics models starting from different forms of experimental data. We will discuss the kinematics assumptions, the issue of the reference configuration, the material constitutive laws, and the numerical discretization necessary to construct a complete Finite Element capsid mechanical model. Some examples in the second part of the chapter will show the predictive capabilities of the constructed models and underline useful practical aspects related to efficiency and accuracy. We conclude each example by collecting several key findings discovered by simulating AFM indentation experiments using the constructed numerical models.

  8. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  9. Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David

    2000-01-01

    This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity distortion.

  10. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  11. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    PubMed

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  12. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  13. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    PubMed

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [Stress and attitudes toward negative emotions in adolescence].

    PubMed

    Ozawa, Eiji

    2010-12-01

    This study investigated the relationship between stress and attitudes toward negative emotions in adolescents. Adolescent students (N=1500) completed a questionnaire that measured attitudes toward negative emotions, emotional-stress reactions, and stress coping. Analysis of date yielded, two factors of the attitudes toward negative emotions: "Negative feelings about negative emotions" and "Capabilities of switching of negative emotions". In order to examine the theoretical relationships among attitudes toward negative emotions, emotional-stress reactions, and stress coping, a hypothetical model was tested by covariance structure analysis. This model predicted that students who have a high level of attitudes toward negative emotions would report enhanced problem solving which promoted stress coping. The results indicated that "Negative feelings about negative emotions" enhanced avoidable coping, and avoidable coping enhanced stress reactions. "Capabilities of switching of negative emotions" was related to a decrease of avoidable coping. Based on the results from covariance structure analysis and a multiple population analysis, the clinical significance and developmental characteristics were discussed.

  15. SAM Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less

  16. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  17. Modeling long recovery early events (LOREs) produced by lightning-induced ionization of the nighttime upper mesosphere

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2017-07-01

    We present results of a cylindrically symmetric, coupled electrodynamic, and photochemical model which simulates diffuse ionization of the middle atmosphere induced by strong lightning discharges (peak currents >150 kA). Scattering of subionospherically propagating, very low frequency radio waves is then evaluated using the Long-Wave Propagation Capability code. Some modeled sprite halos exhibit continued electron density growth up to timescales of seconds due to O- detachment, though it is not yet clear how this might relate to the slower onset durations (>20 ms) of some early VLF events. Modeled electron density enhancements in sprite halos, capable of strong VLF scattering, can persist for long periods of time (greater than hundreds of seconds) even at lower altitudes where their recovery is initially controlled by fast attachment processes. Consequently, our modeling results indicate that both typical recovery (20 to 240 s) and long recovery (LOREs, >300 s) VLF scattering events can be explained by scattering from conductivity changes associated with sprite halos. In contrast, modeled scattered fields resulting from elve-associated conductivity changes, though exhibiting long recovery times, are too weak to sufficiently explain typical LORE observations. Theoretical scattering from structured ionization events (e.g., sprites columns and gigantic jets) is not considered in this work.

  18. Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    Gunawardana, K. G. S. H.; Song, Xueyu

    2018-05-01

    The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory. In this paper, we show that the classical nucleation theory is capable of predicting the nucleation barrier with excellent agreement to the simulated results when the curvature correction to the interfacial free energy is accounted for.

  19. Transparent SiO2-Ag core-satellite nanoparticle assembled layer for plasmonic-based chemical sensors

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Han; Jean, Ren-Der; Chiu, Kuo-Chuang; Chen, Chun-Hua; Liu, Dean-Mo

    2012-05-01

    We discovered a promising sensing capability of SiO2@Ag core-satellite nanoparticles with respect to organic melamine when they were consolidated into a solid-type thin-film entity. A series of theoretical models were proposed which provided calculation outcomes superior to those of existing models for the localized surface plasmon resonance spectra of the solid-state assemblies. We envisioned not only that such a SiO2@Ag film is a potential candidate for a transparent solid-state optical nanosensor for the detection of organic molecules but also that the resulting plasmonic resonance model facilitates a better understanding of such a solid-state nanosensor used for a number of sensory applications.

  20. Improve SSME power balance model

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1992-01-01

    Effort was dedicated to development and testing of a formal strategy for reconciling uncertain test data with physically limited computational prediction. Specific weaknesses in the logical structure of the current Power Balance Model (PBM) version are described with emphasis given to the main routing subroutines BAL and DATRED. Selected results from a variational analysis of PBM predictions are compared to Technology Test Bed (TTB) variational study results to assess PBM predictive capability. The motivation for systematic integration of uncertain test data with computational predictions based on limited physical models is provided. The theoretical foundation for the reconciliation strategy developed in this effort is presented, and results of a reconciliation analysis of the Space Shuttle Main Engine (SSME) high pressure fuel side turbopump subsystem are examined.

  1. Modeling and strain gauging of eddy current repulsion deicing systems

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  2. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges.

    PubMed

    Ernst, Marielle; Kriston, Levente; Romero, Javier M; Frölich, Andreas M; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time.

  3. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  4. Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.

    2010-01-01

    Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.

  5. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  6. Using Data Assimilation Methods of Prediction of Solar Activity

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy S.

    2017-01-01

    The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.

  7. A study of nucleate boiling and critical heat flux with EHD enhancement

    NASA Astrophysics Data System (ADS)

    Hristov, Y.; Zhao, D.; Kenning, D. B. R.; Sefiane, K.; Karayiannis, T. G.

    2009-05-01

    The paper describes results from an experimental and theoretical study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling of R123 at atmospheric pressure on a horizontal wall with a smooth surface. Two designs of electrode (parallel rods and wire mesh) were used. The experimental data exhibit some differences from the data obtained by other researchers in similar experiments on a wall with a different surface finish and with a slightly different design of wire mesh electrode. The hydrodynamic model for EHD enhancement of CHF cannot reconcile the differences. A theoretical model has been developed for the growth of a single vapour bubble on a superheated wall in an electric field, leading to a numerical simulation based on the level-set method. The model includes matching of sub-models for the micro- and macro-regions, conduction in the wall, distortion of the electric field by the bubble, the temperature dependence of electrical properties and free-charge generation. In the present form of the model, some of these effects are realised in an approximate form. The capability to investigate dry-spot formation and wall temperature changes that might lead to CHF has been demonstrated.

  8. Guidelines for a graph-theoretic implementation of structural equation modeling

    USGS Publications Warehouse

    Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William

    2012-01-01

    Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for an updated definition of the SEM process that subsumes the historical matrix approach under a graph-theory implementation. The implementation is also designed to permit complex specifications and to be compatible with various estimation methods. Finally, they are meant to foster the use of probabilistic reasoning in both retrospective and prospective considerations of the quantitative implications of the results.

  9. Spectacular mergers at the cosmic dawn: a HST, ALMA, and JWST synergy

    NASA Astrophysics Data System (ADS)

    Banados, Eduardo

    2016-10-01

    How did the first massive galaxies in the universe form? Theoretical models predict that these form through mergers of gas-rich galaxies at very high-redshifts. These models are often invoked to explain the existence of massive 'red and dead' galaxies by z 2. We have unexpectedly identified a sample of six z>6 QSOs with close, gas-rich companions at the same redshifts through our on-going ALMA survey of [CII] and dust emission in QSO host galaxies. This is the first unambiguous direct observational evidence of gravitational interactions within the first Gyr of the universe, supporting the aforementioned theoretical models. These newly discovered QSO-galaxy pairs are a unique sample to demonstrate key capabilities of JWST in early science, such as the multi-object and IFU modes of NIRSpec. Remarkably, three of these systems are separated by less than 10 kpc (<2 arcsec), which makes them prime targets to exploit the unparalleled IFU capabilities of JWST/NIRSpec in early science. Such observations will allow us to map the morphology and kinematics of these gravitational interactions as function of separation from the QSOs, which will enlighten our understanding of early black hole and galaxy growth. Thus, it is of critical importance to characterize the rest-frame UV/optical properties of these companions before the JWST launch. Here we propose deep WFC3/IR F140W observations to set the first firm constraints on their rest-frame UV properties, which can only be achieved by the sensitivity and resolution of HST. These timely HST observations will be essential to enable a plethora of JWST early science programs.

  10. Vertical resolution of baroclinic modes in global ocean models

    NASA Astrophysics Data System (ADS)

    Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.

    2017-05-01

    Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).

  11. Modeling of scattering from ice surfaces

    NASA Astrophysics Data System (ADS)

    Dahlberg, Michael Ross

    Theoretical research is proposed to study electromagnetic wave scattering from ice surfaces. A mathematical formulation that is more representative of the electromagnetic scattering from ice, with volume mechanisms included, and capable of handling multiple scattering effects is developed. This research is essential to advancing the field of environmental science and engineering by enabling more accurate inversion of remote sensing data. The results of this research contributed towards a more accurate representation of the scattering from ice surfaces, that is computationally more efficient and that can be applied to many remote-sensing applications.

  12. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  13. Empirical study of fuzzy compatibility measures and aggregation operators

    NASA Astrophysics Data System (ADS)

    Cross, Valerie V.; Sudkamp, Thomas A.

    1992-02-01

    Two fundamental requirements for the generation of support using incomplete and imprecise information are the ability to measure the compatibility of discriminatory information with domain knowledge and the ability to fuse information obtained from disparate sources. A generic architecture utilizing the generalized fuzzy relational database model has been developed to empirically investigate the support generation capabilities of various compatibility measures and aggregation operators. This paper examines the effectiveness of combinations of compatibility measures from the set-theoretic, geometric distance, and logic- based classes paired with t-norm and generalized mean families of aggregation operators.

  14. Prediction of Laminar and Turbulent Boundary Layer Flow Separation in V/STOL Engine Inlets

    NASA Technical Reports Server (NTRS)

    Chou, D. C.; Luidens, R. W.; Stockman, N. O.

    1977-01-01

    A description is presented of the development of the boundary layer on the lip and diffuser surface of a subsonic inlet at arbitrary operating conditions of mass flow rate, free stream velocity and incidence angle. Both laminar separation on the lip and turbulent separation in the diffuser are discussed. The agreement of the theoretical results with model experimental data illustrates the capability of the theory to predict separation. The effects of throat Mach number, inlet size, and surface roughness on boundary layer development and separation are illustrated.

  15. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  16. Multidecadal simulation of coastal fog with a regional climate model

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis A.; Sloan, Lisa C.; Chuang, Patrick Y.; Faloona, Ian C.; Johnstone, James A.

    2013-06-01

    In order to model stratocumulus clouds and coastal fog, we have coupled the University of Washington boundary layer model to the regional climate model, RegCM (RegCM-UW). By comparing fog occurrences observed at various coastal airports in the western United States, we show that RegCM-UW has success at modeling the spatial and temporal (diurnal, seasonal, and interannual) climatology of northern California coastal fog. The quality of the modeled fog estimate depends on whether coast-adjacent ocean or land grid cells are used; for the model runs shown here, the oceanic grid cells seem to be most appropriate. The interannual variability of oceanic northern California summertime fog, from a multi-decadal simulation, has a high and statistically significant correlation with the observed interannual variability ( r = 0.72), which indicates that RegCM-UW is capable of investigating the response of fog to long-term climatological forcing. While RegCM-UW has a number of aspects that would benefit from further investigation and development, RegCM-UW is a new tool for investigating the climatology of coastal fog and the physical processes that govern it. We expect that with appropriate physical parameterizations and moderate horizontal resolution, other climate models should be capable of simulating coastal fog. The source code for RegCM-UW is publicly available, under the GNU license, through the International Centre for Theoretical Physics.

  17. Improved Financial Capability Can Reduce Material Hardship among Mothers.

    PubMed

    Huang, Jin; Nam, Yunju; Sherraden, Michael; Clancy, Margaret M

    2016-10-01

    This study draws on the theoretical framework of financial capability in investigating whether financial access (that is, availability of financial products and services) and financial knowledge (that is, understanding of basic financial concepts) can influence the risk of material hardship. Authors examine the possibility of direct associations as well as of indirect ones in which financial management (that is, individual financial behaviors) serves as a mediator. The probability sample of mothers with young children born in Oklahoma during 2007 (N = 2,529) was selected from Oklahoma birth certificates. Results from structural equation modeling analyses show that financial access is positively associated with financial management (p < 0.001) but that financial knowledge is not; both financial access (p < 0.001) and financial management (p < 0.001) are negatively correlated with material hardship. Similar results are obtained from analyses with a subsample of low-income mothers. Findings suggest that financial capability, particularly the financial access component, is critical for improving financial management and reducing the risk of material hardship among mothers with young children, including low-income mothers. Efforts to promote financial capability offer social workers an important strategy for improving their clients’ economic well-being.

  18. An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma.

    PubMed

    Jones, Andrew S; Taktak, Azzam G F; Helliwell, Timothy R; Fenton, John E; Birchall, Martin A; Husband, David J; Fisher, Anthony C

    2006-06-01

    The accepted method of modelling and predicting failure/survival, Cox's proportional hazards model, is theoretically inferior to neural network derived models for analysing highly complex systems with large datasets. A blinded comparison of the neural network versus the Cox's model in predicting survival utilising data from 873 treated patients with laryngeal cancer. These were divided randomly and equally into a training set and a study set and Cox's and neural network models applied in turn. Data were then divided into seven sets of binary covariates and the analysis repeated. Overall survival was not significantly different on Kaplan-Meier plot, or with either test model. Although the network produced qualitatively similar results to Cox's model it was significantly more sensitive to differences in survival curves for age and N stage. We propose that neural networks are capable of prediction in systems involving complex interactions between variables and non-linearity.

  19. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  1. New theoretical framework for designing nonionic surfactant mixtures that exhibit a desired adsorption kinetics behavior.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2010-12-21

    How does one design a surfactant mixture using a set of available surfactants such that it exhibits a desired adsorption kinetics behavior? The traditional approach used to address this design problem involves conducting trial-and-error experiments with specific surfactant mixtures. This approach is typically time-consuming and resource-intensive and becomes increasingly challenging when the number of surfactants that can be mixed increases. In this article, we propose a new theoretical framework to identify a surfactant mixture that most closely meets a desired adsorption kinetics behavior. Specifically, the new theoretical framework involves (a) formulating the surfactant mixture design problem as an optimization problem using an adsorption kinetics model and (b) solving the optimization problem using a commercial optimization package. The proposed framework aims to identify the surfactant mixture that most closely satisfies the desired adsorption kinetics behavior subject to the predictive capabilities of the chosen adsorption kinetics model. Experiments can then be conducted at the identified surfactant mixture condition to validate the predictions. We demonstrate the reliability and effectiveness of the proposed theoretical framework through a realistic case study by identifying a nonionic surfactant mixture consisting of up to four alkyl poly(ethylene oxide) surfactants (C(10)E(4), C(12)E(5), C(12)E(6), and C(10)E(8)) such that it most closely exhibits a desired dynamic surface tension (DST) profile. Specifically, we use the Mulqueen-Stebe-Blankschtein (MSB) adsorption kinetics model (Mulqueen, M.; Stebe, K. J.; Blankschtein, D. Langmuir 2001, 17, 5196-5207) to formulate the optimization problem as well as the SNOPT commercial optimization solver to identify a surfactant mixture consisting of these four surfactants that most closely exhibits the desired DST profile. Finally, we compare the experimental DST profile measured at the surfactant mixture condition identified by the new theoretical framework with the desired DST profile and find good agreement between the two profiles.

  2. Man-machine analysis of translation and work tasks of Skylab films

    NASA Technical Reports Server (NTRS)

    Hosler, W. W.; Boelter, J. G.; Morrow, J. R., Jr.; Jackson, J. T.

    1979-01-01

    An objective approach to determine the concurrent validity of computer-graphic models is real time film analysis. This technique was illustrated through the procedures and results obtained in an evaluation of translation of Skylab mission astronauts. The quantitative analysis was facilitated by the use of an electronic film analyzer, minicomputer, and specifically supportive software. The uses of this technique for human factors research are: (1) validation of theoretical operator models; (2) biokinetic analysis; (3) objective data evaluation; (4) dynamic anthropometry; (5) empirical time-line analysis; and (6) consideration of human variability. Computer assisted techniques for interface design and evaluation have the potential for improving the capability for human factors engineering.

  3. The non-storm time corrugated upper thermosphere: What is beyond MSIS?

    NASA Astrophysics Data System (ADS)

    Liu, Huixin; Thayer, Jeff; Zhang, Yongliang; Lee, Woo Kyoung

    2017-06-01

    Observations in the recent decade have revealed many thermospheric density corrugations/perturbations under nonstorm conditions (Kp < 2). They are generally not captured by empirical models like Mass Spectrometer Incoherent Scatter (MSIS) but are operationally important for long-term orbital evolution of Low Earth Orbiting satellites and theoretically for coupling processes in the atmosphere-ionosphere system. We review these density corrugations by classifying them into three types which are driven respectively by the lower atmosphere, ionosphere, and solar wind/magnetosphere. Model capabilities in capturing these features are discussed. A summary table of these corrugations is included to provide a quick guide on their magnitudes, occurring latitude, local time, and season.

  4. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  5. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  6. Modeling the utility of binaural cues for underwater sound localization.

    PubMed

    Schneider, Jennifer N; Lloyd, David R; Banks, Patchouly N; Mercado, Eduardo

    2014-06-01

    The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2°), and lower resolution toward the periphery (9°). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A game theoretic model of drug launch in India.

    PubMed

    Bhaduri, Saradindu; Ray, Amit Shovon

    2006-01-01

    There is a popular belief that drug launch is delayed in developing countries like India because of delayed transfer of technology due to a 'post-launch' imitation threat through weak intellectual property rights (IPR). In fact, this belief has been a major reason for the imposition of the Trade Related Intellectual Property Rights regime under the WTO. This construct undermines the fact that in countries like India, with high reverse engineering capabilities, imitation can occur even before the formal technology transfer, and fails to recognize the first mover advantage in pharmaceutical markets. This paper argues that the first mover advantage is important and will vary across therapeutic areas, especially in developing countries with diverse levels of patient enlightenment and quality awareness. We construct a game theoretic model of incomplete information to examine the delay in drug launch in terms of costs and benefits of first move, assumed to be primarily a function of the therapeutic area of the new drug. Our model shows that drug launch will be delayed only for external (infective/communicable) diseases, while drugs for internal, non-communicable diseases (accounting for the overwhelming majority of new drug discovery) will be launched without delay.

  8. Comment on "Advective transport in heterogeneous aquifers: Are proxy models predictive?" by A. Fiori, A. Zarlenga, H. Gotovac, I. Jankovic, E. Volpi, V. Cvetkovic, and G. Dagan

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.

    2016-07-01

    Fiori et al. (2015) examine the predictive capabilities of (among others) two "proxy" non-Fickian transport models, MRMT (Multi-Rate Mass Transfer) and CTRW (Continuous-Time Random Walk). In particular, they compare proxy model predictions of mean breakthrough curves (BTCs) at a sequence of control planes with near-ergodic BTCs generated through two- and three-dimensional simulations of nonreactive, mean-uniform advective transport in single realizations of stationary, randomly heterogeneous porous media. The authors find fitted proxy model parameters to be nonunique and devoid of clear physical meaning. This notwithstanding, they conclude optimistically that "i. Fitting the proxy models to match the BTC at [one control plane] automatically ensures prediction at downstream control planes [and thus] ii. … the measured BTC can be used directly for prediction, with no need to use models underlain by fitting." I show that (a) the authors' findings follow directly from (and thus confirm) theoretical considerations discussed earlier by Neuman and Tartakovsky (2009), which (b) additionally demonstrate that proxy models will lack similar predictive capabilities under more realistic, non-Markovian flow and transport conditions that prevail under flow through nonstationary (e.g., multiscale) media in the presence of boundaries and/or nonuniformly distributed sources, and/or when flow/transport are conditioned on measurements.

  9. Developing Interpretive Turbulence Models from a Database with Applications to Wind Farms and Shipboard Operations

    NASA Astrophysics Data System (ADS)

    Schau, Kyle A.

    This thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Karman model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical derivations are provided. This method is then tested against three highly complex flow fields: wake turbulence inside wind farms, helicopter downwash, and helicopter downwash coupled with turbulence shed from a ship superstructure. These applications demonstrate that this method is remarkably robust, that the developed autospectral models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in wind engineering.

  10. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

    PubMed

    Bura, Renata; Vajzovic, Azra; Doty, Sharon L

    2012-07-01

    An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

  11. Synthetic cognitive development. Where intelligence comes from

    NASA Astrophysics Data System (ADS)

    Weinbaum (Weaver), D.; Veitas, V.

    2017-01-01

    The human cognitive system is a remarkable exemplar of a general intelligent system whose competence is not confined to a specific problem domain. Evidently, general cognitive competences are a product of a prolonged and complex process of cognitive development. Therefore, the process of cognitive development is a primary key to understanding the emergence of intelligent behavior. This paper develops the theoretical foundations for a model that generalizes the process of cognitive development. The model aims to provide a realistic scheme for the synthesis of scalable cognitive systems with an open-ended range of capabilities. Major concepts and theories of human cognitive development are introduced and briefly explored, focusing on the enactive approach to cognition and the concept of sense-making. The initial scheme of human cognitive development is then generalized by introducing the philosophy of individuation and the abstract mechanism of transduction. The theory of individuation provides the ground for the necessary paradigmatic shift from cognitive systems as given products to cognitive development as a formative process of self-organization. Next, the conceptual model is specified as a scalable scheme of networks of agents. The mechanisms of individuation are formulated in context-independent information theoretical terms. Finally, the paper discusses two concrete aspects of the generative model - mechanisms of transduction and value modulating systems. These are topics of further research towards an implementable architecture.

  12. Theoretical and experimental models of the diffuse radar backscatter from Mars

    NASA Technical Reports Server (NTRS)

    England, A. W.

    1995-01-01

    The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.

  13. Viscoelastic performance of dielectric elastomer subject to different voltage stimulation

    NASA Astrophysics Data System (ADS)

    Sheng, Junjie; Zhang, Yuqing; Liu, Lei; Li, Bo; Chen, Hualing

    2017-04-01

    Dielectric elastomer (DE) is capable of giant deformation subject to an electric field, and demonstrates significant advantages in the potentially application of soft machines with muscle-like characteristics. Due to an inherent property of all macromolecular materials, DE exhibits strong viscoelastic properties. Viscoelasticity could cause a time-dependent deformation and lower the response speed and energy conversion efficiency of DE based actuators, thus strongly affect its electromechanical performance and applications. Combining with the rheological model of viscoelastic relaxation, the viscoelastic performance of a VHB membrane in a circular actuator configuration undergoing separately constant, ramp and sinusoidal voltages are analyzed both theoretically and experimentally. The theoretical results indicated that DE could attain a big deformation under a small constant voltage with a longer time or under a big voltage with a shorter time. The model also showed that a higher critical stretch could be achieved by applying ramping voltage with a lower rate and the stretch magnitude under sinusoidal voltage is much larger at a relatively low frequency. Finally, experiments were designed to validate the simulation and show well consistent with the simulation results.

  14. Design of flat pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Wirekoh, Jackson; Park, Yong-Lae

    2017-03-01

    Pneumatic artificial muscles (PAMs) have gained wide use in the field of robotics due to their ability to generate linear forces and motions with a simple mechanism, while remaining lightweight and compact. However, PAMs are limited by their traditional cylindrical form factors, which must increase radially to improve contraction force generation. Additionally, this form factor results in overly complicated fabrication processes when embedded fibers and sensor elements are required to provide efficient actuation and control of the PAMs while minimizing the bulkiness of the overall robotic system. In order to overcome these limitations, a flat two-dimensional PAM capable of being fabricated using a simple layered manufacturing process was created. Furthermore, a theoretical model was developed using Von Karman’s formulation for large deformations and the energy methods. Experimental characterizations of two different types of PAMs, a single-cell unit and a multi-cell unit, were performed to measure the maximum contraction lengths and forces at input pressures ranging from 0 to 150 kPa. Experimental data were then used to verify the fidelity of the theoretical model.

  15. Vibration Measurement Method of a String in Transversal Motion by Using a PSD.

    PubMed

    Yang, Che-Hua; Wu, Tai-Chieh

    2017-07-17

    A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string's natural frequency, increase while the speed of motion increases.

  16. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru; Kreider, W.; Sapozhnikov, O. A.

    2015-10-28

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biologicalmore » tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.« less

  17. Molecular dynamics modeling of periodic nanostructuring of metals with a short UV laser pulse under spatial confinement by a water layer

    NASA Astrophysics Data System (ADS)

    Ivanov, D. S.; Blumenstein, A.; Ihlemann, J.; Simon, P.; Garcia, M. E.; Rethfeld, B.

    2017-12-01

    The possibility of material surfaces restructuring on the nanoscale due to ultrashort laser pulses has recently found a number of practical applications. It was found experimentally that under spatial confinement due to a liquid layer atop the surface, one can achieve even finer and cleaner structures as compared to that in air or in vacuum. The mechanism of the materials restructuring under the liquid confinement, however, is not clear and its experimental study is limited by the extreme conditions realized during the intense and localized laser energy deposition that takes place on nanometer spatial and picosecond time-scales. In this theoretical work, we suggest a molecular dynamics-based approach that is capable of simulating the processes of periodic nanostructuring with ultrashort UV laser pulse on metals. The theoretical results of the simulations are directly compared with the experimental data on the same spatial and temporal scales.

  18. Recording membrane potential changes through photoacoustic voltage sensitive dye

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.

    2017-03-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.

  19. A generalized model for stability of trees under impact conditions

    NASA Astrophysics Data System (ADS)

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio; Canepa, Davide

    2016-04-01

    Stability of trees to external actions involve the combined effects of stem and tree root systems. A block impacting on the stem or an applied force pulling the stem can cause a tree instability involving stem bending or failure and tree root rotation. So different contributions are involved in the stability of the system. The rockfalls are common natural phenomena that can be unpredictable in terms of frequency and magnitude characteristics, and this makes difficult the estimate of potential hazard and risk for human lives and activities. In mountain areas a natural form of protection from rockfalls is provided by forest growing. The difficulties in the assessment of the real capability of this natural barrier by means of models is an open problem. Nevertheless, a large amount of experimental data are now available which provides support for the development of advanced theoretical framework and corresponding models. The aim of this contribution consists in presenting a model developed to predict the behavior of trees during a block impact. This model describes the tree stem by means of a linear elastic beam system consisting of two beams connected in series and with an equivalent geometry. The tree root system is described via an equivalent foundation, whose behavior is modelled through an elasto-plastic macro-element model. In order to calibrate the model parameters, simulations reproducing a series of winching tests, are performed. These numerical simulations confirm the capability of the model to predict the mechanical behavior of the stem-root system in terms of displacement vs force curves. Finally, numerical simulations of the impact of a boulder with a tree stem are carried out. These simulations, done under dynamic regime and with the model parameters obtained from the previous set of simulations, confirm the capability of the model to reproduce the effects on the stem-roots system generated by impulsive loads.

  20. Series Bosch System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Evans, Christopher; Mansell, Matt; Swickrath, Michael

    2012-01-01

    State-of-the-art (SOA) carbon dioxide (CO2) reduction technology for the International Space Station produces methane as a byproduct. This methane is subsequently vented overboard. The associated loss of hydrogen ultimately reduces the mass of oxygen that can be recovered from CO2 in a closed-loop life support system. As an alternative to SOA CO2 reduction technology, NASA is exploring a Series-Bosch system capable of reducing CO2 with hydrogen to form water and solid carbon. This results in 100% theoretical recovery of oxygen from metabolic CO2. In the past, Bosch-based technology did not trade favorably against SOA technology due to a high power demand, low reaction efficiencies, concerns with carbon containment, and large resupply requirements necessary to replace expended catalyst cartridges. An alternative approach to Bosch technology, labeled "Series-Bosch," employs a new system design with optimized multi-stage reactors and a membrane-based separation and recycle capability. Multi-physics modeling of the first stage reactor, along with chemical process modeling of the integrated system, has resulted in a design with potential to trade significantly better than previous Bosch technology. The modeling process and resulting system architecture selection are discussed.

  1. Advanced space propulsion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1981-01-01

    Experiments showed that stray magnetic fields can adversely affect the capacity of a hollow cathode neutralizer to couple to an ion beam. Magnetic field strength at the neutralizer cathode orifice is a crucial factor influencing the coupling voltage. The effects of electrostatic accelerator grid aperture diameters on the ion current extraction capabilities were examined experimentally to describe the divergence, deflection, and current extraction capabilities of grids with the screen and accelerator apertures displaced relative to one another. Experiments performed in orificed, mercury hollow cathodes support the model of field enhanced thermionic electron mission from cathode inserts. Tests supported the validity of a thermal model of the cathode insert. A theoretical justification of a Saha equation model relating cathode plasma properties is presented. Experiments suggest that ion loss rates to discharge chamber walls can be controlled. A series of new discharge chamber magnetic field configurations were generated in the flexible magnetic field thruster and their effect on performance was examined. A technique used in the thruster to measure ion currents to discharge chamber walls is described. Using these ion currents the fraction of ions produced that are extracted from the discharge chamber and the energy cost of plasma ions are computed.

  2. Estimating power capability of aged lithium-ion batteries in presence of communication delays

    NASA Astrophysics Data System (ADS)

    Fridholm, Björn; Wik, Torsten; Kuusisto, Hannes; Klintberg, Anton

    2018-04-01

    Efficient control of electrified powertrains requires accurate estimation of the power capability of the battery for the next few seconds into the future. When implemented in a vehicle, the power estimation is part of a control loop that may contain several networked controllers which introduces time delays that may jeopardize stability. In this article, we present and evaluate an adaptive power estimation method that robustly can handle uncertain health status and time delays. A theoretical analysis shows that stability of the closed loop system can be lost if the resistance of the model is under-estimated. Stability can, however, be restored by filtering the estimated power at the expense of slightly reduced bandwidth of the signal. The adaptive algorithm is experimentally validated in lab tests using an aged lithium-ion cell subject to a high power load profile in temperatures from -20 to +25 °C. The upper voltage limit was set to 4.15 V and the lower voltage limit to 2.6 V, where significant non-linearities are occurring and the validity of the model is limited. After an initial transient when the model parameters are adapted, the prediction accuracy is within ± 2 % of the actually available power.

  3. Towards improved capability and confidence in coupled atmospheric and wildland fire modeling

    NASA Astrophysics Data System (ADS)

    Sauer, Jeremy A.

    This dissertation work is aimed at improving the capability and confidence in a modernized and improved version of Los Alamos National Laboratory's coupled atmospheric and wild- land fire dynamics model, Higrad-Firetec. Higrad is the hydrodynamics component of this large eddy simulation model that solves the three dimensional, fully compressible Navier-Stokes equations, incorporating a dynamic eddy viscosity formulation through a two-scale turbulence closure scheme. Firetec is the vegetation, drag forcing, and combustion physics portion that is integrated with Higrad. The modern version of Higrad-Firetec incorporates multiple numerical methodologies and high performance computing aspects which combine to yield a unique tool capable of augmenting theoretical and observational investigations in order to better understand the multi-scale, multi-phase, and multi-physics, phenomena involved in coupled atmospheric and environmental dynamics. More specifically, the current work includes extended functionality and validation efforts targeting component processes in coupled atmospheric and wildland fire scenarios. Since observational data of sufficient quality and resolution to validate the fully coupled atmosphere-wildfire scenario simply does not exist, we instead seek to validate components of the full prohibitively convoluted process. This manuscript provides first, an introduction and background into the application space of Higrad-Firetec. Second we document the model formulation, solution procedure, and a simple scalar transport verification exercise. Third, we perform a validate model results against observational data for time averaged flow field metrics in and above four idealized forest canopies. Fourth, we carry out a validation effort for the non-buoyant jet in a crossflow scenario (to which an analogy can be made for atmosphere-wildfire interactions) comparing model results to laboratory data of both steady-in-time and unsteady-in-time metrics. Finally, an extension of model multi-phase physics is implemented, allowing for the representation of multiple collocated fuels as separately evolving constituents leading to differences resulting rate of spread and total burned area. In combination these efforts demonstrate improved capability, increased validation of component functionality, and unique applicability the Higrad-Firetec modeling framework. As a result this work provides a substantially more robust foundation for future new, more widely acceptable investigations into the complexities of coupled atmospheric and wildland fire behavior.

  4. Dynamic energy models and carbon mitigation policies

    NASA Astrophysics Data System (ADS)

    Tilley, Luke A.

    In this dissertation I examine a specific class of energy models and their implications for carbon mitigation policies. The class of models includes a production function capable of reproducing the empirically observed phenomenon of short run rigidity of energy use in response to energy price changes and long run exibility of energy use in response to energy price changes. I use a theoretical model, parameterized using empirical data, to simulate economic performance under several tax regimes where taxes are levied on capital income, investment, and energy. I also investigate transitions from one tax regime to another. I find that energy taxes intended to reduce energy use can successfully achieve those goals with minimal or even positive impacts on macroeconomic performance. But the transition paths to new steady states are lengthy, making political commitment to such policies very challenging.

  5. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Studying the Formation and Development of Molecular Clouds: With the CCAT Heterodyne Array Instrument (CHAI)

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2012-01-01

    Surveys of all different types provide basic data using different tracers. Molecular clouds have structure over a very wide range of scales. Thus, "high resolution" surveys and studies of selected nearby clouds add critical information. The combination of large-area and high resolution allows Increased spatial dynamic range, which in turn enables detection of new and perhaps critical morphology (e.g. filaments). Theoretical modeling has made major progress, and suggests that multiple forces are at work. Galactic-scale modeling also progressing - indicates that stellar feedback is required. Models must strive to reproduce observed cloud structure at all scales. Astrochemical observations are not unrelated to questions of cloud evolution and star formation but we are still learning how to use this capability.

  7. Editorial

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Icardi, Matteo; Prodanović, Maša

    2018-05-01

    Substantial progress has been made over last few decades on understanding the physics of multiphase flow and reactive transport phenomena in subsurface porous media. Confluence of advances in experimental techniques (including micromodels, X-ray microtomography, Nuclear Magnetic Resonance (NMR)) as well as computational power have made it possible to observe static and dynamic multi-scale flow, transport and reactive processes, thus stimulating development of new generation of modelling tools from pore to field scale. One of the key challenges is to make experiment and models as complementary as possible, with continuously improving experimental methods in order to increase predictive capabilities of theoretical models across scales. This creates need to establish rigorous benchmark studies of flow, transport and reaction in porous media which can then serve as the basis for introducing more complex phenomena in future developments.

  8. RAId_DbS: Peptide Identification using Database Searches with Realistic Statistics

    PubMed Central

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2007-01-01

    Background The key to mass-spectrometry-based proteomics is peptide identification. A major challenge in peptide identification is to obtain realistic E-values when assigning statistical significance to candidate peptides. Results Using a simple scoring scheme, we propose a database search method with theoretically characterized statistics. Taking into account possible skewness in the random variable distribution and the effect of finite sampling, we provide a theoretical derivation for the tail of the score distribution. For every experimental spectrum examined, we collect the scores of peptides in the database, and find good agreement between the collected score statistics and our theoretical distribution. Using Student's t-tests, we quantify the degree of agreement between the theoretical distribution and the score statistics collected. The T-tests may be used to measure the reliability of reported statistics. When combined with reported P-value for a peptide hit using a score distribution model, this new measure prevents exaggerated statistics. Another feature of RAId_DbS is its capability of detecting multiple co-eluted peptides. The peptide identification performance and statistical accuracy of RAId_DbS are assessed and compared with several other search tools. The executables and data related to RAId_DbS are freely available upon request. PMID:17961253

  9. From Instructional Leadership to Leadership Capabilities: Empirical Findings and Methodological Challenges

    ERIC Educational Resources Information Center

    Robinson, Viviane M. J.

    2010-01-01

    While there is considerable evidence about the impact of instructional leadership on student outcomes, there is far less known about the leadership capabilities that are required to confidently engage in the practices involved. This article uses the limited available evidence, combined with relevant theoretical analyses, to propose a tentative…

  10. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  11. NASTRAN forced vibration analysis of rotating cyclic structures

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.; Gallo, A. M.

    1983-01-01

    Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.

  12. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges

    PubMed Central

    Ernst, Marielle; Kriston, Levente; Romero, Javier M.; Frölich, Andreas M.; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    Purpose We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. Materials and Methods We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. Results In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Conclusion Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time. PMID:26848840

  13. Chemoviscosity modeling for thermosetting resins, 2

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resin was formulated. The model is developed by modifying the Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By assuming a linear relationship between the glass transition temperature and the degree of cure of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants were determined from the isothermal cure data of Lee, Loos, and Springer for the Hercules 3501-6 resin system. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data reported by Carpenter. A chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure was established.

  14. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.

  15. Eddy Current Influences on the Dynamic Behaviour of Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Bloodgood, Dale V.

    1998-01-01

    This report will summarize some results from a multi-year research effort at NASA Langley Research Center aimed at the development of an improved capability for practical modelling of eddy current effects in magnetic suspension systems. Particular attention is paid to large-gap systems, although generic results applicable to both large-gap and small-gap systems are presented. It is shown that eddy currents can significantly affect the dynamic behavior of magnetic suspension systems, but that these effects can be amenable to modelling and measurement. Theoretical frameworks are presented, together with comparisons of computed and experimental data particularly related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center, and the Annular Suspension and Pointing System at Old Dominion University. In both cases, practical computations are capable of providing reasonable estimates of important performance-related parameters. The most difficult case is seen to be that of eddy currents in highly permeable material, due to the low skin depths. Problems associated with specification of material properties and areas for future research are discussed.

  16. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    PubMed

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  17. Identification of Defects in Piles Through Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Liao, Shutao T.; Roesset, Jose M.

    1997-04-01

    The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in detecting the existence of a single defect in a pile, its location and its length. The cross-section of the pile is assumed to be circular and the defects are assumed to be axisymmetric in geometry. As mentioned in the companion paper, special codes utilizing one-dimensional (1-D) and three-dimensional (3-D) axisymmetric finite element models were developed to simulate the responses of defective piles to an impact load. Extensive parametric studies were then performed. In each study, the results from the direct use of time histories of displacements or velocities and the mechanical admittance (or mobility) function were compared in order to assess their capabilities. The effects of the length and the width of a defect were also investigated using these methods. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 277-291 (1997)

  18. Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics

    PubMed Central

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2011-01-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices. PMID:20400953

  19. Flow measurements in a water tunnel using a holocinematographic velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.; Beeler, George B.

    1987-01-01

    Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.

  20. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  1. Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Lo Feudo, T.

    2007-04-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.

  2. Effect of a timebase mismatch in two-way optical frequency transfer

    NASA Astrophysics Data System (ADS)

    Tampellini, Anna; Clivati, Cecilia; Levi, Filippo; Mura, Alberto; Calonico, Davide

    2017-12-01

    Two-way frequency transfer on optical fibers is a powerful technique for the comparison of distant clocks over long and ultra-long hauls. In contrast to traditional Doppler noise cancellation, it is capable of sustaining higher link attenuation, mitigating the need of optical amplification and regeneration and thus reducing the setup complexity. We investigate the ultimate limitations of the two-way approach on a 300 km multiplexed fiber haul, considering fully independent setups and acquisition systems at the two link ends. We derive a theoretical model to predict the performance deterioration due to a bad synchronisation of the measurements, which is confirmed by experimental results. This study demonstrates that two-way optical frequency transfer is a reliable and performing technique, capable of sustaining remote clocks comparisons at the 10-19 resolution, and is relevant for the development of a fiber network of continental scale for frequency metrology in Europe.

  3. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  4. Nonlinear Porous Diffusion Modeling of Hydrophilic Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach.

    PubMed

    Tredenick, Eloise C; Farrell, Troy W; Forster, W Alison; Psaltis, Steven T P

    2017-01-01

    The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.

  5. Nonlinear Porous Diffusion Modeling of Hydrophilic Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach

    PubMed Central

    Tredenick, Eloise C.; Farrell, Troy W.; Forster, W. Alison; Psaltis, Steven T. P.

    2017-01-01

    The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects. PMID:28539930

  6. Microstrip Yagi array for MSAT vehicle antenna application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur; Pozar, David

    1990-01-01

    A microstrip Yagi array was developed for the MSAT system as a low-cost mechanically steered medium-gain vehicle antenna. Because its parasitic reflector and director patches are not connected to any of the RF power distributing circuit, while still contributing to achieve the MSAT required directional beam, the antenna becomes a very efficient radiating system. With the complete monopulse beamforming circuit etched on a thin stripline board, the planar microstrip Yagi array is capable of achieving a very low profile. A theoretical model using the Method of Moments was developed to facilitate the ease of design and understanding of this antenna.

  7. Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns

    NASA Astrophysics Data System (ADS)

    Aoyagi, Toshio; Nomura, Masaki

    1999-08-01

    Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.

  8. GYC: A program to compute the turbulent boundary layer on a rotating cone

    NASA Technical Reports Server (NTRS)

    Sullivan, R. D.

    1976-01-01

    A computer program, GYC, which is capable of computing the properties of a compressible turbulent boundary layer on a rotating axisymmetric cone-cylinder body, according to the principles of invariant modeling was studied. The program is extended to include the calculation of the turbulence scale by a differential equation. GYC is in operation on the CDC-7600 computer and has undergone several corrections and improvements as a result of the experience gained. The theoretical basis for the program and the method of implementation, as well as information on its operation are given.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokaras, D.; Andrianis, M.; Lagoyannis, A.

    The cascade L-shell x-ray emission as an incident polarized and unpolarized monochromatic radiation overpass the 1s ionization threshold is investigated for the metallic Fe by means of moderate resolution, quantitative x-ray spectrometry. A full ab initio theoretical investigation of the L-shell x-ray emission processes is performed based on a detailed straightforward construction of the cascade decay trees within the Pauli-Fock approximation. The agreement obtained between experiments and the presented theory is indicated and discussed with respect to the accuracy of advanced atomic models as well as its significance for the characterization capabilities of x-ray fluorescence (XRF) analysis.

  10. Variables and potential models for the bleaching of luminescence signals in fluvial environments

    USGS Publications Warehouse

    Gray, Harrison J.; Mahan, Shannon

    2015-01-01

    Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.

  11. Global optimization of minority game by intelligent agents

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Bing-Hong; Hu, Chin-Kun; Zhou, Tao

    2005-10-01

    We propose a new model of minority game with intelligent agents who use trail and error method to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical minimum values in the long time limit and the global optimization of the system is reached. This suggests that the economic systems can self-organize into a highly optimized state by agents who make decisions based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also present, the simulation results and analytic calculations show that the intelligent agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority games proposed by Challet and Zhang.

  12. Concentration analysis of breast tissue phantoms with terahertz spectroscopy

    PubMed Central

    Truong, Bao C. Q.; Fitzgerald, Anthony J.; Fan, Shuting; Wallace, Vincent P.

    2018-01-01

    Terahertz imaging has been previously shown to be capable of distinguishing normal breast tissue from its cancerous form, indicating its applicability to breast conserving surgery. The heterogeneous composition of breast tissue is among the main challenges to progressing this potential research towards a practical application. In this paper, two concentration analysis methods are proposed for analyzing phantoms mimicking breast tissue. The dielectric properties and the double Debye parameters were used to determine the phantom composition. The first method is wholly based on the conventional effective medium theory while the second one combines this theoretical model with empirical polynomial models. Through assessing the accuracy of these methods, their potential for application to quantifying breast tissue pathology was confirmed. PMID:29541525

  13. Population clocks: motor timing with neural dynamics

    PubMed Central

    Buonomano, Dean V.; Laje, Rodrigo

    2010-01-01

    An understanding of sensory and motor processing will require elucidation of the mechanisms by which the brain tells time. Open questions relate to whether timing relies on dedicated or intrinsic mechanisms and whether distinct mechanisms underlie timing across scales and modalities. Although experimental and theoretical studies support the notion that neural circuits are intrinsically capable of sensory timing on short scales, few general models of motor timing have been proposed. For one class of models, population clocks, it is proposed that time is encoded in the time-varying patterns of activity of a population of neurons. We argue that population clocks emerge from the internal dynamics of recurrently connected networks, are biologically realistic and account for many aspects of motor timing. PMID:20889368

  14. Monitoring temperatures in coal conversion and combustion processes via ultrasound

    NASA Astrophysics Data System (ADS)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    The state of the art of instrumentation for monitoring temperatures in coal conversion and combustion systems is examined. The instrumentation types studied include thermocouples, radiation pyrometers, and acoustical thermometers. The capabilities and limitations of each type are reviewed. A feasibility study of the ultrasonic thermometry is described. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible.

  15. A method to model latent heat for transient analysis using NASTRAN

    NASA Technical Reports Server (NTRS)

    Harder, R. L.

    1982-01-01

    A sample heat transfer analysis is demonstrated which includes the heat of fusion. The method can be used to analyze a system with nonconstant specific heat. The enthalpy is introduced as an independent degree of freedom at each node. The user input consists of a curve of temperature as a function of enthalpy, which may include a constant temperature phase change. The basic NASTRAN heat transfer capability is used to model the effects of latent heat with existing direct matrix output and nonlinear load data cards. Although some user care is required, the numerical stability of the integration is quite good when the given recommendations are followed. The theoretical equations used and the NASTRAN techniques are shown.

  16. Modeling users' activity on Twitter networks: validation of Dunbar's number

    NASA Astrophysics Data System (ADS)

    Goncalves, Bruno; Perra, Nicola; Vespignani, Alessandro

    2012-02-01

    Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the ``economy of attention'' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

  17. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  18. Constructing a molecular theory of self-assembly: Interplay of ideas from surfactants and block copolymers.

    PubMed

    Nagarajan, Ramanathan

    2017-06-01

    Low molecular weight surfactants and high molecular weight block copolymers display analogous self-assembly behavior in solutions and at interfaces, generating nanoscale structures of different shapes. Understanding the link between the molecular structure of these amphiphiles and their self-assembly behavior has been the goal of theoretical studies. Despite the analogies between surfactants and block copolymers, models predicting their self-assembly behavior have evolved independent of one another, each overlooking the molecular feature considered critical to the other. In this review, we focus on the interplay of ideas pertaining to surfactants and block copolymers in three areas of self-assembly. First, we show how improved free energy models have evolved by applying ideas from surfactants to block copolymers and vice versa, giving rise to a unitary theoretical framework and better predictive capabilities for both classes of amphiphiles. Second we show that even though molecular packing arguments are often used to explain aggregate shape transitions resulting from self-assembly, the molecular packing considerations are more relevant in the case of surfactants whereas free energy criteria are relevant for block copolymers. Third, we show that even though the surfactant and block copolymer aggregates are small nanostructures, the size differences between them is significant enough to make the interfacial effects control the solubilization of molecules in surfactant micelles while the bulk interactions control the solubilization in block copolymer micelles. Finally, we conclude by identifying recent theoretical progress in adapting the micelle model to a wide variety of self-assembly phenomena and the challenges to modeling posed by emerging novel classes of amphiphiles with complex biological, inorganic or nanoparticle moieties. Published by Elsevier B.V.

  19. A combined model for Sediment TRansport In Coastal Hazard Events (GeoClaw-STRICHE): Theoretical formulation and validation

    NASA Astrophysics Data System (ADS)

    Tang, H.; Weiss, R.

    2016-12-01

    GeoClaw-STRICHE is designed for simulating the physical impacts of tsunami as it relates to erosion, transport and deposition. GeoClaw-STRICHE comprises GeoClaw for the hydrodynamics and the sediment transport model we refer to as STRICHE, which includes an advection diffusion equation as well as bed-updating. Multiple grain sizes and sediment layers are added into GeoClaw-STRICHE to simulate grain-size distribution and add the capability to develop grain-size trends from bottom to the top of a simulated deposit as well as along the inundation. Unlike previous models based on empirical equations or sediment concentration gradient, the standard Van Leer method is applied to calculate sediment flux. We tested and verified GeoClaw-STRICHE with flume experiment by Johnson et al. (2016) and data from the 2004 Indian Ocean tsunami in Kuala Meurisi as published in Apotsos et al. (2011). The comparison with experimental data shows GeoClaw-STRICHE's capability to simulate sediment thickness and grain-size distribution in experimental conditions, which builds confidence that sediment transport is correctly predicted by this model. The comparison with the data from the 2004 Indian Ocean tsunami reveals that the pattern of sediment thickness is well predicted and is of similar quality, if not better than the established computational models such as Delft3D.

  20. A Social Justice Alternative for Framing Post-Compulsory Education: A Human Development Perspective of VET in Times of Economic Dominance

    ERIC Educational Resources Information Center

    Lopez-Fogues, Aurora

    2016-01-01

    The article provides an alternative theoretical framework for evaluating contemporary issues facing education, specifically vocational education and training (VET) in Europe. In order to accomplish this, it draws on the theoretical insights of the capability approach in the work of Amartya Sen; the concept of vulnerability as intrinsic to every…

  1. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less

  2. Statistical mechanics of complex neural systems and high dimensional data

    NASA Astrophysics Data System (ADS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-03-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.

  3. Computational modeling of in vitro biological responses on polymethacrylate surfaces

    PubMed Central

    Ghosh, Jayeeta; Lewitus, Dan Y; Chandra, Prafulla; Joy, Abraham; Bushman, Jared; Knight, Doyle; Kohn, Joachim

    2011-01-01

    The objective of this research was to examine the capabilities of QSPR (Quantitative Structure Property Relationship) modeling to predict specific biological responses (fibrinogen adsorption, cell attachment and cell proliferation index) on thin films of different polymethacrylates. Using 33 commercially available monomers it is theoretically possible to construct a library of over 40,000 distinct polymer compositions. A subset of these polymers were synthesized and solvent cast surfaces were prepared in 96 well plates for the measurement of fibrinogen adsorption. NIH 3T3 cell attachment and proliferation index were measured on spin coated thin films of these polymers. Based on the experimental results of these polymers, separate models were built for homo-, co-, and terpolymers in the library with good correlation between experiment and predicted values. The ability to predict biological responses by simple QSPR models for large numbers of polymers has important implications in designing biomaterials for specific biological or medical applications. PMID:21779132

  4. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. A simple model to predict the biodiesel blend density as simultaneous function of blend percent and temperature.

    PubMed

    Gaonkar, Narayan; Vaidya, R G

    2016-05-01

    A simple method to estimate the density of biodiesel blend as simultaneous function of temperature and volume percent of biodiesel is proposed. Employing the Kay's mixing rule, we developed a model and investigated theoretically the density of different vegetable oil biodiesel blends as a simultaneous function of temperature and volume percent of biodiesel. Key advantage of the proposed model is that it requires only a single set of density values of components of biodiesel blends at any two different temperatures. We notice that the density of blend linearly decreases with increase in temperature and increases with increase in volume percent of the biodiesel. The lower values of standard estimate of error (SEE = 0.0003-0.0022) and absolute average deviation (AAD = 0.03-0.15 %) obtained using the proposed model indicate the predictive capability. The predicted values found good agreement with the recent available experimental data.

  6. Quantitative Structure-Activity Relationship of Insecticidal Activity of Benzyl Ether Diamidine Derivatives

    NASA Astrophysics Data System (ADS)

    Zhai, Mengting; Chen, Yan; Li, Jing; Zhou, Jun

    2017-12-01

    The molecular electrongativity distance vector (MEDV-13) was used to describe the molecular structure of benzyl ether diamidine derivatives in this paper, Based on MEDV-13, The three-parameter (M 3, M 15, M 47) QSAR model of insecticidal activity (pIC 50) for 60 benzyl ether diamidine derivatives was constructed by leaps-and-bounds regression (LBR) . The traditional correlation coefficient (R) and the cross-validation correlation coefficient (R CV ) were 0.975 and 0.971, respectively. The robustness of the regression model was validated by Jackknife method, the correlation coefficient R were between 0.971 and 0.983. Meanwhile, the independent variables in the model were tested to be no autocorrelation. The regression results indicate that the model has good robust and predictive capabilities. The research would provide theoretical guidance for the development of new generation of anti African trypanosomiasis drugs with efficiency and low toxicity.

  7. Dynamic sensing model for accurate delectability of environmental phenomena using event wireless sensor network

    NASA Astrophysics Data System (ADS)

    Missif, Lial Raja; Kadhum, Mohammad M.

    2017-09-01

    Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.

  8. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Manski, Detlef; Martin, James A.

    1988-07-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  9. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Manski, Detlef; Martin, James A.

    1988-01-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  10. Interoperability Matter: Levels of Data Sharing, Starting from a 3d Information Modelling

    NASA Astrophysics Data System (ADS)

    Tommasi, C.; Achille, C.

    2017-02-01

    Nowadays, the adoption of BIM processes in the AEC (Architecture, Engineering and Construction) industry means to be oriented towards synergistic workflows, based on informative instruments capable of realizing the virtual model of the building. The target of this article is to speak about the interoperability matter, approaching the subject through a theoretical part and also a practice example, in order to show how these notions are applicable in real situations. In particular, the case study analysed belongs to the Cultural Heritage field, where it is possible to find some difficulties - both in the modelling and sharing phases - due to the complexity of shapes and elements. Focusing on the interoperability between different software, the questions are: What and how many kind of information can I share? Given that this process leads also to a standardization of the modelled parts, is there the possibility of an accuracy loss?

  11. A Thermo-Optic Propagation Modeling Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less

  12. Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model

    PubMed Central

    Xu, Guanghua; Yang, Junjie; Li, Guoqing

    2013-01-01

    We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530

  13. Do we always prioritize balance when walking? Towards an integrated model of task prioritization.

    PubMed

    Yogev-Seligmann, Galit; Hausdorff, Jeffrey M; Giladi, Nir

    2012-05-01

    Previous studies suggest that strategies such as "posture first" are implicitly employed to regulate safety when healthy adults walk while simultaneously performing another task, whereas "posture second" may be inappropriately applied in the presence of neurological disease. However, recent understandings raise questions about the traditional resource allocation concept during walking while dual tasking. We propose a task prioritization model of walking while dual tasking that integrates motor and cognitive capabilities, focusing on postural reserve, hazard estimation, and other individual intrinsic factors. The proposed prioritization model provides a theoretical foundation for future studies and a framework for the development of interventions designed to reduce the profound negative impacts of dual tasking on gait and fall risk in patients with neurological diseases. © 2012 Movement Disorder Society. Copyright © 2012 Movement Disorder Society.

  14. LDEF microenvironments, observed and predicted

    NASA Astrophysics Data System (ADS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-04-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  15. LDEF microenvironments, observed and predicted

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-01-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  16. Quantitative dual-probe microdialysis: mathematical model and analysis.

    PubMed

    Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles

    2002-04-01

    Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.

  17. Aiming at Tobacco Harm Reduction: A survey comparing smokers differing in readiness to quit

    PubMed Central

    Loumakou, Maria; Brouskeli, Vasiliki; Sarafidou, Jasmin-Olga

    2006-01-01

    Background Greece has the highest smoking rates (in the 15-nation bloc) in Europe. The purpose of this study was to investigate Greek smokers' intention and appraisal of capability to quit employing the theoretical frameworks of Decisional Balance (DB) and Cognitive Dissonance (CD). Methods A cross-sectional study including 401 Greek habitual smokers (205 men and 195 women), falling into four groups according to their intention and self-appraised capability to quit smoking was carried out. Participants completed a questionnaire recording their attitude towards smoking, intention and self appraised capability to quit smoking, socio-demographic information, as well as a DB and a CD scale. Results The most numerous group of smokers (38%) consisted of those who neither intended nor felt capable to quit and these smokers perceived more benefits of smoking than negatives. DB changed gradually according to smokers' "readiness" to quit: the more ready they felt to quit the less the pros of smoking outnumbered the cons. Regarding relief of CD, smokers who intended but did not feel capable to quit employed more "excuses" compared to those who felt capable. Additionally smokers with a past history of unsuccessful quit attempts employed fewer "excuses" even though they were more frequently found among those who intended but did not feel capable to quit. Conclusion Findings provide support for the DB theory. On the other hand, "excuses" do not appear to be extensively employed to reduce the conflict between smoking and concern for health. There is much heterogeneity regarding smokers' intention and appraised capability to quit, reflecting theoretical and methodological problems with the distinction among stages of change. Harm reduction programs and interventions designed to increase the implementation of smoking cessation should take into account the detrimental effect of past unsuccessful quit attempts. PMID:16569250

  18. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  19. A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks.

    PubMed

    Tsoukias, Nikolaos M; Goldman, Daniel; Vadapalli, Arjun; Pittman, Roland N; Popel, Aleksander S

    2007-10-21

    A detailed computational model is developed to simulate oxygen transport from a three-dimensional (3D) microvascular network to the surrounding tissue in the presence of hemoglobin-based oxygen carriers. The model accounts for nonlinear O(2) consumption, myoglobin-facilitated diffusion and nonlinear oxyhemoglobin dissociation in the RBCs and plasma. It also includes a detailed description of intravascular resistance to O(2) transport and is capable of incorporating realistic 3D microvascular network geometries. Simulations in this study were performed using a computer-generated microvascular architecture that mimics morphometric parameters for the hamster cheek pouch retractor muscle. Theoretical results are presented next to corresponding experimental data. Phosphorescence quenching microscopy provided PO(2) measurements at the arteriolar and venular ends of capillaries in the hamster retractor muscle before and after isovolemic hemodilution with three different hemodilutents: a non-oxygen-carrying plasma expander and two hemoglobin solutions with different oxygen affinities. Sample results in a microvascular network show an enhancement of diffusive shunting between arterioles, venules and capillaries and a decrease in hemoglobin's effectiveness for tissue oxygenation when its affinity for O(2) is decreased. Model simulations suggest that microvascular network anatomy can affect the optimal hemoglobin affinity for reducing tissue hypoxia. O(2) transport simulations in realistic representations of microvascular networks should provide a theoretical framework for choosing optimal parameter values in the development of hemoglobin-based blood substitutes.

  20. Theoretical and Empirical Descriptions of Thermospheric Density

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Qian, L.

    2004-12-01

    The longest-term and most accurate overall description the density of the upper thermosphere is provided by analysis of change in the ephemeris of Earth-orbiting satellites. Empirical models of the thermosphere developed in part from these measurements can do a reasonable job of describing thermospheric properties on a climatological basis, but the promise of first-principles global general circulation models of the coupled thermosphere/ionosphere system is that a true high-resolution, predictive capability may ultimately be developed for thermospheric density. However, several issues are encountered when attempting to tune such models so that they accurately represent absolute densities as a function of altitude, and their changes on solar-rotational and solar-cycle time scales. Among these are the crucial ones of getting the heating rates (from both solar and auroral sources) right, getting the cooling rates right, and establishing the appropriate boundary conditions. However, there are several ancillary issues as well, such as the problem of registering a pressure-coordinate model onto an altitude scale, and dealing with possible departures from hydrostatic equilibrium in empirical models. Thus, tuning a theoretical model to match empirical climatology may be difficult, even in the absence of high temporal or spatial variation of the energy sources. We will discuss some of the challenges involved, and show comparisons of simulations using the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to empirical model estimates of neutral thermosphere density and temperature. We will also show some recent simulations using measured solar irradiance from the TIMED/SEE instrument as input to the TIE-GCM.

  1. Fractional viscoelasticity of soft elastomers and auxetic foams

    NASA Astrophysics Data System (ADS)

    Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William

    2018-03-01

    Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.

  2. Computational study of nonlinear plasma waves. [plasma simulation model applied to electrostatic waves in collisionless plasma

    NASA Technical Reports Server (NTRS)

    Matsuda, Y.

    1974-01-01

    A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.

  3. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  4. Validation of design procedure and performance modeling of a heat and fluid transport field experiment in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Nir, A.; Doughty, C.; Tsang, C. F.

    Validation methods which developed in the context of deterministic concepts of past generations often cannot be directly applied to environmental problems, which may be characterized by limited reproducibility of results and highly complex models. Instead, validation is interpreted here as a series of activities, including both theoretical and experimental tests, designed to enhance our confidence in the capability of a proposed model to describe some aspect of reality. We examine the validation process applied to a project concerned with heat and fluid transport in porous media, in which mathematical modeling, simulation, and results of field experiments are evaluated in order to determine the feasibility of a system for seasonal thermal energy storage in shallow unsaturated soils. Technical details of the field experiments are not included, but appear in previous publications. Validation activities are divided into three stages. The first stage, carried out prior to the field experiments, is concerned with modeling the relevant physical processes, optimization of the heat-exchanger configuration and the shape of the storage volume, and multi-year simulation. Subjects requiring further theoretical and experimental study are identified at this stage. The second stage encompasses the planning and evaluation of the initial field experiment. Simulations are made to determine the experimental time scale and optimal sensor locations. Soil thermal parameters and temperature boundary conditions are estimated using an inverse method. Then results of the experiment are compared with model predictions using different parameter values and modeling approximations. In the third stage, results of an experiment performed under different boundary conditions are compared to predictions made by the models developed in the second stage. Various aspects of this theoretical and experimental field study are described as examples of the verification and validation procedure. There is no attempt to validate a specific model, but several models of increasing complexity are compared with experimental results. The outcome is interpreted as a demonstration of the paradigm proposed by van der Heijde, 26 that different constituencies have different objectives for the validation process and therefore their acceptance criteria differ also.

  5. A numerical investigation of pumping-test responses from contiguous aquifers

    NASA Astrophysics Data System (ADS)

    Rafini, Silvain; Chesnaux, Romain; Ferroud, Anouck

    2017-05-01

    Adequate groundwater management requires models capable of representing the heterogeneous nature of aquifers. A key point is the theoretical knowledge of flow behaviour in various heterogeneous archetypal conditions, using analytically or numerically based models. This study numerically investigates transient pressure transfers between linearly contiguous homogeneous domains with non-equal hydraulic properties, optionally separated by a conductive fault. Responses to pumping are analysed in terms of time-variant flow dimension, n. Two radial stages are predicted ( n: 2 - 2) with a positive or negative vertical offset depending of the transmissivity ratio between domains. A transitional n = 4 segment occurs when the non-pumped domain is more transmissive ( n: 2 - 4 - 2), and a fractional flow segment occurs when the interface is a fault ( n: 2 - 4 - 1.5 - 2). The hydrodynamics are generally governed by the transmissivity ratio; the storativity ratio impact is limited. The drawdown log-derivative late stabilization, recorded at any well, does not tend to reflect the local transmissivity but rather the higher transmissivity region, possibly distant and blind, as it predominantly supplies groundwater to the well. This study provides insights on the behaviour of non-uniform aquifers and on theoretical responses that can aid practitioners to detect such conditions in nature.

  6. Theoretical and experimental study of mirrorless fiber optics refractometer based on quasi-Gaussian approach

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Krishnan, Ganesan; Saliman, Tiffany; Fakaruddin Sidi Ahmad, M.; Bidin, Noriah

    2018-03-01

    A mirrorless refractometer was studied and analyzed using the quasi-Gaussian beam approach. The Fresnel equation for reflectivity at the interface between two mediums with different refractive indices was used to calculate the directional reflectivity, R. Various liquid samples from 1.3325 to 1.4657 refractive indices units were used. Experimentally, a fiber bundle probe with a concentric configuration of 16 receiving fibers and a single transmitting fiber was employed to verify the developed models. The sensor performance in term of sensitivity, linear range, and resolution, were analyzed and calculated. It has been shown that the developed theoretical models are capable of providing quantitative guidance of the output of the sensor with high accuracy. The highest resolution of the sensor was 4.39  ×  10-3 refractive indices units, obtained by correlating the peak voltage along the refractive index. The resolution is sufficient for determining the specific refractive index increment of most polymer solutions, certain proteins, and also in monitoring bacterial growth. The accuracy, simplicity, and effectiveness of the proposed sensor over a long period of time while having non-contact measurements reflect a good potential for commercialization.

  7. Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo

    PubMed Central

    Coffman, Valerie C.; McDermott, Matthew B. A.; Shtylla, Blerta; Dawes, Adriana T.

    2016-01-01

    Positioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initial centration and rotation of the pronuclear complex and entry into mitosis, and the models do not replicate in vivo timing of centration and rotation. Here we propose a model that incorporates asymmetry in the microtubule arrays generated by each MTOC, which we demonstrate with in vivo measurements, and a similar asymmetric force profile to that required for posterior-directed spindle displacement during mitosis. We find that these asymmetries are capable of and important for recapitulating the simultaneous centration and rotation of the pronuclear complex observed in vivo. The combination of theoretical and experimental evidence provided here offers a unified framework for the spatial organization and forces needed for pronuclear centration, rotation, and spindle displacement in the early C. elegans embryo. PMID:27733624

  8. The `TTIME' Package: Performance Evaluation in a Cluster Computing Environment

    NASA Astrophysics Data System (ADS)

    Howe, Marico; Berleant, Daniel; Everett, Albert

    2011-06-01

    The objective of translating developmental event time across mammalian species is to gain an understanding of the timing of human developmental events based on known time of those events in animals. The potential benefits include improvements to diagnostic and intervention capabilities. The CRAN `ttime' package provides the functionality to infer unknown event timings and investigate phylogenetic proximity utilizing hierarchical clustering of both known and predicted event timings. The original generic mammalian model included nine eutherian mammals: Felis domestica (cat), Mustela putorius furo (ferret), Mesocricetus auratus (hamster), Macaca mulatta (monkey), Homo sapiens (humans), Mus musculus (mouse), Oryctolagus cuniculus (rabbit), Rattus norvegicus (rat), and Acomys cahirinus (spiny mouse). However, the data for this model is expected to grow as more data about developmental events is identified and incorporated into the analysis. Performance evaluation of the `ttime' package across a cluster computing environment versus a comparative analysis in a serial computing environment provides an important computational performance assessment. A theoretical analysis is the first stage of a process in which the second stage, if justified by the theoretical analysis, is to investigate an actual implementation of the `ttime' package in a cluster computing environment and to understand the parallelization process that underlies implementation.

  9. An orbital emulator for pursuit-evasion game theoretic sensor management

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Wang, Tao; Wang, Gang; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2017-05-01

    This paper develops and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motion methods. The 3D motion of a satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. For multiple satellites, a fast map-merging algorithm is integrated into the robot operating system (ROS) and simultaneous localization and mapping (SLAM) routines to locate the multiple robots in the scene. The OE is used to demonstrate a pursuit-evasion (PE) game theoretic sensor management algorithm, which models conflicts between a space-based-visible (SBV) satellite (as pursuer) and a geosynchronous (GEO) satellite (as evader). The cost function of the PE game is based on the informational entropy of the SBV-tracking-GEO scenario. GEO can maneuver using a continuous and low thruster. The hard-in-loop space emulator visually illustrates the SSA problem solution based PE game.

  10. Vorticity dipoles and a theoretical model of a finite force at the moving contact line singularity

    NASA Astrophysics Data System (ADS)

    Zhang, Peter; Devoria, Adam; Mohseni, Kamran

    2017-11-01

    In the well known works of Moffatt (1964) and Huh & Scriven (1971), an infinite force was reported at the moving contact line (MCL) and attributed to a non-integrable stress along the fluid-solid boundary. In our recent investigation of the boundary driven wedge, a model of the MCL, we find that the classical solution theoretically predicts a finite force at the contact line if the forces applied by the two boundaries that make up the corner are taken into consideration. Mathematically, this force can be obtained by the complex contour integral of the holomorphic vorticity-pressure function given by G = μω + ip . Alternatively, this force can also be found using a carefully defined real integral that incorporates the two boundaries. Motivated by this discovery, we have found that the rate of change in circulation, viscous energy dissipation, and viscous energy flux is also finite per unit contact line length. The analysis presented demonstrates that despite a singular stress and a relatively simple geometry, the no-slip semi-infinite wedge is capable of capturing some physical quantities of interest. Furthermore, this result provides a foundation for other challenging topics such as dynamic contact angle.

  11. Tensegrity and motor-driven effective interactions in a model cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2012-04-01

    Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.

  12. Structural equation modeling for observational studies

    USGS Publications Warehouse

    Grace, J.B.

    2008-01-01

    Structural equation modeling (SEM) represents a framework for developing and evaluating complex hypotheses about systems. This method of data analysis differs from conventional univariate and multivariate approaches familiar to most biologists in several ways. First, SEMs are multiequational and capable of representing a wide array of complex hypotheses about how system components interrelate. Second, models are typically developed based on theoretical knowledge and designed to represent competing hypotheses about the processes responsible for data structure. Third, SEM is conceptually based on the analysis of covariance relations. Most commonly, solutions are obtained using maximum-likelihood solution procedures, although a variety of solution procedures are used, including Bayesian estimation. Numerous extensions give SEM a very high degree of flexibility in dealing with nonnormal data, categorical responses, latent variables, hierarchical structure, multigroup comparisons, nonlinearities, and other complicating factors. Structural equation modeling allows researchers to address a variety of questions about systems, such as how different processes work in concert, how the influences of perturbations cascade through systems, and about the relative importance of different influences. I present 2 example applications of SEM, one involving interactions among lynx (Lynx pardinus), mongooses (Herpestes ichneumon), and rabbits (Oryctolagus cuniculus), and the second involving anuran species richness. Many wildlife ecologists may find SEM useful for understanding how populations function within their environments. Along with the capability of the methodology comes a need for care in the proper application of SEM.

  13. Transient flow characteristics of a high speed rotary valve

    NASA Astrophysics Data System (ADS)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  14. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis.

    PubMed

    Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger

    2017-02-15

    Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.

  15. Prosthetic leg powered by MR brake and SMA wires

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Munguia, Vicente; Calderon, Jose

    2014-04-01

    Current knee designs for prosthetic legs rely on electric motors for both moving and stationary states. The electric motors draw an especially high level of current to sustain a fixed position. The advantage of using magnetorheological (MR) fluid is that it requires less current and can have a variable braking torque. Besides, the proposed prosthetic leg is actuated by NiTinol wire, a popular shape memory alloy (SMA). The incorporation of NiTinol gives the leg more realistic weight distribution with appropriate arrangement of the batteries and wires. The prosthesis in this research was designed with MR brake as stopping component and SMA wire network as actuating component at the knee. The MR brake was designed with novel non-circular shape for the rotor that improved the braking torque while minimizing the power consumption. The design also helped simplify the control of braking process. The SMA wire network was design so that the knee motion was actively rotated in both directions. The SMA wires were arranged and played very similar role as the leg's muscles. The study started with the overall solid design of the knee including both MR and SMA parts. Theoretical models were derived and programmed in Simulink for both components. The simulation was capable of predicting the power required for moving the leg or hold it in a fixed position for a certain amount of time. Subsequently, the design was prototyped and tested to validate the theoretical prediction. The theoretical models were updated accordingly to correlate with the experimental data.

  16. Rotational Motions from Teleseismic Events - Modelling and Observations

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Igel, H.; Wassermann, J.; Cochard, A.; Schreiber, U.

    2004-12-01

    Currently only ring lasers technology is capable of recording rotational motions resulting from earthquakes with a sensitivity and frequency band that are interesting for broadband seismology. One of those instruments is located at the Geodetic observatory in Wettzell/Germany. Here we present theoretical studies of rotational motions simulated with different Earth models and comparisons with several observations at the Wettzell ring laser. The 3-D global simulations were performed with the Spectral Element Method (Komatitsch and Tromp 2002a,b), that was modified to also allow the output of rotational seismograms. The Earth models used in these simulations range from simple radially symmetric ones, such as PREM, to more complex models including 3D velocity structures, attenuation and geometric effects like topography and bathymetry. Thus, by comparison of the theoretical rotation rates with the ring laser data we show how the results converge to the observed rotation rates when using more realistic Earth models. In a second step we compare rotation rates to the transverse component of translational acceleration both obtained from simulations with 3D velocity structures in crust and mantle. As expected from theory - under the assumption of plane wave propagation - those two signals should be in phase and scale linearly with the phase velocity. Using this relation, it is possible to determine the local phase velocity of transverse signals from collocated measurments of rotations and transverse accelerations. We compare the estimated phase velocities with those observed in a temporary seismic array installed around the ring laser.

  17. Vortices in Long Josephson Junctions.

    DTIC Science & Technology

    1987-11-01

    of the very low impedance vortex flow transistor and toward determination of its potential for high frequency applications. Capability for higher...version. New progress was made toward solution of the problems of high frequency testing of the very low impedance vortex flow transistor and towards... measurable transresistance ’". out to frequencies of about 10% of the theoretical transit time cutoff fre- quency. Capability for higher frequency testing

  18. Functional Assessment for Human-Computer Interaction: A Method for Quantifying Physical Functional Capabilities for Information Technology Users

    ERIC Educational Resources Information Center

    Price, Kathleen J.

    2011-01-01

    The use of information technology is a vital part of everyday life, but for a person with functional impairments, technology interaction may be difficult at best. Information technology is commonly designed to meet the needs of a theoretical "normal" user. However, there is no such thing as a "normal" user. A user's capabilities will vary over…

  19. Forced vibration analysis of rotating cyclic structures in NASTRAN

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.; Skalski, S. C.

    1981-01-01

    A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.

  20. Vibration Measurement Method of a String in Transversal Motion by Using a PSD

    PubMed Central

    Yang, Che-Hua; Wu, Tai-Chieh

    2017-01-01

    A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string’s natural frequency, increase while the speed of motion increases. PMID:28714915

  1. Synthetic electromagnetic knot in a three-dimensional skyrmion

    PubMed Central

    Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.

    2018-01-01

    Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735

  2. Initiating and utilizing shared leadership in teams: The role of leader humility, team proactive personality, and team performance capability.

    PubMed

    Chiu, Chia-Yen Chad; Owens, Bradley P; Tesluk, Paul E

    2016-12-01

    The present study was designed to produce novel theoretical insight regarding how leader humility and team member characteristics foster the conditions that promote shared leadership and when shared leadership relates to team effectiveness. Drawing on social information processing theory and adaptive leadership theory, we propose that leader humility facilitates shared leadership by promoting leadership-claiming and leadership-granting interactions among team members. We also apply dominance complementary theory to propose that team proactive personality strengthens the impact of leader humility on shared leadership. Finally, we predict that shared leadership will be most strongly related to team performance when team members have high levels of task-related competence. Using a sample composed of 62 Taiwanese professional work teams, we find support for our proposed hypothesized model. The theoretical and practical implications of these results for team leadership, humility, team composition, and shared leadership are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.

    2007-12-01

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.

  4. Intensity dynamics in a waveguide array laser

    NASA Astrophysics Data System (ADS)

    Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.

    2011-02-01

    We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.

  5. The brainstem reticular formation is a small-world, not scale-free, network

    PubMed Central

    Humphries, M.D; Gurney, K; Prescott, T.J

    2005-01-01

    Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement. PMID:16615219

  6. The development of methods for predicting and measuring distribution patterns of aerial sprays

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1979-01-01

    The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  7. Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator

    NASA Astrophysics Data System (ADS)

    Song, Linze; Shi, Qiang

    2017-02-01

    We present a theoretical approach to study nonequilibrium quantum heat transport in molecular junctions described by a spin-boson type model. Based on the Feynman-Vernon path integral influence functional formalism, expressions for the average value and high-order moments of the heat current operators are derived, which are further obtained directly from the auxiliary density operators (ADOs) in the hierarchical equations of motion (HEOM) method. Distribution of the heat current is then derived from the high-order moments. As the HEOM method is nonperturbative and capable of treating non-Markovian system-environment interactions, the method can be applied to various problems of nonequilibrium quantum heat transport beyond the weak coupling regime.

  8. Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation

    NASA Astrophysics Data System (ADS)

    Barchiesi, Emilio; Ganzosch, Gregor; Liebold, Christian; Placidi, Luca; Grygoruk, Roman; Müller, Wolfgang H.

    2018-01-01

    Due to the latest advancements in 3D printing technology and rapid prototyping techniques, the production of materials with complex geometries has become more affordable than ever. Pantographic structures, because of their attractive features, both in dynamics and statics and both in elastic and inelastic deformation regimes, deserve to be thoroughly investigated with experimental and theoretical tools. Herein, experimental results relative to displacement-controlled large deformation shear loading tests of pantographic structures are reported. In particular, five differently sized samples are analyzed up to first rupture. Results show that the deformation behavior is strongly nonlinear, and the structures are capable of undergoing large elastic deformations without reaching complete failure. Finally, a cutting edge model is validated by means of these experimental results.

  9. Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number

    PubMed Central

    Gonçalves, Bruno; Perra, Nicola; Vespignani, Alessandro

    2011-01-01

    Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100–200 stable relationships. Thus, the ‘economy of attention’ is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior. PMID:21826200

  10. Is extreme learning machine feasible? A theoretical assessment (part I).

    PubMed

    Liu, Xia; Lin, Shaobo; Fang, Jian; Xu, Zongben

    2015-01-01

    An extreme learning machine (ELM) is a feedforward neural network (FNN) like learning system whose connections with output neurons are adjustable, while the connections with and within hidden neurons are randomly fixed. Numerous applications have demonstrated the feasibility and high efficiency of ELM-like systems. It has, however, been open if this is true for any general applications. In this two-part paper, we conduct a comprehensive feasibility analysis of ELM. In Part I, we provide an answer to the question by theoretically justifying the following: 1) for some suitable activation functions, such as polynomials, Nadaraya-Watson and sigmoid functions, the ELM-like systems can attain the theoretical generalization bound of the FNNs with all connections adjusted, i.e., they do not degrade the generalization capability of the FNNs even when the connections with and within hidden neurons are randomly fixed; 2) the number of hidden neurons needed for an ELM-like system to achieve the theoretical bound can be estimated; and 3) whenever the activation function is taken as polynomial, the deduced hidden layer output matrix is of full column-rank, therefore the generalized inverse technique can be efficiently applied to yield the solution of an ELM-like system, and, furthermore, for the nonpolynomial case, the Tikhonov regularization can be applied to guarantee the weak regularity while not sacrificing the generalization capability. In Part II, however, we reveal a different aspect of the feasibility of ELM: there also exists some activation functions, which makes the corresponding ELM degrade the generalization capability. The obtained results underlie the feasibility and efficiency of ELM-like systems, and yield various generalizations and improvements of the systems as well.

  11. Toward a theory of organisms: Three founding principles in search of a useful integration

    PubMed Central

    SOTO, ANA M.; LONGO, GIUSEPPE; MIQUEL, PAUL-ANTOINE; MONTEVIL, MAËL; MOSSIO, MATTEO; PERRET, NICOLE; POCHEVILLE, ARNAUD; SONNENSCHEIN, CARLOS

    2016-01-01

    Organisms, be they uni- or multi-cellular, are agents capable of creating their own norms; they are continuously harmonizing their ability to create novelty and stability, that is, they combine plasticity with robustness. Here we articulate the three principles for a theory of organisms proposed in this issue, namely: the default state of proliferation with variation and motility, the principle of variation and the principle of organization. These principles profoundly change both biological observables and their determination with respect to the theoretical framework of physical theories. This radical change opens up the possibility of anchoring mathematical modeling in biologically proper principles. PMID:27498204

  12. AXAOTHER XL -- A spreadsheet for determining doses for incidents caused by tornadoes or high-velocity straight winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, A.A.

    1996-09-01

    AXAOTHER XL is an Excel Spreadsheet used to determine dose to the maximally exposed offsite individual during high-velocity straight winds or tornado conditions. Both individual and population doses may be considered. Potential exposure pathways are inhalation and plume shine. For high-velocity straight winds the spreadsheet has the capability to determine the downwind relative air concentration, however for the tornado conditions, the user must enter the relative air concentration. Theoretical models are discussed and hand calculations are performed to ensure proper application of methodologies. A section has also been included that contains user instructions for the spreadsheet.

  13. Boost-phase discrimination research activities

    NASA Technical Reports Server (NTRS)

    Cooper, David M.; Deiwert, George S.

    1989-01-01

    Theoretical research in two areas was performed. The aerothermodynamics research focused on the hard-body and rocket plume flows. Analytical real gas models to describe finite rate chemistry were developed and incorporated into the three-dimensional flow codes. New numerical algorithms capable of treating multi-species reacting gas equations and treating flows with large gradients were also developed. The computational chemistry research focused on the determination of spectral radiative intensity factors, transport properties and reaction rates. Ab initio solutions to the Schrodinger equation provided potential energy curves transition moments (radiative probabilities and strengths) and potential energy surfaces. These surfaces were then coupled with classical particle reactive trajectories to compute reaction cross-sections and rates.

  14. Optical memory based on quantized atomic center-of-mass motion.

    PubMed

    Lopez, J P; de Almeida, A J F; Felinto, D; Tabosa, J W R

    2017-11-01

    We report a new type of optical memory using a pure two-level system of cesium atoms cooled by the magnetically assisted Sisyphus effect. The optical information of a probe field is stored in the coherence between quantized vibrational levels of the atoms in the potential wells of a 1-D optical lattice. The retrieved pulse shows Rabi oscillations with a frequency determined by the reading beam intensity and are qualitatively understood in terms of a simple theoretical model. The exploration of the external degrees of freedom of an atom may add another capability in the design of quantum-information protocols using light.

  15. Edge Effect of Strained Bilayer Nanofilms for Tunable Multistability and Actuation

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Hu, Nan; Han, Xiaomin; Huang, Shicheng; Grover, Hannah; Yu, Xiaojiao; Zhang, Lina; Trase, Ian; Zhang, John X. J.; Zhang, Li; Dong, Lixin

    Multistability, the capability of a structure to exhibit more than one stable shape, has received increasing attention due to its applications in robotics, and energy harvesters, etc. Programming multistability into nano-electromechanical systems allows for microscale manipulation, energy harvesting and robotic operation for biomedical applications. In a spontaneous scrolled Si/Cr bilayer, two stable shapes were achieved after detaching from the substrate. We employed both theoretical and computational models to study the multistable behavior of a Si/Cr micro-claw and illustrated the mechanical principles involved. Besides the biaxial strain that serves as the primary driving force, we found residual edge stresses to be inducing bistability. In both models, individual Si/Cr micro-claws consistently demonstrate either monostability or bistability as the magnitude of the edge effect is varied. Both macroscopic and microscopic experimental designs were studied, supported by analytical and finite element simulation results. The results from this study provide a means to guide the on-demand design of strained nanobelts and nanosheets with tunable multistability and actuating capability. Z.C. acknowledges the Society in Science-Branco Weiss fellowship. J.X.J.Z. acknowledges the NIH Directors Transformative Award(1R01 OD022910-01).

  16. Cavity QED analysis of an exciton-plasmon hybrid molecule via the generalized nonlocal optical response method

    NASA Astrophysics Data System (ADS)

    Hapuarachchi, Harini; Premaratne, Malin; Bao, Qiaoliang; Cheng, Wenlong; Gunapala, Sarath D.; Agrawal, Govind P.

    2017-06-01

    A metal nanoparticle coupled to a semiconductor quantum dot forms a tunable hybrid system which exhibits remarkable optical phenomena. Small metal nanoparticles possess nanocavitylike optical concentration capabilities due to the presence of strong dipolar excitation modes in the form of localized surface plasmons. Semiconductor quantum dots have strong luminescent capabilities widely used in many applications such as biosensing. When a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole coupling occurs between the two nanoparticles giving rise to various optical signatures in the scattered spectra. This coupling makes the two nanoparticles behave like a single hybrid molecule. Hybrid molecules made of metal nanoparticles (MNPs) and quantum dots (QDs) under the influence of an external driving field have been extensively studied in literature, using the local response approximation (LRA). However, such previous work in this area was not adequate to explain some experimental observations such as the size-dependent resonance shift of metal nanoparticles which becomes quite significant with decreasing diameter. The nonlocal response of metallic nanostructures which is hitherto disregarded by such studies is a main reason for such nonclassical effects. The generalized nonlocal optical response (GNOR) model provides a computationally less-demanding path to incorporate such properties into the theoretical models. It allows unified theoretical explanation of observed experimental phenomena which previously seemed to require ab initio microscopic theory. In this paper, we analyze the hybrid molecule in an external driving field as an open quantum system using a cavity-QED approach. In the process, we quantum mechanically model the dipole moment operator and the dipole response field of the metal nanoparticle taking the nonlocal effects into account. We observe that the spectra resulting from the GNOR based model effectively demonstrate the experimentally observed size dependent amplitude scaling, linewidth broadening, and resonance shift phenomena compared to the respective LRA counterparts. Then, we provide a comparison between our suggested GNOR based cavity-QED model and the conventional LRA model, where it becomes evident that our analytical model provides a close match to the experimentally suggested behavior. Furthermore, we show that the Rayleigh scattering spectra of the MNP-QD hybrid molecule possess an asymmetric Fano interference pattern that is tunable to suit various applications.

  17. The development of capability measures in health economics: opportunities, challenges and progress.

    PubMed

    Coast, Joanna; Kinghorn, Philip; Mitchell, Paul

    2015-04-01

    Recent years have seen increased engagement amongst health economists with the capability approach developed by Amartya Sen and others. This paper focuses on the capability approach in relation to the evaluative space used for analysis within health economics. It considers the opportunities that the capability approach offers in extending this space, but also the methodological challenges associated with moving from the theoretical concepts to practical empirical applications. The paper then examines three 'families' of measures, Oxford Capability instruments (OxCap), Adult Social Care Outcome Toolkit (ASCOT) and ICEpop CAPability (ICECAP), in terms of the methodological choices made in each case. The paper concludes by discussing some of the broader issues involved in making use of the capability approach in health economics. It also suggests that continued exploration of the impact of different methodological choices will be important in moving forward.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Antoinette J

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviewsmore » (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.« less

  19. Validation of the theoretical domains framework for use in behaviour change and implementation research.

    PubMed

    Cane, James; O'Connor, Denise; Michie, Susan

    2012-04-24

    An integrative theoretical framework, developed for cross-disciplinary implementation and other behaviour change research, has been applied across a wide range of clinical situations. This study tests the validity of this framework. Validity was investigated by behavioural experts sorting 112 unique theoretical constructs using closed and open sort tasks. The extent of replication was tested by Discriminant Content Validation and Fuzzy Cluster Analysis. There was good support for a refinement of the framework comprising 14 domains of theoretical constructs (average silhouette value 0.29): 'Knowledge', 'Skills', 'Social/Professional Role and Identity', 'Beliefs about Capabilities', 'Optimism', 'Beliefs about Consequences', 'Reinforcement', 'Intentions', 'Goals', 'Memory, Attention and Decision Processes', 'Environmental Context and Resources', 'Social Influences', 'Emotions', and 'Behavioural Regulation'. The refined Theoretical Domains Framework has a strengthened empirical base and provides a method for theoretically assessing implementation problems, as well as professional and other health-related behaviours as a basis for intervention development.

  20. Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learner—experimental evidence and theoretical model

    PubMed Central

    Kostrubiec, Viviane; Zanone, Pier-Giorgio; Fuchs, Armin; Kelso, J. A. Scott

    2012-01-01

    Using an approach that combines experimental studies of bimanual movements to visual stimuli and theoretical modeling, the present paper develops a dynamical account of sensorimotor learning, that is, how new skills are acquired and old ones modified. A significant aspect of our approach is the focus on the individual learner as the basic unit of analysis, in particular the quantification of predispositions and capabilities that the individual learner brings to the learning environment. Such predispositions constitute the learner's behavioral repertoire, captured here theoretically as a dynamical landscape (“intrinsic dynamics”). The learning process is demonstrated to not only lead to a relatively permanent improvement of performance in the required task—the usual outcome—but also to alter the individual's entire repertoire. Changes in the dynamical landscape due to learning are shown to result from two basic mechanisms or “routes”: bifurcation and shift. Which mechanism is selected depends the initial individual repertoire before new learning begins. Both bifurcation and shift mechanisms are accommodated by a dynamical model, a relatively straightforward development of the well-established HKB model of movement coordination. Model simulations show that although environmental or task demands may be met equally well using either mechanism, the bifurcation route results in greater stabilization of the to-be-learned behavior. Thus, stability not (or not only) error is demonstrated to be the basis of selection, both of a new pattern of behavior and the path (smooth shift versus abrupt qualitative change) that learning takes. In line with these results, recent neurophysiological evidence indicates that stability is a relevant feature around which brain activity is organized while an individual performs a coordination task. Finally, we explore the consequences of the dynamical approach to learning for theories of biological change. PMID:22876227

  1. Actuation of an Inertia-Coupled Rimless Wheel Model across Level Ground

    NASA Astrophysics Data System (ADS)

    Weeks, Seth Caleb

    The inertia-coupled rimless wheel model is a passive dynamic walking device which is theoretically capable of achieving highly efficient motion with no energy losses. Under non-ideal circumstances, energy losses due to air drag require the use of actuation to maintain stable motions. The Actuated Inertia-coupled Rimless Wheel Across Flat Terrain (AIRWAFT) model provides actuation to an inertia-coupled rimless wheel model across level ground to compensate for energy losses by applying hip-torque between the frame and inertia wheel via a motor. Two methods of defining the open-loop actuation are presented. Position control defines the relative position of the drum relative to the frame. Torque control specifies the amount of torque between the frame and the drum. The performance of the model was evaluated with respect to changes in various geometrical and control parameters and initial conditions. This parameter study led to the discovery of a stable, periodic motion with a cost of transport of 0.33.

  2. Studies on chemoviscosity modeling for thermosetting resins

    NASA Technical Reports Server (NTRS)

    Bai, J. M.; Hou, T. H.; Tiwari, S. N.

    1987-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resins has been formulated. The model is developed by modifying the well-established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature Tg(t) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants C sub 1 (t) and C sub 2 (t) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformation of the thermosetting resin systems during cure.

  3. Chemoviscosity modeling for thermosetting resin systems, part 3

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Bai, J. M.

    1988-01-01

    A new analytical model for simulating chemoviscosity resin has been formulated. The model is developed by modifying the well established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature (T sub g (t)) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature-dependent functions of the modified WLF theory parameters C sub 1 (T) and C sub 2 (T) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents a progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure.

  4. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  5. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    NASA Technical Reports Server (NTRS)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  6. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    PubMed

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  7. Building model analysis applications with the Joint Universal Parameter IdenTification and Evaluation of Reliability (JUPITER) API

    USGS Publications Warehouse

    Banta, E.R.; Hill, M.C.; Poeter, E.; Doherty, J.E.; Babendreier, J.

    2008-01-01

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input and output conventions allow application users to access various applications and the analysis methods they embody with a minimum of time and effort. Process models simulate, for example, physical, chemical, and (or) biological systems of interest using phenomenological, theoretical, or heuristic approaches. The types of model analyses supported by the JUPITER API include, but are not limited to, sensitivity analysis, data needs assessment, calibration, uncertainty analysis, model discrimination, and optimization. The advantages provided by the JUPITER API for users and programmers allow for rapid programming and testing of new ideas. Application-specific coding can be in languages other than the Fortran-90 of the API. This article briefly describes the capabilities and utility of the JUPITER API, lists existing applications, and uses UCODE_2005 as an example.

  8. Decay of Far-Flowfield in Trailing Vortices

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Chigier, N. A.; Sheaffer, Y. S.

    1973-01-01

    Methods for reduction of velocities in trailing vortices of large aircraft are of current interest for the purpose of shortening the waiting time between landings at central airports. We have made finite-difference calculations of the flow in turbulent wake vortices as an aid to interpretation of wind-tunnel and flight experiments directed toward that end. Finite-difference solutions are capable of adding flexibility to such investigations if they are based on an adequate model of turbulence. Interesting developments have been taking place in the knowledge of turbulence that may lead to a complete theory in the future. In the meantime, approximate methods that yield reasonable agreement with experiment are appropriate. The simplified turbulence model we have selected contains features that account for the major effects disclosed by more sophisticated models in which the parameters are not yet established. Several puzzles are thereby resolved that arose in previous theoretical investigations of wake vortices.

  9. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  10. An approximate theoretical method for modeling the static thrust performance of non-axisymmetric two-dimensional convergent-divergent nozzles. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    1995-01-01

    An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.

  11. Education and black-white interracial marriage.

    PubMed

    Gullickson, Aaron

    2006-11-01

    This article examines competing theoretical claims regarding how an individual's education will affect his or her likelihood of interracial marriage. I demonstrate that prior models of interracial marriage have failed to adequately distinguish the joint and marginal effects of education on interracial marriage and present a model capable of distinguishing these effects. I test this model on black-white interracial marriages using 1980, 1990, and 2000 U.S. census data. The results reveal partial support for status exchange theory within black male-white female unions and strong isolation of lower-class blacks from the interracial marriage market. Structural assimilation theory is not supported because the educational attainment of whites is not related in any consistent fashion to the likelihood of interracial marriage. The strong isolation of lower-class blacks from the interracial marriage market has gone unnoticed in prior research because of the failure of prior methods to distinguish joint and marginal effects.

  12. Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2014-06-01

    A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.

  13. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  14. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    NASA Astrophysics Data System (ADS)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  15. Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-12-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  16. PLS modelling of structure—activity relationships of catechol O-methyltransferase inhibitors

    NASA Astrophysics Data System (ADS)

    Lotta, Timo; Taskinen, Jyrki; Bäckström, Reijo; Nissinen, Erkki

    1992-06-01

    Quantitative structure-activity analysis was carried out for in vitro inhibition of rat brain soluble catechol O-methyltransferase by a series (N=99) of 1,5-substituted-3,4-dihydroxybenzenes using computational chemistry and multivariate PLS modelling of data sets. The molecular structural descriptors (N=19) associated with the electronics of the catecholic ring and sizes of substituents were derived theoretically. For the whole set of molecules two separate PLS models have to be used. A PLS model with two significant (crossvalidated) model dimensions describing 82.2% of the variance in inhibition activity data was capable of predicting all molecules except those having the largest R1 substituent or having a large R5 substituent compared to the NO2 group. The other PLS model with three significant (crossvalidated) model dimensions described 83.3% of the variance in inhibition activity data. This model could not handle compounds having a small R5 substituent, compared to the NO2 group, or the largest R1 substituent. The predictive capability of these PLS models was good. The models reveal that inhibition activity is nonlinearly related to the size of the R5 substituent. The analysis of the PLS models also shows that the binding affinity is greatly dependent on the electronic nature of both R1 and R5 substituents. The electron-withdrawing nature of the substituents enhances inhibition activity. In addition, the size of the R1 substituent and its lipophilicity are important in the binding of inhibitors. The size of the R1 substituent has an upper limit. On the other hand, ionized R1 substituents decrease inhibition activity.

  17. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz

    2016-08-01

    Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.

  18. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal micro-resonators

    NASA Astrophysics Data System (ADS)

    Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.

    2017-09-01

    Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.

  19. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  20. Gradient light interference microscopy (GLIM) for imaging thick specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail E.; Popescu, Gabriel

    2016-03-01

    Compared to the Phase Contrast, Differential Interference Contrast (DIC) has been known to give higher depth sectioning as well as a halo-free images when investigating transparent specimens. Thanks to relying on generating two slightly shifted replicas with a small amount of shift, within the coherence area, DIC is able to operate with very low coherence light. More importantly, the method is able to work with very large numerical aperture of the illumination, which offer comparable sectioning capability to bright field microscopy. However, DIC is still a qualitative method, which limits potential applications of the technique. In this paper, we introduce a method that extends the capability of DIC by combining it with a phase shifting module to extract the phase gradient information. A theoretical model of the image formation is developed and the possibility of integrating the gradient function is analyzed.. Our method is benchmarked on imaging embryos during their 7-day development, HeLa cells during mitosis, and control samples.

  1. ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches.

    PubMed

    Wang, Shuangquan; Sun, Huiyong; Liu, Hui; Li, Dan; Li, Youyong; Hou, Tingjun

    2016-08-01

    Blockade of human ether-à-go-go related gene (hERG) channel by compounds may lead to drug-induced QT prolongation, arrhythmia, and Torsades de Pointes (TdP), and therefore reliable prediction of hERG liability in the early stages of drug design is quite important to reduce the risk of cardiotoxicity-related attritions in the later development stages. In this study, pharmacophore modeling and machine learning approaches were combined to construct classification models to distinguish hERG active from inactive compounds based on a diverse data set. First, an optimal ensemble of pharmacophore hypotheses that had good capability to differentiate hERG active from inactive compounds was identified by the recursive partitioning (RP) approach. Then, the naive Bayesian classification (NBC) and support vector machine (SVM) approaches were employed to construct classification models by integrating multiple important pharmacophore hypotheses. The integrated classification models showed improved predictive capability over any single pharmacophore hypothesis, suggesting that the broad binding polyspecificity of hERG can only be well characterized by multiple pharmacophores. The best SVM model achieved the prediction accuracies of 84.7% for the training set and 82.1% for the external test set. Notably, the accuracies for the hERG blockers and nonblockers in the test set reached 83.6% and 78.2%, respectively. Analysis of significant pharmacophores helps to understand the multimechanisms of action of hERG blockers. We believe that the combination of pharmacophore modeling and SVM is a powerful strategy to develop reliable theoretical models for the prediction of potential hERG liability.

  2. SMRT: A new, modular snow microwave radiative transfer model

    NASA Astrophysics Data System (ADS)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the community.

  3. Behavioural typologies of experienced benefit of psychomotor therapy in patients with chronic shoulder pain: A grounded theory approach.

    PubMed

    Stamp, Anne Schinkel; Pedersen, Lise Lang; Ingwersen, Kim Gordon; Sørensen, Dorthe

    2018-05-01

    In this study we aimed to develop a theoretical account of the experienced benefit of psychomotor therapy in addition to treatment as usual in patients with chronic shoulder pain. The qualitative study design was based on a grounded theory approach. Open-ended face-to-face interviews were conducted after treatment was completed. We generated data and performed analyses by constant comparative analysis and theoretical sampling that focused on the patients' behavioural characteristics related to the experienced benefit of psychomotor therapy. We conducted 12 interviews, eight of which were with men. "Regaining capability" emerged as representative of the pattern of behaviour. Through this pattern, the patients resolved concern about losing capability. Regaining capability involved three behavioural typologies: taking advice, minding the body, and encompassing life changes. The patients' behavioural typologies revealed different levels of life changes. Psychomotor therapy offered the patients in our study new and better ways of coping with their shoulder pain. Copyright © 2018 Department of Physio- and Occupational Therapy, Hospital Lillebaelt - Vejle Hospital. Published by Elsevier Ltd.. All rights reserved.

  4. Minimum weight structural sandwich

    Treesearch

    Edward W. Kuenzi

    1965-01-01

    This note presents theoretical analyses for determination of dimensions of structural sandwich of minimum weight that will have certain stiffness and load-carrying capabilities. Included is a brief discussion of the resultant minimum weight configurations.

  5. Gaming Space: A Game-Theoretic Methodology for Assessing the Deterrent Value of Space Control Options

    DTIC Science & Technology

    2018-06-07

    Gaming Space A Game-Theoretic Methodology for Assessing the Deterrent Value of Space Control Options C O R...in space. Adversaries have already employed non -kinetic OSC capabilities, such as Global Positioning System jammers, in recent conflicts, and they...as part of the project “Assessing the Deterrent Value of Defensive Space Control Options.” The purpose of the project was to develop a methodology

  6. The impact of competition on elephant musth strategies: A game-theoretic model.

    PubMed

    Wyse, J Max; Hardy, Ian C W; Yon, Lisa; Mesterton-Gibbons, Mike

    2017-03-21

    Mature male African Savannah elephants are known to periodically enter a temporary state of heightened aggression called "musth", often linked with increased androgens, particularly testosterone. Sexually mature males are capable of entering musth at any time of year, and will often travel long distances to find estrous females. When two musth bulls or two non-musth bulls encounter one another, the agonistic interaction is usually won by the larger male. However, when a smaller musth bull encounters a larger non-musth bull, the smaller musth male can win. The relative mating success of musth males is due partly to this fighting advantage, and partly to estrous females' general preference for musth males. Though musth behavior has long been observed and documented, the evolutionary advantages of musth remain poorly understood. Here we develop a game-theoretic model of male musth behavior which assumes musth duration as a parameter, and distributions of small, medium and large musth males are predicted in both time and space. The predicted results are similar to the musth timing behavior observed in the Amboseli National Park elephant population, and further results are generated with relevance to Samburu National Park. We discuss small male musth behavior, the effects of estrous female spatial heterogeneity on musth timing, conservation applications, and the assumptions underpinning the model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less

  8. Decision-theoretic approach to data acquisition for transit operations planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, S.G.

    The most costly element of transportation planning and modeling activities in the past has usually been that of data acquisition. This is even truer today when the unit costs of data collection are increasing rapidly and at the same time budgets are severely limited by continuing policies of fiscal austerity in the public sector. The overall objectives of this research were to improve the decisions and decision-making capabilities of transit operators or planners in short-range transit planning, and to improve the quality and cost-effectiveness of associated route or corridor-level data collection and service monitoring activities. A new approach was presentedmore » for sequentially updating the parameters of both simple and multiple linear regression models with stochastic regressors, and for determining the expected value of sample information and expected net gain of sampling for associated sample designs. A new approach was also presented for estimating and updating (both spatially and temporally) the parameters of multinomial logit discrete choice models, and for determining associated optimal sample designs for attribute-based and choice-based sampling methods. The approach provides an effective framework for addressing the issue of optimal sampling method and sample size, which to date have been largely unresolved. The application of these methodologies and the feasibility of the decision-theoretic approach was illustrated with a hypothetical case study example.« less

  9. The use of information theory for the evaluation of biomarkers of aging and physiological age.

    PubMed

    Blokh, David; Stambler, Ilia

    2017-04-01

    The present work explores the application of information theoretical measures, such as entropy and normalized mutual information, for research of biomarkers of aging. The use of information theory affords unique methodological advantages for the study of aging processes, as it allows evaluating non-linear relations between biological parameters, providing the precise quantitative strength of those relations, both for individual and multiple parameters, showing cumulative or synergistic effect. Here we illustrate those capabilities utilizing a dataset on heart disease, including diagnostic parameters routinely available to physicians. The use of information-theoretical methods, utilizing normalized mutual information, revealed the exact amount of information that various diagnostic parameters or their combinations contained about the persons' age. Based on those exact informative values for the correlation of measured parameters with age, we constructed a diagnostic rule (a decision tree) to evaluate physiological age, as compared to chronological age. The present data illustrated that younger subjects suffering from heart disease showed characteristics of people of higher age (higher physiological age). Utilizing information-theoretical measures, with additional data, it may be possible to create further clinically applicable information-theory-based markers and models for the evaluation of physiological age, its relation to age-related diseases and its potential modifications by therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation.

    PubMed

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard

    2016-02-18

    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy(3+) and Y(3+)on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke's model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.

  11. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation

    PubMed Central

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard

    2016-01-01

    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases. PMID:26888438

  12. Workshop on High-Field NMR and Biological Applications

    NASA Astrophysics Data System (ADS)

    Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.

  13. Experimental and theoretical study of substituent effect on 13C NMR chemical shifts of 5-arylidene-2,4-thiazolidinediones

    NASA Astrophysics Data System (ADS)

    Rančić, Milica P.; Trišović, Nemanja P.; Milčić, Miloš K.; Ajaj, Ismail A.; Marinković, Aleksandar D.

    2013-10-01

    The electronic structure of 5-arylidene-2,4-thiazolidinediones has been studied by using experimental and theoretical methodology. The theoretical calculations of the investigated 5-arylidene-2,4-thiazolidinediones have been performed by the use of quantum chemical methods. The calculated 13C NMR chemical shifts and NBO atomic charges provide an insight into the influence of such a structure on the transmission of electronic substituent effects. Linear free energy relationships (LFERs) have been further applied to their 13C NMR chemical shifts. The correlation analyses for the substituent-induced chemical shifts (SCS) have been performed with σ using SSP (single substituent parameter), field (σF) and resonance (σR) parameters using DSP (dual substituent parameter), as well as the Yukawa-Tsuno model. The presented correlations account satisfactorily for the polar and resonance substituent effects operative at Cβ, and C7 carbons, while reverse substituent effect was found for Cα. The comparison of correlation results for the investigated molecules with those obtained for seven structurally related styrene series has indicated that specific cross-interaction of phenyl substituent and groups attached at Cβ carbon causes increased sensitivity of SCS Cβ to the resonance effect with increasing of electron-accepting capabilities of the group present at Cβ.

  14. Modeling interactions between a β-O-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid.

    PubMed

    Zhu, Youtao; Yan, Jing; Liu, Chengbu; Zhang, Dongju

    2017-08-01

    Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium-based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol-β-guaiacyl ether (VG) with 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π-π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl - anion forms a hydrogen-bonded complex with VG, the imidazolium cation interacts with VG via both the π-π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium-based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution. © 2017 Wiley Periodicals, Inc.

  15. Thermally induced oscillations in fluid flow

    NASA Technical Reports Server (NTRS)

    Zuber, N.

    1970-01-01

    Theoretical investigation distinguishes the various mechanisms responsible for oscillations of pressure, temperature, and flow velocity, derives a quantitative description of the most troublesome mechanisms, and develops a capability to predict the occurrence of unstable flow.

  16. Biosensing via light scattering from plasmonic core-shell nanospheres coated with DNA molecules

    NASA Astrophysics Data System (ADS)

    Xie, Huai-Yi; Chen, Minfeng; Chang, Yia-Chung; Moirangthem, Rakesh Singh

    2017-05-01

    We present both experimental and theoretical studies for investigating DNA molecules attached on metallic nanospheres. We have developed an efficient and accurate numerical method to investigate light scattering from plasmonic nanospheres on a substrate covered by a shell, based on the Green's function approach with suitable spherical harmonic basis. Next, we use this method to study optical scattering from DNA molecules attached to metallic nanoparticles placed on a substrate and compare with experimental results. We obtain fairly good agreement between theoretical predictions and the measured ellipsometric spectra. The metallic nanoparticles were used to detect the binding with DNA molecules in a microfluidic setup via spectroscopic ellipsometry (SE), and a detectable change in ellipsometric spectra was found when DNA molecules are captured on Au nanoparticles. Our theoretical simulation indicates that the coverage of Au nanosphere by a submonolayer of DNA molecules, which is modeled by a thin layer of dielectric material (which may absorb light), can lead to a small but detectable spectroscopic shift in both the Ψ and Δ spectra with more significant change in Δ spectra in agreement with experimental results. Our studies demonstrated the ultrasensitive capability of SE for sensing submonolayer coverage of DNA molecules on Au nanospheres. Hence the spectroscopic ellipsometric measurements coupled with theoretical analysis via an efficient computation method can be an effective tool for detecting DNA molecules attached on Au nanoparticles, thus achieving label-free, non-destructive, and high-sensitivity biosensing with nanoscale resolution.

  17. A study of aeroelastic and structural dynamic effects in multi-rotor systems with application to hybrid heavy lift vehicles

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.

    1984-01-01

    An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.

  18. A Compact Synchronous Cellular Model of Nonlinear Calcium Dynamics: Simulation and FPGA Synthesis Results.

    PubMed

    Soleimani, Hamid; Drakakis, Emmanuel M

    2017-06-01

    Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.

  19. Finite element model for MOI applications using A-V formulation

    NASA Astrophysics Data System (ADS)

    Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.

    2001-04-01

    Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.

  20. Simulations of the Mg II K and Ca II 8542 Lines From an Alfvén Wave-Heated Flare Chromosphere

    NASA Technical Reports Server (NTRS)

    Kerr, Graham S.; Fletcher, Lyndsay; Russell, Alexander J. B.; Allred, Joel C.

    2016-01-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfven wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542 A profiles that are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with Interface Region Imaging Spectrograph observations. The predicted differences between the Ca II 8542 A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating inflares.

  1. The Martian Water Cycle Based on 3-D Modeling

    NASA Technical Reports Server (NTRS)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  2. Supercoil Formation During DNA Melting

    NASA Astrophysics Data System (ADS)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  3. Network community-based model reduction for vortical flows

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko

    2018-06-01

    A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.

  4. Retinal artery-vein classification via topology estimation

    PubMed Central

    Estrada, Rolando; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Tomasi, Carlo; Farsiu, Sina

    2015-01-01

    We propose a novel, graph-theoretic framework for distinguishing arteries from veins in a fundus image. We make use of the underlying vessel topology to better classify small and midsized vessels. We extend our previously proposed tree topology estimation framework by incorporating expert, domain-specific features to construct a simple, yet powerful global likelihood model. We efficiently maximize this model by iteratively exploring the space of possible solutions consistent with the projected vessels. We tested our method on four retinal datasets and achieved classification accuracies of 91.0%, 93.5%, 91.7%, and 90.9%, outperforming existing methods. Our results show the effectiveness of our approach, which is capable of analyzing the entire vasculature, including peripheral vessels, in wide field-of-view fundus photographs. This topology-based method is a potentially important tool for diagnosing diseases with retinal vascular manifestation. PMID:26068204

  5. Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.

    2016-04-01

    We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.

  6. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.; Han, Dong

    2016-07-01

    This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the inversion framework. The next step of using this framework to study the aerosol information content in GEO-TASO measurements is also discussed.

  7. Perspectives on hypersonic viscous and nonequilibrium flow research

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.

    1992-01-01

    An attempt is made to reflect on current focuses in certain areas of hypersonic flow research by examining recent works and their issues. Aspects of viscous interaction, flow instability, and nonequilibrium aerothermodynamics pertaining to theoretical interest are focused upon. The field is a diverse one, and many exciting works may have either escaped the writer's notice or been abandoned for the sake of space. Students of hypersonic viscous flow must face the transition problems towards the two opposite ends of the Reynolds or Knudsen number range, which represents two regimes where unresolved fluid/gas dynamic problems abound. Central to the hypersonic flow studies is high-temperature physical gas dynamics; here, a number of issues on modelling the intermolecular potentials and inelastic collisions remain the obstacles to quantitative predictions. Research in combustion and scramjet propulsion will certainly be benefitted by advances in turbulent mixing and new computational fluid dynamics (CFD) strategies on multi-scaled complex reactions. Even for the sake of theoretical development, the lack of pertinent experimental data in the right energy and density ranges is believed to be among the major obstacles to progress in aerothermodynamic research for hypersonic flight. To enable laboratory simulation of nonequilibrium effects anticipated for transatmospheric flight, facilities capable of generating high enthalpy flow at density levels higher than in existing laboratories are needed (Hornung 1988). A new free-piston shock tunnel capable of realizing a test-section stagnation temperature of 10(exp 5) at Reynolds number 50 x 10(exp 6)/cm is being completed and preliminary tests has begun (H. Hornung et al. 1992). Another laboratory study worthy of note as well as theoretical support is the nonequilibrium flow experiment of iodine vapor which has low activation energies for vibrational excitation and dissociation, and can be studied in a laboratory with modest resources (Pham-Van-Diep et al. 1992).

  8. Can beaches survive climate change?

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick W.

    2017-01-01

    Anthropogenic climate change is driving sea level rise, leading to numerous impacts on the coastal zone, such as increased coastal flooding, beach erosion, cliff failure, saltwater intrusion in aquifers, and groundwater inundation. Many beaches around the world are currently experiencing chronic erosion as a result of gradual, present-day rates of sea level rise (about 3 mm/year) and human-driven restrictions in sand supply (e.g., harbor dredging and river damming). Accelerated sea level rise threatens to worsen coastal erosion and challenge the very existence of natural beaches throughout the world. Understanding and predicting the rates of sea level rise and coastal erosion depends on integrating data on natural systems with computer simulations. Although many computer modeling approaches are available to simulate shoreline change, few are capable of making reliable long-term predictions needed for full adaption or to enhance resilience. Recent advancements have allowed convincing decadal to centennial-scale predictions of shoreline evolution. For example, along 500 km of the Southern California coast, a new model featuring data assimilation predicts that up to 67% of beaches may completely erode by 2100 without large-scale human interventions. In spite of recent advancements, coastal evolution models must continue to improve in their theoretical framework, quantification of accuracy and uncertainty, computational efficiency, predictive capability, and integration with observed data, in order to meet the scientific and engineering challenges produced by a changing climate.

  9. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  10. Advances in the Study of Moving Sediments and Evolving Seabeds

    NASA Astrophysics Data System (ADS)

    Davies, Alan G.; Thorne, Peter D.

    2008-01-01

    Sands and mud are continually being transported around the world’s coastal seas due to the action of tides, wind and waves. The transport of these sediments modifies the boundary between the land and the sea, changing and reshaping its form. Sometimes the nearshore bathymetry evolves slowly over long time periods, at other times more rapidly due to natural episodic events or the introduction of manmade structures at the shoreline. For over half a century we have been trying to understand the physics of sediment transport processes and formulate predictive models. Although significant progress has been made, our capability to forecast the future behaviour of the coastal zone from basic principles is still relatively poor. However, innovative acoustic techniques for studying the fundamentals of sediment movement experimentally are now providing new insights, and it is expected that such observations, coupled with developing theoretical works, will allow us to take further steps towards the goal of predicting the evolution of coastlines and coastal bathymetry. This paper presents an overview of our existing predictive capabilities, primarily in the field of non-cohesive sediment transport, and highlights how new acoustic techniques are enabling our modelling efforts to achieve greater sophistication and accuracy. The paper is aimed at coastal scientists and managers seeking to understand how detailed physical studies can contribute to the improvement of coastal area models and, hence, inform coastal zone management strategies.

  11. Preliminary Results from Ultrahigh Vacuum and Cryogenic Dust Adhesion Experiments

    NASA Astrophysics Data System (ADS)

    Perko, H. A.; Green, J. R.; Nelson, J. D.

    2000-10-01

    Dust adhesion is a major factor affecting the design and performance of spacecraft for planetary surface and comet exploration. Dust adhesion is caused by a combination of electrostatic and van der Waals forces. A theoretical model has been constructed that indicates the magnitude of these forces is a function of pressure, temperature, and ambient gas composition1. A laboratory investigation is in progress to verify the theoretical model over a broad range of planetary environments from Earth-like to comet-like conditions. The experiments being conducted consist of depositing dust onto various spacecraft materials under different environmental conditions and attempting to mechanically shake the dust off to obtain a measure of adhesion. More specifically, the materials being used include pairs of aluminum, glass, stainless steel, and black painted specimens. One of the specimens from each pair is mounted to an electrometer and is used to witness accumulated dust mass and charge. The other specimen from each pair is affixed to a vibrating cantilever beam used to induce dust separation. Dust is sifted onto the specimens in the vacuum and cryogenic chamber. Dust adhesion force is determined from the amplitude and frequency of beam vibrations and the mass and size of dust particles. In order to enable comparison with the theoretical model, which assumes ideal spheres resting on a surface, the predominant dust material being used consists of 50 to 70 μ m glass spheres. This size glass sphere exerts an adhesive force that is capable of being measured by the experimental apparatus. The intent of this research is to increase our fundamental understanding of the effects of environmental conditions on dust adhesion and improve our ability to develop suitable dust mitigation techniques for the exploration of comet, asteroid and planetary surfaces. 1 Perko, H.A. (1998) ``Surface Cleanliness Based Dust Adhesion Model" Proceedings of the International Conference on Construction, Operations and Sciences in Space, American Society of Civil Engineers, Albuquerque, NM.

  12. Characterization of protein-folding pathways by reduced-space modeling.

    PubMed

    Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-24

    Ab initio simulations of the folding pathways are currently limited to very small proteins. For larger proteins, some approximations or simplifications in protein models need to be introduced. Protein folding and unfolding are among the basic processes in the cell and are very difficult to characterize in detail by experiment or simulation. Chymotrypsin inhibitor 2 (CI2) and barnase are probably the best characterized experimentally in this respect. For these model systems, initial folding stages were simulated by using CA-CB-side chain (CABS), a reduced-space protein-modeling tool. CABS employs knowledge-based potentials that proved to be very successful in protein structure prediction. With the use of isothermal Monte Carlo (MC) dynamics, initiation sites with a residual structure and weak tertiary interactions were identified. Such structures are essential for the initiation of the folding process through a sequential reduction of the protein conformational space, overcoming the Levinthal paradox in this manner. Furthermore, nucleation sites that initiate a tertiary interactions network were located. The MC simulations correspond perfectly to the results of experimental and theoretical research and bring insights into CI2 folding mechanism: unambiguous sequence of folding events was reported as well as cooperative substructures compatible with those obtained in recent molecular dynamics unfolding studies. The correspondence between the simulation and experiment shows that knowledge-based potentials are not only useful in protein structure predictions but are also capable of reproducing the folding pathways. Thus, the results of this work significantly extend the applicability range of reduced models in the theoretical study of proteins.

  13. Well-being in schools: a conceptual model.

    PubMed

    Konu, Anne; Rimpelä, Matti

    2002-03-01

    Health and well-being have mostly been separated from other aspects of school life. Health services and health education have been available for school-aged children in Western societies for a long time. Recently, more comprehensive school health programmes have been developed, e.g. the WHO 'health promoting school' and 'coordinated school health programme' in the USA. They focus on how to implement health promotion and health education in school. However, a theoretically grounded model based on the sociological concept of well-being is needed for planning and evaluation of school development programmes. The School Well-being Model is based on Allardt's sociological theory of welfare and assesses well-being as an entity in school setting. Well-being is connected with teaching and education, and with learning and achievements. Indicators of well-being are divided into four categories: school conditions (having), social relationships (loving), means for self-fulfilment (being) and health status. 'Means for self-fulfilment' encompasses possibilities for each pupil to study according to his/her own resources and capabilities. 'Health status' is seen through pupils' symptoms, diseases and illnesses. Each well-being category contains several aspects of pupils' life in school. The model takes into account the important impact of pupils' homes and the surrounding community. Compared with others, The School Well-being Model's main differences are the use of the well-being concept, the definition of health and the subcategory means for self-fulfilment. Making the outline of the well-being concept facilitates the development of theoretically grounded subjective and objective well-being indicators.

  14. Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: a first-principles study.

    PubMed

    Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh

    2016-04-14

    A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.

  15. Using our Heads and HARTSS*: Developing Perspective-Taking Skills for Socioscientific Reasoning (*Humanities, ARTs, and Social Sciences)

    NASA Astrophysics Data System (ADS)

    Kahn, Sami; Zeidler, Dana L.

    2016-04-01

    Functional scientific literacy demands an informed citizenry capable of negotiating controversial socioscientific issues (SSI). Perspective taking is critical to SSI implementation as it enables understanding of the diverse cognitive and emotional perspectives of others. Science teacher educators must therefore facilitate teachers' promotion of classroom environments that value diverse perspectives. The purpose of this theoretical paper is to propose the HARTSS model through which successful practices that promote perspective taking in the humanities, arts, and social sciences are identified and translated into socioscientific contexts, thereby developing an array of promising interventions designed for science teacher educators to foster perspective taking in current and future science teachers and their students.

  16. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.

    PubMed

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-17

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  17. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    NASA Astrophysics Data System (ADS)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  18. The criterion of subscale sufficiency and its application to the relationship between static capillary pressure, saturation and interfacial areas.

    PubMed

    Kurzeja, Patrick

    2016-05-01

    Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas.

  19. Recruitment dynamics in adaptive social networks

    NASA Astrophysics Data System (ADS)

    Shkarayev, Maxim; Shaw, Leah; Schwartz, Ira

    2011-03-01

    We model recruitment in social networks in the presence of birth and death processes. The recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. The recruiting nodes may adapt their connections in order to improve recruitment capabilities, thus changing the network structure. We develop a mean-field theory describing the system dynamics. Using mean-field theory we characterize the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment dynamics, as well as on network topology. The theoretical predictions are confirmed by the direct simulations of the full system.

  20. X-ray free-electron laser studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam M.

    2015-10-01

    > The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.

  1. Geology team

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Evaluating of the combined utility of narrowband and multispectral imaging in both the infrared and visible for the lithologic identification of geologic materials, and of the combined utility of multispectral imaging in the visible and infrared for lithologic mapping on a global bases are near term recommendations for future imaging capabilities. Long term recommendations include laboratory research into methods of field sampling and theoretical models of microscale mixing. The utility of improved spatial and spectral resolutions and radiometric sensitivity is also suggested for the long term. Geobotanical remote sensing research should be conducted to (1) separate geological and botanical spectral signatures in individual picture elements; (2) study geobotanical correlations that more fully simulate natural conditions; and use test sites designed to test specific geobotanical hypotheses.

  2. Heating of cardiovascular stents in intense radiofrequency magnetic fields.

    PubMed

    Foster, K R; Goldberg, R; Bonsignore, C

    1999-01-01

    We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.

  3. A mercury flow meter for ion thruster testing. [response time, thermal sensitivity

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The theory of operation of the thermal flow meter is presented, and a theoretical model is used to determine design parameters for a device capable of measuring mercury flows in the range of 0 to 5 gm/hr. Flow meter construction is described. Tests performed using a positive displacement mercury pump as well as those performed with the device in the feed line of an operating thruster are discussed. A flow meter response time of about a minute and a sensitivity of about 10 mv/gm/hr are demonstrated. Additional work to relieve a sensitivity of the device to variations in ambient temperature is indicated to improve its quantitative performance.

  4. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  5. Development of theoretical oxygen saturation calibration curve based on optical density ratio and optical simulation approach

    NASA Astrophysics Data System (ADS)

    Jumadi, Nur Anida; Beng, Gan Kok; Ali, Mohd Alauddin Mohd; Zahedi, Edmond; Morsin, Marlia

    2017-09-01

    The implementation of surface-based Monte Carlo simulation technique for oxygen saturation (SaO2) calibration curve estimation is demonstrated in this paper. Generally, the calibration curve is estimated either from the empirical study using animals as the subject of experiment or is derived from mathematical equations. However, the determination of calibration curve using animal is time consuming and requires expertise to conduct the experiment. Alternatively, an optical simulation technique has been used widely in the biomedical optics field due to its capability to exhibit the real tissue behavior. The mathematical relationship between optical density (OD) and optical density ratios (ODR) associated with SaO2 during systole and diastole is used as the basis of obtaining the theoretical calibration curve. The optical properties correspond to systolic and diastolic behaviors were applied to the tissue model to mimic the optical properties of the tissues. Based on the absorbed ray flux at detectors, the OD and ODR were successfully calculated. The simulation results of optical density ratio occurred at every 20 % interval of SaO2 is presented with maximum error of 2.17 % when comparing it with previous numerical simulation technique (MC model). The findings reveal the potential of the proposed method to be used for extended calibration curve study using other wavelength pair.

  6. Contingency theoretic methodology for agent-based web-oriented manufacturing systems

    NASA Astrophysics Data System (ADS)

    Durrett, John R.; Burnell, Lisa J.; Priest, John W.

    2000-12-01

    The development of distributed, agent-based, web-oriented, N-tier Information Systems (IS) must be supported by a design methodology capable of responding to the convergence of shifts in business process design, organizational structure, computing, and telecommunications infrastructures. We introduce a contingency theoretic model for the use of open, ubiquitous software infrastructure in the design of flexible organizational IS. Our basic premise is that developers should change in the way they view the software design process from a view toward the solution of a problem to one of the dynamic creation of teams of software components. We postulate that developing effective, efficient, flexible, component-based distributed software requires reconceptualizing the current development model. The basic concepts of distributed software design are merged with the environment-causes-structure relationship from contingency theory; the task-uncertainty of organizational- information-processing relationships from information processing theory; and the concept of inter-process dependencies from coordination theory. Software processes are considered as employees, groups of processes as software teams, and distributed systems as software organizations. Design techniques already used in the design of flexible business processes and well researched in the domain of the organizational sciences are presented. Guidelines that can be utilized in the creation of component-based distributed software will be discussed.

  7. Performance of FFT methods in local gravity field modelling

    NASA Technical Reports Server (NTRS)

    Forsberg, Rene; Solheim, Dag

    1989-01-01

    Fast Fourier transform (FFT) methods provide a fast and efficient means of processing large amounts of gravity or geoid data in local gravity field modelling. The FFT methods, however, has a number of theoretical and practical limitations, especially the use of flat-earth approximation, and the requirements for gridded data. In spite of this the method often yields excellent results in practice when compared to other more rigorous (and computationally expensive) methods, such as least-squares collocation. The good performance of the FFT methods illustrate that the theoretical approximations are offset by the capability of taking into account more data in larger areas, especially important for geoid predictions. For best results good data gridding algorithms are essential. In practice truncated collocation approaches may be used. For large areas at high latitudes the gridding must be done using suitable map projections such as UTM, to avoid trivial errors caused by the meridian convergence. The FFT methods are compared to ground truth data in New Mexico (xi, eta from delta g), Scandinavia (N from delta g, the geoid fits to 15 cm over 2000 km), and areas of the Atlantic (delta g from satellite altimetry using Wiener filtering). In all cases the FFT methods yields results comparable or superior to other methods.

  8. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  9. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  10. Bird Flight as a Model for a Course in Unsteady Aerodynamics

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael

    2014-11-01

    Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.

  11. Simulation of the UT inspection of planar defects using a generic GTD-Kirchhoff approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorval, Vincent, E-mail: vincent.dorval@cea.fr; Darmon, Michel, E-mail: vincent.dorval@cea.fr; Chatillon, Sylvain, E-mail: vincent.dorval@cea.fr

    2015-03-31

    The modeling of ultrasonic Non Destructive Evaluation often plays an important part in the assessment of detection capabilities or as a help to interpret experiments. The ultrasonic modeling tool of the CIVA platform uses semi-analytical approximations for fast computations. Kirchhoff and GTD are two classical approximations for the modeling of echoes from plane-like defects such as cracks, and they aim at taking into account two different types of physical phenomena. The Kirchhoff approximation is mainly suitable to predict specular reflections from the flaw surface, whereas GTD is dedicated to the modeling of edge diffraction. As a consequence, these two approximationsmore » have distinct and complementary validity domains. Choosing between them requires expertise and is problematic in some inspection configurations. The Physical Theory of Diffraction (PTD) was developed based on both Kirchhoff and GTD in order to combine their advantages and overcome their limitations. The theoretical basis for PTD and its integration in the CIVA modeling approach are discussed in this communication. Several results that validate this newly developed model and illustrate its advantages are presented.« less

  12. An integrated approach to evaluate policies for controlling traffic law violations.

    PubMed

    Mehmood, Arif

    2010-03-01

    Modeling dynamics of the driver behavior is a complex problem. In this paper a system approach is introduced to model and to analyze the driver behavior related to traffic law violations in the Emirate of Abu Dhabi. This paper demonstrates how the theoretical relationships between different factors can be expressed formally, and how the resulting model can assist in evaluating potential benefits of various policies to control the traffic law violations Using system approach, an integrated dynamic simulation model is developed, and model is tested to simulate the driver behavior for violating traffic laws during 2002-2007 in the Emirate of Abu Dhabi. The dynamic simulation model attempts to address the questions: (1) "what" interventions should be implemented to reduce and eventually control traffic violations which will lead to improving road safety and (2) "how" to justify those interventions will be effective or ineffective to control the violations in different transportation conditions. The simulation results reveal promising capability of applying system approach in the policy evaluation studies. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Enhancement Of Sensing Capabilities And Functionalization Of Optical Microresonators

    NASA Astrophysics Data System (ADS)

    Cocking, Alexander

    Optical microresonators have been demonstrated to provide a large enhancement in electric field by containing an resonant mode in a very small volume. This resonant enhancement is proportional to the quality of the resonator, which for microspheres has been demonstrated to be on the order of 1010. These devices can be leveraged to greatly improve light-matter interaction and for this reason the theoretical background of optical microresonators is discussed in the second chapter. This includes the use of COMSOL Multiphysics to model the mode structure and scattering from different resonator geometries. The second chapter also contains details on the fabrication and experimental design of optical microresonators. This includes the fabrication of fiber tapers for evanescent wave coupling into the devices. Once the theoretical framework for utilizing resonators as tools for enhancement has been established in the second chapter, we progress to the discussion of the microbubble geometry and its potential for use as an on-chip sensor system. Topics covered include design, fabrication, and theoretical analysis of the mode structure in this geometry. Modal interaction with a liquid filled microbubble is demonstrated. Additionally, the use of microbubble resonators as highly accurate temperature sensors is demonstrated experimentally and theoretically. In chapter 4 we investigate the use of silica microspheres as sensing devices; specifically, using them for the purpose of sensing nano-particles and chemicals in incredibly minute quantities. In this section microresonators are demonstrated to provide enhancement to Raman scattering from nano-scale particles. This configuration retains the traditional sensing methods of resonators by observing mode shifting and splitting in the resonance spectrum, while adding in a label-free sensing ability to determine material composition on adhered micro and nanoparticles. The fifth chapter discusses the characterization of a new class of materials known as two dimensional materials (2D materials). Typically made from single atomic sheets of transition metal dichalcogenides, they are called two dimensional due to their incredibly small thickness. Monolayers of metal dichalcogenides offer large values for optical nonlinear susceptibility and can be used to generate highly efficient nonlinear optical phenomena. This chapter seeks to understand and describe the capabilities of these materials in a context of eventually integrating them into optical microresonators to create a new class of silica-based miniaturized nonlinear optical devices. The final chapter in this dissertation covers the proposed and in-progress work related to those topics already covered in previous chapters. This includes direct growth of transition metal dichalcogenides onto microsphere resonators to create narrow linewidth microscopic lasers. Another novel photonic device consists of a single mode optical fiber etched to expose the core onto which a monolayer of 2D material is adhered. This presents the capability to create a simple photonic device which can easily be integrated as a discrete optical component capable of producing guided photoluminescence or extremely high second harmonic generation. Finally, spectral holography is discussed as a potential tool to record the phase information of light traveling through optical microresonators, adhered particles, and directly grown 2D materials.

  14. A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism

    NASA Astrophysics Data System (ADS)

    Shang, Jiangkun; Tian, Yanling; Li, Zheng; Wang, Fujun; Cai, Kunhai

    2015-09-01

    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking.

  15. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. An efficient and scalable graph modeling approach for capturing information at different levels in next generation sequencing reads

    PubMed Central

    2013-01-01

    Background Next generation sequencing technologies have greatly advanced many research areas of the biomedical sciences through their capability to generate massive amounts of genetic information at unprecedented rates. The advent of next generation sequencing has led to the development of numerous computational tools to analyze and assemble the millions to billions of short sequencing reads produced by these technologies. While these tools filled an important gap, current approaches for storing, processing, and analyzing short read datasets generally have remained simple and lack the complexity needed to efficiently model the produced reads and assemble them correctly. Results Previously, we presented an overlap graph coarsening scheme for modeling read overlap relationships on multiple levels. Most current read assembly and analysis approaches use a single graph or set of clusters to represent the relationships among a read dataset. Instead, we use a series of graphs to represent the reads and their overlap relationships across a spectrum of information granularity. At each information level our algorithm is capable of generating clusters of reads from the reduced graph, forming an integrated graph modeling and clustering approach for read analysis and assembly. Previously we applied our algorithm to simulated and real 454 datasets to assess its ability to efficiently model and cluster next generation sequencing data. In this paper we extend our algorithm to large simulated and real Illumina datasets to demonstrate that our algorithm is practical for both sequencing technologies. Conclusions Our overlap graph theoretic algorithm is able to model next generation sequencing reads at various levels of granularity through the process of graph coarsening. Additionally, our model allows for efficient representation of the read overlap relationships, is scalable for large datasets, and is practical for both Illumina and 454 sequencing technologies. PMID:24564333

  17. Toward RADSCAT measurements over the sea and their interpretation

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Fung, A. K.; Wu, S. T.; Chan, H. L.

    1973-01-01

    Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed.

  18. Impact of self-healing capability on network robustness

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2015-04-01

    A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.

  19. Impact of self-healing capability on network robustness.

    PubMed

    Shang, Yilun

    2015-04-01

    A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.

  20. Welfarism, extra-welfarism and capability: the spread of ideas in health economics.

    PubMed

    Coast, Joanna; Smith, Richard D; Lorgelly, Paula

    2008-10-01

    This paper explores the spread of ideas within health economics, in relation to the impact of the capability approach to date and the extent to which it might impact in the future. The paper uses UK decision making to illustrate this spread of ideas. Within health economics, Culyer used the capability approach in developing the extra-welfarist perspective (where health status directly influences which social state is preferred). It is not a direct application of capability as the evaluation's focus remains narrow; the concern is with functioning, and maximisation is retained. Culyer's work provided a theoretical basis for using quality-adjusted life-years in decision making and this perspective is accepted as the basis for evaluation by the UK National Institute of Health and Clinical Excellence (NICE). To the extent that extra-welfarism represents a capability approach, capabilities influence NICE's decision making and hence UK health care provision. This paper explores the extent to which extra-welfarism draws on the capability approach; the spread of extra-welfarist ideas; and recent interest in more direct applications of the capability approach.

  1. Towards a Predictive Thermodynamic Model of Oxidation States of Uranium Incorporated in Fe (hydr) oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagus, Paul S.

    The theoretical research in this project has been directed toward the interpretation of core-level spectroscopies for systems relevant to the project. For the initial efforts, the focus of our theoretical simulations has been the interpretation of laboratory and synchrotron X-Ray Photoemission Spectra, XPS. In more recent efforts, an increasing emphasis has been placed on developing transparent understandings of X-Ray Adsorption Spectra, XAS . For the XAS, the principal concern is for the near-edge features, either just below or just above, an ionization limit or edge, which are described as Near-Edge X-Ray Adsorption Fine Structure, NEXAFS. In particular, a priority hasmore » involved the analysis and interpretation of XPS and NEXAFS spectra, especially of Fe and U systems, as measured by our PNNL collaborators. The overall objective of our theoretical studies is to establish connections between features of the spectra and their origin in the electronic structure of the materials. The efforts for the analysis of XPS have been reviewed in a paper by the PI, C. J. Nelin, and E. S. Ilton from PNNL on “The interpretation of XPS spectra: Insights into materials properties”, Surf. Sci. Reports, 68, 273 (2013). Two materials properties of special interest have been the degree of ionicity and the character of the covalent bonding in a range of oxides formed with transition metal, lanthanide, and actinide cations. Since the systems treated have electrons in open shells, it has been necessary to determine the energetics and the character of the angular momentum coupling of the open shell electrons. In particular, we have established methods for the treatment of the “intermediate coupling” which arises when the system is between the limit of Russell-Saunders multiplets, and the limit of j-j coupling where the spin-orbit splittings of single electrons dominate. A recent paper by the PI, and M. J. Sassi, and K. M. Rosso, (both at PNNL) “Intermediate Coupling For Core-Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2) Improvements and extensions of our capabilities for the calculation of the intensities of XPS and XAS transitions. And (3) ongoing development of flexible programs for the visualization of the theoretical spectra so that they can be compared with experiment. Our efforts on applications and methodology for these and related topics will continue under a sub-contract to PNNL.« less

  2. Use of FEC coding to improve statistical multiplexing performance for video transport over ATM networks

    NASA Astrophysics Data System (ADS)

    Kurceren, Ragip; Modestino, James W.

    1998-12-01

    The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.

  3. Observing Optical Plasmons on a Single Nanometer Scale

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2014-01-01

    The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light - matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales. PMID:24556874

  4. Revealing the Origins of Mechanically Induced Fluorescence Changes in Organic Molecular Crystals.

    PubMed

    Wilbraham, Liam; Louis, Marine; Alberga, Domenico; Brosseau, Arnaud; Guillot, Régis; Ito, Fuyuki; Labat, Frédéric; Métivier, Rémi; Allain, Clémence; Ciofini, Ilaria

    2018-05-29

    Mechanofluorochromic molecular materials display a change in fluorescence color through mechanical stress. Complex structure-property relationships in both the crystalline and amorphous phases of these materials govern both the presence and strength of this behavior, which is usually deemed the result of a mechanically induced phase transition. However, the precise nature of the emitting species in each phase is often a matter of speculation, resulting from experimental data that are difficult to interpret, and a lack of an acceptable theoretical model capable of capturing complex environmental effects. With a combined strategy using sophisticated experimental techniques and a new theoretical approach, here the varied mechanofluorochromic behavior of a series of difluoroboron diketonates is shown to be driven by the formation of low-energy exciton traps in the amorphous phase, with a limited number of traps giving rise to the full change in fluorescence color. The results highlight intrinsic structural links between crystalline and amorphous phases, and how these may be exploited for further development of powerful mechanofluorochromic assemblies, in line with modern crystal engineering approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Medical Exercise Therapy for Treating Musculoskeletal Pain: A Narrative Review of Results from Randomized Controlled Trials with a Theoretical Perspective.

    PubMed

    Lorås, H; Østerås, B; Torstensen, T A; Østerås, H

    2015-09-01

    The purpose of this narrative review is to present an overview and theoretical rationale of medical exercise therapy (MET) as a physiotherapeutic rehabilitation treatment for musculoskeletal pain conditions. Results from randomized controlled trials (RCTs) conducted on MET are also presented. Computerized searches for any RCTs were conducted on the MET concept in the databases PubMed, Medline, Embase and ISI Web of science up to 2013. Overall findings from five included MET RCTs are long-term (≥1 year) reductions in pain and improved physical and functional capabilities. These results are interpreted in the context of the biopsychosocial model, advancing the view of a dynamic interaction among physiologic, psychological and social factors that influence pain modulation. MET is a biopsychosocial treatment that reduces pain and improves activities of daily living in patients with a musculoskeletal pain condition. Pain modulation is a key feature of MET, and an important area for further research is to elucidate the specific mechanisms behind the treatment effects. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Kinetics of oxygen surface exchange on epitaxial Ruddlesden–Popper phases and correlations to first-principles descriptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yueh -Lin; Wang, Xiao Renshaw; Lee, Ho Nyung

    2015-12-17

    Through alignment of theoretical modeling with experimental measurements of oxygen surface-exchange kinetics on (001)-oriented La 2–xSr xMO 4+δ (M = Co, Ni, Cu) thin films, we demonstrate here the capability of the theoretical bulk O 2p-band centers to correlate with oxygen surface-exchange kinetics of the Ruddlesden–Popper oxide (RP 214) (001)-oriented thin films. In addition, we demonstrate that the bulk O 2p-band centers can also correlate with the experimental activation energies for bulk oxygen transport and oxygen surface exchange of both the RP 214 and the perovskite polycrystalline materials reported in the literature, indicating the effectiveness of the bulk O 2p-bandmore » centers in describing the associated energetics and kinetics. Here, we propose that the opposite slopes of the bulk O 2p-band center correlations between the RP 214 and the perovskite materials are due to the intrinsic mechanistic differences of their oxygen surface-exchange kinetics bulk anionic transport.« less

  7. Metallic coatings of microelectromechanical structures at low temperatures: Stress, elasticity, and nonlinear dissipation

    NASA Astrophysics Data System (ADS)

    Collin, E.; Kofler, J.; Lakhloufi, S.; Pairis, S.; Bunkov, Yu. M.; Godfrin, H.

    2010-06-01

    We present mechanical measurements performed at low temperatures on cantilever-based microelectromechanical structures coated with a metallic layer. Two very different coatings are presented in order to illustrate the capabilities of the present approach, namely (soft) aluminum and (hard) niobium oxide. The temperature is used as a control parameter to access materials properties. We benefit from low temperature techniques to extract a phase-resolved measurement of the first mechanical resonance mode in cryogenic vacuum. By repeating the experiment on the same samples, after multiple metallic depositions, we can determine accurately the contribution of the coating layers to the mechanical properties in terms of surface stress, additional mass, additional elasticity, and damping. Analytic theoretical expressions are derived and used to fit the data. Taking advantage of the extremely broad dynamic range provided by the technique, we can measure the anelasticity of the thin metallic film. The key parameters describing the metals' dynamics are analyzed in an original way in order to provide new experimental grounds for future theoretical modelings of the underlying mechanisms.

  8. Computer program system for dynamic simulation and stability analysis of passive and actively controlled spacecraft. Volume 1. Theory

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, D. A.; Park, C. A.

    1975-01-01

    A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities.

  9. Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, Madeline Louise; McMath, Garrett Earl

    Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less

  10. Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries

    DOE PAGES

    Lockhart, Madeline Louise; McMath, Garrett Earl

    2017-10-26

    Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less

  11. From expert generalists to ambiguity masters: using ambiguity tolerance theory to redefine the practice of rural nurses.

    PubMed

    Knight, Kaye; Kenny, Amanda; Endacott, Ruth

    2016-06-01

    To redefine the practice of rural nurses and describe a model that conceptualises the capabilities and characteristics required in the rural environment. The way in which the practice of rural nurses has been conceptualised is problematic. Definitions of rural nursing have been identified primarily through the functional context of rural health service delivery. The expert generalist term has provided a foundation theory for rural nurses with understandings informed by the scope of practice needed to meet service delivery requirements. However, authors exploring intrinsic characteristics of rural nurses have challenged this definition, as it does not adequately address the deeper, intangible complexities of practice required in the rural context. Despite this discourse, an alternative way to articulate the distinctive nature of rural nursing practice has eluded authors in Australia and internationally. A theoretical paper based on primary research. The development of the model was informed by the findings of a study that explored the nursing practice of managing telephone presentations in rural health services in Victoria, Australia. The study involved policy review from State and Federal governments, nursing and medical professional bodies, and five rural health services; semi-structured interviews with eight Directors of Nursing, seven registered nurses and focus group interviews with eight registered nurses. An ambiguity tolerance model drawn from corporate global entrepreneurship theory was adapted to explain the findings of the study. The adapted model presents capabilities and characteristics used by nurses to successfully manage the ambiguity of providing care in the rural context. Redefining the practice of rural nurses, through an adapted theory of ambiguity tolerance, highlights nursing characteristics and capabilities required in the rural context. This perspective offers new ways of thinking about the work of rural nurses, rural nurse policy, education, recruitment, retention and clinical governance. A greater understanding of rural nurse practice will assist in achieving positive care outcomes in an environment with competing stakeholder needs, and limited resources and options for care. © 2016 John Wiley & Sons Ltd.

  12. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Villa, Ferdinando; Batker, David; Harrison-Cox, Jennifer; Voigt, Brian; Johnson, Gary W.

    2014-01-01

    Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems’ capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic valuation and policy applications than studies that consider only theoretical service provision and/or use.

  13. On Measuring the Sixth Basic Personality Dimension: A Comparison Between HEXACO Honesty-Humility and Big Six Honesty-Propriety.

    PubMed

    Thielmann, Isabel; Hilbig, Benjamin E; Zettler, Ingo; Moshagen, Morten

    2017-12-01

    Recent developments in personality research led to the proposition of two alternative six-factor trait models, the HEXACO model and the Big Six model. However, given the lack of direct comparisons, it is unclear whether the HEXACO and Big Six factors are distinct or essentially equivalent, that is, whether corresponding inventories measure similar or distinct personality traits. Using Structural Equation Modeling (Study 1), we found substantial differences between the traits as measured via the HEXACO-60 and the 30-item Questionnaire Big Six (30QB6), particularly for Honesty-Humility and Honesty-Propriety (both model's critical difference to the Big Five approach). This distinction was further supported by Study 2, showing differential capabilities of the HEXACO-60 and the 30QB6 to account for several criteria representing the theoretical core of Honesty-Humility and/or Honesty-Propriety. Specifically, unlike the indicator of Honesty-Humility, the indicator of Honesty-Propriety showed low predictive power for some conceptually relevant criteria, suggesting a limited validity of the 30QB6.

  14. Directed energy deflection laboratory measurements of common space based targets

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so further tests must be performed.

  15. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    NASA Astrophysics Data System (ADS)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  16. Slave finite elements for nonlinear analysis of engine structures, volume 1

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1991-01-01

    A 336 degrees of freedom slave finite element processing capability to analyze engine structures under severe thermomechanical loading is presented. Description of the theoretical development and demonstration of that element is presented in this volume.

  17. Sandia National Laboratories: Research: Materials Science

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New research. Research Our research uses Sandia's experimental, theoretical, and computational capabilities to

  18. Rate and time dependent behavior of structural adhesives. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Renieri, M. P.; Herakovich, C. T.; Brinson, H. F.

    1976-01-01

    Studies on two adhesives (Metlbond 1113 and 1113-2) identified as having applications in the bonding of composite materials are presented. Constitutive equations capable of describing changes in material behavior with strain rate are derived from various theoretical approaches. It is shown that certain unique relationships exist between these approaches. It is also shown that the constitutive equation derived from mechanical models can be used for creep and relaxation loading. A creep to failure phenomenon is shown to exist and is correlated with a delayed yield equation proposed by Crochet. Loading-unloading results are presented and are shown to correlate well with the proposed form of the loading-unloading equations for the modified Bingham model. Experimental results obtained for relaxation tests above and below the glass transition temperature are presented. It is shown that the adhesives obey the time-temperature superposition principle.

  19. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Many previously demonstrated improved fuel cell features were consolidated to (1) obtain a better understanding of the observed characteristics of the operating laboratory-sized cells; (2) evaluate appropriate improved fuel cell features in 0.7 sq ft cell hardware; and (3) study the resultant fuel cell capability and determine its impact on various potential fuel cell space missions. The observed performance characteristics of the fuel cell at high temperatures and high current densities were matched with a theoretical model based on the change in Gibbs free energy voltage with respect to temperature and internal resistance change with current density. Excellent agreement between the observed and model performance was obtained. The observed performance decay with operational time on cells with very low noble metal loadings (0.05 mg/sq cm) were shown to be related to loss in surface area. Cells with the baseline amount of noble catalyst electrode loading demonstrated over 40,000 hours of stable performance.

  20. Continuous-Time Random Walk with multi-step memory: an application to market dynamics

    NASA Astrophysics Data System (ADS)

    Gubiec, Tomasz; Kutner, Ryszard

    2017-11-01

    An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  1. Probing short-range protein Brownian motion in the cytoplasm of living cells.

    PubMed

    Di Rienzo, Carmine; Piazza, Vincenzo; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2014-12-23

    The translational motion of molecules in cells deviates from what is observed in dilute solutions. Theoretical models provide explanations for this effect but with predictions that drastically depend on the nanoscale organization assumed for macromolecular crowding agents. A conclusive test of the nature of the translational motion in cells is missing owing to the lack of techniques capable of probing crowding with the required temporal and spatial resolution. Here we show that fluorescence-fluctuation analysis of raster scans at variable timescales can provide this information. By using green fluorescent proteins in cells, we measure protein motion at the unprecedented timescale of 1 μs, unveiling unobstructed Brownian motion from 25 to 100 nm, and partially suppressed diffusion above 100 nm. Furthermore, experiments on model systems attribute this effect to the presence of relatively immobile structures rather than to diffusing crowding agents. We discuss the implications of these results for intracellular processes.

  2. Reagent-Free Programming of Shape-Memory Behavior in Gelatin by Electron Beams: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Riedel, Stefanie; Mayr, Stefan G.

    2018-02-01

    Recent years have seen a paradigm shift in biomaterials toward stimuli-responsive switchable systems that actively interact with their environment. This work demonstrates how to turn the ubiquitous off-the-shelf material gelatin into such a smart biomaterial. This is achieved by realizing the shape-memory effect, viz., a temperature-induced transition from a secondary into a primary shape that has been programmed in the first place merely by exposure to energetic electrons without addition of potentially hazardous cross-linkers. While this scenario is experimentally quantified for exemplary actuators, a theoretical framework capable of unraveling the molecular foundations and predicting experiments is also presented. It particularly employs molecular dynamics modeling based on force fields that are also derived within this work. Implementing this functionality into a highly accepted material, these findings open an avenue for large-scale application in a broad range of areas.

  3. Modeling of rolling element bearing mechanics. Computer program user's manual

    NASA Technical Reports Server (NTRS)

    Greenhill, Lyn M.; Merchant, David H.

    1994-01-01

    This report provides the user's manual for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings, duplex angular contact ball bearings, and cylindrical roller bearings. The model includes the defects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program, and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. This report addresses input instructions for and features of the computer codes. A companion report addresses the theoretical basis for the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.

  4. Experimental Observations and Theoretical Modeling of VLF Scattering During LEP Events

    NASA Astrophysics Data System (ADS)

    Mitchell, M. F.; Moore, R. C.

    2012-12-01

    Recent experimental observations of very low frequency (VLF) scattering during lightning-induced election precipitation (LEP) events are presented. A spread spectrum analysis technique is applied to these observations, demonstrating a significant dependence on frequency. For LEP events, the scattered field amplitude and phase both exhibit strong frequency dependence, as do the event onset delays (relative to the causative lightning flash) and the event onset durations. The experimental observations are compared with the predictions of an Earth-ionosphere waveguide propagation and scattering model. The Long-Wave Propagation Capability (LWPC) code is used to demonstrate that the scattered field amplitude and phase depend sensitively on the electrical properties of the scattering body and the ionosphere between the scatterer and the receiver. The observed frequency-dependent onset times and durations, on the other hand, are attributed to the scattering source characteristics. These measurements can also be used to study radiation belt dynamics.

  5. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  6. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  7. Indoor modeling of the wind pressure in solar installations with flat and step-like frames for HCPV modules

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Valery D.; Ashcheulov, Yury V.; Chekalin, Alexander V.; Chumakov, Yury S.; Shvarts, Maxim Z.; Timofeev, Vladimir V.

    2014-09-01

    As a rule, the HCPV modules are mounted on solar trackers in a form of a flat panel. Wind pressure is one of the key factors limiting the operation capabilities of such type solar installations. At the PV Lab of the Ioffe Institute, the sun-trackers with step-like frame for modules have been proposed and developed, which have a potential for significant reduction of wind pressure. Such a reduction is realized in a wide range of the frame tilt angles the most typical for day-light operation of solar installations. In the present work, theoretical consideration and indoor experiments with mechanical models of installation frames have been carried out. A wind tunnel has been used as an experimental instrument for quantitative comparison in conventional units of expected wind loads on module frames of different designs.

  8. A Study of the Antecedents and Consequences of Members' Helping Behaviors in Online Community

    NASA Astrophysics Data System (ADS)

    Chu, Kuo-Ming

    Despite the growing popularity of online communities, there are a major gap between practitioners and academicians as to how to share information and knowledge among members of these groups. However, none of the previous studies have integrated these variables into a more comprehensive framework. Thus more validations are required the aim of this paper is to develop a theoretical model that enables us to examine the antecedents and consequences effects of members’ helping behavior in online communities. The moderating effects of the sense of community on the relationships between members’ helping behaviors on information sharing and knowledge contribution are also evaluated. A complete model is developed for empirical testing. Using Yahoo’s members as the samples of this study, the empirical results suggested that online communities members’ helping behavior represents a large pool of product know-how. They seem to be a promising source of innovation capabilities for new product development.

  9. Mutual information, neural networks and the renormalization group

    NASA Astrophysics Data System (ADS)

    Koch-Janusz, Maciej; Ringel, Zohar

    2018-06-01

    Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.

  10. A Mars 1 Watt vortex wind energy machine

    NASA Technical Reports Server (NTRS)

    Ralston, Michael; Crowley, Christopher; Thomson, Ronald; Gwynne, Owen

    1992-01-01

    A Martian wind power generator capable of surviving impact and fulfilling the long-term (2-5 yr) low-level power requirements (1-2 W) of an unmanned surface probe is presented. Attention is given to a tornado vortex generator that was chosen on the basis of its capability to theoretically augment the available power that may be extracted for average Martian wind speeds of about 7.5 m/s. The generator offers comparable mass-to-power ratios with solar power sources.

  11. ATLAS, an integrated structural analysis and design system. Volume 5: System demonstration problems

    NASA Technical Reports Server (NTRS)

    Samuel, R. A. (Editor)

    1979-01-01

    One of a series of documents describing the ATLAS System for structural analysis and design is presented. A set of problems is described that demonstrate the various analysis and design capabilities of the ATLAS System proper as well as capabilities available by means of interfaces with other computer programs. Input data and results for each demonstration problem are discussed. Results are compared to theoretical solutions or experimental data where possible. Listings of all input data are included.

  12. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  13. Cygnus X-1: A Case for a Magnetic Accretion Disk?

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.

    1996-01-01

    With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.

  14. Theoretical and software considerations for general dynamic analysis using multilevel substructured models

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1985-01-01

    The dynamic analysis of complex structural systems using the finite element method and multilevel substructured models is presented. The fixed-interface method is selected for substructure reduction because of its efficiency, accuracy, and adaptability to restart and reanalysis. This method is extended to reduction of substructures which are themselves composed of reduced substructures. The implementation and performance of the method in a general purpose software system is emphasized. Solution algorithms consistent with the chosen data structures are presented. It is demonstrated that successful finite element software requires the use of software executives to supplement the algorithmic language. The complexity of the implementation of restart and reanalysis porcedures illustrates the need for executive systems to support the noncomputational aspects of the software. It is shown that significant computational efficiencies can be achieved through proper use of substructuring and reduction technbiques without sacrificing solution accuracy. The restart and reanalysis capabilities and the flexible procedures for multilevel substructured modeling gives economical yet accurate analyses of complex structural systems.

  15. Aerodynamic characteristics of wings designed with a combined-theory method to cruise at a Mach number of 4.5

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1988-01-01

    A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, N.S.V.; Kareti, S.; Shi, Weimin

    A formal framework for navigating a robot in a geometric terrain by an unknown set of obstacles is considered. Here the terrain model is not a priori known, but the robot is equipped with a sensor system (vision or touch) employed for the purpose of navigation. The focus is restricted to the non-heuristic algorithms which can be theoretically shown to be correct within a given framework of models for the robot, terrain and sensor system. These formulations, although abstract and simplified compared to real-life scenarios, provide foundations for practical systems by highlighting the underlying critical issues. First, the authors considermore » the algorithms that are shown to navigate correctly without much consideration given to the performance parameters such as distance traversed, etc. Second, they consider non-heuristic algorithms that guarantee bounds on the distance traversed or the ratio of the distance traversed to the shortest path length (computed if the terrain model is known). Then they consider the navigation of robots with very limited computational capabilities such as finite automata, etc.« less

  17. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions

    PubMed Central

    Hameed, Shilan S.; Aziz, Fakhra; Sulaiman, Khaulah; Ahmad, Zubair

    2017-01-01

    In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp) and ideality factor (n), while thermal parameters can be defined by the cells temperature (T). A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc), open circuit voltage (Voc), fill factor (FF) and efficiency (η) is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance. PMID:28793325

  18. Self-Organizing Hidden Markov Model Map (SOHMMM).

    PubMed

    Ferles, Christos; Stafylopatis, Andreas

    2013-12-01

    A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fluidic Vectoring of a Planar Incompressible Jet Flow

    NASA Astrophysics Data System (ADS)

    Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.

  20. Modeling the coevolution of topology and traffic on weighted technological networks

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong

    2007-02-01

    For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.

  1. Dynamical complexity in a mean-field model of human EEG

    NASA Astrophysics Data System (ADS)

    Frascoli, Federico; Dafilis, Mathew P.; van Veen, Lennaert; Bojak, Ingo; Liley, David T. J.

    2008-12-01

    A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

  2. Conference on the Ionosphere and Radio Wave Propagation, 3rd, University of Sydney, Australia, February 11-15, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Cole, D. G.; McNamara, L. F.

    1985-12-01

    Various papers on the ionosphere and radio wave propagation are presented. The subjects discussed include: day-to-day variability in foF2 at low latitudes over a solar cycle; semiempirical, low-latitude ionospheric model; remote sensing with the Jindalee skywave radar; photographic approach to irregularities in the 80-100 km region; interference of radio waves in a CW system; study of the F-region characteristics at Waltair; recent developments in the international reference ionosphere; research-oriented ionosonde with directional capabilities; and ionospheric forecasting for specific applications. Also addressed are: experimental and theoretical techniques for the equatorial F region; empirical models of ionospheric electron concentration; the Jindalee ionospheric sounding system; a semiempirical midlatitude ionospheric model; Es structure using an HF radar; short-term variations in f0F2 and IEC; nonreciprocity in Omega propagation observed at middle latitudes; propagation management for no acknowledge HF links; new techniques in ionospheric sounding and studies; and lunar effects in the ionospheric F region.

  3. Modelling Glacial Lake Outburst Floods: Key Considerations and Challenges Posed By Climatic Change

    NASA Astrophysics Data System (ADS)

    Westoby, M.

    2014-12-01

    The number and size of moraine-dammed supraglacial and proglacial lakes is increasing as a result of contemporary climatic change. Moraine-dammed lakes are capable of impounding volumes of water in excess of 107 m3, and often represent a very real threat to downstream communities and infrastructure, should the bounding moraine fail and produce a catastrophic Glacial Lake Outburst Flood (GLOF). Modelling the individual components of a GLOF, including a triggering event, the complex dam-breaching process and downstream propagation of the flood is incredibly challenging, not least because direct observation and instrumentation of such high-magnitude flows is virtually impossible. We briefly review the current state-of-the-art in numerical GLOF modelling, with a focus on the theoretical and computational challenges associated with reconstructing or predicting GLOF dynamics in the face of rates of cryospheric change that have no historical precedent, as well as various implications for researchers and professionals tasked with the production of hazard maps and disaster mitigation strategies.

  4. Tabletop Molecular Communication: Text Messages through Chemical Signals

    PubMed Central

    Farsad, Nariman; Guo, Weisi; Eckford, Andrew W.

    2013-01-01

    In this work, we describe the first modular, and programmable platform capable of transmitting a text message using chemical signalling – a method also known as molecular communication. This form of communication is attractive for applications where conventional wireless systems perform poorly, from nanotechnology to urban health monitoring. Using examples, we demonstrate the use of our platform as a testbed for molecular communication, and illustrate the features of these communication systems using experiments. By providing a simple and inexpensive means of performing experiments, our system fills an important gap in the molecular communication literature, where much current work is done in simulation with simplified system models. A key finding in this paper is that these systems are often nonlinear in practice, whereas current simulations and analysis often assume that the system is linear. However, as we show in this work, despite the nonlinearity, reliable communication is still possible. Furthermore, this work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for these systems. PMID:24367571

  5. Design and Characterization of a Microfabricated Hydrogen Clearance Blood Flow Sensor

    PubMed Central

    Walton, Lindsay R.; Edwards, Martin A.; McCarty, Gregory S.; Wightman, R. Mark

    2016-01-01

    Background Modern cerebral blood flow (CBF) detection favors the use of either optical technologies that are limited to cortical brain regions, or expensive magnetic resonance. Decades ago, inhalation gas clearance was the choice method of quantifying CBF, but this suffered from poor temporal resolution. Electrolytic H2 clearance (EHC) generates and collects gas in situ at an electrode pair, which improves temporal resolution, but the probe size has prohibited meaningful subcortical use. New Method We microfabricated EHC electrodes to an order of magnitude smaller than those existing, on the scale of 100 µm, to permit use deep within the brain. Results Novel EHC probes were fabricated. The devices offered exceptional signal-to-noise, achieved high collection efficiencies (40 – 50%) in vitro, and agreed with theoretical modeling. An in vitro chemical reaction model was used to confirm that our devices detected flow rates higher than those expected physiologically. Computational modeling that incorporated realistic noise levels demonstrated devices would be sensitive to physiological CBF rates. Comparison with Existing Method The reduced size of our arrays makes them suitable for subcortical EHC measurements, as opposed to the larger, existing EHC electrodes that would cause substantial tissue damage. Our array can collect multiple CBF measurements per minute, and can thus resolve physiological changes occurring on a shorter timescale than existing gas clearance measurements. Conclusion We present and characterize microfabricated EHC electrodes and an accompanying theoretical model to interpret acquired data. Microfabrication allows for the high-throughput production of reproducible devices that are capable of monitoring deep brain CBF with sub-minute resolution. PMID:27102042

  6. Persuasive communication: A theoretical model for changing the attitude of preservice elementary teachers toward metric conversion

    NASA Astrophysics Data System (ADS)

    Shrigley, Robert L.

    This study was based on Hovland's four-part statement, Who says what to whom with what effect, the rationale for persuasive communication, a theoretical model for modifying attitudes. Part I was a survey of 139 perservice elementary teachers from which were generated the more credible characteristics of metric instructors, a central element in the who component of Hovland's model. They were: (1) background in mathematics and science, (2) fluency in metrics, (3) capability of thinking metrically, (4) a record of excellent teaching, (5) previous teaching of metric measurement to children, (6) responsibility for teaching metric content in methods courses and (7) an open enthusiasm for metric conversion. Part II was a survey of 45 mathematics educators where belief statements were synthesized for the what component of Hovland's model. It found that math educators support metric measurement because: (1) it is consistent with our monetary system; (2) the conversion of units is easier into metric than English; (3) it is easier to teach and easier to learn than English measurement; there is less need for common fractions; (4) most nations use metric measurement; scientists have used it for decades; (5) American industry has begun to use it; (6) metric measurement will facilitate world trade and communication; and (7) American children will need it as adults; educational agencies are mandating it. With the who and what of Hovland's four-part statement defined, educational researchers now have baseline data to use in testing experimentally the effect of persuasive communication on the attitude of preservice teachers toward metrication.

  7. The role and benefits of accessing primary care patient records during unscheduled care: a systematic review.

    PubMed

    Bowden, Tom; Coiera, Enrico

    2017-09-22

    The purpose of this study was to assess the impact of accessing primary care records on unscheduled care. Unscheduled care is typically delivered in hospital Emergency Departments. Studies published to December 2014 reporting on primary care record access during unscheduled care were retrieved. Twenty-two articles met inclusion criteria from a pool of 192. Many shared electronic health records (SEHRs) were large in scale, servicing many millions of patients. Reported utilization rates by clinicians was variable, with rates >20% amongst health management organizations but much lower in nation-scale systems. No study reported on clinical outcomes or patient safety, and no economic studies of SEHR access during unscheduled care were available. Design factors that may affect utilization included consent and access models, SEHR content, and system usability and reliability. Despite their size and expense, SEHRs designed to support unscheduled care have been poorly evaluated, and it is not possible to draw conclusions about any likely benefits associated with their use. Heterogeneity across the systems and the populations they serve make generalization about system design or performance difficult. None of the reviewed studies used a theoretical model to guide evaluation. Value of Information models may be a useful theoretical approach to design evaluation metrics, facilitating comparison across systems in future studies. Well-designed SEHRs should in principle be capable of improving the efficiency, quality and safety of unscheduled care, but at present the evidence for such benefits is weak, largely because it has not been sought.

  8. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  9. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    PubMed

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  10. Computational and Theoretical Study of the Physical Constraints on Chemotaxis

    NASA Astrophysics Data System (ADS)

    Varennes, Julien

    Cell chemotaxis is crucial to many biological functions including development, wound healing, and cancer metastasis. Chemotaxis is the process in which cells migrate in response to chemical concentration gradients. Recent experiments show that cells are capable of detecting shallow gradients as small as a 1% concentration difference, and multicellular groups can improve on this by an additional order of magnitude. Examples from morphogenesis and metastasis demonstrate collective response to gradients equivalent to a 1 molecule difference in concentration across a cell body. While the physical constraints to cell gradient sensing are well understood, how the sensory information leads to cell migration, and coherent multicellular movement in the case of collectives, remains poorly understood. Here we examine how extrinsic sensory noise leads to error in chemotactic performance. First, we study single cell chemotaxis and use both simulations and analytical models to place physical constraints on chemotactic performance. Next we turn our attention to collective chemotaxis. We examine how collective cell interactions can improve chemotactic performance. We develop a novel model for quantifying the physical limit to chemotactic precision for two stereotypical modes of collective chemotaxis. Finally, we conclude by examining the effects of intercellular communication on collective chemotaxis. We use simulations to test how well collectives can chemotax through very shallow gradients with the help of communication. By studying these computational and theoretical models of individual and collective chemotaxis, we address the gap in knowledge between chemical sensing and directed migration.

  11. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.

    PubMed

    Shen, Qi; Wang, Tianmiao; Kim, Kwang J

    2015-09-28

    The ionic polymer-metal composite (IPMC) is a soft material based actuator and sensor and has a promising potential in underwater application. This paper describes a hybrid biomimetic underwater vehicle that uses IPMCs as sensors. Propelled by the energy of waves, this underwater vehicle does not need an additional energy source. A physical model based on the hydrodynamics of the vehicle was developed, and simulations were conducted. Using the Poisson-Nernst-Planck system of equations, a physics model for the IPMC sensor was proposed. For this study, experimental apparatus was developed to conduct hydrodynamic experiments for both the underwater vehicle and the IPMC sensors. By comparing the experimental and theoretical results, the speed of the underwater vehicle and the output of the IPMC sensors were well predicted by the theoretical models. A maximum speed of 1.08 × 10(-1) m s(-1) was recorded experimentally at a wave frequency of 1.6 Hz. The peak output voltage of the IPMC sensor was 2.27 × 10(-4) V, recorded at 0.8 Hz. It was found that the speed of the underwater vehicle increased as the wave frequency increased and the IPMC output decreased as the wave frequency increased. Further, the energy harvesting capabilities of the underwater vehicle hosting the IPMCs were tested. A maximum power of 9.50 × 10(-10) W was recorded at 1.6 Hz.

  12. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  13. Managing corporate capabilities:theory and industry approaches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Adam M.

    2007-02-01

    This study characterizes theoretical and industry approaches to organizational capabilities management and ascertains whether there is a distinct ''best practice'' in this regard. We consider both physical capabilities, such as technical disciplines and infrastructure, and non-physical capabilities such as corporate culture and organizational procedures. We examine Resource-Based Theory (RBT), which is the predominant organizational management theory focused on capabilities. RBT seeks to explain the effect of capabilities on competitiveness, and thus provide a basis for investment/divestment decisions. We then analyze industry approaches described to us in interviews with representatives from Goodyear, 3M, Intel, Ford, NASA, Lockheed Martin, and Boeing. Wemore » found diversity amongst the industry capability management approaches. Although all organizations manage capabilities and consider them to some degree in their strategies, no two approaches that we observed were identical. Furthermore, we observed that theory is not a strong driver in this regard. No organization used the term ''Resource-Based Theory'', nor did any organization mention any other guiding theory or practice from the organizational management literature when explaining their capabilities management approaches. As such, we concluded that there is no single best practice for capabilities management. Nevertheless, we believe that RBT and the diverse industry experiences described herein can provide useful insights to support development of capabilities management approaches.« less

  14. Sandia National Laboratories: Careers: Materials Science

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New Sandia's experimental, theoretical, and computational capabilities to establish the state of the art in

  15. Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.

    2015-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.

  16. Degradable self-assembling dendrons for gene delivery: experimental and theoretical insights into the barriers to cellular uptake.

    PubMed

    Barnard, Anna; Posocco, Paola; Pricl, Sabrina; Calderon, Marcelo; Haag, Rainer; Hwang, Mark E; Shum, Victor W T; Pack, Daniel W; Smith, David K

    2011-12-21

    This paper uses a combined experimental and theoretical approach to gain unique insight into gene delivery. We report the synthesis and investigation of a new family of second-generation dendrons with four triamine surface ligands capable of binding to DNA, degradable aliphatic-ester dendritic scaffolds, and hydrophobic units at their focal points. Dendron self-assembly significantly enhances DNA binding as monitored by a range of experimental methods and confirmed by multiscale modeling. Cellular uptake studies indicate that some of these dendrons are highly effective at transporting DNA into cells (ca. 10 times better than poly(ethyleneimine), PEI). However, levels of transgene expression are relatively low (ca. 10% of PEI). This indicates that these dendrons cannot navigate all of the intracellular barriers to gene delivery. The addition of chloroquine indicates that endosomal escape is not the limiting factor in this case, and it is shown, both experimentally and theoretically, that gene delivery can be correlated with the ability of the dendron assemblies to release DNA. Mass spectrometric assays demonstrate that the dendrons, as intended, do degrade under biologically relevant conditions over a period of hours. Multiscale modeling of degraded dendron structures suggests that complete dendron degradation would be required for DNA release. Importantly, in the presence of the lower pH associated with endosomes, or when bound to DNA, complete degradation of these dendrons becomes ineffective on the transfection time scale-we propose this explains the poor transfection performance of these dendrons. As such, this paper demonstrates that taking this kind of multidisciplinary approach can yield a fundamental insight into the way in which dendrons can navigate barriers to cellular uptake. Lessons learned from this work will inform future dendron design for enhanced gene delivery. © 2011 American Chemical Society

  17. Quantifying 10 years of Improvements in Earthquake and Tsunami Monitoring in the Caribbean and Adjacent Regions

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.

    2014-12-01

    The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and along the coast will also be addressed. With the support of Member States and other countries and organizations it has been possible to significantly expand the sea level network thus reducing the amount of time it now takes to verify tsunamis.

  18. Electrochemical fabrication and optical properties of porous tin oxide films with structural colors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hua; Shu, Shiwei; Lee, Chris

    2014-10-21

    Photonic crystals with porous features not only provide the capability to control light but also enable structural colors that are environmentally sensitive. Here, we report a novel kind of tin oxide-based photonic crystal featuring periodically arranged air pores fabricated by the periodic anodization of tin foil. The existence of a photonic band gap in the fabricated structure is verified by its vivid color, and its reflective spectra which are responsive to environmental stimuli. Furthermore, the sample colors (i.e., the photonic band gap positions) can be easily adjusted by manipulating the anodization parameters. The theoretical modeling results of these tin oxidemore » photonic crystals agree well with the reported experimental ones.« less

  19. Stochastic Surface Mesh Reconstruction

    NASA Astrophysics Data System (ADS)

    Ozendi, M.; Akca, D.; Topan, H.

    2018-05-01

    A generic and practical methodology is presented for 3D surface mesh reconstruction from the terrestrial laser scanner (TLS) derived point clouds. It has two main steps. The first step deals with developing an anisotropic point error model, which is capable of computing the theoretical precisions of 3D coordinates of each individual point in the point cloud. The magnitude and direction of the errors are represented in the form of error ellipsoids. The following second step is focused on the stochastic surface mesh reconstruction. It exploits the previously determined error ellipsoids by computing a point-wise quality measure, which takes into account the semi-diagonal axis length of the error ellipsoid. The points only with the least errors are used in the surface triangulation. The remaining ones are automatically discarded.

  20. Nucleation and initial radius of self-catalyzed III-V nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Borie, S.; Dagnet, T.; Reynes, L.; André, Y.; Gil, E.

    2017-02-01

    We treat theoretically the initial nucleation step of self-catalyzed III-V nanowires under simultaneously deposited group III and V vapor fluxes and with surface diffusion of a group III element. Our model is capable of describing the droplet size at which the very first nanowire monolayer nucleates depending on the element fluxes and surface temperature. This size determines the initial nanowire radius in growth techniques without pre-deposition of gallium. We show that useful self-catalyzed III-V nanowires can form only under the appropriately balanced V/III flux ratios and temperatures. Such balance is required to obtain nucleation from reasonably sized droplets that are neither too small under excessive arsenic flux nor too large in the arsenic-poor conditions.

  1. Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight

    NASA Technical Reports Server (NTRS)

    Chiu, Y. Danny; Peters, David A.

    1991-01-01

    The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.

  2. Theoretical investigation on nanoparticle concentrations in optoelectrofluidic chip based on diffusion, convection, and migration

    NASA Astrophysics Data System (ADS)

    Hu, Sheng; Lv, Jiangtao; Si, Guangyuan

    2016-10-01

    A numerical model and simulation relative to an optoelectrofluidic chip has been presented in this article. Both dielectrophoretic and electroosmotic force attracting the nano-sized particles could be studied by the diffusion, convection, and migration equations. For the nano-sized particles, the protein with radius 3.6 nm is considered as the objective particle. The electroosmosis dependent upon applied frequency is calculated, which range 102 Hz from 108 Hz, and provides the much stronger force to enrich proteins than dielectrophoresis (DEP). Meanwhile, the induced light pattern size significantly affecting the concentration distribution is simulated. In this end, the concentration curve has verified that the optoelectrofluidic chip can be capable of manipulating and assembling the suspended submicron particles.

  3. Application of vibratory-percussion crusher for disintegration of supertough materials

    NASA Astrophysics Data System (ADS)

    Shishkin, E. V.; Kazakov, S. V.

    2017-10-01

    This article describes the results of theoretical and experimental studies of a vibratory-percussion crusher, which is driven from a pair of self-synchronizing vibration exciters, attached to the shell symmetrically about its vertical axis. In addition to that, crusher’s dynamic model is symmetrical and balanced. Forced oscillation laws for crusher working members and their amplitude-frequency characteristics have been inducted. Domains of existence of synchronous opposite-phase oscillations of crusher working members (crusher’s operating mode) and crusher capabilities have been identified. The results of mechanical and technological tests of a pilot crusher presented in the article show that this crusher may be viewed as an advanced machine for disintegration of supertough materials with minimum regrinding of finished products.

  4. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  5. The biomechanics of simple steatosis and steatohepatitis

    NASA Astrophysics Data System (ADS)

    Parker, K. J.; Ormachea, J.; Drage, M. G.; Kim, H.; Hah, Z.

    2018-05-01

    Magnetic resonance and ultrasound elastography techniques are now important tools for staging high-grade fibrosis in patients with chronic liver disease. However, uncertainty remains about the effects of simple accumulation of fat (steatosis) and inflammation (steatohepatitis) on the parameters that can be measured using different elastographic techniques. To address this, we examine the rheological models that are capable of capturing the dominant viscoelastic behaviors associated with fat and inflammation in the liver, and quantify the resulting changes in shear wave speed and viscoelastic parameters. Theoretical results are shown to match measurements in phantoms and animal studies reported in the literature. These results are useful for better design of elastographic studies of fatty liver disease and steatohepatitis, potentially leading to improved diagnosis of these conditions.

  6. A projection operator method for the analysis of magnetic neutron form factors

    NASA Astrophysics Data System (ADS)

    Kaprzyk, S.; Van Laar, B.; Maniawski, F.

    1981-03-01

    A set of projection operators in matrix form has been derived on the basis of decomposition of the spin density into a series of fully symmetrized cubic harmonics. This set of projection operators allows a formulation of the Fourier analysis of magnetic form factors in a convenient way. The presented method is capable of checking the validity of various theoretical models used for spin density analysis up to now. The general formalism is worked out in explicit form for the fcc and bcc structures and deals with that part of spin density which is contained within the sphere inscribed in the Wigner-Seitz cell. This projection operator method has been tested on the magnetic form factors of nickel and iron.

  7. The criterion of subscale sufficiency and its application to the relationship between static capillary pressure, saturation and interfacial areas

    PubMed Central

    2016-01-01

    Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas. PMID:27279769

  8. Exploring the fitness landscape of poliovirus

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Acevedo, Ashely; Andino, Raul; Tang, Chao

    2012-02-01

    RNA viruses are known to display extraordinary adaptation capabilities to different environments, due to high mutation rates. Their very dynamical evolution is captured by the quasispecies concept, according to which the viral population forms a swarm of genetic variants linked through mutation, which cooperatively interact at a functional level and collectively contribute to the characteristics of the population. The description of the viral fitness landscape becomes paramount towards a more thorough understanding of the virus evolution and spread. The high mutation rate, together with the cooperative nature of the quasispecies, makes it particularly challenging to explore its fitness landscape. I will present an investigation of the dynamical properties of poliovirus fitness landscape, through both the adoption of new experimental techniques and theoretical models.

  9. Ion-mobility study of two functionalized pentacene structural isomers using a modified electrospray/triple quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana V.; Bohme, Diethard K.; Baranov, Vladimir I.

    2007-03-01

    We report ion-mobility measurements with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR) designed to investigate ion molecule reactivity in organic mass spectrometry. Functionalized pentacene ions, which are generally unreactive were chosen for study to decouple drift/diffusion effects from reactivity (including clustering). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions. These capabilities were successfully employed in the measurement of ion mobilities in different modes of IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration.

  10. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  11. Resource utilization model for the algorithm to architecture mapping model

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Patel, Rakesh R.

    1993-01-01

    The analytical model for resource utilization and the variable node time and conditional node model for the enhanced ATAMM model for a real-time data flow architecture are presented in this research. The Algorithm To Architecture Mapping Model, ATAMM, is a Petri net based graph theoretic model developed at Old Dominion University, and is capable of modeling the execution of large-grained algorithms on a real-time data flow architecture. Using the resource utilization model, the resource envelope may be obtained directly from a given graph and, consequently, the maximum number of required resources may be evaluated. The node timing diagram for one iteration period may be obtained using the analytical resource envelope. The variable node time model, which describes the change in resource requirement for the execution of an algorithm under node time variation, is useful to expand the applicability of the ATAMM model to heterogeneous architectures. The model also describes a method of detecting the presence of resource limited mode and its subsequent prevention. Graphs with conditional nodes are shown to be reduced to equivalent graphs with time varying nodes and, subsequently, may be analyzed using the variable node time model to determine resource requirements. Case studies are performed on three graphs for the illustration of applicability of the analytical theories.

  12. Theoretical models of parental HIV disclosure: a critical review.

    PubMed

    Qiao, Shan; Li, Xiaoming; Stanton, Bonita

    2013-01-01

    This study critically examined three major theoretical models related to parental HIV disclosure (i.e., the Four-Phase Model [FPM], the Disclosure Decision Making Model [DDMM], and the Disclosure Process Model [DPM]), and the existing studies that could provide empirical support to these models or their components. For each model, we briefly reviewed its theoretical background, described its components and/or mechanisms, and discussed its strengths and limitations. The existing empirical studies supported most theoretical components in these models. However, hypotheses related to the mechanisms proposed in the models have not yet tested due to a lack of empirical evidence. This study also synthesized alternative theoretical perspectives and new issues in disclosure research and clinical practice that may challenge the existing models. The current study underscores the importance of including components related to social and cultural contexts in theoretical frameworks, and calls for more adequately designed empirical studies in order to test and refine existing theories and to develop new ones.

  13. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  14. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  15. A systematic analysis of scoring functions in rigid-body protein docking: The delicate balance between the predictive rate improvement and the risk of overtraining.

    PubMed

    Barradas-Bautista, Didier; Moal, Iain H; Fernández-Recio, Juan

    2017-07-01

    Protein-protein interactions play fundamental roles in biological processes including signaling, metabolism, and trafficking. While the structure of a protein complex reveals crucial details about the interaction, it is often difficult to acquire this information experimentally. As the number of interactions discovered increases faster than they can be characterized, protein-protein docking calculations may be able to reduce this disparity by providing models of the interacting proteins. Rigid-body docking is a widely used docking approach, and is often capable of generating a pool of models within which a near-native structure can be found. These models need to be scored in order to select the acceptable ones from the set of poses. Recently, more than 100 scoring functions from the CCharPPI server were evaluated for this task using decoy structures generated with SwarmDock. Here, we extend this analysis to identify the predictive success rates of the scoring functions on decoys from three rigid-body docking programs, ZDOCK, FTDock, and SDOCK, allowing us to assess the transferability of the functions. We also apply set-theoretic measure to test whether the scoring functions are capable of identifying near-native poses within different subsets of the benchmark. This information can provide guides for the use of the most efficient scoring function for each docking method, as well as instruct future scoring functions development efforts. Proteins 2017; 85:1287-1297. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. On the application of quantum transport theory to electron sources.

    PubMed

    Jensen, Kevin L

    2003-01-01

    Electron sources (e.g., field emitter arrays, wide band-gap (WBG) semiconductor materials and coatings, carbon nanotubes, etc.) seek to exploit ballistic transport within the vacuum after emission from microfabricated structures. Regardless of kind, all sources strive to minimize the barrier to electron emission by engineering material properties (work function/electron affinity) or physical geometry (field enhancement) of the cathode. The unique capabilities of cold cathodes, such as instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, cold emission, small size and/or low voltage operation characteristics, commend their use in several advanced devices when physical size, weight, power consumption, beam current, and pulse repletion frequency are important, e.g., RF power amplifier such as traveling wave tubes (TWTs) for radar and communications, electrodynamic tethers for satellite deboost/reboost, and electric propulsion systems such as Hall thrusters for small satellites. The theoretical program described herein is directed towards models to evaluate emission current from electron sources (in particular, emission from WBG and Spindt-type field emitter) in order to assess their utility, capabilities and performance characteristics. Modeling efforts particularly include: band bending, non-linear and resonant (Poole-Frenkel) potentials, the extension of one-dimensional theory to multi-dimensional structures, and emission site statistics due to variations in geometry and the presence of adsorbates. Two particular methodologies, namely, the modified Airy approach and metal-semiconductor statistical hyperbolic/ellipsoidal model, are described in detail in their present stage of development.

  17. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1994-01-01

    This report describes the accomplishments of a program designed to develop the tools necessary to interpret auroral emissions measured from a space-based platform. The research was divided into two major areas. The first area was a laboratory study designed to improve our understanding of the space vehicle external environment and how it will affect the space-based measurement of auroral emissions. Facilities have been setup and measurements taken to simulate the gas phase environment around a space vehicle; the radiation environment encountered by an orbiting vehicle that passes through the Earth's radiation belts; and the thermal environment of a vehicle in Earth orbit. The second major area of study was a modeling program to develop the capability of using auroral images at various wavelengths to infer the total energy influx and characteristic energy of the incident auroral particles. An ab initio auroral calculation has been added to the extant ionospheric/thermospheric global modeling capabilities within our group. Once the addition of the code was complete, the combined model was used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Attached papers included are: 'Laboratory Facility for Simulation of Vehicle-Environment Interactions'; 'Workshop on the Induced Environment of Space Station Freedom'; 'Radiation Damage Effects in Far Ultraviolet Filters and Substrates'; 'Radiation Damage Effects in Far Ultraviolet Filters, Thin Films, and Substrates'; 'Use of FUV Auroral Emissions as Diagnostic Indicators'; and 'Determination of Ionospheric Conductivities from FUV Auroral Emissions'.

  18. Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes.

    PubMed

    Chen, Fu; Sun, Huiyong; Wang, Junmei; Zhu, Feng; Liu, Hui; Wang, Zhe; Lei, Tailong; Li, Youyong; Hou, Tingjun

    2018-06-21

    Molecular docking provides a computationally efficient way to predict the atomic structural details of protein-RNA interactions (PRI), but accurate prediction of the three-dimensional structures and binding affinities for PRI is still notoriously difficult, partly due to the unreliability of the existing scoring functions for PRI. MM/PBSA and MM/GBSA are more theoretically rigorous than most scoring functions for protein-RNA docking, but their prediction performance for protein-RNA systems remains unclear. Here, we systemically evaluated the capability of MM/PBSA and MM/GBSA to predict the binding affinities and recognize the near-native binding structures for protein-RNA systems with different solvent models and interior dielectric constants (ϵ in ). For predicting the binding affinities, the predictions given by MM/GBSA based on the minimized structures in explicit solvent and the GBGBn1 model with ϵ in = 2 yielded the highest correlation with the experimental data. Moreover, the MM/GBSA calculations based on the minimized structures in implicit solvent and the GBGBn1 model distinguished the near-native binding structures within the top 10 decoys for 118 out of the 149 protein-RNA systems (79.2%). This performance is better than all docking scoring functions studied here. Therefore, the MM/GBSA rescoring is an efficient way to improve the prediction capability of scoring functions for protein-RNA systems. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Operational Soil Moisture Retrieval Techniques: Theoretical Comparisons in the Context of Improving the NASA Standard Approach

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Jackson, T. J.; Bindlish, R.; Njoku, E. G.; Chan, S.; Cosh, M. H.

    2012-12-01

    We are currently evaluating potential improvements to the standard NASA global soil moisture product derived using observations acquired from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). A major component of this effort is a thorough review of the theoretical basis of available passive-based soil moisture retrieval algorithms suitable for operational implementation. Several agencies provide routine soil moisture products. Our research focuses on five well-establish techniques that are capable of carrying out global retrieval using the same AMSR-E data set as the NASA approach (i.e. X-band brightness temperature data). In general, most passive-based algorithms include two major components: radiative transfer modeling, which provides the smooth surface reflectivity properties of the soil surface, and a complex dielectric constant model of the soil-water mixture. These two components are related through the Fresnel reflectivity equations. Furthermore, the land surface temperature, vegetation, roughness and soil properties need to be adequately accounted for in the radiative transfer and dielectric modeling. All of the available approaches we have examined follow the general data processing flow described above, however, the actual solutions as well as the final products can be very different. This is primarily a result of the assumptions, number of sensor variables utilized, the selected ancillary data sets and approaches used to account for the effect of the additional geophysical variables impacting the measured signal. The operational NASA AMSR-E-based retrievals have been shown to have a dampened temporal response and sensitivity range. Two possible approaches to addressing these issues are being evaluated: enhancing the theoretical basis of the existing algorithm, if feasible, or directly adjusting the dynamic range of the final soil moisture product. Both of these aspects are being actively investigated and will be discussed in our talk. Improving the quality and reliability of the global soil moisture product would result in greater acceptance and utilization in the related applications. USDA is an equal opportunity provider and employer.

  20. Evaluating practical vs. theoretical inspection system capability with a new programmed defect test mask designed for 3X and 4X technology nodes

    NASA Astrophysics Data System (ADS)

    Glasser, Joshua; Pratt, Tim

    2008-10-01

    Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.

Top