Conjugated Polymer Solar Cells
2006-05-01
thermal gravimetry analysis (TGA)............... 12 2.6 Photoluminescence (PL) spectroscopy... gravimetry analysis (TGA) Thermal analysis of polymer films has been accomplished by TGA and DSC methods with the aid of Perkin-Elmer Series 7 Analysers...The MEH-PPV/acceptor films were prepared by spin-casting of the resulting mixture (with or without precipitate ) on glass substrates of diameter 23 mm
Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.
Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S
2009-12-01
Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.
Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H
2014-08-08
For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel Energetic Materials for Space Propulsion
2011-04-30
Thermogravimetric analysis (TGA) experiments with percent weight loss versus temperature for a range of heating rates. Labels and TGA traces have...conditions for a specified period of time. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses were...Experiments The thermal decomposition of ammonia borane was first studied by Hu et al. [97] using thermogravimetric analysis (TGA), where
Optical, thermal and morphological study of ZnS doped PVA polymer nano composites
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Sagar, Rohan N.; Hegde, Shreedatta
2018-05-01
The effect of ZnS nano particle doping on optical, thermal properties and morphological study of the PVA polymer has been investigated using FTIR, UV-Visible and TGA, FESEM techniques. Nano sized ZnS particles were synthesized by a simple wet chemical route. Pure and ZnS/PVA nano composites were prepared using solution casting technique. The FTIR study confirms that the ZnS nano particles interacts with the OH group of PVA polymer and forms the complex. The formation of these complexes affects the optical and thermal properties of the composite. The changes in optical properties were studied using UV-Vis absorption method. The variation in thermal property was analysed using TGA results. The modified surface morphology analysis was carried out using FESEM.
Thermogravimetric and differential thermal analysis of potassium bicarbonate contaminated cellulose
A. Broido
1966-01-01
When samples undergo a complicated set of simultaneous and sequential reactions, as cellulose does on heating, results of thermogravimetric and differential thermal analyses are difficult to interpret. Nevertheless, careful comparison of pure and contaminated samples, pyrolyzed under identical conditions, can yield useful information. In these experiments TGA and DTA...
Dümichen, Erik; Barthel, Anne-Kathrin; Braun, Ulrike; Bannick, Claus G; Brand, Kathrin; Jekel, Martin; Senz, Rainer
2015-11-15
Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick
2015-02-01
To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Majewsky, Marius; Bitter, Hajo; Eiche, Elisabeth; Horn, Harald
2016-10-15
Microplastics are increasingly detected in the environment and the consequences on water resources and ecosystems are not clear to date. The present study provides a cost-effective and straightforward method to determine the mass concentrations of polymer types using thermal analysis. Characteristic endothermic phase transition temperatures were determined for seven plastic polymer types using TGA-DSC. Based on that, extracts from wastewater samples were analyzed. Results showed that among the studied polymers, only PE and PP could be clearly identified, while the phase transition signals of the other polymers largely overlap each other. Subsequently, calibration curves were run for PE and PP for qualitative measurements. 240 and 1540mg/m(3) of solid material (12µm to 1mm) was extracted from two wastewater effluent samples of a municipal WWTP of which 34% (81mg/m(3)) and 17% (257mg/m(3)) could be assigned to PE, while PP was not detected in any of the samples. The presented application of TGA-DSC provides a complementary or alternative method to FT-IR analyses for the determination of PE and PP in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin
2018-02-01
Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.
Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.
Magdziarz, Aneta; Werle, Sebastian
2014-01-01
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants. Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180-580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thermal analysis of calcium sulfate dihydrate sources used to manufacture gypsum wallboard
Engbrecht, Dick C.; Hirschfeld, Deidre A.
2016-07-27
Gypsum wallboard has been used for over 100 years as a barrier to the spread of fire in residential and commercial structures. The gypsum molecule, CaSO 4·2H 2O, provides two crystalline waters that are released upon heating providing an endothermic effect. Manufacturers have recognized that the source of the gypsum ore is a factor that affects all aspects of its performance; thus, it is hypothesized that the impurities present in the gypsum ore are the causes of the performance differences. Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA) and X-ray Diffraction (XRD) were used in this paper to compare and characterize samples ofmore » gypsum ore representing sources of natural, synthetic from a Flue Gas Desulfurization process (FGD) and blends thereof. The hemihydrate phase of representative natural, FGD, and reagent grade calcium sulfate were rehydrated with distilled water and evaluated by DTA/TGA. Analysis of the data shows distinct areas of similarity separated by the conversion to anhydrite ~250 °C. Compositional reconstructions based on DTA/TGA and XRD data were compared and although, the results were comparable, the DTA/TGA suggests thermally active compounds that were not detected by XRD. Anhydrite, silica and halite were reported by XRD but were not thermally reactive in the temperature range evaluated by DTA/TGA (ambient to 1050 °C). Finally, the presence of carbonate compounds (e.g., calcite and dolomite) were indicated by XRD and estimated from the thermal decomposition reaction ~700 °C.« less
Thermogravimetric analysis (TGA) coupled with gas chromatography and mass spectroscopy (TGA/GCMS), for the evolved gas analysis, has given insight to the stability and kinetics of structural changes and determining adsorbed organics to nanomaterials and nanocomposites. TGA is als...
2012-01-01
this study). TGA scans show the thermal degradation of carbon/ epoxy composite by fuel additive at room temperature. Through Microscale Combustion...concerns regarding the durability of structural epoxy adhesive contaminated by hydraulic fluid or fuel additive , under simplified test conditions (no...higher than room tem- perature) or fuel additive (at all temperatures of this study). TGA scans show the thermal degradation of carbon/ epoxy composite
Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.
Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger
2011-01-01
Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Waste Minimization in Circuit Board Manufacturing by PARMOD(TM) Technology
1998-06-24
a foil package in air or in a plastic syringe. Thermogravimetric Analysis (TGA) Ink samples were evaluated using thermogravimetric analysis in...DTA Differential Thermal Analysis FEP Fluorinated Ethylene Propylene (Teflon®) FTIR Fourier Transform Infrared spectroscopy MOD Metallo-Organic...Decomposition ROM Reactive Organic Medium SEM Scanning Electron Microscopy TGA Thermal Gravimetry Analysis Torr Unit of pressure (one mm mercury
NASA Astrophysics Data System (ADS)
Omar, M. M.; Mohamed, Gehad G.; Ibrahim, Amr A.
2009-07-01
Novel Schiff base (HL) ligand is prepared via condensation of 4-aminoantipyrine and 2-aminobenzoic acid. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TGA, DrTGA and DTA). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a uninegatively tridentate manner with NNO donor sites of the azomethine N, amino N and deprotonated caroxylic-O. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia Coli, Pseudomonas aeruginosa, Staphylococcus Pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.
Prediction of packaging seal life using thermoanalytical techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.
1997-11-01
In this study, Thermogravimetric Analysis (TGA) has been used to study silicone, Viton and Ethylene Propylene (EPDM) rubber. The studies have shown that TGA accurately predicts the relative order of thermo-oxidative stability of these three materials from the calculated activation energies. As expected, the greatest thermal stability was found in silicone rubber followed by Viton and EPDM rubber. The calculated lifetimes for these materials were in relatively close agreement with published values. The preliminary results also accurately reflect decreased thermal stability and lifetime for EPDM rubber exposed to radiation and chemicals. These results suggest TGA provides a rapid method tomore » evaluate material stability.« less
Polymethacrylic acid as a new precursor of CuO nanoparticles
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick
2012-11-01
Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.
NASA Astrophysics Data System (ADS)
Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu
2015-02-01
We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.
Aydın, Ahmet Alper; Ilberg, Vladimir
2016-01-20
A series of gelatinized polyvinyl alcohol (PVA):starch blends were prepared with various polyol-based plasticizers in 5 wt%, 15 wt% and 25 wt% ratios via solution casting method. The obtained films were analyzed by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Remarkable changes have been observed in glass-transition temperature (Tg) and thermal stability of the samples containing varying concentrations of different plasticizers and they have been discussed in detail with respect to the conducted thermal and chemical analyses. The observed order of Tg point depression of the samples containing 15 wt% plasticizer is 1,4-butanediol - 1,2,6-hexanetriol--pentaerythriyol--xylitol--mannitol, which is similar to the sequence of the thermal stability changes of the samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April
2013-10-01
Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition.more » From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.« less
NASA Technical Reports Server (NTRS)
Mikes, F.
1984-01-01
Silane primers for use as thermal protection on external tanks were subjected to various analytic techniques to determine the most effective testing method for silane lot evaluation. The analytic methods included high performance liquid chromatography, gas chromatography, thermogravimetry (TGA), and fourier transform infrared spectroscopy (FTIR). It is suggested that FTIR be used as the method for silane lot evaluation. Chromatograms, TGA profiles, bar graphs showing IR absorbances, and FTIR spectra are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in
2016-05-23
Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less
A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials
NASA Technical Reports Server (NTRS)
Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.
Enhancement of Spartium junceum L. fibres properties
NASA Astrophysics Data System (ADS)
Kovačević, Z.; Bischof, S.; Antonović, A.
2017-10-01
Properties of lignocellulosic Spartium junceum L. (SJL) fibres were investigated in order to use them as reinforcement in composite material production. The fibres were obtained by microwave maceration process and additionally modified with NaOH, nanoclay and citric acid with the aim to improve their mechanical, thermal and other physical-chemical properties. Tensile and thermal properties of these natural fibres were enhanced by the different modification treatment which is investigated by the Vibrodyn/Vibroskop method and thermogravimetric analysis (TGA), whilst determination of chemical composition and fibre’s surface properties were explored using scanning electron microscope (SEM), electron dispersive spectroscopy (EDS) and elektrokinetic analyser. All the results show great improvement of nanoclay/citric acid modified SJL properties.
NASA Astrophysics Data System (ADS)
Elmacı, Gökhan; Duyar, Halil; Aydıner, Burcu; Seferoğlu, Nurgül; Naziri, Mir Abolfazl; Şahin, Ertan; Seferoğlu, Zeynel
2018-06-01
Benzil monohydrazone based Schiff bases were synthesized and characterized by 1H NMR, 13C NMR, HRMS as well as by single crystal X-ray diffraction. The geometries of the compounds was optimized by the DFT method and the results were compared with the X-ray diffraction data. The HOMO and LUMO energy gap and also related parameters (electronic chemical potential (μ) and global hardness (η), global electrophilicity index (ω) and softness (s)) were obtained from ground state calculations. In addition, the thermal properties of the compounds were investigated by DTA-TGA. The results showed that the compounds have good thermal properties for practical applications as optic dye.
Thermal degradation and morphological studies on raw and reinforced polyacrylic rubbers
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-05-01
Poly acrylate rubbers (ACM) of today are saturated copolymers of monomeric acrylic esters and reactive cure site monomers. ACM elastomer have also found use in vibration damping due to its excellent resilience. Other applications include textiles, adhesives, and coatings. Two state of Poly acrylic raw and reinforced Rubber are analyzed using FTIR spectroscopy, Optical Microscopy, DSC and TGA measurements. With the objective of determined the mechanical strength, Thermal analysis on TGA and DSC studies show that, the thermal degradation temperature Tg of the sample material is obtained and activation energy is also calaulated by Broido, Horowitz - Metzger, Piloyan-Novikova and Coats Redfern methods which are found.
Liu, Jian; Miller, William H
2006-12-14
The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.
Viswanath, Vinod; Leo, Vincent Vineeth; Prabha, S Sabna; Prabhakumari, C; Potty, V P; Jisha, M S
2016-01-01
The chemical nature of the polyphenols of cashew kernel testa has been determined. Testa contains tannins, which present large molecular complexity and has an ancient use as tanning agents. The use of tannins extracted from cashew testa, considered in many places as a waste, grants an extra value to the cashew. In this work we have analysed through high performance liquid chromatography, infrared spectroscopy (FT-IR) and thermo gravimetric analysis the average molecular weight, main functional groups and thermal properties of tannins extracted from Anacardium occidentale L. The results of these analyses are compared with the commercial grade tannic acid. The FT-IR spectra showed bands characteristic of C = C, C-C and OH bonds. This important bioactive compound present in the cashew nut kernel testa was suggested as an interesting economical source of antioxidants for use in the food and nutraceutical industry.
Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells
NASA Astrophysics Data System (ADS)
Remiš, T.
2017-01-01
Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).
Premkumar, Thathan; Govindarajan, Subbiah; Coles, Andrew E; Wight, Charles A
2005-04-07
The thermal decomposition kinetics of N(2)H(5)[Ce(pyrazine-2,3-dicarboxylate)(2)(H(2)O)] (Ce-P) have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), for the first time; TGA analysis reveals an oxidative decomposition process yielding CeO(2) as the final product with an activation energy of approximately 160 kJ mol(-1). This complex may be used as a precursor to fine particle cerium oxides due to its low temperature of decomposition.
NASA Astrophysics Data System (ADS)
Saad, A. F.; Ibraheim, Mona H.; Nwara, Aya M.; Kandil, S. A.
2018-04-01
Effects of γ-radiation on the optical and thermal properties of a poly allyl diglycol carbonate (PADC), a form of CR-39, polymer have been investigated. CR-39 detectors were exposed to γ-rays at very high doses ranging from 5.0 × 105 to 3.0 × 106 Gy. The induced changes were analyzed using ultraviolet-visible spectroscopy (UV-VIS) in absorbance mode, and thermogravimetric analysis (TGA). The UV-visible spectra of the virgin and γ-irradiated CR-39 polymer detectors displayed a significant decreasing trend in their optical energy band gaps for indirect transitions, whereas for the direct ones showed a little change. This drop in the energy band gap with increasing dose is discussed on the basis of the gamma irradiation induced modifications in the CR-39 polymeric detector. The TGA thermograms show that the weight loss rate increased with increase in dose, which may be due to the disordered system via scission followed by crosslinking in the irradiated polymer detector. The TGA thermograms also indicated that the CR-39 detector decomposed in three/four stages for the virgin and irradiated samples. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. These experimental results so obtained can be well used in radiation dosimetry.
Morcos, Michael; Kilner, Philip J; Sahn, David J; Litt, Harold I; Valsangiacomo-Buechel, Emanuela R; Sheehan, Florence H
2017-12-01
In patients with transposition of the great arteries corrected by interatrial baffle (TGA) and those with congenitally corrected transposition of the great arteries (ccTGA) the right ventricle (RV) is subjected to systemic pressure and fails prematurely. Previous studies have demonstrated RV dysfunction may be more pronounced in patients with TGA. The present study sought to compare patients with TGA and ccTGA using three-dimensional (3D) techniques to comprehensively analyze the shape, volume, global and regional function in the systemic RV. We compared RV size, shape, and regional and global function in 25 patients with TGA, 17 patients with ccTGA, and 9 normal subjects. The RVs were reconstructed from cardiac Magnetic Resonance Images for 3D analyses. Compared to normal, the RV in TGA and ccTGA was dilated, rounded, and reduced in function. Compared to each other, TGA and ccTGA patients had similar RV size and shape. Global RV function was lower in TGA than ccTGA when assessed from ejection fraction (EF) (30 ± 7 vs. 35 ± 7, p = 0.02) and from normalized tricuspid annular systolic plane excursion (TAPSE) (0.10 ± 0.04 vs. 0.18 ± 0.04, p < 0.01). Basilar RV function was poorer in the TGA patients when compared to ccTGA. The systemic RVs in both TGA and ccTGA are dilated, spherical, and poorly functioning. Compared to ccTGA, TGA RVs have reduced TAPSE and worse basilar hypokinesis.
NASA Astrophysics Data System (ADS)
Karpuraranjith, M.; Thambidurai, S.
Biotemplate-based zinc oxide nanocomposite was effectively prepared via simple chemical precipitation route. The functional groups of amino (-NH2), hydroxyl (-OH) and O-Zn-O were confirmed and characterized by FTIR spectroscopy. The structural and morphological properties were confirmed by XRD, UV-Vis DRS, HR-SEM and TEM analyses. The elemental composition of carbon, nitrogen, zinc and oxygen was confirmed by energy-dispersive X-ray analysis (EDAX) and Brunauer-Emmett-Teller high surface area of materials was estimated to be 52.49m2/g, respectively. Thermogravimetric analysis (TGA) shows that biotemplate on zinc oxide nanocomposite has higher thermal stability than chitosan matrix. The results demonstrate that biotemplate on zinc oxide matrix causes immobilization effect among the two components. Therefore, chitosan-ZnO nanocomposite has a microcrystalline morphological structure and also good thermal stability, so it can be a promising material for sensors, medical, tissue engineering and wastewater treatment applications.
Mechanical and Thermal Characterization of Alkali Treated Kenaf Fibers
NASA Astrophysics Data System (ADS)
Abdullah, S. A. S.; Zuhudi, N. Z. M.; Anuar, NIS; Isa, M. D.
2018-05-01
Research on bio composite for automotive and aerospace application has been extensive with the advancement of natural fiber yarn and woven technology. Malaysia has marked kenaf as its main crop commodity by 2020. Surface modification of natural fibers is one of the significant areas in current biocomposite research. Alkali treatment removes certain amount of lignin, hemicellulose, and wax on the surface of fiber, besides depolymerizing cellulose structure and increasing percentage of crystallinity. Surface modification with NaOH of 3%, 6% and 9% concentration with various lengths of immersion time was conducted. The effect of alkali treatment on the mechanical strength and thermal degradation of kenaf fibre were investigated by means of fiber bundle tensile test and thermogravimetric analyser (TGA). Alkali treatment strongly modifies the thermal behaviour of the fibers, being particularly effective in the removal of noncellulosic matter. In addition, the mechanical properties of kenaf fibers revealed higher tensile strength for NaOH treated fibers.
2014-11-14
figure 1.2.1, right). The discovery TGA furnace design employs a silicon carbide ( SiC ) inner chamber. Four halogen lamps surrounded by a water...amplification,(13, 17) self-phase modulation (18, 19), and new nonlinear phenomena such as the nonlinear optical mirror ,(20) and the mirrorless optical
Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul
2017-04-15
Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadat
2011-06-01
New type of aromatic polyamide/montmorillonite nanocomposites were produced using solution process in N-methyl-2-pyrolidone. Amide chains were synthesized from 4,4'-diaminodiphenyl sulfone and p-phenylenediacrylic acid in N-methyl-2-pyrolidone. The resulting nanocomposite films containing 5-15 mass % of organoclay were characterized for FT-IR, scanning electronmicroscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), optical transparency and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by (XRD) and SEM analyses. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. The percentage optical transparency and water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.
Prakash, M; Geetha, D; Lydia Caroline, M
2013-04-15
Single crystals of L-phenylalanine-benzoic acid (LPBA) were successfully grown from aqueous solution by solvent evaporation technique. Purity of the crystals was increased by the method of recrystallization. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. The chemical structure of compound was established by FT-NMR technique. The presence of functional groups was estimated qualitatively by Fourier transform infrared analysis (FT-IR). Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 254 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 6.91 eV. Thermal behavior has been studied with TGA/DTA analyses. The existence of second harmonic generation (SHG) efficiency was found to be 0.56 times the value of KDP. The dielectric behavior of the sample was also studied for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.
Pandi, P; Peramaiyan, G; Sudhahar, S; Chakkaravarthi, G; Mohan Kumar, R; Bhagavannarayana, G; Jayavel, R
2012-12-01
Picolinium maleate (PM), an organic material has been synthesised and single crystals were grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. PM crystal belongs to the monoclinic crystallographic system with space group P2(1)/c. The crystalline perfection of the grown crystals was analyzed by high-resolution X-ray diffraction rocking curve measurements. The presence of functional groups in PM was identified by FTIR and FT-NMR spectral analyses. Thermal behaviour and stability of picolinium maleate were studied by TGA/DTA analyses. UV-Vis spectral studies reveal that PM crystals are transparent in the wavelength region 327-1100 nm. The laser damage threshold value of PM crystal was found to be 4.3 GW/cm(2) using Nd:YAG laser. The Kurtz and Perry powder second harmonic generation technique confirms the nonlinear optical property of the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Guang-Bo, E-mail: guangboche@jlnu.edu.cn; Liu, Shu-Yu; Zhang, Qing
Four new lanthanide complexes [Ln(O–NCP){sub 2}(NO{sub 3})]{sub n} based on multifunctional N,O-donor ligand 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (O–HNCP) and Ln(NO{sub 3}){sub 3}·6H{sub 2}O (Ln=Nd(1), La(2), Sm(3), Eu(4)) have been achieved under hydrothermal conditions and characterized by elemental analyses, infrared spectra and single crystal X-ray diffraction. Structural analyses revealed that all of these four complexes possess similar two-dimensional layer structures. In addition, thermal stability and luminescent properties of these complexes were also investigated. - Graphical abstract: A series of lanthanide(III) coordination polymers with intriguing structures based on 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand have been hydrothermally synthesized. The thermal stabilities and photoluminescence properties of these complexes have beenmore » investigated. - Highlights: • Four lanthanide(III) complexes have been hydrothermally synthesized. • The N,O-donor O–HNCP was used as the ligand. • TGA and PL properties of complexes 1–4 have been investigated.« less
Electrical and thermal investigations of the phase transition in sodium bicarbonate, NaHCO3
NASA Astrophysics Data System (ADS)
Abdel-Kader, M. M.; Fadly, M.; Abutaleb, M.; El-Tanahy, Z. H.; Eldehemy, K.; Ali, A. I.
1995-09-01
This paper reports on a structural phase transition in sodium hydrogen carbonate, NaHCO3 as revealed by the investigations of some electrical and thermal parameters. Measurements of d.c. electric conductivity (σ) and relative premittivity (epsilon) of polycrystalline samples of NaHCO3 as a function of temperature in the interval 300 < T < 400 K reveal the existence of a structural phase transition around 365 K. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were also performed in the same temperature range. The (DTA) results confirm the existence of a structural phase transition at cong 365 K whereas the (TGA) results show the absence of any actual loss in weight in the transition temperature region. The data are correlated to the crystal structure including the hydrogen bonding system.
Bach, Quang-Vu; Chen, Wei-Hsin
2017-12-01
Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wada, Fumitaka; Ogawa, Atsuko; Hanai, Yuko; Nakamura, Akio; Maki, Masatoshi; Hitomi, Kiyotaka
2004-11-01
Transglutaminase (TGase) is an enzyme that modifies proteins by crosslinking or polyamination. Physarum polycephalum, an acellular slime mold, is the evolutionally lowest organism that has a mammalian-type transglutaminase. We have cloned a cDNA for Physarum polycephalum TGase (PpTGB), homologous to a previously identified TGase (PpTGA), whose sequence is similar to that of mammalian TGases. PpTGB encodes a primary sequence identical to that of PpTGA except for 11 amino acid residues at the N-terminus. Reverse transcription-PCR and Western blotting analyses showed that both PpTGA and PpTGB are expressed in microplasmodia and macroplasmodia during their life cycle, except for in sporangia. For biochemical characterization, we carried out the ectopical expressions of PpTGA and PpTGB in Dictyostelium discoideum. Subcellular fractionation of these Dictyostelium cells showed that the expressed PpTGA, but not PpTGB, localizes to the membrane fraction. Furthermore, in Physarum, subcellular fractionation and immunostaining indicated specific localization at the plasma membrane in macroplasmodia, while the localization was entirely cytoplasmic in microplasmodia.
Thermal Decomposition Model Development of EN-7 and EN-8 Polyurethane Elastomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keedy, Ryan Michael; Harrison, Kale Warren; Cordaro, Joseph Gabriel
Thermogravimetric analysis - gas chromatography/mass spectrometry (TGA- GC/MS) experiments were performed on EN-7 and EN-8, analyzed, and reported in [1] . This SAND report derives and describes pyrolytic thermal decomposition models for use in predicting the responses of EN-7 and EN-8 in an abnormal thermal environment.
Thermal properties of simulated Hanford waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; Chun, Jaehun; Crum, Jarrod V.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flashmore » diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.« less
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-12-05
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.
NASA Astrophysics Data System (ADS)
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-12-01
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.
Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo
2016-01-01
Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901
Pandi, P; Peramaiyan, G; Kumar, M Krishna; Kumar, R Mohan; Jayavel, R
2012-03-01
Synthesis and growth of a novel organic nonlinear optical (NLO) crystal of 4-aminopyridinium maleate (4APM) in larger size by the slow evaporation solution growth technique are reported. Single crystal and powder X-ray diffraction analyses reveal that 4APM crystallizes in monoclinic system with space group P2(1) with cell parameters a=8.140(4)Å, b=5.457(5)Å, c=10.926(10)Å and volume=481.4(7)Å(3). The grown crystal has been characterized by Fourier transform infrared and UV-visible spectral analyses. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been carried out to study its thermal properties. Dielectric measurements have been carried out to study the distribution of charges within the crystal. The mechanical strength of the crystal has been studied by using Vickers' microhardness test. The etching studies have been carried out on the grown crystal. The Kurtz and Perry powder SHG technique confirms the NLO property of the grown crystal and the SHG efficiency of 4APM was found to be 4.8 times greater than that of KDP crystal. Copyright © 2011 Elsevier B.V. All rights reserved.
Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak
2018-04-01
Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.
Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film
NASA Astrophysics Data System (ADS)
Virgawati, E.; Soegijono, B.
2018-03-01
Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content
Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.
Karimi, Samaneh; Tahir, Paridah Md; Karimi, Ali; Dufresne, Alain; Abdulkhani, Ali
2014-01-30
Cellulosic fibers from kenaf bast were isolated in three distinct stages. Initially raw kenaf bast fibers were subjected to an alkali pulping process. Then pulped fibers undergone a bleaching process and finally both pulped and bleached fibers were separated into their constituent nanoscale cellulosic fibers by mechanical shearing. The influence of each treatment on the chemical composition of fibers was investigated. Moreover morphology, functional groups, crystallinity, and thermal behavior of fiber hierarchy at different stages of purification were studied using scanning and transmission electron microscopies, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Microscopy studies revealed that applied procedures successfully isolated nanoscale cellulosic fibers from both unbleached and bleached pulps. Chemical composition analysis and FTIR spectroscopy showed that lignin and hemicellulose were almost entirely removed by the applied treatments. XRD and TGA analyses demonstrated progressive enhancement of properties in fibers, hierarchically, in going from micro to nano scale. Interestingly no significant evolution was observed between obtained data of characterized ubnleached and bleached nanofibers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electrical and thermal properties of Ca and Ni doped barium ferrite
NASA Astrophysics Data System (ADS)
Agrawal, Shraddha; Parveen, Azra; Azam, Ameer
2018-05-01
Ca and Ni doped M type Barium ferrite of the composition ((Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19) were prepared by the traditional sol gel auto combustion method using citric acid as a fuel. Microstructural analyses were carried out with the help of XRD and SEM. XRD analysis is the evidence of nanometer regime along with crystalline planes of hexagonal structure. It also confirms the hexagonal structure of barium ferrite even with the doping of Ca and Ni. SEM analysis is the signature of the spherical shape and surface morphology of agglomerated form of nano-powders of doped samples. The thermal properties of samples were carried out with the help of TGA. That shows the variation of weight loss of the prepared sample with the temperature.
Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend
NASA Astrophysics Data System (ADS)
Abdou, Saleh M.; Elnahas, H. H.; El-Zahed, H.; Abdeldaym, A.
2016-05-01
The thermal properties of low-density polyethylene (LDPE)/paraffin wax blends were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and melt flow index (MFI). Blends of LDPE/wax in ratios of 100/0, 98/2, 96/4, 94/6, 92/8, 90/10 and 85/15 (w/w) were prepared by melt-mixing at the temperature of 150°C. It was found that increasing the wax content more than 15% leads to phase separation. DSC results showed that for all blends both the melting temperature (Tm) and the melting enthalpy (ΔHm) decrease linearly with an increase in wax content. TGA analysis showed that the thermal stability of all blends decreases linearly with increasing wax content. No clear correlation was observed between the melting point and thermal stability. Horowitz and Metzger method was used to determine the thermal activation energy (Ea). MFI increased exponentially by increasing the wax content. The effect of gamma irradiation on the thermal behavior of the blends was also investigated at different gamma irradiation doses. Significant correlations were found between the thermal parameters (Tm, ΔHm, T5%, Ea and MFI) and the amount of wax content and gamma irradiation.
NASA Astrophysics Data System (ADS)
Jia, Hong-Bin; Yu, Jie-Hui; Xu, Ji-Qing; Ye, Ling; Ding, Hong; Jing, Wei-Jie; Wang, Tie-Gang; Xu, Jia-Ning; Li, Zeng-Chun
2002-10-01
By hydrothermal method, a novel supramolecular compound, Co(NIA) 2(H 2O) 4 was synthesized and its structure was characterized with elemental analysis, FT-IR spectrum, TGA and X-ray diffractometer, indicating that it is a novel polyporous supramolecule with molecular ladder hydrogen-bonded chains. TGA curve shows its thermal stability up to 520 °C.
Elimination of Perchlorate Oxidizers from Pyrotechnic Flare Compositions
2007-03-09
in candelas ( cd ), where the candela is defined as, 1 cd = 1 lumen /steradian-1. DSC A thermal analysis technique known as Differential...Shorter Wavelength Infrared band routinely monitored in decoy flare performance tests. TGA A thermal analysis technique known as Thermogravimetric ...Scanning Calorimetry DTA A thermal analysis technique known as Differential Thermal Analysis GAP Glycidyl Azide Polymer used as a curable binder in some
NASA Astrophysics Data System (ADS)
Gholipour-Mahmoudalilou, Meysam; Roghani-Mamaqani, Hossein; Azimi, Reza; Abdollahi, Amin
2018-01-01
Thermal properties of epoxy resin were improved by preparation of a curing agent of poly (amidoamine) (PAMAM) dendrimer-grafted graphene oxide (GO). Hyperbranched PAMAM-modified GO (GD) was prepared by a divergent dendrimer synthesis methodology. Modification of GO with (3-Aminopropyl)triethoxysilane (APTES), Michael addition of methacrylic acid, and amidation reaction with ethylenediamine results in the curing agent of GD. Then, epoxy resin was cured in the presence of different amounts of GD and the final products were compared with ethylenediamine-cured epoxy resin (E) in their thermal degradation temperature and char contents. Functionalization of GO with APTES and hyperbranched dendrimer formation at the surface of GO were evaluated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and thermogravimetric analysis (TGA) results. TGA results showed that the weight loss associated with chemical moieties in GONH2, GOMA, and GD is estimated to be 10.1, 12.2, and 14.1%, respectively. Covalent attachment of dendrimer at the surface of GO increases its thermal stability. TGA also showed that decomposition temperature and char content are higher for composites compared with E. Scanning and transmission electron microscopies show that flat and smooth graphene nanolayers are wrinkled in GO and re-stacking and flattening of nanolayers is observed in GD.
Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P
2010-03-05
Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation ofmore » the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.« less
USDA-ARS?s Scientific Manuscript database
Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...
NASA Astrophysics Data System (ADS)
Salaün, F.; Bedek, G.; Devaux, E.; Dupont, D.; Deranton, D.
2009-08-01
Polyurethane microparticles containing xylitol as a sweat sensor system were prepared by interfacial polymerization. The structural and thermal properties of the resultant microparticles were studied. The surface morphology and chemical structure of microparticles were investigated using an optical microscope (OM) and a Fourier-transform infrared spectroscope (FTIR), respectively. The thermal properties of samples were investigated by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). Thus, two types of microparticles were synthesized by varying the percentage of monomers introduced. The obtained morphology is directly related to the synthesis conditions. DSC analysis indicated that the mass content of crystalline xylitol was up to 63.8 %, which resulted in a high enthalpy of dilution of 127.7 J · g-1. Furthermore, the water release rate monitored by TGA analysis was found to be faster from the microparticles than from raw xylitol. Thus, the microparticles could be applied for thermal energy storage and moisture sensor enhancement.
NASA Astrophysics Data System (ADS)
Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.
2016-04-01
In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.
NASA Astrophysics Data System (ADS)
Alias, R.; Hamid, N. H.; Jaapar, J.; Musa, M.; Alwi, H.; Halim, K. H. Ku
2018-03-01
Thermal behavior and decomposition kinetics of shredded oil palm empty fruit bunches (SOPEFB) were investigated in this study by using thermogravimetric analysis (TGA). The SOPEFB were analyzed under conditions of temperature 30 °C to 900 °C with nitrogen gas flow at 50 ml/min. The SOPEFB were embedded with cobalt (II) nitrate solution with concentration 5%, 10%, 15% and 20%. The TG/DTG curves shows the degradation behavior of SOPEFB following with char production for each heating rate and each concentration of cobalt catalyst. Thermal degradation occurred in three phases, water drying phase, decomposition of hemicellulose and cellulose phase, and lignin decomposition phase. The kinetic equation with relevant parameters described the activation energy required for thermal degradation at the temperature regions of 200 °C to 350 °C. Activation energy (E) for different heating rate with SOPEFB embedded with different concentration of cobalt catalyst showing that the lowest E required was at SOPEFB with 20% concentration of cobalt catalyst..
Optical, mechanical and thermal behaviors of Nitrilotriacetic acid single crystal
NASA Astrophysics Data System (ADS)
Deepa, B.; Philominathan, P.
2017-11-01
An organic nonlinear single crystal of Nitrilotriacetic acid (NTAA) was grown for the first time by employing a simple slow evaporation technique. Single crystal X-ray diffraction (XRD) analysis reveals that the grown crystal belongs to the monoclinic system with noncentrosymmetric space group CC. Fourier transform infrared (FTIR) spectral study ascertains the presence of functional groups in NTAA. The molecular structure of the grown crystal was confirmed by Nuclear Magnetic Resonance (NMR) spectral analysis. The optical parameters such as transmittance, absorption coefficient and band gap were calculated from UV-Visible and fluorescence studies. Dielectric measurements were carried out for different frequency and temperature. The mechanical strength of the grown crystal was measured using Vickers microhardness test. The high thermal stability and the melting point of the grown crystal were also estimated using thermogravimetric (TGA) and differential thermal analyses (DTA). The confirmation of the grown crystals belonging to nonlinear optical crystals was performed by Kurtz-Perry technique and found as suitable candidate for optoelectronics applications.
NASA Astrophysics Data System (ADS)
Kiani, Mohammad Amin; Ahmadi, Seyed Javad; Outokesh, Mohammad; Adeli, Ruhollah; Mohammadi, Aghil
2017-12-01
In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower Young's modulus in all samples under consideration. TGA analysis also shows that thermal stability of the nanocomposite, increases in presence of B4C. Finally, neutron absorption analysis shows that increasing the B4C concentration leads to a nonlinearly build-up of neutron absorption cross section.
Thermal properties of polyethylene reinforced with recycled–poly (ethylene terephthalate) flakes.
NASA Astrophysics Data System (ADS)
Ruqiyah Nik Hassan, Nik; Mazni Ismail, Noor; Ghazali, Suriati; Nuruzzaman, Dewan Muhammad
2018-04-01
In this study, recycled plastic bottles (RPET) were used as a filler in high density polyethylene (HDPE) thermoplastic. The plastic sheet of RPET/HDPE was prepared by using hot and cold press machine. The effects of RPET addition and hot press process to the thermal properties of the composite RPET/HDPE were investigated using differential scanning calorimetry (DSC) and thermogravimetric (TGA). Results from DSC analysis show that the melting point of HDPE slightly shifted to a higher temperature for about 2°C to 4°C with the addition of RPET as a filler. The starting degradation temperature of RPET/HDPE composite examined from TGA analysis also seen to be slightly increased. It was observed that the incorporation of recycled PET flakes into HDPE is achievable using hot press process with slight improvement seen in both melting point and thermal stability of the composite compared to the neat HDPE.
ERIC Educational Resources Information Center
D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.
2008-01-01
This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Samiei, Mojtaba; Hajibeygi, Mohsen
2012-06-01
Two new samples of reinforce polyamidemontmorillonite nanocomposites were synthesized by a convenient solution intercalation technique. Polyamide (PA) 3 as a source of polymer matrix was synthesized by the direct polycondensation reaction of pyrazine 2,3-dicarboxylic acid 1 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PA matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa
2017-09-01
New metal complexes derived from the in situ reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-5-guanidinopentanoic acid (arginine) and acetylacetone have been synthesized. The resulting complexes have been characterized by, elemental analyses, ES-MS, IR, Raman spectra, UV-Vis., 1HNMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that, The Schiff-base ligand acts as bi-negative tridentate coordinating via azomethine nitrogen, enolic carbonyl oxygen and carboxylate oxygen after displacement of hydrogen. The thermodynamic parameters E∗, ΔH, ΔG and ΔS of the isolated complexes have been calculated. The optical band gap (Eg) values of Cu, Co, Ni and Zn were found to be 3.3, 3.4, 3.7 and 4.3 eV, respectively, arising from direct transitions. Optical band gap measurements indicate the semi-conductivity nature of these complexes.
Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel; Ok, Yong Sik; Al-Wabel, Mohammad I
2017-03-23
Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R 50 ) of the materials, which speculated high degradability of biomass (R 50 < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R 50 < 0.7) and high recalcitrant nature of silica composited biochars (R 50 > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.
Miscibility and thermal behavior of poly (ε-caprolactone)/long-chain ester of cellulose blends
Yuzhi Xu; Chunpeng Wang; Nicole M. Stark; Zhiyong Cai; Fuxiang Chu
2012-01-01
The long-chain cellulose ester (LCCE) cellulose laurate, poly(ε-caprolactone) (PCL) and their blends were characterized by tensile strength, Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The compatibility of the blends was...
Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali
2018-03-01
Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Olshavsky, Michael A.; Meador, Michael A.; Ahn, Myong-Ku
1988-01-01
Diels-Alder cycloaddition copolymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and anthracene end-capped polyimide oligomers appear, by thermogravimetric analysis (TGA), to undergo dehydration at elevated temperatures. This would produce thermally stable pentiptycene units along the polymer backbone, and render the polymers incapable of unzipping through a retro-Diels-Alder pathway. High resolution solid 13C nuclear magnetic resonance (NMR) of one formulation of the polymer system before and after heating at elevated temperatures, shows this to indeed be the case. NMR spectra of solid samples of the polymer before and after heating correlated well with those of the parent pentiptycene model compound before and after acid-catalyzed dehydration. Isothermal gravimetric analyses and viscosities of the polymer before and after heat treatment support dehydration as a mechanism for the cure reaction.
Synthesis and Characterization of Mesoporous Silica Functionalized with Calix[4]arene Derivatives
Alahmadi, Sana M.; Mohamad, Sharifah; Maah, Mohd Jamil
2012-01-01
This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis. PMID:23202977
Thermal degradation of Lewis acid complexed LDPE films
NASA Astrophysics Data System (ADS)
Sreelatha, K.; Predeep, P.
2017-06-01
The study highlights the thermal behavior of the semiconducting LDPE films synthesized by SbCl5 doping. The structural peculiarities and the responses of the structure to energetic modifications are studied. TGA and DTG curves are used to determine the thermal stability of the material. Degradation kinetics is elucidated. Activation energy and the entropy of activation for the degradation of the samples are calculated using Coats-Redfern plots and the samples show appreciable thermal stability.
Study of crystallinity and thermal behavior of gamma irradiated luffa fiber
NASA Astrophysics Data System (ADS)
Patra, Subhashree; Mohanta, Kamal Lochan; Parida, Chhatrapati
2018-04-01
The purpose of this study is to examine the effect of high energy 6 MV X-ray photon beams on fiber of luffa cylindrica (LC), an agricultural waste of India. Techniques such as XRD, FTIR, SEM and TGA are used to study the structural changes and thermal behavior of fiber after physical modification by X-ray photon. Results illustrated that the crystallinity of cellulose in modified fibers was destroyed. High reactivity of modified LC fiber was ascertained from the presence of carboxylic group in the FT-IR spectrum. TGA study revealed increase in hydrophobicity of the modified fiber. The variation of these properties was analyzed with variation in dose of irradiation. Before treatment, the LC fibers are modified with Ca salts in order to explore their applications in biomedical terrain.
Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid
NASA Astrophysics Data System (ADS)
Yusof, F. A. M.; Hashim, A. S.; Tajudin, Z.
2017-12-01
Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid materials was investigated by thermogravimetric analysis (TGA). Model-free iso-conversion Flynn-Wall-Ozawa (FWO) and Coats-Redfern-modified (CRm) were chosen to evaluate the activation energy of the kenaf (KF) and kenaf/sol-gel silica (KFS) at heating rates (β) of 10, 20, 30 and 40 °C/min. The results shows that an apparent activation energy was increased for the kenaf/sol-gel silica hybrid (211.59 kJ/mol for FWO and 191.55 kJ/mol for CRm) as compared to kenaf fiber (202.84 kJ/mol for FWO and 186.20 kJ/mol for CRm). Other parameters such as integral procedure decomposition temperature (IPDT), final residual weight (Rf), temperature of maximum degradation rate (Tmax) and residual at maximum temperature (RTmax) were obtained from TGA curves, additionally confirmed the thermal stability of the kenaf/sol-gel silica hybrid. These activation energy values and other findings developed the simplified approach in order to understand the thermal stability and degradation kinetics behavior of kenaf/sol-gel silica hybrid materials.
NASA Astrophysics Data System (ADS)
Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying
2017-12-01
Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.
Balakrishnan, T; Ramamurthi, K
2009-03-01
Amino acid family crystals exhibit excellent nonlinear optical and electro optical properties. l-Ornithine monohydrochloride single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, TGA, DTA and DSC analyses. UV-vis-NIR spectrum shows excellent transmission in the UV, visible and NIR region (300-1600nm). The mechanical properties of grown crystals were studied using Vickers microhardness tester. Its second harmonic generation efficiency was tested using Nd:YAG laser and is 1.25 times that of KDP.
Khatkar, B S; Barak, Sheweta; Mudgil, Deepak
2013-02-01
In the present study, micro-structural, thermal and rheological changes in the gluten network upon addition of gliadins at 5% and 10% levels were investigated using scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic rheometry. The addition of gliadins decreased the peak dough height inferring decrease in dough strength. The dough stability also decreased from 3.20 to 1.40 min upon addition of 10% gliadin to the base flour. The TGA profile and the glass transition behavior of the control gluten and gluten obtained from dough with gliadin added at 5% and 10% levels showed decrease in thermal stability. The SEM micrograph of the control gluten showed foam like protein matrix. As the gliadin percentage in the gluten was increased, the compactness of the gluten structure reduced considerably leading to the formation of a more open weak gluten network. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Moon Joo; Hwang, Jun-Ki; Kim, Ji Hoon; Lim, Hyung-Seok; Sun, Yang-Kook; Suh, Kyung-Do; Lee, Young Moo
2016-02-01
Shape-tunable hydroxyl copolyimide (HPI) nanoparticles are fabricated by a re-precipitation method and are coated onto electrospun HPI membranes, followed by heat treatment to prepare thermally rearranged polybenzoxazole (TR-PBO) composite membranes. The morphology of HPI nanoparticles consisted of sphere and sea-squirt structures, which is controlled by changing the concentration of the stabilizer. The morphological characteristics of TR-PBO nanoparticles convert from HPI nanoparticles by heat treatment and their composite membranes is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) analysis, and contact angle measurements. TGA and DSC measurements confirm the excellent thermal stability compared to Celgard, a commercial PP separator for lithium-ion batteries (LIBs). Further, TR-PBO nano-composite membranes used in coin-cell type LIBs as a separator show excellent high power density performance as compared to Celgard. This is due to the fact that sea-squirt structured nanoparticles have better electrochemical properties than sphere structured nanoparticles at high temperature.
Final report for tank 241-AP-108, grab samples 8AP-96-1, 8AP-96-2 and 8AP-96-FB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esch, R.A.
1996-04-19
This document is the final report deliverable for the tank 241-AP-108 grab samples. The samples were subsampled and analyzed in accordance with the TSAP. Included in this report are the results for the Waste Compatibility analyses, with the exception of DSC and thermogravimetric analysis (TGA) results which were presented in the 45 Day report (Part 2 of this document). The raw data for all analyses, with the exception of DSC and TGA, are also included in this report.
NASA Astrophysics Data System (ADS)
Darmawan, Adi; Utari, Riyadini; Eka Saputra, Riza; Suhartana; Astuti, Yayuk
2018-01-01
This study investigated the synthesis and characterization of MTMS hydrophobic silica prepared by sol-gel method. In principle, silica xerogels and silica thin layer were obtained by reacting MTMS in ethanol solvent in some pH variations. The MTMS solution was used to modify the surface of the ceramic plate by dipcoating method to further be calcined at two different temperatures of 350°C and 500°C. The silica xerogels were analysed by FTIR, TGA-DSC and GSA to determine functional group characteristics, thermal properties and pore morphology respectively. Meanwhile, the silica thin layers were analysed their hydrophobic properties using water contact angle measurement and surface roughness determination using SEM. The results showed that the higher the pH used in the MTMS solution, the higher the resulting contact angle. The highest contact angle was obtained at pH 8.12 which reached 94.7° and 79.5° for silica thin layer calcined at 350°C and 500°C, respectively. The TGA results indicated that the methyl group survived up to 400°C and disappeared at 500°C which had implications on silica thin layer hydrophobic nature. GSA result exhibited that the silica xerogel had a close structure with a very low pore volume. While the SEM-EDX results displayed that the silica thin layer prepared at acidic pH had smoother surface morphology and became rough when prepared at an alkaline pH.
Peramaiyan, G; Pandi, P; Sornamurthy, B M; Bhagavannarayana, G; Mohan Kumar, R
2012-09-01
Picolinium tartrate monohydrate (PTM), a novel organic nonlinear optical material was synthesized and bulk crystals were grown from aqueous solution by slow cooling technique. The cell parameters of the grown crystal were found by single and powder X-ray diffraction analyses. The crystalline perfection of the grown crystals has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The presence of functional groups in the grown crystal was identified by FTIR and FT-Raman spectral analyses. UV-Vis spectral studies reveal PTM crystals are transparent in the wavelength region of 295-1100 nm. The thermal characteristics of PTM were analyzed by TGA/DTA studies. The dielectric and mechanical behaviours of PTM crystals were investigated. Dislocation density was estimated to be 2.89 × 10(3) cm(-2) on the flat-surface of PTM crystals from the etching studies. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser. Its second harmonic generation relative efficiency was measured by Kurtz and Perry powder technique and was observed to be comparable with KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodrigues Brazil, Tayra; Nunes Costa, Rogeria; Massi, Marcos; Cerqueira Rezende, Mirabel
2018-04-01
Biomass is a renewable resource that is becoming more import due to environmental concerns and possible oil crisis. Thus, optimizing its use is a current challenge for many researchers. Lignin, which is a macromolecule with complex chemical structure, valuable physicochemical properties, and varied chemical composition, is available in large quantities in pulp and paper companies. The objective of this work is the physicochemical characterization of two Kraft lignin samples with different purities, and the study of its thermal conversion into charcoal. The lignin characterization was based on chemical, TGA, DSC, FT-IR, particle sizes, and FEG-SEM analyses. These analyses show that the lignins are mainly composed of guaiacyl and syringyl units, with residues of 30–36 wt.%, in inert atmosphere, depending on the lignin purity. From these results, the more purified lignin with higher carbon yield (%C) was selected for charcoal production. The heat treatment (HT) for carbonization of lignin, at different times (90, 180, and 420 min), resulted in different %C (41–44 wt.%). Longer HT resulted in higher %C and in charcoals with smaller pore sizes. Nanopores (∼50 nm) are observed for the charcoal obtained with the longest HT.
Thermal Properties of Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Street, Kenneth W., Jr.; Ray, Chandra; Rickman, Doug; Scheiman, Daniel A.
2010-01-01
Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the Moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Thermo-Gravimetric Analysis (TGA) with Fourier Transform Infrared (FTIR) analysis provides information on evolved gas species and their evolution temperature profiles. The DTA and TGA studies included JSC-1A fine (Johnson Space Center Mare Type 1A simulant), NU-LHT-2M (National Aeronautics and Space Administration (NASA)-- United States Geological Survey (USGS)--Lunar Highlands Type 2M simulant) and its proposed feedstocks: anorthosite; dunite; high quality (HQ) glass and the norite from which HQ glass is produced. As an example, the DTA and TGA profiles for anorthosite follow. The DTA indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water is lost accounting for approximately 0.1 percent mass loss. Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals along with other volatile oxides. Limited TGA-FTIR data is available at the time of this writing. For JSC-1A fine, the TGA-FTIR indicates at least two kinds of water are evolved in the 100 to 500 and the 700 to 900 C ranges. Evolution of carbon dioxide types occurs in the 250 to 545, 545 to 705, and 705 to 985 C ranges. Geologically, the results are consistent with the evolution of "water" in its several forms, CO2 from break down of secondary carbonates and magmatic, dissolved gas and glass recrystallization
Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier
2013-12-01
Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.
Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials
Memon, Shazim Ali; Liao, Wenyu; Yang, Shuqing; Cui, Hongzhi; Shah, Syed Farasat Ali
2015-01-01
In this research, we focused on the development of composite phase-change materials (CPCMs) by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS)). The composite PCMs were characterized using environmental scanning electron microscopy (ESEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade. PMID:28787953
NASA Astrophysics Data System (ADS)
Yehya, F.; Chaudhary, A. K.; Srinivas, D.; Muralidharan, K.
2015-11-01
We report a novel time-resolved photoacoustic-based technique for studying the thermal decomposition mechanisms of some secondary explosives such as RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), picric acid, 4,6-dinitro-5-(4-nitro-1 H-imidazol-1-yl)-1 H-benzo[ d] [1-3] triazole, and 5-chloro-1-(4-nitrophenyl)-1 H-tetrazole. A comparison of the thermal decomposition mechanisms of these secondary explosives was made by detecting NO2 molecules released under controlled pyrolysis between 25 and 350 °C. The results show excellent agreement with the thermogravimetric and differential thermal analysis (TGA-DTA) results. A specially designed PA cell made of stainless steel was filled with explosive vapor and pumped using second harmonic, i.e., λ = 532 nm, pulses of duration 7 ns at a 10 Hz repetition rate, obtained using a Q-switched Nd:YAG laser. The use of a combination of PA and TGA-DTA techniques enables the study of NO2 generation, and this method can be used to scale the performance of these explosives as rocket fuels. The minimum detection limits of the four explosives were 38 ppmv to 69 ppbv, depending on their respective vapor pressures.
A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Salines Lake, Spain
Queralt, I.; Julia, R.; Plana, F.; Bischoff, J.L.
1997-01-01
Sediments of playa Lake Salines, SE, Spain, contain a carbonate mineral characterized by X-ray diffraction peaks very similar to, but systematically shifted from those of pure magnesite. Analyses (SEM, IR and Raman spectroscopy, DTA, TGA, and ICP) indicate the mineral is a hydrous Ca-bearing magnesium carbonate with the chemical formula (Mg0.92,Ca0.08)CO3??3H2O. Thermal characteristics of the mineral are similar to those of other known hydrated magnesium carbonates. X-ray and electron diffraction data suggests a monoclinic system (P21/n space group) with unit-cell parameters of a = 6.063(6), b = 10.668(5), and c = 6.014(4) A?? and ?? = 107.28??.
NASA Astrophysics Data System (ADS)
Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei
2018-04-01
In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.
Multinuclear solid film state NMR studies of metal oxide catalysts and minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, R.S.; Stec, D.F.; Ellis, P.D.
1996-10-01
Several of our investigations of heterogeneous process by novel NMR experiments and analyses are reviewed and the utility and limitations of NMR spectroscopy for these areas discussed. Out studies have included the following: dynamics and arrangements of proton-containing adsorbates, primarily Bronsted acid sites and water, on the surface of zirconia and alumina catalysts; hydrogen dynamics and coordinates in synthetic aluminum oxyhydroxides; phase separation and crystallinity of synthetic minerals. In combination with the complementary results obtained in our laboratory via infrared spectroscopy, thermal analysis (primarily TGA and DSC), and catalytic activity measurements, these NMR data provide unique and valuable information onmore » atomic and molecular dynamics, identities, and structures without requiring pristine, single crystal specimens.« less
NASA Astrophysics Data System (ADS)
Naseri, Mahmoud Goodarz; Halimah, M. K.; Dehzangi, Arash; Kamalianfar, Ahmad; Saion, Elias B.; Majlis, Burhanuddin Y.
2014-03-01
This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn and Co) nanostructures by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The pyrolytic behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry analyses (TGA) and derivative thermo-gravimetry (DTG) analyses. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited different types of magnetic behavior. The present study also substantiated that magnetic properties of ferrite nanoparticles prepared by the thermal treatment method, from viewing microstructures of them, can be explained as the results of the two important factors: cation distribution and impurity phase of α-Fe2O3. These two factors are subcategory of the preparation method which is related to macrostructure of ferrite. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons ZnFe2O4 and MnFe2O4 nanoparticles while it did not exhibit resonance signal for CoFe2O4 nanoparticles.
Thermal Analysis Study of Antihypertensive Drugs Telmisartan and Cilazapril
Saber, Refaat Ahmed; Attia, Ali Kamal; Salem, Waheed Mohamed
2014-01-01
Purpose: The aim of the present work is to study the thermal analysis of telmisartan and cilazapril. Methods: Thermogravimetry (TGA), derivative thermogravimetry (DTG) and differential thermal analysis (DTA) were used through the work to achieve the thermal analysis study of some antihypertensive drugs, telmisartan and cilazapril. Results: The results led to thermal stability data and also to the interpretation concerning the thermal decomposition. Thermogravimetry data allowed determination of the kinetic parameters such as, activation energy and frequency factor. Conclusion: The simplicity, speed and low operational costs of thermal analysis justify its application in the quality control of pharmaceutical compounds for medications. PMID:24754013
Moreno-Vásquez, María Jesús; Valenzuela-Buitimea, Emma Lucía; Plascencia-Jatomea, Maribel; Encinas-Encinas, José Carmelo; Rodríguez-Félix, Francisco; Sánchez-Valdes, Saúl; Rosas-Burgos, Ema Carina; Ocaño-Higuera, Víctor Manuel; Graciano-Verdugo, Abril Zoraida
2017-01-02
Chitosan was functionalized with epigallocatechin gallate (EGCG) by a free radical-induced grafting procedure, which was carried out by a redox pair (ascorbic acid/hydrogen peroxide) as the radical initiator. The successful preparation of EGCG grafted-chitosan was verified by spectroscopic (UV, FTIR and XPS) and thermal (DSC and TGA) analyses. The degree of grafting of phenolic compounds onto the chitosan was determined by the Folin-Ciocalteu procedure. Additionally, the biological activities (antioxidant and antibacterial) of pure EGCG, blank chitosan and EGCG grafted-chitosan were evaluated. The spectroscopic and thermal results indicate chitosan functionalization with EGCG; the EGCG content was 25.8mg/g of EGCG grafted-chitosan. The antibacterial activity of the EGCG grafted-chitosan was increased compared to pure EGCG or blank chitosan against S. aureus and Pseudomonas sp. (p<0.05). Additionally, EGCG grafted-chitosan showed higher antioxidant activity than blank chitosan. These results indicate that EGCG grafted-chitosan might be useful in active food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone).
Ortega-Toro, Rodrigo; Santagata, Gabriella; Gomez d'Ayala, Giovanna; Cerruti, Pierfrancesco; Talens Oliag, Pau; Chiralt Boix, M Amparo; Malinconico, Mario
2016-08-20
The use of a modified poly(ε-caprolactone) (gPCL) to enhance polymer miscibility in films based on thermoplastic starch (S) and poly(ε-caprolactone) is reported. PCL was functionalized by grafting with maleic anyhdride (MA) and/or glycidyl methacrylate (GMA) by reactive blending in a batch mixer. gPCL based materials were analysed in terms of their grafting degree, structural and thermal properties. Blends based on starch and PCL (wt. ratio 80:20) with including gPCL (0, 2.5 and 5wt.%), as a compatibilizer, were obtained by extrusion and compression moulding, and their structural, thermal, mechanical and barrier properties were investigated. Blends containing gPCL evidenced better interfacial adhesion between starch and PCL domains, as deduced from both structural (XRD, FTIR, SEM) and bulk properties (DSC, TGA). Moreover, grafted PCL-based compatibilizers greatly improved functional properties of S-PCL blend films, as pointed out from mechanical performance and higher barrier properties, valuable to meet the food packaging requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Xiaoxue; Han, Guo; Yang, Zhen; Zhang, Xiaoa; Jiang, Shengling; Lyu, Yafei
2017-10-01
Five poly(o-carborane-benzoxazines) were synthesized via Mannich reaction of o-carborane bisphenol, paraformaldehyde, and diamine, and their structures were well characterized. Light transmission and 1H NMR in D2O confirmed that poly(o-carborane-benzoxazines) with PEG segments showed excellent water solubility and amphiphilic property. TGA analyses were conducted under nitrogen and air, and the results showed that the polymers own high initial decomposition temperatures owing to the shielding effect of carborane moiety on its adjacent aromatic structures. Besides, poly(o-carborane-benzoxazines) own high char yield at elevated temperatures, for the boron atom could combine with oxygen from the polymer structure or/and the air and be oxidized to form boron oxide, and thus the polymer weight is retained to a large extent. PEG segments had an adverse effect on the initial decomposition and char yield, and thus their concentration should be adjusted to control the polymer’s thermal stability.
Structure, wettability and thermal degradation of new fluoro-oligomer modified nanoclays.
Valsecchi, R; Viganò, M; Levi, M; Turri, S
2008-04-01
Quaternary ammonium salts based on monofunctionalized Perfluoropolyether (PFPE) oligomers were synthesized and used for the cation exchange process of sodium Montmorillonite nanoclays. The new fluoromodified nanoclays were characterized through X-rays diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), termogravimetric analysis (TGA), differential scanning calorimetry (DSC), electronic microscopy (SEM-EDS), and contact angle measurements (CA). In particular XRD showed rather complex patterns (presence of higher order reflections) which allowed the calculation of basal spacings, regularly increasing with the molecular weight of the fluorinated macrocation. Both IR and SEM confirmed the presence of fluorinated segments at clays interface, while TGA showed a limited thermal stability with an onset of degradation temperature which seems not dependent on the molecular weight of the macrocation. CA measurements showed a peculiar behaviour, with evident dynamic hysteresis phenomena and surface tension components quite different from those of commercially available, organomodified clays.
Thermal properties of Bentonite Modified with 3-aminopropyltrimethoxysilane
NASA Astrophysics Data System (ADS)
Pramono, E.; Pratiwi, W.; Wahyuningrum, D.; Radiman, C. L.
2018-03-01
Chemical modifications of Bentonite (BNT) clay have been carried out by using 3-aminoprophyltrimethoxysilane (APS) in various solvent media. The degradation properties of products (BNTAPS) were characterized by thermogravimetric analysis (TGA). Samples were heated at 30 to 700°C with a heating rate 10 deg/min, and the total silane-grafted amount was determined by calculating the weight loss at 200 – 600°C. The thermogram of TGA showed that there were three main decomposition regions which are attributed to the elimination of physically adsorbed water, decomposition of silane and dehydroxylation of Bentonite. High weight loss attributed to the thermal decomposition of silane was observed between 200 to 550°C. Quantitative analysis of grafted silane results high silane loaded using a solvent with high surface energy, which indicates the type of solvent affected interaction and adsorption of APS in BNT platelets.
Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites
NASA Astrophysics Data System (ADS)
Abral, H.; Kenedy, E.
2015-07-01
The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.
NASA Astrophysics Data System (ADS)
Andiarto, R.; Nuryadin, M. K.; Taufik, A.; Saleh, R.
2017-04-01
In our previous study, the addition of Magnetite (Fe3O4) into Stearic acid (Sa) as an organic phase change material (PCM) shows an enhancement in the latent heat for thermal energy storage applications. The latent heat of the PCM can also be increased by adding graphene material. Therefore, in this research, the thermal properties of Sa have been studied by the sonication method for several different concentrations of Fe3O4/Graphene nanocomposite additions. The structural properties of all of the samples were observed by X-Ray diffraction (XRD). Melting-solidifying behavior and specific heat value were measured by differential scanning calorimetry (DSC). The thermal degradation process of all samples was investigated by thermogravimetric analysis (TGA). Based on the DSC results, the presence of Fe3O4/Graphene in the Sa enhances the latent heat up to 20%. The specific heat value of the mixture was also found to be increased as the concentration of Fe3O4/Graphene to Sa increased. The TGA results show a lowered thermal degradation process of the Sa by the addition of the Fe3O4/Graphene which indicates a higher thermal stability of the mixture. In conclusion, the results demonstrate that the addition of Fe3O4/Graphene to Sa improves both the sensible heat and the latent heat of the mixture which are very important for thermal energy storage applications
NASA Astrophysics Data System (ADS)
Mallakpour, Shadpour; Khadem, Elham
2014-10-01
By the uniform dispersion of nanoparticles into a polymer matrix, a substantial improvement of physicochemical properties can be attained. In this study, a series of poly(amide-imide)/Al2O3 nanocomposites (PANC)s based on various amounts of modified α-Al2O3 nanoparticles (ANP)s were prepared using the ultrasonic irradiation method. In the process of manufacturing the nanocomposites (NC)s, severe agglomeration of ANPs into the polymer matrix can be reduced using 2,3,4,5-tetrabromo-6-[(4-hydroxyphenyl)carbamoyl]benzoic acid as novel coupling agent. The effects of modified ANPs on the morphology and properties of the polymer matrix were studied by means of Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and thermal gravimetric analysis (TGA). The results obtained by TGA showed that the thermal stability of the NCs was improved with the addition of the small amounts of ANPs as effective thermal degradation resistant reinforcement.
NASA Astrophysics Data System (ADS)
Chanra, J.; Budianto, E.; Soegijono, B.
2018-03-01
Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay’s interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.
NASA Astrophysics Data System (ADS)
Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi
2017-10-01
Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.
Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh
2012-01-01
Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073
Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.
Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto
2014-11-01
With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
Magoń, A; Pyda, M
2011-11-29
The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank. Copyright © 2011 Elsevier Ltd. All rights reserved.
Synthesis, characterization and dissolution of three pharmaceutical cocrystals based on deferiprone
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Tian, Yuyang; Jia, Jiangtao; Zhang, Tingting; Zhu, Guangshan
2016-03-01
In this paper we present three new cocrystals based on deferiprone which is the first oral medicine as iron chelator. Solitary deferiprone possesses some known problems due to its good solubility and frequent dosing side effects. For these three novel co crystals, deferiprone is the active pharmaceutical ingredient (API), p-hydroxybenzoic acid (1, C7H9NO2·C7H6O3), 2, 5-dihydroxybenzoic acid (2, C7H9NO2·C7H6O4) and maleic acid (3, C7H9NO2·C4H4O4) are used as cocrystal formers (CCFs), respectively. Their structures were characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD) analysis, thermogravimetric analyses (TGA), differential thermal analysis (DTA), elemental analysis (EA) and infrared spectral analysis (IR). Single crystal X-ray diffraction demonstrates that all three cocrystals (1-3) possess strong hydrogen-bondings assembled through hydroxyl of API and carboxylic acids of CCFs. The PXRD results indicate their high purity of as-synthesized samples. TGA, DTA, EA, IR and dissolution study of API and cocrystals were also measured and discussed, respectively. The results suggest that the cocrystals exhibit low dissolution rates comparing with solitary deferiprone, which is very advantageous for the oral medicine with frequent dosing side effects.
2014-08-01
41 Figure A-21. Lubricant Soot Accumulation...ASTM D4739 Total Base Number ASTM D664 Total Acid Number ASTM D445 Kinematic Viscosity @ 100°C ASTM D4052 Density ASTM TGA SOOT TGA Soot ASTM E168...118.85 134.01 145.47 169.22 187.43 342.42 Nitration (Abs./cm) E168 FTIR 0 6.67 10.91 16.54 19.04 25.79 35.12 24.03 23.75 52.31 93.9 Soot (%) Soot TGA
Sadhasivam, S; Rajesh, Narayana Perumal
2014-09-15
Organic single crystal of 2-hydroxy biphenyl (2-HB) was grown by top seeded melt growth method. Scanning electron microscopy studies has been carried out on the surface of the grown crystals to investigate the nature of growth and defects. The crystalline perfection and lattice parameters of 2-HB has been determined by single crystal XRD analysis and it belongs to orthorhombic crystal system with space group Fdd2. The functional groups and molecular associations were confirmed by FT-IR. The optical characteristics such as cut-off and transmittance were carried out using UV-Vis-NIR spectra. Absence of absorption in the region between 320 and 1100 nm makes the grown crystal desirable to optical applications. Thermal stability of grown crystals was characterized by thermogravimetric (TGA), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) analyses. Broadband dielectric studies reveals that dielectric constant of grown crystal is low. The resistivity of grown crystal was studied by impedance analysis. The second harmonic generation intensity of 3.8 mJ was studied. The grown crystal belongs to soft material studied by hardness test. Copyright © 2014 Elsevier B.V. All rights reserved.
Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu
2010-09-15
Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites. Copyright 2010 Elsevier B.V. All rights reserved.
Features of the incorporation of single and double based powders within emulsion explosives
NASA Astrophysics Data System (ADS)
Ribeiro, J. B.; Mendes, R.; Tavares, B.; Louro, C.
2014-05-01
In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the "gap-test". DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.
NASA Astrophysics Data System (ADS)
Mekala, R.; Jagdish, P.; Mathammal, R.; Sangeetha, K.
2017-04-01
The cocrystal was screened by solvent drop grinding method and the crystals were grown by slow evaporation method at ambient conditions. The cocrystal formation of o-picolinic acid with p-nitro aniline was initially analysed by powder X-ray diffraction. Further the structural properties of the grown crystal were confirmed by the single X-ray diffraction which indicates that the cocrystal were connected by the strong N+sbnd H-⋯O hydrogen bond interaction. The cell parameters of the grown crystal were a = 14.2144(5) Å, b = 5.7558(2) Å, c = 16.0539(6) Å. The functional groups were identified using Fourier transform infrared and Raman spectral analysis. The excitation and emission state of the sample was analysed by the UV-Visible and Fluorescence studies. The red emission was observed from the Fluorescence studies. NMR studies revealed the chemical shift of the cocrystal. Thermal stability and its melting behaviour were studied by TGA and DSC analytical techniques. Electrical behaviour was studied using the dielectric studies. The intermolecular charge transfer within the molecule were analysed using HOMO- LUMO plots.
Fabrication and characterization of poly (bisphenol A borate) with high thermal stability
NASA Astrophysics Data System (ADS)
Wang, Shujuan; Wang, Xiao; Jia, Beibei; Jing, Xinli
2017-01-01
In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A2 + B3 strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph-O-B and B-O-B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N2) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N2 and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.
A plasma arc reactor for fullerene research
NASA Astrophysics Data System (ADS)
Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.
1994-12-01
A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.
NASA Astrophysics Data System (ADS)
Anilkumar, T.; Naik, Adarsh Ajith; Ramesan, M. T.
2017-06-01
Here we report the preparation of nitromercurated styrene butadiene rubber (NMSBR)/silver doped zinc oxide nanocomposite by inexpensive and ecofriendly two roll mill mixing. The composites were characterized by UV, FTIR, XRD, SEM, TGA and conductivity measurements. UV and FTIR spectrum indicated the interfacial interaction between the polymer and nanoparticles.XRD and SEM images showed the uniform arrangement of nanoparticles within the macromolecular chain. TGA study indicated the better thermal resistance of the composite. The dielectric properties and AC conductivity ofnanocomposites were much greater than nitromercurated SBR and they may be used as multifunctional materials for nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali; Ebrahimipour, S. Yousef
2017-06-01
This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2k-1 factorial design experiments, and the response surface optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m2/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO2 adsorption.
Becaro, Aline A; Puti, Fernanda C; Correa, Daniel S; Paris, Elaine C; Marconcini, José M; Ferreira, Marcos D
2015-03-01
This paper reports the antibacterial effect and physico-chemical characterization of films containing silver nanoparticles for use as food packaging. Two masterbatches (named PEN and PEC) con- taining silver nanoparticles embedded in distinct carriers (silica and titanium dioxide) were mixed with low-density polyethylene (LDPE) in different compositions and extruded to produce plain films. These films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the films showed the formation of agglomerates of nanoparticles in both PEN and PEC composites. X-ray analyses confirmed the presence of SiO2 in PEN samples and TiO2 in PEC samples. Thermal analyses indicated an increase in thermal stability of the PEC compositions. The antimicrobial efficacy was determined by applying the test strain for Escherichia coli and Staphylococcus aureus, according to the Japanese Industrial Standard Method (JIS Z 2801:2000). The films analyzed showed antimicrobial properties against the tested microorganisms, presenting better activity against the S. aureus than E. Coli. These findings suggest that LDPE films with silver nanoparticles are promising to provide a significant contribution to the quality and safety of packaged food.
NASA Astrophysics Data System (ADS)
Subhashini, R.; Sathya, D.; Sivashankar, V.; Latha Mageshwari, P. S.; Arjunan, S.
2016-12-01
Highly transparent solitary nonlinear semiorganic optical material Bis(L-threonine) copper (II) monohydrate [BLTCM], was synthesized by a conventional slow evaporation solution growth technique. The grown crystals were subjected to structural, optical, electrical, thermal, mechanical, SHG and Laser damage threshold studies. Single crystal XRD shows that the material crystallizes in monoclinic system with noncentrosymmetric space group P21. FT-IR and FT-RAMAN analyses confirm the various functional groups present in the grown crystal. The transparency range of BLTCM was determined by UV-vis-NIR studies and various optical constants such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. Dielectric studies of the crystal were carried out at different frequencies and temperatures to analyze the electrical properties. TGA and DSC analyses were performed to study the thermal behaviour of the sample. The hardness stability of the grown specimen was investigated by Vickers microhardness test. The output intensity of second harmonic generation was confirmed using the Kurtz and Perry powder method. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser.
Simplified method to assess soil organic matter in landscape and carbon sequestration studies
NASA Astrophysics Data System (ADS)
Pallasser, Robert; Minasny, Budiman; McBratney, Alex; de Bruyn, Hank
2010-05-01
Soil organic matter (SOM) is composed of a variety of carbon bearing forms which are variably susceptible to degradation, itself a function of soil conditions (moisture, permeability, pH, Eh). Stability and residence time have become key questions relevant to soil carbon storage. Interestingly, organic matter types also differ in terms of their refractory stabilities making thermal analysis potentially an ideal way to resolve and analyse SOM. Elemental analyses of soils are routinely used to provide accurate total carbon determinations for the subsamples in question but cannot yield information about the relative amounts of labile to more stable carbon without involved chemical pre-treatment. Thermogravimetric analyses (TGA) have been commonly used to characterise chemical decomposition and to provide distinctive fingerprints (due to discrete mass changes) for mineral and organic materials. Such discrete changes in mass appear as peaks when registered on a DTGA (differential TGA) plot and correspond with dehydration, denaturing or oxidation events. Soil being a more complex continuum of organic and inorganic substances, many from fermentation reactions and microbial waste, does not have one particular fingerprint. Nonetheless, a number of relevant organic substances have characteristically different but consistent ignition temperatures (Lopez-Capel et. al., 2006; Laird et al., 2008; Xie et. al., 2009) allowing carbon pools to be distinguished thermally. In our studies, oxidative DTGA analyses of soils using a TA 2590 were typified by a bimodal distribution in SOM representing one less stable and one more stable group, a pattern similarly described by Siewert (2004). Current experiments indicate that the relative proportions of these SOM pulses are fairly reproducible but vary depending on soils and sampling depth (i.e. conditions) enabling it as a diagnostic parameter when considering SOM dynamics and humification. In order to compare this property numerically, relative DTGA responses were quantified in a similar way to the approaches discussed by Plante et. al., (2009) and references therein. TGA-MS analyses were conducted using a TA SDT Q 600 - Thermostar quadrupole, so as to provide a distinctive set of major ions or markers for the two organic matter types which can be indicative of the parent material. Furthermore, since a mass change event from an inorganic component (e.g. dehydroxylation) can contribute to an SOM related response, correlation with MS data needed to be carried out. This method of analysis can be used to reliably fingerprint SOM and should be an enormously useful addition when assessing depositional or agricultural soil environments. Quantifying the relative amounts of SOM can be achieved by coupling with elemental analysis with the added scope of being able to separate (Kasozi et. al., 2009) the contribution from inorganic carbon (carbonates), a common soil constituent. Important applications for the DTGA technique include environmental pedological studies such as evaluating SOM after severe bushfire events or agricultural monitoring particularly during carbon sequestration and changed land management practices. References Kasozi G.N., Nkedi-Kizza P., Harris W.G., 2009. Varied carbon content of organic matter in histosols, spodosols and carbonatic soils. Soil Science Society of America Journal 73, 1313-1318. Laird D.A., Chappell M.A., Martens D.A., Wershaw R.L., Thompson M., 2008 Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143, 115-122. Lopez-Capel E., Abbott G.D., Thomas K.M., Manning D.A.C., 2006. Coupling of thermal analysis with quadrupole mass spectrometry and isotope ratio mass spectrometry for simultaneous determination of evolved gases and their carbon isotopic composition. Journal of Analytical and Applied Pyrolysis, 75, 82-89. Plante A.F., Fernandez J.M., Leifeld J., 2009. Application of thermal analysis techniques in soil science. Geoderma 153, Issue 1-2, 1-10. Siewert C., 2004. Rapid screening of soil properties using thermogravimetry. Soil Science Society of America Journal 68, 1656-1661. Xie X.F., Goodell B., Zhang D.J., Nagle D.C., Qian Y.H., Peterson M.L., Jellison J., 2009. Characterization of carbons derived from cellulose and lignin and their oxidative behaviour. Bioresource Technology 100, 1797-1802.
NASA Astrophysics Data System (ADS)
Kartal, Zeki; Yavuz, Abdülkerim
2018-03-01
In this study, the clathrates of fumarate-tetracyanonickel-dioxane, given by the formula M2[(fumarate)Ni(CN)4]·2(1,4-Dioxane) (M = Co, Ni, Cd and Hg), have been obtained for the first time through chemical methods. These clathrates have been characterized by elemental, thermal, FT-IR, and FT-Raman spectroscopies. The parameters of structures of clathrates have been determined by X-ray powder diffraction. The thermal behaviors of these clathrates have been also investigated by thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), and derivative thermal gravimetric analysis (DTG) in the range of 20-900 °C. X-ray powder diffraction data have been recorded at ambient temperature in the 2θ range 5-50°. The FT-IR and FT-Raman spectra of clathrates have been recorded in the region of 4000-400 cm-1 and 4000-100 cm-1, respectively. The results of the spectral and thermal analyses of the newly synthesized clathrates of fumarate-tetracyanonickel-dioxane suggest that these clathrates are new examples of the Hofmann-type dioxane clathrates. In our study, the Hofmann-type dioxane clathrates, which are formed by bounding electrons of oxygen-donor atoms of fumarate ion ligand molecule to transition metal atoms, consist of the corrugated |M-Ni(CN)4|∞ polymeric layers, which are held in parallel through the chain of (-M-fumarate-M-).
Structural and thermal properties of silk fibroin - Silver nanoparticles composite films
NASA Astrophysics Data System (ADS)
Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.
2018-05-01
In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.
Structural and thermal properties of γ - irradiated Bombyx mori silk fibroin films
NASA Astrophysics Data System (ADS)
Madhukumar, R.; Asha, S.; Sarojini, B. K.; Somashekar, R.; Rao, B. Lakshmeesha; Shivananda, C. S.; Harish, K. V.; Sangappa
2015-06-01
The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.
Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel
NASA Astrophysics Data System (ADS)
Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal
2018-03-01
A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Biao; Zhou, Keqing; Jiang, Saihua
Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zincmore » sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.« less
NASA Astrophysics Data System (ADS)
Yang, Yunyun; Kong, Weibo; Yuan, Ye; Zhou, Changlin; Cai, Xufu
2018-04-01
Novel poly(carbonate-co-amide) (PCA) block copolymers are prepared with polycarbonate diol (PCD) as soft segments, polyamide-6 (PA6) as hard segments and 4,4'-diphenylmethane diisocyanate (MDI) as coupling agent through reactive processing. The reactive processing strategy is eco-friendly and resolve the incompatibility between polyamide segments and PCD segments in preparation processing. The chemical structure, crystalline properties, thermal properties, mechanical properties and water resistance were extensively studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermal gravity analysis (TGA), Dynamic mechanical analysis (DMA), tensile testing, water contact angle and water absorption, respectively. The as-prepared PCAs exhibit obvious microphase separation between the crystalline hard PA6 phase and amorphous PCD soft segments. Meanwhile, PCAs showed outstanding mechanical with the maximum tensile strength of 46.3 MPa and elongation at break of 909%. The contact angle and water absorption results indicate that PCAs demonstrate outstanding water resistance even though possess the hydrophilic surfaces. The TGA measurements prove that the thermal stability of PCA can satisfy the requirement of multiple-processing without decomposition.
NASA Technical Reports Server (NTRS)
Wingard, Charles D.
1999-01-01
White Hypalon paint is brush-applied as a moisture barrier coating over cork surfaces on each of the two Space Shuttle SRBS. Fine cracks have been observed in the Hypalon coating three times historically on laboratory witness panels, but never on flight hardware. Recent samples of the cracked and standard ("good") Hypalon were removed from cork surfaces and were tested by Thermal Gravimetric Analysis (TGA), Thermomechanical (TMA) and Differential Scanning Calorimetry (DSC) thermal analysis techniques. The TGA data showed that at 700 C, where only paint pigment solids remain, the cracked material had about 9 weight percent more material remaining than the standard material, probably indicating incomplete mixing of the paint before it was brush-applied to produce the cracked material. Use of the TMA film tension method showed that the average static modulus vs. temperature was about 3 to 6 times higher for the cracked material than for the standard material, indicating a much higher stiffness for the cracked Hypalon. The TMA data also showed than an increased coating thickness for the cracked Hypalon was not a factor in the anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal
2016-05-06
The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study ofmore » electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.« less
Aqlil, Meryem; Moussemba Nzenguet, Annie; Essamlali, Younes; Snik, Asmae; Larzek, Mohamed; Zahouily, Mohamed
2017-12-06
In this study, graphene oxide (GO) was investigated as a potential nanoreinforcing agent in starch/lignin (ST/L) biopolymer matrix. Bionanocomposite films based on ST/L blend matrix and GO were prepared by solution-casting technique of the corresponding film-forming solution. The structures, morphologies, and properties of bionanocomposite films were characterized by Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), ultraviolet-visible (UV-vis), SEM, and tensile tests. The experimental results showed that content of GO have a significant influence on the mechanical properties of the produced films. The results revealed that the interfacial interaction formed in the bionanocomposite films improved the compatibility between GO fillers and ST/L matrix. The addition of GO also reduced moisture uptake (Mu) and water vapor permeability of ST/L blend film. In addition, TGA showed that the thermal stability of bionanocomposite films was better than that of neat starch film. These findings confirmed the effectiveness of the proposed approach to produce biodegradable films with enhanced properties, which may be used in packaging applications.
NASA Astrophysics Data System (ADS)
Zhang, Weizhou; Ren, Jiawei; Wei, Ting; Guo, Weihong
2018-02-01
In this paper, the synergistic effect of ammonium polyphosphate (APP) and expandable graphite (EG) on flame-retarded poly(butylene terephthalate) (PBT) was systermically investigated using limiting oxygen index (LOI), UL-94 testing, microscale combustion calorimetry (MCC), thermal-gravimetric analysis (TGA) and scanning electronic microscopy (SEM). PBT composites containing 20 wt% of APP: EG (1:3) combinations exhibits a high LOI value of 29.8 and reaches V-0 rating in UL-94 testing, indicating that the flame retardant property is greatly enhanced compared to the composites solely with APP or EG. SEM images show that the combination of APP and EG could promote the formation of a compact char layer. The compact char layer protects the PBT resin efficiently by preventing penetration of heat flux inside the matrix and retards the decomposition of PBT, consequently improves the thermal stability of PBT materials as revealed by TGA. All of the results demonstrate that APP and EG are high efficiency synergists for improving the flame retardation of PBT materials.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Devi, Pooja; Shivling, V. D.
2017-08-01
Stable ruthenium nanoparticles (RuNPs) have been synthesized by the chemical reduction of ruthenium trichloride trihydrate (RuCl3 · 3H2O) using sodium borohydride (NaBH4) as a reductant and polyvinylpyrrolidone (PVP) as a protecting agent in the aqueous medium at room temperature. The nanoparticles thus prepared were characterized by their morphology and structural analysis from transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectroscopy, Fourier transformation infrared and thermogravimetric analysis (TGA) techniques. The TEM image suggested a homogeneous distribution of PVP-protected RuNPs having a small average diameter of 2-4 nm with a chain-like network structure. The XRD pattern also confirmed that a crystallite size is around 2 nm of PVP-protected RuNPs having a single broad peak. The thermal stability studied using TGA, indicated good stability and the electrochemical properties of these nanoparticles revealed that saturation current increases for PVP-protected RuNPs/GC.
Jayakumar, S; Sudha, P N
2013-03-15
Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.
Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.
Huang, Yanqin; Wei, Zhiguo; Yin, Xiuli; Wu, Chuangzhi
2012-01-01
Pyrolytic characteristics of acid hydrolysis residue (AHR) of corncob and pinewood (CAHR, WAHR) were investigated using a thermo-gravimetric analyzer (TGA) and a self-designed pyrolysis apparatus. Gasification reactivity of CAHR char was then examined using TGA and X-ray diffractometer. Result of TGA showed that thermal degradation curves of AHR descended smoothly along with temperature increasing from 150 °C to 850 °C, while a "sharp mass loss stage" for original biomass feedstock (OBF) was observed. Char yield from AHR (42.64-30.35 wt.%) was found to be much greater than that from OBF (26.4-19.15 wt.%). In addition, gasification reactivity of CAHR char was lower than that of corncob char, and there was big difference in micro-crystallite structure. It was also found that CAHR char reactivity decreased with pyrolysis temperature, but increased with pyrolysis heating rate and gasification temperature at 850-950 °C. Furthermore, CAHR char reactivity performed better under steam atmosphere than under CO2 atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng
2018-01-01
In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively. PMID:29324716
Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng
2018-01-11
In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively.
Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.
The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.
Progress in Primary Acoustic Thermometry at NIST: 273 K to 505 K
NASA Astrophysics Data System (ADS)
Strouse, G. F.; Defibaugh, D. R.; Moldover, M. R.; Ripple, D. C.
2003-09-01
The NIST Acoustic Thermometer determines the thermodynamic temperature by measuring the speed of sound of argon in a spherical cavity. We obtained the thermodynamic temperature of three fixed points on the International Temperature Scale of 1990: the melting point of gallium [T(Ga) = 302.9146 K] and the freezing points of indium [T(In) = 429.7485 K] and tin [T(Sn) = 505.078 K]. The deviations of thermodynamic temperature from the ITS-90 defined temperatures are T - T90 = (4.7 ± 0.6) mK at T(Ga) , T - T90 = (8.8 ± 1.5) mK at T(In) , and T - T90 = (10.7 ± 3.0) mK at T(Sn) , where the uncertainties are for a coverage factor of k = 1. Our results at T(In) and T(Sn) reduce the uncertainty of T - T90 by a factor of two in this range. Both T - T90 at T(Ga) and the measured thermal expansion of the resonator between the triple point of water and T(Ga) are in excellent agreement with the 1992 determination at NIST. The dominant uncertainties in the present data come from frequency-dependent and time-dependent crosstalk between the electroacoustic transducers. We plan to reduce these uncertainties and extend this work to 800 K.
Coconut coir pith lignin: A physicochemical and thermal characterization.
Asoka Panamgama, L; Peramune, P R U S K
2018-07-01
The structural and thermal features of coconut coir pith lignin, isolated by three different extraction protocols incorporating two different energy supply sources, were characterized by different analytical tools. The three different chemical extraction protocols were alkaline - 7.5% (w/v) NaOH, organosolv - 85% (v/v) formic and acetic acids at 7:3 (v/v) ratio and polyethylene glycol (PEG): water ratio at 80:20wt%. The two sources of energy were thermal or microwave. Raw lignins were modified by epichlorohydrin to enhance reactivity, and the characteristics of raw and modified lignins were comparatively analysed. Using the thermal energy source, the alkaline and organosolv processes obtained the highest and lowest lignin yields of 26.4±1.5wt% and 3.4±0.2wt%, respectively, as shown by wet chemical analysis. Specific functional group analysis by Fourier transform infrared spectra (FTIR) revealed that significantly different amounts of hydroxyl and carbonyl groups exist in alkaline, organosolv and PEG lignins. Thermogravimetric analysis (TGA) illustrated that the lowest degradation onset temperature was recorded for organosolv lignin, and the overall order was organosolv
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Abdu Raheem V., P.; Jayakrishnan, P.; Pradyumnan, P. P.
2014-10-01
Nanocomposites of NBR with manganous-tungstate nanoparticles were prepared through vulcanization process. The extent of interaction of nanoparticles with the polymer was studied by FTIR, SEM, XRD, TGA and AC conductivity. FTIR and XRD ascertain the interaction of NBR with MnWO4 nanoparticles. SEM analysis established that the nanopartilces were well dispersed in the macromolecular chain of NBR. The mechanical properties of the nanocomposites were studied as a function of filler loading. The nanocomposites exhibited enhanced thermal stability as seen in TGA. Conductivity and dielectric properties of nanocomposites increase with increase in concentration of MnWO4 nanoparticles (7phr) and thereafter the value decreases.
Thermal Release of 3He from Tritium Aged LaNi 4.25Al 0.75 Hydride
Staack, Gregory C.; Crowder, Mark L.; Klein, James E.
2015-02-01
Recently, the demand for He-3 has increased dramatically due to widespread use in nuclear nonproliferation, cryogenic, and medical applications. Essentially all of the world’s supply of He-3 is created by the radiolytic decay of tritium. The Savannah River Site Tritium Facilities (SRS-TF) utilizes LANA.75 in the tritium process to store hydrogen isotopes. The vast majority of He-3 “born” from tritium stored in LANA.75 is trapped in the hydride metal matrix. The SRS-TF has multiple LANA.75 tritium storage beds that have been retired from service with significant quantities of He-3 trapped in the metal. To support He-3 recovery, the Savannah Rivermore » National Laboratory (SRNL) conducted thermogravimetric analysis coupled with mass spectrometry (TGA-MS) on a tritium aged LANA.75 sample. TGA-MS testing was performed in an argon environment. Prior to testing, the sample was isotopically exchanged with deuterium to reduce residual tritium and passivated with air to alleviate pyrophoric concerns associated with handling the material outside of an inert glovebox. Analyses indicated that gas release from this sample was bimodal, with peaks near 220 and 490°C. The first peak consisted of both He-3 and residual hydrogen isotopes, the second was primarily He-3. The bulk of the gas was released by 600 °C« less
Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine
2010-04-12
Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.
In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.
Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures
1976-11-01
1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA
The influence of cosmic radiation on the properties of different polymers
NASA Astrophysics Data System (ADS)
Major, Andrea Adamne; Boja, David
2017-10-01
During our research we investigated the influence of cosmic radiation on the properties of different polymers. Polypropylene, polyamide 6.6 and polycarbonate were used as raw materials. Test pieces were injection molded. The test pieces were "flying" at different heights (on Earth, at 5500 m, at 12000 m). Thermal properties were investigated: DSC and TGA. We found that cosmic relay influences change in the thermal properties of polypropylene, polyamide 6.6 and polycarbonate.
A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4
NASA Astrophysics Data System (ADS)
Zhu, Chunlan
2017-05-01
Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).
NASA Astrophysics Data System (ADS)
Huang, Bo; Hu, Xiaokang; Hu, Xunliang; Wang, Nan; Yang, Kang; Xiao, Zicheng; Wu, Pingfan
2017-12-01
Towards design and synthesis of bulky molecules and molecular machines, we reported a new inorganic-organic hybrid material based on polyoxometalates and 1, 3-dicyclohexylcarbodiimide (DCC): (Bu4N)2[V6O13{(OCH2)3CCH2OOCCH2CH2CON(C6H11)CONHC6H11}2]. The hybrid was characterized by FT-IR, 1H NMR, UV-Vis, ESI-MS, and the structure of the compound was determined through single-crystal X-ray diffraction. There was an interesting supramolecular assembly in the hybrid material through intermolecular hydrogen bonding, and each cyclohexyl in the polymer looks like one of blades in the propeller. Furthermore, the thermal stability of the hybrid was tested by TGA analyses, and the electrochemical property has also been studied by cyclic voltammogram.
Sharma, Ashok; Liu, Xiang; Hadley, David; Hagopian, William; Liu, Edwin; Chen, Wei-Min; Onengut-Gumuscu, Suna; Simell, Ville; Rewers, Marian; Ziegler, Anette-G; Lernmark, Åke; Simell, Olli; Toppari, Jorma; Krischer, Jeffrey P; Akolkar, Beena; Rich, Stephen S; Agardh, Daniel; She, Jin-Xiong
2016-01-01
There are significant geographical differences in the prevalence and incidence of celiac disease that cannot be explained by HLA alone. More than 40 loci outside of the HLA region have been associated with celiac disease. We investigated the roles of these non-HLA genes in the development of tissue transglutaminase autoantibodies (tTGA) and celiac disease in a large international prospective cohort study. A total of 424,788 newborns from the US and European general populations and first-degree relatives with type 1 diabetes were screened for specific HLA genotypes. Of these, 21,589 carried 1 of the 9 HLA genotypes associated with increased risk for type 1 diabetes and celiac disease; we followed 8676 of the children in a 15 y prospective follow-up study. Genotype analyses were performed on 6010 children using the Illumina ImmunoChip. Levels of tTGA were measured in serum samples using radio-ligand binding assays; diagnoses of celiac disease were made based on persistent detection of tTGA and biopsy analysis. Data were analyzed using Cox proportional hazards analyses. We found 54 single-nucleotide polymorphisms (SNPs) in 5 genes associated with celiac disease (TAGAP, IL18R1, RGS21, PLEK, and CCR9) in time to celiac disease analyses (10-4>P>5.8x10-6). The hazard ratios (HR) for the SNPs with the smallest P values in each region were 1.59, 1.45, 2.23, 2.64, and 1.40, respectively. Outside of regions previously associated with celiac disease, we identified 10 SNPs in 8 regions that could also be associated with the disease (P<10-4). A SNP near PKIA (rs117128341, P = 6.5x10-8, HR = 2.8) and a SNP near PFKFB3 (rs117139146, P<2.8x10-7, HR = 4.9) reached the genome-wide association threshold in subjects from Sweden. Analyses of time to detection of tTGA identified 29 SNPs in 2 regions previously associated with celiac disease (CTLA4, P = 1.3x10-6, HR = 0.76 and LPP, P = 2.8x10-5, HR = .80) and 6 SNPs in 5 regions not previously associated with celiac disease (P<10-4); non-HLA genes are therefore involved in development of tTGA. In conclusion, using a genetic analysis of a large international cohort of children, we associated celiac disease development with 5 non-HLA regions previously associated with the disease and 8 regions not previously associated with celiac disease. We identified 5 regions associated with development of tTGA. Two loci associated with celiac disease progression reached a genome-wide association threshold in subjects from Sweden.
Liu, Yanju; Naidu, Ravi; Ming, Hui; Dharmarajan, Rajarathnam; Du, Jianhua
2016-06-01
Extremely large amounts of red mud (bauxite residue) are generated globally every year from alumina refining industries, which are being disposed of on engineered landfills. The objective of this study is to investigate the effects of thermal treatments on red mud for development of utilisation strategies. Thermal treatments of red mud samples and their characterisations were investigated under inert (N2) and oxidative (air) conditions with and without sawdust addition at 200-600°C. After calcination, the resulting samples were analysed using thermogravimetric-infrared spectroscopy (TG-IR) for functional group transformations, thermogravimetric analysis (TGA) for thermal loss profiles and X-ray diffraction (XRD) for mineral transformations. The characterisation results showed that in N2 environment, boehmite in red mud was transferred to transition alumina at around 400°C while losing water from structural components. The addition of sawdust for incubation and calcination of red mud in air increased the surface area, whereas that in nitrogen atmosphere lead to reduction of hematite to magnetite at around 500°C. The incorporated carbon materials played a major role in increasing the surface area especially for pore size less than 2.5 nm. This treated red mud with altered mineral composition and improved properties for binding contaminants can be used for environmental remediation and in the process of metal recovery such as iron. © The Author(s) 2016.
Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic
USDA-ARS?s Scientific Manuscript database
The feasibility of catalytic and non-catalytic pyrolytic conversion of low value post-consumer high density polyethylene (HDPE) plastic into crude oil and subsequent distillation was explored. Translation of optimized conditions for catalytic and non-catalytic pyrolysis from TGA to a bench-scale sys...
Chemical Modification of Kraft Lignin: Effect on Chemical and Thermal Properties
Yao Chen; Nicole M. Stark; Zhiyong Cai; Charles R. Frihart; Linda F. Lorenz; Rebecca E. Ibach
2014-01-01
Esterified kraft lignins (KL) were prepared by reaction with maleic anhydride (MA), succinic anhydride (SA), and phthalic anhydride (PA) in acetone solutions. The esterified lignins were characterized using ATR-FTIR, solid state CP-MAS 13C NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PA...
Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A
2017-10-01
Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Crystal structure, spectral, thermal and dielectric studies of a new zinc benzoate single crystal
NASA Astrophysics Data System (ADS)
Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Rajendra Babu, K.
2012-11-01
Single crystals of zinc benzoate with a novel structure were grown in gel media. Sodium metasilicate of gel density 1.04 g/cc at pH 6 was employed to yield transparent single crystals. The crystal structure of the compound was ascertained by single crystal X-ray diffractometry. It was noted that the crystal belongs to monoclinic system with space group P21/c with unit cell parameters a = 10.669(1) Å, b = 12.995(5) Å, c = 19.119(3) Å, and β = 94.926(3)°. The crystal was seen to possess a linear polymeric structure along b-axis; with no presence of coordinated or lattice water. CHN analysis established the stoichiometric composition of the crystal. The existence of functional groups present in the single crystal system was confirmed by FT-IR studies. The thermal characteristic of the sample was analysed by TGA-DTA techniques, and the sample was found to be thermally stable up to 280 °C. The kinetic and thermodynamic parameters were also determined. UV-Vis spectroscopy corroborated the transparency of the crystal and revealed the optical band gap to be 4 eV. Dielectric studies showed decrease in the dielectric constant of the sample with increase in frequency.
Isolation and Characterization of Gramineae and Fabaceae Soda Lignins
Domínguez-Robles, Juan; Sánchez, Rafael; Espinosa, Eduardo; Savy, Davide; Mazzei, Pierluigi; Piccolo, Alessandro; Rodríguez, Alejandro
2017-01-01
Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin. PMID:28165411
Isolation and Characterization of Gramineae and Fabaceae Soda Lignins.
Domínguez-Robles, Juan; Sánchez, Rafael; Espinosa, Eduardo; Savy, Davide; Mazzei, Pierluigi; Piccolo, Alessandro; Rodríguez, Alejandro
2017-02-04
Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus , could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p -coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin.
NASA Astrophysics Data System (ADS)
Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.
2017-09-01
Liquefaction is known to be an effective method for converting biomass into a biopolyol. The biomass liquefaction of oil palm fruit waste (PFW) in the presence of liquefaction solvent/polyhydric alcohol (PA): polyethylene glycol 400 (PEG400) using sulfuric acid as catalyst was studied. For all experiments, the liquefaction was conducted at 150°C and atmospheric pressure. The mass ratio of OPFW to liquefaction solvents used in all the experiments was, 1/3. Thermogravimetric analyses (TGA) were used to analyze their biopolyol and residue behaviors. It was found that thermal stability of oil palm mesocarp fibre (PM), oil palm shell (PS) and oil palm kernel (PK) fibre exhibited the first degradation of hard segment at (232, 104, 230°C) and the second degradation of soft segment at (314, 226, 412°C) as compared to PM, PS and PK residue which (229, 102, 227°C) of hard segment and (310, 219, 299°C) of segment, respectively. This behavior of thermal degradation of the hard segment and soft segment of biopolyol was changes after undergo solvolysis liquefaction process. The result analysis showed that the resulting biopolyol and its residue was suitable monomer for polyurethane (PU) synthesis for the production of PU foams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhukumar, R.; Asha, S.; Rao, B. Lakshmeesha
The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.
A Comparative Study of Very High Burning Rate Materials - HIVELITE compositions 300511 and 300435
1982-08-01
explosives and more or as sensitive as RDX and HMX . Thermal Sensitivity Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA) Simultaneous...impact than Comp B end RDX but is less sensitive than lead azide. HIVELITE 30051i on the other hand, is less sensitive than Comp B and RDX on the ERL...represents the alpha to beta phase transition of KNO 3 . This endotherm is followed by four exotherms with peaks at 538 K (265*C), 567 K (2940C), 598 K
Influence of electron irradiation on the structural and thermal properties of silk fibroin films
NASA Astrophysics Data System (ADS)
Asha, S.; Sangappa, Sanjeev, Ganesh
2015-06-01
Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.
NASA Astrophysics Data System (ADS)
Kapoor, Seema; Batra, Uma; Kohli, Suchita
2011-12-01
Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting media for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 °C and sintered to different temperatures (200 °C, 400 °C, 600 °C, 800 °C, 1000 °C and 1200 °C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 °C to 1000 °C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 °C without any additional phase other than HAP, whereas peak of β-TCP (tricalcium phosphate) was observed at 1200 °C. Photomicrograph of TEM showed that the nanopowder sintered at 600 °C is composed of hydroxyapatite nanoparticles (26.0-45.6 nm), which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the synthesized nano-HAP powder. The BET surface area decreased with increase in sintering temperature.
Investigation on Thermal Properties of Kenaf Fibre Reinforced Polyurethane Bio-Composites
NASA Astrophysics Data System (ADS)
Athmalingam, Mathan; Vicki, W. V.
2018-01-01
This research focuses on the effect of Kenaf fibre on thermal properties of Polyurethane (PU) reinforced kenaf bio-composites. The samples were prepared using the polymer casting method with different percentages of kenaf fibre content (5 wt%, 10 wt%, 15 wt%). The thermal properties of Kenaf/PU bio-composite are determined through the Thermogravimetric Analysis and Differential Scanning Calorimeter test. The TGA results revealed that 10 wt% Kenaf/PU bio-composite appeared to be more stable. DSC results show that the glass transition temperature (Tg) value of 10 wt% Kenaf/PU composite is significant to pure polyurethane. It can be said that the thermal stability of 10 wt% Kenaf/PU bio-composite exhibits higher thermal stability compared to other samples.
NASA Astrophysics Data System (ADS)
Ribeiro, Jose; Mendes, Ricardo; Tavares, Bruno; Louro, Cristina
2013-06-01
In this work, features of the thermal and detonation behavior of compositions resulting from the mixture of single and double based gun powder within ammonium nitrate (AN) based emulsion explosives are shown. That includes results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential scanning calorimetry [DSC] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the ``gap-test''. DSC/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical specimens and so of the capability of the composition components. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with gun powder than for the sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have shown to be higher for the powdered compositions than for the pure emulsion explosive. Shock sensitivity assessment have ended-up with a slightly bigger sensitivity for the compositions with double based gun powder when compared to the single based compositions or to the pure emulsion.
Martínez-Casado, Francisco J; Ramos-Riesco, Miguel; Rodríguez-Cheda, José A; Cucinotta, Fabio; Matesanz, Emilio; Miletto, Ivana; Gianotti, Enrica; Marchese, Leonardo; Matěj, Zdeněk
2016-09-06
Lead(II) acetate [Pb(Ac)2, where Ac = acetate group (CH3-COO(-))2] is a very common salt with many and varied uses throughout history. However, only lead(II) acetate trihydrate [Pb(Ac)2·3H2O] has been characterized to date. In this paper, two enantiotropic polymorphs of the anhydrous salt, a novel hydrate [lead(II) acetate hemihydrate: Pb(Ac)2·(1)/2H2O], and two decomposition products [corresponding to two different basic lead(II) acetates: Pb4O(Ac)6 and Pb2O(Ac)2] are reported, with their structures being solved for the first time. The compounds present a variety of molecular arrangements, being 2D or 1D coordination polymers. A thorough thermal analysis, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was also carried out to study the behavior and thermal data of the salt and its decomposition process, in inert and oxygenated atmospheres, identifying the phases and byproducts that appear. The complex thermal behavior of lead(II) acetate is now solved, finding the existence of another hydrate, two anhydrous enantiotropic polymorphs, and some byproducts. Moreover, some of them are phosphorescent at room temperature. The compounds were studied by TGA, DSC, X-ray diffraction, and UV-vis spectroscopy.
Bajestani, Maryam Ijadi; Mousavi, Seyyed Mohammad; Jafari, Arezou; Shojaosadati, Seyed Abbas
2017-03-01
Screening among some new isolated bacteria from oily samples, which were capable of producing extracellular polymeric substances (EPSs), one was selected and identified as Bacillus sonorensis. An efficient micro-total analysis approach was carried out to assay the produced EPSs by this bacterium. Sucrose and yeast concentrations as carbon and nitrogen sources, respectively, sodium salt concentration and initial pH were selected to be the variables in experimental design. Production of EPS in optimal condition was increased by 5.3 times. Further EPS purification was carried out to identify the biopolymers. The bacteria produced high molecular weight biopolymers with a number average molecular weight (M̅n) of 9.1×10 6 g/mol determined by gel permeation chromatography (GPC). Biopolymer characterization demonstrated the biosynthesis of both polysaccharides and polyamides by the bacteria. For the biopolymer blend, thermal properties and morphological characteristics were studied using simultaneous differential scanning calorimetric and thermal gravimetric analyses (DSC/TGA) and field emission scanning electron microscope (FESEM) analyses. Finally, the biopolymer blend was injected into an oil saturated glass micro model to study the enhancement of oil recovery by biopolymer flooding in contrast with water flooding. It was found that oil recovery increased by 36%, from 23% using water flooding to 59% for biopolymer injection. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermal degradation of ternary blend films containing PVA/chitosan/vanillin
NASA Astrophysics Data System (ADS)
Kasai, Deepak; Chougale, Ravindra; Masti, Saraswati; Narasgoudar, Shivayogi
2018-05-01
The ternary chitosan/poly (vinyl alcohol)/vanillin blend films were prepared by solution casting method. The influence of equal weight percent of poly (vinyl alcohol) and vanillin on thermal stability of the chitosan blend films were investigated by using thermogravimetric analysis (TGA). The kinetic parameters such as enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) in the first and second decomposition steps based on the thermogravimetric data were calculated. The thermal stabilities of the blend films were confirmed by thermodynamic parameters obtained in the activation energies, which indicated that increase in the equal weight percent of PVA/vanillin decreased the thermal stability of the chitosan film.
Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dali; Hubbard, Kevin Mark; Devlin, David James
To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in itsmore » composite form.« less
Low-Dielectric Constant Polyimide Nanoporous Films: Synthesis and Properties
NASA Astrophysics Data System (ADS)
Mehdipour-Ataei, S.; Rahimi, A.; Saidi, S.
2007-08-01
Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. Polyimides derived from pyromellitic dianhydride with new diamines (4BAP and BAN) were used as the matrix material and functionalized poly(propylene glycol) oligomers were used as a thermally labile constituent. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H-NMR, DSC, TGA, SEM, TEM, and dielectric constant.
NASA Astrophysics Data System (ADS)
Mohammed, M.; Rozyanty, A. R.; Beta, B. O.; Adam, T.; Osman, A. F.; Salem, I. A. S.; Dahham, O. S.; Al-Samarrai, M. N.; Mohammed, A. M.
2017-10-01
Unprecedented growing on environmental concern has put research on completive driven effort to quest for new material in various application, the effort toward producing thermally stable polymer is ever gaining considerable interest. Thus, this study proposed the integration of glass fiber with kenaf based polymer to improve thermal properties. Based on the TGA and DSC results, the composites show slow and steady initial weight loss until major weight loss at 360°C. Thus, with incorporation of glass fiber extend region of degradation until 260-360 °Cshow no exothermic or endothermic changes, this reflected that the composites thermally stability have been improved.
NASA Technical Reports Server (NTRS)
Huff, Timothy L.
2002-01-01
Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.
Thermogravimetric analysis of forest understory grasses
Thomas Elder; John S. Kush; Sharon M. Hermann
2011-01-01
Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...
Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends
USDA-ARS?s Scientific Manuscript database
A blend of poly(lactic acid) (PLA) (75% by weight) and poly(3-hydroxybutyrate) (PHB) (25% by weight) with a polyester plasticizer (Lapol 108) at two different concentrations (5 and 7% by weight per 100 parts of the blends) were investigated by TGA, DSC, XRD, SEM, mechanical testing and biodegradatio...
2014-11-07
of novel papers TGA Student project; synthesis. Moringa Seed Extract for novel coagulant for water treatment Biopolymer...Reason for Use Dr. Justin Saul Keratin hydro_gel for novel adsorbent DSC Senior Design; synthesis. Education Dr. Jason Moringa Seed Extract for novel
Microvascular Autonomic Composites
2012-01-06
thermogravimetric analysis (TGA) was employed. The double wall allowed for increased thermal stability of the microcapsules, which was...fluorescent nanoparticles (Berfield et al. 2006). Digital Image Correlation (DIC) is a data analysis method, which applies a mathematical...Theme IV: Experimental Assessment & Analysis 2.4.1 Optical diagnostics for complex microfluidic systems pg. 50 2.4.2 Fluorescent thermometry
NASA Technical Reports Server (NTRS)
Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)
2000-01-01
White Hypalon paint is brush-applied as a moisture barrier coating over cork surfaces on each of the two Space Shuttle SRBs. Fine cracks have been observed in the Hypalon coating three times historically on laboratory witness panels, but never on flight hardware. Samples of the cracked and standard ("good") Hypalon were removed from witness panel cork surfaces, and were tested in 1998 by Thermogravimetric Analysis (TGA), TMA and Differential Scanning Calorimetry (DSC) thermal analysis techniques. The TGA data showed that at 700C, where only paint pigment solids remain, the cracked material had about 9 weight percent more material remaining than the standard material, probably indicating incomplete mixing of the paint before it was brush-applied to produce the cracked material. Use of the TMA film/fiber technique showed that the average modulus (stiffness) vs. temperature was about 3 to 6 times higher for the cracked material than for the standard material. The TMA data also showed that an increase in coating thickness for the cracked Hypalon was not a factor in the anomaly.
Mallakpour, Shadpour; Darvishzadeh, Marzieh
2018-03-01
In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Diniz, Luan F.; Souza, Matheus S.; Carvalho, Paulo S.; da Silva, Cecilia C. P.; D'Vries, Richard F.; Ellena, Javier
2018-02-01
Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH-PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH-PNBA and INH-PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha
2016-05-23
Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less
Structural and Spectroscopic Studies of Sm3+/CdS Nanocrystallites in Sol-Gel TiO2-ZrO2 Matrix
NASA Astrophysics Data System (ADS)
Karthika, S.; Prathibha, Vasudevan; Ann, Mary K. A.; Viji, Vidyadharan; Biju, P. R.; Unnikrishnan, N. V.
2014-02-01
A sol-gel method was used to prepare titania-zirconia matrices doped with Sm3+/CdS nanocrystallites. The structural properties of the matrices were characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Fourier-transform infrared spectroscopy studies. The thermal stability of the material was determined by TGA/DTA analysis. The absorption spectrum shows the characteristic peaks of the Sm3+ ions and the absorption peak corresponding to the CdS nanocrystallites. The optical bandgap and size of the CdS nanoparticles were calculated from the absorption spectrum. From TEM, the interplanar distance ( d) was estimated to be 3.533 Å, which matches with the (1 0 0) plane of bulk CdS. The measurements yield a nanocrystallite size of around 7.8 nm. The optical absorption and emission spectra confirmed the formation of CdS nanoparticles along with samarium ions in the titania-zirconia matrices. The fluorescence intensity of the samarium ions was found to be greatly enhanced by codoping with CdS nanocrystallites.
Pan, Ying; Wang, Wei; Liu, Longxiang; Ge, Hua; Song, Lei; Hu, Yuan
2017-08-15
Bio-based and phosphorus-free coating was fabricated by layer-by-layer assembly method to obtain the flame retardant cotton fabric. For the first time, the modified cotton fabrics were prepared by utilizing positively charged polyethylenimine and negatively charged alginate together with subsequent crosslinking of barium, nickel and cobalt ions. Scanning electron microscopy and energy-dispersive X-ray demonstrated that the metal ions crosslinked coating was successfully constructed on the substrate. The thermal stability and flame retardancy were investigated by thermogravimetric analysis (TGA) and horizontal flame tests. TGA results showed that the degradation of the coated cotton fabrics were retarded at high temperature and the char residue of the cotton fabrics were improved after covered with the barium, nickel and cobalt ions crosslinked coatings. Furthermore, the fire resistance of cotton-Ba sample was enhanced significantly compared with the untreated sample, as evidenced by the obvious reduction (28%) of flame spread rate and complete char residue. Finally, the washing durability of coating on the fabric was enhanced after metal ions crosslinked with alginate based coating. Copyright © 2017. Published by Elsevier Ltd.
Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar
2015-06-01
Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.
Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra
2010-06-01
This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suresh Kumar, G. S.; Seethalakshmi, P. G.; Sumathi, D.; Bhuvanesh, N.; Kumaresan, S.
2013-03-01
Caffeine:1-naphthoxyacetic acid [(caf)(1-naa)] and caffeine:2-naphthoxyacetic acid [(caf)(2-naa)] cocrystals have been synthesized and single crystals were grown by slow evaporation technique. The structures of the grown crystals were elucidated using single crystal X-ray diffraction analysis. Both the cocrystals belong to the monoclinic crystallographic system with space group P21/c, Z = 4, and α = γ = 90°, whereas β = 111.4244(18)° for [(caf)(1-naa)] and β = 109.281(6)° for [(caf)(2-naa)]. The crystal packing is predominantly stabilized by hydrogen bonding and π-π stacking interactions. The presence of unionized -COOH functional group in both the cocrystals was identified by FTIR spectral analysis. Thermal behavior and stability of both the cocrystals were studied by TGA/DTA analyses. Solvent-free formation of these cocrystals was confirmed by powder X-ray diffraction analyses. The theoretical energy of cocrystals showed that the formers have higher energy than cocrystals 1 and 2. DPPH radical scavenging activity of cocrystals 1 and 2 is slightly greater than the formers.
NASA Astrophysics Data System (ADS)
Vora, Asad
Polymers such as polyvinyl alcohol, chitosan, and starch have excellent bio-compatible and bio-degradable properties. Their applications in drug delivery, wound dressings, artificial cartilage materials have increased dramatically due to their much sought-after renewable and biological properties. Hence, polyvinyl alcohol has been chosen for this study to test the feasibility of polyvinyl alcohol nanofibers towards the manufacturable wound dressings. Polyvinyl alcohol nanofibers are prepared via electrospinning technique, where different wt% polyvinyl alcohol solutions are prepared. The fibers were optimized by varying important electrospninning parameters which include voltage applied, the collector-needle distance and flow rate. Morphology and structure of the electrospun fibers are analysed using scanning electron microscopy and fourier transform infrared respectively. The diameter of fibers obtained was found to be in the range of 100 nm-160 nm. Thermal stability was examined using DSC and TGA characterization technique and fibers are found to be stable up to 220oC. Finally, each weight sample of PVA fibers are analysed by goniometer for wettability and is found to be hydrophilic.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa
2014-11-01
Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Sherif, Yousery E.
2015-02-01
Three new metal complexes derived from Pd(II), Ru(III) and Zr(IV) with (E)-2-amino-N-(1-(2-aminophenyl)ethylidene)benzohydrazide (2-AAB) have been synthesized. The isolated complexes were characterized by elemental analyses, FT-IR, UV-Vis, ES-MS, 1H NMR, XRD, thermal analyses (TGA and DTA) and conductance. The morphology and the particle size were determined by transmittance electron microscope (TEM). The results showed that, the ligand coordinates to Pd(II) in the enol form, while it coordinates to Ru(III) and Zr(IV) in the keto form. A square planar geometry is suggested for Pd(II) complex and octahedral geometries are suggested for Ru(III) and Zr(IV) complexes. The optical band gaps of the isolated complexes were measured and indicated the semi-conductivity nature of the complexes. The anti-inflammatory and analgesic activities of the ligand and its complexes showed that, Ru(III) complex has higher effect than the well known drug "meloxicam".
Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis.
Aslan, Dilan Irmak; Özoğul, Buğçe; Ceylan, Selim; Geyikçi, Feza
2018-06-01
This study investigates the pyrolysis of Medium Density Fiberboard (MDF) as a potential waste management solution. Thermal behaviour of MDF was analysed via TG/DSC. The primary decomposition step occurred between 190 °C and 425 °C. Evolved gaseous products over this step were evaluated by a FTIR spectrometer coupled with TGA. Peaks for phenolic, alcohols and aldehydes were detected at the maximum decomposition temperature. Py-GC/MS analysis revealed phenols, ketones and cyclic compounds as the primary non-condensable pyrolysis products. The kinetics of pyrolysis were investigated by the widely applied Distributed Activation Energy Model, resulting in an average activation energy and pre-exponential factor of 127.40 kJ mol -1 and 8.4E+11. The results of this study suggest that pyrolyzing MDF could potentially provide renewable fuels and prevent environmental problems related with MDF disposal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sharma, Ashok; Liu, Xiang; Hadley, David; Hagopian, William; Liu, Edwin; Chen, Wei-Min; Onengut-Gumuscu, Suna; Simell, Ville; Rewers, Marian; Ziegler, Anette-G.; Lernmark, Åke; Simell, Olli; Toppari, Jorma; Krischer, Jeffrey P.; Akolkar, Beena; Rich, Stephen S.; Agardh, Daniel; She, Jin-Xiong
2016-01-01
Objectives There are significant geographical differences in the prevalence and incidence of celiac disease that cannot be explained by HLA alone. More than 40 loci outside of the HLA region have been associated with celiac disease. We investigated the roles of these non-HLA genes in the development of tissue transglutaminase autoantibodies (tTGA) and celiac disease in a large international prospective cohort study. Methods A total of 424,788 newborns from the US and European general populations and first-degree relatives with type 1 diabetes were screened for specific HLA genotypes. Of these, 21,589 carried 1 of the 9 HLA genotypes associated with increased risk for type 1 diabetes and celiac disease; we followed 8676 of the children in a 15 y prospective follow-up study. Genotype analyses were performed on 6010 children using the Illumina ImmunoChip. Levels of tTGA were measured in serum samples using radio-ligand binding assays; diagnoses of celiac disease were made based on persistent detection of tTGA and biopsy analysis. Data were analyzed using Cox proportional hazards analyses. Results We found 54 single-nucleotide polymorphisms (SNPs) in 5 genes associated with celiac disease (TAGAP, IL18R1, RGS21, PLEK, and CCR9) in time to celiac disease analyses (10−4>P>5.8x10−6). The hazard ratios (HR) for the SNPs with the smallest P values in each region were 1.59, 1.45, 2.23, 2.64, and 1.40, respectively. Outside of regions previously associated with celiac disease, we identified 10 SNPs in 8 regions that could also be associated with the disease (P<10−4). A SNP near PKIA (rs117128341, P = 6.5x10−8, HR = 2.8) and a SNP near PFKFB3 (rs117139146, P<2.8x10−7, HR = 4.9) reached the genome-wide association threshold in subjects from Sweden. Analyses of time to detection of tTGA identified 29 SNPs in 2 regions previously associated with celiac disease (CTLA4, P = 1.3x10−6, HR = 0.76 and LPP, P = 2.8x10−5, HR = .80) and 6 SNPs in 5 regions not previously associated with celiac disease (P<10−4); non-HLA genes are therefore involved in development of tTGA. Conclusions In conclusion, using a genetic analysis of a large international cohort of children, we associated celiac disease development with 5 non-HLA regions previously associated with the disease and 8 regions not previously associated with celiac disease. We identified 5 regions associated with development of tTGA. Two loci associated with celiac disease progression reached a genome-wide association threshold in subjects from Sweden. PMID:27015091
Influent of Borax Decahydrate Composition as Additional Flux into Stoneware Bodies
NASA Astrophysics Data System (ADS)
Bakil, Siti Natrah Abd; Hussin, Rosniza; Bakar Aramjat, Abu
2017-08-01
Stoneware is vitrified, has less porosity and requires high sintering temperature. The influent of borax decahydrate composition at sintering temperature 1050°C and 1150°C on the thermal analysis, fracture surface, linear shrinkage, water absorption and modular of rapture (MOR) were investigated. Rectangular sample were produced by uniaxially pressing at 40MPa. The thermal behavior was determined by thermogravimetric and different thermal analysis (TGA-DTA). The Scanning electron microscopy (SEM) was used for fracture surface analysis. The water absorption (%) of the sample were determined using Archimedes’ method. The experimental result showed that content of borax decahydrate have influent the properties of stoneware bodies.
Non-flammable polyphosphonate electrolytes
NASA Astrophysics Data System (ADS)
Dixon, Brian G.; Morris, R. Scott; Dallek, Steven
This research is directed towards the development of safe, and thermally stable polymeric electrolytes. Advanced electrolytes are described, including thermal test data, which are ionically highly conductive, and non-flammable. These novel multi-heteropolymer electrolytes represent a significant advance in the design of high-performance rechargeable lithium systems that possess superior safety and handling characteristics. Representative results are shown by the figures contained in this text. These DSC/TGA results compare a typical liquid carbonate-based electrolyte system, ethylene carbonate and ethyl methyl carbonate, with novel polyphosphonates as synthesized in this program. These tests were performed with the electrolytes in combination with lithium metal, and the impressive relative thermal stability of the phosphonates is apparent.
Thermal and mechanical analysis of PVA / sulfonated carbon nanotubes composite
NASA Astrophysics Data System (ADS)
Yadav, Vikrant; Sharma, Prem P.; Rajput, Abhishek; Kulshrestha, Vaibhav
2018-04-01
Nanocomposites of polyvinyl alcohol (PVA) and sulfonated carbon nanotubes (s-CNT) with enhanced properties were synthesized successfully. Effect of different amount of sulfonated nanotubes on thermal and mechanical properties of resultant nanocomposites derived from s-CNT and PVA were studied. Structural analysis for functionalization of CNT was done by using FTIR spectra. Thermal and mechanical analysis were done by using TGA, DSC and UTM. Nanocomposite containing s-CNT shows higher elastic moduli, higher melting temperature in consort with lower weight loss at same temperature, compared with pristine PVA. The novelty of this work is to use PVA/s-CNT based composites with improved thermomechanical properties in different nanotechnologies.
Chern, Mawsheng; Bai, Wei; Ruan, Deling; Oh, Taeyun; Chen, Xuewei; Ronald, Pamela C
2014-06-11
The nonexpressor of pathogenesis-related genes 1, NPR1 (also known as NIM1 and SAI1), is a key regulator of SA-mediated systemic acquired resistance (SAR) in Arabidopsis. In rice, the NPR1 homolog 1 (NH1) interacts with TGA transcriptional regulators and the Negative Regulator of Resistance (NRR) protein to modulate the SAR response. Though five NPR1 homologs (NHs) have been identified in rice, only NH1 and NH3 enhance immunity when overexpressed. To understand why NH1 and NH3, but not NH2, NH4, or NH5, contribute to the rice immune response, we screened TGA transcription factors and NRR-like proteins for interactions specific to NH1 and NH3. We also examined their co-expression patterns using publicly available microarray data. We tested five NHs, four NRR homologs (RHs), and 13 rice TGA proteins for pair-wise protein interactions using yeast two-hybrid (Y2H) and split YFP assays. A survey of 331 inter-family interactions revealed a broad, complex protein interaction network. To investigate preferred interaction partners when all three families of proteins were present, we performed a bridged split YFP assay employing YFPN-fused TGA, YFPC-fused RH, and NH proteins without YFP fusions. We found 64 tertiary interactions mediated by NH family members among the 120 sets we examined. In the yeast two-hybrid assay, each NH protein was capable of interacting with most TGA and RH proteins. In the split YFP assay, NH1 was the most prevalent interactor of TGA and RH proteins, NH3 ranked the second, and NH4 ranked the third. Based on their interaction with TGA proteins, NH proteins can be divided into two subfamilies: NH1, NH2, and NH3 in one family and NH4 and NH5 in the other.In addition to evidence of overlap in interaction partners, co-expression analyses of microarray data suggest a correlation between NH1 and NH3 expression patterns, supporting their common role in rice immunity. However, NH3 is very tightly co-expressed with RH1 and RH2, while NH1 is strongly, inversely co-expressed with RH proteins, representing a difference between NH1 and NH3 expression patterns. Our genome-wide surveys reveal that each rice NH protein can partner with many rice TGA and RH proteins and that each NH protein prefers specific interaction partners. NH1 and NH3 are capable of interacting strongly with most rice TGA and RH proteins, whereas NH2, NH4, and NH5 have weaker, limited interaction with TGA and RH proteins in rice cells. We have identified rTGA2.1, rTGA2.2, rTGA2.3, rLG2, TGAL2 and TGAL4 proteins as the preferred partners of NH1 and NH3, but not NH2, NH4, or NH5. These TGA proteins may play an important role in NH1- and NH3-mediated immune responses. In contrast, NH4 and NH5 preferentially interact with TGAL5, TGAL7, TGAL8 and TGAL9, which are predicted to be involved in plant development.
Is It Necessary to Dry Primary Standards before Analysis?
ERIC Educational Resources Information Center
Spraggins, Jeffrey M., II; Williams, Theodore R.
2005-01-01
The thermal gravimetric analysis (TGA) data suggests that the quantity of volatile components in primary standards is less than 1% of the initial weight and differential scanning calorimetry (DSC) data shows that water present in the same chemicals is below the limit of detection of the instrumentation. This suggests that the 1-2 hour drying…
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-01-01
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing. PMID:28772860
Optical absorption and thermal stability study of Cu doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Varunkumar, K.; Ethiraj, Anita Sagadevan; Kechiantz, Ara
2018-05-01
This work reports variation of Cu doping concentration in NiO nanoparticles (NiO:Cu NPs) synthesized via chemical co-precipitation from solution by using NiCl2.6H2O as precursor, CuSO4.5H2O as dopant and NaOH as surfactant. We studied optical and thermal stability of prepared NiO:Cu NPs by UV-Vis absorbance, Diffuse Reflectance Spectroscopy (DRS), Atomic Absorption Spectroscopy (AAS), and Thermo Gravimetric/Differential Scanning Calorimetry (TGA/DSC) analyses. Optical absorption data of NiO:Cu NPs indicated strong absorption peaks shifted towards blue with respect to the peak of undoped NiO NPs due to quantum confinement effect. The bandgap estimated via Tauc plot first increased from 3.32eV (undoped NiO NPs) to 3.37 eV (8 at % of Cu in NiO NPs) and further increase of Cu doping to 10 at% reduced the bandgap to 3.35 eV. Such behavior of the bandgap clearly indicates that the size of NiO NPs first reduces with Cu doping up to 8 at % and then increases with further Cu doping to 10 at %. This behavior of reduction in particle size with increased doping can be attributed to the dislocation density and microstrain developed in NiO:Cu NPs. Thermal stability analysis demonstrated that in addition undoped NiO NPs, all NiO:Cu nanoparticle samples exhibited good thermal stability.
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-05-04
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.
Effective Identification on Adulteration of Polyethylene With Post-consumer Ones
NASA Astrophysics Data System (ADS)
Zhao, S.; Qin, W. B.; Guo, J. F.; Liu, J.; Wang, Y. L.; Zhang, W.; Zhao, X. Y.; Wang, L.
2018-05-01
This paper mainly describes the effective identification of the adulteration of polyethylene with post-consumer ones. Degradation would be happened when multiple processings occurred. The melt flow index (MFI) analysis, thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC) were used to characterize the processability and thermal stabilities of virgin polyethylene and recycled polyethylene which adulterated post-consumer PE. The results indicated that MFI of PE increased with the increasing doping content. Adulterating reclaimed PE had effects on the thermal stability of PE, which led to lower thermal decomposition temperature. Melting peak of recycled LLDPE varied from merely single to double, which differently compared differently with virgin LLDPE. Besides, with the doping content of post-consumer LDPE, the melting temperature had a decreasing tendency.
NASA Astrophysics Data System (ADS)
Asha, S.; Sangappa, Naik, Prashantha; Chandra, K. Sharat; Sanjeev, Ganesh
2014-04-01
The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size
NASA Astrophysics Data System (ADS)
Samsudin, Dalina; Ismail, Hanafi; Othman, Nadras; Hamid, Zuratul Ain Abdul
2017-07-01
A study of thermal properties resulting from the utilization of Glut Palmitate (GP) on the silica filled high density polyethylene (HDPE) composites was carried out. The composites with the incorporation of GP at 0.5, 1.0, 2.0 and 3.0 phr were prepared by using an internal mixer at the temperature 180 °C and the rotor speed of 50 rpm. The thermal behaviours of the composites were then investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the crystallinity and the thermal stability of the composites increased with the incorporation of GP. The highest crystallinity contents and decomposition temperatures were observed at the 1 phr GP loading.
Liu, Yue; Li, Yueming; Li, Xue-Mei; He, Tao
2013-12-10
Silanization of magnetic ironoxide nanoparticles with (3-aminopropyl)triethoxylsilane (APTES) is reported. The kinetics of silanization toward saturation was investigated using different solvents including water, water/ethanol (1/1), and toluene/methanol (1/1) at different reaction temperature with different APTES loading. The nanoparticles were characterized by Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermal gravimetric analysis (TGA). Grafting density data based on TGA were used for the kinetic modeling. It is shown that initial silanization takes place very fast but the progress toward saturation is very slow, and the mechanism may involve adsorption, chemical sorption, and chemical diffusion processes. The highest equilibrium grafting density of 301 mg/g was yielded when using toluene/methanol mixture as the solvent at a reaction temperature of 70 °C.
Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters
NASA Astrophysics Data System (ADS)
Zhu, Min; Zhou, Zhou, Shiming; Yao, Chuanhao; Liao, Lingwen; Wu, Zhikun
2014-11-01
In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting finding is that the reduction-resistant Ni6(SCH2CH2Ph)12 exhibits remarkably higher catalytic activity than a well-known catalyst, Au25(SCH2CH2Ph)18, toward the reduction of 4-nitrophenol at low temperature (e.g., 0 °C). This work will help stimulate more research on the properties and applications of less noble metal nanoclusters.In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting finding is that the reduction-resistant Ni6(SCH2CH2Ph)12 exhibits remarkably higher catalytic activity than a well-known catalyst, Au25(SCH2CH2Ph)18, toward the reduction of 4-nitrophenol at low temperature (e.g., 0 °C). This work will help stimulate more research on the properties and applications of less noble metal nanoclusters. Electronic supplementary information (ESI) available: Experimental section, detailed structural data, MS analyses of M-SCH2CH2Ph complexes, stability study of Ni6 and TGA analysis of Au25(SCH2CH2Ph)18. See DOI: 10.1039/c4nr04981k
Growth and characterization of Methyl 2-amino-5-bromobenzoate crystal for NLO applications
NASA Astrophysics Data System (ADS)
Parthasarathy, M.; Gopalakrishnan, R.
2012-11-01
Good quality single crystal of organic Methyl 2-amino-5-bromobenzoate (M2A5B) was grown using slow evaporation solution growth technique. The grown crystal was confirmed by single crystal X-ray diffraction. The functional groups and vibrational frequencies were identified using FT-IR and FT-Raman spectral analyses. The presence of hydrogen and carbon atoms in the grown sample was confirmed with proton and carbon NMR spectral studies. The optical energy band gap of the title compound is found to be 2.7 eV from the optical transmission spectra. The refractive indices nx, ny, and nz were found to be 1.569, 1.587 and 1.600, respectively using Brewster's angle method. The melting point of the material obtained with melting point apparatus is 74 °C. Thermal stability of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The mechanical behaviour of the grown crystal was analyzed with Vicker's microhardness tester. The particle size dependent second harmonic generation efficiency for M2A5B was evaluated by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching.
NASA Astrophysics Data System (ADS)
Hsu, Chun-Tsung; Hu, Chi-Chang
2013-11-01
A simple and scalable process has been developed for synthesizing spinel NiCo2O4 nanocrystals through a thermal decomposition method. The introduction of hexadecyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br) into precursor solutions significantly enhances the homogeneity and porosity of spinel NiCo2O4. The porosity and high specific surface area of NiCo2O4 preserves the brilliant pseudo-capacitive performances due to providing smooth paths for electrolyte penetration and ion diffusion into inner active sites. Morphologies and microstructures of the active materials are examined by transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses. Thermogravimetric analysis (TGA) is used to evaluate the thermal properties of precursor solutions. The electrochemical performances of NiCo2O4 are systematically characterized by cyclic voltammetry and charge-discharge tests. Asymmetric supercapacitors are assembled with these brilliant binary oxides as the positive electrode and activated carbon as the negative electrode. The highly porous NiCo2O4 exhibits superior capacitive performances, i.e., high specific capacitance (764 F g-1 at 2 mV s-1) and long cycle life.
Ren, Zhongjie; Sun, Dianming; Li, Huihui; Fu, Qiang; Ma, Dongge; Zhang, Jianming; Yan, Shouke
2012-03-26
A ladder polysilsesquioxanes with side chain of dibenzothiophene groups (BS-LPSQ) was successfully synthesized. The ladder structure of BS-LPSQ was characterized by MALDI-TOF MS, XRD, and (1)H NMR spectroscopy. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and spectroscopic analyses revealed that the BS-LPSQ has good film-forming ability, high thermal and morphological stability, and good miscibility to the dopant iridium bis(4,6-difluorophenyl)pyridinato-N,C(2)-picolinate (FIrpic), high triplet energy, and a wide bandgap. In addition, compared with the ringed polysiloxane BS-PSQ phosphorescent host material reported previously, the ladder structure of BS-LPSQ has not only a higher thermal resistance, but also could prevent molecular aggregation and effectively avoid quenching of fluorescence. Thus, the BS-LPSQ may be used as a better host for the blue-light-emitting iridium complex FIrpic. The performance of the electrophosphorescent device, based on the ladder BS-LPSQ as the active layer, is superior to that of ringed BS-PSQ and any other polyhedral oligomeric silsesquioxane (POSS)-based or polymer host materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kushawaha, S. K.; Dani, R. K.; Bharty, M. K.; Chaudhari, U. K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.
2014-04-01
A new Zn(II) complex [Zn(pbth)2] (where Hpbth = N-picolinoyl-N‧-benzothioylhydrazide) has been synthesized and characterized by elemental analyses, IR, UV-Visible and single crystal X-ray data. The distorted octahedral complex [Zn(pbth)2] crystallizes in monoclinic system with space group C2/c and is stabilized by various types of inter and intramolecular extended hydrogen bonding providing supramolecular framework. The optimized molecular geometry of N-picolinoyl-N‧-benzothioylhydrazide (Hpbth) and the zinc complex in the ground state have been calculated by using the DFT method using B3LYP functional with 6-311 G(d,p){C,H,N,O,S}/Lanl2DZ basis set. The results of the optimized molecular geometry are presented and compared with the experimental X-ray diffraction data. In addition, quantum chemical calculations of Hpbth and the complex, molecular electrostatic potential (MEP), contour map and frontier molecular orbital analysis were performed. The solid state electrical conductivity and thermal behaviour (TGA) of the complex were investigated. The bioefficacy of the complex has been examined against the growth of bacteria in vitro to evaluate its anti-microbial potential.
X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications.
Tijani, Mansour Mohammedramadan; Aqsha, Aqsha; Mahinpey, Nader
2018-04-01
Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al 2 O 3 , CeO 2 , TiO 2 , ZrO 2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.
Kwon, Eilhann; Castaldi, Marco J
2009-08-01
The thermal decomposition of waste tires has been characterized via thermo-gravimetric analysis (TGA) tests, and significant mass loss has been observed between 300 and 500 degrees C. A series of gas chromatography-mass spectrometer (GC-MS) measurements, in which the instrument was coupled to a TGA unit, have been carried out to investigate the thermal degradation mechanisms as well as the air pollutant generation including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs) in a nitrogen atmosphere. In order to understand fundamental information on the thermal degradation mechanisms of waste tires, the main constituents of tires, poly-isoprene rubber (IR) and styrene butadiene rubber (SBR), have been studied under the same conditions. All of the experimental work indicated that the bond scission on each monomer of the main constituents of tires was followed by hydrogenation and gas phase reactions. This helped to clarify the independent pathways and species attributable to IR and SBR during the pyrolysis process. To extend that understanding to a more practical level, a flow-through reactor was used to test waste tire, SBR and IR samples in the temperature range of 500-800 degrees C at a heating rate of approximately 200 degrees C. Lastly, the formation of VOCs (approximately 1-50 PPMV/10 mg of sample) and PAHs (approximately 0.2-7 PPMV/10 mg of sample) was observed at relatively low temperatures compared to conventional fuels, and its quantified concentration was significantly high due to the chemical structure of SBR and IR. The measurement of chemicals released during pyrolysis suggests not only a methodology for reducing the air pollutants but also the feasibility of petrochemical recovery during thermal treatment.
Maktedar, Shrikant S; Avashthi, Gopal; Singh, Man
2017-01-01
The new sonochemical approach for simultaneous reduction and direct functionalization of graphene oxide (GrO) has been developed. The GrO was functionalized with 2-Aminobenzoxazole (2-ABOZ) in twenty min with complete deletion of hazardous steps. The significance of ultrasound was exemplified with the comparative conventional methods. The newly prepared f-(2-ABOZ)GrO was extensively characterized with near edge X-ray absorption fine structure (NEXAFS) spectroscopy, 13 C solid state NMR, XPS, XRD, HRTEM, SAED, AFM, Raman, UV-vis, FTIR and TGA. The thermal stability of f-(2-ABOZ)GrO was confirmed with total percentage weight loss in TGA. The biological activity of f-(2-ABOZ)GrO was explored with MCF-7 and Vero cell lines. The inherent cytotoxicity was evaluated with SRB assay at 10, 20, 40 and 80μgmL -1 . The estimated cell viabilities were >78% with f-(2-ABOZ) GrO. A high cytocompatibility of f-(2-ABOZ)GrO was ensured with in vitro evaluation on living cell lines, and low toxicity of f-(2-ABOZ)GrO was confirmed its excellent biocompatibility. The morphological effect on Vero cell line evidently supports the formation of biocompatible f-(2-ABOZ)GrO. Therefore, f-(2-ABOZ)GrO was emerged as an advanced functional material for thermally stable biocompatible coatings. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Joram, Anju; Sharma, Rashmi; Sharma, Arun kumar
2018-05-01
The complexes have been synthesized from Cu (II) soaps of groundnut (Arachis hypogaea) and sesame (Sesamum indicum) oils, with ligand containing nitrogen and sulfur atoms like 2-amino-6-methyl benzothiazole. The complexes were greenish brown in color. In order to study TGA, first characterized them by elemental analysis, and spectroscopic technique such as IR, NMR and ESR. From the analytical data, the stoichiometry's of the complexes have been observed to be 1:1 (metal:ligand). These complexes have been thermally analyzed using TGA techniques to determine their energy of activation. These complexes show three step thermal degradation corresponding to fatty acid components of the edible oils and each complex has three decomposition steps in the range of 439-738 K. Various equations like Coats-Redfern (CR), Horowitz-Metzger (HM) and Broido equations (BE) were applied to evaluate the energy of activation. The values of energy of activation are observed to be in the following order for both copper groundnut benzothiazole (CGB) and copper sesame benzothiazole (CSeB) complexes: CGB > CSeB. CGB is observed to be more stable than CSeB due to its higher activation energy. The above studies would provide significant information regarding the applications of synthesized agrochemicals and their safe removal through parameters obtained in degradation curves and its relation with energy.
NASA Astrophysics Data System (ADS)
Conejo, L. S.; Costa, M. L.; Oishi, S. S.; Botelho, E. C.
2017-10-01
Lightweight and highly conductive composite associated with good impact and tribological properties could be used in the aerospace industry to replace metal for an aircraft skin and still provide effective shielding against electromagnetic interference (EMI). Also, phenol-furfuryl alcohol resins (PFA) are excellent candidates to replace existing thermoset matrices used for obtaining glassy carbon, both in its pure form and reinforced with nanoscale structures. The synthesis of PFA allow obtaining a resin with better properties than that showed by conventional phenolic resins and with synthesis and cure processes more controlled than observed for the furfuryl alcohol resin. This work has as main purpose the synthesis and thermal characterization of PFA resin and its nanostructured composites with different concentrations of carbon nanotubes (0, 0.1, 0.5 and 1.0 wt%). PFA resin was synthesized with 1:2:1 molar ratio of phenol/formaldehyde/furfuryl alcohol, according to the more appropriate condition obtained previously. The specimens were evaluated by thermogravimetry (TGA) to knowledge of the temperature of thermal degradation, either by actual analyses as simulated by simulation heating rate conversion software (known as Highway Simulation). The introduction of CNT in PFA sample does not affect its thermal stability. The values of residual weight found for samples with CNT additions are close to the values of the phenolic resin in the literature (about 60% residual weight).
Choo, Kaiwen; Ching, Yern Chee; Chuah, Cheng Hock; Julai, Sabariah; Liou, Nai-Shang
2016-01-01
In this study microcrystalline cellulose (MCC) was oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The treated cellulose slurry was mechanically homogenized to form a transparent dispersion which consisted of individual cellulose nanofibers with uniform widths of 3–4 nm. Bio-nanocomposite films were then prepared from a polyvinyl alcohol (PVA)-chitosan (CS) polymeric blend with different TEMPO-oxidized cellulose nanofiber (TOCN) contents (0, 0.5, 1.0 and 1.5 wt %) via the solution casting method. The characterizations of pure PVA/CS and PVA/CS/TOCN films were performed in terms of field emission scanning electron microscopy (FESEM), tensile tests, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results from FESEM analysis justified that low loading levels of TOCNs were dispersed uniformly and homogeneously in the PVA-CS blend matrix. The tensile strength and thermal stability of the films were increased with the increased loading levels of TOCNs to a maximum level. The thermal study indicated a slight improvement of the thermal stability upon the reinforcement of TOCNs. As evidenced by the FTIR and XRD, PVA and CS were considered miscible and compatible owing to hydrogen bonding interaction. These analyses also revealed the good dispersion of TOCNs within the PVA/CS polymer matrix. The improved properties due to the reinforcement of TOCNs can be highly beneficial in numerous applications. PMID:28773763
NASA Astrophysics Data System (ADS)
Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.
2018-01-01
Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.
Thermo-analytical and physico-chemical characterisation of organoclays and polymer-clay nacomposites
NASA Astrophysics Data System (ADS)
Cunningham, Andrew
A variety of modified clay minerals have been screened to determine their effectiveness as agents for the production of polystyrene-clay nanocomposites. The n-alkylammonium and n-alkyltrimethylammonium surfactants employed to compatibilise the aluminosilicate layers of the minerals were shown to degrade through a series of stages and mechanisms to yield a hydrocarbon product mixture consisting of a homologous series of saturated and unsaturated hydrocarbons, also, the dehydrocyclisation (DHC) of fragmented alkyl chains was shown to lead to the production of various ring compounds which included substituted cycloalkenes, benzene and toluene.The thermal stability of various cation exchanged modification treatments have been analysed. These organoclays have been characterised by XRD, TGA and TG-MS. The evolved gas analysis conducted by TG-MS was employed to identify which products were being thermally desorbed under thermal events previously seen when using TGA. In particular attention was paid to the activity of these materials with respect to the formation of linear, branched and cyclic aliphatics and aromatics from the feedstock surfactants.Intra-series comparisons of different organoclays showed that as the alkyl chain length of the n-alkylammonium surfactants was increased the concentration of thermal desorption products at approximately 400 °C was also increased. However, characterisation of n-alkyltrimethylammonium exchanged MMT showed that the concentration of thermal desorption products at lower temperatures (approximately 250 °C) increased with alkyl chain length between C[n] = 8 - 16. TG-MS analysis showed that this was mostly due to the DHC of alkyl fragments. These compounds appear to have been largely overlooked in related literature.SWa-1, a clay containing greater concentrations of structural iron, showed higher T[max] values for n-alkylammonium surfactant thermal desorption than similarly exchanged SAz-1. This may be evidence of a current theory that structural iron acts as a radical trap. This is thought to significantly reduce the catalytic activity of the clay's acid sites until higher temperatures. The formulation of polystyrene-clay nanocomposites (PSCNs) by in-situ polymerisation led to various results pertaining to their thermal stability. The relative effectiveness of various initiator species for the production of the most thermally stable PSCNs was AIBN > BPO > SPS > APS > AIBA. Lower radical initiator and organic modifier concentrations led to the production of PSCNs with higher thermal stability. The relative effectiveness of these various organoclays for the production of more thermally stable PSCNs was MCBP-Cn > C15A > C20A " C10A. The preparation method was shown to be effective for producing exfoliated nanocomposites for up to 1 wt% of the various organoclays using AIBN and BPO as initiators. The MCBP-Cn PSCNs remained exfoliated up to 5 wt% , they also showed higher thermal stability when compared with the commercial products, which XRD results showed to remain stacked at organoclay loadings > 1 wt%.A novel one-pot synthesis method for the production of PSCN, by the in-situ polymerisation of PS in the presence of decanamide (an uncharged surfactant) and Na-MMT, was shown to be successful. Whereas, other novel PSCN formulations incorporating N-vinylformamide and the amphoteric surfactant foamtaine SCAB were shown to be encouraging but have, so far, had limited success.In contrast, the analysis of industrially produced unsaturated polyester-clay nanocomposites showed very little increase in the thermal stability of the material. Associated analyses indicated increased dimensional stability of the material, AFM analysis showed that imaging of the clay dispersal was possible by this macroscopic technique. Also, ATR-FTIR analysis of the UPR and UPCN, showed that although not exfoliated the silane modified-MMT had a good synergistic effect on the overall material by reducing the formation of combustion products.The thermal stability and associated studies of kaolin-phenylphosphonic acid (KPPA) complexes was also conducted. PPA was shown to intercalate the kaolin crystal structure forming an expanded phase that exhibited remarkable thermal stability (Tmax = 660 °C). 31P MAS NMR of all the KPPA samples showed three peaks (at +1.2, -3.7 and -7.3 ppm) which represented PPA existing in three non-equivalent bonding states at the kaolin surface. The high thermal stability of these hybrid materials was evident from these studies. This research into the use of covalently bound intercalates in nanocomposite manufacture signifies the necessity for further research.
Oxidation behaviour of Fe-Ni alloy nanoparticles synthesized by thermal plasma route
NASA Astrophysics Data System (ADS)
Ghodke, Neha; Kamble, Shalaka; Raut, Suyog; Puranik, Shridhar; Bhoraskar, S. V.; Rayaprol, Sudhindra; Mathe, V. L.
2018-04-01
Here we report synthesis of Fe-Ni nanoparticles using thermal plasma route. In thermal plasma, gas phase nucleation and growth at sufficiently higher temperature is observed. The synthesized Fe-Ni nanoparticles are examined by X-ray Diffraction, Raman Spectroscopy, Vibrating Sample Magnetometer and Thermo gravimetric Analysis. Formation of 16-21 nm sized Fe-Ni nanoparticles having surface oxidation show maximum value of magnetization of ˜107 emu/g. The sample synthesized at relatively low power (4kW) show presence of carbonaceous species whereas the high power (6 kW) synthesis does not depicts carbonaceous species. The presence of carbonaceous species protects oxidation of the nanoparticles significantly as evidenced from TGA data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargazi, Ghasem, E-mail: g.sargazi@gmail.com; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran; Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com
2017-06-15
This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2{sup k-1} factorial design experiments, and the response surfacemore » optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m{sup 2}/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO{sub 2} adsorption. - Graphical abstract: A facile route was used for fabrication of a new metal -organic framework based on tantalum nanostructures that have high surface area, considerable porosity, homogenous morphology, and small size distribution.« less
NASA Astrophysics Data System (ADS)
Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun
2016-01-01
RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.
NASA Astrophysics Data System (ADS)
Nasution, H.; Yurnaliza; Veronicha; Irmadani; Sitompul, S.
2017-03-01
Alpha cellulose which was isolated from cellulose of fiber empty fruit bunch palm oil was hidrolized with hydrochloric acid (2,5N) at 80°C to produce microcrystalline cellulose (MCC). Microcrystalline cellulose is an important additional ingredient in the pharmaceutical, food, cosmetics, and structural composites. In this study, MCC, alpha cellulose, and cellulose were characterized and thereafter were compared. Characterizations were made using some equipment such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and thermogravimetry analyzer (TGA). X-ray diffraction and infrared spectroscopy were studied to determine crystallinity and molecular structure of MCC, where scanning electron microscopy images were conducted for information about morfology of MCC. Meanwhile, thermal resistance of MCC was determined using thermogravimetry analyzer (TGA). From XRD and FTIR, the obtained results showed that the crystalline part was traced on MCC, where the -OH and C-O groups tended to reduced as alpha cellulose has changed to MCC. From SEM the image showed the reduction of particle size of MCC, while the thermal resistance of MCC was found lower as compared with cellulose and alpha cellulose as well, which was attributed to the lower molecular weight of MCC.
Bañón, E; Marcilla, A; García, A N; Martínez, P; León, M
2016-02-01
The thermal decomposition of chrome tanned leather before and after a soaking treatment with NaOH was studied using thermogravimetric analysis (TGA). The effect of the solution concentration (0.2M and 0.5M) and the soaking time (5min and 15min) was evaluated. TGA experiments at four heating rates (5, 10, 15 and 20°Cmin(-1)) were run in a nitrogen atmosphere for every treatment condition. A kinetic model was developed considering the effect of the three variables studied, i.e.: the NaOH solution concentration, the soaking time and the heating rate. The proposed model for chrome tanned leather pyrolysis involves a set of four reactions, i.e.: three independent nth order reactions, yielding the corresponding products and one of them undergoing a successive cero order reaction. The model was successfully applied simultaneously to all the experimental data obtained. The evaluation of the kinetic parameters obtained (activation energy, pre-exponential factor and reaction order) allowed a better understanding of the effect of the alkali treatment on these wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of irradiated 1H-Benzo[b]pyrrole by ESR, thermal methods and learning algorithm
NASA Astrophysics Data System (ADS)
Algul, Gulay; Ceylan, Yusuf; Usta, Keziban; Yumurtaci Aydogmus, Hacer; Usta, Ayhan; Asik, Biray
2016-05-01
1H-Benzo[b]pyrrole samples were irradiated in the air with gamma source at 0.969 kGy per hour at room temperature for 24, 48 and 72 h. After irradiation, electron spin resonance, thermogravimetry analysis (TGA) and differential thermal analysis (DTA) measurements were immediately carried out on the irradiated and unirradiated samples. The ESR measurements were performed between 320 and 400 K. ESR spectra were recorded from the samples irradiated for 48 and 72 h. The obtained spectra were observed to be dependent on temperature. Two radical-type centres were detected on the sample. Detected radiation-induced radicals were attributed to R-+•NH and R=•CC2H2. The g-values and hyperfine constants were calculated by means of the experimental spectra. It was also determined from TGA spectrum that both the unirradiated and irradiated samples were decomposed at one step with the rising temperature. Moreover, a theoretical study was presented. Success of the machine learning methods was tested. It was found that bagging techniques, which are widely used in the machine learning literature, could optimise prediction accuracy noticeably.
NASA Astrophysics Data System (ADS)
Khan, Ishaat M.; Ahmad, Afaq
2013-10-01
A proton transfer or H-bonded (CT) complex of o-phenylenediamine (OPD) as donor with L-tartaric acid (TART) as acceptor was synthesized and characterized by spectral techniques such as FTIR, 1H NMR, elemental analysis, TGA-TDA, X-ray crystallography and spectrophotometric studies. The structural investigations exhibit that the cation [OPD+] and anion [TART-] are linked together through strong N+-H⋯O- type hydrogen bonds due to transfer of proton from acceptor to donor. Formed H-bonded complex exhibits well resolved proton transfer bands in the regions where neither donor nor acceptor has any absorption. The stoichiometry of the H-bonded complex (HBC) was found to be 1:1, determined by straight line methods. Spectrophotometric studies have been performed at room temperature and Benesi-Hildebrand equation was used to determine formation constant (KCT), molar extinction coefficient (ɛCT) and also transition energy (ECT) of the H-bonded complex. Spectrophotomeric and crystallographic studies have ascertained the formation of 1:1 H-bonded complex. Thermal analysis (TGA-DTA) was also used to confirm the thermal fragmentation and the stability of the synthesized H-bonded complex.
NASA Astrophysics Data System (ADS)
Xu, Bo; Ma, Wen; Wu, Xiao; Qian, Lijun; Jiang, Shan
2018-04-01
Intumescent flame retardant (IFR) EVA composites were prepared based on a hyperbranched triazine charring-foaming agent (HTCFA) and ammonium polyphosphate (APP). The synergistic effect of HTCFA and APP on the flame retardancy and thermal behavior of the composites were investigated through flammability tests, cone calorimeter measurements, thermogravimetric analysis (TGA) including evolved gas analysis (TG-IR) and residue analysis (Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS), x-ray Photoelectron Spectroscopy (XPS) and scanning electron microscopy (SEM)). The flammability test results showed HTCFA/APP (1/3) system presented the best synergistic effect in flame-retardant EVA composites with the highest LOI value and UL-94 V-0 rating. As for cone calorimeter results, IFR changed the combustion behavior of EVA and resulted in remarkable decrease of flammability and smoke product. TGA results showed the synergistic effect between APP and HTCFA could strengthen the char-forming ability of composites. TG-IR results indicated the melt viscosities and gas release with increasing temperature were well-correlated for EVA/IFR composite. The residue analysis results from SEM, LRS, FT-IR and XPS revealed IFR promoted forming more compact graphitic char layer, connected by rich P–O–C and P–N structures.
Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilmore, Robert; Griffith, Craid; Liu, Zhu
2009-07-01
A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate Of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2- bearing capacity wasmore » evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2- bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2- bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability Of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 degrees C, with complete regeneration occurring at 100 degrees C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis Of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed. Published by Elsevier Ltd.« less
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah
Hematite (α-Fe2O3) nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis and Photoluminescence (PL). XRD data revealed a rhombohedral (hexagonal) structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O) is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halake, Shobha; Ok, Kang Min, E-mail: kmok@cau.ac.kr
2015-11-15
Single crystals of two barium-organic framework materials, Ba(SBA)(DMF){sub 4} (CAUMOF-15) and Ba{sub 2}(BTEC)(H{sub 2}O) (CAUMOF-16), have been grown through solvothermal reactions (H{sub 2}SBA=4,4′-sulfonyldibenzoic acid and H{sub 4}BTEC=1,2,4,5-benzenetetracarboxylic acid). The crystal structures of the reported frameworks have been determined by single-crystal X-ray diffraction. The materials have been fully characterized by powder X-ray diffraction (PXRD), elemental analyses, Infrared (IR) spectroscopy, and thermogravimetric analyses (TGA). CAUMOF-15 reveals a three-dimensional open-framework that comprises of an inorganic motif with one-dimensional chains and the SBA linkers. CAUMOF-16 shows another three-dimensional backbone consisting of layers of edge-shared BaO{sub 9} and BaO{sub 10} polyhedra, and BTEC pillars. Bothmore » of the 3D frameworks exhibit relatively high thermal stabilities. The PXRD and IR spectral data confirm that CAUMOF-15 and CAUMOF-16 reveal reversible coordinations of the respective solvent molecules, DMF and H{sub 2}O. Gas adsorption properties towards nitrogen, hydrogen, and carbon dioxide have been also investigated. - Graphical abstract: Crystals of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O), exhibiting a differential gas adsorption, a high thermal stability, and a reversible coordination of solvent molecules have been grown. - Highlights: • Crystals of two new 3D Ba-MOFs are grown. • The two Ba-MOFs reveal very high thermal stabilities up to ca. 400 °C. • Ba(SBA)(DMF){sub 4} exhibits differential gas adsorption properties. • The two Ba-MOFs show reversible coordination of the solvent molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com; Sangappa
The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated themore » antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.« less
Thermal Conductivity of Polyimide/Carbon Nanofiller Blends
NASA Technical Reports Server (NTRS)
Ghose, S.; Watson, K. A.; Delozier, D. M.; Working, D. C.; Connell, J. W.; Smith, J. G.; Sun, Y. P.; Lin, Y.
2007-01-01
In efforts to improve the thermal conductivity (TC) of Ultem(TM) 1000, it was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. Ribbons were extruded to form samples in which the nano-fillers were aligned. Samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and the mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated with high-resolution scanning electron microscopy. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction using the Nanoflash technique. The results of this study will be presented.
Thermal Conductivity of Polyimide/Nanofiller Blends
NASA Technical Reports Server (NTRS)
Ghose, S.; Watson, K. A.; Delozier, D. M.; Working, D. c.; Connell, J. W.; Smith, J. G.; Sun, Y. P.; Lin, Y.
2006-01-01
In efforts to improve the thermal conductivity of Ultem(TM) 1000, it was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. Ribbons were extruded to form samples in which the nano-fillers were aligned. Samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and the mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated with high-resolution scanning electron microscopy. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction using the Nanoflash technique. The results of this study will be presented.
Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windisch, C.F. Jr.; Jones, R.H.; Snead, L.L.
1997-04-01
The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies aremore » in progress to evaluate the stability of these materials.« less
Study on the conformation changes of Lysozyme induced by Hypocrellin A: The mechanism investigation
NASA Astrophysics Data System (ADS)
Ma, Fei; Huang, He-Yong; Zhou, Lin; Yang, Chao; Zhou, Jia-Hong; Liu, Zheng-Ming
2012-11-01
The interactions between Lysozyme and Hypocrellin A are investigated in details using time-resolved fluorescence, fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD), three-dimensional fluorescence spectra, and thermal gravimetric analysis (TGA) techniques. The results of time-resolved fluorescence suggest that the quenching mechanism is static quenching. FTIR and CD spectroscopy provide evidences of the reducing of α-helix after interaction. Hypocrellin A could change the micro-environmental of Lysozyme according to hydrophobic interaction between the aromatic ring and the hydrophobic amino acid residues, and the altered polypeptide backbone structures induce the reduction of α-helical structures. Moreover, TGA study further demonstrates the structure changes of Lysozyme on the effect of Hypocrellin A. This study could provide some important information for the derivatives of HA in pharmacy, pharmacology and biochemistry.
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan
2012-02-01
A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, E A; Hsu, P C; Springer, H K
PBXN-9, an HMX-formulation, is thermally damaged and thermally decomposed in order to determine the morphological changes and decomposition kinetics that occur in the material after mild to moderate heating. The material and its constituents were decomposed using standard thermal analysis techniques (DSC and TGA) and the decomposition kinetics are reported using different kinetic models. Pressed parts and prill were thermally damaged, i.e. heated to temperatures that resulted in material changes but did not result in significant decomposition or explosion, and analyzed. In general, the thermally damaged samples showed a significant increase in porosity and decrease in density and a smallmore » amount of weight loss. These PBXN-9 samples appear to sustain more thermal damage than similar HMX-Viton A formulations and the most likely reasons are the decomposition/evaporation of a volatile plasticizer and a polymorphic transition of the HMX from {beta} to {delta} phase.« less
NASA Technical Reports Server (NTRS)
Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)
2001-01-01
Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana
2014-04-24
Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.
Fabrication of composite membranes using copper metal organic framework for energy application
NASA Astrophysics Data System (ADS)
Gahlot, Swati; Rajput, Abhishek; Kulshrestha, Vaibhav
2018-04-01
Present manuscript deals with the synthesis of nanocomposite polymer electrolyte membrane (PEM) based on copper based metal organic framework (Cu-MOF) and sulfonated poly ether sulfone (SPES) for fuel cell application. Prepared material and composite membrane has been analyzed through various techniques. Structural and thermal characterization of prepared material has been carried out through XRD, FTIR and TGA technique. Measurement shows the successful synthesis of MOF and also confirms the thermal stability. Prepared membranes shows good physicochemical properties and good ionic conductivity which can be utilized as PEM for fuel cell application.
Zhang, Xianyu; Kim, Jin Seuk; Kwon, Younghwan
2017-04-01
Here we describe the synthesis of polyurethane (PU)-based energetic nanocomposites loaded with nano-aluminum (n-Al) particles. The energetic nanocomposite was prepared by polyurethane reaction of poly(glycidyl azide-co-tetramethylene glycol) (PGT) prepolymers and IPDI/N-100 isocyanates with simultaneous catalyst-free azide-alkyne Click reaction in the presence of n-Al. Initial study carried out with various n-Al/fluorinated PGT blends and demonstrated the potential of fluorinated PGT prepolymer for an energetic PU matrix. Thermal analysis of n-Al/fluorinated PGT-based PU energetic nanocomposite was performed using DSC and TGA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, Seema; Batra, Uma; Kohli, Suchita
Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting mediamore » for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 deg. C and sintered to different temperatures (200 deg. C, 400 deg. C, 600 deg. C, 800 deg. C, 1000 deg. C and 1200 deg. C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 deg. C to 1000 deg. C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 deg. C without any additional phase other than HAP, whereas peak of {beta}-TCP (tricalcium phosphate) was observed at 1200 deg. C. Photomicrograph of TEM showed that the nanopowder sintered at 600 deg. C is composed of hydroxyapatite nanoparticles (26.0-45.6 nm), which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the synthesized nano-HAP powder. The BET surface area decreased with increase in sintering temperature.« less
NASA Astrophysics Data System (ADS)
Vuong Nguyen, Thien; Nguyen, Tuan Anh; Dao, Phi Hung; Phuc Mac, Van; Hiep Nguyen, Anh; Thanh Do, Minh; Nguyen, The Huu
2016-12-01
This study aims to enhance the mechanical properties, thermal stability, weathering resistance and antibacterial property of a styrene acrylic polyurethane coating by adding rutile titania dioxide (R-TiO2) nanoparticles in coating formulation. The styrene acrylic polyurethane/R-TiO2 nanocomposite had been prepared by using ultrasonication. The effects of nanoparticles on the mechanical properties, thermal stability and weathering resistance of as-prepared coatings were investigated by using the adhesion strength and ball impact tests, the Fourier transform infrared and UV-vis analyses, thermogravimetric analysis (TGA), and UV/condensation weathering chamber equipped with UVA-340 fluorescent lamps, respectively. The disperse quality of nanoparticles in the coating was examined by using the field emission scanning electron microscope (FESEM). The mechanical test results showed that suitable content of R-TiO2 nanoparticles in the nanocomposite coating was 2 wt%. The FESEM images indicated that the nanoparticles were dispersed homogeneously into the entire volume of the coating. For the nanocomposite prepared by 3 h of ultrasonication, the average size of nanoparticles was in range of 40-50 nm. The ball impact and adhesion tests showed that the incorporation of nanoparticles into the coating significantly enhanced the impact strength from 120 to 145 kg cm and increased the adhesion from level 1 to level 0. The TGA test illustrated that in presence of nanoparticles, the decomposition temperature of coating increased from 146.9 °C to 154.21 °C. For the temperature at 50% loss in mass (T 50%), it was found that the T 50% of the neat coating is 351.86 °C. Adding the 2 wt% R-TiO2 nanoparticles into coating increased the T 50% value to 360.06 °C. After UV/condensation accelerated weathering test (30 cycles), the significant improvement in weight loss, impact strength and adhesion of the neat coating was observed with the presence of nanoparticles. The antibacterial test showed that in the nanocomposite coating, R-TiO2 nanoparticles exhibited their photocatalytic effect in the inhibition against E. coli bacterial growth. Incorporating 2 wt% of R-TiO2 nanoparticles into the coating reduced the bacterial concentration by 6.1% after 60 min of culture.
Gaballa, Akmal S; Asker, Mohsen S; Barakat, Atiat S; Teleb, Said M
2007-05-01
Four platinum(II) complexes of Schiff bases derived from salicylaldehyde and 2-furaldehyde with o- and p-phenylenediamine were reported and characterized based on their elemental analyses, IR and UV-vis spectroscopy and thermal analyses (TGA). The complexes were found to have the general formula [Pt(L)(H(2)O)(2)]Cl(2) x nH(2)O (where n=0 for complexes 1, 3, 4; n=1 for complex 2. The data obtained show that Schiff bases were interacted with Pt(II) ions in the neutral form as a bidentate ligand and the oxygens rather than the nitrogens are the most probable coordination sites. Square planar geometrical structure with two coordinated water molecules were proposed for all complexes The free ligands, and their metal complexes were screened for their antimicrobial activities against the following bacterial species: E. coli, B. subtilis, P. aereuguinosa, S. aureus; fungus A. niger, A. fluves; and the yeasts C. albican, S. cervisiea. The activity data show that the platinum(II) complexes are more potent antimicrobials than the parent Schiff base ligands against one or more microorganisms.
NASA Astrophysics Data System (ADS)
Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.
2014-07-01
The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.
Thermal Degradation and Combustion Behavior of Polypropylene/MWCNT Composites
NASA Astrophysics Data System (ADS)
Zaikov, G. E.; Rakhimkulov, A. D.; Lomakin, S. M.; Dubnikova, I. L.; Shchegolikhin, A. N.; Davidov, E. Ya.
2010-06-01
Studies of thermal and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by means of melt intercalation are discussed. The sets of the data acquired with the aid of non-isothermal TG experiments have been treated by the model kinetic analysis. The thermal-oxidative degradation behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. The results of cone calorimetric tests lead to the conclusion that char formation plays a key role in the mechanism of flame retardation for nanocomposites. This could be explained by the specific antioxidant properties and high thermal conductivity of MWCNT which determine high-performance carbonization during thermal degradation process. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites under high-temperature tests.
NASA Astrophysics Data System (ADS)
Kaushik, Anupama; Kaur, Ramanpreet
2011-12-01
The objective of this study was to study the thermal behaviour of cellulose nanocrystals/TPS based nanocomposites. Nanocrystalline cellulose was isolated from cotton linters using sonochemical method and characterized through WAXRD & TEM. These nanocrystals were then dispersed in glycerol plasticized starch in varying proportions and films were cast. The thermal degradation of thermoplastic starch/cellulose nanocrystallite nanocomposites was studied using TGA under nitrogen atmosphere. Thermal degradation was carried out for nanocomposites at a rate of 10 °C/min and at different rates under nitrogen atmosphere namely 2, 5, 10, 20 and 40 °C/min for nanocomposites containing 10% cellulose nanocrystals. Ozawa and Flynn and Kissinger methods were used to determine the apparent activation energy of these nanocomposites. The addition of cellulose nanocrystallites produced a significant effect on the activation energy for thermal degradation of the composites materials in comparison with the matrix alone. These nanocomposites are potential applicant for food packaging applications.
NASA Astrophysics Data System (ADS)
Firdaus, M. Y. Nur; Osman, H.; Metselaar, H. S. C.; Rozyanty, A. R.
2017-07-01
Silica is widely used as sources for adsorption materials, medical additives and fillers in composite and rubber industries. The manufacturing process of commercial silica use in various industries is very expensive and energy extensive. Therefore, agricultural waste material such as lemon grass is seen as a potential alternative silica sources for replacement of commercial silica which is currently available in the industry. In this research, a simple method based on the acid leaching treatment with hydrochloric acid (HCl) was developed to produce purified silica from lemon grass, followed by thermal combustion at 600°C. Acid leaching temperatures of 33, 50, 80 and 110°C were used. The silica content, shape and texture of the lemon grass ash was characterized using scanning electron microcopy -energy-dispersive X-ray (SEM-EDX) analysis. The SEM analysis indicated the presence of tubular-shaped porous aggregates, spherical and fibrous shapes of untreated and treated lemon grass at 33°C to 110 °C. The highest silica content recorded was 73.46% for lemon grass treated at the highest leaching temperature of 110°C. The thermal stability of lemon grass ash was examined by using a thermogravimetric analysis (TGA) instrument. The TGA analysis shows that the untreated and treated lemon grass ash start to decompose at lower temperature (90 to 100°C). Lemon grass treated at the highest leaching temperature 110°C exhibit the highest thermal stability.
Idrovo Espín, Fabio Marcelo; Peraza-Echeverria, Santy; Fuentes, Gabriela; Santamaría, Jorge M
2012-05-01
The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Lee, Yeong Ju; Kim, Hyun Bin; Jeun, Joon Pyo; Lee, Dae Soo; Koo, Dong Hyun; Kang, Phil Hyun
2015-08-01
Carbon materials containing magnetic nanopowder have been attractive in technological applications such as electrochemical capacitors and electromagnetic wave shielding. In this study, polyacrylonitrile (PAN) fibers containing nickel nanoparticles were prepared using an electrospinning method and thermal stabilization. The reduction of nickel oxide was investigated under a nitrogen atmosphere within a temperature range of 600 to 1,000 °C. Carbon nanofibers containing nickel nanoparticles were characterized by FE-SEM, EDS, XRD, TGA, and VSM. It was found that nickel nanoparticles were formed by a NiO reduction in PAN as a function of the thermal treatment. These results led to an increase in the coercivity of nanofibers and a decrease in the remanence magnetization.
Morphological and thermal studies of chitin-curcumin blends derived polyurethanes.
Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima; Zia, Fatima; Noreen, Aqdas
2017-12-01
The present study describes a novel ecofriendly series of chitin/curcumin/1,4-butane diol (BDO) blend derived polyurethanes (PUs), using hydroxy terminated polybutadiene (HTPB) and hexamethylene diisocyanate (HDI) along with different mole ratio of chitin, curcumin and BDO. The structural and morphological elucidation of the prepared films was done by FTIR and SEM techniques. The swelling behavior of the films was analyzed in both water and DMSO, which showed that incorporation of chitin increases the hydrophobicity and decreases the rate of swelling. Thermal analysis of synthesized PU blends revealed better thermal stability with following mole ratio 1:0.5:0.5 of chitin: curcumin: BDO as determined by TGA and DSC techniques. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Hai; Xu, Mingzhen; Liu, Xiaobo
2017-12-01
PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.
Arenales Rivera, Jorge; Pérez López, Virginia; Ramos Casado, Raquel; Sánchez Hervás, José-María
2016-01-01
In this survey, a refuse derived fuel (RDF) was produced from paper industry wastes through a mechanical treatment (MT). The two main wastes generated from a recovered paper mill were rejects and de-inking sludge, which were produced principally in the pulping and de-inking processes, respectively. This work presents raw wastes characterization, fuel preparation and gasification tests performed in a circulating fluidized bed (CFB) gasifier pilot plant. The characterization was carried out by proximate and ultimate analysis. Several blends of pre-conditioned rejects and de-inking sludge were densified by means of pelletizing, studying the energy consumption and its quality properties. Besides, thermal degradation of blends was studied under thermogravimetric analysis (TGA). The experimental runs were made from 30 to 900°C in nitrogen atmosphere at three heating ranges, β=5, 10 and 20°C/min. Two thermal stages were identified during the thermal degradation, which are linked to cellulose and plastic degradation. In addition, kinetics parameters were estimated by the application of non-isothermal methods: Kissinger-Akahira-Sunose (KAS), Flynn-Ozawa-Wall (FOW) and Coats and Redfern. The activation energy values were about 140-160 kJ/mol and 60-80 kJ/mol for plastic and cellulosic materials, respectively. Regarding waste valorisation, a blend composed of 95% of rejects and 5% of de-inking sludge was selected for gasification tests. The energy consumption during the preparation was recorded and a gasification tests were done to prove the usability of these pellets in a CFB gasifier. The main results were a net calorific value (NCV) of 5 MJ/Nm(3) and a total tar content of 11.44 g/Nm(3) at an equivalence ratio (ER) of 0.3. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.
2017-07-01
First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.
Characterization of Nanocomposites by Thermal Analysis
Corcione, Carola Esposito; Frigione, Mariaenrica
2012-01-01
In materials research, the development of polymer nanocomposites (PN) is rapidly emerging as a multidisciplinary research field with results that could broaden the applications of polymers to many different industries. PN are polymer matrices (thermoplastics, thermosets or elastomers) that have been reinforced with small quantities of nano-sized particles, preferably characterized by high aspect ratios, such as layered silicates and carbon nanotubes. Thermal analysis (TA) is a useful tool to investigate a wide variety of properties of polymers and it can be also applied to PN in order to gain further insight into their structure. This review illustrates the versatile applications of TA methods in the emerging field of polymer nanomaterial research, presenting some examples of applications of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA) and thermal mechanical analysis (TMA) for the characterization of nanocomposite materials.
NASA Astrophysics Data System (ADS)
Chen, Yan; Zhu, Yingying; Wang, Jinbao; Lv, Mengjiao; Zhang, Xiongjie; Gao, Junkai; Zhang, Zijun; Lei, Hao
2017-12-01
A novel shape-stabilized phase change material (PEG/TAMS), fabricated using tannic acid-templated mesoporous silica (TAMS) as a support for polyethylene glycol, was developed for thermal energy storage. The method used to synthesize TAMS was simple, cost effective, environmentally friendly, and free of surfactant. The characterization results indicated that PEG was physically absorbed to TAMS and that TAMS had no influence on the crystal structure of PEG. According to the TGA thermograms, PEG/TAMS has excellent thermal stability and can be applied over a wide temperature range. Additionally, the differential scanning calorimetry results suggested that PEG/TAMS has good thermal properties and that its fusion and solidification enthalpies reached 114.7 J/g and 102.4 J/g, respectively. The results indicated that PEG/TAMS has great potential for practical applications.
NASA Astrophysics Data System (ADS)
Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.
2018-01-01
A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).
Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.
Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai
2015-03-15
Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites
NASA Astrophysics Data System (ADS)
Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui
2015-02-01
The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.
One-step synthesis of magnetic chitosan polymer composite films
NASA Astrophysics Data System (ADS)
Cesano, Federico; Fenoglio, Gaia; Carlos, Luciano; Nisticò, Roberto
2015-08-01
In this study, a magnetic iron oxide-chitosan composite film is synthesized by one-step method and thoroughly investigated in order to better understand its inorganic/organic properties. A deep physico-chemical characterization of the magnetic films has been performed. In particular, the material composition was evaluated by means of XRD and ATR-FTIR spectroscopy, whereas the thermal stability and the subsequent inorganic phase transitions involving iron oxide species were followed by TGA analyses carried out at different experimental conditions (i.e. inert and oxidative atmosphere). The magnetic properties of the films were tested at the bulk and at the surface level, performing respectively magnetization hysteresis curve and magnetic force microscopy (MFM) surface mapping. Results indicate that the synthesized material can be prepared through a very simple synthetic procedure and suggests that it can be successfully applied for instance to environmental applications, such as the adsorption of contaminants from solid and liquid media thanks to its pronounced magnetic properties, which favour its recover.
Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar
2013-05-01
A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur
2018-03-01
Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.
Domínguez-Robles, Juan; Sánchez, Rafael; Díaz-Carrasco, Pilar; Espinosa, Eduardo; García-Domínguez, M T; Rodríguez, Alejandro
2017-11-01
Three different lignin-rich fractions have been used as binder material for electrodes in rechargeable lithium batteries. Lignin samples were obtained through three different pulping processes; kraft, soda and organosolv pulping processes, using wheat straw as raw material. Physico-chemical characterization of three types of lignins was evaluated. Characterization has been performed using Fourier transform infrared spectroscopy (FTIR) and 31 P NMR Spectroscopy to analyse the functional groups; gel permeation chromatography (GPC) for determining molar mass distribution (MWD), and thermogravimetric analysis (TGA) to follow the thermal behaviour. Electrodes containing lignin or poly vinylidene fluoride (PVDF) were tested electrochemically. The three different lignin samples exhibited excellent performance as binder, retaining the specific capacity after 50 cycles at a current density of 100mAg -1 . These results show that lignin could be used as a low-cost and environmental binder, replacing the PVDF polymer in electrodes for energy storage applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas
2017-08-01
The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.
Xie, Jiulong; Hse, Chung-Yun; De Hoop, Cornelis F; Hu, Tingxing; Qi, Jinqiu; Shupe, Todd F
2016-10-20
Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combined with chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction could eliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7min, and the cellulose enriched residues could be readily purified by subsequent chemical treatments with lower chemical charging and quickly. The results of wet chemistry analyses, SEM images, and FTIR and X-ray spectra indicated the combination of microwave liquefaction and chemical treatment was significantly efficient in removing non-cellulosic compounds. Ultrasonication was used to separate the nanofibrils from the purified residues to extract nanofibers. The TEM images confirmed the presence of elementary fibrils, nano-sized fibril bundles, and aggregated fibril bundles. As evidenced by the TGA analysis, cellulose nanofibers isolated by this novel technique had high thermal stability indicating that the isolated nanofibers could possibly be applied as reinforcing elements in biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhat, Mahima; Poojary, Boja; Kumar, S. Madan; Hussain, Mumtaz M.; Pai, Nikhila; Revanasiddappa, B. C.; Kullaiah, Byrappa
2018-05-01
This context explains the condensation of various arylsulfonohydrazides with two pyrazole aldehydes to get corresponding hydrazones (6a-f). The hydrazones synthesized were confirmed with the help of IR, NMR, Mass and single crystal X-ray diffraction techniques. From the X-ray analysis it was observed that, all the three compounds 6a, 6c and 6f crystallizes in monoclinic crystal system with P21/c, P21/n and P21/n space group respectively. The intermolecular hydrogen bond interactions of the type Nsbnd H⋯O, Csbnd H⋯O, Csbnd H….C, Osbnd H ⋯O, Osbnd H⋯N and Csbnd H⋯N plays a significant role in the stability of the molecules. The 3D Hirshfeld analyses and 2D fingerprint plots were helpful in decoding the behavior of the interactions and their quantitative contributions towards the packing structure of the crystals. In addition to this, TGA and DTA curves were helpful in explaining the thermal stability of the compounds. Additionally, the antibacterial effectiveness of the molecules synthesized (6a-f) was analyzed against Gram-negative and Gram-positive strains. Interestingly, the compounds with fluorinated pyrazoles (6a and 6c) emerged as good bacterial inhibitors, having scope to produce potent therapeutics in future.
Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form
Palacios, Anabel; De Gracia, Alvaro
2018-01-01
The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated. PMID:29329212
Prodius, Denis; Wilk-Kozubek, Magdalena; Mudring, Anja -Verena
2018-05-08
A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C 7H 11N 2O 2 +·Cl –, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H...Cl and C—H...O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O—H...Cl and C—H...O hydrogen bonds to form a (101¯) layer. Finally, neighboring layers are joined together via C—H...Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that themore » compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ( 1π← 1π*) and spin-forbidden ( 1π← 3π*) transitions, respectively. As a result, the average luminescence lifetime was determined to be 1.40 ns for the short-lived ( 1π← 1π*) transition and 105 ms for the long-lived ( 1π← 3π*) transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, Denis; Wilk-Kozubek, Magdalena; Mudring, Anja -Verena
A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C 7H 11N 2O 2 +·Cl –, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H...Cl and C—H...O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O—H...Cl and C—H...O hydrogen bonds to form a (101¯) layer. Finally, neighboring layers are joined together via C—H...Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that themore » compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ( 1π← 1π*) and spin-forbidden ( 1π← 3π*) transitions, respectively. As a result, the average luminescence lifetime was determined to be 1.40 ns for the short-lived ( 1π← 1π*) transition and 105 ms for the long-lived ( 1π← 3π*) transition.« less
Essawy, Amr A; Afifi, Manal A; Moustafa, H; El-Medani, S M
2014-10-15
The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.
2014-10-01
The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.
Le, Minh-Tai; Huang, Shyh-Chour
2015-01-01
In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521
Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Karim, Zoheb
2018-07-15
Roselle fiber is a renewable and sustainable agricultural waste enriched with cellulose polysaccharides. The isolation of Nanocrystalline cellulose (NCC) from roselle-derived microcrystalline cellulose (MCC) is an alternative approach to recover the agricultural roselle plant residue. In the present study, acid hydrolysis with different reaction time was carried out to degrade the roselle-derived MCC to form NCC. The characterizations of isolated NCC were conducted through Fourier Transform Infrared Ray (FTIR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). As evaluated from the performed morphological investigations, the needle-like shape NCC nanostructures were observed under TEM and AFM microscopy studies, while irregular rod-like shape of NCC was observed under FESEM analysis. With 60min hydrolysis time, XRD analysis demonstrated the highest NCC crystallinity degree with 79.5%. In thermal analysis by TGA and DSC, the shorter hydrolysis time tended to produce NCC with higher thermal stability. Thus, the isolated NCC from roselle-derived MCC has high potential to be used in application of pharmaceutical and biomedical fields for nanocomposite fabrication. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermal behaviour properties and corrosion resistance of organoclay/polyurethane film
NASA Astrophysics Data System (ADS)
Kurniawan, O.; Soegijono, B.
2018-03-01
Organoclay/polyurethane film composite was prepared by adding organoclay with different content (1, 3, and 5 wt.%) in polyurethane as a matrix. TGA and DSC showed decomposition temperature shifted to a lower point as organoclay content change. FT-IR spectra showed chemical bonding of organoclay and polyurethane as a matrix, which means that the bonding between filler and matrix occured and the composite was stronger but less bonding occur in composite with 5 wt.% organoclay. The corrosion resistance overall increased with the increasing organoclay content. Composite with 5 wt.% organoclay had more thermal stability and corrosion resistance may probably due to exfoliation of organoclay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarenhas, N. P., E-mail: naveenmascarenhas@gmail.com; Crasta, V.; Gonsalves, R. A.
To enhance the physical and mechanical properties of Chitosan (CS) and to improve the functionality of CS towards some specific applications, we have blended CS with polystyrene (PS) to form blended films. The Fourier Transform Infrared Spectroscopy (FT-IR) has been performed on the prepared films to confirm functional groups and formation of the blends. Thermal analysis (TGA and DSC) is carried out to study thermal stability of the blended films. From X-ray diffraction (XRD) studies, the material reveals amorphous nature and hence it may be used for adsorption process. The versatility of the blends, such as film-forming ability, hydrophilicity, biodegradabilitymore » and biocompatibility are comparable with the existing blends.« less
Wu, Feng; Zhu, Na; Bai, Ying; Liu, Libin; Zhou, Hang; Wu, Chuan
2016-08-24
Novel ionic liquid (IL) electrolytes are prepared by mixing 1-ethyl-3-methylimidazolium-bis-tetrafluoroborate (EMIBF4) with different concentrations of sodium salt (NaBF4). The as-prepared IL electrolytes display wide electrochemical windows of ∼4 V (1-5 V), which are consistent with the quantum chemical theoretical calculation. The IL electrolyte with 0.1 M NaBF4 shows excellent ionic conductivity, namely, 9.833 × 10(-3) S cm(-1) at 20 °C. In addition, nonflammability and good thermal stability are exhibited by combustion test and thermogravimetric analysis (TGA), which indicate the high safety of the IL electrolyte.
Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad
2013-04-29
Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.
Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad
2013-01-01
Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems. PMID:28809232
Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application
NASA Astrophysics Data System (ADS)
Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao
2016-05-01
We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08338a
Ajab, Huma; Dennis, John Ojur; Abdullah, Mohd Azmuddin
2018-07-01
A novel synthesis and characterization of cellulose, hydroxyapatite and chemically-modified carbon electrode (Cellulose-HAp-CME) composite was reported for the analysis of trace Pb(II) ions detection and its validation in blood serum. The Field Emission Scanning Electron Microscopy (FESEM) analyses showed that the composite retained the orderly porous structure but with scattered particle size agglomeration. The Fourier Transform Infrared Spectroscopy (FTIR) spectra suggested the presence of functional groups associated with the bending and stretching of carbon bonds and intermolecular H-bonding. X-ray Diffraction (XRD) analyses further elucidated that the crystallite size could have influenced the properties of the electrode. Based on Thermo-gravimetric Analysis (TGA/DTG), the composites showed thermal stability with more than 60% residual content at 700°C. The sensor was successfully developed for trace Pb(II) ions detection in complex medium such as blood serum, in the physiologically relevant range of 10-60ppb, with resulting Limit of Detection (LOD) of 0.11±0.36ppb and Limit of Quantification (LOQ) of 0.36±0.36ppb. The newly fabricated electrode could be advantageous as a sensing platform with favourable electrochemical characteristics for robust, in situ and rapid environmental and clinical analyses of heavy metal ions. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Murshid, Ghulam; Shariff, Azmi Mohd; Lau, K. K.; Bustam, Mohammad Azmi; Ahmad, Faizan
2011-10-01
Physical properties such as density, viscosity, refractive index, surface tension, and thermal stability of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were experimentally measured. All the experimental measurements were made over a wide range of temperatures from (298.15 to 333.15) K and AHPD concentrations of (1, 7, 13, 19, and 25) mass%. An overall decrease in all the measured physical properties was observed with increasing temperature. The experimental results are presented as a function of temperature and AHPD mass fraction. All the measured physical properties were correlated as a function of temperature. Thermal decomposition of pure and aqueous solutions of AHPD was investigated using a thermo-gravimetric analyzer (TGA) at a heating rate of 10 K · min-1.
Conductivity study of thermally stabilized RuO2/polythiophene nanocomposites
NASA Astrophysics Data System (ADS)
Hebbar, Vidyashree; Bhajantri, R. F.
2018-04-01
The polymer nanocomposites of Ruthenium oxide (RuO2) filled polythiophene (PT) were synthesized by polymerization using chemical method. The purity of the synthesized polymer composite is verified using X-Ray diffraction (XRD). The structural discrepancies of the RuO2 filled PT composites are studied by Fourier transform infrared (FT-IR) spectroscopy. The phase transition and thermal stability of the prepared composite is revised by thermal characterization such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DC conductivity of RuO2 filled PT composite in the form of pellets is calculated using current-voltage (I-V) characterization by two-probe method. The enhancement in conductivity with increased RuO2 content in PT matrix is examined, which is the required property for electrical and electronic applications in supercapacitors.
Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jintao; Liu, Huanyu; Lu, Xiang
2016-03-09
In this study, thermal, mechanical properties and processability were performed on a series of carbon fiber (CF) filled thermoplastic polyurethane (TPU)/poly (butylene terephthalate) (PBT) composites to identify the effect of CF weight fraction on the properties of TPU/PBT. Scanning Electronic Microscope (SEM) show that CFs are uniformly dispersed in TPU/PBT matrix and there are no agglomerations. Melt flow index (MFI) show that the melt viscosity increased with the CF loading. Thermogravimetric analysis (TGA) revealed that the introduction of CF into organic materials tend to improve their thermal stability. The mechanical properties indicated that tensile strength and modulus, flexural strength andmore » modulus, improved with an increase in CF loading, but the impact strength decreased by the loading of CF.« less
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.
Sarı, Ahmet; Alkan, Cemil; Biçer, Alper
2016-05-01
In this study, PMMA/heneicosane (C21) and PMMA/octacosane (C28) micro-nano capsules were fabricated via emulsion polymerisation method. The chemical structures of the fabricated capsules were verified with the FT-IR spectroscopy analysis. The results of POM, SEM and PSD analysis indicated that most of the capsules were consisted of micro/nano-sized spheres with compact surface. The DSC measurements showed that the capsules had melting temperature in the range of about 39-60 °C and latent heat energy storage capacity in the range of about 138-152 J/g. The results of TGA showed that sublimit temperature values regarding the first degradation steps of both capsules were quite over the phase change or working temperatures of encapsulated paraffins. The thermal cycling test exhibited that the capsules had good thermal reliability and chemical stability. Additionally, the prepared capsules had reasonably high thermal conductivity.
Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S
2017-04-01
In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, H NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and H NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.
Carbon fiber content measurement in composite
NASA Astrophysics Data System (ADS)
Wang, Qiushi
Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and Malek methods. The activation energy (Ea) of the solid-state process is determined to be 202 kJ mol--1 in an oxidative atmosphere using Kissinger's method, which is 10-15 kJ mol--1 more than the results calculated in a nitrogen atmosphere. The value of the activation energy obtained using Ozawa-Flynn methods is in agreement with that using the Kissinger method. Different degradation mechanisms are used to compare with this value. Based on the analytical result, the actual thermal degradation mechanism of the CPPS is a Dn deceleration type. The carbonization temperature range of the CPPS is the same as pure PPS resin.
Physicochemical properties of film-coated melt-extruded pellets.
Young, Chistopher R; Crowley, Michael; Dietzsch, Caroline; McGinity, James W
2007-02-01
The purpose of this study was to investigate the physicochemical properties of poly(ethylene oxide) (PEO) and guaifenesin containing beads prepared by a melt-extrusion process and film-coated with a methacrylic acid copolymer. Solubility parameter calculations, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), X-ray powder diffraction (XRPD) and high performance liquid chromatography (HPLC) were used to determine drug/polymer miscibility and/or the thermal processibility of the systems. Powder blends of guaifenesin, PEO and functional excipients were processed using a melt-extrusion and spheronization technique and then film-coated in a fluidized bed apparatus. Solubility parameter calculations were used to predict miscibility between PEO and guaifenesin, and miscibility was confirmed by SEM and observation of a single melting point for extruded drug/polymer blends during MDSC investigations. The drug was stable following melt-extrusion as determined by TGA and HPLC; however, drug release rate from pellets decreased upon storage in sealed HDPE containers with silica desiccants at 40 degrees C/75% RH. The weight loss on drying, porosity and tortuosity determinations were not influenced by storage. Recrystallization of guaifenesin and PEO was confirmed by SEM and XRPD. Additionally, the pellets exhibited a change in adhesion behaviour during dissolution testing. The addition of ethylcellulose to the extruded powder blend decreased and stabilized the drug release rate from the thermally processed pellets. The current study also demonstrated film-coating to be an efficient process for providing melt-extruded beads with pH-dependent drug release properties that were stable upon storage at accelerated conditions.
Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne
2014-01-01
Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810
DOE Office of Scientific and Technical Information (OSTI.GOV)
RIVERA, DION A.; ALAM, M. KATHLEEN; MARTIN, LAURA
2003-02-01
Two lots of manufactured Type 3a zeolite samples were compared by TGA/IR analysis. The first lot, obtained from Davidson Chemical, a commercial vendor, was characterized during the previous study cycle for its water and water-plus-CO{sub 2} uptake in order to determine whether CO{sub 2} uptake prevented water adsorption by the zeolite. It was determined that CO{sub 2} did not hamper water adsorption using the Davidson zeolite. CO{sub 2} was found on the zeolite surface at dewpoints below -40 C, however it was found to be reversibly adsorbed. During the course of the previous studies, chemical analyses revealed that the Davidsonmore » 3a zeolite contained calcium in significant quantities, along with the traditional counterions potassium and sodium. Chemical analysis of a Type 3a zeolite sample retrieved from Kansas City (heretofore referred to as the ''Stores 3a'' sample) indicated that the Stores sample was a more traditional Type 3a zeolite, containing no calcium. TGA/IR studies this year focused on obtaining CO{sub 2} and water absorbance data from the Stores 3a zeolite. Within the Stores 3a sample, CO{sub 2} was found to be reversibly absorbed within the sample, but only at and below -60 C with 5% CO{sub 2} loading. The amount of CO{sub 2} observed eluting from the Stores zeolite at this condition was similar to what was observed from the Davidson zeolite sample but with a greater uncertainty in the measured value. The results of the Stores 3a studies are summarized within this report.« less
Long Term Degradation of Resin for High Temperature Composites
NASA Technical Reports Server (NTRS)
Patekar, Kaustubh A.
2000-01-01
The durability of polymer matrix composites exposed to harsh environments is a major concern. Surface degradation and damage are observed in polyimide composites used in air at 125 to 300 C. It is believed that diffusion of oxygen into the material and oxidative chemical reactions in the matrix are responsible. Previous work has characterized and modeled diffusion behavior, and thermogravimetric analyses (TGAs) have been carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. However, the model developed using these data was not able to capture behavior seen in isothermal tests, especially those of long duration. A test program that focuses on lower temperatures and makes use of isothermal tests was undertaken to achieve a better understanding of the degradation reactions under use conditions. A new low-cost technique was developed to collect chemical degradation data for isothermal tests lasting over 200 hr in the temperature range 125 to 300 C. Results indicate complex behavior not captured by the previous TGA tests, including the presence of weight-adding reactions. Weight gain reactions dominated in the 125 to 225 C temperature range, while weight loss reactions dominated beyond 225 C. The data obtained from isothermal tests was used to develop a new model of the material behavior. This model was able to fully capture the behavior seen in the tests up to 275 C. Correlation of the current model with both isothermal data at 300 C and high rate TGA test data is mediocre. At 300 C and above, the reaction mechanisms appear to change. Attempts (which failed) to measure non-oxidative degradation indicate that oxidative reactions dominate the degradation at low temperatures. Based on this work, long term isothermal testing in an oxidative atmosphere is recommended for studying the degradation behavior of this class of materials.
Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex
NASA Astrophysics Data System (ADS)
Xu, Wei; Zhao, Weijia; Hao, Lifen; Wang, Sha; Pei, Mengmeng; Wang, Xuechuan
2018-04-01
Waterborne polyurethane (PU) emulsions are widely used in various fields and the demand for them is ever-increasing over the years. However, the hydrophilic chain extender inevitably bonded into the PU backbone can affect the water tolerance of PU. Thus, it is of great importance to improve PU water resistance effectively. Herein, novel fluoroalkyl-terminated hyperbranched polyurethane (HBPUF) latex was accordingly synthesized by graft reaction of perfluorohexyl ethyl alcohol and hyperbranched polyurethane (HBPU), which was previously obtained from interaction between hydroxyl-terminated hyperbranched polymer and PU prepolymer manufactured via the acetone process, as well as using neutralization, adding water, and high-speed stirring operations. We characterized the resultants and investigated its surface properties by IR, NMR, TEM, XRD, TGA, DSC, FE-SEM, AFM, XPS, and contact angle measurements, etc. IR and NMR tests confirmed that the fluorinated fragments had been grafted onto the tail end of HBPU. TEM, XRD, DSC, and FE-SEM results all accounted for the fact that there were multi-crystals in PU, HBPU and HBPUF. TGA results showed that thermal stabilities of the PU, HBPU, and HBPUF latex films were enhanced in turn. XPS and AFM analyses demonstrated that the fluorine-containing segments from the HBPUF terminals were prone to migrate and enrich on the film-air surface of the HBPUF latex film, which made water contact angle and water absorption of the HBPUF film be as 113.9° and 11.1%, respectively, compared to those of the PU film (77.8° and 136.2%). This research indicates that water resistance of the PU film can be efficiently enhanced by fluorinated polyurethane with novel fluoroalkyl-terminated hyperbranched structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asha, S.; Sangappa,; Sanjeev, Ganesh, E-mail: ganeshanjeev@rediffmail.com
Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.
2012-06-01
SUBJECT TERMS carbon nanomaterials, nanodiamond, carbon onion, onion-like carbon, carbon nano-onions, onion-like fullerenes , Raman spectroscopy, x-ray...Metal encapsulating onion-like fullerenes ND Nanodiamond OLC Onion-like carbon OLF Onion-like fullerenes SNR Signal-to-noise ratio TGA...INTRODUCTION A. CARBON ONIONS 1. Carbon Onion Structure and Synthesis Carbon onions, also known as onion-like carbon (OLC), onion-like fullerenes (OLFs
Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming
2015-04-01
The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.
Thermal Conductivity of Polymer/Nano-filler Blends
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Delozier, Donovan M.; Working, Dennis C.; Connell, John W.; Smith, Joseph G.; Sun, Y. P.; Lin, Y.
2006-01-01
To improve the thermal conductivity of an ethylene vinyl acetate copolymer, Elvax 260 was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. In an attempt to improve compatibility between the Elvax and nanofillers, MWCNTs and EGs were modified through non covalent and covalent attachment of alkyl groups. Ribbons were extruded to form samples in which the nanofillers were aligned, and samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Thermal conductivity measurements were performed using a Nanoflash technique. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction. The results of this study will be presented.
Accuracy in Diagnosis of Celiac Disease Without Biopsies in Clinical Practice.
Werkstetter, Katharina Julia; Korponay-Szabó, Ilma Rita; Popp, Alina; Villanacci, Vincenzo; Salemme, Marianna; Heilig, Gabriele; Lillevang, Søren Thue; Mearin, Maria Luisa; Ribes-Koninckx, Carmen; Thomas, Adrian; Troncone, Riccardo; Filipiak, Birgit; Mäki, Markku; Gyimesi, Judit; Najafi, Mehri; Dolinšek, Jernej; Dydensborg Sander, Stine; Auricchio, Renata; Papadopoulou, Alexandra; Vécsei, Andreas; Szitanyi, Peter; Donat, Ester; Nenna, Rafaella; Alliet, Philippe; Penagini, Francesca; Garnier-Lengliné, Hélène; Castillejo, Gemma; Kurppa, Kalle; Shamir, Raanan; Hauer, Almuthe Christine; Smets, Françoise; Corujeira, Susana; van Winckel, Myriam; Buderus, Stefan; Chong, Sonny; Husby, Steffen; Koletzko, Sibylle
2017-10-01
The guidelines of the European Society of Pediatric Gastroenterology, Hepatology, and Nutrition allow for diagnosis of celiac disease without biopsies in children with symptoms and levels of immunoglobulin A against tissue-transglutaminase (TGA-IgA) 10-fold or more the upper limit of normal (ULN), confirmed by detection of endomysium antibodies (EMA) and positivity for HLA-DQ2/DQ8. We performed a large, international prospective study to validate this approach. We collected data from consecutive pediatric patients (18 years or younger) on a gluten-containing diet who tested positive for TGA-IgA from November 2011 through May 2014, seen at 33 pediatric gastroenterology units in 21 countries. Local centers recorded symptoms; measurements of total IgA, TGA, and EMA; and histopathology findings from duodenal biopsies. Children were considered to have malabsorption if they had chronic diarrhea, weight loss (or insufficient gain), growth failure, or anemia. We directly compared central findings from 16 antibody tests (8 for TGA-IgA, 1 for TGA-IgG, 6 for IgG against deamidated gliadin peptides, and 1 for EMA, from 5 different manufacturers), 2 HLA-DQ2/DQ8 tests from 2 manufacturers, and histopathology findings from the reference pathologist. Final diagnoses were based on local and central results. If all local and central results were concordant for celiac disease, cases were classified as proven celiac disease. Patients with only a low level of TGA-IgA (threefold or less the ULN) but no other results indicating celiac disease were classified as no celiac disease. Central histo-morphometry analyses were performed on all other biopsies and cases were carefully reviewed in a blinded manner. Inconclusive cases were regarded as not having celiac disease for calculation of diagnostic accuracy. The primary aim was to determine whether the nonbiopsy approach identifies children with celiac disease with a positive predictive value (PPV) above 99% in clinical practice. Secondary aims included comparing performance of different serological tests and to determine whether the suggested criteria can be simplified. Of 803 children recruited for the study, 96 were excluded due to incomplete data, low level of IgA, or poor-quality biopsies. In the remaining 707 children (65.1% girls; median age, 6.2 years), 645 were diagnosed with celiac disease, 46 were found not to have celiac disease, and 16 had inconclusive results. Findings from local laboratories of TGA-IgA 10-fold or more the ULN, a positive result from the test for EMA, and any symptom identified children with celiac disease (n = 399) with a PPV of 99.75 (95% confidence interval [CI], 98.61-99.99); the PPV was 100.00 (95% CI, 98.68-100.00) when only malabsorption symptoms were used instead of any symptom (n = 278). Inclusion of HLA analyses did not increase accuracy. Findings from central laboratories differed greatly for patients with lower levels of antibodies, but when levels of TGA-IgA were 10-fold or more the ULN, PPVs ranged from 99.63 (95% CI, 98.67-99.96) to 100.00 (95% CI, 99.23-100.00). Children can be accurately diagnosed with celiac disease without biopsy analysis. Diagnosis based on level of TGA-IgA 10-fold or more the ULN, a positive result from the EMA tests in a second blood sample, and the presence of at least 1 symptom could avoid risks and costs of endoscopy for more than half the children with celiac disease worldwide. HLA analysis is not required for accurate diagnosis. Clinical Trial Registration no: DRKS00003555. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atchudan, R.; Department of Chemistry, CEG Campus, Anna University, Chennai 600025; Joo, Jin., E-mail: joojin@knu.ac.kr
2013-06-01
Highlights: ► Tailored 3D cubic Ni/KIT-6 with large pores was synthesized successfully. ► The new hybrid g-CNTs in large scale were synthesized using Ni/KIT-6 by CVD method. ► The use of mesoporous material by CVD method would be an ideal choice to prepare g-CNTs at reasonable cost. ► This type of g-CNTs might be a new avenue for nano-electronic applications. - Abstract: The new hybrid of graphenated carbon nanotubes (g-CNTs) was superior to either CNTs or graphene. Mesoporous 3D cubic Ni/KIT-6 were synthesized hydrothermally through organic template route and then were used as catalytic template for the production of g-CNTsmore » using acetylene as a carbon precursor by chemical vapor deposition (CVD) method. The deposited new hybrid carbon materials were purified and analyzed by various physico-chemical techniques such as XRD, TGA, SEM, TEM and Raman spectroscopy techniques. The graphitization of CNTs was confirmed by TGA and HRTEM studies. Thermal stability, surface morphology, and structural morphology of these materials were revealed by TGA, SEM and TEM analysis, respectively. Moreover, the tailored mesoporous Ni/KIT-6 molecular sieves were found to possess better quality and massive quantity of g-CNTs produced compared to other catalytic template route.« less
Fire resistance properties of ceramic wool fiber reinforced intumescent coatings
NASA Astrophysics Data System (ADS)
Amir, N.; Othman, W. M. S. W.; Ahmad, F.
2015-07-01
This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.
Kariminezhad, Esmaeel; Elektorowicz, Maria
2018-04-10
The electrokinetic process has shown its ability to separate the different material phases. However, not much is known about the effect of the electric fields on the surface properties of solids in the oil sediments and their behavior under different electrical regimes. In this study, the effect of four different types of electrical current on the surface properties of oil sediments was investigated, namely constant direct current (CDC), pulsed direct current (PDC), incremental direct current (IDC) and decremental direct current (DDC). X-ray photoelectron spectroscopy (XPS) analyses showed a decrease in the concentration of carbon from 99% in centrifuged samples to 63% on the surface of the solids in the PDC-treated oil sediment. Wettability alteration and contact angle studies showed an enhance in hydrophilicity of the solids following electrokinetic treatment. A significant change in carbon and oxygen-containing functionalities at the surface solids of the DDC-treated sediment was also observed. Thermogravimetric analyses (TGA) confirmed the ability of electrokinetic treatment in separating the phases by shifting the thermogram profiles towards lower temperatures. The findings showed that the electrokinetic process exerts its effect by altering the surface properties of the sediment solids and destabilizing water-in-oil emulsions to facilitate phase separation of this complex waste. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my
This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted tomore » inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.« less
Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4.
Askarinejad, Azadeh; Morsali, Ali
2009-01-01
A simple sonochemical method was developed to synthesize uniform sphere-like or cubic Co(3)O(4) and Mn(3)O(4) nanocrystals by using acetate salts and sodium hydroxide or tetramethylammonium hydroxide (TMAH) as precursors. Influence of some parameters such as time of reaction, alkali salts, and power of the ultrasound and the molar ratio of the starting materials on the size, morphology and degree of crystallinity of the products was studied. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FTIR spectroscopy, Thermal gravimetry analysis and differential thermal analysis (TGA/DTA) were used to characterize the nanocrystals.
Spectroscopic and thermogravimetric study of nickel sulfaquinoxaline complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tailor, Sanjay M., E-mail: sanjay-tailor10@yahoo.com; Patel, Urmila H.
2016-05-06
The ability of sulfaquinoxaline (4-Amino-N-2-quinoxalinylbenzenesulfonamide) to form metal complexes are investigated. The nickel complex of sulfaquinoxaline is prepared by reflux method and characterized by CHN analysis and IR spectra. The results of IR spectral data suggest that the binding of nickel atom to the sulfonamidic nitrogen are in good agreement. The thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential thermogravimetric (DTG) analysis of nickel sulfaquinoxaline are carried out from ambient temperature to 750°C in inert nitrogen atmosphere. The activation energy, enthalpy, entropy and Gibbs free energy of nickel sulfaquinoxaline complex is determined from the thermal curves using Broido method.more » The results are reported in this paper.« less
Xiong, Shenglin; Xi, Baojuan; Wang, Weizhi; Zhou, Hongyang; Zhang, Shuyuan; Qian, Yitai
2007-12-01
Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10-60 nm have been synthesized through a simple sol-gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.
Mengeloglu, Fatih; Kabakci, Ayse
2008-01-01
Thermal behaviors of eucalyptus wood residue (EWR) filled recycled high density polyethylene (HDPE) composites have been measured applying the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Morphology of the materials was also studied using scanning electron microscope (SEM). Addition of the EWR into the recycled HDPE matrix reduced the starting of degradation temperature. EWR filled recycled HDPE had two main decomposition peaks, one for EWR around 350 °C and one for recycled HDPE around 460 °C. Addition of EWR did not affect the melting temperature of the recycled HDPE. Morphological study showed that addition of coupling agent improved the compatibility between wood residue and recycled HDPE. PMID:19325736
Spray drying egg using either maltodextrin or nopal mucilage as stabilizer agents.
Medina-Torres, L; Calderas, F; Nuñez Ramírez, D M; Herrera-Valencia, E E; Bernad Bernad, M J; Manero, O
2017-12-01
In this work, a comparative study between spray drying (SD) of fresh egg by either maltodextrin (MD) or nopal-mucilage (MN) as stabilizing vectors was made. The powders obtained were characterized for drying performance, moisture content, chemical proximate analysis, thermal analysis (TGA), chemical composition (FTIR), microscopy (SEM) and rheology (viscoelasticity and steady state simple shear viscosity). Infrared analysis showed that MN has the effect of a thickening agent rather than an encapsulating one. Results indicated that SD egg with MN produced a high thermal and mechanical stable product and rendered the highest drying performance, producing a more uniform and defined sphere-shaped morphology in comparison to egg SD either alone and with MD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oerter, Erik; Singleton, Michael; Davisson, Lee
The hydrogen and oxygen stable isotope composition (δ 2H and δ 18O values) of mineral hydration waters can give information on the environment of mineral formation. Here we present and validate an approach for the stable isotope analysis of mineral hydration waters based on coupling a thermogravimetric analyzer with a laser-based isotope ratio infrared spectroscopy instrument (Picarro L-2130i), which we abbreviate as TGA-IRIS. TGA-IRIS generates δ 2H and δ 18O values of liquid water samples with precision for δ 2H of ± 1.2‰, and for δ 18O of ± 0.17‰. For hydration waters in goethite, precision for δ 2H rangesmore » from ± 0.3‰ to 1.6‰, and for δ 18O ranges from ± 0.17‰ to 0.27‰. The ability of TGA-IRIS to generate detailed water yield data and δ 2H and δ 18O values of water at varying temperatures allows for the differentiation of water in varying states of binding on mineral surfaces and within the mineral matrix. TGA-IRIS analyses of hydrogen isotopes in goethite yields δ 2H values that reflect the hydrogen of the OH – phase in the mineral and are comparable to that made by IRMS and found in the literature. In contrast, δ 18O values on goethite reflect the oxygen in OH – groups bound to Fe (Fe-OH group), and not the oxygen bound only to Fe (Fe-O group) in the mineral crystal lattice, and may not be comparable to literature δ 18O values made by IRMS that reflect the total O in the mineral. TGA-IRIS presents the possibility to isotopically differentiate the various oxygen reservoirs in goethite, which may allow the mineral to be used as a single mineral geothermometer. As a result, TGA-IRIS measurements of hydration waters are likely to open new avenues and possibilities for research on hydrated minerals.« less
Oerter, Erik; Singleton, Michael; Davisson, Lee
2017-10-22
The hydrogen and oxygen stable isotope composition (δ 2H and δ 18O values) of mineral hydration waters can give information on the environment of mineral formation. Here we present and validate an approach for the stable isotope analysis of mineral hydration waters based on coupling a thermogravimetric analyzer with a laser-based isotope ratio infrared spectroscopy instrument (Picarro L-2130i), which we abbreviate as TGA-IRIS. TGA-IRIS generates δ 2H and δ 18O values of liquid water samples with precision for δ 2H of ± 1.2‰, and for δ 18O of ± 0.17‰. For hydration waters in goethite, precision for δ 2H rangesmore » from ± 0.3‰ to 1.6‰, and for δ 18O ranges from ± 0.17‰ to 0.27‰. The ability of TGA-IRIS to generate detailed water yield data and δ 2H and δ 18O values of water at varying temperatures allows for the differentiation of water in varying states of binding on mineral surfaces and within the mineral matrix. TGA-IRIS analyses of hydrogen isotopes in goethite yields δ 2H values that reflect the hydrogen of the OH – phase in the mineral and are comparable to that made by IRMS and found in the literature. In contrast, δ 18O values on goethite reflect the oxygen in OH – groups bound to Fe (Fe-OH group), and not the oxygen bound only to Fe (Fe-O group) in the mineral crystal lattice, and may not be comparable to literature δ 18O values made by IRMS that reflect the total O in the mineral. TGA-IRIS presents the possibility to isotopically differentiate the various oxygen reservoirs in goethite, which may allow the mineral to be used as a single mineral geothermometer. As a result, TGA-IRIS measurements of hydration waters are likely to open new avenues and possibilities for research on hydrated minerals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.
2013-12-03
For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-05-04
Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.
Chang, Julia Y-F; Chen, I-Chang; Wang, Yi-Ping; Wu, Yu-Hsueh; Chen, Hsin-Ming; Sun, Andy
2016-11-01
Serum gastric parietal cell antibody (GPCA), thyroglobulin antibody (TGA), and thyroid microsomal antibody (TMA) are found in some erosive oral lichen planus (EOLP) patients. This study assessed whether serum GPCA, TGA and TMA and EOLP itself played significant roles in causing anemia and hematinic deficiencies in TGA/TMA-positive EOLP patients with GPCA positivity (GPCA + /TGA/TMA/EOLP patients) or negativity (GPCA - /TGA/TMA/EOLP patients). The mean corpuscular volume (MCV) and mean blood hemoglobin (Hb), iron, vitamin B12, and folic acid levels were measured and compared between any two of the four groups of 29 GPCA + /TGA/TMA/EOLP patients, 80 GPCA - /TGA/TMA/EOLP patients, 198 all antibodies-negative EOLP patients (Abs - /EOLP patients), and 218 healthy control individuals. GPCA + /TGA/TMA/EOLP patients had significantly lower mean Hb and vitamin B12 levels as well as significantly greater frequencies of Hb, iron, and vitamin B12 deficiencies than healthy controls. GPCA + /TGA/TMA/EOLP patients had significantly lower serum vitamin B12 level and higher MCV as well as a significantly greater frequency of vitamin B12 deficiency than GPCA - /TGA/TMA/EOLP patients. Furthermore, both GPCA - /TGA/TMA/EOLP and Abs - /EOLP patients did have significantly lower mean Hb, MCV, and iron (for women only) levels, as well as significantly greater frequencies of Hb and iron deficiencies than healthy controls. However, there were no significant differences in measured blood data between GPCA - /TGA/TMA/EOLP and Abs - /EOLP patients. We conclude that serum GPCA is the major factor causing vitamin B12 deficiency, macrocytosis and pernicious anemia in GPCA + /TGA/TMA/EOLP patients. ELOP itself but not TGA/TMA positivity plays a significant role in causing anemia and hematinic deficiencies in GPCA - /TGA/TMA/EOLP patients. Copyright © 2016. Published by Elsevier B.V.
Combining piracetam and lithium salts: ionic co-crystals and co-drugs?
Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Capucci, Davide; Nanna, Saverio; Wouters, Johan; Aerts, Luc; Quéré, Luc
2012-08-25
Mechanochemical reaction of solid piracetam with the inorganic salts LiCl and LiBr yields ionic co-crystals which are also co-drugs, characterized by markedly different thermal properties with respect to pure components, also depending on the method for preparation and/or conditions of measurements; single crystal and powder X-ray diffraction at variable temperatures, DSC, TGA, hot stage microscopy (HSM) and intrinsic dissolution rate have been used to fully characterize the solid products.
Development of and fabrication of high resolution gas chromatographic capillary columns
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1982-01-01
Gas chromatographic columns which are used in the trace gas analyzer (TGA) for the space shuttle are coated with a polyoxyethylene lauryl ether. This stationary phase is of medium polarity and has a temperature limit of 160 C. A polymer for this application which has an improved thermal stability is investigated. The use of fused silica capillary columns with specially bonded phases as well as an introduction system (on column) was also studied.
Instrumentation for studying binder burnout in an immobilized plutonium ceramic wasteform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M; Pugh, D; Herman, C
The Plutonium Immobilization Program produces a ceramic wasteform that utilizes organic binders. Several techniques and instruments were developed to study binder burnout on full size ceramic samples in a production environment. This approach provides a method for developing process parameters on production scale to optimize throughput, product quality, offgas behavior, and plant emissions. These instruments allow for offgas analysis, large-scale TGA, product quality observation, and thermal modeling. Using these tools, results from lab-scale techniques such as laser dilametry studies and traditional TGA/DTA analysis can be integrated. Often, the sintering step of a ceramification process is the limiting process step thatmore » controls the production throughput. Therefore, optimization of sintering behavior is important for overall process success. Furthermore, the capabilities of this instrumentation allows better understanding of plant emissions of key gases: volatile organic compounds (VOCs), volatile inorganics including some halide compounds, NO{sub x}, SO{sub x}, carbon dioxide, and carbon monoxide.« less
NASA Astrophysics Data System (ADS)
Özdemir, Tonguç
2008-06-01
In this study, the radiation degradation/modification of the vulcanized EPDM and the effects of dose rate, peroxide type/content in vulcanization system and ENB content of EPDM were studied to investigate the change in the extend of the modification/degradation of the mechanical properties of vulcanized EPDM via gamma irradiation. In addition, thermal, dynamic mechanical, ATR-FTIR, TGA, TGA-FTIR tests were carried out to understand the change of properties of vulcanized EPDM via irradiation. Samples were irradiated with two different dose rates of 1280 and 64.6 Gy/h. Total dose of irradiation was up to 184 kGy. The FTIR spectral analysis showed structural changes of EPDM via irradiation. It was observed that the dose rate changed the mechanical properties with different extends. The change of ENB content of EPDM and peroxide type and content in vulcanization system affect extend of the modification/degradation of the EPDM's properties.
Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites
Zha, Dongdong; Li, Bengang; Yin, Peng; Li, Panxin
2018-01-01
We reported a new method to prepare polyvinyl alcohol (PVA)/thermoplastic starch (TPS) composites by using polyvinyl alcohol microspheres (PVAMS). The PVAMS/TPS composites were characterized using tensile test, scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results exhibited that adding small amounts of PVAMSs can effectively improve the mechanical strength and toughness of the composites, especially for the 1 wt %PVAMS in TPS matrix, with a tensile strength of 3.5 MPa, an elongation at break at 71.73% and an impact strength of 33.4 kJ/m2. Furthermore, the SEM and shift in the tan δ peak (Tα and Tβ) at the maximum value of 69.87 and −36.52 °C indicates that the PVAMS decreased the mobility of the amorphous starch molecules due to the strong intermolecular hydrogen bonds between PVAMS and TPS. The peak temperature of maximum decomposition rate (Tp) of 1 wt % PVAMS/TPS composites increased about 5 °C compared with TPS in TGA curves. PMID:29690506
Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films
NASA Astrophysics Data System (ADS)
Yalçınkaya, Süleyman; Çakmak, Didem
2017-05-01
In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.
Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.
Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko
2016-10-01
Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Sha; Zhou, Ming; Liu, Feiyan; Zhang, Chang; Liu, Xueqing; Liu, Jiyan; Zou, Liyong; Chen, Jia
2017-08-01
Flame-retardant polyvinyl alcohol (PVA) membranes with high transparency and flexibility were prepared by mixing an aqueous solution of a phosphorus-containing acrylic acid (AOPA) with PVA. The reaction between AOPA and PVA, the transparency, the crystallinity and the flexibility of the membrane were investigated with Fourier transform infrared spectrometry (FTIR), UV-vis light transmittance, X-ray diffraction and tensile tests, respectively. The limited oxygen index (LOI) and vertical flame (UL 94 VTM), microscale combustion calorimetry, thermogravimetric analysis (TGA) and TGA-FTIR were employed to evaluate the flame retardancy as well as to reveal the corresponding mechanisms. Results showed that PVA containing 30 wt% of AOPA can reach the UL 94 VTM V0 rating with an LOI of 27.3% and retain 95% of the original transparency of pure PVA. Adding AOPA reduces crystallinity of PVA, while the flexibility is increased. AOPA depresses the thermal degradation of PVA and promotes char formation during combustion. The proposed decomposition mechanism indicates that AOPA acts mainly in the condensed phase.
Synthesis and characterization of CdS/PVA nanocomposite films
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Fang, Pengfei; Chen, Zhe; Wang, Shaojie
2007-08-01
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd 2+-dispersed poly vinyl-alcohol (PVA) with H 2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of Cd sbnd S bond at 405 cm -1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.
Zhuang, Chen; Shi, Chengmei; Tao, Furong; Cui, Yuezhi
2017-12-01
The functionalized cellulose ester MCN was firstly synthesized and used to cross-link gelatin by amidation between -NH 2 in gelatin and active ester groups in MCN to form a composite polymer network Gel-MCN, which was confirmed by Van Slyke method, FTIR, XRD and TGA-DTG spectra. The model drug omeprazole was loaded in Gel-MCN composites mainly by electrostatic interaction and hydrogen bonds, which were certified by FTIR, XRD and TGA-DSC. Thermal stability, anti-biodegradability, mechanical property and surface hydrophobicity of the composites with different cross-linking extents and drug loading were systematically investigated. SEM images demonstrated the honeycomb structural cells of cross-linked gelatin networks and this ensured drug entrapment. The drug release mechanism was dominated by a combined effect of diffusion and degradation, and the release rate decreased with cross-linking degree increased. The developed drug delivery system had profound significance in improving pesticide effect and bioavailability of drugs. Copyright © 2017. Published by Elsevier B.V.
Thermal stability and haemolytic effects of depolymerized guar gum derivatives.
Hussain, Majid; Zahoor, Tahir; Akhtar, Saeed; Ismail, Amir; Hameed, Aneela
2018-03-01
The purpose of current study was to purify and partially depolymerize guar gum by β-mannanase, HCl, Ba(OH) 2 actions and subjected to inspect compositional, thermogravimetric analysis (TGA) and haemolytic activity. Chemical composition revealed mannose and galactose ratio remained un-altered even after process of purification and hydrolysis. TGA thermograms affirmed initial and final decomposition temperature in various zones. Major decomposition stages apparently revealed partially hydrolyzed guar gum (PHGG) exhibited better heat stable properties having more zones of degradation than crude one. Furthermore, all guar fractions (2.5-250 mg/mL) were subjected to haemolysis to evaluate toxic effects during process of hydrolysis. The crude and hydrolyzed guar galactomannans exhibited minor haemolytic activity (1.9 ± 0.03-7.24 ± 0.02%) when compared to 0.1% Triton-X 100 (100% haemolysis) showing no toxic effects to human RBC's. Conclusively, hydrolyzed guar-galactomannans are safe and can be used in food products with improved heat stability.
Aluminum phosphate microcapsule flame retardants for flexible polyurethane foams
NASA Astrophysics Data System (ADS)
Zhang, Bin; Liu, Hong; Han, Jian
2018-04-01
In this study, highly efficient flame-retardant aluminum phosphate (ALP) microcapsules were synthesized from ALP and ammonium phosphomolybdate trihydrate. The chemical structure of the ALP microcapsules was characterized by scanning electron microscopy and elemental analysis, and the thermal degradation behavior was investigated by thermogravimetric analysis (TGA). Subsequently, flexible polyurethane (PU) foams were prepared with the ALP microcapsules. Limiting oxygen index (LOI) tests, vertical burning tests, smoke density rating (SDR), and cone calorimetric tests were employed to investigate the combustion of the materials. The results showed that the flexible PU foams with 15 parts per hundred polyol by weight (pphp) ALP microcapsules passed the vertical burning test and they had an increased LOI value of 28.5%. The SDR value for PU/20 pphp ALP microcapsule composites was about 16.0% and the SDR value for the pure PU was about 29.0%. The corresponding flame-retardant mechanism was investigated by Fourier transform infrared spectroscopy, TGA, Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) tests, and energy-dispersive X-ray spectrometry.
Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity
NASA Astrophysics Data System (ADS)
Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.
2015-06-01
In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.
Liu, Lei; Wang, Zhengzhou
2018-05-26
This study presents a one-step synthesis of a magnesium amino-tris-(methylenephosphonate) (Mg-AMP)-reduced graphene oxide (Mg-rGO) hybrid involving graphene oxide (GO) reduction and growth in situ of Mg-AMP nanoparticles in the absence of a reducing agent. Mg-rGO was characterized by X-ray diffraction, X-ray photoelectron and Fourier-transform infrared spectroscopies, transmission electronic microscopy, and thermogravimetric analysis (TGA). Mg-rGO was then used to prepare flame-retardant and toughened phenolic (PF) foam. This additive was found to enhance the compressive and flexural strengths of PF foam as well as to reduce its high friability and brittleness. The limiting oxygen index of the foam with 4 phr Mg-rGO (sample PF/4Mg-rGO) increased to 41.5%, compared with the 38% of untreated foam; the peak heat release rate and total heat release of sample PF/4Mg-rGO were decreased by 28.7 and 18.4%, respectively. Also, the total smoke release and peak CO production rate of PF/4Mg-rGO were reduced by 52.5 and 38.1%, respectively. TGA results indicated that Mg-rGO clearly improved the thermal stability of PF foam. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermoanalytical Investigation of Some Sulfone-Containing Drugs
Salama, Nahla N.; El Ries, Mohammed A.; Toubar, Safaa; Abd El Hamid, Maha; Walash, Mohammed I.
2012-01-01
The thermal behavior of some sulfone-containing drugs, namely, dapsone (DDS), dimethylsulfone (MSM), and topiramate (TOP) in drug substances, and products were investigated using different thermal techniques. These include thermogravimetry (TGA), derivative thermogravimetry (DTG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The thermogravimetric data allowed the determination of the kinetic parameters: activation energy (E a), frequency factor (A), and reaction order (n). The thermal degradation of dapsone and topiramate was followed a first-order kinetic behavior. The calculated data evidenced a zero-order kinetic for dimethylsulfone. The relative thermal stabilities of the studied drugs have been evaluated and follow the order DDS > TOP > MSM. The purity was determined using DSC for the studied compounds, in drug substances and products. The results were in agreement with the recommended pharmacopoeia and manufacturer methods. DSC curves obtained from the tablets suggest compatibility between the drugs, excipients and/or coformulated drugs. The fragmentation pathway of dapsone with mass spectrometry was taken as example, to correlate the thermal decomposition with the resulted MS-EI. The decomposition modes were investigated, and the possible fragmentation pathways were suggested by mass spectrometry. PMID:22792516
Thermoanalytical investigation of some sulfone-containing drugs.
Salama, Nahla N; El Ries, Mohammed A; Toubar, Safaa; Abd El Hamid, Maha; Walash, Mohammed I
2012-01-01
The thermal behavior of some sulfone-containing drugs, namely, dapsone (DDS), dimethylsulfone (MSM), and topiramate (TOP) in drug substances, and products were investigated using different thermal techniques. These include thermogravimetry (TGA), derivative thermogravimetry (DTG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The thermogravimetric data allowed the determination of the kinetic parameters: activation energy (E(a)), frequency factor (A), and reaction order (n). The thermal degradation of dapsone and topiramate was followed a first-order kinetic behavior. The calculated data evidenced a zero-order kinetic for dimethylsulfone. The relative thermal stabilities of the studied drugs have been evaluated and follow the order DDS > TOP > MSM. The purity was determined using DSC for the studied compounds, in drug substances and products. The results were in agreement with the recommended pharmacopoeia and manufacturer methods. DSC curves obtained from the tablets suggest compatibility between the drugs, excipients and/or coformulated drugs. The fragmentation pathway of dapsone with mass spectrometry was taken as example, to correlate the thermal decomposition with the resulted MS-EI. The decomposition modes were investigated, and the possible fragmentation pathways were suggested by mass spectrometry.
[A study of right-left shunt in transient global amnesia].
de Francisco, J; Pujadas, F; Toledo, M; Santamarina, E; Quintana, M; Edo, M C; Centeno, M; Alvarez Sabín, J
2010-03-01
Transient global amnesia (TGA) is a disorder of unknown aetiology. In recent studies, TGA was associated with a right to left shunt (RLS). We studied the presence of the RLS in patients with TGA and we compared this series with patients who had suffered a transient ischaemic attack (TIA). We included 66 consecutive TGA patients. In these patients a transcranial Doppler was performed to determine the presence of a RLS. We collected data on the TGA episode, vascular risk factors, migraine history, recurrence of TGA and neuroimaging in patients with and without RLS. We compared the prevalence of the RLS in TGA series with 59 patients with TIA. The prevalence of RLS was 21.2% in patients with TGA. The RLS was associated with the migraine history (40% versus 13%; p = 0.014) and a Valsalva manoeuvre as a triggering factor (50% versus 14.5%; p = 0.022). A greater prevalence of RLS was detected in patients with TIA (55.9% versus 21.2%; p < 0.001). The RLS prevalence in TGA patients is similar to the general population but significantly lower than the prevalence in TIA patients. The association with a Valsalva manoeuvre as a precipitating factor in the TGA patients with RLS could play a role in the aetiopathogenesis of the TGA.
Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.
Gunawan, Richard; Zhang, Dongke
2009-06-15
The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.
Dinakaran, Paul M; Kalainathan, S
2013-03-15
A novel organic nonlinear optical material 4-fluoro 4-nitrostilbene (FONS), with molecular formula (C(14)H(10)FNO(2)) has been synthesized. Using ethyl methyl ketone as solvent, the synthesized material has been repeatedly recrystallized to minimize the impurities and good optical quality single crystals were harvested by slow evaporation method. Single crystal X-ray diffraction analysis reveals that the grown FONS crystal belongs to monoclinic system with noncentrosymmetric space group "P2(1)". The powder X-ray diffraction pattern of FONS has been recorded. Functional groups of the title compound were confirmed by FTIR and the molecular structure was confirmed by (1)HNMR. The UV-vis-NIR absorption study reveals no absorption in the visible region and the cut-off wavelength was found to be at 408 nm. Optical band gap (E(g)) of the grown crystal was found to be 3.27 eV and also the optical constants were determined. Thermal behaviour of the FONS has been studied by TGA/DTA analyses. From the mass spectrum, the ratio of compound formation of FONS was analyzed. The NLO property has been confirmed by Kurtz and Perry powder SHG technique and the SHG efficiency of FONS (262 mV) crystal was found to be 12 times greater than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.
Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S
2002-05-15
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.
Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M
2017-02-10
In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.
El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed
2015-08-05
A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H₃L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC₅₀ of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.
Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh
2015-01-21
In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.
Yetilmezsoy, Kaan; Kocak, Emel; Akbin, Havva Melda; Özçimen, Didem
2018-06-28
Sustainable uses of the struvite (magnesium ammonium phosphate hexahydrate, MgNH 4 PO 4 ·6H 2 O, MAP) recovered from the synthetic wastewater, as a high-quality slow-release fertilizer for the growth of nine medicinal plants and a fire-retardant barrier on the flammability of cotton fabric and wooden plate, were explored in this study. The previous experimental results demonstrated that under the optimal conditions, about 98.7% of [Formula: see text] (initial [Formula: see text] = 1000 mg/L) could be effectively and successfully recovered from simulated wastewater in the form of MAP precipitate. Rates of increase in total fresh weights, total dry weights, and fresh heights of plants grown in soil fertilized with the struvite were determined as 67%, 52%, and 12% for valerian; 121%, 75%, and 18% for cucumber; 421%, 260%, and 47% for dill; 314%, 318%, and 27% for coriander; 432%, 566%, and 30% for tomato; 285%, 683%, and 26% for parsley; 200%, 225%, and 9% for basil; 857%, 656%, and 92% for rocket; and 146%, 115%, and 28% for cress, respectively, compared to the control pots. The microstructure, elemental composition, surface area, thermal behaviour, and functional groups of the grown crystals were characterized using SEM, EDS, BET, TGA-DTG-DSC, and FTIR analyses, respectively. Flammability tests and thermal analyses concluded that the dried and crumbled/implanted form of struvite used as a fire-retardant barrier demonstrated a remarkable flame-resistant behaviour for both cotton fabric and wooden plate. Findings of this experimental study clearly corroborated the versatility of struvite as non-polluting and environmentally friendly clean product for the sustainable usage in different fields.
Rajagopal, Raghu Raman; Rajarao, Ravindra; Sahajwalla, Veena
2016-11-01
This paper investigates the high temperature transformation, specifically the kinetic behaviour of the waste printed circuit board (WPCB) derived from computer monitor (single-sided/SSWPCB) and computer processing boards - CPU (multi-layered/MLWPCB) using Thermo-Gravimetric Analyser (TGA) and Vertical Thermo-Gravimetric Analyser (VTGA) techniques under nitrogen atmosphere. Furthermore, the resulting WPCB residues were subjected to characterisation using X-ray Fluorescence spectrometry (XRF), Carbon Analyser, X-ray Photoelectron Spectrometer (XPS) and Scanning Electron Microscopy (SEM). In order to analyse the material degradation of WPCB, TGA from 40°C to 700°C at the rates of 10°C, 20°C and 30°C and VTGA at 700°C, 900°C and 1100°C were performed respectively. The data obtained was analysed on the basis of first order reaction kinetics. Through experiments it is observed that there exists a substantial difference between SSWPCB and MLWPCB in their decomposition levels, kinetic behaviour and structural properties. The calculated activation energy (E A ) of SSWPCB is found to be lower than that of MLWPCB. Elemental analysis of SSWPCB determines to have high carbon content in contrast to MLWPCB and differences in materials properties have significant influence on kinetics, which is ceramic rich, proving to have differences in the physicochemical properties. These high temperature transformation studies and associated analytical investigations provide fundamental understanding of different WPCB and its major variations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maktedar, Shrikant S; Mehetre, Shantilal S; Avashthi, Gopal; Singh, Man
2017-01-01
The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS). The direct covalent functionalization and formation of f-(TA) GrO was proven with FTIR, 13 C solid state NMR, XPS, XRD, Raman' HRTEM, AFM and TGA. The total percentage weight loss in TGA confirms an enhanced thermal stability of f-(TA) GrO. The f-(TA) GrO was further explored for an investigation of in vitro antimicrobial activity to ensure the health and environmental safety. An outstanding antibacterial activity of f-(TA) GrO was found against gram positive Staphylococcus aureus at MIC 128mgmL -1 . It confirms a suitability of f-(TA) GrO for thermally stable antibacterial coating. The f-(TA) GrO showed 39.14-48.9% antioxidant activities, evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The inherent cytotoxicity of f-(TA) GrO was evaluated with SRB assay to living cells, MCF-7 and Vero. The estimated cell viabilities were >80% upon addition of f-(TA) GrO over a wide concentration range of 10-80μgmL -1 . The high cytocompatibility of f-(TA) GrO confirms the low toxicity and an excellent biocompatibility. The morphological effect on Vero cell line, evidently confirmed the biocompatibility of f-(TA) GrO. Therefore, f-(TA) GrO was emerged as an advanced functional biomaterial for thermal and biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Picou, Laura; Boldor, Doran
2012-10-16
The limited supply of traditional fossil based fuels, and increased concern about their environmental impact has driven the interest in the utilization of biomass based energy sources, including those that are underutilized or otherwise nuisance species such as Chinese tallow trees (Triadica sebifera [L.]). This species is a prolific seeds producer, and this paper shows that they contain more than 50% lipids by mass that are suitable for conversion into biodiesel. We present here, for the first time, the seeds' thermophysical properties important for biofuel production. The seeds were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and ultimate analysis; their thermal conductivity, thermal diffusivity, and specific heat were determined. The characterization results were correlated to fatty acid composition and lipid content for whole seeds and individual layers, as well as to the protein, hemicellulose, cellulose, and lignin content. The TGA analysis indicated the presence, in addition to lipids, of hemicellulose, cellulose, lignin, and proteins, depending on the layer analyzed. Thermal conductivity and specific heat were, respectively 0.14 ± 0.007 W/mK and 3843.5 ± 171.16 J/kgK for wax, 0.20 ± 0.002 W/mK and 2018.7 ± 5.18 J/kgK for shells, 0.13 ± 0.0 W/mK and 1237 ± 3.15 J/kgK for internal kernel, and 0.13 ± 0.000 W/mK and 2833.9 ± 104.11 J/kgK for whole seeds. These properties and characterization method can be further used in engineering analysis used to determine the most optimum processing method for production of biofuels from this feedstock.
NASA Astrophysics Data System (ADS)
Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.
2016-02-01
Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.
NASA Astrophysics Data System (ADS)
Ashraf, Ahmad Raza; Akhter, Zareen; Simon, Leonardo C.; McKee, Vickie; Castel, Charles Dal
2018-05-01
The meta-catenated ether-based diamine monomer α,αʹ-bis(3-aminophenoxy)-p-xylene (3APX) was synthesized from dinitro precursor α,αʹ-bis(3-nitrophenoxy)-p-xylene (3NPX). FTIR, 1H and 13C NMR spectroscopic studies accompanied by elemental analysis were performed for structural elucidations of 3NPX and 3APX. The spatial orientations of 3APX were explored by single crystal X-ray diffraction analysis. Its crystal system was found to be monoclinic, adopting the space group P21/c. The synthesized diamine monomer (3APX) was used for preparation of new series of polyimides by reacting with three different dianhydrides (BTDA, ODPA, 6FDA). The relevant copolyimides were developed via incorporation of 4,4ʹ-methylenedianiline (MDA) in the backbone of afore-synthesized polyimides. The structures of polyimides and copolyimides were verified by FTIR and 1H NMR spectroscopic techniques. Their properties were evaluated by dynamic and isothermal TGA (nitrogen and air atmospheres) and WAXRD studies. Polyimides displayed significantly high thermal stability as their degradation started around 400 °C and it was improved further by execution of copolymerization strategy with MDA. The 5% weight loss temperature (T5) of polyimides under nitrogen atmosphere was in the range of 425-460 °C while for copolyimides it increased to 454-498 °C. Thermal decomposition in air was slower than nitrogen between 400 and 550 °C however it was accelerated above 550 °C. Isothermal TGA disclosed that copolyimides have the ability to endure elevated temperatures for extended period. WAXRD analysis showed the amorphous nature of polyimides and copolyimides.
Cibichakravarthy, Balasubramanian; Abinaya, Subramani; Prabagaran, Solai Ramatchandirane
2017-10-01
The guild between higher termites and their partnership with the diverse community of bacteria and archaea in their gut is a marvel evolutionary achievement. Sustained attempts were made worldwide with a quest for identifying viable important biological macromolecule polyhydroxyalkanoate (PHA) accumulating bacteria. Termite gut serve as a novel source for bacteria with dual properties like PHA production as well as cellulose degradation. Among 40 isolates cultivated, 32.5% turned positive for PCR based screening of PhaC gene. The 16S rRNA gene sequencing revealed that elite PHA producer and cellulose degrader which is phylogenetically affiliated to Bacillus cereus. The PHA production was maximized by employing different carbon and nitrogen sources along with altered pH and temperatures. GC-MS, FTIR and 1 HNMR analyses confirmed the presence of PHA and the thermal characterization was performed through TGA and DSC for the termite gut isolate. Our results indicated that the combined integrative approach using isolated strains from termite gut would be preferable choice in producing biomolecules from cellulosic materials. Copyright © 2017. Published by Elsevier B.V.
Gullón, Beatriz; Eibes, Gemma; Dávila, Izaskun; Moreira, María Teresa; Labidi, Jalel; Gullón, Patricia
2018-07-15
Hydrothermal treatment is an environmentally friendly technology that allows the solubilisation of hemicellulosic oligosaccharides with potential for their use as prebiotics. The purpose of this study was to solubilize oligosaccharides and antioxidant compounds from chestnut shells by a hydrothermal processing. The highest content of oligosaccharides (18.3 g/L), with a relatively low level of monosaccharides (2.4 g/L) and degradation products (0.5 g/L) was obtained at 180 °C (severity of 3.08). In addition, the liquors presented a high content of phenolic and flavonoid compounds with good antioxidant properties. The GC-MS revealed that the most abundant phenolic compound was pyrogallol (13.2%). The molecular weight distribution of the solubilization products showed that a 26.5% presented an apparent Mw of 6077 g/mol and a 73.5% presented an apparent Mw of 586 g/mol with a high polydispersity index. MALDI-TOF, FTIR, and TGA analyses revealed structural information of these compounds and their thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process
NASA Astrophysics Data System (ADS)
Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui
2016-06-01
Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.
Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez
2013-01-01
The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146
Infrared and Raman spectra of triacetoxyvinylsilane, aqueous sol-gel and xerogel
NASA Astrophysics Data System (ADS)
Li, Ying-Sing; Ba, Abdul; Mahmood, Maleeha S.
2009-04-01
Triacetoxyvinylsilane (TAVS) has been used as a precursor to prepare sol-gel under aqueous conditions. The sol-gel product has been applied for the surface treatment of aluminum. Infrared and Raman spectra have been collected for TAVS and for TAVS sol-gel, xerogel and sol-gel-coated aluminum. Vibrational analyses have been suggested for the recorded spectra based essentially on the group frequencies and the spectral variation with the change of the sol-gel product states and the vibrational assignments of similar molecules. From the recorded infrared and Raman spectra of the sol-gel and xerogel, it is found that the sol-gel produced in the process with TAVS is essentially the same as that prepared from vinyltriethoxysilane. Thermo-gravimetric analysis (TGA) of TAVS xerogel has been conducted, and an explanation has been given in coordination with the results obtained from IR spectroscopic study of the xerogels cured at different temperatures. The study has demonstrated the thermal effect on the condensation of the sol-gel process and on the vinyl decomposition of TAVS xerogel.
Sabegh, Mahzad Yaghmaei; Norouzi, Omid; Jafarian, Sajedeh; Khosh, Akram Ghanbari; Tavasoli, Ahmad
2018-02-01
In order to reduce the economic and environmental consequences caused by spent car catalyst, we herein report for the first time a novel promising multi-metal catalyst prepared from spent car catalytic converters to upgrade the pyrolysis bio-oils. The physico-chemical properties of prepared catalyst were characterized by XRD, EDS, FESEM, and FT-IR analyses. The thermal stability of the multi-metal catalyst was studied with TGA. To investigate the activity of the catalyst, Conversion of Cladophora glomerata (C. glomerata) into bio-products was carried out via a fixed bed reactor with and without catalyst at the temperature of 500°C. Although the catalyst didn't catalyze the gasification reaction, bio-oil was upgraded over the catalyst. The main effect of the catalyst on the bio-oil components is deoxygenating of nitrogen compounds and promotion the ketonization reaction, which converts acid to ketone and declines the corrosive nature of bio-oil. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Fan, Weiqiang; Zhu, Lin; Shi, Weidong; Chen, Fuxiao; Bai, Hongye; Song, Shuyan; Yan, Yongsheng
2013-04-01
A novel metal-organic coordination polymer [Cu(phen)(L)0.5(H2O)]n (H4L = (N,N‧-5,5‧-bis(isophthalic acid)-p-xylylenediamine, and phen = 1,10-phenanthroline) has been hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction. The crystallographic data show that the title compound crystallizes in monoclinic space group P21/n with a = 10.682(2), b = 15.682(3), c = 11.909(2) Å, β = 91.39(3)°, V = 1994.3(7) Å3, C24H17CuN3O5, Mr = 490.95, Dc = 1.635 g/cm3, F(000) = 1004, Z = 4, μ(MoKα) = 1.141 mm-1, the final R = 0.0418 and wR = 0.0983 for 3578 observed reflections (I > 2σ(I)). The structural analyses reveal that the title compound exhibits shows a 2D layer structure, which are further linked by hydrogen bonding interactions to form a three-dimensional supramolecular network. In addition, the thermal stability and electrochemical behavior of title compound has been studied. CCDC: 900413.
Li, Panyu; Li, Ting; Zeng, Yu; Li, Xiang; Jiang, Xiaolong; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui
2016-10-20
Herein, we report the production of xanthan gum by fermentation using kitchen waste as the sole substrate. The kitchen waste was firstly pretreated by a simple hydrolysis method, after which the obtained kitchen waste hydrolysate was diluted with an optimal ratio 1:2. In a 5-L fermentor, the maximum xanthan production, reducing sugar conversion and utilization rates reached 11.73g/L, 67.07% and 94.82%, respectively. The kinetics of batch fermentation was also investigated. FT-IR and XRD characterizations confirmed the fermentation product as xanthan gum. TGA analyses showed that the thermal stability of the xanthan gum obtained in this study was similar to commercial sample. The molecular weights of xanthan gum were measured to be 0.69-1.37×10(6)g/mol. The maximum pyruvate and acetyl contents in xanthan gum were 6.11% and 2.49%, respectively. This study provides a cost-effective solution for the reusing of kitchen waste and a possible low-cost approach for xanthan production. Copyright © 2016 Elsevier Ltd. All rights reserved.
PVP capped CdS nanoparticles for UV-LED applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu
Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.
NASA Astrophysics Data System (ADS)
Mahdieh, Athar; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid
2017-03-01
Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe3O4 nanoparticles with polymerizable groups is presented here. After synthesis of Fe3O4 nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe3O4 are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe3O4 nanoparticles (0-10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles.
Thermal properties of poly(urethane-ester-siloxane)s based on hyperbranched polyester
NASA Astrophysics Data System (ADS)
Pergal, M. V.; Džunuzović, J. V.; Kićanović, M.; Vodnik, V.; Pergal, M. M.; Jovanović, S.
2011-12-01
Novel polyurethanes (PUs) were synthesized using hydroxy-terminated hyperbranched polyester (BH-20) and 4,4'-methylenediphenyl diisocyanate (MDI) as hard segments and hydroxy-terminated ethylene oxide-poly(dimethylsiloxane)-ethylene oxide triblock copolymer (PDMS-EO) as soft segment, with soft segment content ranging from 30 to 60 wt %. The PUs were synthesized by two-step solution polymerization method. The influence of the soft segment content on the structure, swelling behavior and thermal properties of PUs was investigated. According to the results obtained by swelling measurements, the increase of the hard segment content resulted in the increase of the crosslinking density of synthesized samples. DSC results showed that the glass transition temperatures increase from 36 to 65°C with increasing hard segment content. It was demonstrated using thermogravimetric analysis (TGA) that thermal stability of investigated PUs increases with increase of the soft PDMS-EO content. This was concluded from the temperatures corresponding to the 10 wt % loss, which represents the beginning of thermal degradation of samples.
NASA Astrophysics Data System (ADS)
García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.
2014-09-01
A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.
Kisku, Sudhir K; Dash, Satyabrata; Swain, Sarat K
2014-01-01
Cellulose/silicon carbide (cellulose/SiC) nanobiocomposites were prepared by solution technique. The interaction of SiC nanoparticles with cellulose were confirmed by Fourier transformed infrared (FTIR) spectroscopy. The structure of cellulose/SiC nanobiocomposites was investigated by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tensile properties of the nanobiocomposites were improved as compared with virgin cellulose. Thermal stabilities of cellulose/SiC nanobiocomposites were studied by thermogravimetric analysis (TGA). The cellulose/SiC nanobiocomposites were thermally more stable than the raw cellulose. It may be due to the delamination of SiC with cellulose matrix. The oxygen barrier properties of cellulose composites were measured using gas permeameter. A substantial reduction in oxygen permeability was obtained with increase in silicon carbide concentrations. The thermally resistant and oxygen barrier properties of the prepared nanobiocomposites may enable the materials for the packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
ANALYSIS OF THE REACTIVITY OF RADPRO SOLUTION WITH COTTON RAGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MARUSICH RM
Rags containing RadPro{reg_sign} solution will be generated during the decontamination of the Plutonium Finishing Plant (PFP). Under normal conditions, the rags will be neutralized with sodium carbonate prior to placing in the drums. The concern with RadPro solutions and cotton rags is that some of the RadPro solutions contain nitric acid. Under the right conditions, nitric acid and cotton rags exothermically react. The concern is, will RadPro solutions react with cotton rags exothermically? The potential for a runaway reaction for any of the RadPro solutions used was studied in Section 5.2 of PNNL-15410, Thermal Stability Studies of Candidate Decontamination Agentsmore » for Hanford's Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes. This report shows the thermal behavior of cotton rags having been saturated in one of the various neutralized and non-neutralized RadPro solutions. The thermal analysis was performed using thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and Accelerating Rate Calorimetry (ARC).« less
Zorzon, M; Antonutti, L; Masè, G; Biasutti, E; Vitrani, B; Cazzato, G
1995-09-01
The purpose of the present study was to make an attempt to ascertain the etiology of transient global amnesia (TGA), which is still disputed more than 30 years after the first description of this clinical entity. In a case-control study, we compared the prevalence of vascular risk factors in 64 TGA patients with 64 first-ever transient ischemic attack (TIA) control subjects and 108 normal community-based control subjects matched for age and sex. We prospectively studied the vascular events and mortality rates of the TGA cases and of the TIA control subjects. Then we compared the outcome of the two groups using actuarial analysis based on survival curves. We did not find evidence of an increased risk of TGA associated with any vascular risk factor. In contrast to TIA control subjects, no TGA patient suffered stroke, myocardial infarction, or TIA during the follow-up period. Migraine was more common in TGA patients than in both normal and TIA control subjects. In three patients (4.5%), the TGA was eventually considered to be of epileptic origin. The results of our case-control and longitudinal studies point to the conclusion that TGA and TIA do not share the same etiology. Since half of our patients had a precipitating event in their history, it is reasonable to hypothesize that spreading depression may play a role in TGA. The significant positive association between migraine and TGA may support this hypothesis. Epilepsy may mimic TGA in a minority of cases.
Evaluation of the Epoxy/Antimony Trioxide Nanocomposites as Flame Retardant
NASA Astrophysics Data System (ADS)
Dheyaa, Balqees M.; Jassim, Widad H.; Hameed, Noor A.
2018-05-01
Antimony trioxide nanopowder was added for epoxy resin in various amount weight percentages (0, 2, 4, 6, 8, and 10) wt% to increase the combustion resistance and decrease the flammability for it. The study included three standard tests used to measure: limiting oxygen index (LOI), rate of burning (R.B), burning extent (E.B), burning time (T.B), maximum flame height (H) and residue percentage after burning in order to determine the effectiveness of the used additives to decrease the flammability of epoxy resin and increase the combustion resistance. Thermal test was done by using Lee’s disk to measure the thermal conductivity coefficient. The thermal stability and degradation kinetics of epoxy resin without reinforcement and with reinforcement by (10 wt%) were studied by using thermogravimetric analysis (TGA). The recorded results indicated that epoxy reinforced by (10 wt%) has a good effect as flame retardants for epoxy resin and active to inhibit burning and reduce the flammability.
Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.
Maton, Cedric; De Vos, Nils; Stevens, Christian V
2013-07-07
The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-01-01
Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering. PMID:28772854
Huang, Sheng-Yun; Zhao, Bo; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping
2015-01-01
Large-area freestanding graphene films are facilely fabricated by reducing graphene oxide films on recyclable Cu foils in H2-containing atmosphere at high temperature. Cu might act as efficient catalysts for considerably improved reduction of graphene oxide according to the SEM, EDS, XRD, XPS, Raman and TGA results. Comparing to the graphene films with ~30 μm thickness reduced without Cu substrate at 900 °C, the thermal conductivity and electrical conductivity of graphene films reduced on Cu foils are enhanced about 140% to 902 Wm−1K−1 and 3.6 × 104 S/m, respectively. Moreover, the graphene films demonstrate superior thermal conductivity of ~1219 Wm−1K−1 as decreasing the thickness of films to ~10 μm. The graphene films also exhibit excellent mechanical properties and flexibility. PMID:26404674
Fabrication of nanofiber mats from electrospinning of functionalized polymers
NASA Astrophysics Data System (ADS)
Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap
2014-08-01
Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats.
NASA Astrophysics Data System (ADS)
Singh, Amit T.
2018-05-01
Upconversion quantum dots of tyrosine doped LaF3:Ce nanoparticles have been synthesized by wet chemical route. The thermal studies (TGA/DTA) confirm the crystallinity and stability of different phases of synthesized nanoparticles. The UV-Visible spectra show multiple absorption edges at 215.60 nm and 243.10 nm indicating quantum dot nature of the synthesized nanoparticles. The PL spectra showed upconversion with sharp emission peak at 615 nm (red colour). The FT-RAMAN spectra of the synthesized nanoparticles show the modification of the surface of the nanoparticles in the form of functional groups and skeletal groups. Upconversion nature of the synthesized nanoparticles indicates their potential application in bioimaging and biotagging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rahul, E-mail: id-kumarrahul003@gmail.com; Bhargava, Parag; Dvivedi, Avanish
A new photoluminescent material namely tris-[1-10 Phenanthroline] Aluminium Al(Phen){sub 3} has been synthesized and characterized. This material was characterized by fourier transform infrared spectroscopy (FTIR),nuclear magnetic resonance (NMR),mass spectroscopy, thermal gravimetric analysis (TGA),ultraviolet-visible spectroscopy(UV) and photoluminescence (PL). This material shows thermal stability up to 300°C. This material showed absorption maxima at 352nm which may be attributed to the moderate energy (π–π{sup *}) transition. Photoluminescence spectra for this material showed the most intense peak at 423 nm and the time resolved photoluminescence spectra showed two life time components. The decay times of the first and second component were 1.4ns and 4.8 ns respectively.
NASA Astrophysics Data System (ADS)
Yakushev, P.; Bershtein, V.; Bukowska-Śluz, I.; Sobiesiak, M.; Gawdzik, B.
2016-05-01
Methacrylated derivatives of glucose (MGLU) and galactose (MGAL) were synthesized by the procedure described by Vogel, and their copolymers with methyl methacrylate (MMA) and MMA/N-vinyl pyrrolidone (MMA/NVP) (1:1) mixture were obtained with the aim to modify some properties of carbochain polymers, in particular to generate their biodegradability. These hybrids of synthetic and natural products, with 10, 20 or 30 wt. % modifiers, were characterized by DMA and TGA methods and in the biodegradation tests. Increasing Tg values by 20-30°C was registered in all cases whereas thermal stability was improved only for PMMA due to modification. On the contrary, only for hybrids based on hygroscopic MMA/NVP copolymer the essential biodegradability could be generated.
Green-light-emitting electroluminescent device based on a new cadmium complex
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Srivastava, Ritu; Kumar, Akshay; Kamalasanan, M. N.; Singh, K.
2010-06-01
A new cadmium complex is synthesized to investigate its stability and applicability for a luminescent device. The as-prepared Cd(Bpy)q sample is characterized by Fourier-transformed infra-red spectroscopy (FTIR), thermal gravimetric analyzer (TGA) and photoluminescence (PL). The prepared sample shows excellent thermal stability up to 380 °C. A maximum is observed at 240 nm in absorption spectra which is attributed to the π-π* transition. An organic-light-emitting diode (OLED) has been fabricated using this material. The fundamental structures of the device exhibit ITO/α-NPD/Cd(Bpy)q/BCP/Alq3/LiF/Al. The electroluminescence (EL) device emits bright green light with maximum luminescence 1683 cd/m2 at 20 V.
Medicine shortages in Australia: causes, impact and management strategies in the community setting.
Tan, Yee Xi; Moles, Rebekah J; Chaar, Betty B
2016-10-01
Background Medicine shortages are an ongoing global problem. The Therapeutic Goods Administration (TGA) dedicated a website for monitoring of medicine shortages in Australia in May 2014, as part of the Medicine Shortage Information Initiative. This study aimed to explore the views of pharmacists regarding medicine shortages in the community setting and the impact of the TGA website in Australia. Setting Community pharmacies in New South Wales, Australia. Method Twenty semi-structured interviews were conducted with community pharmacists. Data collected were analysed thematically utilising the framework analysis method. Main outcome measure Qualitative analysis conducted using the framework approach. Results Findings clearly indicated that medicine shortages were experienced on a regular basis, but most participants were unaware of the TGA website. Medicine shortages reportedly impacted both pharmacists and consumers; and various workarounds were undertaken to manage the issue. The "price disclosure policy" was found to be a prominent contributing factor in emerging shortages. Suggestions were made for ways to improve the growing occurrence of shortages. Conclusion Overall, the study found that there was a lack of familiarity with the TGA website, despite experiencing regular shortages of medicines in practice. Also highlighted, was the importance of pharmacists prioritising patient care over business decisions. To reduce prescribing of out-of-stock medicines notifying doctors about shortages was also considered important, to allow for early action to be taken at higher levels of the supply chain. Findings of this study may help direct future policy-making around the world, as medicine shortages is a problem shared by healthcare providers in most countries around the world.
Weinberger, Christian; Roggenbuck, Jan; Hanss, Jan; Tiemann, Michael
2015-01-01
A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce. PMID:28347073
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment.
Chen, Chun-Chi; Lee, Wen-Jhy; Shih, Shun-I; Mou, Jin-Luh
2009-11-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.C.; Lee, W.J.; Shih, S.I.
2009-07-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energymore » release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.« less
Mathematical tool from corn stover TGA to determine its composition.
Freda, Cesare; Zimbardi, Francesco; Nanna, Francesco; Viola, Egidio
2012-08-01
Corn stover was treated by steam explosion process at four different temperatures. A fraction of the four exploded matters was extracted by water. The eight samples (four from steam explosion and four from water extraction of exploded matters) were analysed by wet chemical way to quantify the amount of cellulose, hemicellulose and lignin. Thermogravimetric analysis in air atmosphere was executed on the eight samples. A mathematical tool was developed, using TGA data, to determine the composition of corn stover in terms of cellulose, hemicellulose and lignin. It uses the biomass degradation temperature as multiple linear function of the cellulose, hemicellulose and lignin content of the biomass with interactive terms. The mathematical tool predicted cellulose, hemicellulose and lignin contents with average absolute errors of 1.69, 5.59 and 0.74 %, respectively, compared to the wet chemical method.
Effect of water washing on the thermal behavior of rice straw.
Said, N; Bishara, T; García-Maraver, A; Zamorano, M
2013-11-01
Rice straw can be used as a renewable fuel for heat and power generation. It is a viable mean of replacing fossil fuels and preventing pollution caused by open burning, especially in the areas where this residual biomass is generated. Nevertheless, the thermal conversion of rice straw can cause some operating problems such as slag formation, which negatively affects thermal conversion systems. So, the main objective of this research is studying the combustion behavior of rice straw samples collected from various regions by applying thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In addition, the thermal behavior of ashes from rice straw was also analyzed in order to detect their melting points, and ash sintering was detected at different temperatures within the range between 550 and 1000°C. Since washing rice straw with water could reduce the content of undesirable inorganic compounds related to the ash fusibility, samples of washed rice straw were analyzed under combustion conditions to investigate its differences regarding the thermal behavior of rice straw. The results showed that rice straw washing led to a significant improvement in its thermal behavior, since it reduced the ash contents and sintering formation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tyler, Rakim; Schiraldi, David; Roperto, Renato; Faddoul, Fady; Teich, Sorin
2017-01-01
Background Bio cellulose is a byproduct of sweet tea fermentation known as kombusha. During the biosynthesis by bacteria cellulose chains are polymerized by enzyme from activated glucose. The single chains are then extruded through the bacterial cell wall. Interestingly, a potential of the Kombucha’s byproduct bio cellulose (BC) as biomaterial had come into focus only in the past few decades. The unique physical and mechanical properties such as high purity, an ultrafine and highly crystalline network structure, a superior mechanical strength, flexibility, pronounced permeability to gases and liquids, and an excellent compatibility with living tissue that reinforced by biodegradability, biocompatibility, large swelling ratios. Material and Methods The bio-cellulose film specimens were provided by the R.P Dressel dental materials laboratory, Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, US. The films were harvested, washed with water and dried at room temperature overnight. 1wt% of PEG-2000 and 10wt% of NaOH were added into ultrapure water to prepare PEG/NaOH solution. Then bio-cellulose film was added to the mixture and swell for 3 h at room temperature. All bio-cellulose film specimens were all used in the TA Instruments Q500 Thermogravmetric Analyzer to investigate weight percent lost and degradation. The TGA was under ambient air conditions at a heating rate of 10ºC/min. Results and Conclusions PEG control exhibited one transition with the peak at 380ºC. Cellulose and cellulose/ PEG films showed 3 major transitions. Interestingly, the cellulose/PEG film showed slightly elevated temperatures when compared to the corresponding transitions for cellulose control. The thermal gravimetric analysis (TGA) degradation curves were analyzed. Cellulose control film exhibited two zero order transitions, that indicate the independence of the rate of degradation from the amount on the initial substance. The activation energies for three transitions for cellulose and cellulose/PEG showed increasingly higher values for the transitions at higher temperatures. Key words:TGA, Bio-cellulose, PEG. PMID:28828153
Sleep modifications in acute transient global amnesia.
Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo
2013-09-15
Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events ("minor stroke" or transient ischemic attack [TIA]) clinically and neuroradiologically "similar" to the TGA. TGA GROUP: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Microstructural modification associated with tga could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress.
Akouche, Mariame; Jaber, Maguy; Zins, Emilie-Laure; Maurel, Marie-Christine; Lambert, Jean-Francois; Georgelin, Thomas
2016-10-24
Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl 2 , CaCl 2 , SrCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , ZnCl 2 ). A combination of 13 C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn 2+ stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Sha; Zhou, Ming; Liu, Feiyan; Zhang, Chang; Liu, Xueqing; Liu, Jiyan; Zou, Liyong; Chen, Jia
2017-08-01
Flame-retardant polyvinyl alcohol (PVA) membranes with high transparency and flexibility were prepared by mixing an aqueous solution of a phosphorus-containing acrylic acid (AOPA) with PVA. The reaction between AOPA and PVA, the transparency, the crystallinity and the flexibility of the membrane were investigated with Fourier transform infrared spectrometry (FTIR), UV-vis light transmittance, X-ray diffraction and tensile tests, respectively. The limited oxygen index (LOI) and vertical flame (UL 94 VTM), microscale combustion calorimetry, thermogravimetric analysis (TGA) and TGA-FTIR were employed to evaluate the flame retardancy as well as to reveal the corresponding mechanisms. Results showed that PVA containing 30 wt% of AOPA can reach the UL 94 VTM V0 rating with an LOI of 27.3% and retain 95% of the original transparency of pure PVA. Adding AOPA reduces crystallinity of PVA, while the flexibility is increased. AOPA depresses the thermal degradation of PVA and promotes char formation during combustion. The proposed decomposition mechanism indicates that AOPA acts mainly in the condensed phase.
NASA Astrophysics Data System (ADS)
Chen, Pengpeng; Liang, Xiao; Xu, Ying; Zhou, Yifeng; Nie, Wangyan
2018-05-01
In this work, MoS2 nanosheets were employed to reinforce PLA. In order to promote the homogeneous dispersion of MoS2 in PLA and form a strong interface between MoS2 and PLA, the MoS2 nanosheets were firstly modified by mercapto-ethylamine, and then functionalized with PLA chains through ring-opening polymerization of poly(L-lactide). The XRD, XPS, TGA and 1H NMR characterizations confirmed the successful amino and PLA functionalization of MoS2 nanosheets. The obtained MoS2-g-PLA nanosheets were then introduced to reinforce PLA. SEM images displayed that the MoS2-g-PLA nanosheets were dispersed in PLA matrix uniformly. TGA results showed that initial decomposition temperature was improved from 275.6 °C to 334.8 °C with 0.5 wt% of MoS2-g-PLA nanosheets. The storage modulus of PLA/MoS2-g-PLA-0.5 wt% in the glass state and rubber state were both greatly enhanced compared with neat PLA.
Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S
2015-01-22
This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd. Sapuan; Hussein, Mohd. Zobir; Shameli, Kamyar
2011-01-01
In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3′,4,4′-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique. PMID:22016643
Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd Sapuan; Hussein, Mohd Zobir; Shameli, Kamyar
2011-01-01
In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
Azizi, Kolsoom; Keshavarz Moraveji, Mostafa; Abedini Najafabadi, Hamed
2017-11-01
Thermal decomposition behavior and kinetics of microalgae Chlorella vulgaris, wood and polypropylene were investigated using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. The results show that pyrolysis process of C. vulgaris and wood can be divided into three stages while pyrolysis of polypropylene occurs almost totally in one step. It is shown that wood can delay the pyrolysis of microalgae while microalgae can accelerate the pyrolysis of wood. The existence of polymer during the pyrolysis of microalgae or wood will lead to two divided groups of peaks in DTG curve of mixtures. The results showed that interaction is inhibitive rather than synergistic during the decomposition process of materials. Kinetics of process is studied by the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The average E values obtained from FWO and KAS methods were 131.228 and 142.678kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Jiexiang; Wang, Jianlong; Zhang, Xiaoguang; Fang, Binbin; Hu, Pan; Zhao, Xuyang
2015-10-01
Three zwitterionic surfactants, dodecyl dimethyl carboxylbetaine (DCB), dodecyl dimethyl sulfobetaine (DSB) and N-dodecyl-β-aminoprpionate (DAP), intercalated into NiZn-layered hydroxide salts (NZL-DCB, NZL-DSB and NZL-DAP) were synthesized by the coprecipitation method. The effect of surfactant content, pH, temperature and time of hydrothermal treatment on preparation was investigated and discussed. The NZL-DCB, NZL-DSB and NZL-DAP were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry analysis and differential thermal analysis (TGA/DTA). The results showed that basal spacings of NZL-DCB, NZL-DSB and NZL-DAP were around 3.45, 3.68 and 3.94 nm, respectively. DCB, DSB and DAP probably form an overlapped bilayer in the gallery. TGA/DTA data indicated that NZL-DCB, NZL-DSB and NZL-DAP displayed three loss weight stages: loss of adsorbed and structural water, dehydroxylation of matrix and decomposition of nitrate ions, decomposition and combustion of surfactants. Furthermore, chemical analysis data, BET surface area and scanning electron microscopic (SEM) were also measured and analyzed.
Characterization of cellulosic wastes and gasification products from chicken farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Paul, E-mail: p.joseph@ulster.ac.uk; Tretsiakova-McNally, Svetlana; McKenna, Siobhan
Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chickenmore » litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.« less
NASA Astrophysics Data System (ADS)
Wang, Shujuan; Xing, Xiaolong; Li, Jian; Jing, Xinli
2018-01-01
The objective of the current work is to synthesize novel boron-containing polymers with excellent thermal resistance, and reveal the structure and the reason for the high char yield. Thus, poly (dihydroxybiphenyl borate) (PDDB) with a more rigid molecular chain, was successfully synthesized using 4,4‧-dihydroxybiphenyl and boric acid. Structural characterizations of the prepared PDDB were performed via NMR, FTIR, XPS, and XRD analyses. The results reveal that PDDB consists of aromatic, Phsbnd Osbnd B and Bsbnd Osbnd B structures as well as a small number of boron hydroxyl and phenolic hydroxyl groups. PDDB shows good solubility in strong polar solvents, which is of great importance for the modification of thermosetting resins. TGA combined with DSC were employed to evaluate the thermal properties of PDDB, and increases in the glass transition temperature (Tg) and char yield were observed with increased boron content. Tg and char yield of PDDB (800 °C, nitrogen atmosphere) reached up to 219 °C and 66.5%, respectively. PDDB was extensively characterized during pyrolysis to reveal the high char yield of PDDB. As briefly discussed, the boron oxide and boron carbide that formed during pyrolysis play a crucial role in the high char yield of PDDB, which reduces the release of volatile carbon dioxide and carbon. This research suggests that PDDB has great potential as a novel modified agent for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.
McGahan, John P; Moon-Grady, Anita J; Pahwa, Anokh; Towner, Dena; Rhee-Morris, Laila; Gerscovich, Eugenio O; Fogata, Maria
2007-11-01
The goal of this study was to analyze our recent experience with fetuses with transposition of the great arteries (TGA) to identify potential pitfalls and possible methods to better detect conotruncal anomalies such as TGA. We analyzed all nonreferral obstetric ultrasound examinations in which we performed basic, targeted, or formal fetal echocardiography with a newborn diagnosis of TGA. Nine neonates had TGA. Five of these cases were diagnosed prenatally, and 4 of these had complex congenital heart abnormalities. In these 4 cases, there were abnormalities in the cardiac axis (n = 3), abnormal valves or ventricular size (n = 2), and ventricular septal defects (n = 3) that were detected on the 4-chamber view of the heart. In all cases that were not detected prenatally, both prospective and retrospective reviews of the 4-chamber heart appeared normal. The prospective analyses of the outflow tracts were all interpreted as normal, whereas the retrospective review showed subtle abnormalities such as the "baby bird's beak" image. In review of these cases, there was failure to show the "crisscross" relationship of the outflow tracts. In 1 case, 5 short axis views of the heart, retrospectively showed the artery originating from the left ventricle and bifurcated, representing the pulmonary artery. Transposition of the great arteries may be associated with complex cardiac disease that could be detected on the 4-chamber view of the heart. When the 4-chamber view is normal, it is important to identify the crisscross relationship of the outflow tracts. If this is not done, it is important to document that the pulmonary artery bifurcates and originates from the right ventricle. Five short axis views of the heart may be helpful to detect conotruncal abnormalities.
Gruber, Sabine; Omann, Markus; Rodrìguez, Carolina Escobar; Radebner, Theresa; Zeilinger, Susanne
2012-11-17
Species of the fungal genus Trichoderma are important industrial producers of cellulases and hemicellulases, but also widely used as biocontrol agents (BCAs) in agriculture. In the latter function Trichoderma species stimulate plant growth, induce plant defense and directly antagonize plant pathogenic fungi through their mycoparasitic capabilities. The recent release of the genome sequences of four mycoparasitic Trichoderma species now forms the basis for large-scale genetic manipulations of these important BCAs. Thus far, only a limited number of dominant selection markers, including Hygromycin B resistance (hph) and the acetamidase-encoding amdS gene, have been available for transformation of Trichoderma spp. For more extensive functional genomics studies the utilization of additional dominant markers will be essential. We established the Escherichia coli neomycin phosphotransferase II-encoding nptII gene as a novel selectable marker for the transformation of Trichoderma atroviride conferring geneticin resistance. The nptII marker cassette was stably integrated into the fungal genome and transformants exhibited unaltered phenotypes compared to the wild-type. Co-transformation of T. atroviride with nptII and a constitutively activated version of the Gα subunit-encoding tga3 gene (tga3Q207L) resulted in a high number of mitotically stable, geneticin-resistant transformants. Further analyses revealed a co-transformation frequency of 68% with 15 transformants having additionally integrated tga3Q207L into their genome. Constitutive activation of the Tga3-mediated signaling pathway resulted in increased vegetative growth and an enhanced ability to antagonize plant pathogenic host fungi. The neomycin phosphotransferase II-encoding nptII gene from Escherichia coli proved to be a valuable tool for conferring geneticin resistance to the filamentous fungus T. atroviride thereby contributing to an enhanced genetic tractability of these important BCAs.
Factor XII full and partial null in rat confers robust antithrombotic efficacy with no bleeding.
Cai, Tian-Quan; Wu, Weizhen; Shin, Myung K; Xu, Yiming; Jochnowitz, Nina; Zhou, Yuchen; Hoos, Lizbeth; Bentley, Ross; Strapps, Walter; Thankappan, Anil; Metzger, Joseph M; Ogletree, Martin L; Tadin-Strapps, Marija; Seiffert, Dietmar A; Chen, Zhu
2015-12-01
This report aims at exploring quantitatively the relationship between FXII inhibition and thromboprotection. FXII full and partial null in rats were established via zinc finger nuclease-mediated knockout and siRNA-mediated knockdown, respectively. The rats were subsequently characterized in thrombosis and hemostasis models. Knockout rats exhibited complete thromboprotection in both the arteriovenous shunt model (∼100% clot weight reduction) and the FeCl3-induced arterial thrombosis model (no reduction in blood flow), without any increase in cuticle bleeding time compared with wild-type control rats. Ex-vivo aPTT and the ellagic acid-triggered thrombin generation assay (TGA) exhibited anticoagulant changes. In contrast, ex-vivo PT or high tissue factor-triggered TGA was indistinguishable from control. Rats receiving single doses (0, 0.01, 0.03, 0.1, 0.3, 1 mg/kg) of FXII siRNA exhibited dose-dependent knockdown in liver FXII mRNA and plasma FXII protein (95 and 99%, respectively, at 1 mg/kg) at day 7 post dosing. FXII knockdown was associated with dose-dependent thromboprotection (maximal efficacy achieved with 1 mg/kg in both models) and negligible change in cuticle bleeding times. Ex-vivo TGA triggered with low-level (0.5 μmol/l) ellagic acid tracked best with the knockdown levels and efficacy. Our findings confirm and extend literature reports of an attractive benefit-to-risk profile of targeting FXII for antithrombotic therapies. Titrating of FXII is instructive for its pharmacological inhibition. The knockout rat is valuable for evaluating both mechanism-based safety concerns and off-target effects of FXII(a) inhibitors. Detailed TGA analyses will inform on optimal trigger conditions in studying pharmacodynamic effects of FXII(a) inhibition.
Jugular veins in transient global amnesia: innocent bystanders.
Baracchini, Claudio; Tonello, Simone; Farina, Filippo; Viaro, Federica; Atzori, Matteo; Ballotta, Enzo; Manara, Renzo
2012-09-01
Transient global amnesia (TGA) has been associated with an increased prevalence of internal jugular valve insufficiency and many patients report Valsalva-associated maneuvers before TGA onset. These findings have led to the assumption of hemodynamic alterations in intracranial veins inducing focal hippocampal ischemia. We investigated this hypothesis in patients with TGA and control subjects. Seventy-five patients with TGA and 75 age- and sex-matched healthy subjects were enrolled into a cross-sectional study. Extracranial and transcranial high-resolution venous echo-color-Doppler sonography was performed blindly in all patients and control subjects. Blood flow direction and velocities were recorded at the internal jugular veins, basal veins of Rosenthal, and vein of Galen, both at rest and during Valsalva-associated maneuvers. Mean age of patients with TGA was 60.3±8.0 years (median, 60 years; range, 44-78 years); 44 (59%) were female (female/male ratio: 1.42). Internal jugular valve insufficiency (left, right, or bilateral) was found to be more frequent in patients with TGA than in control subjects: 53 (70.7%) versus 22 (29.3%; P<0.05). Blood flow velocities in the deep cerebral veins of patients with TGA did not differ from control subjects both at rest and during Valsalva-associated maneuvers. Intracranial venous reflux was neither observed in patients with TGA nor in control subjects despite unilateral or bilateral internal jugular valve insufficiency during prolonged and maximal Valsalva-associated maneuvers. This study, although confirming the association between TGA and internal jugular valve insufficiency, challenges the hypothesis that cerebral venous congestion plays a significant role in the pathogenesis of TGA.
NASA Astrophysics Data System (ADS)
Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan
2016-11-01
An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.
Abnormal EEG Power Spectra in Acute Transient Global Amnesia: A Quantitative EEG Study.
Imperatori, Claudio; Farina, Benedetto; Todini, Federico; Di Blasi, Chiara; Mazzucchi, Edoardo; Brunetti, Valerio; Della Marca, Giacomo
2018-06-01
Transient global amnesia (TGA) is a clinical syndrome characterized by retrograde and anterograde amnesia without other neurological deficits. Although electroencephalography (EEG) methods are commonly used in both clinical and research setting with TGA patients, few studies have investigated neurophysiological pattern in TGA using quantitative EEG (qEEG). The main aim of the present study was to extend these previous findings by exploring EEG power spectra differences between patients with acute TGA and healthy controls using the exact low-resolution brain electromagnetic tomography software (eLORETA). EEG was recorded during 5 minutes of resting state. Sixteen patients (mean age: 66.81 ± 7.94 years) during acute TGA and 16 healthy subjects were enrolled. All patients showed hippocampal or parahippocampal signal abnormalities in diffusion-weighted magnetic resonance imaging performed from 2 to 5 days after the onset of TGA. Compared with healthy controls, TGA patients showed a decrease of theta power localized in the temporal lobe (Brodmann areas, BAs 21-22-38) and frontal lobe (BAs 8-9-44-45). A decrease of EEG beta power in the bilateral precuneus (BA 7) and in the bilateral postcentral gyrus (BAs 3-4-5) was also observed in TGA individuals. Taken together, our results could reflect the neurophysiological substrate of the severe impairment of both episodic memory and autobiographical memory which affect TGA patients during the acute phase.
NASA Astrophysics Data System (ADS)
Hao, Junhui; Zhang, Jinhong; Qiao, Yingyun; Tian, Yuanyu
2017-08-01
This work was aimed to investigate effects of heating rate on thermal cracking behaviors, distribution of gaseous products and activation energy of the thermal cracking process of Xinjiang oil sand bitumen (OSB). The thermal cracking experiments of Xinjiang OSB were performed by using thermogravimetric analyzer (TGA) at various heating rates of 10, 20, 50, 80 and 120 K/min. The evolving characteristic of gaseous products produced from the thermal cracking process was evaluated by the Fourier transform infrared spectrometry (FTIR) connected with TG. The kinetic parameters of the thermal cracking process of Xinjiang OSB at each of heating rate were determined by the Coats-Redfern model. The result show that the temperature intervals of DE volatilization stage and main reaction stage, the ((dw/dt) max and Tmax in thermal cracking process of Xinjiang OSB all increased with the increasing heating rate. While the heating rate has not obvious effect on the coke yield of Xinjiang OSB. Furthermore, the maximum absorbance of gaseous products and corresponding temperature became larger as the heating rate increases. The activation energy of this two stage both presented increasing trend with the rising heating rate, while the increasing content of that of DE volatilization stage was weaker compared to that of main reaction stage.
Klötzsch, C; Sliwka, U; Berlit, P; Noth, J
1996-06-01
Alerted by the number of patients with transient global amnesia (TGA) in whom Valsalvalike activities immediately preceded the onset of TGA, we have investigated the frequency of patent foramen ovale (PFO) as the prerequisite for paradoxical embolism. Case series with comparison to a control group. Hospitalized and ambulatory patients at the neurological departments of the Alfried Krupp Hospital, Essen, Germany, and the Rheinisch-Westfälische-Technische Hochschule, Aachen, Germany. Fifty-three consecutive patients with TGA were evaluated by the 2 centers between 1988 and 1995. Using contrast transcranial Doppler sonography we have observed a PFO in 55% of the patients with TGA, compared with 27% of a control group of 100 patients. This difference was statistically significant (P < .01). Twenty-five patients with TGA (47%), 15 of them with a proven PFO, reported a precipitating activity, such as the lifting of heavy weights, immediately before the TGA occurred. In addition to other pathological mechanisms, paradoxical embolism with temporobasal ischemia could possibly play a role in the clinical syndrome of TGA. This hypothesis could explain the frequent observation of preceding Valsalvalike activities in patients with TGA.
The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition
NASA Astrophysics Data System (ADS)
Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika
2018-04-01
Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not change the powder morphology. The oxidation process also confirmed by XRD result, which showed higher thermal pre-treatment TiH2, more oxide higher peak is formed. The oxide layer of TiH2 particles is responsible for the observed shift in decomposition temperature and can prepare the stable foam that stabilizes forming of cell walls and avoid their collapse at higher temperatures.
Characterization of some selected vulcanized and raw silicon rubber materials
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-06-01
Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.
2012-10-01
right by a pitch (P) and subsequently summed to provide a multi-gate superimposed temperature distribution ( TMG (x)). An example is shown in figure...temperature rise over the coolant, or the difference between the centerline multi gate junction temperature on the upper surface ( TMG ,GaN(0)) of the GaN...TC coolant temperature (°C) TCP(x) cold plate temperature distribution (°C) TGaN(x,y) temperature distribution within GaN (°C) TMG (x) multiple gate
Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic γ-Fe2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Wengert, Simon; Albrecht, Joachim; Ruoss, Stephen; Stahl, Claudia; Schütz, Gisela; Schäfer, Ronald
2017-12-01
MIL-53(Fe) linked to superparamagnetic γ-Fe2O3 nanoparticles was created using time-efficient microwave synthesis. Intermediates as well as the final product have been characterized by Dynamic Light Scattering (DLS), Infrared Spectroscopy (FTIR) and Thermal Gravimetric Analysis (TGA). It is found that this route allows the production of Fe nanoparticles with typical sizes of about 80 nm that are embedded inside the metal-organic structures. Detailed magnetization measurements using SQUID magnetometry revealed a nearly reversible magnetization loop indicating essentially superparamagnetic behavior.
Chitosan-thioglycolic acid as a versatile antimicrobial agent.
Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R
2013-04-08
As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.
Probing the oxidation kinetics of small permalloy particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiaolei; Song, Xiao; Yin, Shiliu
2017-02-15
The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only give insight knowledge about the oxidation and diffusion processes of small permalloy particles, but also, provides a useful tool for analyzing solid-gas reactions of other materials. - Highlights: • The oxidation kinetics of small NiFe particles were studied by using thermoanalysis. • Grain boundary, lattice, and phase conversion induced diffusions were recognized. • The activation energy of oxidation increases with the Fe content in the alloy. • Each diffusion process corresponds to a characteristic temperature in TPO analysis. • NiFe alloys with ~5–10 wt% Fe content have the lowest oxidation rates.« less
Fullerene carbon-70 derivatives dampen anaphylaxis and allergic asthma pathogenesis in mice
NASA Astrophysics Data System (ADS)
Norton, Sarah Brooke
Fullerenes are carbon nanospheres that can be solublized by the addition of polar chemical groups to the carbon cage, forming fullerene derivatives. One specifically derivatized fullerene compound, termed C 70-Tetragylocolate (C70-TGA), has been shown to stabilize mast cell responses in vitro thus we hypothesized it may have an effect on mast cell-driven diseases such as asthma and systemic anaphylaxis. To observe the effects of C70-TGA on systemic anaphylaxis, mice were subjected to a model of passive systemic anaphylaxis. In this model, mice were injected with DNP-specific IgE 16 hours prior to challenge, then treated with C 70-TGA. Immediately prior to DNP challenge, mice were subjected to a second injection of C70-TGA. Following DNP challenge, body temperature was recorded and blood was collected for quantitation of histamine levels. Treatment with C70-TGA significantly reduced body temperature drop associated with systemic anaphylaxis and serum histamine levels. To observe the effects of C70-TGA on chronic features of asthma in vivo, we utilized a heavily MC influenced model of asthma pathogenesis. Mice were sensitized by intraperitoneal (i.p.) injection of ovalbumin (OVA) in saline, challenged intranasally (i.n.) with OVA, and one of two treatment strategies was pursued. In one, C70-TGA was given i.n. throughout disease development. In the other, C70-TGA was given following an initial set of challenges to allow disease to develop prior to treatment; mice were then re-challenged with OVA to assess the effect on established disease. We found that C70-TGA treatment significantly reduced airway inflammation and eosinophilia and dramatically reduced bronchoconstriction in either model. Cytokines IL-4 and IL-5 and serum IgE levels are significantly reduced in C70-TGA treated animals. Interestingly, we also saw an increase in the anti-inflammatory eicosanoid 11, 12-epoxyeicosatreinoic acid (11,12-EET) in the BAL fluid, suggesting the involvement of this mediator in C70-TGA inhibition. Further experiments utilizing an inhibitor of 11,12-EET formation (6-(2-Propargyloxyphenyl)hexanoic acid) and a structural analog of 14,15-EET (14,15-EE-5(Z)-E) in vivo indicate that these mediators are closely associated with C70-TGA mediated inhibition as their inhibition reverses the anti-inflammatory effects of C70-TGA. Importantly, mice did not exhibit any acute toxicity following C70-TGA treatment and liver and kidney function were normal. Collectively, these results show that the fullerene C70 derivative C70-TGA is capable of dampening severe allergic responses including systemic anaphylaxis, airway inflammation, and bronchoconstriction. The mechanism of inhibition is through the upregulation of the anti-inflammatory EETs, which may dampen mast cell degranulation in vivo, thus contributing to the inhibitory effect of C70-TGA on allergic disease
Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation.
Zeilinger, Susanne
2004-02-01
A modified Agrobacterium-mediated transformation method for the efficient disruption of two genes encoding signaling compounds of the mycoparasite Trichoderma atroviride is described, using the hph gene of Escherichia coli as selection marker. The transformation vectors contained about 1 kb of 5' and 3' non-coding regions from the tmk1 (encoding a MAP kinase) or tga3 (encoding an alpha-subunit of a heterotrimeric G protein) target loci flanking a selection marker. Transformation of fungal conidia and selection on hygromycin-containing media applying an overlay-based procedure, which overcomes the lack of formation of distinct single colonies by the fungus, led to stable clones for both disruption constructs. Southern and PCR analyses proved gene disruption by single-copy homologous integration with a frequency of approximately 60% for both genes; and the loss of tmk1 and tga3 transcript formation in the disruptants was demonstrated by RT-PCR.
Glycoalkaloids in potato tubers grown under controlled environments
NASA Technical Reports Server (NTRS)
Nitithamyong, A.; Vonelbe, J. H.; Wheeler, R. M.; Tibbitts, T. W.
1999-01-01
Tuber content of alpha-solanine, alpha-chaconine, and total glycoalkaloids (TGA) was determined for the potato cultivars, Norland, Russet Burbank, and Denali grown under different environmental conditions in growth chambers. The lowest TGA concentrations (0.30 to 0.35 mg g-1 dry tissue) were found in the cv. Norland with 400 micromoles m-2 s-1 photosynthetic photon flux (PPF), 12 h day length, 16 C temperature, and 350 micromoles mol-1 carbon dioxide. The ratio of alpha-chaconine to alpha-solanine was close to 60:40 under all growing conditions, except that it was 50:50 under the low temperature of 12 C. Cultivars responded similarly to environmental conditions although TGA was about 20% greater in cv. Russet Burbank and about 30% greater in Denali compared to Norland. The largest changes in TGA occurred with changes in temperature. In comparison to 16 C, TGA were 40% greater at 12 C, 80% greater at 20 C, and 125% greater at 24 C (0.70 mg g-1 dry weight). The TGA concentration increased from 10 to 25% with an increase in light from 400 to 800 micromoles m-2 s-1 PPF for all three cultivars. TGA increased 20% with extension of the day length from 12 to 24 hr and also increased 20% when carbon dioxide was increased from 350 to 1000 micromoles mol-1. TGA concentrations were not influenced by changes in relative humidity from 50 to 80%. TGA concentrations decreased only slightly in harvests made from 9 to 21 weeks after planting. Variations in TGA among the different growing conditions and cultivars were below 20 mg/100 g fresh weight (approximately 1.0 mg g-1 dry weight) recognized as the upper concentration for food safety. However the results suggest that TGA should be considered when potatoes are grown at temperatures above 20 C.
Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum
Xin, Shan; Tao, Chengcheng; Li, Hongbin
2016-01-01
Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5’-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5’-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5’ truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway. PMID:27597995
Xin, Shan; Tao, Chengcheng; Li, Hongbin
2016-01-01
Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway.
Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.
Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi
2016-03-30
A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study on Thermal and Mechanical Properties of EPDM Insulation
NASA Astrophysics Data System (ADS)
Zhang, Zhong-Shui; Xu, Jin-Sheng; Chen, Xiong; Jiang, Jing
As the most common insulation material of solid rocket motors, thermal and mechanical properties of ethylene propylene diene monomer (EPDM) composite are inspected in the study. Referring to the results of thermogravimetric analysis (TGA), composition and morphology of EPDM composite in different thermal degradation degree are investigated by scanning electron microscope (SEM) to inspect the mechanism of thermal insulation. Mechanical properties of EPDM composite in the state of pyrolysis are investigated by uniaxial tensile tests. At the state of initial pyrolysis, composite belongs to the category of hyperelastic-viscoelastic material. The tendency of tensile strength increased and elongation decreased with increasing of heating temperature. Composite behaves as the linear rule at the state of late pyrolysis, which belongs to the category of bittle. The elasticity modulus of curves are almost the same while the heating temperature ranges from 200°C to 300°C, and then gradually go down. The tensile strength of pyrolytic material reach the highest at the heating temperature of 300°C, and the virgin material has the largest elongation.
Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.
Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker
2014-02-15
Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed
2013-06-01
Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghazali, Siti Nadia Aini; Mohamad, Zurina; Majid, Rohah A.; Appadu, Sivanesan
2017-07-01
This study presents the influence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through electron beam crosslinking process. Therefore, the effects of EGDMA on irradiated low density polyethylene/sepiolite (LDPE/SEP) nanocomposites on the tensile and thermal properties at 4 part per hundred resin (phr) sepiolite were investigated. The LDPE/SEP nanocomposites were prepared by melt mixing using twin screw extruder at 160 ˚C with a screw speed of 50 rpm. The nanocomposites were then undergone injection moulding process followed by irradiated using 2 MeV electron beam machine at doses ranging from 0 to 200 kGy in the air at ambient temperature. It was found that the tensile strength and Young's modulus were slightly increased with the presence of co-agent. The sample containing 4 phr sepiolite at 200 kGy showed 9% increase in tensile strength when EGDMA was added. However, the result of thermogravimetry analysis (TGA) showed some reduction in thermal stability of nanocomposites on 100 kGy irradiation dose. EGDMA had reduced the optimum irradiation dose without having any adverse effect on tensile and thermal properties.
FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources
NASA Astrophysics Data System (ADS)
Shaltout, Abdallah A.; Allam, Moussa A.; Moharram, Mohamed A.
2011-12-01
The inorganic constituents of 5 different plants (leaves and stalks) were investigated by using Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis including thermal gravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). These plants are Catha edulis (Khat), basil, mint, green tea and trifolium. The absorption bands of carbonate ions CO 32- was exhibited at 1446 cm -1, and the phosphate ions PO 43- was assigned at 1105 and 1035 cm -1. At high temperatures (600, 700 and 600 °C) further absorption bands of the phosphate ions PO 43- was assigned at the frequencies 572, 617, 962, 1043 and 1110 cm -1 and the vibrational absorption band of the carbonate ions CO 32- was assigned at 871, 1416 and 1461 cm -1. X-ray diffraction and thermal analysis confirm the obtained results of FITR. Results showed that the main inorganic constituents of C. edulis and basil leaves are hydroxyapatite whereas the hydroxyapatite content in the other plant samples is less than that in case of C. edulis and basil plant leaves.
Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock
2002-07-01
In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.
Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.
Baniasad, Arezou; Ghorbani, Mohsen
2016-05-01
In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi
2017-12-01
We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.
Clinical features of celiac disease: a prospective birth cohort.
Agardh, Daniel; Lee, Hye-Seung; Kurppa, Kalle; Simell, Ville; Aronsson, Carin Andrén; Jörneus, Ola; Hummel, Michael; Liu, Edwin; Koletzko, Sibylle
2015-04-01
To investigate clinical features of celiac disease (CD) and their association with risk factors for CD in a genetic risk birth cohort. Children from 6 clinical centers in 4 countries positive for HLA-DR3-DQ2 or DR4-DQ8 were annually screened for tissue transglutaminase antibodies (tTGA) and assessed for symptoms by questionnaires. Associations of symptoms with anthropometrics, known risk factors for CD, tTGA levels, and mucosal lesions in those biopsied were examined. Of 6706 screened children, 914 developed persistent positive tTGA, 406 underwent biopsies, and 340 had CD. Compared with age-matched tTGA-negative children, those with persistent tTGA were more likely to have symptoms at 2 (34% vs 19%, P < .001) and 3 years of age (28% vs 19%, P = .009) but not at 4 years (27% vs 21%, NS). Z-scores for height, weight, and BMI did not differ between groups. In children with persistent tTGA, having ≥ 1 symptom was associated with family history of CD (odds ratio = 2.59, 95% confidence interval, 1.21-5.57) but not with age, gender, or HLA-DR3-DQ2 homozygosity. At seroconversion, tTGA levels were higher in symptomatic than asymptomatic children (P < .001), in those from CD families (P < .001), and in US participants (P < .001) but not associated with age, gender, or HLA genotype. tTGA levels correlated with severity of mucosal lesions both in symptomatic (r = 0.53, P < .001) and asymptomatic children (r = 0.22, P = .01). A majority of children detected with persistent tTGA in screenings are asymptomatic and have normal growth by age 4 years. tTGA levels correlate more strongly with severity of mucosal lesions in symptomatic as compared with asymptomatic children. Copyright © 2015 by the American Academy of Pediatrics.
Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy.
Zhu, Xiumei; Tsend-Ayush, Altansukh; Yuan, Zhongyue; Wen, Jing; Cai, Jiaxin; Luo, Shifu; Yao, Jianxu; Bian, Junxing; Yin, Linfang; Zhou, Jianping; Yao, Jing
2017-08-30
In this study, glycyrrhetinic acid (GA)-modified D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) polymeric micelles (TGA PMs) were developed for the delivery of etoposide (ETO) to hepatoma cells. GA was incorporated as a ligand because of its high affinity to the hepatocytes, while TPGS functioned as a P-gp inhibitor to reverse multidrug resistance. ETO-loaded TGA PMs (ETO-TGA PMs) displayed a mean particle size of 133.6±1.2nm with a low poly-dispersity index (0.224±0.013) and negative zeta potential (-16.30mV). The drug loading and entrapment efficiency of ETO-TGA PMs were 10.4% and 79.8%, respectively. ETO-TGA PMs also exhibited faster drug release behavior at pH 5.8 and relatively stable drug release at pH 7.4. Confocal laser scanning microscope (CLSM) observations and in vivo imaging studies revealed that TGA PMs displayed higher cellular uptake and selective accumulation at the tumor site, indicating good tumor targetability. Furthermore, ETO-TGA PMs displayed significant cytotoxicity towards HepG2 cells and higher anti-tumor efficacy (75.96%), compared to the control group. This could be due to TGA-mediated targeted drug delivery to the hepatocytes as well as P-gp inhibition. These findings suggest that TGA PMs have the potential to be used as a targeted drug delivery system for hepatic cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc; Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache
2013-07-15
The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and directmore » current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.« less
NASA Astrophysics Data System (ADS)
Ahamad, Tansir; Alshehri, Saad M.
2012-10-01
Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications.
Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films
NASA Astrophysics Data System (ADS)
Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.
Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.
Connolly, Jeanne M.; Alferiev, Ivan; Clark-Gruel, Jocelyn N.; Eidelman, Naomi; Sacks, Michael; Palmatory, Elizabeth; Kronsteiner, Allyson; DeFelice, Suzanne; Xu, Jie; Ohri, Rachit; Narula, Navneet; Vyavahare, Narendra; Levy, Robert J.
2005-01-01
We investigated a novel polyepoxide crosslinker that was hypothesized to confer both material stabilization and calcification resistance when used to prepare bioprosthetic heart valves. Triglycidylamine (TGA) was synthesized via reacting epichlorhydrin and NH3. TGA was used to crosslink porcine aortic cusps, bovine pericardium, and type I collagen. Control materials were crosslinked with glutaraldehyde (Glut). TGA-pretreated materials had shrink temperatures comparable to Glut fixation. However, TGA crosslinking conferred significantly greater collagenase resistance than Glut pretreatment, and significantly improved biomechanical compliance. Sheep aortic valve interstitial cells grown on TGA-pretreated collagen did not calcify, whereas sheep aortic valve interstitial cells grown on control substrates calcified extensively. Rat subdermal implants (porcine aortic cusps/bovine pericardium) pretreated with TGA demonstrated significantly less calcification than Glut pretreated implants. Investigations of extracellular matrix proteins associated with calcification, matrix metalloproteinases (MMPs) 2 and 9, tenascin-C, and osteopontin, revealed that MMP-9 and tenascin-C demonstrated reduced expression both in vitro and in vivo with TGA crosslinking compared to controls, whereas osteopontin and MMP-2 expression were not affected. TGA pretreatment of heterograft biomaterials results in improved stability compared to Glut, confers biomechanical properties superior to Glut crosslinking, and demonstrates significant calcification resistance. PMID:15631995
NASA Astrophysics Data System (ADS)
Zhao, Jun; Zhang, Zhaochun; Yu, Zhenwei; He, Zhenni; Yang, Shanshan; Jiang, Huiyi
2014-01-01
Herein hydroxyapatite (HA) has been synthesized by the nucleation on the surfaces of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) chemisorbed with thioglycolic acid (TGA). The self-assembled monolayer of TGA formed on rGO/AgNPs was immersed in simplified simulated body fluid under gentle growth conditions, forming rGO/AgNPs/TGA/HA biocomposite. The phase structures and functional groups of biocomposite were analyzed by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Enhanced Raman spectrum of TGA on prepared rGO/AgNPs was obtained with excitation at 633 nm, showing that TGA was chemisorbed on AgNPs through S atom and TGA molecular plane exhibited a tilted orientation with respect to AgNPs. The morphologies of biocomposite were investigated by means of atomic force microscope and transmission electron microscope coupled with energy dispersive spectrum. Analysis shows that the AgNPs uniformly distributed on the rGO nanosheets with the size of about 15-20 nm and HA formation initiated through Ca2+-adsorption upon complexation with sbnd COO- groups of TGA on AgNPs. The results obtained indicated that the rGO/AgNPs/TGA/HA biocomposite may have immense potential application in bone tissue engineering fields for its outstanding and stable activities.
NASA Astrophysics Data System (ADS)
Khan, Ishaat M.; Ahmad, Afaq; Oves, M.
2010-12-01
Charge transfer complex (CTC) of donor, p-phenylenediamine (PPD) and acceptor, 2,4,6-trinitrophenol (picric acid) has been studied in methanol at room temperature. The CT complex was synthesized and characterized by elemental analysis, FTIR spectra, 1H NMR spectroscopy and electronic absorption spectra which indicate the CT interaction associated with proton migration from the acceptor to the donor followed by hydrogen bonding via N +-H⋯O -. The thermal stability of CT complex was studied using TGA and DTA analyses techniques. The CT complex was screened for its antifungal activity against Aspergillus niger (Laboratory isolate), Candida albicans (IQA-109) and Penicillium sp. (Laboratory isolate) and antibacterial activity against two Gram-positive bacteria Staphylococcus aureus (MSSA 22) and Bacillus subtilis (ATCC 6051) and two Gram-negative bacteria Escherichia coli (K 12) and Pseudomonas aeruginosa (MTCC 2488). It gives good antimicrobial activity. The stoichiometry of the CT complex was found to be 1:1. The physical parameters of CT complex were evaluated by the Benesi-Hildebrand equation. On the basis of the studies, the structure of CT complex is [(PPDH) +(PA) -], and a general mechanism for its formation is proposed.
NASA Astrophysics Data System (ADS)
Salehi, E.; Naderi, Reza; Ramezanzadeh, B.
2017-02-01
This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.
Supercritical fluid assisted production of chitosan oligomers micrometric powders.
Du, Zhe; Shen, Yu-Bin; Tang, Chuan; Guan, Yi-Xin; Yao, Shan-Jing; Zhu, Zi-Qiang
2014-02-15
Chitosan oligomers (O-chitosan) micrometric particles were produced from aqueous solution using a novel process, i.e. supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM). Hydrodynamic cavitation was introduced to enhance mass transfer and facilitate the mixing between SC-CO2 and liquid solution for fine particles formation. Well defined, separated and spherical microparticles were obtained, and the particles size could be well controlled with narrow distribution ranging from 0.5 μm to 3 μm. XRD patterns showed amorphous structure of O-chitosan microparticles. FTIR, TGA and DSC analyses confirmed that no change in molecular structure and thermal stability after SAA-HCM processing, while the water content was between 5.8% and 8.4%. Finally, tap densities were determined to be below 0.45 g/cm(3) indicating hollow or porous structures of microparticles. By tuning process parameters, theoretical mass median aerodynamic sizes lied inside respirable range of 1-2 μm, which presented the potential of the O-chitosan microparticles in application as inhaled dry powders. SAA-HCM was demonstrated to be very useful in particle size engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nisticò, Roberto; Faga, Maria Giulia; Gautier, Giovanna; Magnacca, Giuliana; D'Angelo, Domenico; Ciancio, Emanuele; Piacenza, Giacomo; Lamberti, Roberta; Martorana, Selanna
2012-08-01
Polypropylene (PP) fibers can be manufactured to form nets which can find application as prosthesis in hernioplasty. One of the most important problem to deal with when nets are applied in vivo consists in the reproduction of bacteria within the net fibers intersections. This occurs right after the application of the prosthesis, and causes infections, thus it is fundamental to remove bacteria in the very early stage of the nets application. This paper deals with the physico-chemical characterization of such nets, pre-treated by atmospheric pressure plasma dielectric barrier discharge apparatus (APP-DBD) and functionalized with an antibiotic drug such as chitosan. The physico-chemical characterization of sterilized nets, before and after the functionalization with chitosan, was carried out by means of scanning electron microscopy (SEM) coupled with EDS spectroscopy, FTIR spectroscopy, drop shape analysis (DSA), X-ray diffraction and thermal analyses (TGA and DSC). The aim of the work is to individuate a good strategy to characterize this kind of materials, to understand the effects of polypropylene pre-treatment on functionalization efficiency, to follow the materials ageing in order to study the effects of the surface treatment for in vivo applications.
Kiziltay, Aysel; Marcos-Fernandez, Angel; San Roman, Julio; Sousa, Rui A; Reis, Rui L; Hasirci, Vasif; Hasirci, Nesrin
2015-08-01
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Iftikhar, Bushra; Javed, Kanwal; Khan, Muhammad Saif Ullah; Akhter, Zareen; Mirza, Bushra; Mckee, Vickie
2018-03-01
Three new Schiff base ligands were synthesized by the reaction of Salicylaldehyde with semi-aromatic diamines, prepared by the reduction of corresponding dinitro-compounds, and were further used for the formation of complexes with Cu(II) metal ion. The structural features of the synthesized compounds were confirmed by their physical properties and infrared, electronic and NMR spectroscopic techniques. The studies revealed that the synthesized Schiff bases existed as tetradentate ligands and bonded to the metal ion through the phenolic oxygen and azomethine nitrogen. One of the dinitro precursors was also analyzed by single crystal X-ray crystallography, which showed that it crystallizes in monoclinic system with space group P2/n. The thermal behavior of the Cu(II) complexes was determined by thermogravimetric analysis (TGA) and kinetic parameters were evaluated from the data. Schiff base ligands, their precursors and metal complexes were also screened for antibacterial, antifungal, antitumor, Brine shrimp lethality, DPPH free radical scavenging and DNA damage assays. The results of these analyses indicated the substantial potential of the synthesized Schiff bases, their precursors and Cu(II) complexes in biological field as future drugs.
In situ chitin isolation from body parts of a centipede and lysozyme adsorption studies.
Bulut, Esra; Sargin, Idris; Arslan, Ozlem; Odabasi, Mehmet; Akyuz, Bahar; Kaya, Murat
2017-01-01
Isolation of structurally intact chitin samples for biotechnological applications has gained much recent attention. So far, three-dimensional chitin isolates have been obtained from only diplopods and sponges. In this study, three-dimensional chitin isolates were obtained from the body parts of centipede Scolopendra sp. (antennae, head, forcipule, collum, trunk, trunk legs and last pair of legs) without leading to structural failure. FT-IR spectra of chitin isolates confirmed that chitin samples are in α allomorph. TGA, XRD and SEM analyses and lysozyme adsorption studies revealed that each chitin isolate had different thermal stability, crystallinity and surface characteristics. Among the chitin isolates, Cu(II)-immobilized forcipule chitin showed the highest affinity for lysozyme (54.1mg/g), whereas chitin from last pair of legs exhibited the lowest affinity (3.7mg/g). This study demonstrated that structurally intact chitin isolates can be obtained from the body parts of centipede Scolopendra sp. (antennae, head, forcipule, collum, trunk, trunk legs and last pair of legs) by using a simple chemical procedure. Also, it gives a biotechnological perspective to the organisms in the group of Chilipoda. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2018-06-01
A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, A.K.
1995-12-01
Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if itmore » were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.« less
Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process
Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui
2016-01-01
Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486
Investigation of Structure and Property of Indian Cocos nucifera L. Fibre
NASA Astrophysics Data System (ADS)
Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar
2017-12-01
Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.
Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Moore, Jason; McClelland, Matthew; Tarver, Craig; Hsu, Peter; Springer, H. Keo
2017-06-01
We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNL's multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC.
Zhang, Zhi-Kun; Guo, Deng-Zhu; Zhang, Geng-Min
2011-05-01
CuO nano/microspheres with a wide diametric distribution were prepared by thermal decomposition of Cu(2)(OH)(3)NO(3) nano/microspheres formed in a simple asymmetric-electrode based cathodic-plasma electrolysis. The morphological, componential, and structural information about the two kinds of spheres were characterized in detail by SEM, TEM, EDX, XPS and XRD, and the results revealed that the morphology of the spheres were well kept after the componential and structural transformation from Cu(2)(OH)(3)NO(3) into CuO. The TGA/DSC study showed that the CuO nano/microspheres could be explored to be a promising additive for accelerating the thermal decomposition of ammonium perchlorate (AP). Combining with the current curve and emission spectrum measured in the plasma electrolysis, formation mechanism of the Cu(2)(OH)(3)NO(3) spheres was also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Further insights into the kinetics of thermal decomposition during continuous cooling.
Liavitskaya, Tatsiana; Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey
2017-07-26
Following the previous work (Phys. Chem. Chem. Phys., 2016, 18, 32021), this study continues to investigate the intriguing phenomenon of thermal decomposition during continuous cooling. The phenomenon can be detected and its kinetics can be measured by means of thermogravimetric analysis (TGA). The kinetics of the thermal decomposition of ammonium nitrate (NH 4 NO 3 ), nickel oxalate (NiC 2 O 4 ), and lithium sulfate monohydrate (Li 2 SO 4 ·H 2 O) have been measured upon heating and cooling and analyzed by means of the isoconversional methodology. The results have confirmed the hypothesis that the respective kinetics should be similar for single-step processes (NH 4 NO 3 decomposition) but different for multi-step ones (NiC 2 O 4 decomposition and Li 2 SO 4 ·H 2 O dehydration). It has been discovered that the differences in the kinetics can be either quantitative or qualitative. Physical insights into the nature of the differences have been proposed.
NASA Technical Reports Server (NTRS)
Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)
2001-01-01
Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.
Dong, Yan-Yan; Deng, Fu; Zhao, Jin-Jin; He, Jing; Ma, Ming-Guo; Xu, Feng; Sun, Run-Cang
2014-01-01
This study aims to investigate the fabrication and property of cellulose/Ag/AgCl hybrids. In this article, preparation of cellulose/Ag/AgCl hybrids was reported using the cellulose solution, AgNO₃, AlCl₃·6H₂O with ultrasound agitation method. The cellulose solution was synthesized by the dissolution of the microcrystalline cellulose in NaOH/urea aqueous solution. Influences of the experimental parameters of ultrasound treatment time and ultrasonic intermittent on the hybrids were investigated. The phase, microstructure, thermal stability, and morphology of the hybrids were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). Results showed the successful synthesis of cellulose/Ag/AgCl hybrids with good thermal stability. Moreover, the hybrids displayed desirable antimicrobial activities. Compared with other conventional methods, the rapid, green, and environmentally friendly ultrasound agitation method opens a new window to the high value-added applications of biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride
NASA Astrophysics Data System (ADS)
Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean
To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.
Kasmi, Nejib; Roso, Martina; Hammami, Nadia; Majdoub, Mustapha; Boaretti, Carlo; Sgarbossa, Paolo; Vianello, Chiara; Maschio, Giuseppe; Modesti, Michele; Lorenzetti, Alessandra
2017-01-01
Abstract In order to prepare thermally stable isosorbide-derived thermoplastic polyurethane, the synthesis of two new chiral exo–exo configured diols, prepared from isosorbide, and two types of diphenols (bisphenol A and thiodiphenol) was described. The synthesis conditions were optimized under conventional heating and microwave irradiations. To prove their suitability in polymerization, these monomers were successfully polymerized using 4,4′-diphenylmethane diisocyanate (MDI) and hexamethylene diisocyanate (HDI). Both monomers and polymers have been studied by NMR, FT-IR, TGA, DSC; intrinsic viscosity of polymers has also been determined. The results showed the effectiveness of the synthetic strategy proposed; moreover, a dramatic reduction of the reaction time and an important improvement of the monomers yield using microwave irradiation have been demonstrated. The monomers, as well as the polymers, showed excellent thermal stability both in air and nitrogen. It was also shown that the introduction of sulphur in the polyurethane backbone was effective in delaying the onset of degradation as well as the degradation rate. PMID:29491826
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
NASA Astrophysics Data System (ADS)
Dhaundiyal, Alok; Singh, Suraj B.; Hanon, Muammel M.; Rawat, Rekha
2018-02-01
A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
NASA Astrophysics Data System (ADS)
Prakash, M.; Geetha, D.; Lydia Caroline, M.; Ramesh, P. S.
2011-12-01
Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180 °C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time.
Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar
2017-06-01
The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.
Processing and characterization of bio-based composites
NASA Astrophysics Data System (ADS)
Lu, Hong
Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.
Iron oxide nanoparticles modified with silanes for hyperthermia applications
NASA Astrophysics Data System (ADS)
Storozhuk, Liudmyla; Iukhymenko, Natalia
2018-04-01
Fe3O4-HDTMS nanocomposites were prepared and studied using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, X-ray analysis, thermal analysis (TGA), dynamic light scattering analysis, magnetic and specific loss power (SLP) measurements. FTIR results showed that during the modification, the formation of the silane coating occurs due to the appearance of the magnetite-O-Si-R bond. According to TGA results, the mass loss in the range of temperatures 410-650 °C is due to the destruction of covalent bonds Fe-O-Si. The Si-O-R coating leads to the decrease in the absolute value of the effective saturation magnetization due to the presence of a non-magnetic phase (coating) in the sample, but the coercivity increases with the coating thickness due to higher effective values of the magnetic anisotropy of the magnetostrictive nature. The thermal response of NP-based dispersions in silicone and oleic acid was shown that SLP value is higher for magnetic material dispersions in Lipiodol and oleic acid compared to silicone-based dispersions. This can be explained by the contribution of both Neel and Brownian relaxation processes. However, in the case of silicone-based dispersion, Brownian relaxation is negligible because of NP immobilization in viscous silicone matrix. As it is to the effect of coating on SLP, this is clearly evident in the case of silicone dispersions. The study of the heating ability of dispersions based on HDTMS-modified Fe3O4 NPs showed that the coating does not significantly decrease the SLP values.
Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.
Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A
2015-11-28
Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.
Furler, Philipp; Scheffe, Jonathan; Marxer, Daniel; Gorbar, Michal; Bonk, Alexander; Vogt, Ulrich; Steinfeld, Aldo
2014-06-14
Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables volumetric absorption of concentrated solar radiation for efficient heat transfer to the reaction site during endothermic reduction, while the smaller void size range within the struts, with dmean = 10 μm and strut porosity = 0-0.44, increases the specific surface area for enhanced reaction kinetics during exothermic oxidation with CO2. Characterization is performed via mercury intrusion porosimetry, scanning electron microscopy, and thermogravimetric analysis (TGA). Samples are thermally reduced at 1773 K and subsequently oxidized with CO2 at temperatures in the range 873-1273 K. On average, CO production rates are ten times higher for samples with 0.44 strut porosity than for samples with non-porous struts. The oxidation rate scales with specific surface area and the apparent activation energy ranges from 90 to 135.7 kJ mol(-1). Twenty consecutive redox cycles exhibited stable CO production yield per cycle. Testing of the dual-scale RPC in a solar cavity-receiver exposed to high-flux thermal radiation (3.8 kW radiative power at 3015 suns) corroborated the superior performance observed in the TGA, yielding a shorter cycle time and a mean solar-to-fuel energy conversion efficiency of 1.72%.
Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M
2016-02-01
Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64.
EFFECT OF SODIUM HYDROXIDE AND SUPERCRITICAL FLUID TREATMENTS ON UNRETTED KENAF FIBERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Fifield, Leonard S.; Laddha, Sachin
2010-05-17
Kenaf fibers have been gaining great interest for use in the fabrication of both thermoset and thermoplastic composites. However, the inherent fiber surface properties limit their application. In response to the uneconomical, energy inefficient and environmentally unfavorable issues of the standard fiber retting process, we applied chemical modifications of kenaf fibers as alternative retting treatments and investigated the overall performance of the modified fibers. Alkaline solution and super critical alcohol were used as fiber treatments and their effects on the fiber properties were compared. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the thermal properties ofmore » fibers. The change of in chemical composition of the fibers with treatment is discussed in the context of the thermal decomposition behavior. The cellulose crystal structure and total crystallinity of the kenaf fibers were characterized by X-ray diffraction (XRD). Field emission scanning electron microscopy (SEM) was employed to examine the morphological changes of fiber surface and fiber cross-section after both alkaline and super critical alcohol treatments. The mechanical behavior of fibers before and after treatment was explored by tenacity testing and the fracture mechanism was evidenced by observing the fracture surfaces. The effect of chemical treatment duration on the fiber performance was also discussed. It was found that the alkaline treated kenaf fibers showed higher thermal stability than untreated fibers, while TGA results indicated that supercritical alcohol was more efficient in removing the non-cellulosic portions. XRD data confirmed the removal of amorphous structural components such as pectin, hemicellulose and lignin as well as amorphous cellulose for the treated kenaf fibers. SEM images showed that both treatments were effective in removing impurities and coating materials on the fiber surface. The rough fracture morphology observed by SEM indicates that ultimate fibril pull-out occurred.« less
Sauer, Dorothea; McGinity, James W
2009-06-01
Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion, where film formation progressed faster at high plasticizer levels.
Robinson, T; Bronson, B; Gogolek, P; Mehrani, P
2016-02-01
Thermo-gravimetric analysis (TGA) is a useful method for characterizing fuels. In the past it has been applied to the study of refuse derived fuel (RDF) and related materials. However, the heterogeneity of RDF makes the preparation of small representative samples very difficult and this difficulty has limited the effectiveness of TGA for characterization of RDF. A TGA method was applied to a variety of materials prepared from a commercially available RDF using a variety of procedures. Applicability of TGA method to the determination of the renewable content of RDF was considered. Cryogenic ball milling was found to be an effective means of preparing RDF samples for TGA. When combined with an effective sample preparation, TGA could be used as an alternative method for assessing the renewable content of RDF. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites.
Goikuria, U; Larrañaga, A; Vilas, J L; Lizundia, E
2017-09-01
Due to the potential of CNC-based flexible materials for novel industrial applications, the aim of this work is to improve the thermal stability of cellulose nanocrystals (CNC) films through a straightforward and scalable method. Based of nanocomposite approach, five different metallic nanoparticles (ZnO, SiO 2 , TiO 2 , Al 2 O 3 and Fe 2 O 3 ) have been co-assembled in water with CNCs to obtain free-standing nanocomposite films. Thermogravimetric analysis (TGA) reveals an increased thermal stability upon nanoparticle. This increase in the thermal stability reaches a maximum of 75°C for the nanocomposites having 10wt% of Fe 2 O 3 and ZnO. The activation energies of thermodegradation process (E a ) determined according to Kissinger and Ozawa-Flynn-Wall methods further confirm the delayed degradation of CNC nanocomposites upon heating. Finally, the changes induced in the crystalline structure during thermodegradation were followed by wide angle X-ray diffraction (WAXD). It is also observed that thermal degradation proceeds at higher temperatures for nanocomposites having metallic nanoparticles. Overall, experimental findings here showed make nanocomposite approach a simple low-cost environmentally-friendly strategy to overcome the relatively poor thermal stability of CNCs when extracted via sulfuric acid assisted hydrolysis of cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rheological properties and tunable thermoplasticity of phenolic rich fraction of pyrolysis bio-oil.
Sahaf, Amir; Laborie, Marie-Pierre G; Englund, Karl; Garcia-Perez, Manuel; McDonald, Armando G
2013-04-08
In this work we report on the preparation, characterization, and properties of a thermally treated lignin-derived, phenolic-rich fraction (PRF) of wood pyrolysis bio-oil obtained by ethyl acetate extraction. The PRF was characterized for viscoelastic and rheological behavior using dynamic mechanical analysis (DMA) and cone and plate rheology. A unique thermoplastic behavior was evidenced. Heat-treated PRFs acquire high modulus but show low temperatures of thermal flow which can be systematically manipulated through the thermal pretreatment. Loss of volatiles, changes in molecular weight, and glass transition temperature (Tg) were investigated using thermogravimetric analysis (TGA), mass spectrometry (MS), and differential scanning calorimetry (DSC), respectively. Underlying mechanisms for the thermal and rheological behavior are discussed with regard to interactions between pyrolytic lignin nanoparticles present in the system and the role of volatile materials on determining the properties of the material resembling in several aspects to colloidal suspension systems. Low thermal flow temperatures and reversible thermal effects can be attributed to association of pyrolytic lignin particles due to intermolecular interactions that are easily ruptured at higher temperatures. The thermoplastic behavior of PRF and its low Tg is of particular interest, as it gives opportunities for application of this fraction in several melt processing and adhesive technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Shinichiro
The format of this dissertation is as follows. In the remainder of Chapter 1, brief introductions and reviews are given to the topics of frustration, heavy fermions and spinels including the precedent work of LiV 2O 4. In Chapter 2, as a general overview of this work the important publication in Physical Review Letters by the author of this dissertation and collaborators regarding the discovery of the heavy fermion behavior in LiV 2O 4 is introduced [removed for separate processing]. The preparation methods employed by the author for nine LiV 2O 4 and two Li 1+xTi 2-xO 4 (x =more » 0 and 1/3) polycrystalline samples are introduced in Chapter 3. The subsequent structural characterization of the LiV 2O 4 and Li 1+xT 2-xO 4 samples was done by the author using thermogravimetric analysis (TGA), x-ray diffraction measurements and their structural refinements by the Rietveld analysis. The results of the characterization are detailed in Chapter 3. In Chapter 4 magnetization measurements carried out by the author are detailed. In Chapter 5, after briefly discussing the resistivity measurement results including the single-crystal work by Rogers et al., for the purpose of clear characterization of LiV 2O 4 it is of great importance to introduce in the following chapters the experiments and subsequent data analyses done by his collaborators. Heat capacity measurements (Chapter 6) were carried out and analyzed by Dr. C.A. Swenson, and modeled theoretically by Dr. D.C. Johnston. In Chapter 7 a thermal expansion study using neutron diffraction by Dr. O. Chmaissem et al. and capacitance dilatometry measurements by Dr. C.A. Swenson are introduced. The data analyses for the thermal expansion study were mainly done by Dr. O. Chmaissem (for neutron diffraction) and Dr. C.A. Swendon (for dilatometry), with assistances by Dr. J.D. Jorgensen, Dr. D.C. Johnston, and S. Kondo the author of this dissertation. Chapter 8 describes nuclear magnetic resonance (NMR) measurements and analyses by Dr. A.V. Mahajan, R. Sala, E. Lee and Dr. F. Borsa. In the final chapter, a summary and discussion are given.« less
Lin, Jun-Hong
2018-02-08
In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed to prevent the restack of the thermally reduce graphene oxide (TRG) sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs). The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm) that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg).
NASA Astrophysics Data System (ADS)
Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana
2018-03-01
The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.
Preparation and characterization of a siloxane containing bismaleimide
NASA Technical Reports Server (NTRS)
Maudgal, S.; St. Clair, T. L.
1984-01-01
A novel siloxane containing bismaleimide has been prepared by reacting maleic anhydride, benzophenonetetracarboxylic dianhydride and bis(gamma-aminopropyl)tetramethyldisiloxane. Characterization of this monomer was done by comparing its nuclear magnetic resonance spectrum (NMR) to those of model compounds. Solubility of the prepolymer was tested in amide, chlorinated and ether solvents. Films were cast from solution as well as by melt processing and a cure cycle was determined. Infrared spectrum (IR) of the resulting film was obtained. Thermal polymerization was investigated by differential scanning calorimetry (DSC). Thermal properties of the cured resin were followed by means of thermogravimetric analysis (TGA), torsional braid analysis (TBA) and dynamic mechanical analysis (DMA). Thermomechanical analysis (TMA) was used to study the effect of postcure on the glass transition temperature (Tg) of the resin. Adhesive strength of the resin was obtained at ambient temperature.
Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications.
Blaiszik, B J; Jones, A R; Sottos, N R; White, S R
2014-01-01
Microcapsules containing a liquid metal alloy core of gallium-indium (Ga-In) are prepared via in situ urea-formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245 µm to 3 µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, T. C. S., E-mail: tcsshetty@gmail.com; Department of Post Graduate Studies in Physics, St Aloysius College; Sandeep, K. M.
A new photonic material, (2E)-1-(3-chlorophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCPP) was synthesized and crystallised at room temperature. The functional groups of synthesised material were confirmed using FT-IR. The third order nonlinear optical (NLO) properties were investigated using Z-scan technique with 5 ns Nd:YAG laser pulses operating at a wavelength of 532 nm. Linear absorption spectrum of DCPP crystals shows an optical transmittance window and a lower cutoff wavelength of absorption at 380 nm. The direct transition band gap energy was determined using Tauc’s plot. The melting point and thermal stability of the crystal have been investigated by thermo gravimetric analysis/differential thermal analysis (TGA/DTA). Themore » Thermo gravimetric curve showed absence of any phase transition before melting point.« less
NASA Technical Reports Server (NTRS)
Mikroyannidis, John A. (Inventor); Kourtides, Demetrius A. (Inventor)
1987-01-01
A class of fire and heat resistant bisimide resins prepared by thermal polymerization of maleimido or citraconimido substituted 1-((dialkoxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes are described. The polymer precursors are prepared by reacting 1-((diorganooxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes with maleic anhydride or citraconic anhydride in a mole ratio 1:2. Chain extension of the monomers is achieved by reacting the mono-N-maleimido derivatives of 1-((diorganooxyphosphonyl) methyl)-2,4 and -2,6-diaminobenzenes with aryl tetracarboxylic dianhydrides, such as benzophenone tetracarbocylic dianhydride, or aryl diisocyanates, such as methylenebis (4-phenylisocyanate), in a mole ratio 2:1. The polymerization of the monomers is studied by differential scanning calorimetry (DSC) and the thermal stability of the polymers is ascertained by thermogravimetric analysis (TGA).
NASA Astrophysics Data System (ADS)
Dey, Chaitali; Chaudhuri, Arka; Goswami, Madhuri Mandal
2018-04-01
Herein, we report the synthesis of manganese ferrite (MnFe2O4) magnetic nano hollow sphere (NHS) by a solvothermal route. Crystalline phase was confirmed by X-ray diffraction (XRD), energy dispersive x-ray (EDX). Magnetic measurements were done in vibrating sample magnetometer (VSM) and morphological structure was analyzed by field emission high resolution scanning electron microscope (FESEM) and structural characterization was confirmed by Fourier transform infrared spectroscopy (FTIR), thermal analysis was performed by thermo-gravimetric analysis-differential thermal analysis (TGA-DTA). The size of the NHS was around 470 nm, this large size may show a potential applicability in industrial application, like dye adsorption, catalysis etc. In addition, because of its ferromagnetic character at room temperature, it can be easily separated by external magnetic field after the application is done.
NASA Astrophysics Data System (ADS)
Nagappan, Saravanan; Park, Jin Joo; Park, Sung Soo; Ha, Chang-Sik
2014-12-01
Superhydrophobic and transparent polymethylhydroxysiloxane (PMHOS)/silica ormosil aerogel hybrids were prepared successfully by mixing of PMHOS with various weight percentages of silica ormosil aerogels (as synthesized from methyltriethoxysilane (MTES) and methyltrimethoxysilane (MTMS) precursors) in separate seal perfume glass vials. The hybrids were spin coated on glass substrate at 1000 rpm for 60 seconds and used for further analysis. The surface morphology and chemical compositions of the hybrids were analyzed by high resolution scanning electron microscopy, high resolution transmission electron microscopy, atomic force spectroscopy, adsorption and desorption isotherm, and X-ray photoelectron spectroscopy. The transparency, thermal decomposition and static contact angle (SCA) of each sample were measured by UV-Visible spectrophotometer, TGA and drop shape analysis system, respectively. The spin coated substrates showed good superhydrophobic properties, thermal stability as well as transparency on the glass substrates.
Lin, Jun-Hong
2018-01-01
In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed to prevent the restack of the thermally reduce graphene oxide (TRG) sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs). The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm) that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg). PMID:29419773
Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.
Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando
2010-07-01
Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.
Preston, Jill C; Wang, Huai; Kursel, Lisa; Doebley, John; Kellogg, Elizabeth A
2012-01-01
• Hardened floral bracts and modifications to the inflorescence axis of grasses have been hypothesized to protect seeds from predation and/or aid seed dispersal, and have evolved multiple times independently within the family. Previous studies have demonstrated that mutations in the maize (Zea mays ssp. mays) gene teosinte glume architecture (tga1) underlie a reduction in hardened structures, yielding free fruits that are easy to harvest. It remains unclear whether the causative mutation(s) occurred in the cis-regulatory or protein-coding regions of tga1, and whether similar mutations in TGA1-like genes can explain variation in the dispersal unit in related grasses. • To address these questions TGA1-like genes were cloned and sequenced from a number of grasses and analyzed phylogenetically in relation to morphology; protein expression was investigated by immunolocalization. • TGA1-like proteins were expressed throughout the spikelet in the early development of all grasses, and throughout the flower of the grass relative Joinvillea. Later in development, expression patterns differed between Tripsacum dactyloides, maize and teosinte (Z. mays ssp. parviglumis). • These results suggest an ancestral role for TGA1-like genes in early spikelet development, but do not support the hypothesis that TGA1-like genes have been repeatedly modified to affect glume and inflorescence axis diversification. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Sleep Modifications in Acute Transient Global Amnesia
Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo
2013-01-01
Study Objective: Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events (“minor stroke” or transient ischemic attack [TIA]) clinically and neuroradiologically “similar” to the TGA. Methods: TGA group: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. Results: In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Conclusions: Microstructural modification associated with TGA could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress. Citation: Della Marca G; Mazza M; Losurdo A; Testani E; Broccolini A; Frisullo G; Marano G; Morosetti R; Pilato F; Profice P; Vollono C; Di Lazzaro V. Sleep modifications in acute transient global amnesia. J Clin Sleep Med 2013;9(9):921-927. PMID:23997704
Lee, Nuri; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Kim, Inho; Yoon, Sung-Soo; Park, Seonyang; Han, Kyou-Sup; Kim, Hyun Kyung
2016-01-01
Disseminated intravascular coagulation (DIC) is characterized by consumption of coagulation factors and anticoagulants. Thrombin generation assay (TGA) gives useful information about global hemostatic status. We developed a new TGA system that anticoagulant addition can deplete thrombin generation in plasma, which may reflect defective anticoagulant system in DIC. TGAs were measured on the calibrated automated thrombogram with and without thrombomodulin or protein Z in 152 patients who were suspected of having DIC, yielding four parameters including lag time, endogenous thrombin potential, peak thrombin and time-to-peak in each experiment. Nonsurvivors showed significantly prolonged lag time and time-to-peak in TGA-protein Z system, which was performed with added protein Z. In multivariate Cox regression analysis, lag time and time-to-peak in TGA system were significant independent prognostic factors. In TGA-protein Z system, lag time and time-to-peak were revealed as independent prognostic factors of DIC. Protein Z addition could potentiate its anticoagulant effect in DIC with poor prognosis, suggesting the presence of defective protein Z system. The prolonged lag time and time-to-peak in both TGA and TGA-protein Z systems are expected to be used as independent prognostic factors of DIC.
Wu, Yang-Che; Wu, Yu-Hsueh; Wang, Yi-Ping; Chang, Julia Yu-Fong; Chen, Hsin-Ming; Sun, Andy
2017-01-01
Anti-gastric parietal cell antibody (GPCA), anti-thyroglobulin antibody (TGA), and anti-thyroid microsomal antibody (TMA) have not yet been reported in patients with recurrent aphthous stomatitis (RAS). This study mainly assessed the frequencies of the presence of serum GPCA, TGA, and TMA in different types of RAS patients. Serum GPCA, TGA, and TMA levels were measured in 355 RAS patients of different subtypes and in 355 age- and sex-matched healthy control individuals. We found that 13.0%, 19.4%, and 19.7% of 355 RAS patients, 16.7%, 23.3%, and 21.7% of 60 major-typed RAS patients, 12.2%, 18.6%, and 19.3% of 295 minor-typed RAS patients, 18.1%, 20.0%, and 21.9% of 160 atrophic glossitis-positive RAS (AG+/RAS) patients, and 8.7%, 19.0%, and 17.9% of 195 AG-negative RAS (AG-/RAS) patients had the presence of GPCA, TGA, and TMA in their sera, respectively. RAS, major-typed RAS, minor-typed RAS, AG+/RAS, and AG-/RAS patients all had a significantly higher frequency of GPCA, TGA, or TMA positivity than healthy control individuals (all p < 0.001). Of 65 TGA/TMA-positive RAS patients whose serum thyroid-stimulating hormone (TSH) levels were measured, 76.9%, 12.3%, and 10.8% of these TGA/TMA-positive RAS patients had normal, lower, and higher serum TSH levels, respectively. We conclude that approximately one-third RAS patients may have GPCA/TGA/TMA positivity in their sera. Because some GPCA-positive patients may develop pernicious anemia, autoimmune atrophic gastritis, and gastric carcinoma, and some TGA/TMA-positive patients may have thyroid dysfunction such as hyperthyroidism and hypothyroidism, these patients should be referred to doctors for further management. Copyright © 2016. Published by Elsevier B.V.
Abrantes-Lemos, Clarice Pires; Nakhle, Maria Cristina; Damiao, Aderson Omar Mourao Cintra; Sipahi, Aytan Miranda; Carrilho, Flair José; Cancado, Eduardo Luiz R
2010-01-01
Sensitivity and specificity of anti-human tissue transglutaminase antibodies (anti-htTGA) seem to be superior to those of anti-tissue transglutaminase of guinea pig (anti-gptTGA) for screening patients with celiac disease (CD), but there are still controversies. The aim of this study was to evaluate the performance of two INOVA ELISA kits to detect IgA anti-htTGA and anti-gptTGA in patients with and without CD. The study groups were comprised of 49 anti-endomysial antibody (EMA)-positive untreated-CD, and 123 controls (EMA-negative treated CD, EMA-negative chronic diarrhea, autoimmune hepatitis, inflammatory bowel disease and healthy people). The agreement between the two ELISAs was statistically significant in all study groups and there was no significant difference between them (92.7% agreement; kappa = 0.70; kappa p = 0.001; McNemar p = 1). All patients with serum reactivity of more than 100 units had histologic diagnosis of CD. In seven of 10 patients with treated-CD who had control biopsies, villous atrophy was still present in four who tested positive by both kits. Two of three celiacs with histologic remission tested positive for both anti-tTGA. the anti-gptTGA and anti-htTGA determination were equally efficient in identifying patients with untreated-CD with high titers of EMA. Whatever the anti-tTGA ELISA used, the reactivity above 100 units was always related to active CD diagnosed by histologic alterations in intestinal biopsies. The anti-tTGA reactivity by both kits was not only similar in determining histologic activity in the follow-up of CD after a gluten free diet, but also in identifying positive sera from the control groups, regardless if CD has been confirmed by duodenal biopsies.
NASA Astrophysics Data System (ADS)
de Oliveira, Diogo N.; de Menezes, Maico; Catharino, Rodrigo R.
2015-04-01
In the late years, much attention has been brought to the scientific community regarding the safety of sucralose and its industrial applications. Although it is the most used artificial sweetener in foods and pharmaceuticals, many questions still arise on its potential to form chlorinated byproducts in high temperatures, as demonstrated by several recent studies. In the present contribution, we use a combination of differential scanning calorimetry and thermogravimetric analysis coupled with infrared spectroscopy (DSC/TGA/IR), Hot-stage microscopy (HSM) and high-resolution mass spectrometry (HRMS) on samples submitted to water bath at mild temperatures to evaluate a broad spectrum of hazardous compounds formed in the degradation of this product. TGA/IR has revealed that there is effective decomposition in form of CO2 along with the formation of hydrogen chloride and other minor compounds. HSM results have provided accurate information, where the melting of the crystals was observed, followed by decomposition. Chlorinated derivatives, including polychlorinated aromatic hydrocarbons (PCAHs) were also confirmed by HRMS. These findings not only corroborate the suspected instability of sucralose to high temperatures, but also indicate that even exposed to mild conditions the formation of hazardous polychlorinated compounds is observed.
Measurements for the BETC in-situ combustion experiment. [Post test surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayland, J.R.; Bartel, L.C.
The Bartlesville Energy Technology Center (BETC) in situ combustion pilot project near Bartlette, Kansas, was studied using controlled source audio-magnetotelluric (CSAMT) mapping, thermal gravimetric analysis (TGA), conventional geophysical logging and modeling of the fireflood. Measurements of formation resistivity changes induced by in situ combustion indicate that CSAMT resistivity maps should show an increase in apparent resistivity. The substantial decrease of apparent resistivity measured within the five spot pattern indicated a complex sequence of events. Using the results from the CSAMT surveys the fire front was located and posttest core samples were obtained. The posttest core samples were examined using TGAmore » techniques, and using information from combustion tube runs as standards, the location of the fire front in the core samples from the posttest holes was inferred. Models of the reservoir in situ combustion process were developed to help analyze the field results. The combustion kinematics, when used in conjunction with CSAMT and TGA techniques, indicated that considerable bypass of injected air occurred with an influx of brine into previously burned zones. This experiment offered an opportunity to integrate several new techniques into a systematic study of a difficult problem.« less
Evaluation of moisture barrier coatings on carbon-phenolic SRM nozzle materials
NASA Technical Reports Server (NTRS)
Mcnutt, Ronald C.
1986-01-01
The carbon-phenolic composite ablative material used on the Solid Rocket Motor (SRM) nozzle is known to absorb moisture from the atmosphere. This could cause problems such as pocketing during firing. Several moisture barrier coatings were tested on the SRM nozzle material. Data are presented for six of the 12 coatings to be tested. The data were obtained from immersion of coated samples in an environmental chamber at 100 F and 100% relative humidity and by using a modified TGA (thermal gravimetric analysis) technique. The TGA technique involved allowing wet nitrogen (25 C, 80% relative humidity) to flow across a small sample at about 65 cu cm per minute while continually monitoring the weight increase. These preliminary results show Kel-F-800, a material supplied by 3M Corporation to be the better moisture barrier. A second task was to collect data on the relative absorption of water and kerosene into the carbon-phenolic SRM nozzle material. These data indicate that water absorbs into the nozzle material to a much greater extent than kerosene. Thus kerosene is the more likely solvent in which to make specific gravity measurements on the SRM nozzle material.
de Oliveira, Diogo N; de Menezes, Maico; Catharino, Rodrigo R
2015-04-15
In the late years, much attention has been brought to the scientific community regarding the safety of sucralose and its industrial applications. Although it is the most used artificial sweetener in foods and pharmaceuticals, many questions still arise on its potential to form chlorinated byproducts in high temperatures, as demonstrated by several recent studies. In the present contribution, we use a combination of differential scanning calorimetry and thermogravimetric analysis coupled with infrared spectroscopy (DSC/TGA/IR), Hot-stage microscopy (HSM) and high-resolution mass spectrometry (HRMS) on samples submitted to water bath at mild temperatures to evaluate a broad spectrum of hazardous compounds formed in the degradation of this product. TGA/IR has revealed that there is effective decomposition in form of CO2 along with the formation of hydrogen chloride and other minor compounds. HSM results have provided accurate information, where the melting of the crystals was observed, followed by decomposition. Chlorinated derivatives, including polychlorinated aromatic hydrocarbons (PCAHs) were also confirmed by HRMS. These findings not only corroborate the suspected instability of sucralose to high temperatures, but also indicate that even exposed to mild conditions the formation of hazardous polychlorinated compounds is observed.
de Oliveira, Diogo N.; de Menezes, Maico; Catharino, Rodrigo R.
2015-01-01
In the late years, much attention has been brought to the scientific community regarding the safety of sucralose and its industrial applications. Although it is the most used artificial sweetener in foods and pharmaceuticals, many questions still arise on its potential to form chlorinated byproducts in high temperatures, as demonstrated by several recent studies. In the present contribution, we use a combination of differential scanning calorimetry and thermogravimetric analysis coupled with infrared spectroscopy (DSC/TGA/IR), Hot-stage microscopy (HSM) and high-resolution mass spectrometry (HRMS) on samples submitted to water bath at mild temperatures to evaluate a broad spectrum of hazardous compounds formed in the degradation of this product. TGA/IR has revealed that there is effective decomposition in form of CO2 along with the formation of hydrogen chloride and other minor compounds. HSM results have provided accurate information, where the melting of the crystals was observed, followed by decomposition. Chlorinated derivatives, including polychlorinated aromatic hydrocarbons (PCAHs) were also confirmed by HRMS. These findings not only corroborate the suspected instability of sucralose to high temperatures, but also indicate that even exposed to mild conditions the formation of hazardous polychlorinated compounds is observed. PMID:25873245
NASA Astrophysics Data System (ADS)
Lv, Wei; Wei, Bo; Xu, Lingling; Zhao, Yan; Gao, Hong; Liu, Jia
2012-10-01
In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. The thermogravimetric analysis/differential thermal analysis (TGA-DTA) and Fourier transform infrared spectra (FTIR) showed that sucrose acted as a complexing agent in the synthesis process and assisted combustion during annealing. Photocatalytic activity was evaluated using the degradation of organic dye methyl orange. The sucrose added ZnO flowers showed improved activity, which was mainly attributed to the better crystallinity as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The effect of sucrose amount on photocatalytic activity was also studied.
Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins
Ullah, Sami; Bustam, M. A.; Nadeem, M.; Tan, W. L.; Shariff, A. M.
2014-01-01
Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10. PMID:25436237
Khan, Mohammad Mujahid Ali; Rafiuddin; Inamuddin
2013-05-01
The aim of this study was to investigate the preparation of novel membrane and the characterization of their properties. A new class of polyvinyl chloride (PVC) based polyvinyl alcohol Ce(IV) phosphate composite membrane was successfully prepared by solution casting method. The structural formation was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and morphological studies. The thermal property was investigated by thermogravimetry analysis (TGA) method. The order of surface charge density for various electrolytes was found to be LiCl
NASA Astrophysics Data System (ADS)
V, Mini; Kamath, Archana; S, Raghu; Chapi, Sharanappa; H, Devendrappa
2015-06-01
A new Polyaniline/ chitosan/ Co3O4 (CPAESCO) ternary nanocomposite is prepared by in situ oxidation polymerization of aniline in the presence of (NH4)2S2O8, chitosan and Co3O4. The Structural, Thermal, Optical and Electrical features of Polyaniline (PANI), Polyaniline/ chitosan (CPANI) and CPAESCO were analyzed using FT-IR, TGA, UV-vis analysis and Impedance spectroscopy by varying temperature. The results show that the introduction of the Co3O4 nanoparticles into CPANI matrix enhanced its properties. Mott's parameters show 3D -VRH Type conduction in it.
Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.
2011-01-01
Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836
A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masud, J; Nguyen, TV; Singh, N
Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600 degrees C to 850 degrees C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H2SO4 and HBr solutions. The thermally treated catalysts show high activity for themore » hydrogen reactions. The exchange current densities (i(o)) of the synthesized RhxSy catalysts in H-2-saturated 1M H2SO4 and 1M HBr for HER and HOR were 0.9 mA/cm(2) to 1.0 mA/cm(2) and 0.8 to 0.9 mA/cm(2), respectively. The lower i(o) values obtained in 1M HBr solution compared to in H2SO4 might be due to the adsorption of Br- on the active surface. Stable electrochemical active surface area (ECSA) of RhxSy catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Agilandeswari, K.; Ruban Kumar, A.
2014-09-01
In this present work we discussed the synthesis of pure Ca3Co4O9 ceramic powder by a starch assisted sol-gel combustion method. The products were characterized by powder X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA-DTA), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). X-ray diffraction pattern confirmed the formation of single phase Ca3Co4O9 at a sintering temperature of 1073 K, and it is also confirmed in the thermal analysis. SEM images indicate the presence of diffused microporous sphere like morphology and the grain sizes are in the range of 150-300 nm. Optical properties of Ca3Co4O9 ceramic show a band gap at an energy level of 2.10 eV. A maximum electrical resistivity of 0.002 mΩ cm was exhibited by Ca3Co4O9 that was decreased to 0.0012 mΩ cm, when the temperature increased from 300 K to 473 K. Dielectric studies were conducted at various temperatures from room temperature to 673 K and the results indicate that the space charge polarization contributes to the conduction mechanism. It also shows that the dielectric relaxation with activation energy is 0.96 eV. The magnetic properties as a function of temperature represent the ferri-paramagnetic phase transition at above 50 K. M-H curve shows the hysteresis loop with saturation magnetization (Ms) and confirms the presence of soft magnetic materials.
Spectroscopic, structure and antimicrobial activity of new Y(III) and Zr(IV) ciprofloxacin
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; El-Didamony, Akram M.
2011-02-01
The preparation and characterization of the new solid complexes [Y(CIP) 2(H 2O) 2]Cl 3·10H 2O and [ZrO(CIP) 2Cl]Cl·15H 2O formed in the reaction of ciprofloxacin (CIP) with YCl 3 and ZrOCl 2·8H 2O in ethanol and methanol, respectively, at room temperature were reported. The isolated complexes have been characterized with elemental analysis, IR spectroscopy, conductance measurements, UV-vis and 1H NMR spectroscopic methods and thermal analyses. The results support the formation of the complexes and indicate that ciprofloxacin reacts as a bidentate ligand bound to the metal ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, Δ S*; enthalpies, Δ H*; Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The proposed structure of the two complexes was detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand as well as their metal complexes was also evaluated for their antibacterial activity against several bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and antifungal screening was studied against two species ( Penicillium ( P. rotatum) and Trichoderma ( T. sp.)). This study showed that the metal complexes are more antibacterial as compared to free ligand and no antifungal activity observed for ligand and their complexes.
Preparation of potato starch microfibers obtained by electro wet spinning
NASA Astrophysics Data System (ADS)
Cárdenas, W.; Gómez-Pachon, E. Y.; Muñoz, E.; Vera-Graziano, R.
2016-07-01
Starch is one of the most abundant biopolymer in nature. It has been primarily used as a thickener in the food industry. Starch is found in greater amounts in the potato tubers, which is one of the largest food productions in the region of Boyacá-Colombia. Thus, potatoes are a viable source of starch. The main objective of this study is the preparation and characterization of native starch's microfiber by electro wet-spinning technique. The parameters that were changed for each treatment were as follows: the amount of potential applied to the solution, the distance between the needle and the collector and the rate of injection of the solution in order to determine the physical and chemical properties of the membranes, conformed by potatoes starch microfiber. Diverse instrumental analysis techniques were applied. They were: Scanning Electron Microscopy (SEM) to determine the morphologies and diameters of microfibers, Fourier Transform Infrared Spectroscopy (FTIR) to determine the chemical changes, Thermogravimetric Analysis (TGA) and Differential Calorimetry Scanning (DSC) to obtain the thermal transitions and the temperatures of useful. The microfibers were analysed in order to determine their structural properties and thus define the range of application. In conclusion, potatoes starch microfibers were obtained with average diameters of 15, 17, 23 and 25 micrometres, besides the fibers presented a degradation temperature of 304 °C, indicating that fibers are available with diameters of small scale, with good thermal properties. This study will enable the implementation of the microfibers to obtain bio packaging for food products and other applications.
A Rh xS y/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr
Masud, Jahangir; Nguyena, Trung V.; Singh, Nirala; ...
2015-02-01
Rhodium sulfide (Rh 2S 3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh 2S 3 at high temperatures (600°C to 850°C) in presence of argon resulted in the transformation of Rh 2S 3 into Rh 3S 4, Rh 17S 15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H 2SO 4 and HBr solutions. Themore » thermally treated catalysts show high activity for the hydrogen reactions. The exchange current densities (i o) of the synthesized Rh xS y catalysts in H 2-saturated 1M H 2SO 4 and 1M HBr for HER and HOR were 0.9 mA/cm 2 to 1.0 mA/cm 2 and 0.8 to 0.9 mA/cm 2, respectively. The lower i o values obtained in 1M HBr solution compared to in H 2SO 4 might be due to the adsorption of Br - on the active surface. Stable electrochemical active surface area (ECSA) of Rh xS y catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements.« less
Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.
2016-11-01
The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.
Ahamad, Tansir; Alshehri, Saad M
2012-10-01
Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating.
Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Cornelis Metselaar, Hendrik Simon; Chee, Swee Yong; Lai, Koon Chun
2017-07-28
The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.
Froimowicz, Pablo; R Arza, Carlos; Han, Lu; Ishida, Hatsuo
2016-08-09
A smart synthetic chemical design incorporating furfurylamine, a natural renewable amine, into a partially bio-based coumarin-containing benzoxazine is presented. The versatility of the synthetic approach is shown to be flexible and robust enough to be successful under more ecofriendly reaction conditions by replacing toluene with ethanol as the reaction solvent and even under solventless conditions. The chemical structure of this coumarin-furfurylamine-containing benzoxazine is characterized by FTIR, (1) H NMR spectroscopy and two-dimensional (1) H-(1) H nuclear Overhauser effect spectroscopy (2D (1) H-(1) H NOESY). The thermal properties of the resin toward polymerization are characterized by differential scanning calorimetry (DSC) and the thermal stability of the resulting polymers by thermogravimetric analysis (TGA). The results reveal that the furanic moiety induces a co-operative activating effect, thus lowering the polymerization temperature and also contributes to a better thermal stability of the resulting polymers. These results, in addition to those of natural renewable benzoxazine resins reviewed herein, highlight the positive and beneficial implication of designing novel bio-based polybenzoxazine and possibly other thermosets with desirable and competitive properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nouh, S. A.
Non isothermal studies were carried out using thermogravimetry (TG) and differential thermogravimetry (DTG) to obtain the activation energy of decomposition for chlorinated polyvinyl chloride (CPVC) before and after exposure to gamma doses at levels between 5.0 and 50.0 KGy. Thermal gravitational analysis (TGA) indicated that the CPVC polymer decomposes in one main breakdown stage and a decrease in activation energies was observed followed by an increase on increasing the gamma dose. The variation of melting temperatures with the gamma dose has been determined using differential thermal analysis (DTA). Also, mechanical and structural property studies were performed on all irradiated and non-irradiated CPVC samples using stress-strain relations and X-ray diffraction. The results indicated that the exposure to gamma doses at levels between 27.5 and 50 KGy leads to further enhancement of the thermal stability, tensile strength and isotropic character of the polymer samples due to the crosslinking phenomenon. This suggests that gamma radiation could be a suitable technique for producing a plastic material with enhanced properties that can be suitable for high temperature applications and might be a suitable candidate for dosimetric applications.
NASA Astrophysics Data System (ADS)
Borshchev, Oleg V.; Kleymyuk, Elena A.; Surin, Nikolay M.; Svidchenko, Evgeniya A.; Fedorov, Yuriy V.; Dmitryakov, Petr V.; Chvalun, Sergei N.; Ponomarenko, Sergei A.
2017-04-01
Synthesis and investigation of optical and thermal properties of a homologous series of highly luminescent nanostructured organosilicon luminophores (NOLs) containing different donor to acceptor ratio (D:A) are reported. Each of the NOL consists of a 1,4-bis(5-phenylthienyl-2-yl)benzene (PTPTP) acceptor unit and four, six or twelve 2,2'-bithienyl donor fragments connected to each other through two or six silicon atoms. These complex molecules show a "molecular antenna" effect with high efficiency of intramolecular energy transfer about 97-98% combined with excellent photoluminescence (PL) quantum yield of 84-91% and fast PL decay time of 0.90-0.95 ns. A significant increase of the molar extinction coefficient from 94 000 to 257 000 M-1cm-1 with increasing the D:A ratio from 4:1 to 12:1 was observed. It was found that increasing the branching extent in the NOLs prohibits their crystallization. Thermal gravimetric analysis (TGA) showed that all the NOLs reported, regardless of their branching extent, are thermally stable up to 455 °C under nitrogen. These characteristics make them promising materials for various organic photonics applications.
Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W
2016-12-20
The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.
Giita Silverajah, V. S.; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan; Hassan, Hazimah Abu; Woei, Chieng Buong
2012-01-01
In this work, poly(lactic acid) (PLA) a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO). The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in Tg, which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3) showed the best mechanical and thermal properties compared to the other EPO’s, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer. PMID:22754338
Giita Silverajah, V S; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan; Hassan, Hazimah Abu; Woei, Chieng Buong
2012-01-01
In this work, poly(lactic acid) (PLA) a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO). The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in T(g), which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3) showed the best mechanical and thermal properties compared to the other EPO's, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer.
Pradhan, Sushobhan; Borah, Arup Jyoti; Poddar, Maneesh Kumar; Dikshit, Pritam Kumar; Rohidas, Lilendar; Moholkar, Vijayanand S
2017-10-01
This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1 H and 13 C NMR and XRD. PHB content of dry cell mass was 8.1-21.6% w/w, and the PHB yield was 6.85×10 -3 -36.41×10 -3 % w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°-9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°-389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of proneurotensin as marker of paediatric coeliac disease
Torinsson Naluai, Å.; Agardh, D.
2016-01-01
Summary Neurotensin (NT) is a gut hormone functioning proinflammatory through nuclear factor kappa B (NF‐κB) and interleukin (IL)−8 secretion or anti‐inflammatory through epidermal growth factor receptors. NT mRNA is down‐regulated in duodenal biopsies of children with untreated coeliac disease. The aim of this study was to investigate if plasma pro‐NT levels correlated with the degree of intestinal mucosal damage and tissue transglutaminase autoantibody (tTGA) levels in children with coeliac disease. Fasting plasma samples from 96 children with coeliac disease and 89 non‐coeliac disease controls were analysed for NT precursor fragment pro‐NT 1–117 by a chemiluminometric immunoassay. Pro‐NT levels were compared with NT mRNA from duodenal biopsies, assessed previously with quantitative polymerase chain reaction (PCR). Illumina core exome arrays were used for human leucocyte antigen (HLA) typing and the Marsh criteria applied to score mucosal damage. Tissue TGA was measured by radio binding assay. A general linear model compared pro‐NT levels with diagnosis of coeliac disease, Marsh score and HLA DQ haplotype. Spearman's rank test was used to compare pro‐NT levels with tTGA, age and duodenal NT mRNA levels, respectively. Plasma pro‐NT levels were elevated in children with coeliac disease (median 23 pmol/l higher, P = 0·003) and in those with severe intestinal mucosal damage (median 24 pmol/l higher for ≥ Marsh 3b versus not, P = 0·0004). Pro‐NT levels correlated further with tTGA (r 2 = 0·22, P = 0·002), but not with duodenal NTS mRNA levels (r 2 = −0·12, P = 0·14). Pro‐NT was not associated with any of the HLA risk‐haplotypes. Elevated peripheral pro‐NT levels reflect more severe forms of active coeliac disease, indicating a potential role of NT in intestinal inflammation. PMID:27612962
NASA Astrophysics Data System (ADS)
Schutzius, Thomas M.; Bayer, Ilker S.; Jursich, Gregory M.; Das, Arindam; Megaridis, Constantine M.
2012-08-01
Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications.Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30979c
Correlation to FVIII:C in Two Thrombin Generation Tests: TGA-CAT and INNOVANCE ETP.
Ljungkvist, Marcus; Berndtsson, Maria; Holmström, Margareta; Mikovic, Danijela; Elezovic, Ivo; Antovic, Jovan P; Zetterberg, Eva; Berntorp, Erik
2017-01-01
Several thrombin-generation tests are available, but few have been directly compared. Our primary aim was to investigate the correlation of two thrombin generation tests, thrombin generation assay-calibrated automated thrombogram (TGA-CAT) and INNOVANCE ETP, to factor VIII levels (FVIII:C) in a group of patients with hemophilia A. The secondary aim was to investigate inter-laboratory variation for the TGA-CAT method. Blood samples were taken from 45 patients with mild, moderate and severe hemophilia A. The TGA-CAT method was performed at both centers while the INNOVANCE ETP was only performed at the Stockholm center. Correlation between parameters was evaluated using Spearman's rank correlation test. For determination of the TGA-CAT inter-laboratory variability, Bland-Altman plots were used. The correlation for the INNOVANCE ETP and TGA-CAT methods with FVIII:C in persons with hemophilia (PWH) was r=0.701 and r=0.734 respectively.The correlation between the two methods was r=0.546.When dividing the study material into disease severity groups (mild, moderate and severe) based on FVIII levels, both methods fail to discriminate between them.The variability of the TGA-CAT results performed at the two centers was reduced after normalization; before normalization, 29% of values showed less than ±10% difference while after normalization the number increased to 41%. Both methods correlate in an equal manner to FVIII:C in PWH but show a poor correlation with each other. The level of agreement for the TGA-CAT method was poor though slightly improved after normalization of data. Further improvement of standardization of these methods is warranted.
Plasma impregnation of wood with fire retardants
NASA Astrophysics Data System (ADS)
Pabeliña, Karel G.; Lumban, Carmencita O.; Ramos, Henry J.
2012-02-01
The efficacy of chemical and plasma treatments with phosphate and boric compounds, and nitrogen as flame retardants on wood are compared in this study. The chemical treatment involved the conventional method of spraying the solution over the wood surface at atmospheric condition and chemical vapor deposition in a vacuum chamber. The plasma treatment utilized a dielectric barrier discharge ionizing and decomposing the flame retardants into innocuous simple compounds. Wood samples are immersed in either phosphoric acid, boric acid, hydrogen or nitrogen plasmas or a plasma admixture of two or three compounds at various concentrations and impregnated by the ionized chemical reactants. Chemical changes on the wood samples were analyzed by Fourier transform infrared spectroscopy (FTIR) while the thermal changes through thermo gravimetric analysis (TGA). Plasma-treated samples exhibit superior thermal stability and fire retardant properties in terms of highest onset temperature, temperature of maximum pyrolysis, highest residual char percentage and comparably low total percentage weight loss.
Malik, Ashraf; Parveen, Shadma; Ahamad, Tansir; Alshehri, Saad M.; Singh, Prabal Kumar; Nishat, Nahid
2010-01-01
A starch-urea-based biodegradable coordination polymer modified by transition metal Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) was prepared by polycondensation of starch and urea. All the synthesized polymeric compounds were characterized by Fourier transform-infrared spectroscopy (FT-IR), 1H-NMR spectroscopy, 13C-NMR spectroscopy, UV-visible spectra, magnetic moment measurements, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The results of electronic spectra and magnetic moment measurements indicate that Mn(II), Co(II), and Ni(II) complexes show octahedral geometry, while Cu(II) and Zn(II) complexes show square planar and tetrahedral geometry, respectively. The thermogravimetric analysis revealed that all the polymeric metal complexes are more thermally stable than the parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM standards of biodegradable polymers by CO2 evolution method. PMID:20414461
NASA Astrophysics Data System (ADS)
Baksi, Arnab; Cocke, David L.; Gomes, Andrew; Gossage, John; Riggs, Mark; Beall, Gary; McWhinney, Hylton
Complex multi-metal catalysts require several stages in their preparation. These are: co-mixing, co-precipitation, milling and sol-gel, drying, dehydroxylation, and calcination and sometimes regeneration of the hydroxide by rehydration. These processes require thermal analysis (DTA, TGA, DSC) and accompanying off gas analysis, plus one or more of these: XRD, XPS, SEMEDS, FTIR and UV-VIS. In this study, hydrotalcite, hopcalite and mixed systems were prepared and guided by the above characterization techniques. The systems were initiated by mixing the chlorides or nitrates followed by hydrothermal treatments to produce the hydroxides which were further treated by washing, drying, and calcination. The thermal analysis was critical to guide the preparation through these stages and when combined with structural determination methods considerable understanding of their chemical and physical changes was obtained. The correlations between preparation and characterization will be discussed.
Development of thermoregulating microcapsules with cyclotriphosphazene as a flame retardant agent
NASA Astrophysics Data System (ADS)
Szczotok, A. M.; Carmona, M.; Serrano, A.; Kjøniksen, A. L.; Rodriguez, J. F.
2017-10-01
Thermoregulating microcapsules containing phase change material (Rubitherm®RT27) was produced by using the suspension-like polymerization technique with styrene (St), divinylbenzene (DVB) and hexa(methacryloylethylenedioxy) cyclotriphosphazene (PNC-HEMA) as co-monomers. The effect of PNC-HEMA for improving the flame retardant properties of the microcapsules were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). It was found that the thermal energy storage (TES) capacity of the microcapsules increased in the presence of PNC-HEMA. However, the morphology of the microcapsules became irregular when the content of monomer with flame retardant properties was increased. Thermogravimetric analysis performed under atmospheric air confirmed that the PNC-HEMA raised the amount of residue after the burning process, proving the formation of thermally stable char. Thus, these materials could be considered as an important alternative to commonly used microcapsules containing phase change materials (PCMs), where a lower flammability is required for their application.
A Simple Approach to Enhance the Water Stability of a Metal-Organic Framework.
Shih, Yung-Han; Kuo, Yu-Ching; Lirio, Stephen; Wang, Kun-Yun; Lin, Chia-Her; Huang, Hsi-Ya
2017-01-01
A facile method to improve the feasibility of water-unstable metal-organic frameworks in an aqueous environment has been developed that involves imbedding in a polymer monolith. The effect of compartment type during polymerization plays a significant role in maintaining the crystalline structure and thermal stability of the MOFs, which was confirmed by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA), respectively. The MOF-polymer composite prepared in a narrow compartment (column, ID 0.8 mm) has better thermal and chemical stability than that prepared in a broad compartment (vial, ID 7 mm). The developed MOF-polymer composite was applied as an adsorbent in solid-phase microextraction of nine non-steroidal anti-inflammatory drugs (NSAIDs) and could be used for extraction more than 30 times, demonstrating that the proposed approach has potential for industrial applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S
2014-11-11
Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.
Shi, Shuo; Gu, Lin; Yang, Yihu; Yu, Haibin; Chen, Rui; Xiao, Xianglian; Qiu, Jun
2016-06-25
A series of bio-based thermosetting polyurethanes (Bio-PUs) were synthesized by the crosslinking reaction of polylactide and its copolymers diols with hexamethylene diisocyanate (HDI) trimer. The obtained Bio-PUs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), universal tensile testing machine and cytotoxicity test. Results indicate that the PLA copolymer (P(LA-co-CL)) diols reduced the glass transition temperature (Tg) of Bio-PUs and improved their thermal stability, compared with PLA diols. The Bio-PUs synthesized from P (LA-co-CL) diols exhibit better mechanical performance and shape memory properties. Especially, Young modulus and elongation at break of the obtained Bio-PUs were 277.7 MPa and 230% respectively; the shape recovery time of the obtained Bio-PUs at body temperature was only 93 s. Furthermore, alamar blue assay results showed that the obtained Bio-PUs had no cell toxicity.
Munir, Hira; Shahid, Muhammad; Anjum, Fozia; Mudgil, Deepak
2016-03-01
Dalbergia sissoo gum was purified by ethanol precipitation. The purified gum was modified and hydrolyzed. Gum was modified by performing polyacrylamide grafting and carboxymethylation methods. The hydrolysis was carried out by using mannanase, barium hydroxide and trifluoroacetic acid. The modified and hydrolyzed gums were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The decrease in viscosity was studied by performing the flow test. The modified and hydrolyzed gums were thermally stable as compared to crude gum. There was increase in crystallinity after modification and hydrolysis, determined through XRD. FTIR analysis exhibits no major transformation of functional group, only there was change in the intensity of transmittance. It is concluded that the modified and hydrolyzed gum can be used for pharmaceutical and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Şen, Ferhat; Uzunsoy, İrem; Baştürk, Emre; Kahraman, Memet Vezir
2017-08-15
This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic starch was synthesized and characterized by FT-IR spectroscopy and 1 H NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using starch, cationic starch and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by TGA and DSC. Hydrophobicity of samples was determined by contact angle measurements. Surface morphology of samples was investigated by SEM. Moreover, gel contents of samples were determined. The obtained results prove that produced food packaging materials have good thermal, antimicrobial and surface properties, and they can be used as food packaging material in many industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nadeem, Saad; Iqbal, Farukh; Mutalib, Mohamed Ibrahim Abdul; Abdullah, Bawadi; Shaharun, Maizatul Shima
2017-10-01
Metal composite materials-48 (MCM-48) with silica zirconia mesoporous matrix (having a Zr/Si ratio of 0.02) has been developed successfully using autogenous conditions and Copper tetra phenyl porphyrin (CuTPP) inclusion via flexible ligand approach. Thermo gravimetric analysis (TGA) was used to study the thermal stability which gives the stability up to 700°C, Fourier transform infrared spectroscopy (FTIR) for the functional group attachment also confirmed the MCM-48 structure and the Zirconia addition and X-Ray photon spectroscopy (XPS) for the binding energies and bonding also revealed the surface Zr4+ states. DRS-UV-Vis study for the photophysical behaviour, visible light activation and band gap reduction which reduced from 5.6 to 2.8 eV. All the characterizations have confirmed that nanoscale mesoporous silica with successful inclusion of zirconia in the matrix and the encapsulation of CuTPP was confirmed via diffuse reflectance (DR Uv-Vis) spectroscopy.
Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites
NASA Astrophysics Data System (ADS)
Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza
In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.
Zhang, Yi; Wang, Hongxin; Wang, Peng; Ma, ChaoYang; He, GuoHua; Rahman, Md Ramim Tanver
2016-11-01
Polyethylene glycol (PEG) as a green solvent was employed to extract polysaccharide. The optimal conditions for PEG-based ultrasonic extraction of Dendrobium nobile Lindl. polysaccharide (JCP) were determined by response surface methodology. Under the optimal conditions: extraction temperature of 58.5°C; ultrasound power of 193W, and the concentration of polyethylene glycol-200 (PEG-200) solution of 45%, the highest JCP yield was obtained as 15.23±0.57%, which was close to the predicted yield, 15.57%. UV and FT-IR analysis revealed the general characteristic absorption peaks of both JCP with water extraction (JCP w ) and PEG-200 solvent extraction (JCP p ). Thermal analysis of both JCPs was performed with Thermal Gravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC). Antioxidant activities of two polysaccharides were also compared and no significant difference in vitro was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Sheng; Liu, Xiaodong; Jin, Xiaodong; Li, Hongfei; Sun, Jun; Gu, Xiaoyu
2018-06-01
In this paper, a novel flame retardant (ACS) was prepared by crosslinking chitosan with bis-(4-formylphenyl)-phenyl-phosphonate (ABPO). ACS in association with ammonium polyphosphate (APP) and organic modified montmorillonite (OMMT) were used to prepare flame retardant thermoplastic polyurethane (TPU) composite through melt blending. For the TPU sample containing 10% flame retardants, the limiting oxygen index was increased from 20.8 to 29.0%, the vertical burning (UL-94) rating was upgraded from no rating to V-0, and the peak heat release rate was decreased from 1090 to 284 kW/m 2 . The thermal gravity analysis (TGA) indicated that ACS had excellent char formation ability and could greatly enhance the thermal stability of TPU. The tensile strength and elongation at break for flame retardant sample could reach 16.5 MPa and 1443% respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chauhan, Vinay; Singh, Sukhprit; Mishra, Rachana; Kaur, Gurcharan
2014-12-15
Four new amide functionalized N-methylpiperazinium amphiphiles having tetradecyl, hexadecyl alkyl chain lengths and counterions; chloride or bromide have been synthesized and characterized by various spectroscopic techniques. These new surfactants have been investigated in detail for their self-assembling behavior by surface tension, conductivity and fluorescence measurements. The thermodynamic parameters of these surfactants indicate that micellization is exothermic and entropy-driven. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) experiments have been performed to insight the aggregate size of these cationics. Thermal degradation of these new surfactants has also been evaluated by thermal gravimetric analysis (TGA). These new surfactants form stable complexes with DNA as acknowledged by agarose gel electrophoresis, ethidium bromide exclusion and zeta potential measurements. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line. Copyright © 2014 Elsevier Inc. All rights reserved.
HMSPP nanocomposite and Brazilian bentonite properties after gamma radiation exposure
NASA Astrophysics Data System (ADS)
Fermino, D. M.; Parra, D. F.; Oliani, W. L.; Lugao, A. B.; Díaz, F. R. V.
2013-03-01
This work concerns the study of the mechanical and thermal behavior of the nanocomposite high melt strength polypropylene (HMSPP) (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba (PB), which is known as "chocolate" and is used in concentrations of 5% and 10% by weight, in comparison to the American Cloisite 20A clay nanocomposites. An agent compatibilizer polypropylene-graft (PP-g-AM) was added at a 3% concentration, and the clay was dispersed using the melt intercalation technique using a twin-screw extruder. The specimens were prepared by the injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGA). The morphology of the nanocomposites was studied with scanning electron microscopy (SEM), while the organophilic bentonite and nanocomposites were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).