Maxwell boundary condition and velocity dependent accommodation coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struchtrup, Henning, E-mail: struchtr@uvic.ca
2013-11-15
A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.
Surface accommodation of molecular contaminants
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Hedgeland, Randy J.; Thomson, Shaun R.
1990-01-01
Theoretical consideration and supporting data are presented regarding the nature of the transport mechanisms which cause the adsorption of gases on spacecraft surfaces. Particular attention is given to the concept of a sticking coefficient which is the ratio of the thermally accommodated mass to the total incident mass. Existing molecular accommodation data are examined in terms of spacecraft applications and recent contamination-control data are introduced. Two distinct yet linked concepts emerge which are the accommodation and sticking coefficients, and surface roughness contributes significantly to both coefficients. A general equation regarding the coefficients is developed, and the data are found to fit the equation basically. It is concluded that a more precise characterization of the coefficients can be obtained through experimentation under simulated spacecraft conditions.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide
2017-07-01
Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grau, Mario, E-mail: mario.grau@hs-rm.de; Völklein, Friedemann; Meier, Andreas
A method for measuring the thermal accommodation coefficient α for surface-/gas interfaces is presented. It allows the determination of α for thin films produced by a variety of deposition technologies, such as chemical vapor deposition, physical vapor deposition, and atomic layer deposition (ALD). The setup is based on two microelectromechanical systems (MEMS) Pirani sensors facing each other in a defined positioning. Because these MEMS sensors show a very high sensitivity in their individual molecular flow regimes, it is possible to measure the accommodation coefficients of gases without the disturbing influence of the transition regime. This paper presents the analytical backgroundmore » and the actual measurement principle. The results for air and nitrogen molecules on sputtered Au and Pt surfaces are presented.« less
Liang, Tengfei; Li, Qi; Ye, Wenjing
2013-07-01
A systematic study on the performance of two empirical gas-wall interaction models, the Maxwell model and the Cercignani-Lampis (CL) model, in the entire Knudsen range is conducted. The models are evaluated by examining the accuracy of key macroscopic quantities such as temperature, density, and pressure, in three benchmark thermal problems, namely the Fourier thermal problem, the Knudsen force problem, and the thermal transpiration problem. The reference solutions are obtained from a validated hybrid DSMC-MD algorithm developed in-house. It has been found that while both models predict temperature and density reasonably well in the Fourier thermal problem, the pressure profile obtained from Maxwell model exhibits a trend that opposes that from the reference solution. As a consequence, the Maxwell model is unable to predict the orientation change of the Knudsen force acting on a cold cylinder embedded in a hot cylindrical enclosure at a certain Knudsen number. In the simulation of the thermal transpiration coefficient, although all three models overestimate the coefficient, the coefficient obtained from CL model is the closest to the reference solution. The Maxwell model performs the worst. The cause of the overestimated coefficient is investigated and its link to the overly constrained correlation between the tangential momentum accommodation coefficient and the tangential energy accommodation coefficient inherent in the models is pointed out. Directions for further improvement of models are suggested.
Lattice-structures and constructs with designed thermal expansion coefficients
Spadaccini, Christopher; Hopkins, Jonathan
2014-10-28
A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.
Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner
2013-10-01
A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.084504 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.
NASA Astrophysics Data System (ADS)
Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent
2018-03-01
In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.
Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1973-01-01
Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.
Composite fastener for use in high temperature environments
NASA Technical Reports Server (NTRS)
Miller, Robert J. (Inventor); Palusis, Mark E. (Inventor); Jarmon, David C. (Inventor)
2000-01-01
A fastener includes a composite body and a metal coupling attached to the body. The metal coupling includes an attachment structure to connect the fastener to an external structure. An assembly of components includes a first metallic component having a first coefficient of thermal expansion, a second non-metallic component having a second coefficient of thermal expansion different from the first thermal expansion and having a groove that receives a fastener that extends between the groove and the second component, the fastener slidably engaging the groove to accommodate relative expansion between the components.
2012-01-01
We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation/evaporation rates with varying pressure are discussed, measurements that are important for resolving the relative importance of gas diffusional transport and surface kinetics. PMID:23057492
A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants.
Bellur, K; Médici, E F; Kulshreshtha, M; Konduru, V; Tyrewala, D; Tamilarasan, A; McQuillen, J; Leao, J; Hussey, D S; Jacobson, D L; Scherschligt, J; Hermanson, J C; Choi, C K; Allen, J S
2016-03-01
Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide.
A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants
Bellur, K.; Médici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Tamilarasan, A.; McQuillen, J.; Leao, J.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.
2016-01-01
Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. PMID:28154426
Sartori, E; Brescaccin, L; Serianni, G
2016-02-01
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.
2016-02-15
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less
NASA Astrophysics Data System (ADS)
Doi, Toshiyuki
2018-04-01
Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.
Reduced-Stress Mounting for Thermocouples
NASA Technical Reports Server (NTRS)
Wood, C.
1986-01-01
Mounting accommodates widely different coefficients of thermal expansion. In new method, legs of thermocouple placed in separate n- and p-type arrays. Two arrays contact common heat pipe as source but have separate heatpipe sinks. Net expansion (or contraction) taken up by spring mounting on heat-pipe sinks.
Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D
2014-05-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.
An extended soft-cube model for the thermal accommodation of gas atoms on solid surfaces
NASA Technical Reports Server (NTRS)
Burke, J. R.; Hollenbach, D. J.
1980-01-01
A numerical soft cube model was developed for calculating thermal accommodation coefficients alpha and trapping fractions f sub t for the interaction of gases incident upon solid surfaces. A semiempirical correction factor c which allows the calculation of alpha and f sub t when the collision times are long compared to the surface oscillator period were introduced. The processes of trapping, evaporation, and detailed balancing were discussed. The numerical method was designed to treat economically and with moderate (+ or - 20 percent) accuracy the dependence of alpha and f sub t on finite and different surface and gas temperatures for a large number of gas/surface combinations. Comparison was made with experiments of rare gases on tungsten and on alkalis, as well as one astrophysical case of H2 on graphite. The dependence of alpha on the soft cube dimensionless parameters is presented graphically.
Skew resisting hydrodynamic seal
Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.
2001-01-01
A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.
Puente, Gabriela F; Bonetto, Fabián J
2005-05-01
We used the temporal evolution of the bubble radius in single-bubble sonoluminescence to estimate the water liquid-vapor accommodation coefficient. The rapid changes in the bubble radius that occur during the bubble collapse and rebounds are a function of the actual value of the accommodation coefficient. We selected bubble radius measurements obtained from two different experimental techniques in conjunction with a robust parameter estimation strategy and we obtained that for water at room temperature the mass accommodation coefficient is in the confidence interval [0.217,0.329].
NASA Astrophysics Data System (ADS)
Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.
2017-11-01
In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.
Control of thermal expansion in a low-density framework modification of silicon
NASA Astrophysics Data System (ADS)
Beekman, Matt; Kaduk, James A.; Wong-Ng, Winnie; Troesch, Michael; Lee, Glenn S.; Nolas, George S.
2018-04-01
The low-density clathrate-II modification of silicon, Si136, contains two distinct cage-like voids large enough to accommodate various types of guest atoms which influence both the host structure and its properties. Although the linear coefficient of thermal expansion of Si136 (293 K < T < 423 K) is only about 20% larger than that of the ground state α-Si (diamond structure), the coefficient of thermal expansion monotonically increases by more than 150% upon filling the framework cages with Na atoms in NaxSi136 (0 < x < 24), ranging from α = 2.6 × 10-6 K-1 (x = 0) to 6.8 × 10-6 K-1 (extrapolated to x = 24) by only varying the Na content, x. Taken together with the available heat capacity and bulk modulus data, the dramatic increase in thermal expansion can be attributed to an increase in the mode-averaged Grüneisen parameter by a factor of nearly 3 from x = 0 to x = 24. These results highlight a potential mechanism for tuning thermal expansion, whereby guest atoms are incorporated into the voids of rigid, covalently bonded inorganic frameworks to influence the lattice dynamics.
Bearing-Mounting Concept Accommodates Thermal Expansion
NASA Technical Reports Server (NTRS)
Nespodzany, Robert; Davis, Toren S.
1995-01-01
Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.
Thermally Conductive Metal-Tube/Carbon-Composite Joints
NASA Technical Reports Server (NTRS)
Copeland, Robert J.
2004-01-01
An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.
Normal and Tangential Momentum Accommodation for Earth Satellite Conditions
NASA Technical Reports Server (NTRS)
Knechtel, Earl D.; Pitts, William C.
1973-01-01
Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.
NASA Astrophysics Data System (ADS)
Ramalingam, Rajinikumar; Atrey, M. D.
2017-12-01
Use of Fiber Bragg Grating (FBG) sensor is very appealing for sensing low temperature and strain in superconducting magnets because of their miniature size and the possibility of accommodating many sensors in a single fiber. The main drawback is their low intrinsic thermal sensitivity at low temperatures below 120 K. Approaching cryogenic temperatures, temperature changes lower than a few degrees Kelvin cannot be resolved, since they do not cause an appreciable shift of the wavelength diffracted by a bare FBG sensor. To improve the thermal sensitivity and thermal inertia below 77 K, the Bare FBG (BFBG) sensor can be coated with high thermal expansion coefficient materials. In this work, different metal were considered for coating the FBG sensor. For theoretical investigation, a double layered circular thick wall tube model has been considered to study the effect on sensitivity due to the mechanical properties like Young’s modulus, Thermal expansion coefficient, Poisson’s ratio of selected materials at a various cryogenic temperatures. The primary and the secondary coating thickness for a dual layer metal coated FBG sensor have been determined from the above study. The sensor was then fabricated and tested at cryogenic temperature range from 4-300 K. The cryogenic temperature characteristics of the tested sensors are reported.
Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.
1999-01-01
Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.
NASA Astrophysics Data System (ADS)
Hall, Michael L.; Doster, J. Michael
1990-03-01
The dynamic behavior of liquid metal heat pipe models is strongly influenced by the choice of evaporation and condensation modeling techniques. Classic kinetic theory descriptions of the evaporation and condensation processes are often inadequate for real situations; empirical accommodation coefficients are commonly utilized to reflect nonideal mass transfer rates. The complex geometries and flow fields found in proposed heat pipe systems cause considerable deviation from the classical models. the THROHPUT code, which has been described in previous works, was developed to model transient liquid metal heat pipe behavior from frozen startup conditions to steady state full power operation. It is used here to evaluate the sensitivity of transient liquid metal heat pipe models to the choice of evaporation and condensation accommodation coefficients. Comparisons are made with experimental liquid metal heat pipe data. It is found that heat pipe behavior can be predicted with the proper choice of the accommodation coefficients. However, the common assumption of spatially constant accommodation coefficients is found to be a limiting factor in the model.
Alternatives for joining Si wafers to strain-accommodating Cu for high-power electronics
NASA Astrophysics Data System (ADS)
Faust, Nicholas; Messler, Robert W.; Khatri, Subhash
2001-10-01
Differences in the coefficients of thermal expansion (CTE) between silicon wafers and underlying copper electrodes have led to the use of purely mechanical dry pressure contacts for primary electrical and thermal connections in high-power solid-state electronic devices. These contacts are limited by their ability to dissipate I2R heat from within the device and by their thermal fatigue life. To increase heat dissipation and effectively deal with the CTE mismatch, metallurgical bonding of the silicon to a specially-structured, strain-accommodating copper electrode has been proposed. This study was intended to seek alternative methods for and demonstrate the feasibility of bonding Si to structured Cu in high-power solid-state devices. Three different but fundamentally related fluxless approaches identified and preliminarily assessed were: (1) conventional Sn-Ag eutectic solder; (2) a new, commercially-available active solder based on the Sn-Ag eutectic; and (3) solid-liquid interdiffusion bonding using the Au-In system. Metallurgical joints were made with varying quality levels (according to nonde-structive ultrasonic C-scan mapping, SEM, and electron microprobe) using each approach. Mechanical shear testing resulted in cohesive failure within the Si or the filler alloys. The best approach, in which eutectic Sn-Ag solder in pre-alloyed foil form was employed on Si and Cu substrates metallized (from the substrate outward) with Ti, Ni and Au, exhibited joint thermal conduction 74% better than dry pressure contacts.
Design and Verification of Space Station EVA-Operated Truss Attachment System
NASA Technical Reports Server (NTRS)
Katell, Gabriel
2001-01-01
This paper describes the design and verification of a system used to attach two segments of the International Space Station (ISS). This system was first used in space to mate the P6 and Z1 trusses together in December 2000, through a combination of robotic and extravehicular tasks. Features that provided capture, coarse alignment, and fine alignment during the berthing process are described. Attachment of this high value hardware was critical to the ISS's sequential assembly, necessitating the inclusion of backup design and operational features. Astronauts checked for the proper performance of the alignment and bolting features during on-orbit operations. During berthing, the system accommodates truss-to-truss relative displacements that are caused by manufacturing tolerances and on-orbit thermal gradients. After bolt installation, the truss interface becomes statically determinate with respect to in-plane shear loads and isolates attach bolts from bending moments. The approach used to estimate relative displacements and the means of accommodating them is explained. Confidence in system performance was achieved through a cost-effective collection of tests and analyses, including thermal, structural, vibration, misalignment, contact dynamics, underwater simulation, and full-scale functional testing. Design considerations that have potential application to other mechanisms include accommodating variations of friction coefficients in the on-orbit joints, wrench torque tolerances, joint preload, moving element clearances at temperature extremes, and bolt-nut torque reaction.
Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows
NASA Astrophysics Data System (ADS)
Blanchard, Danny; Ligrani, Phil
2007-06-01
Accommodation coefficients are determined from experimental results and analysis based on the Navier-Stokes equations for rotation-induced flows in C-shaped fluid chamber passages formed between a rotating disk and a stationary surface. A first-order boundary condition is used to model the slip flow. The fluid chamber passage height ranges from 6.85to29.2μm to give Knudsen numbers from 0.0025 to 0.031 for air and helium. In all cases, roughness size is large compared to molecular mean free path. The unique method presented for deducing tangential momentum accommodation coefficients gives values with less uncertainty compared to procedures that rely on flows in stationary tubes and channels. When channel height is defined at the tops of the roughness elements, slip velocity magnitudes and associated accommodation coefficients are a result of rarefaction at solid-gas interfaces and shear at the gas-gas interfaces. With this arrangement, tangential accommodation coefficients obtained with this approach decrease, and slip velocity magnitudes increase, at a particular value of Knudsen number, as the level of surface roughness increases. At values of the mean roughness height greater than 500nm, accommodation coefficients then appear to be lower in air flows than in helium flows, when compared for a particular roughness configuration. When channel height is defined midway between the crests and troughs of the roughness elements, nondimensional pressure rise data show little or no dependence on the level of disk surface roughness and working fluid. With this arrangement, slip is largely independent of surface roughness magnitude and mostly due to rarefaction, provided the appropriate channel height is chosen to define the roughness height.
Deriving properties of low-volatile substances from isothermal evaporation curves
NASA Astrophysics Data System (ADS)
Ralys, Ricardas V.; Uspenskiy, Alexander A.; Slobodov, Alexander A.
2016-01-01
Mass flux occurring when a substance evaporates from an open surface is proportional to its saturated vapor pressure at a given temperature. The proportionality coefficient that relates this flux to the vapor pressure shows how far a system is from equilibrium and is called the accommodation coefficient. Under vacuum, when a system deviates from equilibrium to the greatest extent possible, the accommodation coefficient equals unity. Under finite pressure, however, the accommodation coefficient is no longer equal to unity, and in fact, it is much less than unity. In this article, we consider the isothermal evaporation or sublimation of low-volatile individual substances under conditions of thermogravimetric analysis, when the external pressure of the purging gas is equal to the atmospheric pressure and the purging gas rate varies. When properly treated, the dependence of sample mass over time provides us with various information on the properties of the examined compound, such as saturated vapor pressure, diffusion coefficient, and density of the condensed (liquid or solid) phase at the temperature of experiment. We propose here the model describing the accommodation coefficient as a function of both substance properties and experimental conditions. This model gives the final expression for evaporation rate, and thus for mass dependence over time, with approximation parameters resulting in the properties being sought.
Julin, Jan; Shiraiwa, Manabu; Miles, Rachael E H; Reid, Jonathan P; Pöschl, Ulrich; Riipinen, Ilona
2013-01-17
The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99.
2012-01-01
The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268–300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys.2012, 117, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99. PMID:23253100
Process Of Bonding Copper And Tungsten
Slattery, Kevin T.; Driemeyer, Daniel E.
1999-11-23
Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.
Electrical properties of Pb{sub 1-x}Mn{sub x}Te single crystals with an excess of tellurium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagieva, G. Z., E-mail: bagieva-gjulandam@rambler.ru; Abdinova, G. D.; Mustafayev, N. B.
2013-03-15
The effect of excess Te atoms (as high as 0.5 at %) and thermal treatment at 473 K for 120 h on the electrical conductivity {sigma}, the thermopower coefficient {alpha}, and the Hall coefficient R of Pb{sub 0.96}Mn{sub 0.04}Te single crystals in the temperature range {approx}77-300 K is investigated. It is shown that excess atoms of tellurium predominantly act as acceptor impurity centers at low concentrations in unannealed samples and form antisite defects at relatively high concentrations (0.05 at % or higher) being located mainly in vacancies of the lead sublattice, and decrease the hole concentration. As a result ofmore » annealing, certain lattice defects (for example, deformational) are healed, and the accommodation process for Te atoms at lead-sublattice vacancies is intensified. These processes substantially affect the values of the electrical parameters, their temperature dependences, as well as the sign of the thermopower and Hall coefficients of the samples.« less
An Update to the NASA Reference Solar Sail Thrust Model
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.
2015-01-01
An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.
Process Of Bonding Copper And Tungsten
Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.
2000-07-18
Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.
NASA Technical Reports Server (NTRS)
Goretta, K. C.; Cluff, J. A.; Joo, J.; Lanagan, M. T.; Singh, J. P.; Vasanthamohan, N.; Xin, Y.; Wong, K. W.
1995-01-01
Bending strength, fracture toughness, and elastic modulus data were acquired for YBa2Cu3O(x), Bi2Sr2CaCu2O(x) (Bi,Pb)2Sr2Ca2Cu3O(x), and Tl2Ba2Ca2Cu3O(x) bars. These data and thermal expansion coefficients strongly suggest that the maximum possible tensile strain without fracture of bulk tapes or wires is approximately equals 0.2%. In Ag-clad conductors, residual stresses will be of limited benefit, but fractures produced by larger strains can be accommodated by shunting current through the Ag.
2013-03-31
found to not thermally accommodate to the surface, rather they leave in excited vibrational levels. The new finite-rate model and thermal accommodation...vehicle’s thermal protection system (TPS). Many TPS materials act as a catalyst for the heterogeneous recombination of dissociated species back into...it is a significant component in both reusable (LI900, LI2200, FRSI) and ablative (SIRCA) thermal protection systems [24]. In addition, studies have
2009-02-03
computational approach to accommodation coefficients and its application to noble gases on aluminum surface Nathaniel Selden Uruversity of Southern Cahfornia, Los ...8217 ,. 0.’ a~ .......,..,P. • " ,,-0, "p"’U".. ,Po"D.’ 0.’P.... uro . P." FIG. 5: Experimental and computed radiometri~ force for argon (left), xenon
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.
2016-09-01
The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.
NASA Technical Reports Server (NTRS)
Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Atsushi, E-mail: kondoa@cc.tuat.ac.jp; Maeda, Kazuyuki
A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (α{sub a}=−21×10{sup −6} K{sup −1} and α{sub c}=79×10{sup −6} K{sup −1}) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material aremore » selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF.« less
NASA Astrophysics Data System (ADS)
Kassemi, Mohammad; Kartuzova, Olga
2016-03-01
Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.
Geometric and thermal controls on normal fault seismicity from rate-and-state friction models
NASA Astrophysics Data System (ADS)
Mark, H. F.; Behn, M. D.; Olive, J. A. L.; Liu, Y.
2017-12-01
Seismic and geodetic observations from the last two decades have led to a growing realization that a significant amount of fault slip at plate boundaries occurs aseismically, and that the amount of aseismic displacement varies across settings. Here we investigate controls on the seismogenic behavior of crustal-scale normal faults that accommodate extensional strain at mid-ocean ridges and continental rifts. Seismic moment release rates measured along the fast-spreading East Pacific Rise suggest that the majority of fault growth occurs aseismically with almost no seismic slip. In contrast, at the slow-spreading Mid-Atlantic Ridge seismic slip may represent up to 60% of the total fault displacement. Potential explanations for these variations include heterogeneous distributions of frictional properties on fault surfaces, effects of variable magma supply associated with seafloor spreading, and/or differences in fault geometry and thermal structure. In this study, we use rate-and-state friction models to study the seismic coupling coefficient (the fraction of total fault slip that occurs seismically) for normal faults at divergent plate boundaries, and investigate controls on fault behavior that might produce the variations in the coupling coefficient observed in natural systems. We find that the seismic coupling coefficient scales with W/h*, where W is the downdip width of the seismogenic area of the fault and h* is the critical earthquake nucleation size. At mid-ocean ridges, W is expected to increase with decreasing spreading rate. Thus, the observed relationship between seismic coupling and W/h* explains to first order variations in seismic coupling coefficient as a function of spreading rate. Finally, we use catalog data from the Gulf of Corinth to show that this scaling relationship can be extended into the thicker lithosphere of continental rift systems.
Self supporting heat transfer element
Story, Grosvenor Cook; Baldonado, Ray Orico
2002-01-01
The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1982-01-01
A relatively simple one-dimensional thermal model of the Bridgman growth process has been developed which is applicable to the growth of small diameter samples with conductivities similar to those of metallic alloys. The heat flow in a translating rod is analyzed in a way that is applicable to Biot numbers less than unity. The model accommodates an adiabatic zone, different heat transfer coefficients in the hot and cold zones, and changes in sample material properties associated with phase change. The analysis is applied to several simplified cases. The effect of the rod's motion is studied in a three-zone furnace for a rod sufficiently long that end effects can be neglected; end effects are then investigated for a motionless rod. Finally, the addition of a fourth zone, an independently controlled booster heater between the main heater and the adiabatic zone, is evaluated for its ability to increase the gradient in the sample at the melt interface and to control the position of the interface.
NASA Technical Reports Server (NTRS)
Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
In this paper, a computational model that describes pressure control phase of a typical MHTB experiment will be presented. The fidelity of the model will be assessed by comparing the models predictions with MHTB experimental data. In this paper CFD results for MHTB spray bar cooling case with 50 tank fill ratio will be presented and analyzed. Effect of accommodation coefficient for calculating droplet-ullage mass transfer will be evaluated.
Raja, Suresh; Valsaraj, Kalliat T
2004-12-01
Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenanthrene vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 microm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, alpha = (1.4 +/- 0.4) x 10(-2) was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small alpha = (9.7 +/- 1.8) x 10(-5) was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.
Atomic oxygen interaction at defect sights in protective coatings on polymers flown on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Lamoreaux, Cynthia
1993-01-01
Although the Long Duration Exposure Facility (LDEF) has exposed materials with a fixed orientation relative to the ambient low-Earth-orbital environment, arrival of atomic oxygen is angularly distributed as a result of the atomic oxygen's high temperature Maxwellian velocity distribution and the LDEF's orbital inclination. Thus, atomic oxygen entering defects in protective coatings on polymeric surfaces can cause wider undercut cavities than the size of the defect in the protective coating. Because only a small fraction of atomic oxygen reacts upon first impact with most polymeric materials, secondary reactions with lower energy thermally accommodated atomic oxygen can occur. The secondary reactions of scattered and/or thermally accommodated atomic oxygen also contribute to widening the undercut cavity beneath the protective coating defect. As the undercut cavity enlarges, exposing more polymer, the probability of atomic oxygen reacting with underlying polymeric material increases because of multiple opportunities for reaction. Thus, the effective atomic oxygen erosion yield for atoms entering defects increases above that of the unprotected material. Based on the results of analytical modeling and computational modeling, aluminized Kapton multilayer insulation exposed to atomic oxygen on row 9 lost the entire externally exposed layer of polyimide Kapton, yet based on the results of this investigation, the bottom surface aluminum film must have remained in place, but crazed. Atomic oxygen undercutting at defect sites in protective coatings on graphite epoxy composites indicates that between 40 to 100 percent of the atomic oxygen thermally accommodates upon impact, and that the reaction probability of thermally accommodated atomic oxygen may range from 7.7 x 10(exp -6) to 2.1 x 10(exp -3), depending upon the degree of thermal accommodation upon each impact.
Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne
2014-01-01
Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.
Numerical Analysis of the Heat Transfer Characteristics within an Evaporating Meniscus
NASA Astrophysics Data System (ADS)
Ball, Gregory
A numerical analysis was performed as to investigate the heat transfer characteristics of an evaporating thin-film meniscus. A mathematical model was used in the formulation of a third order ordinary differential equation. This equation governs the evaporating thin-film through use of continuity, momentum, energy equations and the Kelvin-Clapeyron model. This governing equation was treated as an initial value problem and was solved numerically using a Runge-Kutta technique. The numerical model uses varying thermophysical properties and boundary conditions such as channel width, applied superheat, accommodation coefficient and working fluid which can be tailored by the user. This work focused mainly on the effects of altering accommodation coefficient and applied superheat. A unified solution is also presented which models the meniscus to half channel width. The model was validated through comparison to literature values. In varying input values the following was determined; increasing superheat was found to shorten the film thickness and greatly increase the interfacial curvature overshoot values. The effect of decreasing accommodation coefficient lengthened the thin-film and retarded the evaporative effects.
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.; Smith, Alvin
1990-01-01
The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.
Time-resolved laser-induced incandescence characterization of metal nanoparticles
NASA Astrophysics Data System (ADS)
Sipkens, T. A.; Singh, N. R.; Daun, K. J.
2017-01-01
This paper presents a comparative analysis of time-resolved laser-induced incandescence measurements of iron, silver, and molybdenum aerosols. Both the variation of peak temperature with fluence and the temperature decay curves strongly depend on the melting point and latent heat of vaporization of the nanoparticles. Recovered nanoparticle sizes are consistent with ex situ analysis, while thermal accommodation coefficients follow expected trends with gas molecular mass and structure. Nevertheless, there remain several unanswered questions and unexplained behaviors: the radiative properties of laser-energized iron nanoparticles do not match those of bulk molten iron; the absorption cross sections of molten iron and silver at the excitation laser wavelength exceed theoretical predictions; and there is an unexplained feature in the temperature decay of laser-energized molybdenum nanoparticles immediately following the laser pulse.
NASA Technical Reports Server (NTRS)
Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.
Techniques for estimating Space Station aerodynamic characteristics
NASA Technical Reports Server (NTRS)
Thomas, Richard E.
1993-01-01
A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Wenwen, E-mail: wlei@physics.usyd.edu.au; McKenzie, David R., E-mail: d.mckenzie@physics.usyd.edu.au
2014-12-15
Gas flows have been studied quantitatively for more than a hundred years and have relevance in modern fields such as the control of gas inputs to processes, the measurement of leak rates and the separation of gaseous species. Cha and McCoy have derived a convenient formula for the flow of an ideal gas applicable across a wide range of Knudsen numbers (Kn) that approaches the Navier–Stokes equations at small Kn and the Smoluchowski extension of the Knudsen flow equation at large Kn. Smoluchowski’s result relies on the Maxwell definition of the tangential momentum accommodation coefficient α, recently challenged by Aryamore » et al. We measure the flow rate of nitrogen gas in a smooth walled silica tube across a wide range of Knudsen numbers from 0.0048 to 12.4583. We find that the nitrogen flow obeys the Cha and McCoy equation with a large value of α, unlike carbon nanotubes which show flows consistent with a small value of α. Silica capillaries are therefore not atomically smooth. The flow at small Kn has α=0.91 and at large Kn has α close to one, consistent with the redefinition of accommodation coefficient by Arya et al., which also resolves a problem in the literature where there are many observations of α of less than one at small Kn and many equal to one at large Kn. Silica capillaries are an excellent choice for an accurate flow control system. - Highlights: • First experimental study on flow rate across all flow regimes in a well-defined microtube. • Extend Cha and McCoy theory for molecular flow regime. • Demonstrate the Maxwell accommodation coefficient is different in the slip and molecular flow regimes.« less
Nonlinear effects on composite laminate thermal expansion
NASA Technical Reports Server (NTRS)
Hashin, Z.; Rosen, B. W.; Pipes, R. B.
1979-01-01
Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.
A modern space simulation facility to accommodate high production acceptance testing
NASA Technical Reports Server (NTRS)
Glover, J. D.
1986-01-01
A space simulation laboratory that supports acceptance testing of spacecraft and associated subsystems at throughput rates as high as nine per year is discussed. The laboratory includes a computer operated 27' by 30' space simulation, a 20' by 20' by 20' thermal cycle chamber and an eight station thermal cycle/thermal vacuum test system. The design philosophy and unique features of each system are discussed. The development of operating procedures, test team requirements, test team integration, and other peripheral activation details are described. A discussion of special accommodations for the efficient utilization of the systems in support of high rate production is presented.
Water Accommodation on Bare and Coated Ice
NASA Astrophysics Data System (ADS)
Kong, Xiangrui
2015-04-01
A good understanding of water accommodation on ice surfaces is essential for quantitatively predicting the evolution of clouds, and therefore influences the effectiveness of climate models. However, the accommodation coefficient is poorly constrained within the literature where reported values vary by up to three orders of magnitude. In addition, the complexity of the chemical composition of the atmosphere plays an important role in ice phase behavior and dynamics. We employ an environmental molecular beam (EMB) technique to investigate molecular water interactions with bare and impurity coated ice at temperatures from 170 K to 200 K. In this work, we summarize results of water accommodation experiments on bare ice (Kong et al., 2014) and on ice coated by methanol (Thomson et al., 2013), butanol (Thomson et al., 2013) and acetic acid (Papagiannakopoulos et al., 2014), and compare those results with analogous experiments using hexanol and nitric acid coatings. Hexanol is chosen as a complementary chain alcohol to methanol and butanol, while nitric acid is a common inorganic compound in the atmosphere. The results show a strong negative temperature dependence of water accommodation on bare ice, which can be quantitatively described by a precursor model. Acidic adlayers tend to enhance water uptake indicating that the system kinetics are thoroughly changed compared to bare ice. Adsorbed alcohols influence the temperature dependence of the accommodation coefficient and water molecules generally spend less time on the surfaces before desorbing, although the measured accommodation coefficients remain high and comparable to bare ice for the investigated systems. We conclude that impurities can either enhance or restrict water uptake in ways that are influenced by several factors including temperature and type of adsorbant, with potential implications for the description of ice particle growth in the atmosphere. This work was supported by the Swedish Research Council and The Nordic Centre of Excellence CRAICC. Reference: X.R. Kong, P. Papagiannakopoulos, E.S. Thomson, J.B.C. Pettersson, Water Accommodation and Desorption Kinetics on Ice, J. Phys. Chem. A, 118 (2014) 3973-3979. E.S. Thomson, X. Kong, N. Markovic, P. Papagiannakopoulos, J.B.C. Pettersson, Collision dynamics and uptake of water on alcohol-covered ice, Atmos. Chem. Phys. 13 (2013) 2223-2233. P. Papagiannakopoulos, X.R. Kong, E.S. Thomson, J.B.C. Pettersson, Water Interactions with Acetic Acid Layers on Ice and Graphite, J. Phys. Chem. B, (2014) doi: 10.1021/jp503552w.
NASA Technical Reports Server (NTRS)
Sharma, P. K.; Knuth, E. L.
1977-01-01
Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.
Preliminary Surface Thermal Design of the Mars 2020 Rover
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep
2015-01-01
The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.
Peg supported thermal insulation panel
Nowobilski, Jeffert J.; Owens, William J.
1985-01-01
A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.
Thermal Conductivity of the Multicomponent Neutral Atmosphere
NASA Astrophysics Data System (ADS)
Pavlov, A. V.
2017-12-01
Approximate expressions for the thermal conductivity coefficient of the multicomponent neutral atmosphere consisting of N2, O2, O, He, and H are analyzed and evaluated for the atmospheric conditions by comparing them with that given by the rigorous hydrodynamic theory. The new approximations of the thermal conductivity coefficients of simple gases N2, O2, O, He, and H are derived and used. It is proved that the modified Mason and Saxena approximation of the atmospheric thermal conductivity coefficient is more accurate in reproducing the atmospheric values of the rigorous hydrodynamic thermal conductivity coefficient in comparison with those that are generally accepted in atmospheric studies. This approximation of the thermal conductivity coefficient is recommended to use in calculations of the neutral temperature of the atmosphere.
Du, Chixin; Shen, Meixiao; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua
2012-01-01
Purpose To measure by ultra-long scan depth optical coherence tomography (UL-OCT) dimensional changes in the anterior segment of human eyes during accommodation. Design Evaluation of diagnostic test or technology. Participants Forty-one right eyes of healthy subjects with a mean age of 34 years (range, 22–41 years) and a mean refraction of −2.5±2.6 diopters (D) were imaged in two repeated measurements at minimal and maximal accommodation. Methods A specially adapted designed UL-OCT instrument was used to image from the front surface of the cornea to the back surface of the crystalline lens. Custom software corrected the optical distortion of the images and yielded the biometric measurements. The coefficient of repeatability (COR) and the intraclass correlation coefficient (ICC) were calculated to evaluate the repeatability and reliability. Main Outcome Measures Anterior segment parameters and associated repeatability and reliability upon accommodation. The dimensional results included central corneal thickness (CCT), anterior chamber depth and width (ACD, ACW), pupil diameter (PD), lens thickness (LT), anterior segment length (ASL=ACD+LT), lens central position (LCP=ACD+1/2LT) and horizontal radii of the lens anterior and posterior surface curvatures (LAC, LPC). Results Repeated measurements of each variable within each accommodative state did not differ significantly (P>0.05). The CORs and ICCs for CCT, ACW, ACD, LT, LCP, and ASL were excellent (1.2% to 3.59% and 0.998 to 0.877, respectively). They were higher for PD (18.90% to 21.63% and 0.880 to 0.874, respectively), and moderate for LAC and LPC (34.86% to 42.72% and 0.669 to 0.251, respectively) in the two accommodative states. Compared to minimal accommodation, PD, ACD, LAC, LPC, and LCP decreased and LT and ASL increased significantly at maximal accommodation (P<0.05), while CCT and ACW did not change (P>0.05). Conclusions UL-OCT measured changes in anterior segment dimensions during accommodation with good repeatability and reliability. During accommodation, the back surface of the lens became steeper as the lens moved forward. PMID:22902211
Peg supported thermal insulation panel
Nowobilski, J.J.; Owens, W.J.
1985-04-30
A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.
Drag coefficient Variability and Thermospheric models
NASA Astrophysics Data System (ADS)
Moe, Kenneth
Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag coefficients help evaluate the biases in present models. Moreover, they make possible the derivation of accurate densities from accelerometer measurements.
NASA Technical Reports Server (NTRS)
Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)
2015-01-01
An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.
Ceramic matrix composite turbine engine vane
NASA Technical Reports Server (NTRS)
Prill, Lisa A. (Inventor); Schaff, Jeffery R. (Inventor); Shi, Jun (Inventor)
2012-01-01
A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The shell includes a region having a depth-wise coefficient of thermal expansion and a second coefficient of thermal expansion transverse thereto, the depth-wise coefficient of thermal expansion being greater than the second coefficient of thermal expansion.
Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yangbo; Chen, Yanyu; Li, Tiantian
Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less
Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion
Li, Yangbo; Chen, Yanyu; Li, Tiantian; ...
2018-02-02
Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less
Constraints on Mercury's Na Exosphere: Combined MESSENGER and Ground-Based Data
NASA Technical Reports Server (NTRS)
Mouawad, Nelly; Burger, Matthew H.; Killen, Rosemary M.; Potter, Andrew E.; McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Benna, Mehdi; Naidu, Shantanu
2010-01-01
We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury's sodium exosphere, The distribution of sodium in Mercury's exosphere during the period January 12-15. 2008. was mapped using the McMath-Pierce solar telescope with the 5" X 5" image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury's anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD. but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization, We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 x 10(exp 6) sq cm/s, The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.
Thin film thermocouples for thermoelectric characterization of nanostructured materials
NASA Astrophysics Data System (ADS)
Grayson, Matthew; Zhou, Chuanle; Varrenti, Andrew; Chyung, Seung Hye; Long, Jieyi; Memik, Seda
2011-03-01
The increased use of nanostructured materials as thermoelectrics requires reliable and accurate characterization of the anisotropic thermal coefficients of small structures, such as superlattices and quantum wire networks. Thin evaporated metal films can be used to create thermocouples with a very small thermal mass and low thermal conductivity, in order to measure thermal gradients on nanostructures and thereby measure the thermal conductivity and the Seebeck coefficient of the nanostructure. In this work we confirm the known result that thin metal films have lower Seebeck coefficients than bulk metals, and we also calibrate the Seebeck coefficient of a thin-film Ni/Cr thermocouple with 50 nm thickness, showing it to have about 1/4 the bulk value. We demonstrate reproducibility of this thin-filmSeebeck coefficient on multiple substrates, and we show that this coefficient does, in fact, change as a function of film thickness. We will discuss prototype measurement designs and preliminary work as to how these thin films can be used to study both Seebeck coefficients and thermal conductivities of superlattices in various geometries. The same technology can in principle be used on integrated circuits for thermal mapping, under the name ``Integrated On-Chip Thermocouple Array'' (IOTA).
Wavefront aberration changes caused by a gradient of increasing accommodation stimuli
Zhou, X-Y; Wang, L; Zhou, X-T; Yu, Z-Q
2015-01-01
Purpose The aim of this study was to investigate the wavefront aberration changes in human eyes caused by a gradient of increasing accommodation stimuli. Design This is a prospective, single-site study. Methods Healthy volunteers (n=22) aged 18–28 years whose refraction states were emmetropia or mild myopia, with astigmatism <1 diopter (D), were included in this study. After dilating the right pupil with 0.5% phenylephrine drops, the wavefront aberration of the right eye was measured continuously either without or with 1, 2, 3, 4, 5, or 6D accommodation stimuli (WFA1000B psychophysical aberrometer). The root mean square (RMS) values of the total wavefront aberrations, higher-order aberrations, and 35 individual Zernike aberrations under different accommodation stimuli were calculated and compared. Results The average induced accommodations using 1, 2, 3, 4, 5, or 6D accommodation stimuli were 0.848, 1.626, 2.375, 3.249, 4.181, or 5.085 D, respectively. The RMS of total wavefront aberrations, as well as higher-order aberrations, showed no significant effects with 1–3 D accommodation stimuli, but increased significantly under 4, 5, and 6 D accommodation stimuli compared with relaxed accommodation. Zernike coefficients of significantly decreased with increasing levels of accommodation. Conclusion Higher-order wavefront aberrations in human eyes changed with increased accommodation. These results are consistent with Schachar's accommodation theory. PMID:25341432
Thermal sensitivity of elastic coefficients of langasite and langatate.
Bourquin, Roger; Dulmet, Bernard
2009-10-01
Thermal coefficients of elastic constants of langasite and langatate crystals have been determined from frequency-temperature curves of contoured resonators operating in thickness modes. The effect of the trapping of the vibration has been taken into account to improve the accuracy. In a first step, the thermal sensitivities of stiffness coefficients in Lagrangian description are obtained. Thermal sensitivities of the usual elastic constants are further deduced. Predictions of thermally compensated cuts are given.
Cryogenic mount for mirror and piezoelectric actuator for an optical cavity.
Oliveira, A N; Moreira, L S; Sacramento, R L; Kosulic, L; Brasil, V B; Wolff, W; Cesar, C L
2017-06-01
We present the development of a mount that accommodates a mirror and a piezoelectric actuator with emphasis on physical needs for low temperature operation. The design uses a monolithic construction with flexure features that allow it to steadily hold the mirror and the piezoelectric actuator without glue and accommodate differential thermal contraction. The mount is small and lightweight, adding little heat capacity and inertia. It provides a pre-loading of the piezoelectric actuator as well as a good thermal connection to the mirror and a thermal short across the piezoelectric actuator. The performance of the assemblies has been tested by thermally cycling from room temperature down to 3 K more than a dozen times and over one hundred times to 77 K, without showing any derating. Such mounts are proposed for the cryogenic optical enhancement cavities of the ALPHA experiment at CERN for laser spectroscopy of antihydrogen and for hydrogen spectroscopy in our laboratory at UFRJ.
Predicting optical and thermal characteristics of transparent single-glazed domed skylights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laouadi, A.; Atif, M.R.
1999-07-01
Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less
Calculation of thermal expansion coefficient of glasses based on topological constraint theory
NASA Astrophysics Data System (ADS)
Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi
2016-10-01
In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.
Bossong, Heather; Swann, Michelle; Glasser, Adrian; Das, Vallabh E.
2010-01-01
Purpose This study was designed to use infrared photorefraction to measure accommodation in awake-behaving normal and strabismic monkeys and describe properties of photorefraction calibrations in these monkeys. Methods Ophthalmic trial lenses were used to calibrate the slope of pupil vertical pixel intensity profile measurements that were made with a custom-built infrared photorefractor. Day to day variability in photorefraction calibration curves, variability in calibration coefficients due to misalignment of the photorefractor Purkinje image and the center of the pupil, and variability in refractive error due to off-axis measurements were evaluated. Results The linear range of calibration of the photorefractor was found for ophthalmic lenses ranging from –1 D to +4 D. Calibration coefficients were different across monkeys tested (two strabismic, one normal) but were similar for each monkey over different experimental days. In both normal and strabismic monkeys, small misalignment of the photorefractor Purkinje image with the center of pupil resulted in only small changes in calibration coefficients, that were not statistically significant (P > 0.05). Off-axis measurement of refractive error was also small in the normal and strabismic monkeys (~1 D to 2 D) as long as the magnitude of misalignment was <10°. Conclusions Remote infrared photorefraction is suitable for measuring accommodation in awake, behaving normal, and strabismic monkeys. Specific challenges posed by the strabismic monkeys, such as possible misalignment of the photorefractor Purkinje image and the center of the pupil during either calibration or measurement of accommodation, that may arise due to unsteady fixation or small eye movements including nystagmus, results in small changes in measured refractive error. PMID:19029024
Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.
1997-01-01
The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.
Test model designs for advanced refractory ceramic materials
NASA Technical Reports Server (NTRS)
Tran, Huy Kim
1993-01-01
The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.
Transport coefficients in high-temperature ionized air flows with electronic excitation
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Oblapenko, G. P.
2018-01-01
Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.
Low-stress photosensitive polyimide suspended membrane for improved thermal isolation performance
NASA Astrophysics Data System (ADS)
Fan, J.; Xing, R. Y.; Wu, W. J.; Liu, H. F.; Liu, J. Q.; Tu, L. C.
2017-11-01
In this paper, we introduce a method of isolating thermal conduction from silicon substrate for accommodating thermal-sensitive micro-devices. This method lies in fabrication of a low-stress photosensitive polyimide (PSPI) suspension structure which has lower thermal conductivity than silicon. First, a PSPI layer was patterned on a silicon wafer and hard baked. Then, a cavity was etched from the backside of the silicon substrate to form a membrane or a bridge-shape PSPI structure. After releasing, a slight deformation of about 20 nm was observed in the suspended structures, suggesting ultralow residual stress which is essential for accommodating micro-devices. In order to investigate the thermal isolation performance of the suspended PSPI structures, micro Pirani vacuum gauges, which are thermal-sensitive, had been fabricated on the PSPI structures. The measurement results illustrated that the Pirani gauges worked as expected in the range from 1- 470 Pa. Moreover, the results of the Pirani gauges based on the membrane and bridge structures were comparable, indicating that the commonly used bridge-shape structure for further reducing thermal conduction was unnecessary. Due to the excellent thermal isolation performance of PSPI, the suspended PSPI membrane is promising to be an outstanding candidate for thermal isolation applications.
Transparent athermal glass-ceramics in Li2O-Al2O3-SiO2 system
NASA Astrophysics Data System (ADS)
Himei, Yusuke; Nagakane, Tomohiro; Sakamoto, Akihiko; Kitamura, Naoyuki; Fukumi, Kohei; Nishii, Junji; Hirao, Kazuyuki
2005-04-01
An attempt has been conducted to develop multicomponent transparent glass-ceramics which have athermal property better than silica glass. Transparent Li2O-Al2O3-SiO2 (LAS) glass-ceramics with small thermal expansion coefficient was chosen as a candidate. Athermal property of the glass-ceramics was improved by the independent control of temperature coefficients of electronic polarizability and thermal expansion coefficient, both of which govern the temperature coefficient of optical path length. It was found that temperature coefficient of electronic polarizability and thermal expansion coefficient of the LAS glass-ceramics were controllable by the additives and crystallization conditions. The doping of B2O3 and the crystallization under a hydrostatic pressure of 196 MPa were very effective to reduce temperature coefficient of electronic polarizability without a remarkable increase in thermal expansion coefficient. It was deduced that the reduction in temperature coefficient of electronic polarizability by the crystallization under 196 MPa resulted from the inhibition of the precipitation of beta-spodumene solid solution. The relative temperature coefficients of optical path length of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 x 10-6/°C, which was slightly larger than that of silica glass. Nevertheless, the thermal expansion coefficient of this glass-ceramic was smaller than that of silica glass.
Miller, Bradley J.; Patten, Jr., Donald O.
1991-01-01
Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.
Seal assembly for materials with different coefficients of thermal expansion
Minford, Eric [Laurys Station, PA
2009-09-01
Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.
NASA Technical Reports Server (NTRS)
Worsnop, Douglas; Zahniser, Mark; Kolb, Charles; Watson, Lyn; Vandoren, Jane; Jayne, John; Davidovits, Paul
1988-01-01
Preliminary results are reported of the direct measurement of accommodation coefficients for HNO3, N2O5 and HCl on water drops, aqueous sulfuric acid drops and ice particles. The heterogeneous chemistry of these species together with ClONO2 has been implicated in the ozone depletion observed in the Antarctic stratosphere during the spring in the last eight years. The most plausible chemical mechanism involves the removal of nitrogen oxide species via condensation on ice particles in polar stratospheric clouds resulting in a increase in the active chlorine species responsible for the ozone depletion. The observation of low NO2 and high ClO densities in the Antarctic stratosphere last summer appear to be consistent with such a mechanism.
Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.
2002-06-04
A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.
System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics
NASA Technical Reports Server (NTRS)
Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita
2012-01-01
The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.
Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
2011-03-01
We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.
Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
Measurements of LGS, LGN, and LGT thermal coefficients of expansion and density.
Malocha, Donald C; François-Saint-Cyr, Hugues; Richardson, Kathleen; Helmbold, Robert
2002-03-01
This paper will report on the measurements of the thermal coefficients of expansion and density of langasite (LGS), langanite (LGN), and langatate (LGT). The data were obtained by fabricating cubes with X, Y, and Z faces with nominal dimensions of 1 cm on a side for each material under test. The techniques used for measurement of density and thermal coefficients of expansion (TCE) of the materials are discussed. The data sets obtained and the extracted coefficients are presented.
NASA Astrophysics Data System (ADS)
Karahan, Aydın
2011-07-01
Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other hand, in order to accommodate solid fission product swelling and to control fuel clad mechanical interaction of the stiffer fuel, the fuel smear density is reduced to 70%. In addition, plenum height is increased to accommodate for fission gases.
NASA Astrophysics Data System (ADS)
Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.
2005-11-01
Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.
Thermal Model Correlation for Mars Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Dec, John A.; Gasbarre, Joseph F.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun. The data obtained from these maneuvers allowed the model to be well-correlated with regard to thermal mass, conductive connections, and solar response well before arrival at the planet. Correlation against flight data for both in-cruise maneuvers and drag passes was performed. Adjustments made to the model included orientation during the drag pass, solar flux, Martian surface temperature, through-array resistance, aeroheating gradient due to angle of attack, and aeroheating accommodation coefficient. Methods of correlation included comparing the model to flight temperatures, slopes, temperature deltas between sensors, and solar and planet direction vectors. Correlation and model accuracy over 400 aeroheating drag passes were determined, with overall model accuracy better than 5 C.
Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer
NASA Technical Reports Server (NTRS)
Ford, Virginia; Parks, Rick; Coleman, Michelle
2004-01-01
The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.
NASA Technical Reports Server (NTRS)
Cook, Steven R.; Hoffbauer, Mark A.
1997-01-01
Measurements of momentum transfer coefficients were made for gas-surface interactions between the Space Shuttle reaction control jet plume gases and the solar panel array materials to be used on the International Space Station. Actual conditions were simulated using a supersonic nozzle source to produce beams of the gases with approximately the same average velocities as the gases have in the Shuttle plumes. Samples of the actual solar panel materials were mounted on a torsion balance that was used to measure the force exerted on the surfaces by the molecular beams. Measurements were made with H2, N2, CO, and CO2 incident upon the solar array material, Kapton, SiO2-coated Kapton, and Z93-coated Al. The measurements showed that molecules scatter from the surfaces more specularly as the angle of incidence increases and that the scattering behavior has a strong dependence upon both the incident gas and velocity. These results show that for some technical surfaces the simple assumption of diffuse scattering with complete thermal accommodation is entirely inadequate. It is clear that additional measurements are required to produce models that more accurately describe the gas-surface interactions encountered in rarefied flow regimes.
Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.
Jaing, Cheng-Chung
2011-03-20
This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.
Worldwide data sets constrain the water vapor uptake coefficient in cloud formation
Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H.; Morales, Ricardo; Moore, Richard H.; Lathem, Terry L.; Lance, Sara; Padró, Luz T.; Lin, Jack J.; Cerully, Kate M.; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R.; Chuang, Patrick Y.; Anderson, Bruce E.; Flagan, Richard C.; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N.
2013-01-01
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought. PMID:23431189
Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.
Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N
2013-03-05
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.
Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu
2013-10-09
If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells.
2013-01-01
Background If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. Results The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. Conclusions We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells. PMID:24107328
Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi
2015-01-01
We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740
Thermal expansion coefficient determination of polylactic acid using digital image correlation
NASA Astrophysics Data System (ADS)
Botean, Adrian-Ioan
2018-02-01
This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.
Direct Simulation Monte Carlo Investigation of Noncontinuum Couette Flow
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2009-11-01
The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to study noncontinuum effects in Couette flow. The walls have equal temperatures and equal accommodation coefficients but unequal tangential velocities. Simulations are performed for near-free-molecular to near-continuum gas pressures with accommodation coefficients of 0.25, 0.5, and 1. Ten gases are examined: argon, helium, nitrogen, sea-level air, and six Inverse-Power-Law (IPL) gases with viscosity temperature exponents of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, as represented by the Variable Soft Sphere (VSS) interaction. In all cases, the wall shear stress is proportional to the slip velocity. The momentum transfer coefficient relating these two quantities can be accurately correlated in terms of the Knudsen number based on the wall separation. The two dimensionless parameters in the correlation are similar for all gases examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Overview for Attached Payload Accommodations and Environments
NASA Technical Reports Server (NTRS)
Schaffer, Craig; Cook, Gene; Nabizadeh, Rodney; Phillion, James
2007-01-01
External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.
Space Station accommodation of attached payloads
NASA Technical Reports Server (NTRS)
Browning, Ronald K.; Gervin, Janette C.
1987-01-01
The Attached Payload Accommodation Equipment (APAE), which provides the structure to attach payloads to the Space Station truss assembly, to access Space Station resources, and to orient payloads relative to specified targets, is described. The main subelements of the APAE include a station interface adapter, payload interface adapter, subsystem support module, contamination monitoring system, payload pointing system, and attitude determination system. These components can be combined to provide accommodations for small single payloads, small multiple payloads, large self-supported payloads, carrier-mounted payloads, and articulated payloads. The discussion also covers the power, thermal, and data/communications subsystems and operations.
Pulsational stabilities of a star in thermal imbalance - Comparison between the methods
NASA Technical Reports Server (NTRS)
Vemury, S. K.
1978-01-01
The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes. For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms.
NASA Astrophysics Data System (ADS)
Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang
2018-01-01
In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation
Progressive Failure Analysis of Advanced Composites
2008-07-25
Fracture angle. αii Coefficients of thermal expansion . βii Coefficients of hygroscopic expansion . β Shear response factor. ηL Coefficient of... thermal expansion in the longitudinal and transverse direc- tions. To enable the calculation of the thermal stresses, the user should define in the...development of this second VUMAT subroutine was planned for the second year of this project). 4.2 Input into Abaqus explicit 4.2.1 Shell elements
Zhang, Ping; Zhao, Yonggui; Wang, Xiuyu
2015-06-28
The crystalline structure refinement, chemical bond ionicity, lattice energy and coefficient of thermal expansion were carried out for Nd(Nb(1-x)Sb(x))O4 ceramics with a monoclinic fergusonite structure to investigate the correlations between the crystalline structure, phase stability, bond ionicity, lattice energy, coefficient of thermal expansion, and microwave dielectric properties. The bond ionicity, lattice energy, and coefficient of thermal expansion of Nd(Nb(1-x)Sb(x))O4 ceramics were calculated using a semiempirical method based on the complex bond theory. The phase structure stability varied with the lattice energy which was resulted by the substitution constant of Sb(5+). With the increasing of the Sb(5+) contents, the decrease of Nb/Sb-O bond ionicity was observed, which could be contributed to the electric polarization. The ε(r) had a close relationship with the Nb/Sb-O bond ionicity. The increase of the Q×f and |τ(f)| values could be attributed to the lattice energy and the coefficient of thermal expansion. The microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics with the monoclinic fergusonite structure were strongly dependent on the chemical bond ionicity, lattice energy and coefficient of thermal expansion.
Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie
2017-10-01
The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.
DOT National Transportation Integrated Search
2009-06-01
This product updates the prior users manual for Pave-IR to reflect changes in hardware and software made : to accommodate collection of GPS data simultaneously during the collection of thermal profiles. The current : Pave-IR system described in th...
A Simplified Shuttle Payload Thermal Analyzer /SSPTA/ program
NASA Technical Reports Server (NTRS)
Bartoszek, J. T.; Huckins, B.; Coyle, M.
1979-01-01
A simple thermal analysis program for Space Shuttle payloads has been developed to accommodate the user who requires an easily understood but dependable analytical tool. The thermal analysis program includes several thermal subprograms traditionally employed in spacecraft thermal studies, a data management system for data generated by the subprograms, and a master program to coordinate the data files and thermal subprograms. The language and logic used to run the thermal analysis program are designed for the small user. In addition, analytical and storage techniques which conserve computer time and minimize core requirements are incorporated into the program.
Thermal Expansion Coefficient of Cold-Pressed Silicon Carbide
NASA Astrophysics Data System (ADS)
Olivieri, E.; Pasca, E.; Ventura, G.; Barucci, M.; Risegari, L.
2004-07-01
The measurement of the thermal linear expansion coefficient of a cold sintered SiC has been carried out in the 4.2 - 293 K temperature range. The properties of silicon carbide are specially suitable to realise high quality mirrors and complete optomechanical structures for space astronomy. The thermal contraction of the material used for the realization of the mirror is, of course, of primary interest. We present here both a plot and smoothed data of SiC thermal contraction coefficient. Details of the dilatometric interferometer used to carry out the measurements are also reported together with a control test of the measuring bench on a material (brass) of known thermal contraction.
Double-stator electromagnetic pump having alignment ring and spine assembly
Fanning, Alan Wayne; Olich, Eugene Ellsworth; Dahl, Leslie Roy; Patel, Mahadeo Ratilal
1997-01-01
A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force.
Double-stator electromagnetic pump having alignment ring and spine assembly
Fanning, A.W.; Olich, E.E.; Dahl, L.R.; Patel, M.R.
1997-06-24
A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration is disclosed. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force. 12 figs.
Luo, Li-Shi
2011-10-01
In this Comment we reveal the falsehood of the claim that the lattice Bhatnagar-Gross-Krook (BGK) model "is capable of modeling shear-driven, pressure-driven, and mixed shear-pressure-driven rarified [sic] flows and heat transfer up to Kn=1 in the transitional regime" made in a recent paper [Ghazanfarian and Abbassi, Phys. Rev. E 82, 026307 (2010)]. In particular, we demonstrate that the so-called "Knudsen effects" described are merely numerical artifacts of the lattice BGK model and they are unphysical. Specifically, we show that the erroneous results for the pressure-driven flow in a microchannel imply the false and unphysical condition that 6σKn<-1, where Kn is the Knudsen number σ=(2-σ(v))/σ(v) and σ(v)∈(0,1] is the tangential momentum accommodation coefficient. We also show explicitly that the defects of the lattice BGK model can be completely removed by using the multiple-relaxation-time collision model.
Controllable rectification of the axial expansion in the thermally driven artificial muscle
NASA Astrophysics Data System (ADS)
Yue, Donghua; Zhang, Xingyi; Yong, Huadong; Zhou, Jun; Zhou, You-He
2015-09-01
At present, the concept of artificial muscle twisted by polymers or fibers has become a hot issue in the field of intelligent material research according to its distinguishing advantages, e.g., high energy density, large-stroke, non-hysteresis, and inexpensive. The axial thermal expansion coefficient is an important parameter which can affect its demanding applications. In this letter, a device with high accuracy capacitive sensor is constructed to measure the axial thermal expansion coefficient of the twisted carbon fibers and yarns of Kevlar, and a theoretical model based on the thermal elasticity and the geometrical features of the twisted structure are also presented to predict the axial expansion coefficient. It is found that the calculated results take good agreements with the experimental data. According to the present experiment and analyses, a method to control the axial thermal expansion coefficient of artificial muscle is proposed. Moreover, the mechanism of this kind of thermally driven artificial muscle is discussed.
Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).
Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires
2008-01-01
The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.
Thermoelastic characteristics testing on kevlar samples for spacecraft structures
NASA Astrophysics Data System (ADS)
Crema, L. Balis; Barboni, R.; Castellani, A.; Peroni, I.
The tensile properties, the thermal expansion coefficient and the thermal conductivity of woven roving (WR) reinforced Kevlar fabrics were experimentally determined. Theoretical values for tensile Young's modulus were calculated by simulating a fabric as an equivalent cross-ply laminate. As thermal expansion coefficient concerns the fabrics have shown an isotropic behaviour. The thermal conductivity normal to fabric plane has also been determined.
NASA Technical Reports Server (NTRS)
Jansson, S.; Leckie, F. A.
1990-01-01
The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.
NASA Technical Reports Server (NTRS)
Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)
2001-01-01
Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.
Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data
NASA Technical Reports Server (NTRS)
Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.
2016-01-01
Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.
NASA Technical Reports Server (NTRS)
Choi, Michael
2013-01-01
Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the FMA. It reduces the risk of X-ray attenuation caused by the heater harness. Its adjustable set point capability eliminates the need for survival heater circuits. The operating mode heater circuits can also be used as survival heater circuits. In the non-operating mode, a lower set point is used.
Effect of modified thermal conductivity on the temperature distribution in the protonosphere.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Fontheim, E. G.; Mahajan, K. K.
1973-01-01
At typical protonospheric electron densities the electron mean free path is sufficiently long so that the coefficient of thermal conductivity is no longer given by Spitzer's expression. The effect on the temperature profile of using the corrected expression for conductivity is investigated. The corrected thermal conduction coefficient is density-dependent and has a more complicated temperature dependence than the coefficient applicable to higher density plasmas. The results indicate that the effect is not negligible even under quiet conditions and at low latitudes.
THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoi, J.; Chujo, K.; Saji, K.
1959-01-01
A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less
Measurement and thermal modeling of sapphire substrate temperature at III-Nitride MOVPE conditions
Creighton, J. Randall; Coltrin, Michael E.; Figiel, Jeffrey J.
2017-04-01
Here, growth rates and alloy composition of AlGaN grown by MOVPE is often very temperature dependent due to the presence of gas-phase parasitic chemical processes. These processes make wafer temperature measurement highly important, but in fact such measurements are very difficult because of substrate transparency in the near- IR (~900 nm) where conventional pyrometers detect radiation. The transparency problem can be solved by using a mid-IR pyrometer operating at a wavelength (~7500 nm) where sapphire is opaque. We employ a mid- IR pyrometer to measure the sapphire wafer temperature and simultaneously a near-IR pyrometer to measure wafer pocket temperature, whilemore » varying reactor pressure in both a N 2 and H 2 ambient. Near 1300 °C, as the reactor pressure is lowered from 300 Torr to 10 Torr the wafer temperature drops dramatically, and the ΔT between the pocket and wafer increases from ~20 °C to ~250 °C. Without the mid-IR pyrometer the large wafer temperature change with pressure would not have been noted. In order to explain this behavior we have developed a quasi-2D thermal model that includes a proper accounting of the pressure-dependent thermal contact resistance, and also accounts for sapphire optical transmission. The model and experimental results demonstrate that at most growth conditions the majority of the heat is transported from the wafer pocket to the wafer via gas conduction, in the free molecular flow limit. In this limit gas conductivity is independent of gap size but first order in pressure, and can quantitatively explain results from 20 to 300 Torr. Further analysis yields a measure of the thermal accommodation coefficients; α(H 2) =0.23, α(N 2) =0.50, which are in the range typically measured.« less
Pressurized electrolysis stack with thermal expansion capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgeois, Richard Scott
The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less
Isgrò, Giuseppe; Kleverlaan, Cornelis J; Wang, Hang; Feilzer, Albert J
2005-06-01
During the production of layered all-ceramic restorations transient and/or residual thermal stresses may be formed which may affect a restoration's longevity. The aim of this study was to evaluate the influence of multiple firings on the thermal behavior of veneering porcelains and a ceramic core. The materials tested were: Empress 2 Core, Empress 2 Veneer and Eris glass-ceramics, Carrara Vincent and an experimental leucite-based veneering porcelain, Vitadur-Alpha aluminous porcelain, and two porcelains designed for titanium (i.e. Duceratin Dentine and Enamel). The thermal contraction coefficient of the materials was measured by means of dilatometery. The thermal contraction coefficient was measured during cooling and calculated over the temperature range of 450-20 degrees C by linear regression. One and two-way analysis of variance together with Tukey post-hoc tests were used as statistical analysis. Repeated firing affects the thermal contraction coefficients of Empress 2 Veneer, Carrara Vincent porcelain and the experimental porcelain. The thermal contraction coefficients of Empress 2 Core were significantly different from Vitadur-Alpha, Carrara Vincent, experimental porcelain, and Duceratin porcelains. The contraction coefficients of Empress 2 Veneer and Eris were closest to that of Empress 2 Core. The Empress 2 Core and Eris glass-ceramics, the aluminous porcelain and Duceratin porcelains showed better thermal stability after repeated firing than leucite porcelains. It can be concluded that due to the thermal stability of glass-ceramic materials, layered all-ceramic restorations of these materials may perform better.
Texture formation in FePt thin films via thermal stress management
NASA Astrophysics Data System (ADS)
Rasmussen, P.; Rui, X.; Shield, J. E.
2005-05-01
The transformation variant of the fcc to fct transformation in FePt thin films was tailored by controlling the stresses in the thin films, thereby allowing selection of in- or out-of-plane c-axis orientation. FePt thin films were deposited at ambient temperature on several substrates with differing coefficients of thermal expansion relative to the FePt, which generated thermal stresses during the ordering heat treatment. X-ray diffraction analysis revealed preferential out-of-plane c-axis orientation for FePt films deposited on substrates with a similar coefficients of thermal expansion, and random orientation for FePt films deposited on substrates with a very low coefficient of thermal expansion, which is consistent with theoretical analysis when considering residual stresses.
High temperature XRD of Cu2.1Zn0.9SnSe4
NASA Astrophysics Data System (ADS)
Chetty, Raju; Mallik, Ramesh Chandra
2014-04-01
Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
NASA Astrophysics Data System (ADS)
Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam
2016-03-01
This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.
Rapid Water Transport through Organic Layers on Ice.
Kong, Xiangrui; Toubin, Céline; Habartova, Alena; Pluharova, Eva; Roeselova, Martina; Pettersson, Jan B C
2018-05-31
Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.
Kosuge, Shingo
2015-07-01
The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004)] and the other is the Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the decrease in the tangential momentum accommodation, is also obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Jason; Kumar, Ravhi S.; Park, Changyong
2016-01-01
A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid–solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric materialmore » PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. Furthermore, this new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.« less
Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad
2016-11-01
A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid-solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric material PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. This new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.
Method of fabricating composite structures
NASA Technical Reports Server (NTRS)
Sigur, W. A. (Inventor)
1990-01-01
A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.
Method of fabricating composite structures
NASA Technical Reports Server (NTRS)
Sigur, Wanda A. (Inventor)
1992-01-01
A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.
High temperature XRD of Cu2GeSe3
NASA Astrophysics Data System (ADS)
Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra
2015-06-01
The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.
Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale
NASA Astrophysics Data System (ADS)
Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.
2018-02-01
Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.
Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.
Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F
2018-02-02
Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.
NASA Technical Reports Server (NTRS)
Lin, Richard Y.; Mann, Kenneth E.; Laskin, Robert A.; Sirlin, Samuel W.
1987-01-01
Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments.
Thermal coefficients of the methyl groups within ubiquitin
Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan
2012-01-01
Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
The preferred orientation or texture of alpha-extruded, cold-swaged, recrystallized, and beta-quenched uranium has been determined. An attempt is made to predict the mean thermal expansion coefficients from the texture and principal crystallographic thermal expansion coefficients. (auth)
Cryogenic fiber optic temperature sensor and method of manufacturing the same
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2012-01-01
This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.
Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen
NASA Technical Reports Server (NTRS)
Hanley, H. J. M.; Mccarty, R. D.; Sengers, J. V.
1974-01-01
Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface.
Zutz, Amelia; Nesbitt, David J
2017-08-07
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO ( 2 Π 1/2 , J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf 2 N], squalane, and PFPE) at θ inc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θ s = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [E inc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θ s ) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θ s ), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (T elec < T rot < T S ) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [E inc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θ s . Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θ s ⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface
NASA Astrophysics Data System (ADS)
Zutz, Amelia; Nesbitt, David J.
2017-08-01
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2 Π 1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Thermal Strain Analysis of Optic Fiber Sensors
Her, Shiuh-Chuan; Huang, Chih-Ying
2013-01-01
An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407
Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin
2017-01-01
Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control. PMID:28079161
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Sergeeva, E. S.
2018-04-01
Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.
High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in
2014-04-24
Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Measurement of thermal neutrons reflection coefficients for two-layer reflectors.
Azimkhani, S; Zolfagharpour, F; Ziaie, F
2018-05-01
In this research, thermal neutrons albedo coefficients and relative number of excess counts have been measured experimentally for different thicknesses of two-layer reflectors by using 241 Am-Be neutron source (5.2Ci) and BF 3 detector. Our used reflectors consist of two-layer which are combinations of water, graphite, polyethylene, and lead materials. Experimental results reveal that thermal neutron reflection coefficients slightly increased by addition of the second layer. The maximum value of growth for thermal neutrons albedo is obtained for lead-polyethylene compound (0.72 ± 0.01). Also, there is suitable agreement between the experimental values and simulation results by using MCNPX code. Copyright © 2018 Elsevier Ltd. All rights reserved.
High temperature XRD of Cu{sub 2}GeSe{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premkumar, D. S.; Malar, P.; Chetty, Raju
2015-06-24
The Cu{sub 2}GeSe{sub 3} is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu{sub 2}GeSe{sub 3} phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a andmore » c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.« less
Acoustic echo cancellation for full-duplex voice transmission on fading channels
NASA Technical Reports Server (NTRS)
Park, Sangil; Messer, Dion D.
1990-01-01
This paper discusses the implementation of an adaptive acoustic echo canceler for a hands-free cellular phone operating on a fading channel. The adaptive lattice structure, which is particularly known for faster convergence relative to the conventional tapped-delay-line (TDL) structure, is used in the initialization stage. After convergence, the lattice coefficients are converted into the coefficients for the TDL structure which can accommodate a larger number of taps in real-time operation due to its computational simplicity. The conversion method of the TDL coefficients from the lattice coefficients is derived and the DSP56001 assembly code for the lattice and TDL structure is included, as well as simulation results and the schematic diagram for the hardware implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y. Z.; Wu, M. M.; Peng, J.
2007-05-03
Structures, thermal expansion properties and phase transitions of Er{sub x}Fe{sub 2-x}(MoO{sub 4}){sub 3} (0.0 {le} x {le} 2.0) have been investigated by X-ray diffraction and differential thermal analysis. The partial substitution of Er{sup 3+} for Fe{sup 3+} induces pronounced decreases in the phase transition temperature from monoclinic to orthorhombic structure. Rietveld analysis of the XRD data shows that both the monoclinic and orthorhombic Fe{sub 2}(MoO{sub 4}){sub 3}, as well as the orthorhombic Er{sub x}Fe{sub 2-x}(MoO{sub 4}){sub 3} (x {le} 0.8) have positive thermal expansion coefficients. However, the linear thermal expansion coefficients of Er{sub x}Fe{sub 2-x}(MoO{sub 4}){sub 3} (x = 0.6-2.0)more » decrease with increasing content of Er{sup 3+} and for x {ge} 1.0, compounds Er{sub x}Fe{sub 2-x}(MoO{sub 4}){sub 3} show negative thermal expansion properties. Attempts for making zero thermal expansion coefficient materials result in that very low negative thermal expansion coefficient of -0.60 x 10{sup -6} C in Er{sub 1.0}Fe{sub 1.0}(MoO{sub 4}){sub 3} is observed in the temperature range of 180-400 C, and zero thermal expansion is observed in Er{sub 0.8}Fe{sub 1.2}(MoO{sub 4}){sub 3} in the temperature range of 350-450 C. In addition, anisotropic thermal expansions are found for all the orthorhombic Er{sub x}Fe{sub 2-x}(MoO{sub 4}){sub 3} compounds, with negative thermal expansion coefficients along the a axes.« less
Tribological performances of new steel grades for hot stamping tools
NASA Astrophysics Data System (ADS)
Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.
2017-09-01
In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.
Computation of Thermal Transport in a Protein
NASA Astrophysics Data System (ADS)
Leitner, David M.
2003-03-01
Calculation of the coefficient of thermal conductivity and thermal diffusivity for a protein will be discussed. Thermal transport coefficients are obtained by computing the proteinÂ's normal modes, their lifetimes, the speed of sound and mean free path. We find the thermal diffusivity of myoglobin at 300 K to be 14 Å^2 /ps, the same as the value for water. The thermal conductivity at 300 K is calculated to be 2.0 mW/cm K in the absence of solvent and somewhat higher for the solvated protein, about one-third the value for water.
Changes in accommodation and ocular aberration with simultaneous vision multifocal contact lenses.
Ruiz-Alcocer, Javier; Madrid-Costa, David; Radhakrishnan, Hema; Ferrer-Blasco, Teresa; Montés-Micó, Robert
2012-09-01
The aim of this study was to evaluate ocular aberration changes through different simultaneous vision multifocal contact lenses (CLs). Eighteen young-adult subjects with a mean age of 29.8±2.11 years took part. Changes in accommodative response, spherical aberration (C(4)(0)), horizontal coma (C(3)(1)), vertical coma (C(3)(-1)), and root mean square (RMS) of higher-order aberrations (HOAs, third to sixth orders) were evaluated. Measurements were obtained with a distance-single vision CL and 2 aspheric multifocal CLs of simultaneous focus center-near design (PureVision Low Add and PureVision High Add) for 2 accommodative stimuli (-2.50 and -4.00 D). All measurements were performed monocularly with a Hartmann-Shack aberrometer (IRX-3; Imagine Eyes, Orsay, France). No statistically significant differences were found in accommodative responses to -2.50- and -4.00-D stimuli between the single vision CL and the 2 multifocal CLs. Spherical aberration was found to decrease and become more negative with accommodation for both stimuli with all three CLs. Horizontal coma decreased significantly with accommodation (-2.5- and -4.00-D stimuli) for the distance-single vision CLs (P=0.002 and P=0.003). No differences were found in vertical coma Zernike coefficients. The RMS of HOAs was found to decrease only with the single vision CLs for both stimuli (P<0.01). Data obtained in this study suggest that in young subjects, the multifocal CLs studied do not induce large changes in accommodative response compared with the distance-single vision CLs. Spherical aberration reduced significantly with accommodation.
Evaluation of Oxidation Damage in Thermal Barrier Coating Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1996-01-01
A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; ...
2017-10-23
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Prediction of composite thermal behavior made simple
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1981-01-01
A convenient procedure is described to determine the thermal behavior (thermal expansion coefficients and thermal stresses) of angleplied fiber composites using a pocket calculator. The procedure consists of equations and appropriate graphs for various ( + or - theta) ply combinations. These graphs present reduced stiffness and thermal expansion coefficients as functions of (+ or - theta) in order to simplify and expedite the use of the equations. The procedure is applicable to all types of balanced, symmetric fiber composites including interply and intraply hybrids. The versatility and generality of the procedure is illustrated using several step-by-step numerical examples.
Thermal Conductivity of Functional Citrus Tree Wood 1
Turrell, F. M.; Austin, S. W.; McNee, Dan; Park, W. J.
1967-01-01
Thermal conductivity coefficients have been determined for longitudinal and transverse flow in 4 varieties of fresh Citrus wood using steady state-methods. Equations were developed from which thermal conductivity could be rapidly estimated from moisture content or electrical conductivity. The heat balance of large and small tree trunks on a freezing night has been calculated on the basis of the coefficients. PMID:16656610
THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)
The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...
Optical analysis of thermal induced structural distortions
NASA Technical Reports Server (NTRS)
Weinswig, Shepard; Hookman, Robert A.
1991-01-01
The techniques used for the analysis of thermally induced structural distortions of optical components such as scanning mirrors and telescope optics are outlined. Particular attention is given to the methodology used in the thermal and structural analysis of the GOES scan mirror, the optical analysis using Zernike coefficients, and the optical system performance evaluation. It is pointed out that the use of Zernike coefficients allows an accurate, effective, and simple linkage between thermal/mechanical effects and the optical design.
NASA Astrophysics Data System (ADS)
Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.
2016-06-01
The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.
Guo, Ying; Manatunga, Amita K
2009-03-01
Assessing agreement is often of interest in clinical studies to evaluate the similarity of measurements produced by different raters or methods on the same subjects. We present a modified weighted kappa coefficient to measure agreement between bivariate discrete survival times. The proposed kappa coefficient accommodates censoring by redistributing the mass of censored observations within the grid where the unobserved events may potentially happen. A generalized modified weighted kappa is proposed for multivariate discrete survival times. We estimate the modified kappa coefficients nonparametrically through a multivariate survival function estimator. The asymptotic properties of the kappa estimators are established and the performance of the estimators are examined through simulation studies of bivariate and trivariate survival times. We illustrate the application of the modified kappa coefficient in the presence of censored observations with data from a prostate cancer study.
Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.
Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F
2014-07-28
The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.
Improved bridge joint materials and design details.
DOT National Transportation Integrated Search
2017-06-01
Expansion joints accommodate bridge movements that result from factors such as thermal expansion and contraction, concrete shrinkage, creep effects, live loading, settlement of the foundation and substructure, and environmental stressors. Expansion j...
Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)
NASA Technical Reports Server (NTRS)
Fahmy, A. A.; Cunningham, T. G.
1976-01-01
Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.
Hasselquist, P.B.; Baldner, R.
1980-11-26
A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.
Horizontal baffle for nuclear reactors
Rylatt, John A.
1978-01-01
A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.
Hasselquist, Paul B.; Baldner, Richard
1982-01-01
A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.
Nonreciprocity of electrically excited thermal spin signals in CoFeAl-Cu-Py lateral spin valves
NASA Astrophysics Data System (ADS)
Hu, Shaojie; Cui, Xiaomin; Nomura, Tatsuya; Min, Tai; Kimura, Takashi
2017-03-01
Electrical and thermal spin currents excited by an electric current have been systematically investigated in lateral spin valves consisting of CoFeAl and Ni80Fe20 (Py) wires bridged by a Cu strip. In the electrical spin signal, the reciprocity between the current and voltage probes was clearly confirmed. However, a significant nonreciprocity was observed in the thermal spin signal. This provides clear evidence that a large spin-dependent Seebeck coefficient is more important than the spin polarization for efficient thermal spin injection and detection. We demonstrate that the spin-dependent Seebeck coefficient can be simply evaluated from the thermal spin signals for two configurations. Our experimental description paves a way for evaluating a small spin-dependent Seebeck coefficient for conventional ferromagnets without using complicated parameters.
A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement
NASA Astrophysics Data System (ADS)
Drysdale, Graeme Robert
A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and percentage of crumb rubber in the modified binder of the compacted specimens.
Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design.
DOT National Transportation Integrated Search
2011-12-01
With the development of the Mechanistic Empirical Pavement Design Guide (MEPDG) as a new pavement design tool, the : coefficient of thermal expansion (CTE) is now considered a more important design parameter in estimating pavement : performance inclu...
1992-10-01
and SiC/Al [47] possess good chemical bonding and experience mechanical clamping due to the differences in thermal expansion coefficients between...Coefficient of Thermal 2.70 x 10.6 *F-1 4.09 x 10-6 *C-1 Expansion (ca) Poisson’s Ratio (v) 0.25 0.25 Fiber Diameter (d) 0.0056 in 0.014224 cm...Properties of the matrix (as fabricated) Coefficient of Thermal 5.4 x 10-6 "F1 9.72 x 10-6 "C-1 Expansion (a) Poisson’s Ratio (v) 0.351 0.351 Longitudinal
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.; Kunova, Olga V.; Kustova, Elena V.; Oblapenko, George P.
2018-01-01
A detailed kinetic-theory model for the vibrationally state-resolved transport coefficients is developed taking into account the dependence of the collision cross section on the size of vibrationally excited molecule. Algorithms for the calculation of shear and bulk viscosity, thermal conductivity, thermal diffusion and diffusion coefficients for vibrational states are proposed. The transport coefficients are evaluated for single-component diatomic gases N2, O2, NO, H2, Cl2 in the wide range of temperature, and the effects of molecular diameters and the number of accounted states are discussed. The developed model is applied to study wave propagation in diatomic gases. For the case of initial Boltzmann distribution, the influence of vibrational excitation on the phase velocity and attenuation coefficient is found to be weak. We expect more significant effect in the case of initial thermal non-equilibrium, for instance in gases with optically pumped selected vibrational states.
Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.
1994-01-01
In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.
Cross-Effects in Microgravity Flows
NASA Technical Reports Server (NTRS)
Loyalka, Sudarshan K.; Tompson, R. V.; Ivchenko, I. N.; Ghosh, T. K.; Hamoodi, S. A.; Hickey, K. A.; Huang, C. M.; Tebbe, Patrick A.; Gabis, D. H.; Tekasakul, P.;
1996-01-01
Film growth by chemical/physical vapor deposition is a process of considerable interest in microgravity experiments. The absence of natural convection should allow better control of film growth processes but, in highly non-isothermal ampoules, thermal slip (creep) can become a matter of significant concern. The reported research is a theoretical and experimental investigation of the flow of gas/vapor mixtures under non-continuum conditions. The Boltzmann equation has been solved for a monatomic gas under non-condensing conditions and the various phenomenological coefficients have been computed. Computations for realistic potentials as well as for velocity and creep slip have been completed and the creep slip has been found to be dependent on the type of gas confirming the accuracy of previous variational results. The variational technique has been extended and planar flows calculated via the Burnett solutions. Velocity, diffusion and creep slips have been computed for gas mixtures and previously unknown dependencies of the creep slip on the mixture properties have been observed. Also for gas mixtures, an integral representation of the linearized Boltzmann operator has been developed for use in numerical and variational calculations for all intermolecular force laws. Two, two-bulb capillary systems have been designed, built and tested for the measurements of cross-flows; one of glass for isothermal measurements and one of stainless steel for non-isothermal measurements. Extensive data have been collected for Ar-He and N2-He mixtures at a variety of pressures and mole ratios. Viscosity, velocity slip coefficients and tangential momentum accommodation coefficients have been obtained from measurements with a spinning rotor gauge via a new theory that has been formulated for the spinning rotor gauge in the slip regime. The FIDAP fluid dynamics code has been applied to condensing flows in ampoules in the continuum regime and agreement obtained with the earlier work of Duval.
Howell, deceased, Louis J.
1980-01-01
Thermoelectric generator assembly accommodating differential thermal expansion between thermoelectric elements by means of a cylindrical split follower forming a slot and having internal spring loaded wedges that permit the split follower to open and close across the slot.
Development of a Thermal Isolation Structure for Aerospace Cryogenic Instruments
NASA Technical Reports Server (NTRS)
Nash, A.; Robeck, L.
1999-01-01
A proof of concept prototype cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier on the space shuttle.
Mercury's Na Exosphere from MESSENGER Data
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.
2012-01-01
MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.
Local Displacements and Load Transfer of Shape Memory Alloys in Polymeric Matrices
1997-01-01
plane displacements of room temperature cured SMA ribbon composites were obtained using moiré interferometry. Displacements due to thermal expansion ...141 Figure 6.10 Displacement profiles along SMA ribbon or different values of the coefficient of thermal expansion ...greater importance in polymer composites, which can have large coefficients of thermal expansion . Further, there is also a lack of experimental data
A Stress Gradient Failure Theory for Textile Structural Composites
2006-05-01
additional element failures occur. Incorporation of thermal stresses and investigation of the coefficient of thermal expansion is another potential...avenue for further development of the failure modeling. Due to mismatches between the coefficient of thermal expansion of constituent materials...directly from ABAQUS software, which yields element volumes as outputs, thus the volume of all matrix elements can be compared to the volume of all
Thermal integration of Spacelab experiments
NASA Technical Reports Server (NTRS)
Patterson, W. C.; Hopson, G. D.
1978-01-01
The method of thermally integrating the experiments for Spacelab is discussed. The scientific payload consists of a combination of European and United States sponsored experiments located in the module as well as on a single Spacelab pallet. The thermal integration must result in accomodating the individual experiment requirements as well as ensuring that the total payload is within the Spacelab Environmental Control System (ECS) resource capability. An integrated thermal/ECS analysis of the module and pallet is performed in concert with the mission timeline to ensure that the agreed upon experiment requirements are accommodated and to ensure the total payload is within the Spacelab ECS resources.
DOT National Transportation Integrated Search
2012-10-01
The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...
DOT National Transportation Integrated Search
2012-10-01
The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...
Theoretical basis for design of thermal-stress-free fasteners
NASA Technical Reports Server (NTRS)
Blosser, M. L.; Mcwithey, R. R.
1983-01-01
A theoretical basis was developed for the design of fasteners which are free of thermal stress. A fastener can be shaped to eliminate the thermal stress which would otherwise result from differential thermal expansion between dissimilar fastener and sheet materials for many combinations of isotropic and orthotropic materials. The resulting joint remains snug, yet free of thermal stress at any temperature, if the joint is uniform in temperature, if it is frictionless, and if the coefficients of thermal expansion of the materials do not change with temperature. In general, such a fastener has curved sides; however, if both materials have isotropic coefficients of thermal expansion, a conical fastener is free of thermal stress. Equations are presented for thermal stress free shapes at both initial and final temperature, and typical fastener shapes are shown.
Adams, Matthew T; Wang, Qi; Cleveland, Robin O; Roy, Ronald A
2014-07-07
This study examines the effectiveness of the thermal dose model in accurately predicting thermally induced optical property changes of ex vivo chicken breast between 500-1100 nm. The absorption coefficient, μa, and the reduced scattering coefficient, μ's, of samples are measured as a function of thermal dose over the range 50 °C-70 °C. Additionally, the maximum observable changes in μa and μ's are measured as a function of temperature in the range 50 °C-90 °C. Results show that the standard thermal dose model used in the majority of high-intensity focused ultrasound (HIFU) treatments is insufficient for modeling optical property changes, but that the isodose constant may be modified in order to better predict thermally induced changes. Additionally, results are presented that show a temperature dependence on changes in the two coefficients, with an apparent threshold effect occurring between 65 °C-70 °C.
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
2017-01-01
This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.
Experimental investigation of the seismic response of bridge bearings.
DOT National Transportation Integrated Search
2013-05-01
The Illinois Department of Transportation (IDOT) commonly uses elastomeric bearings to accommodate thermal : deformations in bridges. These bearings also present an opportunity to achieve a structural response similar to isolation : during seismic ev...
Seismic performance of quasi-isolated highway bridges in Illinois.
DOT National Transportation Integrated Search
2013-06-01
The Illinois Department of Transportation (IDOT) commonly uses elastomeric bearings to accommodate : thermal deformations in bridges, and these bearings have potential utility in seismic events. IDOT has developed : an Earthquake Resisting System (ER...
NASA Technical Reports Server (NTRS)
Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.
2017-01-01
A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.
DOT National Transportation Integrated Search
2009-01-01
PROBLEM: The coefficient of thermal expansion (CTE) is a fundamental property of construction : materials such as steel and concrete. Although the CTE of steel is a well-defined : constant, the CTE of concrete varies substantially with aggregate type...
DOT National Transportation Integrated Search
2011-12-01
The coefficient of thermal expansion (CTE) has been widely considered as a fundamental property of : Portland cement concrete (PCC) pavement but has never played an important role in the thickness design : procedure for PCC pavement until recently. I...
Ouyang, Jianshu; Chen, Bo; Huang, Dahai
2018-01-01
Concretes with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures or devices, are important for civil engineering applications, such as dams, bridges, and buildings. In natural materials, thermal expansion usually cannot be easily regulated and an extremely low thermal expansion coefficient (TEC) is still uncommon. Here we propose a novel cementitious composite, doped with ZrW2O8, showing a wide range of tunable thermal expansion coefficients, from 8.65 × 10−6 °C−1 to 2.48 × 10−6 °C−1. Macro-scale experiments are implemented to quantify the evolution of the thermal expansion coefficients, compressive and flexural strength over a wide range of temperature. Scanning Electron Microscope (SEM) imaging was conducted to quantify the specimens’ microstructural characteristics including pores ratio and size. It is shown that the TEC of the proposed composites depends on the proportion of ZrW2O8 and the ambient curing temperature. Macro-scale experimental results and microstructures have a good agreement. The TEC and strength gradually decrease as ZrW2O8 increases from 0% to 20%, subsequently fluctuates until 60%. The findings reported here provide a new routine to design cementitious composites with tunable thermal expansion for a wide range of engineering applications. PMID:29735957
Development of New Generation of Perspireable Skin
2015-02-20
Coefficient of Thermal Expansion (CTE) material simulating Reinforced Carbon - Carbon Composites (RCC). These tiles made of different materials...Very low thermal expansion coefficient materials, Annu. Rev. Mater. Sci., 1989, 19, 59-81 3. Mittal, R. and Chaplot S.L., Lattice dynamical...thermal expansion from0.3 to 1050 Kelvin in ZrW2O8, Science, 1996, 272, 90-92 6. G. Savage, Carbon - carbon composites, New York: Chapman & Hall, pp
Precision Composite Space Structures
2007-10-15
large structures. 15. SUBJECT TERMS Composite materials, dimensional stability, microcracking, thermal expansion , space structures, degradation...Figure 32. Variation of normalized coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6...coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6 composite lamina with a fiber volume
Stoklosa, Jakub; Dann, Peter; Huggins, Richard
2014-09-01
To accommodate seasonal effects that change from year to year into models for the size of an open population we consider a time-varying coefficient model. We fit this model to a capture-recapture data set collected on the little penguin Eudyptula minor in south-eastern Australia over a 25 year period using Jolly-Seber type estimators and nonparametric P-spline techniques. The time-varying coefficient model identified strong changes in the seasonal pattern across the years which we further examined using functional data analysis techniques. To evaluate the methodology we also conducted several simulation studies that incorporate seasonal variation. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of moisture content on the coefficient of thermal expansion of concrete.
DOT National Transportation Integrated Search
2007-09-01
The purpose of this report is to discuss a study conducted on twenty separate mix designs of concrete and the effects of : the aggregate type, moisture content, and temperature on the coefficient of thermal expansion(CTE). These results are to be use...
Electric Motor Thermal Management R&D. Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin
With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less
Enabling fast charging - A battery technology gap assessment
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai
2017-11-01
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Thermal Coefficient of Redox Potential of Alkali Metals
NASA Astrophysics Data System (ADS)
Fukuzumi, Yuya; Hinuma, Yoyo; Moritomo, Yutaka
2018-05-01
The thermal coefficient (α) of redox potential (V) is a significant physical quantity that converts the thermal energy into electric energy. In this short note, we carefully determined α of alkali metals (A = Li and Na) against electrolyte solution. The obtained α is much larger than that expected from the specific heat (CpA) of solid A and depends on electrolyte solution. These observations indicate that the solvent has significant effect on α.
2012-05-15
subroutine by adding time-dependence to the thermal expansion coefficient. The user subroutine was written in Intel Visual Fortran that is compatible...temperature history dependent expansion and contraction, and the molds were modeled as elastic taking into account both mechanical and thermal strain. In...behavior was approximated by assuming the thermal coefficient of expansion to be a fourth order polynomial function of temperature. The authors
2009-02-01
data was linearly fit, and the slope yielded the Seebeck coefficient. A small resis - tor was epoxied to the top of the sample, and the oppo- site end...space probes in its radioisotope thermoelectric generators (RTGs) and is of current interest to automobile manufacturers to supply additional power... resis - tivity or conductivity, thermal conductivity, and Seebeck coefficient. These required measurements are demanding, especially the thermal
Zhukov, V A; Kokorev, S V; Rogozhkina, S V; Melnikov, D G; Terentiev, A I; Kovalchuk, E A; Vakhnov, E Yu; Borisevich, S V
2016-01-01
Determination of values of coefficients of thermal stability of TEOVac for prognosis of conservation of the vaccine (specific biological activity) during the process of warranty period storage. TEOVac (masticatory tablets) in primary packaging was kept at increased temperature (accelerated and stress-tests) and at the conditions established by PAP for the preparation (long-term tests). Biological activity of the vaccine was determined by titration on 12-day chicken embryos. A correlation between the value of coefficients of thermal stability and conservation of the prepared series of the condition preparation at the final date of storage was experimentally established. Coefficients of thermal stability could be used as a prognostic indicator of quality of the produced pelleted formulation of the preparation for evaluation of conservation of the vaccine during warranty period storage.
The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David
2007-01-01
This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.
NASA Astrophysics Data System (ADS)
Xiaoge, Chen; Hongsong, Zhang; Kun, Sun; Xudan, Dang; Haoming, Zhang; Bo, Ren; An, Tang
2017-12-01
In the current paper, the (Sm1- x Yb x )2Ce2O7 ceramics were prepared via sol-gel and high-temperature solid reaction methods. The phase composition, microstructure, thermal conductivity, and expansion coefficient were investigated. Results indicate that pure (Sm1- x Yb x )2Ce2O7 ceramics with single defect-fluorite structure are synthesized successfully. Owing to the phonon scattering caused by Yb addition, the thermal conductivity of (Sm1- x Yb x )2Ce2O7 ceramics decreases with increasing Yb2O3 content at identical temperatures, which is lower than that of YSZ. Due to the relatively low ionic radius of Yb3+ ions, the addition of Yb2O3 decreases the thermal expansion coefficient of (Sm1- x Yb x )2Ce2O7 ceramics, which is higher than that of 8YSZ. The synthesized (Sm1- x Yb x )2Ce2O7 ceramics can be explored as candidate materials for thermal barrier coatings.
Extended Mixed-Efects Item Response Models with the MH-RM Algorithm
ERIC Educational Resources Information Center
Chalmers, R. Philip
2015-01-01
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…
The Measurement of Sulfur Oxidation Products and Their Role in Homogeneous Nucleation
NASA Technical Reports Server (NTRS)
Eisele, F. L.
1997-01-01
The loss rate of H2SO4 vapor onto submicron particles was measured for three different particle substrates. The experimental technique involved direct flow tube measurements of H2SO4 decay rates onto a polydisperse aerosol using chemical ionization mass spectroscopic detection. The aerosols of this study were partially hydrated crystalline salts with diameters in the size range of 20 to 400 nm. The mass accommodation coefficients, a, were calculated from the first-order rate constants for H2SO4 loss to be 0.73 + 0.21 and 0.79 + 0.23 for loss onto (NH4)2SO4 and NaCl, respectively. Measurements of the loss rate of H2SO4 onto a NaCl aerosol coated with stearic acid resulted in lower mass accommodation coefficients with values of 0.31 and 0.19 for aerosol with high and low stearic acid coverage, respectively. The observed decrease in a on an aerosol with a hydrocarbon coating suggests that aerosol composition is a key factor in H2SO4 adsorption on to a particle surface.
Effective techniques for the identification and accommodation of disturbances
NASA Technical Reports Server (NTRS)
Johnson, C. D.
1989-01-01
The successful control of dynamic systems such as space stations, or launch vehicles, requires a controller design methodology that acknowledges and addresses the disruptive effects caused by external and internal disturbances that inevitably act on such systems. These disturbances, technically defined as uncontrollable inputs, typically vary with time in an uncertain manner and usually cannot be directly measured in real time. A relatively new non-statistical technique for modeling, and (on-line) identification, of those complex uncertain disturbances that are not as erratic and capricious as random noise is described. This technique applies to multi-input cases and to many of the practical disturbances associated with the control of space stations, or launch vehicles. Then, a collection of smart controller design techniques that allow controlled dynamic systems, with possible multi-input controls, to accommodate (cope with) such disturbances with extraordinary effectiveness are associated. These new smart controllers are designed by non-statistical techniques and typically turn out to be unconventional forms of dynamic linear controllers (compensators) with constant coefficients. The simplicity and reliability of linear, constant coefficient controllers is well-known in the aerospace field.
NASA Astrophysics Data System (ADS)
Kompan, T. A.; Korenev, A. S.; Lukin, A. Ya.
2008-10-01
The artificial material sitall CO-115M was developed purposely as a material with an extra-low thermal expansion. The controlled crystallization of an aluminosilicate glass melt leads to the formation of a mixture of β-spodumen, β-eucryptite, and β-silica anisotropic microcrystals in a matrix of residual glass. Due to the small size of the microcrystals, the material is homogeneous and transparent. Specific lattice anharmonism of these microcrystal materials results in close to zero average thermal linear expansion coefficient (TLEC) of the sitall material. The thermal expansion coefficient of this material was measured using an interferometric method in line with the classical approach of Fizeau. To obtain the highest accuracy, the registration of light intensity of the total interference field was used. Then, the parameters of the interference pattern were calculated. Due to the large amount of information in the interference pattern, the error of the calculated fringe position was less than the size of a pixel of the optical registration system. The thermal expansion coefficient of the sitall CO-115M and its temperature dependence were measured. The TLEC value of about 3 × 10-8 K-1 to 5 × 10-8 K-1 in the temperature interval from -20 °C to +60 °C was obtained. A special investigation was carried out to show the homogeneity of the material.
NASA Astrophysics Data System (ADS)
Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.
2011-12-01
Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.
Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber
NASA Astrophysics Data System (ADS)
Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji
2017-04-01
This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.
A modified thermal conductivity for low density plasma magnetic flux tubes
NASA Technical Reports Server (NTRS)
Comfort, R. H.; Craven, P. D.; Richards, P. G.
1995-01-01
In response to inconsistencies which have arisen in results from a hydrodynamic model in simulation of high ion temperature (1-2 eV) observed in low density, outer plasmasphere flux tubes, we postulate a reduced thermal conductivity coefficient in which only particles in the loss cone of the quasi-collisionless plasma contribute to the thermal conduction. Other particles are assumed to magnetically mirror before they reach the topside ionosphere and therefore not to remove thermal energy from the plasmasphere. This concept is used to formulate a mathematically simple, but physically limiting model for a modified thermal conductivity coefficient. When this modified coefficient is employed in the hydrodynamic model in a case study, the inconsistencies between simulation results and observations are largely resolved. The high simulated ion temperatures are achieved with significantly lower ion temperatures in the topside ionosphere. We suggest that this mechanism may be operative under the limited low density, refilling conditions in which high ion temperatures are observed.
NASA Technical Reports Server (NTRS)
Wan, Zhengming; Dozier, Jeff
1992-01-01
The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.
NASA Astrophysics Data System (ADS)
Chen, X. W.; Zhao, C. Y.; Wang, B. X.
2018-05-01
Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.
Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.
Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu
2015-10-01
We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.
Seebeck coefficient of one electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durrani, Zahid A. K., E-mail: z.durrani@imperial.ac.uk
2014-03-07
The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.
2012-01-12
fabrication of the composite indicate physical deformities and defects, including entanglement of carbon nanotubes and fused contacts, that are understood...working distance, and spot size, 2.5) of MWCNT array batch of which the composite was made and tested: (a) Entanglements of Individual Nanotubes...electron, photon and phonon) in these materials is critical to their reliable and robust performance, thus accommodating denser circuits 2 and higher
Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces
NASA Astrophysics Data System (ADS)
Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; Minnich, Austin J.
2017-05-01
Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. However, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electron microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. Our work provides a useful perspective on the microscopic processes governing interfacial heat conduction.
Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces
Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; ...
2017-05-17
Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. But, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electronmore » microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. This work provides a useful perspective on the microscopic processes governing interfacial heat conduction.« less
Yoshida, J; Abe, S; Takahashi, D; Segawa, Y; Komai, Y; Tsujii, H; Matsumoto, K; Suzuki, H; Onuki, Y
2008-12-19
We report linear thermal expansion and magnetostriction measurements for CeRu2Si2 in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal expansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point.
Vibrational and Thermal Properties of Oxyanionic Crystals
NASA Astrophysics Data System (ADS)
Korabel'nikov, D. V.
2018-03-01
The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.
Task 6 : material thermal input for Iowa materials.
DOT National Transportation Integrated Search
2008-02-01
The present research project was designed to determine thermal properties, such as coefficient of thermal expansion : (CTE) and thermal conductivity, of Iowa concrete pavement materials. These properties are required as input values by : the Mechanis...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlfahrt, G.; Amelynck, C.; Ammann, Christof
2015-07-09
We present field observations made in June 2011 downwind of Dallas-Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H2SO4) production. Zero-dimensional model calculations show that sCI from BVOCs composed the majority of the sCIs. The main uncertainty associated with an evaluation of H2SO4 production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO2. In general, the maximum of H2SO4 production from the sCI channel is found in the late afternoon as ozone increases towards the late afternoon. The sCI channel,more » however, contributes minor H2SO4 production compared with the conventional OH channel. Finally, The production and the loss rates of H2SO4 are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H2SO4 loss rates compared with H2SO4 production rates. On the other hand, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H2SO4. The results suggest that the recommended coefficient for the H2O surface may not be suitable for this relatively dry environment.« less
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.
2017-12-01
It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the projected area is concentrated at larger sizes. Simulations across the parameter space are also compared with MODIS collection 6 retrievals and forward simulations of cloud radar reflectivity and mean Doppler velocity. Results motivate further in situ and laboratory measurements to narrow parameter uncertainties in models.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2014-01-01
A thermal design concept of attaching the thermoelectric cooler (TEC) hot side directly to the radiator and maximizing the number of TECs to cool multiple detectors in space is presented. It minimizes the temperature drop between the TECs and radiator. An ethane constant conductance heat pipe transfers heat from the detectors to a TEC cold plate which the cold side of the TECs is attached to. This thermal design concept minimizes the size of TEC heat rejection systems. Hence it reduces the problem of accommodating the radiator within a required envelope. It also reduces the mass of the TEC heat rejection system. Thermal testing of a demonstration unit in vacuum verified the thermal performance of the thermal design concept.
NASA Astrophysics Data System (ADS)
Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua
2008-10-01
In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Fellenstein, J. A.
1996-01-01
This paper describes a research program in which the goal is to alter the thermal expansion coefficient of a composite solid lubricant coating, PS300, by compositional tailoring. PS300 is a plasma sprayed coating consisting of chrome oxide, silver and barium fluoride/calcium fluoride eutectic in NiCr binder. By adjusting the composition, the thermal expansion coefficient can be altered, and hence chosen, to more closely match a selected substrate preventing coating spallation at extreme temperatures. Thermal expansion coefficients (CTE) for a variety of compositions were measured from 25 to 800 C using a commercial dilatometer. The CTE's ranged from 7.0 to 13 x lO(exp -6)/deg C depending on the binder content. Subsequent tribological testing of a modified composition indicated that friction and wear properties were relatively insensitive to compositional tailoring.
Design, fabrication and test of graphite/epoxy metering truss structure components, phase 3
NASA Technical Reports Server (NTRS)
1974-01-01
The design, materials, tooling, manufacturing processes, quality control, test procedures, and results associated with the fabrication and test of graphite/epoxy metering truss structure components exhibiting a near zero coefficient of thermal expansion are described. Analytical methods were utilized, with the aid of a computer program, to define the most efficient laminate configurations in terms of thermal behavior and structural requirements. This was followed by an extensive material characterization and selection program, conducted for several graphite/graphite/hybrid laminate systems to obtain experimental data in support of the analytical predictions. Mechanical property tests as well as the coefficient of thermal expansion tests were run on each laminate under study, the results of which were used as the selection criteria for the single most promising laminate. Further coefficient of thermal expansion measurement was successfully performed on three subcomponent tubes utilizing the selected laminate.
Bus electrode having same thermal expansion coefficient as crystalline silicon solar cell
NASA Astrophysics Data System (ADS)
Kato, T.; Morita, H.; Nakano, H.; Washida, H.; Onoe, A.; Inomata, K.; Mori, F.; Sugai, S.
1982-01-01
It is well known that the bus electrode plays a main role in series resistance of solar cells. Bus electrodes composed of bare leads, were investigated for which thermal expansion coefficients are less than those of the cell and which are coated with highly conducting metals. These leads exhibited the lower expansion coefficient than expected by empirical law, and the origins of these phenomena were explained. Work hardening effect on the expansion coefficient was then measured. Solar cell fabrication with these leads and rigid solders rationalized assembly processing. Cell characteristics proved to be excellent compared with conventional ones. Finally, lead costs were compared for various materials.
Thermal diffusion behavior of hard-sphere suspensions.
Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone
2006-11-28
We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials
Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.; ...
2016-10-24
Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less
Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.
Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less
Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wefel, John P.
1999-01-22
ACCESS--Advanced Cosmic-ray Composition Experiment for Space Station--was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the 'knee' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control,more » power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized.« less
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable / validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Non-equilibrium diffusion combustion of a fuel droplet
NASA Astrophysics Data System (ADS)
Tyurenkova, Veronika V.
2012-06-01
A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.
Micromechanical models for textile structural composites
NASA Technical Reports Server (NTRS)
Marrey, Ramesh V.; Sankar, Bhavani V.
1995-01-01
The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.
Spacecraft thermal energy accommodation from atomic recombination
NASA Technical Reports Server (NTRS)
Carleton, Karen L.; Marinelli, William J.
1991-01-01
Measurements of atomic recombination probabilities important in determining energy release to reusable spacecraft thermal protection surfaces during reentry are presented. An experimental apparatus constructed to examine recombination of atomic oxygen from thermal protection and reference materials at reentry temperatures is described. The materials are examined under ultrahigh vacuum conditions to develop and maintain well characterized surface conditions that are free of contamination. When compared with stagnation point heat transfer measurements performed in arc jet facilities, these measurements indicate that a significant fraction of the excess energy available from atom recombination is removed from the surface as metastable O2.
NASA Astrophysics Data System (ADS)
Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.
2017-05-01
The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.
NASA Astrophysics Data System (ADS)
Gonzales, Matthew Alejandro
The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.
ZERODUR TAILORED for cryogenic application
NASA Astrophysics Data System (ADS)
Jedamzik, R.; Westerhoff, T.
2014-07-01
ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.
Escalante, Jaime Bernal; Rosenfield, Mark
2006-05-01
Measurement of the stimulus accommodative convergence to accommodation (AC/A) ratio is a standard procedure in clinical optometric practice. Typically, heterophoria is assessed at several accommodative stimulus levels, and the gradient of the vergence to accommodation function computed. A number of procedures are available for the subjective measurement of heterophoria, but it is unclear whether the use of different vergence measurement techniques will alter the obtained AC/A value. Accordingly, the current study compared AC/A ratios measured using 3 clinical subjective heterophoria tests, namely the von Graefe (VG), Maddox Rod (MR), and Modified Thorington (MT) procedures. The AC/A ratio was measured in 60 visually normal subjects between 20 and 25 years of age using each of the 3 procedures listed above. The accommodative stimulus was varied by the introduction of +/-1.00 diopter (D) spherical lenses over the distance refractive correction while subjects viewed a target at a viewing distance of 40 cm. To examine the repeatability of each procedure, the AC/A ratio was measured on 2 separate occasions for each measurement technique, with the 2 sessions being separated by at least 24 hours. Mean values of stimulus AC/A ratio measured using the VG, MR, and MT procedures were 3.47, 2.99, and 2.46Delta/D, respectively. These differences were significant (p=0.0001). In addition, the coefficient of repeatability for the 3 techniques was 2.22, 1.99, and 1.20 Delta/D, respectively. Ratios obtained using the Modified Thorington technique with +/-1.00 D lenses showed the best repeatability, whereas the poorest repeatability was found with the von Graefe technique when only +1.00 D lenses were used to vary the accommodative stimulus. Accordingly, we recommend that that Modified Thorington procedure with +/-1.00 D lenses be used to quantify heterophoria during clinical measurement of the stimulus AC/A ratio.
Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas
NASA Astrophysics Data System (ADS)
Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen
2017-03-01
Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ > 1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.
Origami structures for tunable thermal expansion
NASA Astrophysics Data System (ADS)
Boatti, Elisa; Bertoldi, Katia
Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.
Thermodynamic properties and diffusion of water + methane binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au
2014-03-14
Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less
Theoretical modelling on thermal expansion of Al, Ag and Cu nanomaterials
NASA Astrophysics Data System (ADS)
Manu, Mehul; Dubey, Vikash
2018-05-01
A simple theoretical model is developed for the calculating the coefficient of volume thermal expansion (CTE) and volume thermal expansion (VTE) of Al, Ag and Cu nanomaterials by considering the cubo-octahedral structure with the change of temperature and the cluster size. At the room temperature, the coefficient of volume thermal expansion decreases sharply below 20-25 nm and the decrement of the coefficient of volume thermal expansion becomes slower above 20-25 nm. We also saw a variation in the volume thermal expansion with the variation of temperature and cluster size. At a fixed cluster size, the volume thermal expansion increases with an increase of temperature at below the melting temperature and show a linear relation of volume thermal expansion with the temperature. At a constant temperature, the volume thermal expansion decreases rapidly with an increase in cluster size below 20-25 nm and after 20-25 nm the decrement of volume thermal expansion becomes slower with the increase of the size of the cluster. Thermal expansion is due to the anharmonicity of the atom interaction. As the temperature rises the amplitude of crystal lattice vibration increases, but the equilibrium distance shifts as the atom spend more time at distance greater than the original spacing due as the repulsion at short distance greater than the corresponding attraction at farther distance. In considering the cubo- octahedral structure with the cluster order, the model prediction on the CTE and the VTE are in good agreement with the available experimental data which demonstrate the validity of our work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuze, F.E.
1983-03-01
An attempt to model the complex thermal and mechanical phenomena occurring in the disposal of high-level nuclear wastes in rock at high power loading is described. Such processes include melting of the rock, convection of the molten material, and very high stressing of the rock mass, leading to new fracturing. Because of the phase changes and the wide temperature ranges considered, realistic models must provide for coupling of the thermal and mechanical calculations, for large deformations, and for steady-state temperature-depenent creep of the rock mass. Explicit representation of convection would be desirable, as would the ability to show fracture developmentmore » and migration of fluids in cracks. Enhancements to SNAGRE consisted of: array modifications to accommodate complex variations of thermal and mechanical properties with temperature; introduction of the ability of calculate thermally induced stresses; improved management of the minimum time step and minimum temperature step to increase code efficiency; introduction of a variable heat-generation algorithm to accommodate heat decay of the nuclear materials; streamlining of the code by general editing and extensive deletion of coding used in mesh generation; and updating of the program users' manual. The enhanced LLNL version of the code was renamed LSANGRE. Phase changes were handled by introducing sharp variations in the specific heat of the rock in a narrow range about the melting point. The accuracy of this procedure was tested successfully on a melting slab problem. LSANGRE replicated the results of both the analytical solution and calculations with the finite difference TRUMP code. Following enhancement and verification, a purely thermal calculation was carried to 105 years. It went beyond the extent of maximum melt and into the beginning of the cooling phase.« less
2014-10-29
hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O(3P) and NO(2_) are relevant over a wide...hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O(3P) and NO(2) are relevant over a wide...N) is of particular interest since the thermal dissociation threshold for O2 is lower than that for N2 in air. A central question is how
Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.
Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei
2017-10-26
A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.
Ceramic sealants prepared by polymer pyrolysis
NASA Astrophysics Data System (ADS)
Hong, Sung Jin; Kim, Deug Joong; Yoo, Young Sung
2011-02-01
The formation and properties of ceramic seals for SOFC applications prepared by polymer pyrolysis are investigated. A mixture with polymethylsiloxane and fillers are pyrolyzed in a N2 atmosphere. The coefficient of thermal expansion of the ceramic composites was controlled by fillers with a high coefficient of thermal expansion such as AlCo. The morphology of the ceramic composites derived from the mixture with polymethylsiloxane and fillers is composed of fillers embedded in a Si-O-C glass matrix. The thermal expansion behavior and sealing characteristics are measured and discussed
Thermophysical properties of liquid rare earth metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Patel, H. P.; Jani, A. R.
2013-06-01
The thermodynamical properties like long wavelength limit S(0), iso-thermal compressibility (χT), thermal expansion coefficient (αV), thermal pressure coefficient (γV), specific heat at constant volume (CV) and specific heat at constant pressure (CP) are calculated for liquid rare earth metals. Our newly constructed parameter free model potential is used to describe the electron ion interaction due to Sarkar et al (S) local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermophysical properties of liquid rare earth metals.
Hunt, T.K.; Novak, R.F.
1991-05-07
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.
Hunt, Thomas K.; Novak, Robert F.
1991-01-01
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.
NASA Astrophysics Data System (ADS)
Xing, Qianhe; Li, Shuang; Fan, Xueliang; Bian, Anhua; Cao, Shi-Jie; Li, Cheng
2017-09-01
Graphene thermoacoustic loudspeakers, composed of a graphene film on a substrate, generate sound with heat. Improving thermoacoustic efficiency of graphene speakers is a goal for optimal design. In this work, we first modified the existing TA model with respect to small thermal wavelengths, and then built an acoustic platform for model validation. Additionally, sensitivity analyses for influential factors on thermoacoustic efficiency were performed, including the thickness of multilayered graphene films, the thermal effusivity of substrates, and the characteristics of inserted gases. The higher sensitivity coefficients result in the stronger effects on thermoacoustic efficiency. We find that the thickness (5 nm-15 nm) of graphene films plays a trivial role in efficiency, resulting in the sensitivity coefficient less than 0.02. The substrate thermal effusivity, however, has significant effects on efficiency, with the sensitivity coefficient around 1.7. Moreover, substrates with a lower thermal effusivity show better acoustic performances. For influences of ambient gases, the sensitivity coefficients of density ρg, thermal conductivity κg, and specific heat cp,g are 2.7, 0.98, and 0.8, respectively. Furthermore, large magnitudes of both ρg and κg lead to a higher efficiency and the sound pressure level generated by graphene films is approximately proportional to the inverse of cp,g. These findings can refer to the optimal design for graphene thermoacoustic speakers.
NASA Astrophysics Data System (ADS)
Latella, Ivan; Ben-Abdallah, Philippe; Biehs, Svend-Age; Antezza, Mauro; Messina, Riccardo
2017-05-01
A general theory of photon-mediated energy and momentum transfer in N -body planar systems out of thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-electrodynamics approach in many-body systems. By making a Landauer-like formulation of the heat transfer problem, explicit formulas for the energy transmission coefficients between two distinct slabs as well as the self-coupling coefficients are derived and expressed in terms of the reflection and transmission coefficients of the single bodies. We also show how to calculate local equilibrium temperatures in such systems. An analogous formulation is introduced to quantify momentum transfer coefficients describing Casimir-Lifshitz forces out of thermal equilibrium. Forces at thermal equilibrium are readily obtained as a particular case. As an illustration of this general theoretical framework, we show on three-body systems how the presence of a fourth slab can impact equilibrium temperatures in heat-transfer problems and equilibrium positions resulting from the forces acting on the system.
Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere
NASA Astrophysics Data System (ADS)
Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; Pryor, Wayne; Stickle, Angela; Killen, Rosemary M.; Stern, S. Alan
2017-02-01
We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50% of the solar wind H+ inventory to be converted to H2 to account for the observations.
Contributions of Solar Wind and Micrometeoroids to Molecular Hydrogen in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.;
2016-01-01
We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50 of the solar wind H+ inventory to be converted to H2 to account for the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, Keith F.; Sjoreen, Andrea L.
2013-05-01
The Radiological Toolbox software developed by Oak Ridge National Laboratory (ORNL) for U. S. Nuclear Regulatory Commission (NRC) is designed to provide electronic access to the vast and varied data that underlies the field of radiation protection. These data represent physical, chemical, anatomical, physiological, and mathematical parameters detailed in various handbooks which a health physicist might consult while in his office. The initial motivation for the software was to serve the needs of the health physicist away from his office and without access to his handbooks; e.g., NRC inspectors. The earlier releases of the software were widely used and acceptedmore » around the world by not only practicing health physicist but also those within educational programs. This release updates the software to accommodate changes in Windows operating systems and, in some aspects, radiation protection. This release has been tested on Windows 7 and 8 and on 32- and 64-bit machines. The nuclear decay data has been updated and thermal neutron capture cross sections and cancer risk coefficients have been included. This document and the software’s user’s guide provide further details and documentation of the information captured within the Radiological Toolbox.« less
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center
NASA Technical Reports Server (NTRS)
Scott, Carl D.
2000-01-01
The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1987-01-01
A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads are developed. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratcheting. Thus, geometric as well as material type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Carlson, R. L.; Riff, R.
1987-01-01
A general mathematical model and solution methodologies are being developed for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which were associated with these load conditions, were thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution process.
High-freezing-point fuel studies
NASA Technical Reports Server (NTRS)
Tolle, F. F.
1980-01-01
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.
Thermal coefficients of technology assimilation by natural systems
NASA Technical Reports Server (NTRS)
Mueller, R. F.
1971-01-01
Estimates of thermal coefficients of the rates of technology assimilation processes was made. Consideration of such processes as vegetation and soil recovery and pollution assimilation indicates that these processes proceed ten to several hundred times more slowly in earth's cold regions than in temperate regions. It was suggested that these differential assimilation rates are important data in planning for technological expansion in Arctic regions.
Multiscale Modeling and Multifunctional Composites
2013-07-17
dλ α µ α= − − = +E Eθ θ (9) 6 where α is the coefficient of thermal expansion , and ,e d...longitudinal and transverse coefficient of thermal expansion , respectively. The piezoelectric constants are related by (Bahei-El-Din, 2009) 31 31 33 33 31...is coded into the user defined subroutine UEXPAN of the ABAQUS finite element program. This serves as the interface between the global finite element
NASA Technical Reports Server (NTRS)
Stewart, David A.
1996-01-01
The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.
Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.
Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng
2014-01-15
Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.
Zhang, Le; Luo, Feng; Xu, Ruina; ...
2014-12-31
The heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity ofmore » volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less
Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...
Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow
NASA Astrophysics Data System (ADS)
Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua
2018-01-01
The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002
The thermal expansion of hard magnetic materials of the Nd-Fe-B system
NASA Astrophysics Data System (ADS)
Savchenko, Igor; Kozlovskii, Yurii; Samoshkin, Dmitriy; Yatsuk, Oleg
2017-10-01
The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.
Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow
NASA Technical Reports Server (NTRS)
Rodriquez, Alvaro Che
2002-01-01
An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.
Thermal expansion of quaternary nitride coatings
NASA Astrophysics Data System (ADS)
Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.
2018-04-01
The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X = Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .
Thermal expansion of boron subnitrides
NASA Astrophysics Data System (ADS)
Cherednichenko, Kirill A.; Gigli, Lara; Solozhenko, Vladimir L.
2018-07-01
The lattice parameters of two boron subnitrides, B13N2 and B50N2, have been measured as a function of temperature between 298 and 1273 K, and the corresponding thermal expansion coefficients have been determined. Thermal expansion of both boron subnitrides was found to be quasi-linear, and the volume thermal expansion coefficients of B50N2 (15.7 (2) × 10-6 K-1) and B13N2 (21.3 (2) × 10-6 K-1) are of the same order of magnitude as those of boron-rich compounds with structure related to α-rhombohedral boron. For both boron subnitrides no temperature-induced phase transitions have been observed in the temperature range under study.
In-situ thermal cycling in SEM of a graphite-aluminum composite
NASA Technical Reports Server (NTRS)
Cheong, Y. M.; Marcus, H. L.
1987-01-01
In situ SEM observations of a graphite-aluminum composite (unidirectional P100 graphite-fiber-reinforced 6061 aluminum MMC plates) were used to measure displacements within the graphite fiber relative to the interface between the graphite fiber and the aluminum matrix during thermal cycling. Specimens were thermally cycled from room temperature to 300 C or 500 C in a SEM chamber and then cooled to room temperature. The obtained shear strains within the fiber were then related to anomalous values of measured residual stresses and to the impact on the composite coefficient of expansion and potential damage under thermal fatigue loading. The shear mechanism was proposed as a source of temperature limits on the low coefficient of expansion of these composites, as well as a potential source of thermal fatigue degradation.
Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion
NASA Astrophysics Data System (ADS)
Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.
2016-10-01
Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.
Cryogenic expansion joint for large superconducting magnet structures
Brown, Robert L.
1978-01-01
An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.
NASA Astrophysics Data System (ADS)
Farahani, Somayeh Davoodabadi; Kowsary, Farshad
2017-09-01
An experimental study on pulsating impingement semi-confined slot jet has been performed. The effect of pulsations frequency was examined for various Reynolds numbers and Nozzle to plate distances. Convective heat transfer coefficient is estimated using the measured temperatures in the target plate and conjugate gradient method with adjoint equation. Heat transfer coefficient in Re < 3000 tended to increase with increasing frequency. The pulsations enhance mixing, which results in an enhancement of mean flow velocity. In case of turbulent jet (Re > 3000), heat transfer coefficient is affected by the pulsation from particular frequency. In this study, the threshold Strouhal number (St) is 0.11. No significant heat transfer enhancement was obtained for St < 0.11. The thermal resistance is smaller each time due to the newly forming thermal boundary layers. Heat transfer coefficient increases due to decrease thermal resistance. This study shows that maximum enhancement in heat transfer due to pulsations occurs in St = 0.169. Results show the configuration geometry has an important effect on the heat transfer performances in pulsed impinging jet. Heat transfer enhancement can be described to reflect flow by the confinement plate.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
Thermal coefficient of delay for various coaxial and fiber-optic cables
NASA Technical Reports Server (NTRS)
Lutes, G. F.; Diener, W.
1989-01-01
Data are presented on the thermal coefficient of delay for various coaxial and fiber optic cables, as measured by the Frequency and Timing Systems Engineering Group and the Time and Frequency Systems Research Group. The measured pressure coefficient of delay is also given for the air-dielectric coaxial cables. A description of the measurement method and a description of each of the cables and its use at JPL and in the DSN are included. An improvement in frequency and phase stability by a factor of ten is possible with the use of fiber optics.
Huang, Zhao-Hui; Tao, Fang-Biao; Hao, Jia-Hu; Yang, Ling; Cheng, Dai-Juan; Xiao, Li-Min
2009-03-01
To examine life satisfaction as a moderator or mediator of accommodation category and loneliness for elementary and middle school students in rural areas so as to provide evidence for psychological health intervention among said students. All participants were asked to complete an anonymous questionnaire battery which including an 18-item General Health Questionnaire, Children's Loneliness Scale and Multidimensional Students' Life Satisfaction. The average score of loneliness scale (35.0 +/- 9.5) among boarding-school students was significantly higher than those students living at home (33.1 +/- 10.1) (P < 0.01). The average scores on school-satisfaction (33.5 +/- 6.3), friend-satisfaction (42.1 +/- 6.2) and self-satisfaction (32.4 +/- 5.0) of boarding-school students were significantly higher than those students living at home (35.9 +/- 6.6, 42.9 +/- 6.6, 32.9 +/- 5.3) (P < 0.05). The association between accommodation category and loneliness was fully mediated by school-satisfaction (the standardized coefficients of loneliness was reduced from 0.043 (P < 0.05) to 0.021 (P > 0.05) and partly mediated by self-satisfaction and friend-satisfaction. Data through Moderation analyses indicated that self-satisfaction, school-satisfaction and friend-satisfaction did not serve as moderators. Accommodation category, life satisfaction seemed to be good predictors on loneliness among elementary and middle school students and the fully mediated effect of school-satisfaction between accommodation category and loneliness was significant, suggesting that intervention of loneliness should focus on these variables.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2018-04-05
The concordance correlation coefficient (CCC) is a widely used scaled index in the study of agreement. In this article, we propose estimating the CCC by a unified Bayesian framework that can (1) accommodate symmetric or asymmetric and light- or heavy-tailed data; (2) select model from several candidates; and (3) address other issues frequently encountered in practice such as confounding covariates and missing data. The performance of the proposal was studied and demonstrated using simulated as well as real-life biomarker data from a clinical study of an insomnia drug. The implementation of the proposal is accessible through a package in the Comprehensive R Archive Network.
Pépino, Marc; Goyer, Katerine; Magnan, Pierre
2015-11-01
Temperature is the primary environmental factor affecting physiological processes in ectotherms. Heat-transfer models describe how the fish's internal temperature responds to a fluctuating thermal environment. Specifically, the rate coefficient (k), defined as the instantaneous rate of change in body temperature in relation to the difference between ambient and body temperature, summarizes the combined effects of direct thermal conduction through body mass, passive convection (intracellular and intercellular fluids) and forced convective heat transfer (cardiovascular system). The k-coefficient is widely used in fish ecology to understand how body temperature responds to changes in water temperature. The main objective of this study was to estimate the k-coefficient of brook charr equipped with internal temperature-sensitive transmitters in controlled laboratory experiments. Fish were first transferred from acclimation tanks (10°C) to tanks at 14, 19 or 23°C (warming experiments) and were then returned to the acclimation tanks (10°C; cooling experiments), thus producing six step changes in ambient temperature. We used non-linear mixed models to estimate the k-coefficient. Model comparisons indicated that the model incorporating the k-coefficient as a function of absolute temperature difference (dT: 4, 9 and 13°C) best described body temperature change. By simulating body temperature in a heterogeneous thermal environment, we provide theoretical predictions of maximum excursion duration between feeding and resting areas. Our simulations suggest that short (i.e. <60 min) excursions could be a common thermoregulatory behaviour adopted by cold freshwater fish species to sustain body temperature below a critical temperature threshold, enabling them to exploit resources in an unfavourable thermal environment. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Liu, Haiyun; Wang, Lei
2018-01-01
In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96 ± 0.92) W · m · K-1 and (2.65 ± 0.03) × 10-6 K-1, respectively, with temperature ranging from 300-400 K.
Park, K H; Martin, P N; Ravaioli, U
2016-01-22
Improvement of thermoelectric efficiency has been very challenging in the solid-state industry due to the interplay among transport coefficients which measure the efficiency. In this work, we modulate the geometry of nanowires to interrupt thermal transport with causing only a minimal impact on electronic transport properties, thereby maximizing the thermoelectric power generation. As it is essential to scrutinize comprehensively both electronic and thermal transport behaviors for nano-scale thermoelectric devices, we investigate the Seebeck coefficient, the electrical conductance, and the thermal conductivity of sinusoidally corrugated silicon nanowires and eventually look into an enhancement of the thermoelectric figure-of-merit [Formula: see text] from the modulated nanowires over typical straight nanowires. A loss in the electronic transport coefficient is calculated with the recursive Green function along with the Landauer formalism, and the thermal transport is simulated with the molecular dynamics. In contrast to a small influence on the thermopower and the electrical conductance of the geometry-modulated nanowires, a large reduction of the thermal conductivity yields an enhancement of the efficiency by 10% to 35% from the typical nanowires. We find that this approach can be easily extended to various structures and materials as we consider the geometrical modulation as a sole source of perturbation to the system.
Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie
2018-01-26
In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.
Electronic and Transport Properties of LaNi4Sb12 Skutterudite: Modified Becke-Johnson Approach
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Singh, Srishti; Gupta, Dinesh C.
2018-05-01
We carried out an ab initio study of structural, electronic, thermodynamic, and thermoelectric properties of the lanthanum-filled skutterudite, LaNi4Sb12. Generalized gradient approximation and modified Becke-Johnson potentials were employed for the exchange-correlation potential. The electronic structure calculations display the metallic behavior of the compound. The alloy offers low lattice thermal conductivity along with a high Seebeck coefficient with a value of - 158 (μVK-1) at room temperature. The effect of high pressure and temperature on thermal properties like thermal expansion coefficient, heat capacity, and Grüneisen parameter are also investigated by means of a quasi-harmonic Debye model. The large Seebeck coefficient and high power factor exhibited by LaNi4Sb12 make it an attractive candidate for thermoelectric materials.
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
Midwest Structural Sciences Center 2009 Annual Report
2010-08-01
simulations. Numerical simulations were carried with a single edge notch beam using an ABAQUS user-element subroutine in conjunction with bilinear and...this effort Digital Image Correlation (DIC) has been applied to measure the coefficient of thermal expansion of the nickel-based super alloy...between 30 and 650°C, the thermal expansion coefficient of Hastelloy X was measured over this entire range and found to be in good agreement with
Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope
Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei
2017-01-01
A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10−5 deg/h. PMID:29072605
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
NASA Astrophysics Data System (ADS)
Xiaoge, Chen; Hongsong, Zhang; Sai, Su; Yongde, Zhao; An, Tang; Haoming, Zhang
2017-12-01
The (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3, 0.5) ceramics were prepared by solid-state reaction method. The phase composition, microstructure, thermophysical properties of (Yb1 - x La x )2AlTaO7 ceramics were investigated. Results reveal that (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3) ceramics exhibit a single pyrochlore-type structure, and the (Yb0.5La0.5)2AlTaO7 has an orthorhombic weberite structure. The thermal conductivities of (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3) ceramics decrease with increasing Yb2O3 contents. (Yb0.5La0.5)2AlTaO7 has the highest thermal conductivity among all the ceramics studied, within the range of 1.48-1.75 W/m K (20-1200 °C). The thermal expansion coefficients of (Yb1 - x La x )2AlTaO7 ceramics decrease gradually with increasing La2O3 fractions, and the thermal expansion coefficients are close to those of YSZ.
NASA Astrophysics Data System (ADS)
Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.
2013-10-01
Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.
No Radiative Heat Transport Through Pyrolitic Lower Mantle
NASA Astrophysics Data System (ADS)
Lobanov, S.; Holtgrewe, N.; Badro, J.; Goncharov, A. F.
2017-12-01
Transport properties of the lower mantle, such as its thermal conductivity, are key parameters required to understand the nature and dynamics of the core-mantle boundary (CMB) region. Radiative thermal conductivity (krad) of the mantle is determined by its visible-infrared absorption coefficient (α) at high pressure (P) and temperature (T). The latter is highly uncertain at the CMB conditions as optical measurements at high temperature suffer from intense thermal radiation that diminishes the probe contrast. Room-temperature high-pressure studies of bridgmanite and ferropericlase absorption coefficients suggest a steady increase of mantle radiative conductivity with depth mirroring the temperature increase along the geotherm (Goncharov et al., 2008; Keppler et al., 2008). Here we reconstruct optical properties of the mantle as a function of depth by using fast time-resolved spectroscopic technology combined with laser-heated diamond anvil cells. We found a strong increase in the rock absorption coefficient upon heating to 3000 K at 40-135 GPa. Using the pressure- and temperature-dependent pyrolite absorption coefficient we establish that lower mantle radiative thermal conductivity is decreasing with depth from 0.35 W/m/K at 1000 km to 0.15 W/m/K at the CMB, making it 50 times smaller than the corresponding lattice thermal conductivity at such conditions (Ohta et al., 2017; Okuda et al., 2017). Combining our results with models of lattice thermal conductivity in pyrolitic lower mantle we obtain a CMB heat flow of 8.5 TW. This estimate implies an inner core age of 0.7-1.3 Gy and favors a low-to-moderate core thermal conductivity (< 80 W/m/K). A core with higher thermal conductivity (Ohta et al., 2016; Pozzo et al., 2012) would be thermally stratified, halting a thermally driven dynamo prior to the inner core growth, if no other mechanism is invoked, such as MgO (Badro et al., 2016) or SiO2 (Hirose et al., 2017) exsolution. On the other hand, the low iron thermal conductivity scenario (Konopkova et al., 2016) combined with our model of low thermal conductivity at the base of the mantle, suggests that core convection could have taken place prior to inner core growth whether sources of chemical buoyancy were present or not.
Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M
2014-11-01
In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.
Anisotropy properties of the quartzite from Jegłowa, Poland
NASA Astrophysics Data System (ADS)
Marciniszyn, Tomasz; Sieradzki, Adam
2013-06-01
Marciniszyn, T. and Sieradzki, A. 2013. Anisotropy properties of the quartzite from Jegłowa, Poland. Acta Geologica Polonica, 63 (2), 265-269. Warszawa. Results of the dielectric spectroscopy, thermal and dilatometric measurements of the quartzite rock are presented. Based on the dielectric measurements performed in a wide range of the frequency (101 - 5 × 107 Hz) at temperature of 300K the piezoresonance in quartzite was found. A chemical composition of quartzite was examined by XRF. The anisotropy of the thermal conductivity was observed. The thermal conductivity coefficient changes from 13.2 [W/Km] to 5.6 [W/Km] for the [100] and [001] direction, respectively. Based on the thermal expansion measurement the thermal expansion coefficient of quartzite was estimated to be α Q = 8.0 × 10-6 [K-1 ] ±0.7 × 10-6 .
Optimal design of a thermally stable composite optical bench
NASA Technical Reports Server (NTRS)
Gray, C. E., Jr.
1985-01-01
The Lidar Atmospheric Sensing Experiment will be performed aboard an ER-2 aircraft; the lidar system used will be mounted on a lightweight, thermally stable graphite/epoxy optical bench whose design is presently subjected to analytical study and experimental validation. Attention is given to analytical methods for the selection of such expected laminate properties as the thermal expansion coefficient, the apparent in-plane moduli, and ultimate strength. For a symmetric laminate in which one of the lamina angles remains variable, an optimal lamina angle is selected to produce a design laminate with a near-zero coefficient of thermal expansion. Finite elements are used to model the structural concept of the design, with a view to the optical bench's thermal structural response as well as the determination of the degree of success in meeting the experiment's alignment tolerances.
Cryogenic Refractive Index and Coefficient of Thermal Expansion for the S-TIH1 Glass
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Leviton, Douglas; Content, David
2013-01-01
Using the CHARMS facility at NASA GSFC, we have measured the cryogenic refractive index of the Ohara S-TIH1 glass from 0.40 to 2.53 micrometers and from 120 to 300 K. We have also examined the spectral dispersion and thermo-optic coefficients (dn/dT). We also derived temperature-dependent Sellmeier models from which refractive index may be calculated for any wavelength and temperature within the stated ranges of each model. The S-TIH1 glass we tested exhibited unusual behavior in the thermo-optic coefficient. We found that for delta < 0.5 micrometers, the index of refraction decrease with a decrease in temperature (positive dn/dT). However, the situation was reversed for delta larger than 0.63 micrometers, where the index will increase with a decrease in temperature (negative dn/dT). We also measured the coefficient of thermal expansion (CTE) for the similar batch of S-TIH1 glass in order to understand its thermal properties. The CTE showed a monotonic change with a decrease in temperature.
Model for Increasing the Power Obtained from a Thermoelectric Generator Module
NASA Astrophysics Data System (ADS)
Huang, Gia-Yeh; Hsu, Cheng-Ting; Yao, Da-Jeng
2014-06-01
We have developed a model for finding the most efficient way of increasing the power obtained from a thermoelectric generator (TEG) module with a variety of operating conditions and limitations. The model is based on both thermoelectric principles and thermal resistance circuits, because a TEG converts heat into electricity consistent with these two theories. It is essential to take into account thermal contact resistance when estimating power generation. Thermal contact resistance causes overestimation of the measured temperature difference between the hot and cold sides of a TEG in calculation of the theoretical power generated, i.e. the theoretical power is larger than the experimental power. The ratio of the experimental open-loop voltage to the measured temperature difference, the effective Seebeck coefficient, can be used to estimate the thermal contact resistance in the model. The ratio of the effective Seebeck coefficient to the theoretical Seebeck coefficient, the Seebeck coefficient ratio, represents the contact conditions. From this ratio, a relationship between performance and different variables can be developed. The measured power generated by a TEG module (TMH400302055; Wise Life Technology, Taiwan) is consistent with the result obtained by use of the model; the relative deviation is 10%. Use of this model to evaluate the most efficient means of increasing the generated power reveals that the TEG module generates 0.14 W when the temperature difference is 25°C and the Seebeck coefficient ratio is 0.4. Several methods can be used triple the amount of power generated. For example, increasing the temperature difference to 43°C generates 0.41 W power; improving the Seebeck coefficient ratio to 0.65 increases the power to 0.39 W; simultaneously increasing the temperature difference to 34°C and improving the Seebeck coefficient ratio to 0.5 increases the power to 0.41 W. Choice of the appropriate method depends on the limitations of system, the cost, and the environment.
Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2017-10-01
The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.
Emission coefficients of low temperature thermal iron plasma
NASA Astrophysics Data System (ADS)
Mościcki, T.; Hoffman, J.; Szymański, Z.
2004-03-01
Iron plasma appears during material processing with laser, electric are etc., and has considerable influence on the processing conditions. In this paper emission coefficients of low temperature thermal iron plasma at atmospheric pressure are presented. Net emission coefficients ɛ N have been calculated for pure iron plasma as well as for Fe-Ar and Fe-He plasma mixtures. To calculate the recombination radiation the knowledge of the Biberman factors ξ {fb/z}( T e, λ) is necessary and they have been calculated from the iron photo-ionization cross sections. The calculations allow estimation of energy losses, energy radiated by plasma plume and its comparison with the energy absorbed from laser beam.
Pressurized Anneal of Consolidated Powders
NASA Technical Reports Server (NTRS)
Nemir, David Charles (Inventor); Rubio, Edward S. (Inventor); Beck, Jan Bastian (Inventor)
2017-01-01
Systems and methods for producing a dense, well bonded solid material from a powder may include consolidating the powder utilizing any suitable consolidation method, such as explosive shockwave consolidation. The systems and methods may also include a post-processing thermal treatment that exploits a mismatch between the coefficients of thermal expansion between the consolidated material and the container. Due to the mismatch in the coefficients, internal pressure on the consolidated material during the heat treatment may be increased.
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Azizi, Farshad
2018-02-01
We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.
Additivity of the coefficient of thermal expansion in silicate optical fibers.
Cavillon, M; Dragic, P D; Ballato, J
2017-09-15
A model that predicts the material additivity of the thermal expansion coefficient in the binary silicate glasses most commonly used for present (GeO 2 -SiO 2 , P 2 O 5 -SiO 2 , B 2 O 3 -SiO 2 , and Al 2 O 3 -SiO 2 ) and emerging (BaO-SiO 2 ) optical fibers is proposed. This model is based on a derivation of the expression for the coefficient of thermal expansion in isotropic solids, and gives direct insight on the parameters that govern its additivity in silicate glasses. Furthermore, a consideration of the local structural environment of the glass system is necessary to fully describe its additivity behavior in the investigated systems. This Letter is important for better characterizing and understanding of the impact of temperature and internal stresses on the behavior of optical fibers.
The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.
Fornasini, P; Grisenti, R
2014-10-28
The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.
Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.
Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang
2014-08-07
Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.
NASA Astrophysics Data System (ADS)
Che, JunWei; Liu, XiangYang; Wang, XueZhi; Liang, GongYing
2018-04-01
This paper presents structure, thermal expansion coefficient and phase stability of La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic by both theoretical and experimental results. It was found out that LZ7C3 powders had a pyrochlore structure after being heat-treated at temperatures higher than 1473 K or higher according to XRD and TEM results. The calculated average thermal expansion coefficient (TEC) was 7.12 × 10-6 K-1, which is a little smaller than experiment result, but changes of calculated average TECs of LZ, YSZ and LZ7C3 had the same trend with experimental results. Finally, the radial distribution function (RDF) was calculated to study the phase stability of LZ7C3.
Nanoscale Thermoelectrics: A Study of the Absolute Seebeck Coefficient of Thin Films
NASA Astrophysics Data System (ADS)
Mason, Sarah J.
The worlds demand for energy is ever increasing. Likewise, the environmental impact of climate change due generating that energy through combustion of fossil fuels is increasingly alarming. Due to these factors new sources of renewable energies are constantly being sought out. Thermoelectric devices have the ability to generate clean, renewable, energy out of waste heat. However promising that is, their inefficiency severely inhibits applicability and practical use. The usefulness of a thermoelectric material increases with the dimensionless quantity, ZT, which depends on the Seebeck coefficient and electrical and thermal conductivity. These characteristic material parameters have interdependent energy transport contributions that classically prohibit the optimization of one with out the detriment of another. Encouraging advancements of ZT have occurred in the past ten years due to the decoupling of the thermal and electrical conductivity. Further advancements are necessary in order to produce applicable devices. One auspicious way of decoupling or tuning energy transport properties, is through size reduction to the nanoscale. However, with reduced dimensions come complications in measuring material properties. Measurements of properties such as the Seebeck coefficient, S, are primarily contingent upon the measurement apparatus. The Seebeck coefficient is defined as the amount of voltage generated by a thermal gradient. Measuring a thermally generated voltage by traditional methods gives, the voltage measured as a linear function of the Seebeck coefficient of the leads and of the material being tested divided by the applied thermal gradient. If accurate values of the Seebeck coefficients of the leads are available, simple subtraction provides the answer. This is rarely the case in nanoscale measurement devices with leads exclusively made from thin film materials that do not have well known bulk-like thermopower values. We have developed a technique to directly measure, S, as a function of temperature using a micro-machined thermal isolation platform consisting of a suspended, patterned SiN membrane. By measuring a series of thicknesses of metallic films up to the infinitely thin film limit, in which the electrical resistivity is no longer decreasing with increasing film thickness, but still not at bulk values, along with the effective electron mean free path, we are able to show the contribution of the leads needed to measure this property. Having a comprehensive understanding of the background contribution we are able to determine the absolute Seebeck coefficient of a wide variety of thin films. The nature of the design of the SiN membrane also allows the ability to accurately and directly measure thermal and electrical transport of the thin films yielding a comprehensive measurement of the three quantities that characterize a material's efficiency. This can serve to further the development of thermoelectric materials through precise measurements of the material properties that dictate efficiency.
Advanced Thermal Simulator Testing: Thermal Analysis and Test Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe
2008-01-01
Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
2011-12-01
image) ................. 114 Figure 156 – Abaqus thermal model attempting to characterize the thermal profile seen in the test data...optimization process ... 118 Figure 159 – Thermal profile for optimized Abaqus thermal solution ....................................... 119 Figure 160 – LVDT...Coefficients of thermal expansion results ................................................................. 121 Table 12 – LVDT correlation results
Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei
2017-01-01
To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), -1 D, -3 D and -5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress.
Accommodative amplitude using the minus lens at different near distances
Momeni-Moghaddam, Hamed; Ng, Jason S; Cesana, Bruno Mario; Yekta, Abbas Ali; Sedaghat, Mohammad Reza
2017-01-01
Purpose: The purpose of this study was to compare the mean findings and the repeatability of the minus lens (ML) amplitude of accommodation (AA) at 33 cm and 40 cm. Materials and Methods: AA was measured from the dominant eye of 120 fully corrected subjects using the ML procedure when viewing the target at both 33 and 40 cm. Each measurement was repeated between 24 and 48 hours after the first trial. Results: Mean AA when tested at 33 cm and 40 cm was 10.20 diopter (D) (standard deviation [SD] =1.24) and 8.85 D (SD = 1.23), respectively (P < 0.001). The limits of agreement of the measured amplitude calculated with taking into account of the replicates at 33 and 40 cm were − 0.19 (95% confidence interval [CI]: −0.34 to −0.04) and 2.53 (95% CI: 2.38 to 2.68), respectively. The repeatability of testing at the two distances 33 and 40 cm was ± 1.24 and ± 0.99, respectively. In addition, the retest reliability of measured amplitude using the intraclass correlation coefficient was 0.87 (95% CI: 0.789–0.920) at 33 cm and 0.91 (95% CI: 0.872–0.945) at 40 cm. Conclusion: There is no agreement in the obtained amplitude at the two measurement distances. Testing the ML AA at 40 cm may be superior given that a lower repeatability coefficient was observed. However, it is unclear whether the larger amplitude measured at 33 cm reflects a larger increase in accommodation (greater proximity effect) or a decrease in the ability to perceive the first slight sustained blur. PMID:28440251
Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei
2017-01-01
Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress. PMID:29354706
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1988-01-01
This research is performed to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.
1989-01-01
The objective is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1988-01-01
The objective of this research is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Choi, Wonchul; Park, Young-Sam; Hyun, Younghoon; Zyung, Taehyoung; Kim, Jaehyeon; Kim, Soojung; Jeon, Hyojin; Shin, Mincheol; Jang, Moongyu
2013-12-01
We fabricated a thermoelectric device with a silicide/silicon laminated hetero-structure by using RF sputtering and rapid thermal annealing. The device was observed to have Ohmic characteristics by I-V measurement. The temperature differences and Seebeck coefficients of the proposed silicide/silicon laminated and bulk structure were measured. The laminated thermoelectric device shows suppression of heat flow from the hot to cold side. This is supported by the theory that the atomic mass difference between silicide and silicon creates a scattering center for phonons. The major impact of our work is that phonon transmission is suppressed at the interface between silicide and silicon without degrading electrical conductivity. The estimated thermal conductivity of the 3-layer laminated device is 126.2 +/- 3.7 W/m. K. Thus, by using the 3-layer laminated structure, thermal conductivity is reduced by around 16% compared to bulk silicon. However, the Seebeck coefficient of the thermoelectric device is degraded compared to that of bulk silicon. It is understood that electrical conductivity is improved by using silicide as a scattering center.
NASA Astrophysics Data System (ADS)
Gorynski, Kyle E.; Stockli, Daniel F.; Douglas Walker, J.
2013-06-01
(AHe) and Zircon (ZHe) (U-Th)/He thermochronometric data from the southern Wassuk Range (WR) coupled with 40Ar/39Ar age data from the overlying tilted Tertiary section are used to constrain the thermal evolution of an extensional accommodation zone and tilt-domain boundary. AHe and ZHe data record two episodes of rapid cooling related to the tectonic exhumation of the WR fault block beginning at ~15 and ~4 Ma. Extension was accommodated through fault-block rotation and variably tilted the southern WR to the west from ~60°-70° in the central WR to ~15°-35° in the southernmost WR and Pine Grove Hills, and minimal tilting in the Anchorite Hills and along the Mina Deflection to the south. Middle Miocene geothermal gradient estimates record heating immediately prior to large-magnitude extension that was likely coeval with the extrusion of the Lincoln Flat andesite at ~14.8 Ma. Geothermal gradients increase from ~19° ± 4°C/km to ≥ 65° ± 20°C/km toward the Mina Deflection, suggesting that it was the focus of Middle Miocene arc magmatism in the upper crust. The decreasing thickness of tilt blocks toward the south resulted from a shallowing brittle/ductile transition zone. Postmagmatic Middle Miocene extension and fault-block advection were focused in the northern and central WR and coincidentally moderated the large lateral thermal gradient within the uppermost crust.
Properties of air-aluminum thermal plasmas
NASA Astrophysics Data System (ADS)
Cressault, Y.; Gleizes, A.; Riquel, G.
2012-07-01
We present the calculation and the main results of the properties of air-aluminum thermal plasmas, useful for complete modelling of arc systems involving aluminum contacts. The properties are calculated assuming thermal equilibrium and correspond to the equilibrium composition, thermodynamic functions, transport coefficients including diffusion coefficients and net emission coefficient representing the divergence of the radiative flux in the hottest plasma regions. The calculation is developed in the temperature range between 2000 and 30 000 K, for a pressure range from 0.1 to 1 bar and for several metal mass proportions. As in the case of other metals, the presence of aluminum vapours has a strong influence on three properties at intermediate temperatures: the electron number density, the electrical conductivity and the net emission coefficient. Some comparisons with other metal vapour (Cu, Fe and Ag) properties are made and show the original behaviour for Al-containing mixtures: mass density at high temperatures is low due to the low Al atomic mass; high electrical conductivity at T < 10 000 K due to low ionization potential (around 2 V less for Al than for the other metals); very strong self-absorption of ionized aluminum lines, leading to a net emission coefficient lower than that of pure air when T > 10 000 K, in contrast to copper or iron radiation.
Thermal properties measurements in biodiesel oils using photothermal techniques
NASA Astrophysics Data System (ADS)
Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; Vargas, H.; Constantino, R.; Baesso, M. L.
2005-08-01
In this Letter, thermal lens and open cell photoacoustic techniques are used to measure the thermal properties of biodiesel oils. The absolute values of the thermal effusivity, thermal diffusivity, thermal conductivity and the temperature coefficient of the refractive index were determined for samples obtained from soy, castor bean, sunflower and turnip. The results suggest that the employed techniques may be useful as complementary methods for biodiesel certification.
Thermal diffusion behavior of nonionic surfactants in water.
Ning, Hui; Kita, Rio; Kriegs, Hartmut; Luettmer-Strathmann, Jutta; Wiegand, Simone
2006-06-08
We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.
NASA Astrophysics Data System (ADS)
Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Kozlova, Elena; Chekhonin, Evgeny; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Alekseev, Aleksey
2016-04-01
A practical method of organic-rich intervals identifying within the low-permeable dispersive rocks based on thermal conductivity measurements along the core is presented. Non-destructive non-contact thermal core logging was performed with optical scanning technique on 4 685 full size core samples from 7 wells drilled in four low-permeable zones of the Bazhen formation (B.fm.) in the Western Siberia (Russia). The method employs continuous simultaneous measurements of rock anisotropy, volumetric heat capacity, thermal anisotropy coefficient and thermal heterogeneity factor along the cores allowing the high vertical resolution (of up to 1-2 mm). B.fm. rock matrix thermal conductivity was observed to be essentially stable within the range of 2.5-2.7 W/(m*K). However, stable matrix thermal conductivity along with the high thermal anisotropy coefficient is characteristic for B.fm. sediments due to the low rock porosity values. It is shown experimentally that thermal parameters measured relate linearly to organic richness rather than to porosity coefficient deviations. Thus, a new technique employing the transformation of the thermal conductivity profiles into continuous profiles of total organic carbon (TOC) values along the core was developed. Comparison of TOC values, estimated from the thermal conductivity values, with experimental pyrolytic TOC estimations of 665 samples from the cores using the Rock-Eval and HAWK instruments demonstrated high efficiency of the new technique for the organic rich intervals separation. The data obtained with the new technique are essential for the SR hydrocarbon generation potential, for basin and petroleum system modeling application, and estimation of hydrocarbon reserves. The method allows for the TOC richness to be accurately assessed using the thermal well logs. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).
Advances in LED packaging and thermal management materials
NASA Astrophysics Data System (ADS)
Zweben, Carl
2008-02-01
Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.
Folds on Europa: implications for crustal cycling and accommodation of extension.
Prockter, L M; Pappalardo, R T
2000-08-11
Regional-scale undulations with associated small-scale secondary structures are inferred to be folds on Jupiter's moon Europa. Formation is consistent with stresses from tidal deformation, potentially triggering compressional instability of a region of locally high thermal gradient. Folds may compensate for extension elsewhere on Europa and then relax away over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
Design of a High Thermal Gradient Bridgman Furnace
NASA Technical Reports Server (NTRS)
LeCroy, J. E.; Popok, D. P.
1994-01-01
The Advanced Automated Directional Solidification Furnace (AADSF) is a Bridgman-Stockbarger microgravity processing facility, designed and manifested to first fly aboard the second United States Microgravity Payload (USMP-2) Space Shuttle mission. The AADSF was principally designed to produce high axial thermal gradients, and is particularly suitable for metals solidification experiments, including non-dilute alloys. To accommodate a wider range of experimental conditions, the AADSF is equipped with a reconfigurable gradient zone. The overall design of the AADSF and the relationship between gradient zone design and furnace performance are described. Parametric thermal analysis was performed and used to select gradient zone design features that fulfill the high thermal gradient requirements of the USMP-2 experiment. The thermal model and analytical procedure, and parametric results leading to the first flight gradient zone configuration, are presented. Performance for the USMP-2 flight experiment is also predicted, and analysis results are compared to test data.
Uptake of Organic Gas Phase Species by 1-Methylnaphthalene
NASA Astrophysics Data System (ADS)
Zhang, H.; Xia, J.; Davidovits, P.; Jayne, J. T.; Kolb, C. E.; Worsnop, D. R.
2002-12-01
Using a droplet train apparatus, the mass accommodation coefficients (α) on 1-methylnapthalene of gas phase m-xylene, ethylbenzene, butylbenzene, α-pinene, γ-terpinene, and 2-methyl-2-hexanol were measured as a function of temperature (265 K to 296 K). 1-methylnapthalene was selected as a surrogate for hydrophobic and aromatic hydrocarbons found in tropospheric aerosols. The mass accommodation coefficients (α) of all the molecules obtained from these measurements exhibit negative temperature dependence. The upper and lower values of α at 265 K and 296 K respectively are: for m-xylene 0.44 and 0.26; for ethylbenzene 0.37 and 0.22; for butylbenzene 0.47 and 0.31; for α-pinene 0.47 and 0.096; for γ-terpinene 0.39 and 0.12; for 2-methyl-2-hexanol 0.44 and 0.26. The uptake measurements also yielded values for the product HDl1/2 for most of the molecules studied (H = Henry's law constant, Dl = liquid phase diffusion coefficient). Using calculated values of Dl the Henry's law constant is obtained, and expressed in the form ln H (M/atm) = -A + B/T. The A and B values for the molecules studied are listed in Table 1. Table 1: A and B values for the Henry's law constant H expressed as ln H (M/atm) = -A + B/T \\ m-xylene: A=7.20, B=4060\\ethylbenzene: A=5.81, B=3660\\butylbenzene: A=16.95, B=7330α-pinene: A=15.69, B=6360\\2-methyl-2-hexanol: A=9.95, B=4760
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.
Giant Thermal Expansion in 2D and 3D Cellular Materials.
Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di
2018-05-01
When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesna, V. A.; Gledenov, Yu. M.; Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu
The paper presents results of preliminarymeasurements of the left–right asymmetry in integral spectra of γ-quanta emitted in the interaction of polarized thermal neutrons with nuclei. These results indicate that for all cases of measured statistically significant P-odd asymmetry, the left–right asymmetry coefficient is much smaller than the P-odd asymmetry coefficient. This observation is not consistent with the predictions of theoretical calculations.
Measuring the human body's microclimate using a thermal manikin.
Voelker, C; Maempel, S; Kornadt, O
2014-12-01
The human body is surrounded by a microclimate, which results from its convective release of heat. In this study, the air temperature and flow velocity of this microclimate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the microclimate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the microclimate shape strongly depends not only on the body segment, but also on boundary conditions: The higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the airflow in the microclimate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. The findings of this study generate a better understanding of the human body’s microclimate, which is important in fields such as thermal comfort, HVAC, or indoor air quality. Additionally, the measurements can be used by CFD users for the validation of their simulations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Maaßdorf, A.; Zeimer, U.; Grenzer, J.; Weyers, M.
2013-07-01
AlxGa1-xAs grown on GaAs is known to be almost perfectly lattice matched with a maximum lattice mismatch of 0.14% at room temperature and even less at temperatures of 700 °C-800 °C. However, as layer structures for edge-emitting diode lasers exhibit an increasing overall thickness of several microns of AlxGa1-xAs, e.g., diode lasers comprising a super-large optical cavity, the accumulated elastic strain energy increases as well. Depending on the growth temperature the formation energy of dislocations can be reached, which is limiting the pseudomorphic growth. In this regard, the thermal expansion coefficient difference between layer and substrate is an important parameter. We utilize in situ curvature measurements during growth of AlxGa1-xAs by metal-organic vapour phase epitaxy to determine the thermal expansion coefficient α. The curvature change with increasing layer thickness, as well as with wafer temperature at constant layer thickness is used to assess α. This is compared to ex situ temperature dependent X-ray diffraction measurements to obtain α. All determined values for α are in good agreement, yielding αAlAs=4.1×10-6 K-1 for a given GaAs linear thermal expansion coefficient of αGaAs=5.73×10-6 K-1.
Influence of Nano-Fluid and Receiver Modification in Solar Parabolic Trough Collector Performance
NASA Astrophysics Data System (ADS)
Dharani Kumar, M.; Yuvaraj, G.; Balaji, D.; Pravinraj, R.; shanmugasundaram, Prabhu
2018-02-01
Utilization of natural renewal sources in India is very high over the past decades. Solar power is a prime source of energy available plenty in the world. In this work solar energy is modified into thermal energy by using copper absorber tube with fins. Due to low heat transfer coefficient results leading to higher thermal losses and lower thermal efficiency. In order to increase the heat transfer coefficient copper receiver tube with fins is used and as well as solid has higher thermal conductivity compare to fluid (Tio2) nano fluid is used to improve the heat transfer rate. The analyses have been carried out and take the account of parameters such as solar radiation with time variation, mass flow rate of water, temperatures.
Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2
NASA Astrophysics Data System (ADS)
Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu
2016-08-01
We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm-1/K) and -0.0122 (cm-1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.
Derivation and test of elevated temperature thermal-stress-free fastener concept
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.
1985-01-01
Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.
Creation of a Data Base on Energetic Materials
1987-08-10
Examples of booster explosives are Tetryl, RDX , and HMX . Examples of bursting explosives are Amatols, TNT, Compositions A, B, & C, and Picatrol. Within...Test Thermal Shock Resistance Glass Transition Temperature Toxicity Grain Size Viscosity Hardness Volatility Heat Capacity Water Resistance Heat of...Tensile Strength Flammability Thermal Conductivity Flexural Strength Thermal Expansion Coefficient Gap Test Thermal Shock Resistance Glass Transition
Radiometric calibration of an ultra-compact microbolometer thermal imaging module
NASA Astrophysics Data System (ADS)
Riesland, David W.; Nugent, Paul W.; Laurie, Seth; Shaw, Joseph A.
2017-05-01
As microbolometer focal plane array formats are steadily decreasing, new challenges arise in correcting for thermal drift in the calibration coefficients. As the thermal mass of the cameras decrease the focal plane becomes more sensitive to external thermal inputs. This paper shows results from a temperature compensation algorithm for characterizing and radiometrically calibrating a FLIR Lepton camera.
IMPACT - Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking
2013-09-01
the primary source of drag acceleration uncertainty stem from inadequate knowledge of r and CD. Atmospheric mass densities are often inferred from...sophisticated GSI models are diffuse reflection with incomplete accommodation (DRIA) [18] and the Cercignani-Lampis-Lord ( CLL ) model [19]. The DRIA model has...been applied in satellite drag coefficient modeling for nearly 50 years; however, the CLL model was only recently applied to satellite drag
Recovery of Waste Heat from Propellant Forced-Air Dry House
1978-12-01
function of bulk air side film heat transfer coefficient and diffusivity 66 15. Dry house waste heat recovery system instrumentation 67 16. Sample data...inlet condition by, maintaining the exhaust temperature above the NG dew point. The set point is adjustable to accommodate various propel- lant and...system. In dry cycle operation, an overall energy recovery effectiveness of about 40% was measured for winter operation when the exhaust temperature
Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization
Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge
2015-01-01
In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534
Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow.
Tang, G H; Gu, X J; Barber, R W; Emerson, D R; Zhang, Y H
2008-08-01
Accurate evaluation of damping in laterally oscillating microstructures is challenging due to the complex flow behavior. In addition, device fabrication techniques and surface properties will have an important effect on the flow characteristics. Although kinetic approaches such as the direct simulation Monte Carlo (DSMC) method and directly solving the Boltzmann equation can address these challenges, they are beyond the reach of current computer technology for large scale simulation. As the continuum Navier-Stokes equations become invalid for nonequilibrium flows, we take advantage of the computationally efficient lattice Boltzmann method to investigate nonequilibrium oscillating flows. We have analyzed the effects of the Stokes number, Knudsen number, and tangential momentum accommodation coefficient for oscillating Couette flow and Stokes' second problem. Our results are in excellent agreement with DSMC data for Knudsen numbers up to Kn=O(1) and show good agreement for Knudsen numbers as large as 2.5. In addition to increasing the Stokes number, we demonstrate that increasing the Knudsen number or decreasing the accommodation coefficient can also expedite the breakdown of symmetry for oscillating Couette flow. This results in an earlier transition from quasisteady to unsteady flow. Our paper also highlights the deviation in velocity slip between Stokes' second problem and the confined Couette case.
Ab-initio study of thermal expansion in pure graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Sarita; Kumar, Ranjan; Jindal, V. K., E-mail: jindal@pu.ac.in
Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPT and the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to bemore » strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of −1.44×10{sup −6}. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.« less
Rampino, Sergio; Suleimanov, Yury V
2016-12-22
Thermal rate coefficients for the astrochemical reaction C + CH + → C 2 + + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results that can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemical databases and kinetic networks.
Richard, Joshua; Galloway, Jack; Fensin, Michael; ...
2015-04-04
A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less
Thermal stress, human performance, and physical employment standards.
Cheung, Stephen S; Lee, Jason K W; Oksa, Juha
2016-06-01
Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research.
Does Hofstetter's equation predict the real amplitude of accommodation in children?
Hashemi, Hassan; Nabovati, Payam; Khabazkhoob, Mehdi; Yekta, Abbasali; Emamian, Mohammad Hassan; Fotouhi, Akbar
2018-01-01
The aim was to determine the distribution and associated factors of accommodative amplitude (AA) in six- to 12-year-old children and compare the results with those calculated using Hofstetter's formula. In a cross-sectional study in 2015, random sampling was done from urban and rural populations of Shahroud, northern Iran. Participating schoolchildren were examined for manifest, cycloplegic and subjective refraction, as well as uncorrected vision and visual acuity. The AA was measured with Donders' push-up method using a ruler. The near point of convergence (NPC) was also measured. Of the 6,624 selected children, 5,620 participated in the study and after applying the exclusion criteria, the final analyses were done on data from 5,444 schoolchildren. The mean age of the final sample was 9.24 ± 1.71 years (from six to 12 years) and 53.6 per cent (n = 2,919) were boys. Mean measured AA was 14.44 D (95 per cent confidence interval [CI]: 14.33-14.55). In all age groups, the mean measured AA was less than the predicted mean value calculated with the Hofstetter's equation. Mean measured AA was 14.44 D (95 per cent CI: 14.28-14.59) and 14.45 D (95 per cent CI: 14.29-14.6) in boys and girls, respectively (p = 0.926). AA significantly declined with age (coefficient: -0.18, 95 per cent CI: -0.23 to -0.12, p < 0.001). Mean AA in emmetropic, myopic and hyperopic children was 14.31 D, 17.30 D and 14.87 D, respectively. Older age (coefficient = -0.18), living in rural areas (coefficient = -0.48) and NPC (coefficient = 0.47) inversely related with AA and higher AA was associated with a shift of the spherical equivalent refraction toward myopia (coefficient = -0.41). The differences among groups with different types of refractive error and high AA in children with myopia are important findings of this study. The results of the present study suggest that Hofstetter's formula provides inaccurate AA estimates in children and thus, the interpretation of this index requires further population-based studies in different racial and ethnic groups. © 2017 Optometry Australia.
NASA Astrophysics Data System (ADS)
Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.
2017-11-01
The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.
2013-03-01
with density, Young’s modulus, coefficient of thermal expansion , and Poisson’s ratio, of 3.2 cm 3 , 449 GPa, 4.0 × 10 –6 o C –1 , and 0.16...considers the effect of hydrostatic pressure (confinement) on the strength of ceramics and was implemented using a user subroutine in ABAQUS . The...Due to the high temperature of the encapsulation casting process and the large differential in coefficients of thermal expansion (CTE) between the MMC
Red River Waterway Thermal Studies. Report 2. Thermal Stress Analyses
1991-12-01
stress relaxation, q. Shrinkage of the concrete, and . Thermal properties of the concrete including coefficient of thermal expansion , specific heat...Finite-Element Code 12. The thermal stress analyses in this investigation was performed using ABAQUS , a general-purpose, heat-transfer and structural...model (the UMAT 9 subroutine discussed below) may be incorporated as an external subroutine linked to the ABAQUS library. 14. In order to model the
Low coefficient of thermal expansion polyimides containing metal ion additives
NASA Technical Reports Server (NTRS)
Stoakley, D. M.; St. Clair, A. K.
1992-01-01
Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1992-01-01
Calculations are presented of the coefficient of thermal expansion (CTE) of the radius of curvature of the reflector face sheets made of a quasi-isotropic composite. It is shown that, upon cooling, the change of the CTE of the focal distance of the mirror is equal to that of the radius of the curvature of the reflector face sheet. The CTE of the radius of the curvature of a quasi-isotropic composite face sheet depends on both the in-plane and the out-of-plane CTEs. The zero in-plane CTE of a face sheet does not guarantee mirrors with no focal length changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayner, Chhatrasal; Malik, Iram; Das, Malay K.
2016-05-06
In this paper, Cu doped PbSe is successfully synthesized by solid state reaction. Theinfluence of porosity on thermal and electrical transport in Cu doped PbSe is investigated in this study. Low densified material significantly scatters the electrons as well as phonons through the high number of scattering sites (like pores, cracks, disorder, etc). As a result, the drastic reduction in thermal conductivity and electrical conductivity isnoticed. Additionally, Seebeck coefficient enhances in a low densified materials. Furthermore, Pb{sub 1-x}Cu{sub x}Se (x ∼ 0 to 0.06) has high Seebeck coefficient due to the energy filtering effect and lower charge carrier concentration.
Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Maksimova, E. V.
2018-05-01
The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.
Hard X-ray imaging facility for space shuttle: A scientific and conceptual engineering study
NASA Technical Reports Server (NTRS)
Peterson, L. E.; Hudson, H. S.; Hurford, G.; Schneible, D.
1976-01-01
A shuttle-accommodated instrument for imaging hard X-rays in the study of nonthermal particles and high temperature particles in various solar and cosmic phenomena was defined and its feasibility demonstrated. The imaging system configuration is described as well as the electronics, aspect systems, mechanical and thermal properties and the ground support equipment.
Comparative study of the thermal properties of mud and peat solutions applied in clinical practice.
Beer, A M; Grozeva, A; Sagorchev, P; Lukanov, J
2003-11-01
Different peloids as e.g. mud and peat have been traditionally used for therapeutic purposes successfully, especially of there thermal actions. It was the aim of the experimental study to compare the thermal properties of two peloids, mud and peat, with a view to assessing their thermal effects when they are applied in clinical practice. The studies were carried out using peat of the marsh type of peats (Hochmoor), and curative Pomorie (Bulgaria) mud. As important parameters were determined the specific thermal capacity at constant pressure (Cp), the density of solutions (rho), the cooling rate (m), the coefficient of temperature transfer (a) of solutions and the coefficient of thermal conductivity (lambda) of solutions of peat and curative mud, compared to water bath. The comparative studies of the thermal properties of water and water solutions of peat and curative mud show that the thermal effect of the water bath is substantially smaller than that of the peat and mud applications. This difference is due to a greater extent to the high values of the dynamic viscosity, not allowing cooling by convection and protecting the surface of the skin upon applications of peloid solutions with a higher temperature.
NASA Technical Reports Server (NTRS)
Schmidt, George R.
1994-01-01
The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.
NASA Astrophysics Data System (ADS)
Gnaneswara Reddy, Machireddy
2017-12-01
The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1997-01-01
The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.
Elastic and thermal expansion asymmetry in dense molecular materials.
Burg, Joseph A; Dauskardt, Reinhold H
2016-09-01
The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.
Modeling of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.
1992-01-01
The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.
Ceramic materials with low thermal conductivity and low coefficients of thermal expansion
Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min
1992-01-01
Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.
Thermophoresis of a Brownian particle driven by inhomogeneous thermal fluctuation
NASA Astrophysics Data System (ADS)
Tsuji, Tetsuro; Saita, Sho; Kawano, Satoyuki
2018-03-01
Brownian motion of a spherical particle induced by the interaction with surrounding molecules is considered. If the particle is larger than the molecules and the temperature of surrounding media is spatially non-uniform, the interaction between an individual molecule and the particle is also position-dependent. That is, the particle is subject to inhomogeneous thermal fluctuation. In this paper, we investigate the contribution of the inhomogeneous thermal fluctuation to the thermophoresis, i.e., the Soret coefficient or thermal diffusion factor. The problem is simplified by assuming a hard-sphere potential between the particle and the surrounding molecules and is investigated using the kinetic theory, namely, we consider a linear Boltzmann-type equation for the velocity distribution function of the particle. Using the perturbation analysis with respect to the square root of mass ratio between the molecule and the particle, the drift-diffusion equation of the particle is derived. It is found that the Soret coefficient, or thermal diffusion factor, is dependent on the mass ratio and the excluded volume of the particle. In particular, when the ratio of the mass density of the particle to that of the surrounding media decreases, the Soret coefficient also decreases and may take negative value. The present result well describes the mass-dependency of thermal diffusion factor obtained by the molecular dynamics simulation carried out in an existing study and the one in the present study, where soft potentials of Lennard-Jones-type are used instead of hard-sphere potential.
Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.
Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua
2017-01-01
Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.
Ceramic materials with low thermal conductivity and low coefficients of thermal expansion
Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.
1992-04-07
Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.
Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy
NASA Astrophysics Data System (ADS)
Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice
2017-04-01
Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.
NASA Astrophysics Data System (ADS)
Martin, Joshua; Nolas, George S.
2016-01-01
We have developed a custom apparatus for the consecutive measurement of the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of materials between 300 K and 12 K. These three transport properties provide for a basic understanding of the thermal and electrical properties of materials. They are of fundamental importance in identifying and optimizing new materials for thermoelectric applications. Thermoelectric applications include waste heat recovery for automobile engines and industrial power generators, solid-state refrigeration, and remote power generation for sensors and space probes. The electrical resistivity is measured using a four-probe bipolar technique, the Seebeck coefficient is measured using the quasi-steady-state condition of the differential method in a 2-probe arrangement, and the thermal conductivity is measured using a longitudinal, multiple gradient steady-state technique. We describe the instrumentation and the measurement uncertainty associated with each transport property, each of which is presented with representative measurement comparisons using round robin samples and/or certified reference materials. Transport properties data from this apparatus have supported the identification, development, and phenomenological understanding of novel thermoelectric materials.
Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids
Agromayor, Roberto; Cabaleiro, David; Pardinas, Angel A.; Vallejo, Javier P.; Fernandez-Seara, Jose; Lugo, Luis
2016-01-01
The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt %) and 32% (0.5 wt %), respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids. PMID:28773578
Performance optimization for rotors in hover and axial flight
NASA Technical Reports Server (NTRS)
Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.
1989-01-01
Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.
Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode
NASA Astrophysics Data System (ADS)
Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.
2015-09-01
Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.
Advances in photonics thermal management and packaging materials
NASA Astrophysics Data System (ADS)
Zweben, Carl
2008-02-01
Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.
Tian, Xiao-mei; Zeng, Li; Wei, Bin; Huang, Yi-feng
2015-12-01
To investigate the thermal expansion coefficient of different processing parameters upon the Co-Cr alloy prepared by selective laser melting (SLM) technique, in order to provide technical support for clinical application of SLM technology. The heating curve of self-made Co-Cr alloy was protracted from room temperature to 980°C centigrade with DIL402PC thermal analysis instrument, keeping temperature rise rate and cooling rate at 5 K/min, and then the thermal expansion coefficient of 9 groups of Co-Cr alloy was measured from 20°C centigrade to 500°C centigrade and 600°C centigrade. The 9 groups thermal expansion coefficient values of Co-Cr alloy heated from 20°C centigrade to 500°C centigrade were 13.9×10(-6)/K,13.6×10(-6)/K,13.9×10(-6)/K,13.7×10(-6)/K,13.5×10(-6)/K,13.8×10(-6)/K,13.7×10(-6)/K,13.7×10(-6)/K,and 13.9×10(-6)/K, respectively; when heated from 20°C centigrade to 600°C centigrade, they were 14.2×10(-6)/K,13.9×10(-6)/K,13.8×10(-6)/K,14.0×10(-6)/K,14.1×10(-6)/K,14.1×10(-6)/K,13.9×10(-6)/K,14.2×10(-6)/K, and 13.7×10(-6)/K, respectively. The results showed that the Co-Cr alloy has good matching with the VITA VMK 95 porcelain powder and can meet the requirement of clinic use.
The defect chemistry of UO2 ± x from atomistic simulations
NASA Astrophysics Data System (ADS)
Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.
2018-06-01
Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.
The BHVI-EyeMapper: peripheral refraction and aberration profiles.
Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C; Holden, Brien A
2014-10-01
The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, -3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (-2.00 to -5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to -5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development.
The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles
Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.
2014-01-01
ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690
Aircraft model prototypes which have specified handling-quality time histories
NASA Technical Reports Server (NTRS)
Johnson, S. H.
1976-01-01
Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. One technique, the pseudodata method, solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The method is fully illustrated for a fourth-order stability-axis small-motion model with three lateral handling-quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.
Role of microstructure and thermal pressurization on the energy budget of an earthquake
NASA Astrophysics Data System (ADS)
Rattez, H.; Stefanou, I.; Sulem, J.
2017-12-01
The common understanding for earthquakes mechanics is that they occur by sudden slippage along a pre-existing fault (Brace and Byerlee, 1966). They are, thus, considered as frictional instabilities and can be explained by a simple spring-slider model. In this model, the stability of the block is determined by the difference between the stiffness of the spring, proxy for the elastic properties of the surrounding rock mass, and the rate of decrease of the frictional resisting force along with sliding. Therefore, it is primordial to correctly capture the softening behavior of the fault. Exhumed samples and outcrops show the presence of a principal slip zone (PSZ) inside the gouge that accommodates most of the slip in the fault. The localization process is associated with a strong weakening of the fault zone. In this study, the gouge is modelled as a saturated infinite sheared layer under thermo-hydro-mechanical couplings with Cosserat continuum. The nonlinear system of equations is integrated numerically using a Finite Element Code to study the softening regime. The use of Cosserat enables to regularizes the problem of localization and obtain a shear band thickness, and thus a softening behavior, that depends only on the constitutive parameters of the model. Cosserat continuum is also particularly interesting as it can explicitly take into account for the grain size of the fault gouge, which is an information accessible from exhumed samples (Sulem et al., 2011). From these simulations, we can estimate the evolution of fracture energy with slip and investigate the influence of the size of the microstructure or the thermal pressurization coefficient on its value. The results are compared with seismological and laboratory estimates of fracture energy under coseismic slip conditions (Viesca and Garagash, 2015).
2014-04-11
Fig. 9(a) and (b). In addition, the temperature dependencies of the true and room-temperature-based mean values of the linear thermal expansion ...Variation of (a) thermal conductivity, (b) specific heat, (c) true linear thermal expansion coefficient, and (d) room-temperature-based mean thermal ...defined as follows: (a) alloy-grade and thermal -mechanical treatment of the workpiece materials to be joined, (b) frequency of reciprocating motion
Correlation between ocular parameters and amplitude of accommodation
Abraham, Lekha Mary; Kuriakose, Thomas; Sivanandam, Viswanathan; Venkatesan, Nithya; Thomas, Ravi; Muliyil, Jayaprakash
2010-01-01
Aim: To study the relationship between ocular parameters and amplitude of accommodation (AA) in the peri-presbyopic age group (35–50 years). Materials and Methods: Three hundred and sixteen right eyes of consecutive patients in the age group 35–50 years, who attended our outpatient clinic, were studied. Emmetropes, hypermetropes and myopes with best-corrected visual acuity of 20/20, J1 in both eyes were included. The AA was calculated by measuring the near point of accommodation. The axial length (AL), central anterior chamber depth (CACD) and lens thickness (LT) were also measured. Results: There was moderate correlation (Pearson’s correlation coefficient r = 0.56) between AL and AA as well as between CACD and AA (r = 0.53) in myopes in the age group 35–39 years. In the other age groups and the groups taken as a whole, there was no correlation. In hypermetropes and emmetropes, there was no correlation between AA and the above ocular parameters. No significant correlation existed between LT and AA across different age groups and refractive errors. Conclusion: There was no significant correlation between AA and ocular parameters like anterior chamber depth, AL and LT. PMID:20952831
Li, Jun; Guo, Hua
2018-03-15
Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.
NASA Astrophysics Data System (ADS)
Bazhenov, Alexiev M.; Heyes, David M.
1990-01-01
The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.
Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials
NASA Astrophysics Data System (ADS)
Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo
2017-10-01
A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.
NECAP 4.1: NASA's Energy Cost Analysis Program thermal response factor routine
NASA Astrophysics Data System (ADS)
Weise, M. R.
1982-08-01
A thermal response factor is described and calculation sequences and flowcharts for RESFAC2 are provided. RESFAC is used by NASA's (NECAP) to calculate hourly heat transfer coefficients (thermal response factors) for each unique delayed surface. NECAP uses these response factors to compute each spaces' hourly heat gain/loss.
Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood
2015-01-01
Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...
Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity
NASA Astrophysics Data System (ADS)
Xu, Hang; Liu, Lu; Pasini, Damiano
Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.
In situ SEM thermal fatigue of Al/graphite metal matrix composites
NASA Technical Reports Server (NTRS)
Zong, G. S.; Rabenberg, L.; Marcus, H. L.
1990-01-01
Several thermal fatigue-induced failure mechanisms are deduced for unidirectional graphite-reinforced 6061 Al-alloy MMCs subjected to in situ thermal cycling. These thermal cycling conditions are representative of MMC service cycles in aerospace environments, where thermal fatigue is primarily associated with changes in the stress states near the interfaces due to coefficient of thermal expansion mismatch between fiber and matrix. This in situ SEM thermal-cycling study clarified such factors affecting MMCs' thermal fatigue as local fiber content and distribution, void volume, fiber stiffness, thermal excursion magnitude, and number of thermal cycles. MMC microfailure modes in thermal fatigue have been deduced.
Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms
White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler; ...
2017-09-21
High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less
NASA Technical Reports Server (NTRS)
Dec, John A.; Gasbarre, Joseph F.; George, Benjamin E.
2002-01-01
The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecraft's solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecraft's velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.
Modeling Issues and Results for Hydrogen Isotopes in NIF Materials
NASA Astrophysics Data System (ADS)
Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.
1998-11-01
The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.
Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler
High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less
Transfer coefficients in ultracold strongly coupled plasma
NASA Astrophysics Data System (ADS)
Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.
2018-03-01
We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.
Thermal design concept for a high resolution UV spectrometer
NASA Technical Reports Server (NTRS)
Caruso, P.; Stipandic, E.
1979-01-01
The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.
NASA Astrophysics Data System (ADS)
Wu, Jing; Huang, Junbing; Wu, Hanping; Gu, Hongcan; Tang, Bo
2014-12-01
In order to verify the validity of the regional reference grating method in solve the strain/temperature cross sensitive problem in the actual ship structural health monitoring system, and to meet the requirements of engineering, for the sensitivity coefficients of regional reference grating method, national standard measurement equipment is used to calibrate the temperature sensitivity coefficient of selected FBG temperature sensor and strain sensitivity coefficient of FBG strain sensor in this modal. And the thermal expansion sensitivity coefficient of the steel for ships is calibrated with water bath method. The calibration results show that the temperature sensitivity coefficient of FBG temperature sensor is 28.16pm/°C within -10~30°C, and its linearity is greater than 0.999, the strain sensitivity coefficient of FBG strain sensor is 1.32pm/μɛ within -2900~2900μɛ whose linearity is almost to 1, the thermal expansion sensitivity coefficient of the steel for ships is 23.438pm/°C within 30~90°C, and its linearity is greater than 0.998. Finally, the calibration parameters are used in the actual ship structure health monitoring system for temperature compensation. The results show that the effect of temperature compensation is good, and the calibration parameters meet the engineering requirements, which provide an important reference for fiber Bragg grating sensor is widely used in engineering.
Thermal properties of Pr2/3Sr1/3MnO3 manganites:PdO composites
NASA Astrophysics Data System (ADS)
Rao, Ashok; Manjunatha, S. O.; Bhatt, Ramesh Chandra; Awana, V. P. S.; Lin, C. F.; Kuo, Y. K.; Poornesh, P.
2017-10-01
In the present communication the results on thermal conductivity, Seebeck coefficient and specific heat of Pr2/3Sr1/3MnO3:PdO composites are reported. All the samples exhibit a pronounced anomaly in thermal conductivity (κ) at their respective Curie temperatures, TC of the samples. It is also observed that the overall magnitude of κ decreases with increasing Pd content. The observed reduction of the total k(T) is discussed with various thermal scattering mechanisms. The temperature-dependent Seebeck coefficient data S(T) in the high temperature region is analyzed within the framework of Mott's polaron hopping model. The analysis of low-temperature S(T) data reveals that the electron-magnon scattering contribution dominates the thermoelectric transport at low temperatures. The magnetic contribution for the CP and change in entropy (ΔS) during the magnetic phase transition is also evaluated.
A Thermal Diode Based on Nanoscale Thermal Radiation.
Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Mittapally, Rohith; Biehs, Svend-Age; Bezencenet, Odile; El-Bondry, Nadia; Bansropun, Shailendra; Ben-Abdallah, Philippe; Meyhofer, Edgar; Reddy, Pramod
2018-05-23
In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO 2 surfaces. Specifically, we show that the metal-insulator transition of VO 2 makes it possible to achieve large differences in the heat flow between Si and VO 2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at ∼140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO 2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO 2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.
Hutter, E.
1983-08-15
A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.
Thermo-optical properties of Alexandrite laser crystal
NASA Astrophysics Data System (ADS)
Loiko, Pavel; Ghanbari, Shirin; Matrosov, Vladimir; Yumashev, Konstantin; Major, Arkady
2018-02-01
Alexandrite is a well-known material for broadly tunable and power-scalable near-IR lasers. We measured the thermal coefficients of the optical path (TCOP) and thermo-optic coefficients (TOCs) of Alexandrite at 632.8 nm for three principal light polarizations, E || a, E || b and E || c. All TOCs are positive and show a notable polarization-anisotropy, dna/dT = 5.5, dnb/dT = 7.0 and dnc/dT = 14.9×10-6 K-1. We also characterized thermal lensing in a continuous-wave Alexandrite laser which used a Brewster-oriented c-cut 0.16 at.% Cr3+ doped BeAl2O4 crystal pumped at 532 nm and emitted at 750.9 nm (E || b). The measured thermal lens was positive and astigmatic. The sensitivity factors of the thermal lens (Mx,y = dDx,y/dPabs) were found to be Mx = 1.74 and My = 2.38 [m-1/W].
NASA Technical Reports Server (NTRS)
Geiss, J.; Burgi, A.
1987-01-01
Previous calculations of thermal diffusion coefficients in partially ionized gases are extended to the case of unequal neutral and ion temperatures and/or temperature gradients. Formulas are derived for the general case of a major gas as well as for minor atoms and ions. Strong enhancements of minor-ion thermal diffusion coefficients over their values in the fully ionized gas are found when the degree of ionization in the main gas is relatively low. However, compared to the case of equal temperatures, the enhancements are less strong when the neutrals are cooler than the ions. The specific case of the H-H(+) mixture, which is important in the study of solar and stellar atmospheres, is discussed as an application.
Development of fly ash boards with thermal, acoustic and fire insulation properties.
Leiva, C; Arenas, C; Vilches, L F; Alonso-Fariñas, B; Rodriguez-Galán, M
2015-12-01
This paper presents an experimental analysis on a new board composed of gypsum and fly ashes from coal combustion, which are mutually compatible. Physical and mechanical properties, sound absorption coefficient, thermal properties and leaching test have been obtained. The mechanical properties showed similar values to other commercial products. As far as the acoustic insulation characteristics are concerned, sound absorption coefficients of 0.3 and 0.8 were found. The board presents a low thermal conductivity and a fire resistance higher than 50 min (for 4 cm of thickness). The leaching of trace elements was below the leaching limit values. These boards can be considered as suitable to be used in building applications as partitions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pressure and temperature induced elastic properties of rare earth chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shriya, S.; Sapkale, R., E-mail: sapkale.raju@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com
2016-05-06
The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1–B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; Xmore » = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.« less
Thermal-energy reactions of O2(2+) ions with O2, N2, CO2, NO, and Ne
NASA Technical Reports Server (NTRS)
Chatterjee, B. K.; Johnson, R.
1989-01-01
The paper presents results of drift-tube mass-spectrometer studies of the reactivity of doubly charged molecular oxygen ions with several molecules and neon atoms. Thermal-energ rate coefficients for the reactions with the molecular reactants were found to be large, close to the limiting Langevin rates. Charge transfer with neon atoms was observed, but the measured rate coefficient was only a small fraction of the Langevin rate. It is concluded that the measured rate constants for the reactions considereed refer to vibrationally excited ions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coefficients a b c d Nonhalogenated Flare 1.935 3.660×10−1 −7.687×10−3 −7.333×10−4 Thermal Incinerator 0 Percent Heat Recovery 1.492 6.267×10−2 3.177×10−2 −1.159×10−3 Thermal Incinerator 70 Percent Heat Recovery... for Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Coefficients a b c d Nonhalogenated Flare 1.935 3.660×10−1 −7.687×10−3 −7.333×10−4 Thermal Incinerator 0... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... 2.519 1.183×10−2 1.300×10−2 4.790×10−2 Halogenated Thermal Incinerator and Scrubber 3.995 5.200×10−2...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Coefficients a b c d Nonhalogenated Flare 1.935 3.660×10−1 −7.687×10−3 −7.333×10−4 Thermal Incinerator 0... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... 2.519 1.183×10−2 1.300×10−2 4.790×10−2 Halogenated Thermal Incinerator and Scrubber 3.995 5.200×10−2...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Coefficients a b c d Nonhalogenated Flare 1.935 3.660×10−1 −7.687×10−3 −7.333×10−4 Thermal Incinerator 0... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... 2.519 1.183×10−2 1.300×10−2 4.790×10−2 Halogenated Thermal Incinerator and Scrubber 3.995 5.200×10−2...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erpenbeck, J.J.
1993-07-01
The equation of state and the transport coefficients of shear viscosity, thermal conductivity, thermal diffusion, and mutal diffusion are estimated for a binary, equimolar mixture of hard spheres having a diameter ratio of 0.4 and a mass ratio of 0.03 at volumes in the range 1.7[ital V][sub 0] to 3[ital V][sub 0] ([ital V][sub 0]=1/2 [radical]2 N[ital tsum][sub [ital a]x[ital a
Wittichenite Cu3BiS3: Synthesis and Physical Properties
NASA Astrophysics Data System (ADS)
Wei, Kaya; Hobbis, Dean; Wang, Hsin; Nolas, George S.
2018-04-01
Polycrystalline Cu3BiS3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu3BiS3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu3BiS3 may show promise for thermoelectric applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Coefficients a b c d Nonhalogenated Flare 1.935 3.660×10−1 −7.687×10−3 −7.333×10−4 Thermal Incinerator 0... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... 2.519 1.183×10−2 1.300×10−2 4.790×10−2 Halogenated Thermal Incinerator and Scrubber 3.995 5.200×10−2...
Measurement of the thermal coefficient of electrical resistivity of a nonmagnetic metal
NASA Astrophysics Data System (ADS)
Lacsný, Boris; Králiková, Petra; Dudáková, Simona; Škorecová, Ivana; Teleki, Aba
2017-05-01
The experiment of a magnet falling through a conductive tube is well-known, and teachers often use it in their classrooms, not only in high schools, but also in undergraduate courses of physics. This article describes the measurement of the thermal coefficient of electrical resistivity of a nonmagnetic metal using this experiment. At room temperature, the experiments designed by the authors are suitable for high schools. For undergraduate courses, we present a set-up with liquid nitrogen to realize the measurement over a wider range of temperatures.
Wittichenite Cu3BiS3: Synthesis and Physical Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Kaya; Hobbis, Dean; Wang, Hsin
Polycrystalline Cu 3BiS 3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu 3BiS 3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu 3BiS 3 may show promise for thermoelectric applications.
Wittichenite Cu3BiS3: Synthesis and Physical Properties
Wei, Kaya; Hobbis, Dean; Wang, Hsin; ...
2018-01-18
Polycrystalline Cu 3BiS 3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu 3BiS 3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu 3BiS 3 may show promise for thermoelectric applications.
A modular suite of hardware enabling spaceflight cell culture research
NASA Technical Reports Server (NTRS)
Hoehn, Alexander; Klaus, David M.; Stodieck, Louis S.
2004-01-01
BioServe Space Technologies, a NASA Research Partnership Center (RPC), has developed and operated various middeck payloads launched on 23 shuttle missions since 1991 in support of commercial space biotechnology projects. Modular cell culture systems are contained within the Commercial Generic Bioprocessing Apparatus (CGBA) suite of flight-qualified hardware, compatible with Space Shuttle, SPACEHAB, Spacelab and International Space Station (ISS) EXPRESS Rack interfaces. As part of the CGBA family, the Isothermal Containment Module (ICM) incubator provides thermal control, data acquisition and experiment manipulation capabilities, including accelerometer launch detection for automated activation and thermal profiling for culture incubation and sample preservation. The ICM can accommodate up to 8 individually controlled temperature zones. Command and telemetry capabilities allow real-time downlink of data and video permitting remote payload operation and ground control synchronization. Individual cell culture experiments can be accommodated in a variety of devices ranging from 'microgravity test tubes' or standard 100 mm Petri dishes, to complex, fed-batch bioreactors with automated culture feeding, waste removal and multiple sample draws. Up to 3 levels of containment can be achieved for chemical fixative addition, and passive gas exchange can be provided through hydrophobic membranes. Many additional options exist for designing customized hardware depending on specific science requirements.
NASA Astrophysics Data System (ADS)
Rossi, Michel J.; Iannarelli, Riccardo
2015-04-01
The growth of NAT (Nitric Acid Trihydrate, HNO3x3H2O) and NAD (Nitric Acid Dihydrate, HNO3x2H2O) on an ice substrate, the evaporative lifetime of NAT and NAD as well as the interconversion of alpha- and beta-NAT competing with evaporation and growth under UT/LS conditions depends on the interfacial kinetics of H2O and HNO3 vapor on the condensed phase. Despite the existence of some literature results we have embarked on a systematic investigation of the kinetics using a multidiagnostic experimental approach enabled by the simultaneous observation of both the gas (residual gas mass spectrometry) as well as the condensed phase (FTIR absorption in transmission). We report on thermochemically consistent mass accommodation coefficients alpha and absolute evaporation rates Rev/molecule s-1cm-3 as a function of temperature which yields the corresponding vapor pressures of both H2O and HNO3 in equilibrium with the crystalline phases, hence the term thermochemical kinetics. These results have been obtained using a stirred flow reactor (SFR) using a macroscopic pure ice film of 1 micron or so thickness as a starting substrate mimicking atmospheric ice particles and are reported in a phase diagram specifically addressing UT (Upper Troposphere)/LS (Lower Stratosphere) conditions as far as temperature and partial pressures are concerned. The experiments have been performed either at steady-state flow conditions or in transient supersaturation using a pulsed solenoid valve in order to generate gas pulses whose decay were subsequently monitored in real time. Special attention has been given to the effect of the stainless-steel vessel walls in that Langmuir adsorption isotherms for H2O and HNO3 have been used to correct for wall-adsorption of both probe gases. Typically, the accommodation coefficients of H2O and HNO3 are similar throughout the temperature range whereas the rates of evaporation Rev of H2O are significantly larger than for HNO3 thus leading to the difference in vapor pressure revealed in the phase diagram. A noteworthy effect seems to be that the accommodation coefficients obtained in pulsed gas admission experiments (transient supersaturation) lead to significantly lower values owing to surface saturation, especially in the case of the thermodynamically stable beta-NAT substrate.
Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam
2007-01-01
Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.
Simulation and test of the thermal behavior of pressure switch
NASA Astrophysics Data System (ADS)
Liu, Yifang; Chen, Daner; Zhang, Yao; Dai, Tingting
2018-04-01
Little, lightweight, low-power microelectromechanical system (MEMS) pressure switches offer a good development prospect for small, ultra-long, simple atmosphere environments. In order to realize MEMS pressure switch, it is necessary to solve one of the key technologies such as thermal robust optimization. The finite element simulation software is used to analyze the thermal behavior of the pressure switch and the deformation law of the pressure switch film under different temperature. The thermal stress releasing schemes are studied by changing the structure of fixed form and changing the thickness of the substrate, respectively. Finally, the design of the glass substrate thickness of 2.5 mm is used to ensure that the maximum equivalent stress is reduced to a quarter of the original value, only 154 MPa when the structure is in extreme temperature (80∘C). The test results show that after the pressure switch is thermally optimized, the upper and lower electrodes can be reliably contacted to accommodate different operating temperature environments.
Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure
NASA Technical Reports Server (NTRS)
Miller, R. C.; Clure, J. L.
1974-01-01
The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.
NASA Astrophysics Data System (ADS)
Heyes, David M.
1988-04-01
This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
NASA Astrophysics Data System (ADS)
Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2017-09-01
In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.
Nanofluid optical property characterization: towards efficient direct absorption solar collectors.
Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi
2011-03-15
Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
2011-01-01
Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750
Characterisation of electrical resistance for CMC Materials up to 1200 °C
NASA Astrophysics Data System (ADS)
Stäbler, T.; Böhrk, H.; Voggenreiter, H.
2017-12-01
Damage to thermal protection systems (TPS) during atmospheric re-entry is a severe safety issue, especially when considering re-usability of space transportation systems. There is a need for structural health monitoring systems and non-destructive inspection methods. However, damages are hard to detect. When ceramic matrix composites, in this case carbon fibre reinforced silicon carbide (C/C-SiC), are used as a TPS, the electrical properties of the present semiconductor material can be used for health monitoring, since the resistivity changes with damage, strain and temperature. In this work the electrical resistivity as a function of the material temperature is analysed eliminating effects of thermal electricity and the thermal coefficient of electrical resistance is determined. A sensor network is applied for locally and time resolved monitoring of the 300 mm x 120 mm x 3 mm panel shaped samples. Since the material is used for atmospheric re-entry it needs to be characterised for a wide range of temperatures, in this case as high as 1200 °C. Therefore, experiments in an inductively heated test bench were conducted. Firstly, a reference sample was used with thermocouples for characterising the temperature distribution across the sample surface. Secondly, electrical resistance under heat load was measured, time and spatially resolved. Results will be shown and discussed in terms of resistance dependence on temperature, thermal coefficient of electrical resistance, thermal electricity and electrical path orientation including an analysis on effective conducting cross section. Conversely, the thermal coefficient can also be used to determine the material temperature as a function of electrical resistance.
Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1
NASA Technical Reports Server (NTRS)
Marshall, D. D.; Montgomery, E. E.; New, L. S.; Stone, M. A.; Tiller, B. K.
1984-01-01
Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM.
Attenuation of Scattered Thermal Energy Atomic Oxygen
NASA Technical Reports Server (NTRS)
Banks, Bruce a.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.
2011-01-01
The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.
Status and Design Concepts for the Hydrogen On-Orbit Storage and Supply Experiment
NASA Technical Reports Server (NTRS)
Chato, David J.; VanDyke, Melissa; Batty, J. Clair; Schick, Scott
1998-01-01
This paper studies concepts for the Hydrogen On-Orbit Storage and Supply Experiment (HOSS). HOSS is a space flight experiment whose objectives are: Show stable gas supply for storage and direct gain solar-thermal thruster designs; and evaluate and compare low-g performance of active and passive pressure control via a thermodynamic vent system (TVS) suitable for solar-thermal upper stages. This paper shows that the necessary experimental equipment for HOSS can be accommodated in a small hydrogen dewar of 36 to 80 liter. Thermal designs for these dewars which meet the on-orbit storage requirements can be achieved. Furthermore ground hold insulation and shielding concepts are achieved which enable storing initially subcooled liquid hydrogen in these small dewars without venting in excess of 144 hours.
Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L
2017-10-17
Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.
Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)
2001-01-01
Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.
Thermally actuated wedge block
Queen, Jr., Charles C.
1980-01-01
This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.
Current Issues in Human Spacecraft Thermal Control Technology
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2008-01-01
Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.
NASA Astrophysics Data System (ADS)
Hoheisel, C.
1989-01-01
For several liquid states of CF4 and SF4, the shear and the bulk viscosity as well as the thermal conductivity were determined by equilibrium molecular dynamics (MD) calculations. Lennard-Jones four- and six-center pair potentials were applied, and the method of constraints was chosen for the MD. The computed Green-Kubo integrands show a steep time decay, and no particular longtime behavior occurs. The molecule number dependence of the results is found to be small, and 3×105 integration steps allow an accuracy of about 10% for the shear viscosity and the thermal conductivity coefficient. Comparison with experimental data shows a fair agreement for CF4, while for SF6 the transport coefficients fall below the experimental ones by about 30%.
Electron and thermal transport via variable range hopping in MoSe2 single crystals
NASA Astrophysics Data System (ADS)
Suri, Dhavala; Patel, R. S.
2017-06-01
Bulk single crystal molybdenum diselenide has been studied for its electronic and thermal transport properties. We perform resistivity measurements with current in-plane (CIP) and current perpendicular to plane (CPP) as a function of temperature. The CIP measurements exhibit metal to semiconductor transition at ≃31 K. In the semiconducting phase (T > 31 K), the transport is best explained by the variable range hopping (VRH) model. Large magnitude of resistivity in the CPP mode indicates strong structural anisotropy. The Seebeck coefficient as a function of temperature measured in the range of 90-300 K also agrees well with the VRH model. The room temperature Seebeck coefficient is found to be 139 μV/K. VRH fittings of the resistivity and the Seebeck coefficient data indicate high degree of localization.
Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua
2016-09-14
This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less
Miles, Robin; Havstad, Mark; LeBlanc, Mary; ...
2015-09-15
External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m 2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.
NASA Astrophysics Data System (ADS)
Sirikham, Adisorn; Zhao, Yifan; Mehnen, Jörn
2017-11-01
Thermography is a promising method for detecting subsurface defects, but accurate measurement of defect depth is still a big challenge because thermographic signals are typically corrupted by imaging noise and affected by 3D heat conduction. Existing methods based on numerical models are susceptible to signal noise and methods based on analytical models require rigorous assumptions that usually cannot be satisfied in practical applications. This paper presents a new method to improve the measurement accuracy of subsurface defect depth through determining the thermal wave reflection coefficient directly from observed data that is usually assumed to be pre-known. This target is achieved through introducing a new heat transfer model that includes multiple physical parameters to better describe the observed thermal behaviour in pulsed thermographic inspection. Numerical simulations are used to evaluate the performance of the proposed method against four selected state-of-the-art methods. Results show that the accuracy of depth measurement has been improved up to 10% when noise level is high and thermal wave reflection coefficients is low. The feasibility of the proposed method in real data is also validated through a case study on characterising flat-bottom holes in carbon fibre reinforced polymer (CFRP) laminates which has a wide application in various sectors of industry.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Temperature and heat flux measurements: Challenges for high temperature aerospace application
NASA Technical Reports Server (NTRS)
Neumann, Richard D.
1992-01-01
The measurement of high temperatures and the influence of heat transfer data is not strictly a problem of either the high temperatures involved or the level of the heating rates to be measured at those high temperatures. It is a problem of duration during which measurements are made and the nature of the materials in which the measurements are made. Thermal measurement techniques for each application must respect and work with the unique features of that application. Six challenges in the development of measurement technology are discussed: (1) to capture the character and localized peak values within highly nonuniform heating regions; (2) to manage large volumes of thermal instrumentation in order to efficiently derive critical information; (3) to accommodate thermal sensors into practical flight structures; (4) to broaden the capabilities of thermal survey techniques to replace discrete gages in flight and on the ground; (5) to provide supporting instrumentation conduits which connect the measurement points to the thermally controlled data acquisition system; and (6) to develop a class of 'vehicle tending' thermal sensors to assure the integrity of flight vehicles in an efficient manner.
Theoretical overview and modeling of the sodium and potassium atmospheres of mercury
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, M. L.
1995-01-01
A general theoretical overview for the sources, sinks, gas-surface interactions, and transport dynamics of sodium and potassium in the exospheric atmsophere of Mercury is given. Information for these four factors, which control the spatial distribution of these two alkali-group gases about the planet, is incorporated in numerical models. The spatial nature and relative importance of the initial source atom atmosphere and the ambient (ballistic hopping) atom atmosphere are then examined and are shown to be controlled and coupled to a great extent by the extremely large and variable solar radiation acceleration experienced by sodium and potassium as they resonantly scatter solar photons. The lateral (antisunward) transport rate of thermally accommodated sodium and potassium ambient atoms is shown to be driven by the solar radiation acceleration and, over a significant portion of Mercury's orbit about the Sun, is sufficiently rapid to be competitive with the short photoionization lifetimes for these atoms when they are located on the summit surface near or within about 30 deg of the terminator. The lateral transport rate is characterized by a migration time determined by model calculations for an ensemble of atoms initially starting at a point source on the surface (i.e., a numerical spacetime dependent Green's function). Four animations for the spacetime evolution of the sodium (or potassium) atmosphere produced by a point source on the surface are presented on a videotape format. For extended surface sources for sodium and potassium, the local column density is determined by competition between the photoionization lifetimes and the lateral transport times of atoms originating from different surface source locations. Sodium surface source fluxes (referenced to Mercury at perihelion) that are required on the sunlit hemisphere to reproduce the typically observed several megarayleighs of D2 emission-line brightness and the inferred column densities of 1-2 x 10(exp 11) atoms per sq cm range from approximately 2-5 x 10(exp 7) atoms/sq cm/sec. The sodium model is applied to study observational data that document an anticorrelation in the average sodium column density and solar radiation acceleration. Lateral transport driven by the solar radiation acceleration is shown to produce this behavior for combinations of different sources and surface accomodation coefficients. The best fit model fits to the observational data require a significant degree of thermal accommodation of the ambient sodium atoms to the surface and a source rate that decreases as an inverse power of 1.5 to 2 in heliocentric distance.
NASA Astrophysics Data System (ADS)
Otsuka, Mioko; Homma, Ryoei; Hasegawa, Yasuhiro
2017-05-01
The phonon and carrier thermal conductivities of thermoelectric materials were calculated using the Wiedemann-Franz law, Boltzmann equation, and a method we propose in this study called the Debye specific heat method. We prepared polycrystalline n-type doped bismuth telluride (BiTe) and bismuth antimony (BiSb) bulk alloy samples and measured six parameters (Seebeck coefficient, resistivity, thermal conductivity, thermal diffusivity, magneto-resistivity, and Hall coefficient). The carrier density and mobility were estimated for calculating the carrier thermal conductivity by using the Boltzmann equation. In the Debye specific heat method, the phonon thermal diffusivity, and thermal conductivity were calculated from the temperature dependence of the effective specific heat by using not only the measured thermal conductivity and Debye model, but also the measured thermal diffusivity. The carrier thermal conductivity was also evaluated from the phonon thermal conductivity by using the specific heat. The ratio of carrier thermal conductivity to thermal conductivity was evaluated for the BiTe and BiSb samples, and the values obtained using the Debye specific heat method at 300 K were 52% for BiTe and <5.5% for BiSb. These values are either considerably larger or smaller than those obtained using other methods. The Dulong-Petit law was applied to validate the Debye specific heat method at 300 K, which is significantly greater than the Debye temperature of the BiTe and BiSb samples, and it was confirmed that the phonon specific heat at 300 K has been accurately reproduced using our proposed method.
NASA Technical Reports Server (NTRS)
1975-01-01
The design, fabrication, and testing of a radiative cooler are described. This cooler is an engineering model suitable for bench testing in the laboratory as a part of the 10-micrometer wavelength engineering model receiver, and conforms to the standard radiative cooler configuration, except that the inner stage and its support system were redesigned to accommodate the larger, heavier SAT detector. This radiative cooler will cool the detector to cryogenic temperature levels when the receiver is in a space environment or in a suitable thermal vacuum chamber. Equipment specifications are given along with the results of thermal tests, vibration tests, and electrical integrity tests.
Stability of some epoxy-encapsulated diode thermometers
NASA Technical Reports Server (NTRS)
Mangum, B. W.; Evans, G. A., Jr.
1986-01-01
The stability upon thermal cycling and handling of ten small, epoxy-encapsulated silicon diode thermometers at six temperatures in the range from liquid nitrogen temperatures to about 60 C. The nominal temperatures of measurement were -196, -78, 0, 20, 40, and 60 C, as measured on the International Practical Temperature Scale of 1968. Diodes were to be thermally cycled 15 to 20 times. Since NASA anticipates that the uncertainty in their temperature measurements will be + or - 50 mK, uncertainties as large as + or - 10 mK in the measurements of the evaluaton can be accommodated without deleteriously affecting the value of the results of the investigation.
NASA Technical Reports Server (NTRS)
Bellavia, J., Jr.; Kane, J. O. (Inventor)
1980-01-01
An apparatus is described for providing thermal and pressure sealing in an elongated space of varying width between adjacent surface of two members. The apparatus is mounted for at least limited lateral movement between the members and may comprise: an elongated support attached to one of the adjacent surfaces; a second elongated support member attached to the other of the adjacent surfaces, and an elongated seal member sandwiched between the first and second support members. In its non-deformed state, the elongated seal member may be substantially cylindrical but capable of deformation to accommodate limited lateral movement between the adjacent surfaces and varying widths of the space.
Measurement of optical coupling between adjacent bi-material microcantilevers.
Canetta, Carlo; Narayanaswamy, Arvind
2013-10-01
Low thermal conductance bi-material microcantilevers are fabricated with a pad area near the free end to accommodate a focused laser spot. A pair of such cantilevers are proposed as a configuration for measuring thermal conductance of a nanostructure suspended between the two. We determine the resolution of such a device by measuring the stray conductance it would detect in the absence of any nanostructure. Stray conductance, primarily due to optical coupling, is measured for cantilevers with varying pad size and found to be as low as 0.05 nW K(-1), with cantilevers with larger pad size yielding the smallest stray conductance.
Thermodynamic properties of α-uranium
NASA Astrophysics Data System (ADS)
Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao
2016-11-01
The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0-100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit.
Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...
2018-02-23
Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less
NASA Astrophysics Data System (ADS)
Wengler, C.; Addy, J.; Luke, A.
2018-03-01
Due to high energy demand required for chemical processes, refrigeration and process industries the increase of efficiency and performance of thermal systems especially evaporators is indispensable. One of the possibilities to meet this purpose are investigations in enhancement of the heat transfer in nucleate boiling where high heat fluxes at low superheat are transferred. In the present work, the heat transfer in pool boiling is investigated with pure R134a over wide ranges of reduced pressures and heat fluxes. The heating materials of the test tubes are aluminum and stainless steel. The influence of the thermal conductivity on the heat transfer coefficients is analysed by the surface roughness of sandblasted surfaces. The heat transfer coefficient increases with increasing thermal conductivity, surface roughness and reduced pressures. The experimental results show a small degradation of the heat transfer coefficients between the two heating materials aluminum and stainless steel. In correlation with the VDI Heat Atlas, the experimental results are matching well with the predictions but do not accurately consider the stainless steel material reference properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin; Moreno, Gilberto
2015-09-29
Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures weremore » varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.« less
NASA Astrophysics Data System (ADS)
Mohyud Din, S. T.; Zubair, T.; Usman, M.; Hamid, M.; Rafiq, M.; Mohsin, S.
2018-04-01
This study is devoted to analyze the influence of variable diffusion coefficient and variable thermal conductivity on heat and mass transfer in Casson fluid flow. The behavior of concentration and temperature profiles in the presence of Joule heating and viscous dissipation is also studied. The dimensionless conversation laws with suitable BCs are solved via Modified Gegenbauer Wavelets Method (MGWM). It has been observed that increase in Casson fluid parameter (β ) and parameter ɛ enhances the Nusselt number. Moreover, Nusselt number of Newtonian fluid is less than that of the Casson fluid. The phenomenon of mass transport can be increased by solute of variable diffusion coefficient rather than solute of constant diffusion coefficient. A detailed analysis of results is appropriately highlighted. The obtained results, error estimates, and convergence analysis reconfirm the credibility of proposed algorithm. It is concluded that MGWM is an appropriate tool to tackle nonlinear physical models and hence may be extended to some other nonlinear problems of diversified physical nature also.
Sticking of Molecules on Nonporous Amorphous Water Ice
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Vidali, Gianfranco
2016-05-01
Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on nonporous amorphous solid water. The sticking coefficient was measured over a wide range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King-Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas-grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.
STICKING OF MOLECULES ON NONPOROUS AMORPHOUS WATER ICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiao; Vidali, Gianfranco; Acharyya, Kinsuk, E-mail: gvidali@syr.edu
2016-05-20
Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H{sub 2}, D{sub 2}, N{sub 2}, O{sub 2}, CO, CH{sub 4}, and CO{sub 2} on nonporous amorphous solid water. The sticking coefficient was measured over a widemore » range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King–Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas–grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.« less
Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.
NASA Astrophysics Data System (ADS)
Han, Wei
1995-11-01
This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of spheroids, is developed and applied to estimate the viscous attenuation coefficients. With incorporation of particle size and shape distributions (PSSD), predictions agree quantitatively with observed attenuation coefficients. The effects of particle aspect ratio and orientation become more evident as particle concentrations and frequencies are increased. The UCPC model combined with the ultrasonic spectroscopy techniques can provide for theoretical and experimental frameworks in characterization of concentrated colloidal dispersions.
Measurement Uncertainty Budget of the PMV Thermal Comfort Equation
NASA Astrophysics Data System (ADS)
Ekici, Can
2016-05-01
Fanger's predicted mean vote (PMV) equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, air velocity, humidity activity level and clothing thermal resistance. PMV is a mathematical model of thermal comfort which was developed by Fanger. The uncertainty budget of the PMV equation was developed according to GUM in this study. An example is given for the uncertainty model of PMV in the exemplification section of the study. Sensitivity coefficients were derived from the PMV equation. Uncertainty budgets can be seen in the tables. A mathematical model of the sensitivity coefficients of Ta, hc, T_{mrt}, T_{cl}, and Pa is given in this study. And the uncertainty budgets for hc, T_{cl}, and Pa are given in this study.
Portable Body Temperature Conditioner
2013-10-18
disposable PVDF turbine flowmeter that is compact in size and capable of accommodating a volumetric flow rate from 0.03 L/min to 2.0 L/min of water . The...pictorial representation of the flowmeter along with a dimensional drawing. 33 Figure 27. Water flowmeter for PBTC As displayed in the dimensional...suitable for military applications. 15. SUBJECT TERMS Hypothermia, Circulating Water -blanket, Trauma, Hyperthermia, Military, Thermal Manikin 16
Integrated Modeling Tools for Thermal Analysis and Applications
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis
1999-01-01
Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.
Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.
Persad, Aaron H; Ward, Charles A
2016-07-27
Although the Hertz-Knudsen (HK) relation is often used to correlate evaporation data, the relation contains two empirical parameters (the evaporation and condensation coefficients) that have inexplicably been found to span 3 orders of magnitude. Explicit expressions for these coefficients have yet to be determined. This review will examine sources of error in the HK relation that have led to the coefficients' scatter. Through an examination of theoretical, experimental, and molecular dynamics simulation studies of evaporation, this review will show that the HK relation is incomplete, since it is missing an important physical concept: the coupling between the vapor and liquid phases during evaporation. The review also examines a modified HK relation, obtained from the quantum-mechanically based statistical rate theory (SRT) expression for the evaporation flux and applying a limit to it in which the thermal energy is dominant. Explicit expressions for the evaporation and condensation coefficients are defined in this limit, with the surprising result that the coefficients are not bounded by unity. An examination is made with 127 reported evaporation experiments of water and of ethanol, leading to a new physical interpretation of the coefficients. The review concludes by showing how seemingly small simplifications, such as assuming thermal equilibrium across the liquid-vapor interface during evaporation, can lead to the erroneous predictions from the HK relation that have been reported in the literature.
Calculating lattice thermal conductivity: a synopsis
NASA Astrophysics Data System (ADS)
Fugallo, Giorgia; Colombo, Luciano
2018-04-01
We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.
Development of Thermally Actuated, High-Temperature Composite Morphing Concepts
2016-05-11
Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing
Development of Thermally Actuated, High Temperature Composite Morphing Concepts
2016-03-31
Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing
Design, Fabrication, Characterization and Modeling of Integrated Functional Materials
2013-10-01
coated microwire to change the temperature of an FBG. We show below that the proposed sensor probe, with a relatively poor thermal coupling with FBG...Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales, including enhanced...nanocomposites as compared to bulk polycrystalline materials, in addition to similar thermal conductivities , results in enhanced room temperature ZT as
Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.
Thieme, Christian; Görls, Helmar; Rüssel, Christian
2015-12-15
The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured.
Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.
Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S
2017-05-03
During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephine, L. Y. C.; Talib, Z. A.; Yunus, W. M. M.
2007-05-09
This paper reports the preparation and the characterization of the (CuSe)1-xSex metal chalcogenide semiconductor compounds with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) in bulk form. The (CuSe)1-xSex compounds were prepared using the solid state reaction by varying the ratio of CuSe:Se in the reaction mixture. X-ray powder diffraction analysis is used to identify and measure the mass absorption coefficient of the (CuSe)1-xSex compounds to support the thermal diffusivity behaviour. The thermal diffusivity of the polycrystalline (CuSe)1-xSex compounds were measured and analyzed for the first time, using the photoflash technique. The thermal diffusivitymore » values were determined to be in the range of 2.524 x 10-3 cm2/s to 1.125 x 10-2 cm2/s. It was found that the thermal diffusivity value tends to decrease as the parameter x increases. The relationship between the thermal diffusivity, mass absorption coefficient and density of the (CuSe)1-xSex are discussed in detail.« less
Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).
Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P
2009-06-01
The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2017-02-01
The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great importance for accurate predictions of the fluid dynamic variables and heat fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radamson, H. H.; Kolahdouz, M.; Shayestehaminzadeh, S.
2010-11-29
SiGe (C)/Si(C) multiquantum wells have been studied as a thermistor material for future bolometers. A thermistor material for uncooled Si-based thermal detectors with thermal coefficient of resistance of 4.5%/K for 100x100 {mu}m{sup 2} pixel sizes and low noise constant (K{sub 1/f}) value of 4.4x10{sup -15} is presented. The outstanding performance of the devices is due to Ni-silicide contacts, smooth interfaces, and high quality multiquantum wells containing high Ge content.
Optical Measurement Technique for Space Column Characterization
NASA Technical Reports Server (NTRS)
Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.
2004-01-01
A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.
Measurement of single crystal surface parameters
NASA Technical Reports Server (NTRS)
Swanson, L. W.; Bell, A. E.; Strayer, R. W.
1972-01-01
The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.
Theoretical study of dissociative recombination of Cl{sub 2}{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Mingwu; Graduate School of Chinese Academy of Sciences, Beijing 100039; Department of Physics, Stockholm University, S-106 91 Stockholm
Theoretical studies of low-energy electron collisions with Cl{sub 2}{sup +} leading to direct dissociative recombination are presented. The relevant potential energy curves and autoionization widths are calculated by combining electron scattering calculations using the complex Kohn variational method with multireference configuration interaction structure calculations. The dynamics on the four lowest resonant states of all symmetries is studied by the solution of a driven Schroedinger equation. The thermal rate coefficient for dissociative recombination of Cl{sub 2}{sup +} is calculated and the influence on the thermal rate coefficient from vibrational excited target ions is investigated.
Coefficient of Thermal Expansion of Pressed PETN Pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Darla Graff; DeLuca, Racci
2015-03-11
The PETN single crystal coefficient of thermal expansion (CTE) values were measured and reported by Cady in 1972 [1] over the temperature range of -160 to 100°C. Measurements were made in the (001) and (100) crystallographic directions, see Figure 1 (a replicate of Figure 1 from the Cady paper). Cady used his single-crystal data to calculate the linear CTE for a randomly-oriented multi-crystal pressing of PETN, and his values ranged from 76.5 με/°C (at 20°C) to 89.9 5 με/°C (at 90°C).
Thermal properties and heat transfer coefficients in cryogenic cooling
NASA Astrophysics Data System (ADS)
Biddulph, M. W.; Burford, R. P.
This paper considers two aspects of the design of the cooling stage of the process known as cryogenic recycling. This process uses liquid nitrogen to embrittle certain materials before grinding and subsequent separation. It is being increasingly used in materials recycling. A simple method of establishing thermal diffusivity values of materials of interest by using cooling curves is described. These values are important for effective cooler design. In addition values of convective heat transfer coefficient have been determined in an operating inclined, rotating cylindrical cooler operating on scrap car tyres. These will also be useful for cooler design methods.
NASA Astrophysics Data System (ADS)
Bodryakov, V. Yu.; Bykov, A. A.
2016-05-01
The correlation between the volumetric thermal expansion coefficient β( T) and the heat capacity C( T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β( C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong-Petit limit of 3 R ( R is the universal gas constant).
Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K
NASA Astrophysics Data System (ADS)
Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.
2013-07-01
Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.
Cryogenic-coolant He-4-superconductor interaction
NASA Technical Reports Server (NTRS)
Caspi, S.; Lee, J. Y.; Kim, Y. I.; Allen, R. J.; Frederking, T. H. K.
1978-01-01
The thermodynamic and thermal interaction between a type 2 composite alloy and cryo-coolant He4 was studied with emphasis on post quench phenomena of formvar coated conductors. The latter were investigated using a heater simulation technique. Overall heat transfer coefficients were evaluated for the quench onset point. Heat flux densities were determined for phenomena of thermal switching between a peak and a recovery value. The study covered near saturated liquid, pressurized He4, both above and below the lambda transition, and above and below the thermodynamic critical pressure. In addition, friction coefficients for relative motion between formvar insulated conductors were determined.
Impact of embedded voids on thin-films with high thermal expansion coefficients mismatch
NASA Astrophysics Data System (ADS)
Khafagy, Khaled H.; Hatem, Tarek M.; Bedair, Salah M.
2018-01-01
Using technology to reduce defects at heterogeneous interfaces of thin-films is at a high-priority for modern semiconductors. The current work utilizes a three-dimensional multiple-slip crystal-plasticity model and specialized finite-element formulations to study the impact of the embedded void approach (EVA) to reduce defects in thin-films deposited on a substrate with a highly mismatched thermal expansion coefficient, in particular, the growth of an InGaN thin-film on a Si substrate, where EVA has shown a remarkable reduction in stresses on the side of the embedded voids.
NASA Astrophysics Data System (ADS)
Dick, Andrew R.; Bell, William K.; Luke, Brendan; Maines, Erin; Mueller, Brennen; Rawlings, Brandon; Kohl, Paul A.; Grant Willson, C.
2016-07-01
A photosensitive polyimide system based on amine catalyzed imidization of a precursor poly(amic ester) is described. The material is based on the meta ethyl ester of pyromellitic dianhydride and 2,2' bis(trifluoromethyl)benzidine. It acts as a negative tone resist when formulated with a photobase generator. The material exhibits a dielectric constant of 3.0 in the gigahertz range, a coefficient of thermal expansion of 6±2 ppm/K, and can be patterned to aspect ratios of >2 when formulated with a highly quantum efficient cinnamide type photobase generator.
Thermal properties of graphene from path-integral simulations
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2018-03-01
Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Kenichi, E-mail: kenichi-miyazaki@denso.co.jp, E-mail: k.shibuya@aist.go.jp; University of Tsukuba, Tsukuba 305-8571; Shibuya, Keisuke, E-mail: kenichi-miyazaki@denso.co.jp, E-mail: k.shibuya@aist.go.jp
We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO{sub 2}) films. We determined the TCR and thermal-hysteresis-width diagram of the V{sub 1−x−y}Cr{sub x}Nb{sub y}O{sub 2} films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V{sub 0.90}Cr{sub 0.06}Nb{sub 0.04}O{sub 2} film grown on amore » TiO{sub 2}-buffered SiO{sub 2}/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO{sub 2}-based uncooled bolometers.« less
NASA Technical Reports Server (NTRS)
Braden, J. A.; Hancock, J. P.; Burdges, K. P.; Hackett, J. E.
1979-01-01
The work to develop a wing-nacelle arrangement to accommodate a wide range of upper surface blown configuration is reported. Pertinent model and installation details are described. Data of the effects of a wide range of nozzle geometric variations are presented. Nozzle aspect ratio, boattail angle, and chordwise position are among the parameters investigated. Straight and swept wing configurations were tested across a range of nozzle pressure ratios, lift coefficients, and Mach numbers.
NASA Astrophysics Data System (ADS)
Nazarimanesh, Meysam; Yousefi, Tooraj; Ashjaee, Mehdi
2016-07-01
In this study, the impact of Entrance Power and Silver nanofluid concentration (with base fluid ethanol and DI-water) on heat pipe thermal performance are considered. In order to reach the aim a U-shaped sintered heat pipe is utilized which causes occupied space to decline. The length of the heat pipe is 135 mm in each branch. On account of recognition the effect of working fluid on heat pipe thermal performance, thermal resistance and overall heat transfer coefficient in base working fluid and nano-colloidal silver are measured in the shape of thermosyphon. The working fluid is with volume percentages of 70 ethanol and 30 distilled water. The average size pertaining to the nanoparticle applied is 40 nm. In addition, the influences of nanofluid concentrations are measured by comparing three concentrations 0.001, 0.005, 0.1 vol%. The range of entrance power is from 10 to 40 W and the temperature of coolant has been changed from 20 to 40 °C. The results of the experiment indicate that by increasing entrance power, the temperatures of the condenser, evaporator and working temperature experience a rise. Furthermore, this causes a decrease of thermal resistance and an increase of overall heat transfer coefficient. A comparison of three concentrations reveals that in concentration of 50 ppm, thermal resistance compared to the base fluid has decreased to 42.26 % and overall heat transfer coefficient has gone up to 1883 (W/m2·°K) . Also, due to unexpected changes in concentration of 1000 ppm, the existence of an optimized concentration for the silver nanofluid in this heat pipe with this geometry has been clear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatzichristodoulou, C., E-mail: ccha@dtu.dk; Hauback, B.C.; Hendriksen, P.V.
2013-05-01
The crystal structure of the Ruddlesden–Popper compounds (La₁.₀Sr₁.₀)₀.₈Fe₁.₀Co₀.₂O 4–δ and (La₁.₂Sr₀.₈)₀.₉₈(Fe₀.₈Co₀.₂)₀.₈Mg₀.₂O 4–δ was investigated at 1000 °C in N₂ (a O₂=1×10₋₄ by in-situ powder neutron diffraction. In-situ powder X-ray diffraction (PXD) was also employed to investigate the temperature dependence of the lattice parameters of the compounds in air and the oxygen activity dependence of the lattice parameters at 800 °C and 1000 °C. The thermal and chemical expansion coefficients, determined along the two crystallographic directions of the tetragonal unit cell, are highly anisotropic. The equivalent pseudo-cubic thermal and chemical expansion coefficients are in agreement with values determined by dilatometry. Themore » chemical stability in CO₂ containing environments of various Ruddlesden–Popper compounds with chemical formula (RE 2-xSr x)₀.₉₈(Fe₀.₈Co₀.₂) 1-yMg yO 4–δ (RE=La, Pr), as well as their stability limit in H₂/H₂O=4.5 were also determined by in-situ PXD for x=0.9, 1.0 and y=0, 0.2. - Graphical abstract: Influence of electronic configuration on bond length, lattice parameters and anisotropic thermal and chemical expansion. Highlights: • The thermal and chemical expansion coefficients are largely anisotropic. • The expansion of the perovskite layers is constrained along the a direction. • The studied compositions show remarkable thermodynamic stability upon reduction. • The thermal and chemical expansion coefficients are lower than related perovskites. • The investigated materials decompose in CO₂ containing atmospheres.« less
Exact Thermal Transport Properties of Gray-Arsenic using Electon-Phonon Coupling
NASA Astrophysics Data System (ADS)
Kang, Seoung-Hun; Kwon, Young-Kyun
Using various theoretical methods, we investigate the thermoelectric property of gray arsenic. Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy. The conversion efficiency of such a device is determined by its figure of merit or ZT value, which is related to various transport coefficients, such as Seebeck coefficient and the ratio of its electrical conductivity to its thermal counterpart for given temperature. To calculate various transport coefficients and thus the ZT values of gray arsenic, we apply the Boltzmann transport theory to its electronic and phononic structures obtained by density functional theory and density functional perturbation theory together with maximally locallized Wannier functions. During this procedure, we evaluate its relaxation time accurately by explicitly considering electron-phonon coupling. Our result reveals that gray arsenic may be used for a good p-type thermoelectric devices.
NASA Astrophysics Data System (ADS)
Jacobsen, M. K.; Liu, W.; Li, B.
2012-09-01
In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce0.8Fe3CoSb12, up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.
Jacobsen, M K; Liu, W; Li, B
2012-09-01
In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce(0.8)Fe(3)CoSb(12,) up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.
Rigorous theory of graded thermoelectric converters including finite heat transfer coefficients
NASA Astrophysics Data System (ADS)
Gerstenmaier, York Christian; Wachutka, Gerhard
2017-11-01
Maximization of thermoelectric (TE) converter performance with an inhomogeneous material and electric current distribution has been investigated in previous literature neglecting thermal contact resistances to the heat reservoirs. The heat transfer coefficients (HTCs), defined as inverse thermal contact resistances per unit area, are thus infinite, whereas in reality, always parasitic thermal resistances, i.e., finite HTCs, are present. Maximization of the generated electric power and of cooling power in the refrigerator mode with respect to Seebeck coefficients and heat conductivity for a given profile of the material's TE figure of merit Z are mathematically ill-posed problems in the presence of infinite HTCs. As will be shown in this work, a fully self consistent solution is possible for finite HTCs, and in many respects, the results are fundamentally different. A previous theory for 3D devices will be extended to include finite HTCs and is applied to 1D devices. For the heat conductivity profile, an infinite number of solutions exist leading to the same device performance. Cooling power maximization for finite HTCs in 1D will lead to a strongly enhanced corresponding efficiency (coefficient of performance), whereas results with infinite HTCs lead to a non-monotonous temperature profile and coefficient of performance tending to zero for the prescribed heat conductivities. For maximized generated electric power, the corresponding generator efficiency is nearly a constant independent from the finite HTC values. The maximized efficiencies in the generator and cooling mode are equal to the efficiencies for the infinite HTC, provided that the corresponding powers approach zero. These and more findings are condensed in 4 theorems in the conclusions.
NASA Technical Reports Server (NTRS)
Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.
1984-01-01
Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.
2012-06-27
of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE
Hydration and Thermal Expansion in Anatase Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, He; Li, Qiang; Ren, Yang
A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.
Investigation of Thermophysical Properties of Thermal Degraded Biodiesels
NASA Astrophysics Data System (ADS)
Regatieri, H. R.; Savi, E. L.; Lukasievicz, G. V. B.; Sehn, E.; Herculano, L. S.; Astrath, N. G. C.; Malacarne, L. C.
2018-06-01
Biofuels are an alternative to fossil fuels and can be made from many different raw materials. The use of distinct catalyst and production processes, feedstocks, and types of alcohol results in biofuels with different physical and chemical properties. Even though these diverse options for biodiesel production are considered advantageous, they may pose a setback when quality specifications are considered, since different properties are subject to different reactions during usage, storage and handling. In this work, we present a systematic characterization of biodiesels to investigate how accelerated thermal degradation affects fuel properties. Two different types of biodiesel, commercially obtained from distinct feedstocks, were tested. The thermal degradation process was performed by maintaining the temperature of the sample at 140°C under constant air flux for different times: 0 h, 3 h, 6 h, 9 h, 12 h, 24 h and 36 h. Properties such as density, viscosity, activation energy, volumetric thermal expansion coefficient, gross caloric value, acid value, infrared absorption, and temperature coefficient of the refractive index were used to study the thermal degradation of the biodiesel samples. The results show a significant difference in fuel properties before and after the thermal degradation process suggesting the formation of undesirable compounds. All the properties mentioned above were found to be useful to determine whether a biodiesel sample underwent thermal degradation. Moreover, viscosity and acid value were found to be the most sensitive characteristics to detect the thermal degradation process.
Intermolecular interactions and the thermodynamic properties of supercritical fluids.
Yigzawe, Tesfaye M; Sadus, Richard J
2013-05-21
The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.
Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.
Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S
2016-05-01
This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product. © 2016 Institute of Food Technologists®
Numerical Simulation of Heat Transfer in Porous Metals for Cooling Applications
NASA Astrophysics Data System (ADS)
Gauna, Edgar Avalos; Zhao, Yuyuan
2017-08-01
Porous metals have low densities and novel physical, mechanical, thermal, electrical, and acoustic properties. Hence, they have attracted a large amount of interest over the last few decades. One of their applications is for thermal management in the electronics industry because of their fluid permeability and thermal conductivity. The heat transfer capability is achieved by the interaction between the internal channels within the porous metal and the coolant flowing through them. This paper studies the fluid flow and heat transfer in open-cell porous metals manufactured by space holder methods by numerical simulation using software ANSYS Fluent. A 3D geometric model of the porous structure was created based on the face-centered-cubic arrangement of spheres linked by cylinders. This model allows for different combinations of pore parameters including a wide range of porosity (50 to 80 pct), pore size (400 to 1000 µm), and metal particle size (10 to 75 µm). In this study, water was used as the coolant and copper was selected as the metal matrix. The flow rate was varied in the Darcian and Forchheimer's regimes. The permeability, form drag coefficient, and heat transfer coefficient were calculated under a range of conditions. The numerical results showed that permeability increased whereas the form drag coefficient decreased with porosity. Both permeability and form drag coefficient increased with pore size. Increasing flow rate and decreasing porosity led to better heat transfer performance.
Wang, Xia; Zhang, Luyan; Chen, Gang
2011-11-01
As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.
A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates
NASA Astrophysics Data System (ADS)
Zhang, Shunzu; Yao, Hong; Gao, Yuanwen
2017-04-01
A two dimensional (2D) mechanical-magneto-thermal model of direction-dependent magnetoelectric (ME) effect in Terfenol-D/PZT/Terfenol-D laminated composites is established. The expressions of ME coefficient at low and resonance frequencies are derived by the average field method, respectively. The prediction of theoretical model presents a good agreement with the experimental data. The combined effect of orientation-dependent stress and magnetic fields, as well as operating temperature on ME coefficient is discussed. It is shown that ME effect presents a significantly nonlinear change with the increasing pre-stress under different loading angles. There exists an optimal angle and value of pre-stress corresponding to the best ME effect, improving the angle of pre-stress can get more prominent ME coupling than in x axis state. Note that an optimal angle of magnetic field gradually increases with the rise of pre-stress, which can further lead to the enhancement of ME coefficient. Meanwhile, reducing the operating temperature can enhance ME coefficient. Furthermore, resonance frequency, affected by pre-stress, magnetic field and temperature via " ΔE effect", can enhance ME coefficient about 100 times than that at low frequency.