Sample records for thermal conduction model

  1. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  2. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melissa Teague; Michael Tonks; Stephen Novascone

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISONmore » fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.« less

  3. Thermal conductivity model for nanofiber networks

    NASA Astrophysics Data System (ADS)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  4. Thermal conductivity model for nanofiber networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network ismore » revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.« less

  5. A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils

    NASA Technical Reports Server (NTRS)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.

  6. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  7. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    NASA Astrophysics Data System (ADS)

    Sakatani, N.; Ogawa, K.; Iijima, Y.; Arakawa, M.; Honda, R.; Tanaka, S.

    2017-01-01

    The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  8. Study on Unit Cell Models and the Effective Thermal Conductivities of Silica Aerogel.

    PubMed

    Liu, He; Li, Zeng-Yao; Zhao, Xin-Peng; Tao, Wen-Quan

    2015-04-01

    In this paper, two modified unit cell models, truncated octahedron and cubic array of intersecting square rods with 45-degree rotation, are developed in consideration of the tortuous path of heat conduction in solid skeleton of silica aerogel. The heat conduction is analyzed for each model and the expressions of effective thermal conductivity of the modified unit cell models are derived. Considering the random microstructure of silica aerogel, the probability model is presented. We also discuss the effect of the thermal conductivity of aerogel backbone. The effective thermal conductivities calculated by the proposed probability model are in good agreement with available experimental data when the density of the aerogel is 110 kg/m3.

  9. Advances in heat conduction models and approaches for the prediction of lattice thermal conductivity of dielectric materials

    NASA Astrophysics Data System (ADS)

    Saikia, Banashree

    2017-03-01

    An overview of predominant theoretical models used for predicting the thermal conductivities of dielectric materials is given. The criteria used for different theoretical models are explained. This overview highlights a unified theory based on temperature-dependent thermal-conductivity theories, and a drifting of the equilibrium phonon distribution function due to normal three-phonon scattering processes causes transfer of phonon momentum to (a) the same phonon modes (KK-S model) and (b) across the phonon modes (KK-H model). Estimates of the lattice thermal conductivities of LiF and Mg2Sn for the KK-H model are presented graphically.

  10. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  11. Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Jorand, Rachel; Fehr, Annick; Koch, Andreas; Clauser, Christoph

    2011-08-01

    In this paper, we present a method that allows one to correct thermal conductivity measurements for the effect of water loss when extrapolating laboratory data to in situ conditions. The water loss in shales and unconsolidated rocks is a serious problem that can introduce errors in the characterization of reservoirs. For this study, we measure the thermal conductivity of four sandstones with and without clay minerals according to different water saturation levels using an optical scanner. Thermal conductivity does not decrease linearly with water saturation. At high saturation and very low saturation, thermal conductivity decreases more quickly because of spontaneous liquid displacement and capillarity effects. Apart from these two effects, thermal conductivity decreases quasi-linearly. We also notice that the samples containing clay minerals are not completely drained, and thermal conductivity reaches a minimum value. In order to fit the variation of thermal conductivity with the water saturation as a whole, we used modified models commonly presented in thermal conductivity studies: harmonic and arithmetic mean and geometric models. These models take into account different types of porosity, especially those attributable to the abundance of clay, using measurements obtained from nuclear magnetic resonance (NMR). For argillaceous sandstones, a modified arithmetic-harmonic model fits the data best. For clean quartz sandstones under low water saturation, the closest fit to the data is obtained with the modified arithmetic-harmonic model, while for high water saturation, a modified geometric mean model proves to be the best.

  12. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  13. Simultaneous measurement for thermal conductivity, diffusivity, and specific heat of methane hydrate bearing sediments recovered from Nankai-Trough wells

    NASA Astrophysics Data System (ADS)

    Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.

    2014-12-01

    This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.

  14. Effective thermal conductivity of isotropic polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavman, I.H.

    1998-07-01

    The effective thermal conductivity of tin powder filled high density polyethylene composites is investigated experimentally as a function of filler concentration and the measured values are compared with the existing theoretical and empirical models. Samples are prepared by compression molding process, up to 16% volumetric concentration of tin particles. The thermal conductivity is measured by a modified hot wire technique in a temperature range from about 0 to 70 C. Experimental results show a region of low particle content, up to about 10% volume concentration, where the increase in thermal conductivity is rather slow. The filler particles are dispersed inmore » the matrix material in this region, the thermal conductivity is best predicted by Maxwell`s model and Nielsen`s model with A = 1.5, {phi}{sub m} = 0.637. Whereas, at high filler concentrations, the filler particles tend to form agglomerates and conductive chains in the direction of heat flow resulting in a rapid increase in thermal conductivity. A model developed by Agari and Uno estimates the thermal conductivity in this region, using two experimentally determined constants.« less

  15. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-07-21

    The thermal conductivity of uranium dioxide (UO 2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO 2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO 2, as a function of defectmore » concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].« less

  16. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  17. Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.

    Phase Change Materials (PCMs), like paraffin wax, can be used for passive thermal management of portable electronics if their overall bulk thermal conductivity is increased through the addition of highly conducting nanoparticles. Finite Element Analysis (FEA) is used to investigate the influence of nanoparticle agglomeration on the overall conductive thermal transport in a nanoenhanced composite by dictating the thermal conductivity of individual elements according to their local inclusion volume fraction and characteristics inside a low conducting PCM matrix. The inclusion density distribution is dictated by an agglomeration factor, and the effective thermal conductivity of each element is calculated from the nanoparticle volume fraction using a method similar to the Representative Volume Element (RVE) methodology. FEA studies are performed for 2-D and 3-D models. In the 2-D model, the grain boundary is fixed at x = 0 for simplicity. For the 3-D model, the grain boundary geometry is randomly varied. A negligible 2-D effect on thermal transport in the 2-D model is seen, so a 1-D thermal resistance network is created for comparison, and the results agree within 4%.The influence of the agglomeration factor and contact Biot number on the overall bulk thermal conductivity is determined by applying Fourier's Law on the entire simulated composite. For the 2-D and 3-D models with a contact Biot number above 1, the overall bulk thermal conductivity decreases prior to the percolation threshold being met and then increases with increasing agglomeration. Finally, a MatlabRTM based image processing tool is created to estimate the agglomeration factor based on an experimental image of a nanoparticle distribution, with a calculated approximate agglomeration value of Beta*L = 5 which results in a bulk thermal conductivity of 0.278 W/(m-K).

  18. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  19. DART model for thermal conductivity of U{sub 3}Si{sub 2} aluminum dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    1995-09-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values.

  20. Transient in-plane thermal transport in nanofilms with internal heating

    PubMed Central

    Cao, Bing-Yang

    2016-01-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903

  1. Transient in-plane thermal transport in nanofilms with internal heating.

    PubMed

    Hua, Yu-Chao; Cao, Bing-Yang

    2016-02-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.

  2. Thermal conductivity of microporous layers: Analytical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Andisheh-Tadbir, Mehdi; Kjeang, Erik; Bahrami, Majid

    2015-11-01

    A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1-6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m-1 K-1. The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity.

  3. A Fractal Study on the Effective Thermal Conductivity of Porous Media

    NASA Astrophysics Data System (ADS)

    Qin, X.; Cai, J.; Wei, W.

    2017-12-01

    Thermal conduction in porous media has steadily received attention in science and engineering, for instance, exploiting and utilizing the geothermal energy, developing the oil-gas resource, ground water flow in hydrothermal systems and investigating the potential host nuclear wastes, etc. The thermal conductivity is strongly influenced by the microstructure features of porous media. In this work, based on the fractal characteristics of the grains, a theoretical model of effective thermal conductivity is proposed for saturated and unsaturated porous media. It is found that the proposed effective thermal conductivity solution is a function of geometrical parameters of porous media, such as the porosity, fractal dimension of granular matrix and the thermal conductivity of the grains and pore fluid. The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data. The proposed model may provide a better understanding of the physical mechanisms of thermal transfer in porous media than conventional models.

  4. Measurements of interfacial thermal contact conductance between pressed alloys at low temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Jiang; Li, Yanzhong; Chen, Pengwei; Yin, Geyuan; Luo, Huaihua

    2016-12-01

    Interfacial thermal contact conductance is the primary factor limiting the heat transfer in many cryogenic engineering applications. This paper presents an experimental apparatus to measure interfacial thermal contact conductance between pressed alloys in a vacuum environment at low temperatures. The measurements of thermal contact conductance between pressed alloys are conducted by using the developed apparatus. The results show that the contact conductance increases with the decrease of surface roughness, the increase of interface temperature and contact pressure. The temperature dependence of thermal conductivity and mechanical properties is analyzed to explain the results. Thermal contact conductance of a pair of stainless steel specimens is obtained in the interface temperature range of 135-245 K and in the contact pressure range of 1-9 MPa. The results are regressed as a power function of temperature and load. Thermal conductance is also obtained between aluminums as well as between stainless steel and aluminum. The load exponents of the regressed relations for different contacts are compared. Existing theoretical models (the Cooper-Mikic-Yovanovich plastic model, the Mikic elastic model and the improved Kimura model) are reviewed and compared with the experimental results. The Cooper-Mikic-Yovanovich model predictions are found to be in good agreement with experimental results, especially with measurements between aluminums.

  5. A model for predicting thermal properties of asphalt mixtures from their constituents

    NASA Astrophysics Data System (ADS)

    Keller, Merlin; Roche, Alexis; Lavielle, Marc

    Numerous theoretical and experimental approaches have been developed to predict the effective thermal conductivity of composite materials such as polymers, foams, epoxies, soils and concrete. None of such models have been applied to asphalt concrete. This study attempts to develop a model to predict the thermal conductivity of asphalt concrete from its constituents that will contribute to the asphalt industry by reducing costs and saving time on laboratory testing. The necessity to do the laboratory testing would be no longer required when a mix for the pavement is created with desired thermal properties at the design stage by selecting correct constituents. This thesis investigated six existing predictive models for applicability to asphalt mixtures, and four standard mathematical techniques were used to develop a regression model to predict the effective thermal conductivity. The effective thermal conductivities of 81 asphalt specimens were used as the response variables, and the thermal conductivities and volume fractions of their constituents were used as the predictors. The conducted statistical analyses showed that the measured values of thermal conductivities of the mixtures are affected by the bitumen and aggregate content, but not by the air content. Contrarily, the predicted data for some investigated models are highly sensitive to air voids, but not to bitumen and/or aggregate content. Additionally, the comparison of the experimental with analytical data showed that none of the existing models gave satisfactory results; on the other hand, two regression models (Exponential 1* and Linear 3*) are promising for asphalt concrete.

  6. Derivation of an Explicit Form of the Percolation-Based Effective-Medium Approximation for Thermal Conductivity of Partially Saturated Soils

    NASA Astrophysics Data System (ADS)

    Sadeghi, Morteza; Ghanbarian, Behzad; Horton, Robert

    2018-02-01

    Thermal conductivity is an essential component in multiphysics models and coupled simulation of heat transfer, fluid flow, and solute transport in porous media. In the literature, various empirical, semiempirical, and physical models were developed for thermal conductivity and its estimation in partially saturated soils. Recently, Ghanbarian and Daigle (GD) proposed a theoretical model, using the percolation-based effective-medium approximation, whose parameters are physically meaningful. The original GD model implicitly formulates thermal conductivity λ as a function of volumetric water content θ. For the sake of computational efficiency in numerical calculations, in this study, we derive an explicit λ(θ) form of the GD model. We also demonstrate that some well-known empirical models, e.g., Chung-Horton, widely applied in the HYDRUS model, as well as mixing models are special cases of the GD model under specific circumstances. Comparison with experiments indicates that the GD model can accurately estimate soil thermal conductivity.

  7. Analysis of effective thermal conductivity of fibrous materials

    NASA Technical Reports Server (NTRS)

    Futschik, Michael W.; Witte, Larry C.

    1993-01-01

    The objective of this research is to gain a better understanding of the various mechanisms of heat transfer through fibrous materials and to gain insight into how fill-gas pressure influences the effective thermal conductivity. By way of first principles and some empiricism, two mathematical models are constructed to correlate experimental data. The data are obtained from a test series measuring the effective thermal conductivity of Nomex using a two-sided guarded hot-plate heater apparatus. Tests are conducted for certain mean temperatures and fill-gases over a range of pressures varying from vacuum to atmospheric conditions. The models are then evaluated to determine their effectiveness in representing the effective thermal conductivity of a fibrous material. The models presented herein predict the effective thermal conductivity of Nomex extremely well. Since the influence of gas conduction is determined to be the most influential component in predicting the effective thermal conductivity of a fibrous material, an improved representation of gas conduction is developed. Finally, some recommendations for extension to other random-oriented fiber materials are made concerning the usefulness of each model depending on their advantages and disadvantages.

  8. Thermal conductivity anisotropy of rocks

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Shin, Sang Ho

    2013-04-01

    The interior heat of the lithosphere of the Earth is mainly transferred by conduction that depends on thermal conductivity of rocks. Many sedimentary and metamorphic rocks have thermal conductivity anisotropy, i.e. heat is preferentially transferred in the direction parallel to the bedding and foliation of these rocks. Deming (JGR, 1994) proposed an empirical relationship between K(perp) and anisotropy (K(par)/K(perp)) using 89 measurements on rock samples from literatures. In Deming's model, thermal conductivity is almost isotropic for K(perp) > 4 W/mK, but anisotropy is exponentially increasing with decreasing K(perp), with final anisotropy of ~2.5 at K(perp) < 1.0 W/mK. However, Davis et al. (JGR, 2007) argued that there is little evidence for Deming's suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for rocks with low thermal conductivity. Davis et al. insisted that Deming's increase in anisotropy for 1 < K(perp) < 4 W/mK with decreasing K(perp) could be due to the fractures filled with air or water, which causes thermal conductivity anisotropy. To test Deming's suggestion and Davis et al.'s argument on thermal conductivity anisotropy, we measured thermal conductivity parallel (K(par)) and perpendicular (K(perp)) to bedding or foliation and performed analytical & numerical modeling. Our measurements on 53 rock samples show the anisotropy range from 0.79 to 1.36 for 1.84 < K(prep) < 4.06 W/mK. Analytical models show that anisotropy can increase or stay the same at the range of 1 < K(perp) < 4 W/mK. Numerical modeling for gneiss shows that anisotropy ranges 1.21 to 1.36 for 2.5 < K(perp) < 4.8 W/mK. Another numerical modeling with interbedded coal layers in high thermal conductivity rocks (3.5 W/mK) shows anisotropy of 1.87 when K(perp) is 1.7 W/mK. Finally, numerical modeling with fractures indicates that the fractures does not seem to affect thermal conductivity anisotropy significantly. In conclusion, our preliminary results imply that thermal conductivity anisotropy can increase or stay at low value in the range of 1.0 < K(perp) < 4.0 W/mK. Both cases are shown to be possible through lab measurements and analytical & numerical modeling.

  9. Geometric model for softwood transverse thermal conductivity. Part I

    Treesearch

    Hong-mei Gu; Audrey Zink-Sharp

    2005-01-01

    Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...

  10. Study on effective thermal conductivity of silicone/phosphor composite and its size effect by Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zheng, Huai; Yuan, Chao; Hu, Run; Luo, Xiaobing

    2016-12-01

    The silicone/phosphor composite is widely used in light emitting diode (LED) packaging. The composite thermal properties, especially the effective thermal conductivity, strongly influence the LED performance. In this paper, a lattice Boltzmann model was presented to predict the silicone/phosphor composite effective thermal conductivity. Based on the present lattice Boltzmann model, a random generation method was established to describe the phosphor particle distribution in composite. Benchmarks were conducted by comparing the simulation results with theoretical solutions for simple cases. Then the model was applied to analyze the effective thermal conductivity of the silicone/phosphor composite and its size effect. The deviations between simulation and experimental results are <7 %, when the phosphor volume fraction varies from 0.038 to 0.45. The simulation results also indicate that effective thermal conductivity of the composite with larger particles is higher than that with small particles at the same volume fraction. While mixing these two sizes of phosphor particles provides an extra enhancement for the effective thermal conductivity.

  11. Thermal conductivity of the Lennard-Jones chain fluid model.

    PubMed

    Galliero, Guillaume; Boned, Christian

    2009-12-01

    Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8

  12. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2008-01-01

    The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.

  13. Thermal conductivity model for nanoporous thin films

    NASA Astrophysics Data System (ADS)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  14. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te₃.

    PubMed

    Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng

    2017-07-06

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi 0.48 Sb 1.52 Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi 0.48-x Pb x Sb 1.52 Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  15. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3

    PubMed Central

    Kim, Hyun-sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-il; Kim, Sung Wng

    2017-01-01

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi2Te3-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te3. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te3 due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14–22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye–Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction. PMID:28773118

  16. Fuel thermal conductivity (FTHCON). Status report. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagrman, D. L.

    1979-02-01

    An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on amore » more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced.« less

  17. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    PubMed Central

    Guan, Kang; Wu, Jianqing; Cheng, Laifei

    2016-01-01

    The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130

  18. The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: Experimental and theoretical evaluations

    NASA Astrophysics Data System (ADS)

    Motevasel, Mohsen; Nazar, Ali Reza Solaimany; Jamialahmadi, Mohammad

    2018-01-01

    Nanoparticles suspended in a base fluid yield increased thermal conductivity, which in turn increases convection heat transfer rate. Prediction of suitable relations for determination of thermal conductivity results in heightened accuracy in the calculation of convection heat transfer coefficient and reduced costs. In the majority of studies performed on the prediction of thermal conductivity, some relations and models were used in which the effect of aggregation of particles, especially at low concentrations was ignored. In this research, the thermal conductivity of the nanofluid is measured experimentally at low volumetric concentrations, within the range of 0.02-0.2% for the nanoparticles of Al2O3, MgO, CuO, and SiC in the base fluid of distilled water. The results obtained from the models are compared by the available models considering and neglecting the effect of aggregation of particles. Within the range of the applied concentrations, the relative absolute average deviation ratio of the thermal conductivity models without considering the aggregation effect in relation with the models considering the aggregate, is observed to be between 2 and 6 times. Therefore, it is recommended that even at low concentrations, the effect of aggregation should be considered in the prediction of thermal conductivity.

  19. Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1999-01-01

    Analytical models were developed to model the heat transfer through high-temperature fibrous insulation used in metallic thermal protection systems on reusable launch vehicles. The optically thick approximation was used to simulate radiation heat transfer through the insulation. Different models for gaseous conduction and solid conduction in the fibers, and for combining the various modes of heat transfer into a local, volume-averaged, thermal conductivity were considered. The governing heat transfer equations were solved numerically, and effective thermal conductivities were calculated from the steady-state results. An experimental apparatus was developed to measure the apparent thermal conductivity of insulation subjected to pressures, temperatures and temperature gradients representative of re-entry conditions for launch vehicles. The apparent thermal conductivity of an alumina fiber insulation was measured at nominal densities of 24, 48 and 96 kg/cu m. Data were obtained at environmental pressures from 10(exp 4) to 760 torr, with the insulation cold side maintained at room temperature and its hot side temperature varying up to 1000 C. The experimental results were used to evaluate the analytical models. The best analytical model resulted in effective thermal conductivity predictions that were within 8% of experimental results.

  20. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide

    NASA Astrophysics Data System (ADS)

    Ahmadi Nadooshan, Afshin

    2017-03-01

    In this study, the effects of temperature (20 °C

  1. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.

  2. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  3. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  4. Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3

    NASA Astrophysics Data System (ADS)

    Bjerg, Lasse; Iversen, Bo B.; Madsen, Georg K. H.

    2014-01-01

    ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.

  5. Thermal Conductivity in Soil: Theoretical Approach by 3D Infinite Resistance Grid Model

    NASA Astrophysics Data System (ADS)

    Changjan, A.; Intaravicha, N.

    2018-05-01

    Thermal conductivity in soil was elementary characteristic of soil that conduct heat, measured in terms of Fourier’s Law for heat conduction and useful application in many fields: such as Utilizing underground cable for transmission and distribution systems, the rate of cooling of the cable depends on the thermal properties of the soil surrounding the cable. In this paper, we investigated thermal conductivity in soil by infinite three dimensions (3D) electrical resistance circuit concept. Infinite resistance grid 3D was the grid of resistors that extends to infinity in all directions. Model of thermal conductivity in soil of this research was generated from this concept: comparison between electrical resistance and thermal resistance in soil. Finally, we investigated the analytical form of thermal conductivity in soil which helpful for engineering and science students that could exhibit education with a principle of physics that applied to real situations.

  6. Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels

    DOE PAGES

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...

    2015-12-22

    The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  7. Thermal Conductivity Measurement of Low-k Dielectric Films: Effect of Porosity and Density

    NASA Astrophysics Data System (ADS)

    Alam, M. T.; Pulavarthy, R. A.; Bielefeld, J.; King, S. W.; Haque, M. A.

    2014-03-01

    The thermal conductivity of low-dielectric-constant (low-k) SiOC:H and SiC:H thin films has been measured as a function of porosity using a heat transfer model based on a microfin geometry and infrared thermometry. Microscale specimens were patterned from blanket films, released from the substrate, and subsequently integrated with the experimental setup. Results show that the thermal conductivity of a dense specimen, 0.7 W/mK, can be reduced to as low as 0.1 W/mK by introducing 30% porosity into it. The measured thermal conductivity shows a nonlinear decrease with increasing porosity that approximately follows the porosity-weighted simple medium model for porous materials. Neither the differential effective medium nor the coherent potential model could predict the density dependence of the thermal conductivity. These results suggest that more careful consideration is required for application of generic porous materials modeling to low-k dielectrics.

  8. Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction.

    PubMed

    Johansson, Johannes D; Eriksson, Ola; Wren, Joakim; Loyd, Dan; Wårdell, Karin

    2006-09-01

    Radio-frequency brain lesioning is a method for reducing e.g. symptoms of movement disorders. A small electrode is used to thermally coagulate malfunctioning tissue. Influence on lesion size from thermal and electric conductivity of the tissue, microvascular perfusion and preset electrode temperature was investigated using a finite-element model. Perfusion was modelled as an increased thermal conductivity in non-coagulated tissue. The parameters were analysed using a 2(4)-factorial design (n=16) and quadratic regression analysis (n=47). Increased thermal conductivity of the tissue increased lesion volume, while increased perfusion decreased it since coagulation creates a thermally insulating layer due to the cessation of blood perfusion. These effects were strengthened with increased preset temperature. The electric conductivity had negligible effect. Simulations were found realistic compared to in vivo experimental lesions.

  9. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, Charles; Xing, Changhu; Jensen, Colby

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less

  10. Thermal conductivity of lunar regolith simulant JSC-1A under vacuum

    NASA Astrophysics Data System (ADS)

    Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi

    2018-07-01

    Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.

  11. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.

    PubMed

    Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N

    2005-05-01

    This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result, the non-linear temperature response of RF induced heating can be adequately expressed mathematically as a function of electrical conductivity, radius and thermal conductivity. Hence, thermal conductivity accounts for some of the previously unexplained variance. Furthermore, the addition of this variable into the mathematical model substantially simplifies the equations and, as such, it is expected that this will permit improved prediction of RF ablation induced temperatures in clinical practice.

  12. Collective thermal transport in pure and alloy semiconductors.

    PubMed

    Torres, Pol; Mohammed, Amr; Torelló, Àlvar; Bafaluy, Javier; Camacho, Juan; Cartoixà, Xavier; Shakouri, Ali; Alvarez, F Xavier

    2018-03-07

    Conventional models for predicting thermal conductivity of alloys usually assume a pure kinetic regime as alloy scattering dominates normal processes. However, some discrepancies between these models and experiments at very small alloy concentrations have been reported. In this work, we use the full first principles kinetic collective model (KCM) to calculate the thermal conductivity of Si 1-x Ge x and In x Ga 1-x As alloys. The calculated thermal conductivities match well with the experimental data for all alloy concentrations. The model shows that the collective contribution must be taken into account at very low impurity concentrations. For higher concentrations, the collective contribution is suppressed, but normal collisions have the effect of significantly reducing the kinetic contribution. The study thus shows the importance of the proper inclusion of normal processes even for alloys for accurate modeling of thermal transport. Furthermore, the phonon spectral distribution of the thermal conductivity is studied in the framework of KCM, providing insights to interpret the superdiffusive regime introduced in the truncated Lévy flight framework.

  13. Summary report on UO 2 thermal conductivity model refinement and assessment studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to eachmore » individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel performance codes. The model is validated by comparison to low-temperature experimental measurements on single crystal hyper-stoichiometric UO 2+x samples and high-temperature literature data. Ongoing works include investigation of the effect of phase separation to UO 2+U 4O 9 on the low temperature thermal conductivity of UO 2+x, and modeling of thermal conductivity using the Green-Kubo method. Ultimately, this work will enable more accurate fuel performance simulations as well as extension to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  14. Thermal Conductivity of Metallic Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hin, Celine

    This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Bothmore » methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those used in the original fitting. Moreover, as fuels burn up in the reactor and fission products are built up, thermal conductivity is also significantly changed [3]. Unfortunately, fundamental understanding of the effect of fission products is also currently lacking. In this project, we probe thermal conductivity of metallic fuels with ab initio calculations, a theoretical tool with the potential to yield better accuracy and predictive power than empirical fitting. This work will both complement experimental data by determining thermal conductivity in wider composition and temperature ranges than is available experimentally, and also develop mechanistic understanding to guide better design of metallic fuels in the future. So far, we focused on α-U perfect crystal, the ground-state phase of U metal. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary and very helpful to understand the physics behind the thermal conductivity in metallic uranium and other materials with similar characteristics. In Section I, the combined model developed at UWM is explained. In Section II, the ab-initio method developed at VT is described along with the uranium pseudo-potential and its validation. Section III is devoted to the work done by Jianguo Yu at INL. Finally, we will present the performance of the project in terms of milestones, publications, and presentations.« less

  15. A thermal conductivity model for U-­Si compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Andersson, Anders David Ragnar

    U 3Si 2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO 2 in commercial light water reactors (LWRs). One of its main benefits compared to UO 2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO 2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U 3Si 2, as compared to the phonon mechanism responsible for thermal transport in UO 2. The phonon thermal conductivity in UO 2 is unusually low for a fluorite oxidemore » due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U 3Si 2 as well as other U-­Si compounds has been measured experimentally [1-­4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO 2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U 3Si 2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO 2 (semi-conductor) and U 3Si 2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-­Si compounds with the goal of capturing the effect of damage in U 3Si 2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.« less

  16. Extracting concrete thermal characteristics from temperature time history of RC column exposed to standard fire.

    PubMed

    Kim, Jung J; Youm, Kwang-Soo; Reda Taha, Mahmoud M

    2014-01-01

    A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.

  17. Extracting Concrete Thermal Characteristics from Temperature Time History of RC Column Exposed to Standard Fire

    PubMed Central

    2014-01-01

    A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment. PMID:25180197

  18. Influence of Water Saturation on Thermal Conductivity in Sandstones

    NASA Astrophysics Data System (ADS)

    Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.

    2009-04-01

    Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.

  19. Dependence of Thermal Conductivity on Water Saturation of Sandstones

    NASA Astrophysics Data System (ADS)

    Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.

    2008-12-01

    Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.

  20. Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.

    2012-01-01

    A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.

  1. Computer Modeling of the Thermal Conductivity of Cometary Ice

    NASA Technical Reports Server (NTRS)

    Bunch, Theodore E.; Wilson, Michael A.; Pohorille, Andrew

    1998-01-01

    The main objective of this research was to estimate the thermal conductivity of cometry ices from computer simulations of model amorphous ices. This was divided into four specific tasks: (1) Generating samples of amorphous water ices at different microporosities; (2) Comparing the resulting molecular structures of the ices with experimental results, for those densities where data was available; (3) Calculating the thermal conductivities of liquid water and bulk amorphous ices and comparing these results with experimentally determined thermal conductivities; and (4) Investigating how the thermal conductivity of amorphous ice depends upon the microscopic porosity of the samples. The thermal conductivity was found to be only weakly dependent on the microstructure of the amorphous ice. In general, the amorphous ices were found to have thermal conductivities of the same order of magnitude as liquid water. This is in contradiction to recent experimental estimates of the thermal conductivity of amorphous ice, and it is suggested that the extremely low value obtained experimentally is due to larger-scale defects in the ice, such as cracks, but it is not an intrinsic property of the bulk amorphous ice.

  2. A Gas-Surface Interaction Model based on Accelerated Reactive Molecular Dynamics for Hypersonic Conditions including Thermal Conduction

    DTIC Science & Technology

    2012-02-28

    Interaction Model based on Accelerated Reactive Molecular Dynamics for Hypersonic conditions including Thermal Conduction FA9550-09-1-0157 Schwartzentruber...Dynamics for Hypersonic Conditions including Thermal Conduction Grant/Contract Number: FA9550-09-1-0157 Program Manager: Dr. John Schmisseur PI...through the boundary layer and may chemically react with the vehicle’s thermal protection system (TPS). Many TPS materials act as a catalyst for the

  3. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun

    2018-01-01

    Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.

  4. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  5. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    DOE PAGES

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; ...

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less

  6. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  7. Tailoring thermal conductivity via three-dimensional porous alumina

    PubMed Central

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-01-01

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930

  8. Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, G. P.; Mangal, Ravindra; Bhojak, N.

    2010-06-29

    Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less

  9. Numerical modeling of the divided bar measurements

    NASA Astrophysics Data System (ADS)

    LEE, Y.; Keehm, Y.

    2011-12-01

    The divided-bar technique has been used to measure thermal conductivity of rocks and fragments in heat flow studies. Though widely used, divided-bar measurements can have errors, which are not systematically quantified yet. We used an FEM and performed a series of numerical studies to evaluate various errors in divided-bar measurements and to suggest more reliable measurement techniques. A divided-bar measurement should be corrected against lateral heat loss on the sides of rock samples, and the thermal resistance at the contacts between the rock sample and the bar. We first investigated how the amount of these corrections would change by the thickness and thermal conductivity of rock samples through numerical modeling. When we fixed the sample thickness as 10 mm and varied thermal conductivity, errors in the measured thermal conductivity ranges from 2.02% for 1.0 W/m/K to 7.95% for 4.0 W/m/K. While we fixed thermal conductivity as 1.38 W/m/K and varied the sample thickness, we found that the error ranges from 2.03% for the 30 mm-thick sample to 11.43% for the 5 mm-thick sample. After corrections, a variety of error analyses for divided-bar measurements were conducted numerically. Thermal conductivity of two thin standard disks (2 mm in thickness) located at the top and the bottom of the rock sample slightly affects the accuracy of thermal conductivity measurements. When the thermal conductivity of a sample is 3.0 W/m/K and that of two standard disks is 0.2 W/m/K, the relative error in measured thermal conductivity is very small (~0.01%). However, the relative error would reach up to -2.29% for the same sample when thermal conductivity of two disks is 0.5 W/m/K. The accuracy of thermal conductivity measurements strongly depends on thermal conductivity and the thickness of thermal compound that is applied to reduce thermal resistance at contacts between the rock sample and the bar. When the thickness of thermal compound (0.29 W/m/K) is 0.03 mm, we found that the relative error in measured thermal conductivity is 4.01%, while the relative error can be very significant (~12.2%) if the thickness increases to 0.1 mm. Then, we fixed the thickness (0.03 mm) and varied thermal conductivity of the thermal compound. We found that the relative error with an 1.0 W/m/K compound is 1.28%, and the relative error with a 0.29 W/m/K is 4.06%. When we repeated this test with a different thickness of the thermal compound (0.1 mm), the relative error with an 1.0 W/m/K compound is 3.93%, and that with a 0.29 W/m/K is 12.2%. In addition, the cell technique by Sass et al.(1971), which is widely used to measure thermal conductivity of rock fragments, was evaluated using the FEM modeling. A total of 483 isotropic and homogeneous spherical rock fragments in the sample holder were used to test numerically the accuracy of the cell technique. The result shows the relative error of -9.61% for rock fragments with the thermal conductivity of 2.5 W/m/K. In conclusion, we report quantified errors in the divided-bar and the cell technique for thermal conductivity measurements for rocks and fragments. We found that the FEM modeling can accurately mimic these measurement techniques and can help us to estimate measurement errors quantitatively.

  10. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    PubMed

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.

  11. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    PubMed Central

    Lv, Wei; Henry, Asegun

    2016-01-01

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials. PMID:27767082

  12. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.

  13. Measurements of mineral thermal conductivity at high pressures and temperatures with the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rainey, E.; Kavner, A.

    2016-12-01

    The high-pressure, high-temperature thermal conductivities of lower mantle oxides and silicates play an important role in governing the heat flow across the core-mantle boundary, and the thermal conductivity of core materials determines, at first order, the power required to run the geodynamo. Uncertainties in the pressure-dependence and compositional-dependence of thermal conductivities has complicated our understanding of the heat flow in the deep earth and has implications for the geodynamo mechanism (Buffett, 2012). The goal of this study is to measure how thermal conductivity varies with pressure and composition using a technique that combines temperature measurements as a function of power input in the laser-heated diamond anvil cell (LHDAC) with a model of three-dimensional heat flow (Rainey & Kavner, 2014). In one set of experiments, we measured temperature versus laser-power for iron, iron silicide, and stainless steel (Fe:Cr:Ni = 70:19:11 wt%), using a variety of insulating layers. In another set of experiments, we measured temperature vs. laser power for a series of Fe-bearing periclase (Mg1-x,FexO) samples, with compositions ranging from x = .24 to x = .78. These experiments were conducted up to pressures of 25 GPa and temperatures of 2800 K. A numerical model for heat conduction in the LHDAC is used to forward model the temperature versus laser power curves at successive pressures, solving for the change in thermal conductivity of the material required to best reproduce the measurements. The heat flow model is implemented using a finite element full-approximation storage (FAS) multi-grid solver, which allows for efficient computation with flexible inputs for geometry and material properties in the diamond anvil cell (Rainey et al., 2013). We use the results of our experiments and model to extract pressure and compositional dependencies of thermal conductivity for the materials described herein. The results are used to help constrain models of the thermal properties of core and mantle materials.

  14. Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.

    PubMed

    Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V

    2017-05-01

    This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. The spiral field inhibition of thermal conduction in two-fluid solar wind models

    NASA Technical Reports Server (NTRS)

    Nerney, S.; Barnes, A.

    1978-01-01

    The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.

  16. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  17. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method

    NASA Astrophysics Data System (ADS)

    Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank

    2018-02-01

    Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical model is developed to predict the ETC of sand and modified high thermal backfill material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from model simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical models for thermal conductivity prediction sand and the modified backfill material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.

  18. Measurements of thermal conductivity and the coefficient of thermal expansion for polysilicon thin films by using double-clamped beams

    NASA Astrophysics Data System (ADS)

    Liu, Haiyun; Wang, Lei

    2018-01-01

    In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96  ±  0.92) W · m · K-1 and (2.65  ±  0.03)  ×  10-6 K-1, respectively, with temperature ranging from 300-400 K.

  19. Thermal history of Bakken shale in Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J.

    1989-12-01

    Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships includemore » factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.« less

  20. Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System

    NASA Technical Reports Server (NTRS)

    Moskito, John

    1996-01-01

    This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.

  1. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  2. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam

    NASA Technical Reports Server (NTRS)

    Sullins, Alan D.; Daryabeigi, Kamran

    2001-01-01

    The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.

  3. On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2010-01-01

    A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.

  4. Thermal modeling with solid/liquid phase change of the thermal energy storage experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    1991-01-01

    A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.

  5. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network.

    PubMed

    Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.

  6. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network

    PubMed Central

    Ghaderi, Forouzan; Ghaderi, Amir H.; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose. PMID:29188217

  7. Thermal characterization of three-dimensional printed components for light-emitting diode lighting system applications

    NASA Astrophysics Data System (ADS)

    Perera, Indika U.; Narendran, Nadarajah; Terentyeva, Valeria

    2018-04-01

    This study investigated the thermal properties of three-dimensional (3-D) printed components with the potential to be used for thermal management in light-emitting diode (LED) applications. Commercially available filament materials with and without a metal filler were characterized with changes to the print orientation. 3-D printed components with an in-plane orientation had >30 % better effective thermal conductivity compared with components printed with a cross-plane orientation. A finite-element analysis was modeled to understand the effective thermal conductivity changes in the 3-D printed components. A simple thermal resistance model was used to estimate the required effective thermal conductivity of the 3-D printed components to be a viable alternative in LED thermal management applications.

  8. Interface-based two-way tuning of the in-plane thermal transport in nanofilms

    NASA Astrophysics Data System (ADS)

    Hua, Yu-Chao; Cao, Bing-Yang

    2018-03-01

    Here, the two-way tuning of in-plane thermal transport is obtained in the bi-layer nanofilms with an interfacial effect by using the Boltzmann transport equation (BTE) and the phonon Monte Carlo (MC) technique. A thermal conductivity model was derived from the BTE and verified by the MC simulations. Both the model and the MC simulations indicate that the tuning of the thermal transport can be bidirectional (reduced or enhanced), depending on the interface conditions (i.e., roughness and adhesion energy) and the phonon property dissimilarity at the interface. For the identical-material interface, the emergence of thermal conductivity variation requires two conditions: (a) the interface is not completely specular and (b) the transmission specularity parameter differs from the reflection specularity parameter at the interface. When the transmission specularity parameter is larger than the reflection specularity parameter at the interface, the thermal conductivity improvement effect emerges, whereas the thermal conductivity reduction effect occurs. For the disparate-material interface, the phonon property perturbation near the interface causes the thermal conductivity variation, even when neither the above two conditions are satisfied. The mean free path ratio (γ) between the disparate materials was defined to characterize the phonon property dissimilarity. γ > 1 can lead to the thermal conductivity improvement effect, while γ < 1 corresponds to the thermal conductivity reduction effect. Our work provides a more in-depth understanding of the interfacial effect on the nanoscale thermal transport, with an applicable predictive model, which can be helpful for predicting and manipulating phonon transport in nanofilms.

  9. Experimental and modeling study of forest fire effect on soil thermal conductivity

    Treesearch

    Kathleen M. Smits; Elizabeth Kirby; William J. Massman; Scott Baggett

    2016-01-01

    An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited....

  10. Developing a New Thermophysical Model for Lunar Regolith Soil at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Woods-Robinson, R.; Siegler, M. A.; Paige, D. A.

    2016-12-01

    The thermophysical properties of the lunar regolith soil have been thoroughly investigated within the temperature range of 100 - 400 K. Extensive laboratory measurements of temperature-dependent thermal conductivity and specific heat have been performed on lunar samples collected from the Apollo and Luna missions. However, recent thermal emission measurements from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment have revealed temperatures near the poles as low 20 K, far below where existing thermophysical models begin to break down. In the absence of comprehensive laboratory measurements of lunar soil thermal properties at these low temperatures (20 - 100 K), we investigate solid state theory and lunar simulant materials to derive a physically-based theoretical model of specific heat and thermal conductivity in lunar soils in the full range 20 - 400 K. The primary distinctions between this model and its predecessors are: The focus on soil bulk density as a master variable The temperature dependence of the solid conduction component of thermal conductivity at low temperatures, and The concept that the composition and modal petrology of grains - both amorphous and crystalline components - could significantly influence thermal properties of the bulk soil. The simplest version of this model, which assumes that the soil behaves predominantly as a homogeneous particulate material composed of amorphous grains, shows that at low temperatures (20 - 100 K), specific heat is likely higher than expected from current models ( 0.027 J/gK at 20 K) and that thermal conductivity is almost an order of magnitude lower than has generally been assumed in the literature.Any higher-order approximation is difficult at this stage; the thermal conductivity at low temperature could vary drastically depending on the constituent grain materials, their degree of crystallinity, and contributions from phonon scattering modes, among other factors. We use a one-dimensional thermal model to illustrate the effects of our model on diurnal surface temperature variations in permanently shadowed regions on the moon. We aim to lay the theoretical foundation for a new approach to model thermal properties of regolith materials, and to justify the importance of new laboratory measurements of lunar soil below 100 K.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Urquhart, Alexander

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature upmore » to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.« less

  12. Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1996-01-01

    Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction model. A methodology was presented for the estimation of the thermal conductivities of the individual HTS thermal bridge materials and the effective thermal conductivities of the composite HTS thermal bridges as functions of temperature. This methodology included a sensitivity analysis and the demonstration of the estimation procedure using simulated data with added random errors. The thermal conductivities could not be estimated as functions of temperature; thus the effective thermal conductivities of the HTS thermal bridges were analyzed as constants.

  13. Thermal conductivity of disperse insulation materials and their mixtures

    NASA Astrophysics Data System (ADS)

    Geža, V.; Jakovičs, A.; Gendelis, S.; Usiļonoks, I.; Timofejevs, J.

    2017-10-01

    Development of new, more efficient thermal insulation materials is a key to reduction of heat losses and contribution to greenhouse gas emissions. Two innovative materials developed at Thermeko LLC are Izoprok and Izopearl. This research is devoted to experimental study of thermal insulation properties of both materials as well as their mixture. Results show that mixture of 40% Izoprok and 60% of Izopearl has lower thermal conductivity than pure materials. In this work, material thermal conductivity dependence temperature is also measured. Novel modelling approach is used to model spatial distribution of disperse insulation material. Computational fluid dynamics approach is also used to estimate role of different heat transfer phenomena in such porous mixture. Modelling results show that thermal convection plays small role in heat transfer despite large fraction of air within material pores.

  14. The thermal conductivity of mixed fuel U xPu 1-xO 2: molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Stanek, Christopher Richard

    2015-10-16

    Mixed oxides (MOX), in the context of nuclear fuels, are a mixture of the oxides of heavy actinide elements such as uranium, plutonium and thorium. The interest in the UO 2-PuO 2 system arises from the fact that these oxides are used both in fast breeder reactors (FBRs) as well as in pressurized water reactors (PWRs). The thermal conductivity of UO 2 fuel is an important material property that affects fuel performance since it is the key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. Formore » this reason it is important to understand the thermal conductivity of MOX fuel and how it differs from UO 2. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of mixing on the thermal conductivity of U xPu 1-xO 2, as a function of PuO 2 concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel.« less

  15. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  16. Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    NASA Astrophysics Data System (ADS)

    Chávez-Ángel, E.; Zarate, R. A.; Gomis-Bresco, J.; Alzina, F.; Sotomayor Torres, C. M.

    2014-12-01

    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons’ lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator.

  17. Thermal conductivity of high purity synthetic single crystal diamonds

    NASA Astrophysics Data System (ADS)

    Inyushkin, A. V.; Taldenkov, A. N.; Ralchenko, V. G.; Bolshakov, A. P.; Koliadin, A. V.; Katrusha, A. N.

    2018-04-01

    Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies κ (T ) and high values of thermal conductivity, up to 24 W cm-1K-1 at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 W cm-1K-1 , the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental κ (T ) data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity (>24 W cm-1K-1 ) for the defect-free diamond with the natural isotopic abundance at room temperature.

  18. A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Z. M.; Wang, B.

    2018-06-01

    Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.

  19. A Study on Phase Changes of Heterogeneous Composite Materials

    NASA Astrophysics Data System (ADS)

    Hirasawa, Yoshio; Saito, Akio; Takegoshi, Eisyun

    In this study, a phase change process in heterogeneous composite materials which consist of water and coiled copper wires as conductive solid is investigated by four kinds of typical calculation models : 1) model-1 in which the effective thermal conductivity of the composite material is used, 2) model-2 in which a fin metal acts for many conductive solids, 3) model-3 in which the effective thermal conductivities between nodes are estimated and three-dimensional calculation is performed, 4) model-4 proposed by authors in the previous paper in which effective thermal conductivity is not needed. Consequently, model-1 showed the phase change rate considerably lower than the experimental results. Model-2 gave the larger amount of the phase change rate. Model-3 agreed well with the experiment in the case of small coil diameter and relatively large Vd. Model-4 showed a very well agreement with the experiment in the range of this study.

  20. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Langrand, C.; Hilairet, N.; Konopkova, Z.; Andrault, D.

    2016-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  1. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Sawchuk, K. L. S.; Kavner, A.

    2017-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  2. Porosity influence of power generating equipment structural materials on its thermoelastic characteristics and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2017-11-01

    This paper outlines simulation models that represent the quantitative interdependencies between the thermal conductivity and the thermoelastic properties of composites, on the one hand, and their porous structure and matrix properties, as well as the volume fraction of their reinforcing inclusions, on the other hand. As the reinforcing inclusions, randomly-oriented anisotropic single-wall carbon nanotubes (SWNT) are taken. The key means for constructing the simulation models are the self-matching method and the dual variational formulation of the thermal conductivity/thermoelasticity problem for a non-homogeneous solid body. With the simulation models presented below, it is possible to estimate the effect the nanocomposite porosity has on the thermoelastic properties and thermal conductivity of nanocomposites.

  3. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Tao; Kang, Wei; Wang, Jianxiang, E-mail: jxwang@pku.edu.cn

    2015-01-21

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence ofmore » the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.« less

  4. On the Effective Thermal Conductivity of Porous Packed Beds with Uniform Spherical Particles

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2010-01-01

    Point contact models for the effective thermal conductivity of porous media with uniform spherical inclusions have been briefly reviewed. The model of Zehner and Schlunder (1970) has been further validated with recent experimental data over a broad range of conductivity ratio from 8 to 1200 and over a range of solids fraction up to about 0.8. The comparisons further confirm the validity of Zehner-Schlunder model, known to be applicable for conductivity ratios less than about 2000, above which area contact between the particles becomes significant. This validation of the Zehner-Schlunder model has implications for its use in the prediction of the effective thermal conductivity of water frost (with conductivity ratio around 100) which arises in many important areas of technology.

  5. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  6. Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xingye; Hu, Bin; Wei, Changdong

    Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into accountmore » of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.« less

  7. Thermal Analysis of Filler Reinforced Polymeric Composites

    NASA Astrophysics Data System (ADS)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is compared with that predicted by mean field theories. At low volume fractions the FEM and mean field theory results are matching. However, at high volume fractions, the results obtained by the two methods are not in agreement. This is due to the fact that mean field theory do not consider the particle interactions happening at higher volume fractions. The present analysis can be used to tailor the thermal properties of ESBR for required thermal conductivity for a wide range of applications such as racing tires, electronic gadgets or aeronautical components. In addition, the proposed FEM models can be used to design and optimize the properties of new composite materials providing more insight into the thermal conductivity of composite polymers and aid in understanding heat transfer mechanism of reinforced polymers.

  8. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    DOE PAGES

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; ...

    2017-11-21

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSEmore » of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.« less

  9. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

    NASA Astrophysics Data System (ADS)

    Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.

    2017-12-01

    In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

  10. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSEmore » of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.« less

  11. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    PubMed

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Temperature dependency of the thermal conductivity of porous heat storage media

    NASA Astrophysics Data System (ADS)

    Hailemariam, Henok; Wuttke, Frank

    2018-04-01

    Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named - Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.

  13. Thermal conductivity behavior of boron carbides

    NASA Technical Reports Server (NTRS)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  14. Modeling of molecular diffusion and thermal conduction with multi-particle interaction in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Tai, Y.; Watanabe, T.; Nagata, K.

    2018-03-01

    A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.

  15. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    PubMed

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  16. Effect of stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites

    NASA Astrophysics Data System (ADS)

    Papanicolaou, G. C.; Pappa, E. J.; Portan, D. V.; Kotrotsos, A.; Kollia, E.

    2018-02-01

    The aim of the present investigation was to study the effect of both the stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites. Four types of multilayered hybrid nanocomposites were manufactured and tested: Nitinol- CNTs (carbon nanotubes)- Acrylic resin; Nitinol- Acrylic resin- CNTs; Surface treated Nitinol- CNTs- Acrylic resin and Surface treated Nitinol- Acrylic resin- CNTs. Surface treatment of Nitinol plies was realized by means of the electrochemical anodization. Surface topography of the anodized nitinol sheets was investigated through Scanning Electron Microscopy (SEM). It was found that the overall thermal response of the manufactured multilayered nano-composites was greatly influenced by both the anodization and the stacking sequence. A theoretical model for the prediction of the overall thermal conductivity has been developed considering the nature of the different layers, their stacking sequence as well as the interfacial thermal resistance. Thermal conductivity and Differential Scanning Calorimetry (DSC) measurements were conducted, to verify the predicted by the model overall thermal conductivities. In all cases, a good agreement between theoretical predictions and experimental results was found.

  17. Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2006-01-01

    The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite.

  18. Physical and thermal properties of mud-dominant sediment from the Joetsu Basin in the eastern margin of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo

    2017-12-01

    Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.

  19. Heat transfer and thermal management studies of lithium polymer batteries for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Song, Li

    The thermal conductivities of the polymer electrolyte and composite cathode are important parameters characterizing heat transport in lithium polymer batteries. The thermal conductivities of lithium polymer electrolytes, including poly-ethylene oxide (PEO), PEO-LiClO4, PEO-LiCF3SO 3, PEO-LiN(CF3SO2)2, PEO-LiC(CF 3SO2)3, and the thermal conductivities of TiS 2 and V6O13 composite cathodes, were measured over the temperature range from 25°C to 150°C by a guarded heat flow meter. The thermal conductivities of the electrolytes were found to be relatively constant for the temperature and for electrolytes with various concentrations of the lithium salt. The thermal conductivities of the composite cathodes were found to increase with the temperature below the melting temperature of the polymer electrolyte and only slightly increase above the melting temperature. Three different lithium polymer cells, including Li/PEO-LiCF3 S O3/TiS2, Li/PEO-LiC(CF3 S O2)3/V6 O13, and Li/PEO-LiN(CF3 S O2)2/ Li1+x Mn2 O4 were prepared and their discharge curves, along with heat generation rates, were measured at various galvanostatic discharge current densities, and at different temperature (70°C, 80°C and 90°C), by a potentiostat/galvanostat and an isothermal microcalorimeter. The thermal stability of a lithium polymer battery was examined by a linear perturbation analysis. In contrast to the thermal conductivity, the ionic conductivity of polymer electrolytes for lithium-polymer cell increases greatly with increasing temperature, an instability could arise from this temperature dependence. The numerical calculations, using a two dimensional thermal model, were carried out for constant potential drop across the electrolyte, for constant mean current density and for constant mean cell output power. The numerical calculations were approximately in agreement with the linear perturbation analysis. A coupled mathematical model, including electrochemical and thermal components, was developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.

  20. Review of Recent Developments on Using an Off-Lattice Monte Carlo Approach to Predict the Effective Thermal Conductivity of Composite Systems with Complex Structures

    PubMed Central

    Gong, Feng; Duong, Hai M.; Papavassiliou, Dimitrios V.

    2016-01-01

    Here, we present a review of recent developments for an off-lattice Monte Carlo approach used to investigate the thermal transport properties of multiphase composites with complex structure. The thermal energy was quantified by a large number of randomly moving thermal walkers. Different modes of heat conduction were modeled in appropriate ways. The diffusive heat conduction in the polymer matrix was modeled with random Brownian motion of thermal walkers within the polymer, and the ballistic heat transfer within the carbon nanotubes (CNTs) was modeled by assigning infinite speed of thermal walkers in the CNTs. Three case studies were conducted to validate the developed approach, including three-phase single-walled CNTs/tungsten disulfide (WS2)/(poly(ether ether ketone) (PEEK) composites, single-walled CNT/WS2/PEEK composites with the CNTs clustered in bundles, and complex graphene/poly(methyl methacrylate) (PMMA) composites. In all cases, resistance to heat transfer due to nanoscale phenomena was also modeled. By quantitatively studying the influencing factors on the thermal transport properties of the multiphase composites, it was found that the orientation, aggregation and morphology of fillers, as well as the interfacial thermal resistance at filler-matrix interfaces would limit the transfer of heat in the composites. These quantitative findings may be applied in the design and synthesis of multiphase composites with specific thermal transport properties. PMID:28335270

  1. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  2. Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from -75°C to 300°C

    DOE PAGES

    Urquhart, Alexander; Bauer, Stephen

    2015-05-19

    The thermal properties of halite have broad practical importance, from design and long-term modeling of nuclear waste repositories to analysis and performance assessment of underground natural gas, petroleum and air storage facilities. Using a computer-controlled transient plane source method, single-crystal halite thermal conductivity, thermal diffusivity and specific heat were measured from -75°C to 300°C. These measurements reproduce historical high-temperature experiments and extend the lower temperature extreme into cryogenic conditions. Measurements were taken in 25-degree increments from -75°C to 300°C. Over this temperature range, thermal conductivity decreases by a factor of 3.7, from 9.975 to 2.699 W/mK , and thermal diffusivitymore » decreases by a factor of 3.6, from 5.032 to 1.396 mm²/s. Specific heat does not appear to be temperature dependent, remaining near 2.0 MJ/m³K at all temperatures. This work is intended to develop and expand the existing dataset of halite thermal properties, which are of particular value in defining the parameters of salt storage thermophysical models. The work was motivated by a need for thermal conductivity values in a mixture theory model used to determine bulk thermal conductivity of reconsolidating crushed salt.« less

  3. Thermal modelling of high-power laser diodes mounted using various types of submounts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A

    2014-10-31

    Using three-dimensional thermal modelling of a highpower 980-nm laser diode with a stripe contact width of 100 μm as an example, we analyse the thermal parameters of high-power laser diodes mounted using submounts. We consider a range of thermal conductivities of submounts that includes parameters of widely used thermal compensators based on AlN, BeO and SiC, as well as on CuW and CuMo composites and polycrystalline and single-crystal synthetic diamond with high thermal conductivity. Taking into account experimental overall efficiency vs. pump current data, we calculate the temperature of the active layer as a function of the width, thickness andmore » thermal conductivity of the submount at thermal loads corresponding to cw output powers of 10, 15 and 20 W. (lasers)« less

  4. Comparison of thermal signatures of a mine buried in mineral and organic soils

    NASA Astrophysics Data System (ADS)

    Lamorski, K.; Pregowski, Piotr; Swiderski, Waldemar; Usowicz, B.; Walczak, R. T.

    2001-10-01

    Values of thermal signature of a mine buried in soils, which ave different properties, were compared using mathematical- statistical modeling. There was applied a model of transport phenomena in the soil, which takes into consideration water and energy transfer. The energy transport is described using Fourier's equation. Liquid phase transport of water is calculated using Richard's model of water flow in porous medium. For the comparison, there were selected two soils: mineral and organic, which differs significantly in thermal and hydrological properties. The heat capacity of soil was estimated using de Vries model. The thermal conductivity was calculated using a statistical model, which incorprates fundamental soil physical properties. The model of soil thermal conductivity was built on the base of heat resistance, two Kirchhoff's laws and polynomial distribution. Soil hydrological properties were described using Mualem-van Genuchten model. The impact of thermal properties of the medium in which a mien had been placed on its thermal signature in the conditions of heat input was presented. The dependence was stated between observed thermal signature of a mine and thermal parameters of the medium.

  5. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    NASA Astrophysics Data System (ADS)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  6. Specific heat and thermal conductivity of nanomaterials

    NASA Astrophysics Data System (ADS)

    Bhatt, Sandhya; Kumar, Raghuvesh; Kumar, Munish

    2017-01-01

    A model is proposed to study the size and shape effects on specific heat and thermal conductivity of nanomaterials. The formulation developed for specific heat is based on the basic concept of cohesive energy and melting temperature. The specific heat of Ag and Au nanoparticles is reported and the effect of size and shape has been studied. We observed that specific heat increases with the reduction of particle size having maximum shape effect for spherical nanoparticle. To provide a more critical test, we extended our model to study the thermal conductivity and used it for the study of Si, diamond, Cu, Ni, Ar, ZrO2, BaTiO3 and SrTiO3 nanomaterials. A significant reduction is found in the thermal conductivity for nanomaterials by decreasing the size. The model predictions are consistent with the available experimental and simulation results. This demonstrates the suitability of the model proposed in this paper.

  7. Reduced Lattice Thermal Conductivity of Fe-bearing Bridgmanite in Earth's Deep Mantle

    NASA Astrophysics Data System (ADS)

    Hsieh, W. P.; Deschamps, F.; Okuchi, T.; Lin, J. F.

    2017-12-01

    Complex seismic and thermo-chemical features have been revealed in Earth's lowermost mantle. Particularly, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, which, in turn, may alter the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion in bridgmanite could affect its lattice thermal conductivity, but this effect remains largely unknown. Here we report our measurements of the lattice thermal conductivity of Fe-bearing and (Fe,Al)-bearing bridgmanites to 120 GPa using optical pump-probe spectroscopy. The thermal conductivity of Fe-bearing bridgmanite increases monotonically with pressure, but drops significantly around 45 GPa presumably due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000-km depth. Modeling of our results applied to the LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that, while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.

  8. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle: Reduced Conductivity of Fe-Bridgmanite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo

    Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermalmore » conductivity of Fe-bearing bridgmanite to 120 GPa using optical pump-probe spectroscopy. The conductivity of Fe-bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.« less

  9. Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement

    NASA Astrophysics Data System (ADS)

    Pramuanjaroenkij, A.; Tongkratoke, A.; Kakaç, S.

    2018-01-01

    Researchers have paid attention to nanofluid applications, since nanofluids have revealed their potentials as working fluids in many thermal systems. Numerical studies of convective heat transfer in nanofluids can be based on considering them as single- and two-phase fluids. This work is focused on improving the single-phase nanofluid model performance, since the employment of this model requires less calculation time and it is less complicated due to utilizing the mixing thermal conductivity model, which combines static and dynamic parts used in the simulation domain alternately. The in-house numerical program has been developed to analyze the effects of the grid nodes, effective viscosity model, boundary-layer thickness, and of the mixing thermal conductivity model on the nanofluid heat transfer enhancement. CuO-water, Al2O3-water, and Cu-water nanofluids are chosen, and their laminar fully developed flows through a rectangular channel are considered. The influence of the effective viscosity model on the nanofluid heat transfer enhancement is estimated through the average differences between the numerical and experimental results for the nanofluids mentioned. The nanofluid heat transfer enhancement results show that the mixing thermal conductivity model consisting of the Maxwell model as the static part and the Yu and Choi model as the dynamic part, being applied to all three nanofluids, brings the numerical results closer to the experimental ones. The average differences between those results for CuO-water, Al2O3-water, and CuO-water nanofluid flows are 3.25, 2.74, and 3.02%, respectively. The mixing thermal conductivity model has been proved to increase the accuracy of the single-phase nanofluid simulation and to reveal its potentials in the single-phase nanofluid numerical studies.

  10. A model to predict thermal conductivity of irradiated U-Mo dispersion fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    2016-05-01

    Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.

  11. A model to predict thermal conductivity of irradiated U–Mo dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less

  12. Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride.

    PubMed

    Chen, Lin; Xu, Hong-Fei; He, Shao-Jian; Du, Yi-Hang; Yu, Nan-Jie; Du, Xiao-Ze; Lin, Jun; Nazarenko, Sergei

    2017-01-01

    Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher for those filled with both functionalized BN (f-BN) and maleic anhydride grafted PP (PP-g-ma) due to the improved filler dispersion and better interfacial filler-matrix compatibility, which facilitated the development of more thermal paths. Theoretical models were also applied to predict the composite thermal conductivity in which the Nielsen model was found to fit well with the experimental results, and the estimated effective aspect ratio of fillers well corresponded to the degree of filler aggregation as observed in the morphological study.

  13. Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride

    PubMed Central

    Xu, Hong-Fei; He, Shao-Jian; Du, Yi-Hang; Yu, Nan-Jie; Du, Xiao-Ze; Lin, Jun; Nazarenko, Sergei

    2017-01-01

    Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher for those filled with both functionalized BN (f-BN) and maleic anhydride grafted PP (PP-g-ma) due to the improved filler dispersion and better interfacial filler-matrix compatibility, which facilitated the development of more thermal paths. Theoretical models were also applied to predict the composite thermal conductivity in which the Nielsen model was found to fit well with the experimental results, and the estimated effective aspect ratio of fillers well corresponded to the degree of filler aggregation as observed in the morphological study. PMID:28107466

  14. A new approach to modeling the effective thermal conductivity of ceramics porous media using a generalized self-consistent method

    NASA Astrophysics Data System (ADS)

    Edrisi, Siroos; Bidhendi, Norollah Kasiri; Haghighi, Maryam

    2017-01-01

    Effective thermal conductivity of the porous media was modeled based on a self-consistent method. This model estimates the heat transfer between insulator surface and air cavities accurately. In this method, the pore size and shape, the temperature gradient and other thermodynamic properties of the fluid was taken into consideration. The results are validated by experimental data for fire bricks used in cracking furnaces at the olefin plant of Maroon petrochemical complexes well as data published for polyurethane foam (synthetic polymers) IPTM and IPM. The model predictions present a good agreement against experimental data with thermal conductivity deviating <1 %.

  15. MHD simulations of coronal dark downflows considering thermal conduction

    NASA Astrophysics Data System (ADS)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  16. A model for including thermal conduction in molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Wu, Yue; Friauf, Robert J.

    1989-01-01

    A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.

  17. Differential and directional effects of perfusion on electrical and thermal conductivities in liver.

    PubMed

    Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L

    2009-01-01

    Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.

  18. Thermal design of the hard x-ray imager and the soft gamma-ray detector onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Noda, Hirofumi; Nakazawa, Kazuhiro; Makishima, Kazuo; Iwata, Naoko; Ogawa, Hiroyuki; Ohta, Masayuki; Sato, Goro; Kawaharada, Madoka; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Ohno, Masanori; Fukazawa, Yasushi; Tajima, Hiroyasu; Uchiyama, Hideki; Ito, Shuji; Fukuzawa, Keita

    2014-07-01

    The Hard X-ray Imager and the Soft Gamma-ray Detector, onboard the 6th Japanese X-ray satellite ASTRO-H, aim at unprecedentedly-sensitive observations in the 5-80 keV and 40-600 keV bands, respectively. Because their main sensors are composed of a number of semi-conductor devices, which need to be operated in a temperature of -20 to -15°C, heat generated in the sensors must be efficiently transported outwards by thermal conduction. For this purpose, we performed thermal design, with the following three steps. First, we additionally included thermally-conductive parts, copper poles and graphite sheets. Second, constructing a thermal mathematical model of the sensors, we estimated temperature distributions in thermal equilibria. Since the model had rather large uncertainties in contact thermal conductions, an accurate thermal dummy was constructed as our final step. Vacuum measurement with the dummy successfully reduced the conductance uncertainties. With these steps, we confirmed that our thermal design of the main sensors satisfies the temperature requirement.

  19. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Ge, Yunfei; Zhang, Yuan; Weaver, Jonathan M. R.; Dobson, Phillip S.

    2017-12-01

    Scanning thermal microscopy (SThM) is a technique which is often used for the measurement of the thermal conductivity of materials at the nanometre scale. The impact of nano-scale feature size and shape on apparent thermal conductivity, as measured using SThM, has been investigated. To achieve this, our recently developed topography-free samples with 200 and 400 nm wide gold wires (50 nm thick) of length of 400-2500 nm were fabricated and their thermal resistance measured and analysed. This data was used in the development and validation of a rigorous but simple heat transfer model that describes a nanoscopic contact to an object with finite shape and size. This model, in combination with a recently proposed thermal resistance network, was then used to calculate the SThM probe signal obtained by measuring these features. These calculated values closely matched the experimental results obtained from the topography-free sample. By using the model to analyse the dimensional dependence of thermal resistance, we demonstrate that feature size and shape has a significant impact on measured thermal properties that can result in a misinterpretation of material thermal conductivity. In the case of a gold nanowire embedded within a silicon nitride matrix it is found that the apparent thermal conductivity of the wire appears to be depressed by a factor of twenty from the true value. These results clearly demonstrate the importance of knowing both probe-sample thermal interactions and feature dimensions as well as shape when using SThM to quantify material thermal properties. Finally, the new model is used to identify the heat flux sensitivity, as well as the effective contact size of the conventional SThM system used in this study.

  20. Thermal Diffusivity Measurement for Thermal Spray Coating Attached to Substrate Using Laser Flash Method

    NASA Astrophysics Data System (ADS)

    Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio

    2011-11-01

    Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.

  1. Study of the thermal properties of low k dielectric thin films

    NASA Astrophysics Data System (ADS)

    Hu, Chuan

    The integration of low k material is of great importance for the performance of an electronic device as the result of shrink in the device size. The thermal conductivity of low k materials is usually much lower than that of the traditionally used SiO2 and thus a tradeoff has to be properly evaluated. The thermal conduction in amorphous thin films is not only industrially important but also scientifically interesting. Many efforts have been done to understand the "phonon" propagation in an amorphous medium. Two experimental tools to study thermal properties are developed. The photothermal technique is an optical far field method and the 3o technique is an electrical near field method. The free standing and on-wafer photothermal techniques measure the out-of-plane thermal diffusivity directly and the 3o technique measures the out-of-plane thermal conductivity under our typical experimental configurations. The thermal diffusivities of a rigid rod like polyimide PI2611 and a flexible PI2545 are measured using the photothermal technique. The thermal anisotropy is studied by comparing our measurements with the result from in-plane measurements. The porosity dependence of thermal conductivity of Xerogel is studied by 3o technique. The fast drop in thermal conductivity is explained as the result of porosity and thermal contact in solid phase. A scaling rule of thermal conductivity as a function of porosity is proposed to the show the tradeoff between the thermal and the electrical properties. The possible impact of integrating low k materials in an interconnect structure is evaluated. The effective thermal conductivity of polymeric thin films as thin as 70 A is measured by 3o technique. The interfacial thermal resistances of Al/polymer/Si sandwich structure are found to be about 2 to 10 times larger than that of Al/SiO2/Si and the bulk thermal conductivities of polymers are found to be about 5 to 10 times smaller than that of SiO 2. The thermal conductivity of amorphous material is explained using the minimum thermal length model. The interfacial thermal resistance is explained using the acoustic and diffuse mismatch models as well as roughness and inelastic scattering at the interface.

  2. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness

    PubMed Central

    2014-01-01

    We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400 nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-ω) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300 K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51 W/m · K at 300 K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52 W/m · K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300 K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices. PMID:24571956

  3. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE PAGES

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James; ...

    2016-10-25

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  4. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  5. A one-dimensional model for gas-solid heat transfer in pneumatic conveying

    NASA Astrophysics Data System (ADS)

    Smajstrla, Kody Wayne

    A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.

  6. A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow

    ERIC Educational Resources Information Center

    Blanck, Harvey F.

    2005-01-01

    A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.

  7. Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis

    NASA Astrophysics Data System (ADS)

    Lorenzi, Bruno; Dettori, Riccardo; Dunham, Marc T.; Melis, Claudio; Tonini, Rita; Colombo, Luciano; Sood, Aditya; Goodson, Kenneth E.; Narducci, Dario

    2018-05-01

    Ideal thermoelectric materials should possess low thermal conductivity κ along with high electrical conductivity σ . Thus, strategies are needed to impede the propagation of phonons mostly responsible for thermal conduction while only marginally affecting charge carrier diffusion. Defect engineering may provide tools to fulfill this aim, provided that one can achieve an adequate understanding of the role played by multiple morphological defects in scattering thermal energy carriers. In this paper, we study how various morphological defects such as grain boundaries and dispersed nanovoids reduce the thermal conductivity of silicon. A blended approach has been adopted, using data from both simulations and experiments in order to cover a wide range of defect densities. We show that the co-presence of morphological defects with different characteristic scattering length scales is effective in reducing the thermal conductivity. We also point out that non-gray models (i.e. models with spectral resolution) are required to improve the accuracy of predictive models explaining the dependence of κ on the density of morphological defects. Finally, the application of spectral models to Matthiessen's rule is critically addressed with the aim of arriving at a compact model of phonon scattering in highly defective materials showing that non-local descriptors would be needed to account for lattice distortion due to nanometric voids.

  8. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less

  9. Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores

    NASA Astrophysics Data System (ADS)

    Prasher, Ravi

    2006-09-01

    Nanoporous and microporous materials made from aligned cylindrical pores play important roles in present technologies and will play even bigger roles in future technologies. The insight into the phonon thermal conductivity of these materials is important and relevant in many technologies and applications. Since the mean free path of phonons can be comparable to the pore size and interpore distance, diffusion-approximation based effective medium models cannot be used to predict the thermal conductivity of these materials. Strictly speaking, the Boltzmann transport equation (BTE) must be solved to capture the ballistic nature of thermal transport; however, solving BTE in such a complex network of pores is impractical. As an alternative, we propose an approximate ballistic-diffusive microscopic effective medium model for predicting the thermal conductivity of phonons in two-dimensional nanoporous and microporous materials made from aligned cylindrical pores. The model captures the size effects due to the pore diameter and the interpore distance and reduces to diffusion-approximation based models for macroporous materials. The results are in good agreement with experimental data.

  10. Thermal conductance at atomically clean and disordered silicon/aluminum interfaces: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Ih Choi, Woon; Kim, Kwiseon; Narumanchi, Sreekant

    2012-09-01

    Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This indicates that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5-nm disordered interface between Si/Al were in-line with recent experimental data in the literature.

  11. Thermal conductivity measurements of proton-heated warm dense aluminum

    DOE PAGES

    McKelvey, A.; Kemp, G. E.; Sterne, P. A.; ...

    2017-08-01

    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less

  12. Thermal conductivity measurements of proton-heated warm dense aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKelvey, A.; Kemp, G. E.; Sterne, P. A.

    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less

  13. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  14. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  15. Anomalous thermal conductivity of monolayer boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabarraei, Alireza, E-mail: atabarra@uncc.edu; Wang, Xiaonan

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate themore » mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.« less

  16. A modified thermal conductivity for low density plasma magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Craven, P. D.; Richards, P. G.

    1995-01-01

    In response to inconsistencies which have arisen in results from a hydrodynamic model in simulation of high ion temperature (1-2 eV) observed in low density, outer plasmasphere flux tubes, we postulate a reduced thermal conductivity coefficient in which only particles in the loss cone of the quasi-collisionless plasma contribute to the thermal conduction. Other particles are assumed to magnetically mirror before they reach the topside ionosphere and therefore not to remove thermal energy from the plasmasphere. This concept is used to formulate a mathematically simple, but physically limiting model for a modified thermal conductivity coefficient. When this modified coefficient is employed in the hydrodynamic model in a case study, the inconsistencies between simulation results and observations are largely resolved. The high simulated ion temperatures are achieved with significantly lower ion temperatures in the topside ionosphere. We suggest that this mechanism may be operative under the limited low density, refilling conditions in which high ion temperatures are observed.

  17. Data book for 12.5-inch diameter SRB thermal model water flotation test; 1.29 psia, series P022

    NASA Technical Reports Server (NTRS)

    Allums, S. L.

    1974-01-01

    Data acquired from tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation at a scaled pressure of 1.29 psia are presented. Included are acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB. Nineteen valid tests were conducted. These thermal tests indicated the following basic differences relative to the ambient temperature and pressure model tests: (1) more water was taken on board during penetration and (2) model flotation/sinking was temperature sensitive.

  18. Apollo telescope mount thermal systems unit thermal vacuum test

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  19. Computer Modeling of the Thermal Conductivity of Cometary Ice

    NASA Technical Reports Server (NTRS)

    Bunch, Theodore E.; Wilson, Michael A.; Pohorille, Andrew

    1998-01-01

    The thermal conductivity was found to be only weakly dependent on the microstructure of the amorphous ice. In general, the amorphous ices were found to have thermal conductivities of the same order of magnitude as liquid water. This is in contradiction to recent experimental estimates of the thermal conductivity of amorphous ice, and it is suggested that the extremely low value obtained experimentally is due to larger-scale defects in the ice, such as cracks, but is not an intrinsic property of the bulk amorphous ice.

  20. Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels

    NASA Astrophysics Data System (ADS)

    Webb, Jonathan A.; Charit, Indrajit

    2012-08-01

    The thermal conductivity of tungsten based CERMET fuels containing UO2 and UN fuel particles are determined as a function of particle geometry, stabilizer fraction and fuel-volume fraction, by using a combination of an analytical approach and experimental data collected from literature. Thermal conductivity is estimated using the Bruggeman-Fricke model. This study demonstrates that thermal conductivities of various CERMET fuels can be analytically predicted to values that are very close to the experimentally determined ones.

  1. Characterization of heat transfer in nutrient materials, part 2

    NASA Technical Reports Server (NTRS)

    Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.

    1973-01-01

    A thermal model is analyzed that takes into account phase changes in the nutrient material. The behavior of fluids in low gravity environments is discussed along with low gravity heat transfer. Thermal contact resistance in the Skylab food heater is analyzed. The original model is modified to include: equivalent conductance due to radiation, radial equivalent conductance, wall equivalent conductance, and equivalent heat capacity. A constant wall-temperature model is presented.

  2. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  3. Multiscale Pores in TBCs for Lower Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun

    2017-08-01

    The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.

  4. Transient thermal analysis of a titanium multiwall thermal protection system

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1982-01-01

    The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.

  5. Effect of primary and secondary parameters on analytical estimation of effective thermal conductivity of two phase materials using unit cell approach

    NASA Astrophysics Data System (ADS)

    S, Chidambara Raja; P, Karthikeyan; Kumaraswamidhas, L. A.; M, Ramu

    2018-05-01

    Most of the thermal design systems involve two phase materials and analysis of such systems requires detailed understanding of the thermal characteristics of the two phase material. This article aimed to develop geometry dependent unit cell approach model by considering the effects of all primary parameters (conductivity ratio and concentration) and secondary parameters (geometry, contact resistance, natural convection, Knudsen and radiation) for the estimation of effective thermal conductivity of two-phase materials. The analytical equations have been formulated based on isotherm approach for 2-D and 3-D spatially periodic medium. The developed models are validated with standard models and suited for all kind of operating conditions. The results have shown substantial improvement compared to the existing models and are in good agreement with the experimental data.

  6. Phonon thermal conductivity of monolayer MoS{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaonan; Tabarraei, Alireza, E-mail: atabarra@uncc.edu

    We use nonequilibrium molecular dynamics modeling using Stillinger–Weber interatomic potential to investigate the thermal properties of monolayer molybdenum disulfide (MoS{sub 2}) nanoribbons. We study the impact of factors such as length, edge chirality, monovacancies, and uniaxial stretching on the thermal conductivity of MoS{sub 2} nanoribbons. Our results show that longer ribbons have a higher thermal conductivity, and the thermal conductivity of infinitely long zigzag and armchair MoS{sub 2} nanoribbons is, respectively, 54 W/mK and 33 W/mK. This is significantly lower than the thermal conductivity of some other graphene-like two-dimensional materials such as graphene and boron nitride. While the presence of molybdenum ormore » sulfur vacancies reduces the thermal conductivity of ribbons, molybdenum vacancies have a more deteriorating effect on thermal conductivities. We also have studied the impact of uniaxial stretching on the thermal conductivity of MoS{sub 2} nanoribbons. The results show that in contrast to three dimensional materials, thermal conductivity of MoS{sub 2} is fairly insensitive to stretching. We have used the phonon dispersion curves and group velocities to investigate the mechanism of this unexpected behavior. Our results show that tensile strain does not alter the phonon dispersion curves and hence the thermal conductivity does not change.« less

  7. Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures

    NASA Astrophysics Data System (ADS)

    Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.

    2018-07-01

    Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.

  8. Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures

    NASA Astrophysics Data System (ADS)

    Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.

    2018-03-01

    Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.

  9. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties.

    PubMed

    Chen, Roland K; Shih, A J

    2013-08-21

    This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.

  10. Thermal modelling of normal distributed nanoparticles through thickness in an inorganic material matrix

    NASA Astrophysics Data System (ADS)

    Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.

    2017-10-01

    Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.

  11. Thermal conductivity of heterogeneous mixtures and lunar soils

    NASA Technical Reports Server (NTRS)

    Vachon, R. I.; Prakouras, A. G.; Crane, R.; Khader, M. S.

    1973-01-01

    The theoretical evaluation of the effective thermal conductivity of granular materials is discussed with emphasis upon the heat transport properties of lunar soil. The following types of models are compared: probabilistic, parallel isotherm, stochastic, lunar, and a model based on nonlinear heat flow system synthesis.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Francis

    The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less

  13. Overview of thermal conductivity models of anisotropic thermal insulation materials

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  14. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  15. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    NASA Astrophysics Data System (ADS)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  16. Thermal and thermoelectric transport in nanoscale systems

    NASA Astrophysics Data System (ADS)

    Murphy, Padraig Gerard

    This thesis deals with transport in molecular junctions and nanowires. We show that a molecular junction can give large values of the thermoelectric figure of merit ZT, and so could be used as a solid state energy conversion device that operates close to the Carnot efficiency. The mechanism is similar to the Mahan-Sofo model for bulk thermoelectrics---the Lorenz ratio goes to zero, violating the Wiedemann-Franz law, while the thermopower remains non-zero. The molecular state through which charge is transported must be weakly coupled to the leads, and the energy level of the state must be of order kBT away from the Fermi energy of the leads. In practice, the figure of merit is limited by the phonon thermal conductance; we show that the largest possible ZT-G˜ph th-1/2 , where G˜phth is the phonon thermal conductance divided by the thermal conductance quantum. The thermal conductance by phonons of a quasi-one-dimensional solid with isotope or defect scattering is studied using the Landauer formalism for thermal transport. A scalable numerical transfer-matrix technique is developed and applied to model quasi-one-dimensional systems in order to confirm simple analytic predictions. We argue that existing thermal conductivity data on semiconductor nanowires, showing an unexpected linear temperature dependence, can be understood through a model that combines incoherent surface scattering for short-wavelength phonons with nearly ballistic long-wavelength phonons.

  17. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.

    PubMed

    Khadem, Masoud H; Wemhoff, Aaron P

    2013-02-28

    Non-equilibrium molecular dynamics (NEMD) simulations are used to investigate the thermal conductivity of herringbone graphite nanofibers (GNFs) at room temperature by breaking down the axial and transverse conductivity values into intralayer and interlayer components. The optimized Tersoff potential is used to account for intralayer carbon-carbon interactions while the Lennard-Jones potential is used to model the interlayer carbon-carbon interactions. The intralayer thermal conductivity of the graphene layers near room temperature is calculated for different crease angles and number of layers using NEMD with a constant applied heat flux. The edge effect on a layer's thermal conductivity is investigated by computing the thermal conductivity values in both zigzag and armchair directions of the heat flow. The interlayer thermal conductivity is also predicted by imposing hot and cold Nosé-Hoover thermostats on two layers. The limiting case of a 90° crease angle is used to compare the results with those of single-layer graphene and few-layer graphene. The axial and transverse thermal conductivities are then calculated using standard trigonometric conversions of the calculated intralayer and interlayer thermal conductivities, along with calculations of few-layer graphene without a crease. The results show a large influence of the crease angle on the intralayer thermal conductivity, and the saturation of thermal conductivity occurs when number of layers is more than three. The axial thermal conductivity, transverse thermal conductivity in the crease direction, and transverse thermal conductivity normal to the crease for the case of a five-layer herringbone GNF with a 45° crease angle are calculated to be 27 W∕m K, 263 W∕m K, and 1500 W∕m K, respectively, where the axial thermal conductivity is in good agreement with experimental measurements.

  18. Thermal conductivity of supercooled water.

    PubMed

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  19. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    NASA Astrophysics Data System (ADS)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may need to be reassessed in light of lower `peak' global temperatures. We shall demonstrate the consequences of using properly calibrated thermal inertia maps for early Mars climate simulations, and propose simplified thermal inertia maps for use in such climate models.

  20. Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  1. Anisotropic Thermal Response of Packed Copper Wire

    DOE PAGES

    Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin; ...

    2017-04-19

    The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less

  2. In situ thermal conductivity of gas-hydrate-bearing sediments of the Mallik 5L-38 well

    NASA Astrophysics Data System (ADS)

    Henninges, J.; Huenges, E.; Burkhardt, H.

    2005-11-01

    Detailed knowledge about thermal properties of rocks containing gas hydrate is required in order to quantify processes involving gas hydrate formation and decomposition in nature. In the framework of the Mallik 2002 program, three wells penetrating a continental gas hydrate occurrence under permafrost were successfully equipped with permanent fiber-optic distributed temperature sensing cables. Temperature data were collected over a 21-month period after completing the wells. Thermal conductivity profiles were calculated from the geothermal data as well as from a petrophysical model derived from the available logging data and application of mixing law models. Results indicate that thermal conductivity variations are mainly lithologically controlled with a minor influence from hydrate saturation. Average thermal conductivity values of the hydrate-bearing sediments range between 2.35 and 2.77 W m-1 K-1. Maximum gas hydrate saturations can reach up to about 90% at an average porosity of 0.3.

  3. Mathematical modeling of moving boundary problems in thermal energy storage

    NASA Technical Reports Server (NTRS)

    Solomon, A. D.

    1980-01-01

    The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.

  4. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX2 (M = Mo, W and X = S, Se) using Time-Domain Thermoreflectance.

    PubMed

    Jiang, Puqing; Qian, Xin; Gu, Xiaokun; Yang, Ronggui

    2017-09-01

    Transition metal dichalcogenides (TMDs) are a group of layered 2D semiconductors that have shown many intriguing electrical and optical properties. However, the thermal transport properties in TMDs are not well understood due to the challenges in characterizing anisotropic thermal conductivity. Here, a variable-spot-size time-domain thermoreflectance approach is developed to simultaneously measure both the in-plane and the through-plane thermal conductivity of four kinds of layered TMDs (MoS 2 , WS 2 , MoSe 2 , and WSe 2 ) over a wide temperature range, 80-300 K. Interestingly, it is found that both the through-plane thermal conductivity and the Al/TMD interface conductance depend on the modulation frequency of the pump beam for all these four compounds. The frequency-dependent thermal properties are attributed to the nonequilibrium thermal resistance between the different groups of phonons in the substrate. A two-channel thermal model is used to analyze the nonequilibrium phonon transport and to derive the intrinsic thermal conductivity at the thermal equilibrium limit. The measurements of the thermal conductivities of bulk TMDs serve as an important benchmark for understanding the thermal conductivity of single- and few-layer TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro

    NASA Astrophysics Data System (ADS)

    Yue, Kai; Cheng, Liang; Yang, Lina; Jin, Bitao; Zhang, Xinxin

    2017-06-01

    The accurate determination of the thermal conductivity of biological tissues has implications on the success of cryosurgical/hyperthermia treatments. In light of the evident anisotropy in some biological tissues, a new modified stepwise transient method was proposed to simultaneously measure the transverse and longitudinal thermal conductivities of anisotropic biological tissues. The physical and mathematical models were established, and the analytical solution was derived. Sensitivity analysis and experimental simulation were performed to determine the feasibility and measurement accuracy of simultaneously measuring the transverse and longitudinal thermal conductivities. The experimental system was set up, and its measurement accuracy was verified by measuring the thermal conductivity of a reference standard material. The thermal conductivities of the pork tenderloin and bovine muscles were measured using the traditional 1D and proposed methods, respectively, at different temperatures. Results indicate that the thermal conductivities of the bovine muscle are lower than those of the pork tenderloin muscle, whereas the bovine muscle was determined to exhibit stronger anisotropy than the pork tenderloin muscle. Moreover, the longitudinal thermal conductivity is larger than the transverse thermal conductivity for the two tissues and all thermal conductivities increase with the increase in temperature. Compared with the traditional 1D method, results obtained by the proposed method are slightly higher although the relative deviation is below 5 %.

  6. Thermal conductance modeling and characterization of the SuperCDMS-SNOLAB sub-Kelvin cryogenic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhuley, R. C.; Hollister, M. I.; Ruschman, M. K.

    The detectors of the Super Cryogenic Dark Matter Search experiment at SNOLAB (SuperCDMS SNOLAB) will operate in a seven-layered cryostat with thermal stages between room temperature and the base temperature of 15 mK. The inner three layers of the cryostat, which are to be nominally maintained at 1 K, 250 mK, and 15 mK, will be cooled by a dilution refrigerator via conduction through long copper stems. Bolted and mechanically pressed contacts, at and cylindrical, as well as exible straps are the essential stem components that will facilitate assembly/dismantling of the cryostat. These will also allow for thermal contractions/movements duringmore » cooldown of the sub-Kelvin system. To ensure that these components and their contacts meet their design thermal conductance, prototypes were fabricated and cryogenically tested. The present paper gives an overview of the SuperCDMS SNOLAB sub-Kelvin architecture and its conductance requirements. Results from the conductance measurements tests and from sub-Kelvin thermal modeling are discussed.« less

  7. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas

    2009-04-01

    In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.

  8. A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils

    NASA Technical Reports Server (NTRS)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface

  9. A model of thermal conductivity for planetary soils: 2. Theory for cemented soils

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2009-09-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s-0.5 m-2 K-1) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.

  10. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, T.H.; Holland, J.W.

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis ismore » placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.« less

  11. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    NASA Astrophysics Data System (ADS)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It is determined that, when operating the scanning hot probe technique in air at standard temperature and pressure using Wollaston probes, the technique is capable of measuring, within 20% uncertainty, samples with values of thermal conductivity up to 10 Wm-1K-1 in contact mode and up to 2 Wm-1K-1 in non-contact mode. By increasing the thermal conductivity of the probe's surroundings (i.e. changing air to a more conductive gas), sensitivity in non-contact mode to sample thermal conductivity is improved, which suggests potential for future investigations using non-contact scanning hot probe to measure thermal conductivity of higher thermal conductivity samples. The ability of the technique to differentiate thin films from the substrate is investigated, and the sensitivity of the technique to thin films and samples with anisotropic properties is explored. The models (both analytical and finite element) developed and reported in this dissertation lead to the ability to measure samples which, by the standard procedure before this work, were unable to be accurately measured. While other techniques failed to be able to successfully interrogate the film thermal conductivity of a full set of double-wall carbon nanotubes infused into polymers, the methods developed in this work allowed non-contact scanning hot probe measurements to be successfully performed to obtain the film thermal conductivity for each sample. Finite element simulations accounting for the anisotropy of these thin film on sample materials show similar trends with independently measured in-plane thermal conductivity for the only two (of five) samples in the set which were successfully able to be measured by the independent technique. Investigations in contact mode with high resolution Pd probes, whose probe-to-sample clearance is difficult to control in a repeatable fashion, show that surface roughness affects the thermal contact resistance. This can lead to values of reported sample thermal conductivity which are misleading, when using the standard calibrated thermal exchange parameters on samples with significantly different surface roughness than the calibration samples. This affect was taken into account to report sample thermal conductivity of Bi2Te3 nanoflakes.

  12. Modelling and Characterization of Effective Thermal Conductivity of Single Hollow Glass Microsphere and Its Powder.

    PubMed

    Liu, Bing; Wang, Hui; Qin, Qing-Hua

    2018-01-14

    Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aviles-Ramos, Cuauhtemoc

    A thermal decomposition model for PBX 9501 (95% HMX, 2.5% Estane® binder, 2.5% BDNPA/F nitro-plasticizer) was implemented by Dickson, et. al. The objective in this study is to estimate parameters associated with this kinetics model so it can be applied to carry out thermal ignition predictions for LX-07 (90% HMX, 10% Viton binder). LX-07 thermal ignition experiments have been carried out using the “Sandia Instrumented Thermal Ignition Apparatus”, SITI. The SITI design consists of solid cylinders (1” diameter × 1” height) of high explosive (HE) confined by a cylindrical aluminum case. An electric heater is wrapped around the outer surfacemore » of the case. This heater produces a temperature heating ramp on the outer surface of the case. Internal thermocouples measure the HE temperature rise from the center to locations close to the HE-aluminum interface. The energetic material is heated until thermal ignition occurs. A two–dimensional axisymmetric heat conduction finite element model is used to simulate these experiments. The HE thermal decomposition kinetics is coupled to a heat conduction model trough the definition of an energy source term. The parameters used to define the HE thermal decomposition model are optimized to obtain a good agreement with the experimental time to thermal ignition and temperatures. Also, heat capacity and thermal conductivity of the LX-07 mixture were estimated using temperatures measured at the center of the HE before the solid to solid HMX phase transition occurred.« less

  14. A semi-analytical model of disk evaporation by thermal conduction

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    1999-01-01

    The conditions for disk evaporation by electron thermal conduction are examined, using a simplified semi-analytical 1-D model. The model is based on the mechanism proposed by Meyer & Meyer-Hofmeister ( te{meyermeyhof:1994}) in which an advection dominated accretion flow evaporates the top layers from the underlying disk by thermal conduction. The evaporation rate is calculated as a function of the density of the advective flow, and an analysis is made of the time scales and length scales of the dynamics of the advective flow. It is shown that evaporation can only completely destroy the disk if the conductive length scale is of the order of the radius. This implies that radial conduction is an essential factor in the evaporation process. The heat required for evaporation is in fact produced at small radii and transported radially towards the evaporation region.

  15. Analytical Investigation of a Reflux Boiler

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.; Chambers, Terrence L.

    1996-01-01

    A thermal model of a single Ultralight Fabric Reflux Tube (UFRT) was constructed and tested against data for an array of such tubes tested in the NASA-JSC facility. Modifications to the single fin model were necessary to accommodate the change in radiation shape factors due to adjacent tubes. There was good agreement between the test data and data generated for the same cases by the thermal model. The thermal model was also used to generate single and linear array data for the lunar environment (the primary difference between the test and lunar data was due to lunar gravity). The model was also used to optimize the linear spacing of the reflux tubes in an array. The optimal spacing of the tubes was recommended to be about 5 tube diameters based on maximizing the heat transfer per unit mass. The model also showed that the thermal conductivity of the Nextel fabric was the major limitation to the heat transfer. This led to a suggestion that the feasibility of jacketing the Nextel fiber bundles with copper strands be investigated. This jacketing arrangement was estimated to be able to double the thermal conductivity of the fabric at a volume concentration of about 12-14%. Doubling the thermal conductivity of the fabric would double the amount of heat transferred at the same steam saturation temperature.

  16. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    NASA Astrophysics Data System (ADS)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  17. Modeling of heat flow and effective thermal conductivity of fractured media: Analytical and numerical methods

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.

    2017-05-01

    The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.

  18. On the Thermal Model of Transverse Flow of Unidirectional Materials

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2002-01-01

    The thermal model for transverse heat flow of having single filament in a unit cell is extended. In this model, we proposed that two circular filaments in a unit cell of square packing array and obtained the transverse thermal conductivity of an unidirectional material.

  19. Integrated Modeling Tools for Thermal Analysis and Applications

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis

    1999-01-01

    Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.

  20. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Flavien; Recoules, Vanina; Decoster, Alain

    2011-05-15

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations aremore » then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.« less

  1. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    PubMed Central

    Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; Park, Joonsuk; Liu, Kai; Li, Jingbo; Hippalgaonkar, Kedar; Urban, Jeffrey J.; Tongay, Sefaattin; Wu, Junqiao

    2015-01-01

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials. PMID:26472285

  2. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    DOE PAGES

    Lee, Sangwook; Yang, Fan; Suh, Joonki; ...

    2015-10-16

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phononmore » dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.« less

  3. Thermal Conductivity of Twisted Bilayer Graphene Nanoribbons from Non-equilibrium Molecular Dynamics Study.

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Su, Shanshan; Ge, Supeng; Lake, Roger

    Misorientation of the two layers of bilayer graphene affects both the electronic properties and the vibrational modes or phonons. The phonon density of modes is little affected by misorientation, however, zone-folding can allow new Umklapp scattering processes that could affect the phonon transport and thermal conductivity. To investigate this, we use NEMD molecular dynamics simulations as implemented in LAMMPS to study the thermal conductivity of the misoriented graphene bilayers. Seven commensurate misorientation angles varying from 6.01º to 48.36º have modeled and analyzed to understand how the misorientation angle affects the thermal conductivity of relatively wide ( 10 nm) misoriented bilayer graphene nanoribbons (m-BLGNRs). Within numerical accuracy, we find that the thermal conductivity of the m-BLGNRs for all of the simulated commensurate angles have the same thermal conductivity with AB stacked and AA stacked BLGNRs. These results indicate that neither the misorientation angle nor the stacking order affect the thermal conductivity of BLGNRs. This work was supported as part by the NSF #1307671.

  4. Damage Accumulation and Failure of Plasma-Sprayed Thermal Barrier Coatings under Thermal Gradient Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.

  5. Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2018-04-01

    Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.

  6. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  7. Numerical modeling of Thermal Response Tests in Energy Piles

    NASA Astrophysics Data System (ADS)

    Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.

    2013-05-01

    Nowadays, thermal response tests (TRT) are used as the main tools for the evaluation of low enthalpy geothermal systems such as heat exchangers. The results of TRT are used for estimating thermal conductivity and thermal resistance values of those systems. We present results of synthetic TRT simulations that model the behavior observed in an experimental energy pile system, which was installed at the new building of the Faculty of Engineering of Universidad de Chile. Moreover, we also present a parametric study to identify the most influent parameters in the performance of this type of tests. The modeling was developed using the finite element software COMSOL Multiphysics, which allows the incorporation of flow and heat transport processes. The modeled system consists on a concrete pile with 1 m diameter and 28 m deep, which contains a 28 mm diameter PEX pipe arranged in a closed circuit. Three configurations were analyzed: a U pipe, a triple U and a helicoid shape implemented at the experimental site. All simulations were run considering transient response in a three-dimensional domain. The simulation results provided the temperature distribution on the pile for a set of different geometry and physical properties of the materials. These results were compared with analytical solutions which are commonly used to interpret TRT data. This analysis demonstrated that there are several parameters that affect the system response in a synthetic TRT. For example, the diameter of the simulated pile affects the estimated effective thermal conductivity of the system. Moreover, the simulation results show that the estimated thermal conductivity for a 1 m diameter pile did not stabilize even after 100 hours since the beginning of the test, when it reached a value 30% below value used to set up the material properties in the simulation. Furthermore, we observed different behaviors depending on the thermal properties of concrete and soil. According to the simulations, the thermal conductivity of the soil is the most determinant parameter that affects the estimated thermal conductivity. For example, we observed differences of up to 50% from the expected value at the end of 100 hours of simulation for values of thermal conductivity of the soil in the range of 1 to 6 W/mK. Additionally, we observed that the results of the synthetic TRT depend upon several other parameters such as the boundary conditions used to model the interaction of the top face of the pile with the surrounding media. For example, Simulations with a constant temperature boundary condition tended to overestimate the total thermal conductivity of the whole system. This analysis demonstrates that numerical modeling is a useful tool to model energy pile systems and to interpret and design tests to evaluate their performance. Furthermore, it also reveals that the results of thermal response tests interpreted with analytical models must be evaluated with care for the assessment of the potential of low enthalpy systems, because their results depend upon a variety of factors which are neglected in the analytical models.

  8. The plasma physics of thermal conduction in the intracluster medium of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii << particle mean free path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat-flux will drive a powerful whistler-wave instability and, provided we treat the problem in more than 1D so that oblique modes are captured, these waves efficiently scatter electrons thereby shutting down the heat-flux. Our proposed work builds on these findings with the goal of characterizing the macroscopic effective thermal conduction in a form that can be included in fluid (magnetohydrodynamic; MHD) models of the ICM. We will, 1) Conduct an extended linear analysis of the heat-flux whistler instability, exploring the interaction of the heat flux and the pressure anisotropies that would result from bulk motions of the ICM. We will map the stable/unstable regions as a function of heat-flux, pressure anisotropy, and plasma-beta. 2) Perform particle-in-cell (PIC) simulations to explore the non-linear saturation of the heat-flux whistler instability as a function of the plasma-beta and heat-flux, extending the current work (i.e. very strong fluxes) down to the modest heat-fluxes found in the real ICM. Key is whether overlapping wave-particle resonances that are so efficient at killing the conduction with strong heat-fluxes still operate when the driving heat-flux is weak. 3) Develop a new computational/PIC model that, in contrast to current work, sustains a temperature gradient across the domain thereby allowing us to directly measure the relationship between temperature gradient and heat flux. 4) Build a new thermal conduction model, allowing the heat flux to have a non-linear dependence on temperature gradient, and plasma-beta. We will develop thermal conduction algorithms that can be used in public MHD e.g., PLUTO or FLASH. This work will provide the crucial bridge between the global/MHD models of ICM atmospheres and the microphysics that dictates the transport processes. It will inform the next generation of cluster models used to interpret data from NASA's fleet of X-ray observatories.

  9. Carrier interactions and porosity initiated reversal of temperature dependence of thermal conduction in nanoscale tin films

    NASA Astrophysics Data System (ADS)

    Kaul, Pankaj B.; Prakash, Vikas

    2014-01-01

    Recently, tin has been identified as an attractive electrode material for energy storage/conversion technologies. Tin thin films have also been utilized as an important constituent of thermal interface materials in thermal management applications. In this regards, in the present paper, we investigate thermal conductivity of two nanoscale tin films, (i) with thickness 500 ± 50 nm and 0.45% porosity and (ii) with thickness 100 ± 20 nm and 12.21% porosity. Thermal transport in these films is characterized over the temperature range from 40 K-310 K, using a three-omega method for multilayer configurations. The experimental results are compared with analytical predictions obtained by considering both phonon and electron contributions to heat conduction as described by existing frequency-dependent phenomenological models and BvK dispersion for phonons. The thermal conductivity of the thicker tin film (500 nm) is measured to be 46.2 W/m-K at 300 K and is observed to increase with reduced temperatures; the mechanisms for thermal transport are understood to be governed by strong phonon-electron interactions in addition to the normal phonon-phonon interactions within the temperature range 160 K-300 K. In the case of the tin thin film with 100 nm thickness, porosity and electron-boundary scattering supersede carrier interactions, and a reversal in the thermal conductivity trend with reduced temperatures is observed; the thermal conductivity falls to 1.83 W/m-K at 40 K from its room temperature value of 36.1 W/m-K. In order to interpret the experimental results, we utilize the existing analytical models that account for contributions of electron-boundary scattering using the Mayadas-Shatzkes and Fuchs-Sondheimer models for the thin and thick films, respectively. Moreover, the effects of porosity on carrier transport are included using a previous treatment based on phonon radiative transport involving frequency-dependent mean free paths and the morphology of the nanoporous channels. The systematic modeling approach presented in here can, in general, also be utilized to understand thermal transport in semi-metals and semiconductor nano-porous thin films and/or phononic nanocrystals.

  10. Thermal conductivity of the sideledge in aluminium electrolysis cells: Experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Gheribi, Aïmen E.; Poncsák, Sándor; Guérard, Sébastien; Bilodeau, Jean-François; Kiss, László; Chartrand, Patrice

    2017-03-01

    During aluminium electrolysis, a ledge of frozen electrolytes is generally formed, attached to the sides of the cells. This ledge acts as a protective layer, preventing erosion and chemical attacks of both the electrolyte melt and the liquid aluminium on the side wall materials. The control of the sideledge thickness is thus essential in ensuring a reasonable lifetime for the cells. The key property for modelling and predicting the sideledge thickness as a function of temperature and electrolyte composition is the thermal conductivity. Unfortunately, almost no data is available on the thermal conductivity of the sideledge. The aim of this work is to alleviate this lack of data. For seven different samples of sideledge microstructures, recovered from post-mortem industrial electrolysis cells, the thermal diffusivity, the density, and the phase compositions were measured in the temperature range of 423 K to 873 K. The thermal diffusivity was measured with a laser flash technique and the average phase compositions by X-ray diffraction analysis. The thermal conductivity of the sideledge is deduced from the present experimental thermal diffusivity and density, and the thermodynamically assessed heat capacity. In addition to the present experimental work, a theoretical model for the prediction of the effective thermal transport properties of the sideledge microstructure is also proposed. The proposed model considers an equivalent microstructure and depends on phase fractions, porosity, and temperature. The strength of the model lies in the fact that only a few key physical properties are required for its parametrization and they can be predicted with a good accuracy via first principles calculations. It is shown that the theoretical predictions are in a good agreement with the present experimental measurements.

  11. Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation

    DOE PAGES

    Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.; ...

    2016-04-06

    Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less

  12. Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.

    Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less

  13. “Glass-like” thermal conductivity gradually induced in thermoelectric Sr{sub 8}Ga{sub 16}Ge{sub 30} clathrate by off-centered guest atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Sebastian; Schmøkel, Mette Stokkebro; Borup, Kasper Andersen

    The origin of the “glass-like” plateau in thermal conductivity of inorganic type I clathrates has been debated for more than a decade. Here, it is demonstrated that the low temperature thermal conductivity of Sr{sub 8}Ga{sub 16}Ge{sub 30} can be controlled by the synthesis method: A flux-grown sample has a “glass-like” plateau in thermal conductivity at low temperature, while a zone-melted sample instead has a crystalline peak. A combination of flux-growth and zone-melting produces an intermediate thermal conductivity. In a comprehensive study of three single crystal samples, it is shown by neutron diffraction that the transition from crystalline peak to “glass-like”more » plateau is related to an increase in Sr guest atom off-centering distance from 0.24 Å to 0.43 Å. By modifying ab initio calculated force constants for the guest atom to an isotropic model, we reproduce both measured heat capacity and inelastic neutron scattering data. The transition from peak to plateau in the thermal conductivity can be modeled by a combined increase of Rayleigh and disorder scattering. Measurement of heat capacity refutes simple models for tunneling of Sr between off-center sites. Furthermore, the electronic properties of the same samples are characterized by Hall carrier density, Seebeck coefficient, and resistivity. The present comprehensive analysis excludes tunneling and charge carrier scattering as dominant contributors to the “glass-like” plateau. The increased guest atom off-centering distance controlled by synthesis provides a possible microscopic mechanism for reducing the low temperature thermal conductivity of clathrates.« less

  14. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    PubMed

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved understanding of thermal conductivity inhomogeneity in high-quality CVD polycrystalline diamond that is important for applications in the thermal management of high-power electronics.

  15. Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity.

    PubMed

    Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony

    2016-09-01

    This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  17. Thermal evolution of the earth

    NASA Technical Reports Server (NTRS)

    Spohn, T.

    1984-01-01

    The earth's heat budget and models of the earth's thermal evolution are discussed. Sources of the planetary heat are considered and modes of heat transport are addressed, including conduction, convection, and chemical convection. Thermal and convectional models of the earth are covered, and models of thermal evolution are discussed in detail, including changes in the core, the influence of layered mantle convection on the thermal evolution, and the effect of chemical differentiation on the continents.

  18. Spin-dependent heat transport and thermal boundary resistance

    NASA Astrophysics Data System (ADS)

    Jeong, Taehee

    In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport in thin film structures. A transient theraroreflectance (TTR) technique can be used for measuring the thermal conductivity of thin films in cross-sectional direction. In this study, a pump-probe scheme was employed for the TTR technique. We built an optical pump-probe system by using a nanosecond pulse laser for pumping and a continuous-wave laser for probing. A short-time heating event occured at the surface of a sample by shining a laser pulse on the surface. Then the time-resolved thermoreflectance signals were detected using a photodetector and an oscilloscope. The increased temperature decreases slowly and its thermal decay depends on the thermal properties of a sample. Since the reflectivity is linearly proportional to the temperature, the time-resolved thermoreflectance signals have the information of the thermal properties of a sample. In order to extract the thermal properties of a sample, a thermal analysis was performed by fitting the experimental data with thermal models. We developed 2-layered and 3-layered thermal models using the analogies between thermal conduction and electric conduction and a transmission-line concept. We used two sets of sample structures: Au/SiNx/Si substrate and Au/CoFe/SiNx/Si substrate with various thickness of SiN x layer. Using the pump-probe system, we measured the time-resolved thermoreflectance signals for each sample. Then, the thermal conductivity and thermal boundary resistance were obtained by fitting the experimental data with the thermal models. The thermal conductivity of SiNx films was measured to be 2.0 W/mK for both structures. In the case of the thermal boundary resistance, it was 0.81x10-5 m 2K/W at the Au/SiNx interface and 0.54x10 -5 m2K/W at the CoFe/SiNx interface, respectively. The difference of the thermal boundary resistance between Au/SiNx and CoFe/SiNx might be came from the different phonon dispersion of Au and CoFe. The thermal conductivity did not depend on the thickness of SiNx films in the thickness range of 50-200nm. However, the thermal boundary resistance at metal/SiNx interfaces will impact overall thermal conduction when the thickness of SiNx thin films is in a nanometer order. For example, apparent thermal conductivity of SiN x film becomes half of the intrinsic thermal conductivity when the thickness decreases to 16nm. Therefore, it is advised that the thermal boundary resistance between metal and dielectrics should be counted in nano-scale electronic devices. (Abstract shortened by UMI.)

  19. Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions

    NASA Astrophysics Data System (ADS)

    Carson, James K.

    2018-06-01

    Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.

  20. Size dictated thermal conductivity of GaN

    DOE PAGES

    Thomas Edwin Beechem; McDonald, Anthony E.; Fuller, Elliot James; ...

    2016-04-01

    The thermal conductivity on n- and p-type doped gallium nitride (GaN) epilayers having thickness of 3-4 μm was investigated using time domain thermoreflectance (TDTR). Despite possessing carrier concentrations ranging across 3 decades (10 15 – 10 18 cm –3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends–and their overall reduction relative to bulk–are explained leveraging established scattering models where it is shown that size effects play a primary role in limiting thermal conductivity for layers even tens ofmore » microns thick. GaN device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.« less

  1. Size dictated thermal conductivity of GaN

    NASA Astrophysics Data System (ADS)

    Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-09-01

    The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.

  2. Thermal conductivity of III-V semiconductor superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less

  3. Thermal properties and unfrozen water content of frozen volcanic ash as a modelling input parameters in mountainous volcanic areas

    NASA Astrophysics Data System (ADS)

    Kuznetsova, E.

    2016-12-01

    Volcanic eruptions are one of the major causes of the burial of ice and snow in volcanic areas. This has been demonstrated on volcanoes, e.g. in Iceland, Russia, USA and Chile, where the combination of a permafrost-favorable climate and a thin layer of tephra is sufficient to reduce the sub-tephra layer snow ablation substantially, even to zero, causing ground ice formation and permafrost aggradation. Many numerical models that have been used to investigate and predict the evolution of cold regions as the result of climatic changes are lacking the accurate data of the thermal properties —thermal conductivity, heat capacity, thermal diffusivity—of soils or debris layers involved. The angular shape of the fragments that make up ash and scoria makes it inappropriate to apply existing models to estimate bulk thermal conductivity. The lack of experimental data on the thermal conductivity of volcanic deposits will hinder the development of realistic models. The decreasing thermal conductivity of volcanic ash in the frozen state is associated with the development and presence of unfrozen water films that may have a direct mechanical impact on the movement or slippage between ice and particle, and thus, change the stress transfer. This becomes particularly significant during periods of climate change when enhanced temperatures and associated melting could weaken polythermal glaciers and affect areas with warm and discontinuous permafrost, and induce ice or land movements, perhaps on a catastrophic scale. In the presentation, we will summarize existing data regarding: (i) the thermal properties and unfrozen water content in frozen volcanic ash and cinder, (ii) the effects of cold temperatures on weathering processes of volcanic glass, (iii) the relationship between the mineralogy of frozen volcanic deposits and their thermal properties —and then discusses their significance in relation to the numerical modelling of glaciers and permafrost's thermal behavior.

  4. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  5. Body size as a latent variable in a structural equation model: thermal acclimation and energetics of the leaf-eared mouse.

    PubMed

    Nespolo, Roberto F; Arim, Matías; Bozinovic, Francisco

    2003-07-01

    Body size is one of the most important determinants of energy metabolism in mammals. However, the usual physiological variables measured to characterize energy metabolism and heat dissipation in endotherms are strongly affected by thermal acclimation, and are also correlated among themselves. In addition to choosing the appropriate measurement of body size, these problems create additional complications when analyzing the relationships among physiological variables such as basal metabolism, non-shivering thermogenesis, thermoregulatory maximum metabolic rate and minimum thermal conductance, body size dependence, and the effect of thermal acclimation on them. We measured these variables in Phyllotis darwini, a murid rodent from central Chile, under conditions of warm and cold acclimation. In addition to standard statistical analyses to determine the effect of thermal acclimation on each variable and the body-mass-controlled correlation among them, we performed a Structural Equation Modeling analysis to evaluate the effects of three different measurements of body size (body mass, m(b); body length, L(b) and foot length, L(f)) on energy metabolism and thermal conductance. We found that thermal acclimation changed the correlation among physiological variables. Only cold-acclimated animals supported our a priori path models, and m(b) appeared to be the best descriptor of body size (compared with L(b) and L(f)) when dealing with energy metabolism and thermal conductance. However, while m(b) appeared to be the strongest determinant of energy metabolism, there was an important and significant contribution of L(b) (but not L(f)) to thermal conductance. This study demonstrates how additional information can be drawn from physiological ecology and general organismal studies by applying Structural Equation Modeling when multiple variables are measured in the same individuals.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin

    The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less

  7. Using high pressure to study thermal transport and phonon scattering mechanisms

    NASA Astrophysics Data System (ADS)

    Hohensee, Gregory Thomas

    The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine intrinsic phonon-mediated interface conductance between dissimilar materials, I applied DAC-TDTR to measure the thermal conductance of a series of metal-diamond interfaces as a function of pressure up to 50 GPa. The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes, and the nature of heat transport between such dissimilar materials is central to the thermal design of composite materials. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. I measured the interface thermal conductances of Pb, Au0.95Pd0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils, from ambient pressure to 50 GPa. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. My results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon. The thermal conductivity and absolute electrical resistivity of metallic silicon have not been measured previously. I performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si0.991Ge 0.009 across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have a transport anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. I used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model. Not all crystalline point defects are alike in how they scatter phonons and reduce the thermal conductivity of mixed crystals. Heat-carrying phonons in iron (Fe) doped MgO, or [Mg,Fe]O ferropericlase, are known to be resonantly scattered by interaction with a 3.3 THz electronic transition in the high-spin state of the Fe impurities. At sufficiently high pressures, the Fe atoms transition from a high-spin to a low-spin state, which eliminates the resonant interaction and reduces the Fe atoms to simpler point defect phonon scatterers. To study the behavior of phonon-defect scattering with and without this resonant scattering process, I measured the thermal conductivity of Mg0.92Fe0.08 O ferropericlase up to and above the 40--60 GPa spin transition. Fe-doped MgO (ferropericlase) is also a model system relevant to geophysical modeling of the Earth's core-mantle boundary, so data on its thermal transport under pressure is valuable in itself. (Abstract shortened by UMI.).

  8. Estimation of Phonon and Carrier Thermal Conductivities for Bulk Thermoelectric Materials Using Transport Properties

    NASA Astrophysics Data System (ADS)

    Otsuka, Mioko; Homma, Ryoei; Hasegawa, Yasuhiro

    2017-05-01

    The phonon and carrier thermal conductivities of thermoelectric materials were calculated using the Wiedemann-Franz law, Boltzmann equation, and a method we propose in this study called the Debye specific heat method. We prepared polycrystalline n-type doped bismuth telluride (BiTe) and bismuth antimony (BiSb) bulk alloy samples and measured six parameters (Seebeck coefficient, resistivity, thermal conductivity, thermal diffusivity, magneto-resistivity, and Hall coefficient). The carrier density and mobility were estimated for calculating the carrier thermal conductivity by using the Boltzmann equation. In the Debye specific heat method, the phonon thermal diffusivity, and thermal conductivity were calculated from the temperature dependence of the effective specific heat by using not only the measured thermal conductivity and Debye model, but also the measured thermal diffusivity. The carrier thermal conductivity was also evaluated from the phonon thermal conductivity by using the specific heat. The ratio of carrier thermal conductivity to thermal conductivity was evaluated for the BiTe and BiSb samples, and the values obtained using the Debye specific heat method at 300 K were 52% for BiTe and <5.5% for BiSb. These values are either considerably larger or smaller than those obtained using other methods. The Dulong-Petit law was applied to validate the Debye specific heat method at 300 K, which is significantly greater than the Debye temperature of the BiTe and BiSb samples, and it was confirmed that the phonon specific heat at 300 K has been accurately reproduced using our proposed method.

  9. Heat conduction tuning by hyperbranched nanophononic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Bing; Tan, K. T.; Christensen, Johan

    2018-05-01

    Phonon dispersion and thermal conduction properties of hyperbranched nanostructures with unique topological complexity are theoretically and numerically investigated in this research. We present analytical cantilever-in-mass models to analyze and control the inherent resonance hybridization in hyperbranched nanomembranes containing different configurations and cross sections. We show that these local resonances hosted by hyperbranched nanopillars can generate numerous flat bands in the phonon dispersion relation and dramatically lower the group velocities, consequently resulting in a significant reduction of the thermal conductivity. The applicability of the proposed analytical models in thermal conductivity tuning is demonstrated, and a superior performance in reducing the heat flux in nano-structured membranes is exhibited, which can potentially lead to improved thermoelectric energy conversion devices.

  10. Multiscale Modeling of UHTC: Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  11. A Model for Hydrogen Thermal Conductivity and Viscosity Including the Critical Point

    NASA Technical Reports Server (NTRS)

    Wagner, Howard A.; Tunc, Gokturk; Bayazitoglu, Yildiz

    2001-01-01

    In order to conduct a thermal analysis of heat transfer to liquid hydrogen near the critical point, an accurate understanding of the thermal transport properties is required. A review of the available literature on hydrogen transport properties identified a lack of useful equations to predict the thermal conductivity and viscosity of liquid hydrogen. The tables published by the National Bureau of Standards were used to perform a series of curve fits to generate the needed correlation equations. These equations give the thermal conductivity and viscosity of hydrogen below 100 K. They agree with the published NBS tables, with less than a 1.5 percent error for temperatures below 100 K and pressures from the triple point to 1000 KPa. These equations also capture the divergence in the thermal conductivity at the critical point

  12. A New Finite-Conductivity Droplet Evaporation Model Including Liquid Turbulence Effect

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing droplets of an evaporating spray is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen [9]. This finite conductivity model is based on the two-temperature film theory in which the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity for the liquid-side film thickness. Both one-way and two-way coupled calculations were performed to investigate the performance cf this model against the published experimental data.

  13. Adaptive Photothermal Emission Analysis Techniques for Robust Thermal Property Measurements of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Valdes, Raymond

    The characterization of thermal barrier coating (TBC) systems is increasingly important because they enable gas turbine engines to operate at high temperatures and efficiency. Phase of photothermal emission analysis (PopTea) has been developed to analyze the thermal behavior of the ceramic top-coat of TBCs, as a nondestructive and noncontact method for measuring thermal diffusivity and thermal conductivity. Most TBC allocations are on actively-cooled high temperature turbine blades, which makes it difficult to precisely model heat transfer in the metallic subsystem. This reduces the ability of rote thermal modeling to reflect the actual physical conditions of the system and can lead to higher uncertainty in measured thermal properties. This dissertation investigates fundamental issues underpinning robust thermal property measurements that are adaptive to non-specific, complex, and evolving system characteristics using the PopTea method. A generic and adaptive subsystem PopTea thermal model was developed to account for complex geometry beyond a well-defined coating and substrate system. Without a priori knowledge of the subsystem characteristics, two different measurement techniques were implemented using the subsystem model. In the first technique, the properties of the subsystem were resolved as part of the PopTea parameter estimation algorithm; and, the second technique independently resolved the subsystem properties using a differential "bare" subsystem. The confidence in thermal properties measured using the generic subsystem model is similar to that from a standard PopTea measurement on a "well-defined" TBC system. Non-systematic bias-error on experimental observations in PopTea measurements due to generic thermal model discrepancies was also mitigated using a regression-based sensitivity analysis. The sensitivity analysis reported measurement uncertainty and was developed into a data reduction method to filter out these "erroneous" observations. It was found that the adverse impact of bias-error can be greatly reduced, leaving measurement observations with only random Gaussian noise in PopTea thermal property measurements. Quantifying the influence of the coating-substrate interface in PopTea measurements is important to resolving the thermal conductivity of the coating. However, the reduced significance of this interface in thicker coating systems can give rise to large uncertainties in thermal conductivity measurements. A first step towards improving PopTea measurements for such circumstances has been taken by implementing absolute temperature measurements using harmonically-sustained two-color pyrometry. Although promising, even small uncertainties in thermal emission observations were found to lead to significant noise in temperature measurements. However, PopTea analysis on bulk graphite samples were able to resolve its thermal conductivity to the expected literature values.

  14. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    PubMed Central

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  15. The effect of salt crust on the thermal conductivity of one sample of fluvial particulate materials under Martian atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Presley, Marsha A.; Craddock, Robert A.; Zolotova, Natalya

    2009-11-01

    A line-heat source apparatus was used to measure thermal conductivities of a lightly cemented fluvial sediment (salinity = 1.1 g · kg-1), and the same sample with the cement bonds almost completely disrupted, under low pressure, carbon dioxide atmospheres. The thermal conductivities of the cemented sample were approximately 3× higher, over the range of atmospheric pressures tested, than the thermal conductivities of the same sample after the cement bonds were broken. A thermal conductivity-derived particle size was determined for each sample by comparing these thermal conductivity measurements to previous data that demonstrated the dependence of thermal conductivity on particle size. Actual particle-size distributions were determined via physical separation through brass sieves. When uncemented, 87% of the particles were less than 125 μm in diameter, with 60% of the sample being less than 63 μm in diameter. As much as 35% of the cemented sample was composed of conglomerate particles with diameters greater than 500 μm. The thermal conductivities of the cemented sample were most similar to those of 500-μm glass beads, whereas the thermal conductivities of the uncemented sample were most similar to those of 75-μm glass beads. This study demonstrates that even a small amount of salt cement can significantly increase the thermal conductivity of particulate materials, as predicted by thermal modeling estimates by previous investigators.

  16. Analytical thermal model for end-pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Cini, L.; Mackenzie, J. I.

    2017-12-01

    Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.

  17. Modelling of directional solidification of BSO

    NASA Astrophysics Data System (ADS)

    Lin, Chenting; Motakef, Shahryar

    1993-03-01

    A thermo-fluid model for vertical Bridgman growth of bismuth silicon oxide (BSO) as model material for semi-transparent, low thermal conductivity oxides is developed. Internal radiative heat transfer, together with convective and conductive heat transfer are considered in this model. Due to the strong internal thermal radiation within the grown crystal, the growth interface is highly convex into the melt, instead of being concave as is the case for opaque materials with the thermal conductivity of the melt larger than that of the solid. Reduction of the growth interface non-planarity through variations in the growth configuration is investigated. A furnace temperature profile consisting of a steep gradient on the melt side and shallow gradient on the solid side of the charge is found to be the most effective approach.

  18. Copper Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Singh, Jogender; Rape, Aaron; Vohra, Yogesh; Thomas, Vinoy; Li, Deyu; Otte, Kyle

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact thermal resistance. These results are consistent with the quantum mechanics-based model predictions. NARloy-Z-D composites have relatively high thermal conductivities and are promising for further development.

  19. Copper-Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Rape, Aaron; Singh, Jogender; Vohra, Yogesh K.; Thomas, Vinoy; Otte, Kyle G.; Li, Deyu

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact thermal resistance. These results are consistent with the quantum mechanics-based model predictions. NARloy-Z-D composites have relatively high thermal conductivities and are promising for further development.

  20. Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites

    NASA Astrophysics Data System (ADS)

    Macias, J. D.; Bante-Guerra, J.; Cervantes-Alvarez, F.; Rodrìguez-Gattorno, G.; Arés-Muzio, O.; Romero-Paredes, H.; Arancibia-Bulnes, C. A.; Ramos-Sánchez, V.; Villafán-Vidales, H. I.; Ordonez-Miranda, J.; Li Voti, R.; Alvarado-Gil, J. J.

    2018-04-01

    Carbon fiber-reinforced carbon (C/C) composites consist in a carbon matrix holding carbon or graphite fibers together, whose physical properties are determined not only by those of their individual components, but also by the layer buildup and the material preparation and processing. The complex structure of C/C composites along with the fiber orientation provide an effective means for tailoring their mechanical, electrical, and thermal properties. In this work, we use the Laser Flash Technique to measure the thermal diffusivity and thermal conductivity of C/C composites made up of laminates of weaved bundles of carbon fibers, forming a regular and repeated orthogonal pattern, embedded in a graphite matrix. Our experimental data show that: i) the cross-plane thermal conductivity remains practically constant around (5.3 ± 0.4) W·m-1 K-1, within the temperature range from 370 K to 1700 K. ii) The thermal diffusivity and thermal conductivity along the cross-plane direction to the fibers axis is about five times smaller than the corresponding ones in the laminates plane. iii) The measured cross-plane thermal conductivity is well described by a theoretical model that considers both the conductive and radiative thermal contributions of the effective thermal conductivity.

  1. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    NASA Astrophysics Data System (ADS)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  2. 3D structure and conductive thermal field of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D conductive thermal modelling of the URG and adjacent areas. We show that the Variscan crystalline crustal domains with their different radiogenic heat production influence the regional thermal field, while a thermal blanketing effect due to thick thermally low-conductive sediments causes higher temperatures in the central and northern URG. In contrast, local salt domes result in colder temperatures in parts of the southern URG.

  3. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.

    PubMed

    Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum

    2008-11-01

    To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation could not be achieved at higher inner/outer perfusions (>4 kg/m(3)-s). For varied electrical conductivities in the setting of varied perfusion, greatest RF heating occurred for inner electrical conductivities simulating injection of saline around the electrode with an outer electrical conductivity of soft tissue, and the least amount of heating occurring while simulating renal cell carcinoma in normal kidney. Characterization of these scenarios demonstrated the role of electrical and thermal conductivity interactions, with the greatest differences in effect seen in the 3-4 cm tumor range, as almost all 2 cm tumors and almost no 5 cm tumors could be treated. Optimal combinations of thermal and electrical conductivity can partially negate the effect of perfusion. For clinically relevant tumor sizes, thermal and electrical conductivity impact which tumors can be successfully ablated even in the setting of almost non-existent perfusion.

  4. Effect of thermal interface on heat flow in carbon nanofiber composites.

    PubMed

    Gardea, F; Naraghi, M; Lagoudas, D

    2014-01-22

    The thermal transport process in carbon nanofiber (CNF)/epoxy composites is addressed through combined micromechanics and finite element modeling, guided by experiments. The heat exchange between CNF constituents and matrix is studied by explicitly accounting for interface thermal resistance between the CNFs and the epoxy matrix. The effects of nanofiber orientation and discontinuity on heat flow and thermal conductivity of nanocomposites are investigated through simulation of the laser flash experiment technique and Fourier's model of heat conduction. Our results indicate that when continuous CNFs are misoriented with respect to the average temperature gradient, the presence of interfacial resistance does not affect the thermal conductivity of the nanocomposites, as most of the heat flow will be through CNFs; however, interface thermal resistance can significantly alter the patterns of heat flow within the nanocomposite. It was found that very high interface resistance leads to heat entrapment at the interface near to the heat source, which can promote interface thermal degradation. The magnitude of heat entrapment, quantified via the peak transient temperature rise at the interface, in the case of high thermal resistance interfaces becomes an order of magnitude more intense as compared to the case of low thermal resistance interfaces. Moreover, high interface thermal resistance in the case of discontinuous fibers leads to a nearly complete thermal isolation of the fibers from the matrix, which will marginalize the contribution of the CNF thermal conductivity to the heat transfer in the composite.

  5. The thermal conductance of solid-lubricated bearings at cryogenic temperatures in vacuum

    NASA Technical Reports Server (NTRS)

    Anderson, M. J.

    1996-01-01

    The thermal conductance of Hertzian contacts is of great importance to cryogenic spacecraft mechanisms such as the Infra-Red Space Observatory (ISO) and the Far Infra-Red Space Telescope (FIRST). At cryogenic temperatures, cooling of mechanism shafts and associated components occurs via conduction through the bearings. When fluid lubricants are cooled below their pour points, they no longer lubricate effectively, and it is necessary to use low shear strength solid lubricants. Currently, only very limited low temperature data exists on the thermal conductance of Hertzian contacts in both unlubricated and lubricated conditions. This paper reports on measurements of thermal conductance made on stationary ball bearings under cryo-vacuum conditions. Quantitative data is provided to support the development of computer models predicting the thermal conductance of Hertzian contacts and solid lubricants at cryogenic temperatures.

  6. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    PubMed

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  7. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    PubMed Central

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  8. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    PubMed Central

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  9. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    NASA Astrophysics Data System (ADS)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  10. Heat Transfer in Adhesively Bonded Honeycomb Core Panels

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2001-01-01

    The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.

  11. Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Koh, Yee Rui; Comparan, Jonathan; Sadasivam, Sridhar; Schroeder, Jeremy L.; Garbrecht, Magnus; Mohammed, Amr; Birch, Jens; Fisher, Timothy; Shakouri, Ali; Sands, Timothy D.

    2016-01-01

    Reduction of cross-plane thermal conductivity and understanding of the mechanisms of heat transport in nanostructured metal/semiconductor superlattices are crucial for their potential applications in thermoelectric and thermionic energy conversion devices, thermal management systems, and thermal barrier coatings. We have developed epitaxial (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices with periodicity ranging from 1 nm to 240 nm that show significantly lower thermal conductivity compared to the parent TiN/(Al,Sc)N superlattice system. The (Ti,W)N/(Al,Sc)N superlattices grow with [001] orientation on the MgO(001) substrates with well-defined coherent layers and are nominally single crystalline with low densities of extended defects. Cross-plane thermal conductivity (measured by time-domain thermoreflectance) decreases with an increase in the superlattice interface density in a manner that is consistent with incoherent phonon boundary scattering. Thermal conductivity values saturate at 1.7 W m-1K-1 for short superlattice periods possibly due to a delicate balance between long-wavelength coherent phonon modes and incoherent phonon scattering from heavy tungsten atomic sites and superlattice interfaces. First-principles density functional perturbation theory based calculations are performed to model the vibrational spectrum of the individual component materials, and transport models are used to explain the interface thermal conductance across the (Ti,W)N/(Al,Sc)N interfaces as a function of periodicity. The long-wavelength coherent phonon modes are expected to play a dominant role in the thermal transport properties of the short-period superlattices. Our analysis of the thermal transport properties of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices addresses fundamental questions about heat transport in multilayer materials.

  12. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  13. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  14. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis: Modeling Archive

    DOE Data Explorer

    J.C. Rowland; D.R. Harp; C.J. Wilson; A.L. Atchley; V.E. Romanovsky; E.T. Coon; S.L. Painter

    2016-02-02

    This Modeling Archive is in support of an NGEE Arctic publication available at doi:10.5194/tc-10-341-2016. This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.

  15. Thermal Analysis of Nanofluids Using Modeling and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Namboori, P. K. Krishnan; Vasavi, C. S.; Gopal, K. Varun; Gopakumar, Deepa; Ramachandran, K. I.; Narayanan, B. Sabarish

    2010-10-01

    Nanofluids are nanotechnology-based heat transfer fluids obtained by suspending nanometer-sized particles in conventional heat transfer fluids in a stable manner. In many of the physical phenomena such as boiling and properties such as latent heat, thermal conductivity and heat transfer coefficient, there is significant change on addition of nanoparticles. These exceptional qualities of Nanofluids mainly depend on the atomic level mechanisms, which in turn govern all mechanical properties like strength, Young's modulus, Poisson's ratio, compressibility etc. Control over the fundamental thermo physical properties of the working medium will help to understand these unique phenomena of nanofluids to a great extent. Macroscopic modeling approaches, which are based on conventional relations of thermodynamics, have been proved to be incompetent to explain this difference. Atomistic `modeling and simulation' has been emerged out as an efficient alternative for this. The enhancement of thermal conductivity of water by suspending nanoparticle inclusions has been experimented and proved to be an effective method of enhancing convective heat dissipation. This work mainly deals with characterization of the thermal conductivity of nanofluids. Nano particle sized aluminium oxide; copper oxide and titanium dioxide have been taken in this work for the analysis of thermal conductivity. The effect of thermal conductivity on parameters like volume concentration of the fluid, nature of particle material and size of the particle has been computationally formulated. It has been found that there is an increase in effective thermal conductivity of the fluid by the addition of nanomaterials ascertaining an improvement in the heat transfer behavior of nanofluids. This facilitates the reduction in size of such heat transfer systems (radiators) and lead to increased energy and fuel efficiency, lower pollution and improved reliability.

  16. A thermal scale modeling study for Apollo and Apollo applications, volume 2

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.

    1972-01-01

    The development and demonstration of practical thermal scale modeling techniques applicable to systems involving radiation, conduction, and convection with emphasis on cabin atmosphere/cabin wall thermal interface are discussed. The Apollo spacecraft environment is used as the model. Four possible scaling techniques were considered: (1) modified material preservation, (2) temperature preservation, (3) scaling compromises, and Nusselt number preservation. A thermal mathematical model was developed for use with the Nusselt number preservation technique.

  17. Regolith thermal property inversion in the LUNAR-A heat-flow experiment

    NASA Astrophysics Data System (ADS)

    Hagermann, A.; Tanaka, S.; Yoshida, S.; Fujimura, A.; Mizutani, H.

    2001-11-01

    In 2003, two penetrators of the LUNAR--A mission of ISAS will investigate the internal structure of the Moon by conducting seismic and heat--flow experiments. Heat-flow is the product of thermal gradient tial T / tial z, and thermal conductivity λ of the lunar regolith. For measuring the thermal conductivity (or dissusivity), each penetrator will carry five thermal property sensors, consisting of small disc heaters. The thermal response Ts(t) of the heater itself to the constant known power supply of approx. 50 mW serves as the data for the subsequent data interpretation. Horai et al. (1991) found a forward analytical solution to the problem of determining the thermal inertia λ ρ c of the regolith for constant thermal properties and a simplyfied geometry. In the inversion, the problem of deriving the unknown thermal properties of a medium from known heat sources and temperatures is an Identification Heat Conduction Problem (IDHCP), an ill--posed inverse problem. Assuming that thermal conductivity λ and heat capacity ρ c are linear functions of temperature (which is reasonable in most cases), one can apply a Kirchhoff transformation to linearize the heat conduction equation, which minimizes computing time. Then the error functional, i.e. the difference between the measured temperature response of the heater and the predicted temperature response, can be minimized, thus solving for thermal dissusivity κ = λ / (ρ c), wich will complete the set of parameters needed for a detailed description of thermal properties of the lunar regolith. Results of model calculations will be presented, in which synthetic data and calibration data are used to invert the unknown thermal diffusivity of the unknown medium by means of a modified Newton Method. Due to the ill-posedness of the problem, the number of parameters to be solved for should be limited. As the model calculations reveal, a homogeneous regolith allows for a fast and accurate inversion.

  18. TOPEX Microwave Radiometer - Thermal design verification test and analytical model validation

    NASA Technical Reports Server (NTRS)

    Lin, Edward I.

    1992-01-01

    The testing of the TOPEX Microwave Radiometer (TMR) is described in terms of hardware development based on the modeling and thermal vacuum testing conducted. The TMR and the vacuum-test facility are described, and the thermal verification test includes a hot steady-state segment, a cold steady-state segment, and a cold survival mode segment totalling 65 hours. A graphic description is given of the test history which is related temperature tracking, and two multinode TMR test-chamber models are compared to the test results. Large discrepancies between the test data and the model predictions are attributed to contact conductance, effective emittance from the multilayer insulation, and heat leaks related to deviations from the flight configuration. The TMR thermal testing/modeling effort is shown to provide technical corrections for the procedure outlined, and the need for validating predictive models is underscored.

  19. YORP torques with 1D thermal model

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Bartczak, P.; Czekaj, M.

    2010-11-01

    A numerical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect for objects defined in terms of a triangular mesh is described. The algorithm requires that each surface triangle can be handled independently, which implies the use of a 1D thermal model. Insolation of each triangle is determined by an optimized ray-triangle intersection search. Surface temperature is modelled with a spectral approach; imposing a quasi-periodic solution we replace heat conduction equation by the Helmholtz equation. Non-linear boundary conditions are handled by an iterative, fast Fourier transform based solver. The results resolve the question of the YORP effect in rotation rate independence on conductivity within the non-linear 1D thermal model regardless of the accuracy issues and homogeneity assumptions. A seasonal YORP effect in attitude is revealed for objects moving on elliptic orbits when a non-linear thermal model is used.

  20. Transient aero-thermal mapping of passive Thermal Protection system for nose-cap of Reusable Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Mahulikar, Shripad P.; Khurana, Shashank; Dungarwal, Ritesh; Shevakari, Sushil G.; Subramanian, Jayakumar; Gujarathi, Amit V.

    2008-12-01

    The temperature field history of passive Thermal Protection System (TPS) material at the nose-cap (forward stagnation region) of a Reusable Hypersonic Vehicle (RHV) is generated. The 3-D unsteady heat transfer model couples conduction in the solid with external convection and radiation that are modeled as time-varying boundary conditions on the surface. Results are presented for the following two cases: (1) nose-cap comprised of ablative TPS material only (SIRCA/PICA), and (2) nose-cap comprised of a combination of ablative TPS material with moderate thermal conductivity and insulative TPS material. Comparison of the temperature fields of SIRCA and PICA [Case (1)] indicates lowering of the peak stagnation region temperatures for PICA, due to its higher thermal conductivity. Also, the use of PICA and insulative TPS [Case (2)] for the nose-cap has higher potential for weight reduction than the use of ablative TPS alone.

  1. Optimal design of high temperature metalized thin-film polymer capacitors: A combined numerical and experimental method

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Qi; Trinh, Wei; Lu, Qianli; Cho, Heejin; Wang, Qing; Chen, Lei

    2017-07-01

    The objective of this paper is to design and optimize the high temperature metalized thin-film polymer capacitor by a combined computational and experimental method. A finite-element based thermal model is developed to incorporate Joule heating and anisotropic heat conduction arising from anisotropic geometric structures of the capacitor. The anisotropic thermal conductivity and temperature dependent electrical conductivity required by the thermal model are measured from the experiments. The polymer represented by thermally crosslinking benzocyclobutene (BCB) in the presence of boron nitride nanosheets (BNNSs) is selected for high temperature capacitor design based on the results of highest internal temperature (HIT) and the time to achieve thermal equilibrium. The c-BCB/BNNS-based capacitor aiming at the operating temperature of 250 °C is geometrically optimized with respect to its shape and volume. "Safe line" plot is also presented to reveal the influence of the cooling strength on capacitor geometry design.

  2. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    PubMed

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  3. Thermal transport in UO 2 with defects and fission products by molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO 2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO 2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U 5+ and Zr 4+ in UO 2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then correctedmore » for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO 2+x samples.« less

  4. Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal

    NASA Astrophysics Data System (ADS)

    Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.

    2018-03-01

    Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.

  5. Optimization of Rei-mullite Physical Properties

    NASA Technical Reports Server (NTRS)

    Tanzilli, R. A.; Musikant, S.; Bolinger, P. N.; Brazel, J. P.

    1973-01-01

    Micromechanical and thermal modeling studies prove that ceramic fiber mullite materials is the only system capable of shuttle thermal protection to 1644 K. Hafnia pigmentated mullite surface coatings meet both orbital and reentry thermal radiative requirements for reuse without refurbishment. Thermal and mechanical models show growths potentials associated with the mullite system for a factor of 2 improvement in mechanical properties, and a factor of 2 to 3 reduction in thermal conductivity.

  6. Accurate measurements of the thermal diffusivity of thin filaments by lock-in thermography

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Mendioroz, Arantza; Fuente, Raquel; Celorrio, Ricardo

    2010-02-01

    In lock-in (modulated) thermography the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper, we present a complete theoretical model to calculate the surface temperature of filaments heated by a focused and modulated laser beam. All heat losses have been included: conduction to the gas, convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the gas has been identified as the most disturbing effect preventing from the direct use of the slope method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope method combining amplitude and phase can be used to obtain the accurate diffusivity value. Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity, which verifies the in-parallel thermal resistor model. As an application, the slope method has been used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal properties.

  7. No Radiative Heat Transport Through Pyrolitic Lower Mantle

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Holtgrewe, N.; Badro, J.; Goncharov, A. F.

    2017-12-01

    Transport properties of the lower mantle, such as its thermal conductivity, are key parameters required to understand the nature and dynamics of the core-mantle boundary (CMB) region. Radiative thermal conductivity (krad) of the mantle is determined by its visible-infrared absorption coefficient (α) at high pressure (P) and temperature (T). The latter is highly uncertain at the CMB conditions as optical measurements at high temperature suffer from intense thermal radiation that diminishes the probe contrast. Room-temperature high-pressure studies of bridgmanite and ferropericlase absorption coefficients suggest a steady increase of mantle radiative conductivity with depth mirroring the temperature increase along the geotherm (Goncharov et al., 2008; Keppler et al., 2008). Here we reconstruct optical properties of the mantle as a function of depth by using fast time-resolved spectroscopic technology combined with laser-heated diamond anvil cells. We found a strong increase in the rock absorption coefficient upon heating to 3000 K at 40-135 GPa. Using the pressure- and temperature-dependent pyrolite absorption coefficient we establish that lower mantle radiative thermal conductivity is decreasing with depth from 0.35 W/m/K at 1000 km to 0.15 W/m/K at the CMB, making it 50 times smaller than the corresponding lattice thermal conductivity at such conditions (Ohta et al., 2017; Okuda et al., 2017). Combining our results with models of lattice thermal conductivity in pyrolitic lower mantle we obtain a CMB heat flow of 8.5 TW. This estimate implies an inner core age of 0.7-1.3 Gy and favors a low-to-moderate core thermal conductivity (< 80 W/m/K). A core with higher thermal conductivity (Ohta et al., 2016; Pozzo et al., 2012) would be thermally stratified, halting a thermally driven dynamo prior to the inner core growth, if no other mechanism is invoked, such as MgO (Badro et al., 2016) or SiO2 (Hirose et al., 2017) exsolution. On the other hand, the low iron thermal conductivity scenario (Konopkova et al., 2016) combined with our model of low thermal conductivity at the base of the mantle, suggests that core convection could have taken place prior to inner core growth whether sources of chemical buoyancy were present or not.

  8. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  9. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    NASA Astrophysics Data System (ADS)

    Pastoriza-Gallego, María José; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M.

    2011-12-01

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

  10. Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites

    NASA Astrophysics Data System (ADS)

    Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.

    2017-04-01

    We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 < T < 500 K yielding a fair agreement with experiment at around room temperature. It is worth noticing that the predicted room-temperature thermal conductivity in a-SiO2 is in very good agreement with the experimental result, which is in marked contrast with the thermal conductivity calculated employing the widely used van Beest-Kramer-van Santen (BKS) potential. We show that the thermal conductivity of composite nc-Ge/a-SiO2 systems decreases steadily with increasing the volume fraction of Ge inclusions, indicative of enhanced interface scattering of phonons imposed by embedded Ge nanocrystals. We also observe that increasing the volume fractions above a certain threshold value results in a progressively increased thermal conductivity of the nanocomposite, which can be explained by increasing volume fraction of a better thermally conducting Ge. Finally, non-equilibrium molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.

  11. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Thermal models of Mercury. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Recent and more complex thermal models of Mercury and the terrestrial planets are discussed or noted. These models isolate a particular aspect of the planet's thermal history in an attempt to understand that parameter. Among these topics are thermal conductivity, convection, radiogenic sources of heat, other heat sources, and the problem of the molten core and regenerative dynamo.

  12. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.

  13. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation

    NASA Astrophysics Data System (ADS)

    Jannot, Y.; Degiovanni, A.; Camus, M.

    2018-04-01

    Standard pore size determination methods like mercury porosimetry, nitrogen sorption, microscopy, or X-ray tomography are not suited to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization has been developed in a previous study. This method has been used with air pressure varying from 10-1 to 105 Pa for materials having a thermal conductivity less than 0.05 W m-1 K-1 at atmospheric pressure. It enables the estimation of pore size distribution between 100 nm and 1 mm. In this paper, we present a new experimental device enabling thermal conductivity measurement under gas pressure up to 106 Pa, enabling the estimation of the volume fraction of pores having a 10 nm diameter. It is also demonstrated that the main thermal conductivity models (parallel, series, Maxwell, Bruggeman, self-consistent) lead to the same estimation of the pore size distribution as the extended parallel model (EPM) presented in this paper and then used to process the experimental data. Three materials with thermal conductivities at atmospheric pressure ranging from 0.014 W m-1 K-1 to 0.04 W m-1 K-1 are studied. The thermal conductivity measurement results obtained with the three materials are presented, and the corresponding pore size distributions between 10 nm and 1 mm are presented and discussed.

  14. Analysis of the thermal comfort model in an environment of metal mechanical branch.

    PubMed

    Pinto, N M; Xavier, A A P; do Amaral, Regiane T

    2012-01-01

    This study aims to identify the correlation between the Predicted Mean Vote (PMV) with the thermal sensation (S) of 55 employees, establishing a linear multiple regression equation. The measurement of environmental variables followed established standards. The survey was conducted in a metal industry located in Ponta Grossa of the State of Parana in Brazil. It was applied the physical model of thermal comfort to the environmental variables and also to the subjective data on the thermal sensations of employees. The survey was conducted from May to November, 2010, with 48 measurements. This study will serve as the basis for a dissertation consisting of 72 measurements.

  15. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  16. Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications

    DOE PAGES

    Giri, Ashutosh; Wee, Sung Hun; Jain, Shikha; ...

    2016-08-26

    Here, we report on the out-of-plane thermal conductivities of tetragonal L1 0 FePt (001) easy-axis and cubic A1 FePt thin films via time-domain thermoreflectance over a temperature range from 133 K to 500 K. The out-of-plane thermal conductivity of the chemically ordered L10 phase with alternating Fe and Pt layers is ~23% greater than the thermal conductivity of the disordered A1 phase at room temperature and below. However, as temperature is increased above room temperature, the thermal conductivities of the two phases begin to converge. Molecular dynamics simulations on model FePt structures support our experimental findings and help shed moremore » light into the relative vibrational thermal transport properties of the L1 0 and A1 phases. Furthermore, unlike the varying temperature trends in the thermal conductivities of the two phases, the electronic scattering rates in the out-of-plane direction of the two phases are similar for the temperature range studied in this work.« less

  17. Thermal conductivity measurements of proton-heated warm dense aluminum

    NASA Astrophysics Data System (ADS)

    McKelvey, A.; Kemp, G.; Sterne, P.; Fernandez, A.; Shepherd, R.; Marinak, M.; Link, A.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.; Ping, Y.

    2017-10-01

    We present the first thermal conductivity measurements of warm dense aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Predictions by other models, such Lee-More, Sesame 27311 and 29373, are outside of experimental error bars. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions. (Y. Ping et al. Phys. Plasmas, 2015, A. Mckelvey, et al. Sci. Reports 2017). This work was performed under the auspices of the DOE by LLNL under contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  18. Modeling of steady-state convective cooling of cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-07-01

    While Lithium-ion batteries have the potential to serve as an excellent means of energy storage, they suffer from several operational safety concerns. Temperature excursion beyond a specified limit for a Lithium-ion battery triggers a sequence of decomposition and release, which can preclude thermal runaway events and catastrophic failure. To optimize liquid or air-based convective cooling approaches, it is important to accurately model the thermal response of Lithium-ion cells to convective cooling, particularly in high-rate discharge applications where significant heat generation is expected. This paper presents closed-form analytical solutions for the steady-state temperature profile in a convectively cooled cylindrical Lithium-ion cell. These models account for the strongly anisotropic thermal conductivity of cylindrical Lithium-ion batteries due to the spirally wound electrode assembly. Model results are in excellent agreement with experimentally measured temperature rise in a thermal test cell. Results indicate that improvements in radial thermal conductivity and axial convective heat transfer coefficient may result in significant peak temperature reduction. Battery sizing optimization using the analytical model is discussed, indicating the dependence of thermal performance of the cell on its size and aspect ratio. Results presented in this paper may aid in accurate thermal design and thermal management of Lithium-ion batteries.

  19. Multiscale Modeling of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2: Application to Lattice Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  20. Strain effects on the anisotropic thermal transport in crystalline polyethylene

    NASA Astrophysics Data System (ADS)

    He, Jixiong; Kim, Kyunghoon; Wang, Yangchao; Liu, Jun

    2018-01-01

    Thermal transport in the axial direction of polymers has been extensively studied, while the strain effect on the thermal conductivity, especially in the radial direction, remains unknown. In this work, we calculated the thermal conductivity in the radial direction of a crystalline polyethylene model and simulated the uniaxial strain effect on the thermal conductivity tensor by molecular dynamics simulations. We found a strong size effect of the thermal transport in the radial direction and estimated that the phonon mean free path can be much larger than the prediction from the classic kinetic theory. We also found that the thermal conductivity in the axial direction increases dramatically with strain, while the thermal conductivity in the radial direction decreases with uniaxial strain. We attribute the reduction of thermal conductivity in the radial direction to the decreases in inter-chain van der Waals forces with strains. The facts that the chains in the crystalline polyethylene became stiffer and more ordered along the chain direction could be the reasons for the increasing thermal conductivity in the axial direction during stretching. Besides, we observed longer phonon lifetime in acoustic branches and higher group velocity in optical branches after uniaxial stretching. Our work provides fundamental understandings on the phonon transport in crystalline polymers, the structure-property relationship in crystalline polymers, and the strain effect in highly anisotropic materials.

  1. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Noshin, Maliha; Intisar Khan, Asir; Subrina, Samia

    2018-05-01

    Recently, stanene and silicene based nanostructures with low thermal conductivity have incited noteworthy interest due to their prospect in thermoelectrics. Aiming at the possibility of extracting lower thermal conductivity, in this study, we have proposed and modeled stanene/silicene heterobilayer nanoribbons, a new heterostructure and subsequently characterized their thermal transport by using an equilibrium molecular dynamics simulation. In addition, the thermal transport in bilayer stanene is also studied and compared. We have computed the thermal conductivity of the stanene/silicene and bilayer stanene nanostructures to characterize their thermal transport phenomena. The studied nanostructures show good thermal stability within the temperature range of 100-600 K. The room temperature thermal conductivities of pristine 10 nm × 3 nm stanene/silicene hetero-bilayer and stanene bilayer are estimated to be 3.63 ± 0.27 W m-1 K-1 and 1.31 ± 0.34 W m-1 K-1, respectively, which are smaller than that of silicene, graphene and some other 2D monolayers as well as heterobilayers such as stanene/graphene and silicene/graphene. In the temperature range of 100-600 K, the thermal conductivity of our studied bilayer nanoribbons decreases with an increase in the temperature. Furthermore, we have investigated the dependence of our estimated thermal conductivity on the size of the considered nanoribbons. The thermal conductivities of both the nanoribbons are found to increase with an increase in the width of the structure. The thermal conductivity shows a similar increasing trend with the increase in the ribbon length, as well. Our results suggest that, the low thermal conductivity of our studied bilayer structures can be further decreased by nanostructuring. The significantly low thermal conductivity of the stanene/silicene heterobilayer and stanene bilayer nanoribbons realized in our study would provide a good insight and encouragement into their appealing prospect in the thermoelectric applications.

  2. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.

    PubMed

    Noshin, Maliha; Khan, Asir Intisar; Subrina, Samia

    2018-05-04

    Recently, stanene and silicene based nanostructures with low thermal conductivity have incited noteworthy interest due to their prospect in thermoelectrics. Aiming at the possibility of extracting lower thermal conductivity, in this study, we have proposed and modeled stanene/silicene heterobilayer nanoribbons, a new heterostructure and subsequently characterized their thermal transport by using an equilibrium molecular dynamics simulation. In addition, the thermal transport in bilayer stanene is also studied and compared. We have computed the thermal conductivity of the stanene/silicene and bilayer stanene nanostructures to characterize their thermal transport phenomena. The studied nanostructures show good thermal stability within the temperature range of 100-600 K. The room temperature thermal conductivities of pristine 10 nm × 3 nm stanene/silicene hetero-bilayer and stanene bilayer are estimated to be 3.63 ± 0.27 W m -1 K -1 and 1.31 ± 0.34 W m -1 K -1 , respectively, which are smaller than that of silicene, graphene and some other 2D monolayers as well as heterobilayers such as stanene/graphene and silicene/graphene. In the temperature range of 100-600 K, the thermal conductivity of our studied bilayer nanoribbons decreases with an increase in the temperature. Furthermore, we have investigated the dependence of our estimated thermal conductivity on the size of the considered nanoribbons. The thermal conductivities of both the nanoribbons are found to increase with an increase in the width of the structure. The thermal conductivity shows a similar increasing trend with the increase in the ribbon length, as well. Our results suggest that, the low thermal conductivity of our studied bilayer structures can be further decreased by nanostructuring. The significantly low thermal conductivity of the stanene/silicene heterobilayer and stanene bilayer nanoribbons realized in our study would provide a good insight and encouragement into their appealing prospect in the thermoelectric applications.

  3. Generalized Effective Medium Theory for Particulate Nanocomposite Materials

    PubMed Central

    Siddiqui, Muhammad Usama; Arif, Abul Fazal M.

    2016-01-01

    The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites. PMID:28773817

  4. Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu

    2014-09-01

    Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungstenmore » with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.« less

  5. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    DTIC Science & Technology

    2013-10-01

    coated microwire to change the temperature of an FBG. We show below that the proposed sensor probe, with a relatively poor thermal coupling with FBG...Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales, including enhanced...nanocomposites as compared to bulk polycrystalline materials, in addition to similar thermal conductivities , results in enhanced room temperature ZT as

  6. Thermal properties of soils: effect of biochar application

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy

    2014-05-01

    Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity that decreased in soil with addition of biochar and pure biochar. The reduction of both properties was mostly due to decrease in both particle density and bulk density. Both biochar and the organic amendments addition resulted in a decrease of the heat capacity of the mixtures in dry state and considerable increase in wet state. The lowest and highest reduction in the thermal conductivity with decreasing water content was obtained for pure biochar and mineral soil, respectively. The thermal diffusivity had a characteristic maximum at higher bulk densities and lower water contents. The wetland soil higher in organic matter content exhibit smaller temporal variation of the thermal properties compared to soils lower in organic matter content in response to changes of water content. The statistical-physical model was found to be useful for satisfactory predicting thermal properties of the soil with addition of biochar and organic amendments. Usowicz B. et al., 2006. Thermal conductivity modelling of terrestrial soil media - A comparative study. Planetary and Space Science 54, 1086-1095.

  7. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE PAGES

    Hu, S. X.; Collins, Lee A.; Goncharov, V. N.; ...

    2016-04-14

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm 3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κ QMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted withmore » a generalized Coulomb logarithm [(lnΛ) QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  8. Experimental study on thermal conductivity of solution combustion synthesized MgO nanoparticles dispersed in water and ethylene glycol (50:50) binary mixture

    NASA Astrophysics Data System (ADS)

    Suseel Jai Krishnan, S.; P. K., Nagarajan

    2017-05-01

    In this present investigation, experiments were conducted on the magnesia nanoparticles (8-18 nm) synthesized by the solution combustion method, which was dispersed in the binary mixture of water-ethylene glycol (50:50) to prepare stable MgO-water-ethylene glycol (50:50) nanofluids through continuous 26h ultrasonication. The effect of nanoparticle concentration (0 to 0.2 vol%) and temperature (25°C to 60°C) on the thermal conductivity of the nanofluids was investigated. The results clearly indicate that an increase in the nanoparticle concentration increases the thermal conductivity of the nanofluid. Similarly the thermal conductivity of the nanofluid increases with increase in temperature. The enhanced thermal conductivity in the nanofluids may be due to either or both, the Brownian movement and the nano-interfacial layering. The maximum enhancement of 16% was obtained at 0.2 vol% nanoparticle concentration and at 60°C. An accurate correlation, modeling the thermal conductivity as a function of nanoparticle concentration and temperature was also proposed based on the experimental data.

  9. Thermally stratified flow of second grade fluid with non-Fourier heat flux and temperature dependent thermal conductivity

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Zia, Q. M. Zaigham; Alsaedi, A.; Hayat, T.

    2018-03-01

    This attempt explores stagnation point flow of second grade material towards an impermeable stretched cylinder. Non-Fourier heat flux and thermal stratification are considered. Thermal conductivity dependents upon temperature. Governing non-linear differential system is solved using homotopic procedure. Interval of convergence for the obtained series solutions is explicitly determined. Physical quantities of interest have been examined for the influential variables entering into the problems. It is examined that curvature parameter leads to an enhancement in velocity and temperature. Further temperature for non-Fourier heat flux model is less than Fourier's heat conduction law.

  10. Phonon focusing and temperature dependences of thermal conductivity of silicon nanofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuleyev, I. I., E-mail: kuleev@imp.uran.ru; Bakharev, S. M.; Kuleyev, I. G.

    2015-04-15

    The effect of phonon focusing on the anisotropy and temperature dependences of the thermal conductivities of silicon nanofilms is analyzed using the three-mode Callaway model. The orientations of the film planes and the directions of the heat flux for maximal or minimal heat removal from silicon chip elements at low temperatures, as well as at room temperature, are determined. It is shown that in the case of diffuse reflection of phonons from the boundaries, the plane with the (100) orientation exhibits the lowest scattering ability (and the highest thermal conductivity), while the plane with the (111) orientation is characterized bymore » the highest scattering ability (and the lowest thermal conductivity). The thermal conductivity of wide films is determined to a considerable extent by the orientation of the film plane, while for nanowires with a square cross section, the thermal conductivity is mainly determined by the direction of the heat flux. The effect of elastic energy anisotropy on the dependences of the thermal conductivity on the geometrical parameters of films is analyzed. The temperatures of transition from boundary scattering to bulk relaxation mechanisms are determined.« less

  11. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-06-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  12. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  13. Thermal analysis of the vertical bridgman semiconductor crystal growth technique. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jasinski, T. J.

    1982-01-01

    The quality of semiconductor crystals grown by the vertical Bridgman technique is strongly influenced by the axial and radial variations of temperature within the charge. The relationship between the thermal parameters of the vertical Bridgman system and the thermal behavior of the charge are examined. Thermal models are developed which are capable of producing results expressable in analytical form and which can be used without recourse to extensive computer work for the preliminary thermal design of vertical Bridgman crystal growth systems. These models include the effects of thermal coupling between the furnace and the charge, charge translation rate, charge diameter, thickness and thermal conductivity of the confining crucible, thermal conductivity change and liberation of latent heat at the growth interface, and infinite charge length. The hot and cold zone regions, considered to be at spatially uniform temperatures, are separated by a gradient control region which provides added thermal design flexibility for controlling the temperature variations near the growth interface.

  14. Visualization and Modelling of the Thermal Inactivation of Bacteria in a Model Food

    PubMed Central

    Bellara, Sanjay R.; Fryer, Peter J.; McFarlane, Caroline M.; Thomas, Colin R.; Hocking, Paul M.; Mackey, Bernard M.

    1999-01-01

    A large number of incidents of food poisoning have been linked to undercooked meat products. The use of mathematical modelling to describe heat transfer within foods, combined with data describing bacterial thermal inactivation, may prove useful in developing safer food products while minimizing thermal overprocessing. To examine this approach, cylindrical agar blocks containing immobilized bacteria (Salmonella typhimurium and Brochothrix thermosphacta) were used as a model system in this study. The agar cylinders were subjected to external conduction heating by immersion in a water bath. They were then incubated, sliced open, and examined by image analysis techniques for regions of no bacterial growth. A finite-difference scheme was used to model thermal conduction and the consequent bacterial inactivation. Bacterial inactivation rates were modelled with values for the time required to reduce bacterial number by 90% (D) and the temperature increase required to reduce D by 90% taken from the literature. Model simulation results agreed well with experimental results for both bacteria, demonstrating the utility of the technique. PMID:10388708

  15. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    PubMed

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  16. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires.

    PubMed

    Zhang, Liye; Yin, Junshan; Yu, Wei; Wang, Mingzhu; Xie, Huaqing

    2017-12-01

    In this paper, ultra-long copper nanowires (CuNWs) were successfully synthesized at a large scale by hydrothermal reduction of divalent copper ion using oleylamine and oleic acid as dual ligands. The characteristic of CuNWs is hard and linear, which is clearly different from graphene nanoplatelets (GNPs) and multi-wall carbon nanotubes (MWCNTs). The thermal properties and models of silicone composites with three nanomaterials have been mainly researched. The maximum of thermal conductivity enhancement is up to 215% with only 1.0 vol.% CuNW loading, which is much higher than GNPs and MWCNTs. It is due to the ultra-long CuNWs with a length of more than 100 μm, which facilitates the formation of effective thermal-conductive networks, resulting in great enhancement of thermal conductivity.

  17. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Liye; Yin, Junshan; Yu, Wei; Wang, Mingzhu; Xie, Huaqing

    2017-07-01

    In this paper, ultra-long copper nanowires (CuNWs) were successfully synthesized at a large scale by hydrothermal reduction of divalent copper ion using oleylamine and oleic acid as dual ligands. The characteristic of CuNWs is hard and linear, which is clearly different from graphene nanoplatelets (GNPs) and multi-wall carbon nanotubes (MWCNTs). The thermal properties and models of silicone composites with three nanomaterials have been mainly researched. The maximum of thermal conductivity enhancement is up to 215% with only 1.0 vol.% CuNW loading, which is much higher than GNPs and MWCNTs. It is due to the ultra-long CuNWs with a length of more than 100 μm, which facilitates the formation of effective thermal-conductive networks, resulting in great enhancement of thermal conductivity.

  18. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives better results compared to observations.

  19. Thermal conductivity of rigid foam insulations for aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Barrios, M.; Van Sciver, S. W.

    2013-05-01

    The present work describes measurements of the effective thermal conductivity of NCFI 24-124 foam, a spray-on foam insulation used formerly on the Space Shuttle external fuel tank. A novel apparatus to measure the effective thermal conductivity of rigid foam at temperatures ranging from 20 K to 300 K was developed and used to study three samples of NCFI 24-124 foam insulation. In preparation for measurement, the foam samples were either treated with a uniquely designed moisture absorption apparatus or different residual gases to study their impact on the effective thermal conductivity of the foam. The resulting data are compared to other measurements and mathematical models reported in the literature.

  20. Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant. Quasi-Static and Dynamic Penetration Testing

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.

    2017-10-01

    The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.

  1. Effect of Material Inhomogeneity on Thermal Performance of a Rheocast Aluminum Heatsink for Electronics Cooling

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Belov, I.; Jarfors, A. E. W.; Wessén, M.

    2016-06-01

    The relation between microstructural inhomogeneity and thermal conductivity of a rheocast component manufactured from two different aluminum alloys was investigated. The formation of two different primary α-Al particles was observed and related to multistage solidification process during slurry preparation and die cavity filling process. The microstructural inhomogeneity of the component was quantified as the fraction of α 1-Al particles in the primary Al phase. A high fraction of coarse solute-lean α 1-Al particles in the primary Al phase caused a higher thermal conductivity of the component in the near-to-gate region. A variation in thermal conductivity through the rheocast component of 10% was discovered. The effect of an inhomogeneous temperature-dependent thermal conductivity on the thermal performance of a large rheocast heatsink for electronics cooling in an operation environment was studied by means of simulation. Design guidelines were developed to account for the thermal performance of heatsinks with inhomogeneous thermal conductivity, as caused by the rheocasting process. Under the modeling assumptions, the simulation results showed over 2.5% improvement in heatsink thermal resistance when the higher conductivity near-to-gate region was located at the top of the heatsink. Assuming homogeneous thermo-physical properties in a rheocast heatsink may lead to greater than 3.5% error in the estimation of maximum thermal resistance of the heatsink. The variation in thermal conductivity within a large rheocast heatsink was found to be important for obtaining of a robust component design.

  2. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X.; King, C.; DeVoto, D.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less

  3. Physical models for the normal YORP and diurnal Yarkovsky effects

    NASA Astrophysics Data System (ADS)

    Golubov, O.; Kravets, Y.; Krugly, Yu. N.; Scheeres, D. J.

    2016-06-01

    We propose an analytic model for the normal Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) and diurnal Yarkovsky effects experienced by a convex asteroid. Both the YORP torque and the Yarkovsky force are expressed as integrals of a universal function over the surface of an asteroid. Although in general this function can only be calculated numerically from the solution of the heat conductivity equation, approximate solutions can be obtained in quadratures for important limiting cases. We consider three such simplified models: Rubincam's approximation (zero heat conductivity), low thermal inertia limit (including the next order correction and thus valid for small heat conductivity), and high thermal inertia limit (valid for large heat conductivity). All three simplified models are compared with the exact solution.

  4. Analytical YORP torques model with an improved temperature distribution function

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Vokrouhlický, D.; Nesvorný, D.

    2010-01-01

    Previous models of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect relied either on the zero thermal conductivity assumption, or on the solutions of the heat conduction equations assuming an infinite body size. We present the first YORP solution accounting for a finite size and non-radial direction of the surface normal vectors in the temperature distribution. The new thermal model implies the dependence of the YORP effect in rotation rate on asteroids conductivity. It is shown that the effect on small objects does not scale as the inverse square of diameter, but rather as the first power of the inverse.

  5. Nanoscale thermal cross-talk effect on phase-change probe memory.

    PubMed

    Wang, Lei; Wen, Jing; Xiong, Bangshu

    2018-05-14

    Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.

  6. Thermophysical parameters from laboratory measurements and tests in borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Pacetti, Chiara; Giuli, Gabriele; Invernizzi, Chiara; Chiozzi, Paolo; Verdoya, Massimo

    2017-04-01

    Besides the type of thermal regime, the performance of borehole heat exchangers relies on the overall thermal resistance of the borehole. This parameter strongly depends on the underground thermal conductivity, which accounts for most of the heat that can be extracted. The geometric configuration and the increase of thermal conductivity of the grout filling back the bore can yield a non-negligible enhancement in thermal performances. In this paper, we present a study on a pilot geothermal plant consisting of two borehole heat exchangers, 95 m deep and 9 m apart. Laboratory and in situ tests were carried out with the aim of investigating underground thermal properties, mechanisms of heat transfer and thermal characteristics of the filling grouts. Samples of grouting materials were analysed in the lab for assessing the thermal conductivity. An attempt to improve the thermal conductivity was made by doping grouts with alumina. Results showed that alumina large concentrations can increase the thermal conductivity by 25-30%. The in situ experiments included thermal logs under conditions of thermal equilibrium and thermal response tests (TRTs). The analysis of the temperature-depth profiles, based on the mass and energy balance in permeable horizons with uniform thermo-hydraulic and steady-state conditions, revealed that the underground thermal regime is dominated by conduction. TRTs were performed by injecting a constant heat rate per unit length into the boreholes for 60-90 hours. After TRTs, the temperature drop off (TDO) was recorded at 20-m-depth intervals for one week in both holes. The TRT time series were interpreted according to the classical model of the infinite line source (ILS), to infer the underground thermal conductivity. The TDO records allowed the inference of the underground thermal properties variation with depth. The results of thermal conductivity inferred with the ILS method are consistent with the values obtained from the TDO analysis.

  7. Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants

    PubMed Central

    Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.

    2017-01-01

    This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463

  8. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    PubMed Central

    Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-01-01

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix. PMID:29068424

  9. Global thermal models of the lithosphere

    NASA Astrophysics Data System (ADS)

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.

  10. Effect of Particle Size on Thermal Conductivity of Nanofluid

    NASA Astrophysics Data System (ADS)

    Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.

    2008-07-01

    Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.

  11. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    PubMed

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  12. Use of advanced modeling techniques to optimize thermal packaging designs.

    PubMed

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed during its validation. Thermal packaging is routinely used by the pharmaceutical industry to provide passive and active temperature control of their thermally sensitive products from manufacture through end use (termed the cold chain). In this study, the authors focus on passive temperature control (passive control does not require any external energy source and is entirely based on specific and/or latent heat of shipper components). As temperature-sensitive pharmaceuticals are being transported over longer distances, cold chain reliability is essential. To achieve reliability, a significant amount of time and resources must be invested in design, test, and production of optimized temperature-controlled packaging solutions. To shorten the cumbersome trial and error approach (design/test/design/test …), computer simulation (virtual prototyping and testing of thermal shippers) is a promising method. Although several companies have attempted to develop such a tool, there has been limited success to date. Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a coupled conductive/convective-based thermal shipper. A modeling technique capable of correctly capturing shipper thermal behavior can be used to develop packaging designs more quickly, reducing up-front costs while also improving shipper performance.

  13. Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.

    PubMed

    Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E

    2016-04-13

    Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.

  14. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  15. Field testing of thermal canopy models in a spruce-fir forest

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Recent advances in remote sensing technology allow the use of the thermal infrared region to gain information about vegetative surfaces. Extending existing models to account for thermal radiance transfers within rough forest canopies is of paramount importance. This is so since all processes of interest in the physical climate system and biogeochemical cycles are thermally mediated. Model validation experiments were conducted at a well established boreal forest; northern hardwood forest ecotone research site located in central Maine. Data was collected to allow spatial and temporal validation of thermal models. Emphasis was placed primarily upon enhancing submodels of stomatal behavior, and secondarily upon enhancing boundary layer resistance submodels and accounting for thermal storage in soil and vegetation.

  16. Thermal Properties of West Siberian Sediments in Application to Basin and Petroleum Systems Modeling

    NASA Astrophysics Data System (ADS)

    Romushkevich, Raisa; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Myasnikov, Artem; Kazak, Andrey; Belenkaya, Irina; Zagranovskaya, Dzhuliya

    2016-04-01

    Quality of heat flow and rock thermal property data is the crucial question in basin and petroleum system modeling. A number of significant deviations in thermal conductivity values were observed during our integral geothermal study of West Siberian platform reporting that the corrections should be carried out in basin models. The experimental data including thermal anisotropy and heterogeneity measurements were obtained along of more than 15 000 core samples and about 4 500 core plugs. The measurements were performed in 1993-2015 with the optical scanning technique within the Continental Super-Deep Drilling Program (Russia) for scientific super-deep well Tyumenskaya SG-6, parametric super-deep well Yen-Yakhinskaya, and deep well Yarudeyskaya-38 as well as for 13 oil and gas fields in the West Siberia. Variations of the thermal conductivity tensor components in parallel and perpendicular direction to the layer stratification (assessed for 2D anisotropy model of the rock studied), volumetric heat capacity and thermal anisotropy coefficient values and average values of the thermal properties were the subject of statistical analysis for the uppermost deposits aged by: T3-J2 (200-165 Ma); J2-J3 (165-150 Ma); J3 (150-145 Ma); K1 (145-136 Ma); K1 (136-125 Ma); K1-K2 (125-94 Ma); K2-Pg+Ng+Q (94-0 Ma). Uncertainties caused by deviations of thermal conductivity data from its average values were found to be as high as 45 % leading to unexpected errors in the basin heat flow determinations. Also, the essential spatial-temporal variations in the thermal rock properties in the study area is proposed to be taken into account in thermo-hydrodynamic modeling of hydrocarbon recovery with thermal methods. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  17. Quantifying the Influence of Near-Surface Water-Energy Budgets on Soil Thermal Properties Using a Network of Coupled Meteorological and Vadose Zone Instrument Arrays in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Naylor, S.; Gustin, A. R.; Ellett, K. M.

    2012-12-01

    Weather stations that collect reliable, sustained meteorological data sets are becoming more widely distributed because of advances in both instrumentation and data server technology. However, sites collecting soil moisture and soil temperature data remain sparse with even fewer locations where complete meteorological data are collected in conjunction with soil data. Thanks to the advent of sensors that collect continuous in-situ thermal properties data for soils, we have gone a step further and incorporated thermal properties measurements as part of hydrologic instrument arrays in central and northern Indiana. The coupled approach provides insights into the variability of soil thermal conductivity and diffusivity attributable to geologic and climatological controls for various hydrogeologic settings. These data are collected to facilitate the optimization of ground-source heat pumps (GSHPs) in the glaciated Midwest by establishing publicly available data that can be used to parameterize system design models. A network of six monitoring sites was developed in Indiana. Sensors that determine thermal conductivity and diffusivity using radial differential temperature measurements around a heating wire were installed at 1.2 meters below ground surface— a typical depth for horizontal GSHP systems. Each site also includes standard meteorological sensors for calculating reference evapotranspiration following the methods by the Food and Agriculture Organization (FAO) of the United Nations. Vadose zone instrumentation includes time domain reflectometry soil-moisture and temperature sensors installed at 0.3-meter depth intervals down to a 1.8-meter depth, in addition to matric potential sensors at 0.15, 0.3, 0.6, and 1.2 meters. Cores collected at 0.3-meter intervals were analyzed in a laboratory for grain size distribution, bulk density, thermal conductivity, and thermal diffusivity. Our work includes developing methods for calibrating thermal properties sensors based on known standards and comparing measurements from transient line heat source devices. Transform equations have been developed to correct in-situ measurements of thermal conductivity and comparing these results with soil moisture data indicates that thermal conductivity can increase by as much as 25 percent during wetting front propagation. Thermal dryout curves have also been modeled based on laboratory conductivity data collected from core samples to verify field measurements, and alternatively, temperature profile data are used to calibrate near-surface temperature gradient models. We compare data collected across various spatial scales to assess the potential for upscaling near-surface thermal regimes based on available soils data. A long-term goal of the monitoring effort is to establish continuous data sets that determine the effect of climate variability on soil thermal properties such that expected ranges in thermal conductivity can be used to determine optimal ground-coupling loop lengths for GSHP systems.

  18. Thermal conductivity enhancement and sedimentation reduction of magnetorheological fluids with nano-sized Cu and Al additives

    NASA Astrophysics Data System (ADS)

    Rahim, M. S. A.; Ismail, I.; Choi, S. B.; Azmi, W. H.; Aqida, S. N.

    2017-11-01

    This work presents enhanced material characteristics of smart magnetorheological (MR) fluids by utilizing nano-sized metal particles. Especially, enhancement of thermal conductivity and reduction of sedimentation rate of MR fluids those are crucial properties for applications of MR fluids are focussed. In order to achieve this goal, a series of MR fluid samples are prepared using carbonyl iron particles (CIP) and hydraulic oil, and adding nano-sized particles of copper (Cu), aluminium (Al), and fumed silica (SiO2). Subsequently, the thermal conductivity is measured by the thermal property analyser and the sedimentation of MR fluids is measured using glass tubes without any excitation for a long time. The measured thermal conductivity is then compared with theoretical models such as Maxwell model at various CIP concentrations. In addition, in order to show the effectiveness of MR fluids synthesized in this work, the thermal conductivity of MRF-132DG which is commercially available is measured and compared with those of the prepared samples. It is observed that the thermal conductivity of the samples is much better than MRF-132DG showing the 148% increment with 40 vol% of the magnetic particles. It is also observed that the sedimentation rate of the prepared MR fluid samples is less than that of MRF-132DG showing 9% reduction with 40 vol% of the magnetic particles. The mixture optimized sample with high conductivity and low sedimentation was also obtained. The magnetization of the sample recorded an enhancement of 70.5% when compared to MRF-132DG. Furthermore, the shear yield stress of the sample were also increased with and without the influence of magnetic field.

  19. Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-09-01

    In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance, and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare the predictions of the two above-mentioned methods—EMD and NEMD—regarding the interfacial conductance of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These considerations are important in rationalizing previous results obtained using molecular dynamics, and help in pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids, which is a prerequisite to understand interfacial heat transfer across real interfaces.

  20. Multiple parent bodies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Yomogida, K.; Matsui, T.

    1984-01-01

    Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.

  1. An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei

    2006-01-01

    The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.

  2. Porosity and Mineralogy Control on the Thermal Properties of Sediments in Off-Shimokita Deep-Water Coal Bed Basin

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Tadai, O.; Morita, S.; Lin, W.; Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.

    2014-12-01

    Heat transport properties such as thermal conductivity, heat capacity, and thermal diffusivity are significant parameters that influence on geothermal process in sedimentary basins at depth. We measured the thermal properties of sediment core samples at off-Shimokita basin obtained from the IODP Expedition 337 and Expedition CK06-06 in D/V Chikyu shakedown cruise. Overall, thermal conductivity and thermal diffusivity increased with depth and heat capacity decreased with depth, although the data was highly scattered at the depth of approximately 2000 meters below sea floor, where coal-layers were formed. The increase of thermal conductivity is mainly explained by the porosity reduction of sediment by the consolidation during sedimentation. The highly variation of the thermal conductivity at the same core section is probably caused by the various lithological rocks formed at the same section. Coal shows the lowest thermal conductivity of 0.4 Wm-1K-1, and the calcite cemented sandstone/siltstone shows highest conductivity around 3 Wm-1K-1. The thermal diffusivity and heat capacity are influenced by the porosity and lithological contrast as well. The relationship between thermal conductivity and porosity in this site is well explained by the mixed-law model of Maxwell or geometric mean. One dimensional temperature-depth profile at Site C0020 in Expedition 337 estimated from measured physical properties and radiative heat production data shows regression of thermal gradient with depth. Surface heat flow value was evaluated as 29~30 mWm-2, and the value is consistent with the heat flow data near this site. Our results suggest that increase of thermal conductivity with depth significantly controls on temperature profile at depth of basin. If we assume constant thermal conductivity or constant geothermal gradient, we might overestimate temperature at depth, which might cause big error to predict the heat transport or hydrocarbon formation in deepwater sedimentary basins.

  3. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.

    PubMed

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-04-18

    Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.

  4. Geometrical Effect on Thermal Conductivity of Unidirectional Fiber-Reinforced Polymer Composite along Different In-plane Orientations

    NASA Astrophysics Data System (ADS)

    Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang

    2017-11-01

    This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.

  5. Thermal rectification in thin films driven by gradient grain microstructure

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel

    2018-03-01

    As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.

  6. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    PubMed Central

    2011-01-01

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity. PMID:21711737

  7. Phonon conduction in GaN-diamond composite substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.

    2017-02-01

    The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.

  8. Heat Transfer in High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2002-01-01

    The combined radiation/conduction heat transfer in high-porosity, high-temperature fibrous insulations was investigated experimentally and numerically. The effective thermal conductivity of fibrous insulation samples was measured over the temperature range of 300-1300 K and environmental pressure range of 1.33 x 10(exp -5)-101.32 kPa. The fibrous insulation samples tested had nominal densities of 24, 48, and 72 kilograms per cubic meter and thicknesses of 13.3, 26.6 and 39.9 millimeters. Seven samples were tested such that the applied heat flux vector was aligned with local gravity vector to eliminate natural convection as a mode of heat transfer. Two samples were tested with reverse orientation to investigate natural convection effects. It was determined that for the fibrous insulation densities and thicknesses investigated no heat transfer takes place through natural convection. A finite volume numerical model was developed to solve the governing combined radiation and conduction heat transfer equations. Various methods of modeling the gas/solid conduction interaction in fibrous insulations were investigated. The radiation heat transfer was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. A genetic-algorithm based parameter estimation technique was utilized with this model to determine the relevant radiative properties of the fibrous insulation over the temperature range of 300-1300 K. The parameter estimation was performed by least square minimization of the difference between measured and predicted values of effective thermal conductivity at a density of 24 kilograms per cubic meters and at nominal pressures of 1.33 x 10(exp -4) and 99.98 kPa. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements at other densities and pressures. The numerical model was also validated by comparison with a transient thermal test simulating reentry aerodynamic heating conditions.

  9. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    PubMed

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  10. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm.

    PubMed

    Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A

    2017-01-01

    In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.

  11. A time-dependent model to determine the thermal conductivity of a nanofluid

    NASA Astrophysics Data System (ADS)

    Myers, T. G.; MacDevette, M. M.; Ribera, H.

    2013-07-01

    In this paper, we analyse the time-dependent heat equations over a finite domain to determine expressions for the thermal diffusivity and conductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles with average size below 100 nm). Due to the complexity of the standard mathematical analysis of this problem, we employ a well-known approximate solution technique known as the heat balance integral method. This allows us to derive simple analytical expressions for the thermal properties, which appear to depend primarily on the volume fraction and liquid properties. The model is shown to compare well with experimental data taken from the literature even up to relatively high concentrations and predicts significantly higher values than the Maxwell model for volume fractions approximately >1 %. The results suggest that the difficulty in reproducing the high values of conductivity observed experimentally may stem from the use of a static heat flow model applied over an infinite domain rather than applying a dynamic model over a finite domain.

  12. Thermal modeling of the lithium/polymer battery

    NASA Astrophysics Data System (ADS)

    Pals, C. R.

    1994-10-01

    Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.

  13. The role of anisotropic thermal conduction in a collisionless magnetized hot accretion flow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam

    2018-06-01

    We study the importance and the effects of anisotropic thermal conduction in a collisionless magnetized advection dominated accretion flow in the presence of discontinuity of mass, angular momentum and energy between inflow and outflow. In this paper, we have considered that the thermal conduction is a heating mechanism like viscosity and leads to an increase in the temperature of the gas. A set of self similar solutions are used for steady state and axisymmetric structure of such hot accretion disc to solve the MHD equations in our model. Based on these solutions, we have found that increasing the level of two parts of anisotropic thermal conduction (parallel & transverse) results in increasing the mass accretion rate or radial velocity but decreasing the rotational velocity. Also both radial and rotational velocities are sub-Keplerian. Also we have shown that the anisotropic thermal conduction can be effective in the parameter space of specific energy of outflow, toroidal and vertical components of magnetic field according to a physical constraint tinfall ≥ t⊥, conduction.

  14. Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.

    2015-01-01

    We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.

  15. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  16. Thermal Aspects of Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Frank, H.; Shakkottai, P.; Bugga, R.; Smart, M.; Huang, C. K.; Timmerman, P.; Surampudi, S.

    2000-01-01

    This viewgraph presentation outlines the development of a thermal model of Li-ion cells in terms of heat generation, thermal mass, and thermal resistance. Intended for incorporation into battery model. The approach was to estimate heat generation: with semi-theoretical model, and then to check accuracy with efficiency measurements. Another objective was to compute thermal mass from component weights and specific heats, and to compute the thermal resistance from component dimensions and conductivities. Two lithium batteries are compared, the Cylindrical lithium battery, and the prismatic lithium cell. It reviews methodology for estimating the heat generation rate. Graphs of the Open-circuit curves of the cells and the heat evolution during discharge are given.

  17. Increasing the thermal conductivity of silicone based fluids using carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Vales-Pinzon, C.; Vega-Flick, A.; Pech-May, N. W.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.; Zambrano-Arjona, M. A.; Mendez-Gamboa, J. A.

    2016-11-01

    Heat transfer in silicone fluids loaded with high thermal conductivity carbon nanofibers was studied using photoacoustics and thermal wave resonator cavity. It is shown that heat transport depends strongly on volume fraction of carbon nanofibers; in particular, a low loading percentage is enough to obtain significant changes in thermal conductivity. Theoretical models were used to determine how heat transfer is affected by structural formations in the composite, such as packing fraction and aspect ratio (form factor) of carbon nanofiber agglomerates in the high viscosity fluid matrix. Our results may find practical applications in systems, in which the carbon nanofibers can facilitate heat dissipation in the electronic devices.

  18. Understanding Nanoscale Thermal Conduction an Mechanical Strength Correlation in High Temperature Ceramics with Improved Thermal Shock Resistance for Aerospace Applications

    DTIC Science & Technology

    2012-08-08

    simulation data is available on this system. Molecular simulation , ab initio simulations , thermal conductivity, biomimetic materials, phase transformation...MOLECULAR SIMULATIONS …………….. 28 §2.2.1 THERMAL CONDUCTION ANALYSES IN SUPERLATTICES AS A FUNCTION OF STRAIN……………………………………………………………. 29 §2.2.2...analyses also focus on Si-Ge interfaces and nanocomposites, as a lot of simulation data is available on this system. In terms of modeling the required

  19. Elastic mismatch induced reduction of the thermal conductivity of silicon with aluminum nano-inclusions

    NASA Astrophysics Data System (ADS)

    Donovan, Brian F.; Jensen, Wade A.; Chen, Long; Giri, Ashutosh; Poon, S. Joseph; Floro, Jerrold A.; Hopkins, Patrick E.

    2018-05-01

    We use aluminum nano-inclusions in silicon to demonstrate the dominance of elastic modulus mismatch induced scattering in phonon transport. We use time domain thermoreflectance to measure the thermal conductivity of thin films of silicon co-deposited with aluminum via molecular beam epitaxy resulting in a Si film with 10% clustered Al inclusions with nanoscale dimensions and a reduction in thermal conductivity of over an order of magnitude. We compare these results with well-known models in order to demonstrate that the reduction in the thermal transport is driven by elastic mismatch effects induced by aluminum in the system.

  20. Thermal waves or beam heating in the 1980, November 5 flare

    NASA Technical Reports Server (NTRS)

    Smith, Dean F.

    1986-01-01

    Observations of the temporal evolution of loop BC in soft X rays in the November 5, 1980 flare are reviewed. Calculations are performed to model this evolution. The most consistent interpretation involving a minimum account of energy is the following. Thermal heating near B gives rise to a conduction front which moves out along the loop uninhibited for about 27 s. Beam heating near C gives rise to a second conduction front which moves in the opposite direction and prevents any energy reaching C by thermal conduction from B. Thus both thermal waves and beam heating are required to explain the observed evolution.

  1. Improved Heat Dissipation of High-Power LED Lighting by a Lens Plate with Thermally-Conductive Plastics.

    PubMed

    Lee, Dong Kyu; Park, Hyun Jung; Cha, Yu-Jung; Kim, Hyeong Jin; Kwak, Joon Seop

    2018-03-01

    The junction temperature of high-power LED lighting was reduced effectively using a lens plate made from a thermally-conductive plastics (TCP). TCP has an excellent thermal conductivity, approximately 5 times that of polymethylmethacrylate (PMMA). Two sets of high-power LED lighting were designed using a multi array LED package with a lens plate for thermal simulation. The difference between two models was the materials of the lens plate. The lens plates of first and second models were fabricated by PMMA (PMMA lighting) and TCP (TCP lighting), respectively. At the lens plate, the simulated temperature of the TCP lighting was higher than that of the PMMA lighting. Near the LED package, the temperature of the TCP lighting was 2 °C lower than that of the PMMA lighting. This was well matched with the measured temperature of the fabricated lighting with TCP and PMMA.

  2. TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1976-01-01

    The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.

  3. Thermal maturity patterns of Cretaceous and Tertiary rocks, San Juan Basin, Colorado and New Mexico

    USGS Publications Warehouse

    Law, B.E.

    1992-01-01

    Horizontal and vertical thermal maturity patterns and time-temperature modeling indicate that the high levels of thermal maturity in the northern part of the basin are due to either: 1) convective heat transfer associated with a deeply buried heat source located directly below the northern part of the basin or 2) the circulation of relatively hot fluids into the basin from a heat source north of the basin located near the San Juan Mountains. Time-temperature and kinetic modeling of nonlinear Rm profiles indicates that present-day heat flow is insufficient to account for the measured levels of thermal maturity. Furthermore, in order to match nonlinear Rm profiles, it is necessary to assign artifically high thermal-conductivity values to some of the stratigraphic units. These unrealistically high thermal conductivities are interpreted as evidence of convective heat transfer. -from Author

  4. Effects of Intergranular Gas Bubbles on Thermal Conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Chockalingam; Paul C. Millett; M. R. Tonks

    2012-11-01

    Model microstructures obtained from phase-field simulations are used to study the effective heat transfer across bicrys- tals with stationary grain boundary bubble populations. We find that the grain boundary coverage, irrespective of the intergranular bubble radii, is the most relevant parameter to the thermal resistance, which we use to derive effec- tive Kapitza resistances that are dependent on the grain boundary coverage and Kaptiza resistance of the intact grain boundary. We propose a model to predict thermal conductivity as a function of porosity, grain-size, Kaptiza resistance of the intact grain boundary, and grain boundary bubble coverage.

  5. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    NASA Astrophysics Data System (ADS)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  6. Specific Heat Capacities of Martian Sedimentary Analogs at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Vu, T. H.; Piqueux, S.; Choukroun, M.; Christensen, P. R.; Glotch, T. D.; Edwards, C. S.

    2017-12-01

    Data returned from Martian missions have revealed a wide diversity of surface mineralogies, especially in geological structures interpreted to be sedimentary or altered by liquid water. These terrains are of great interest because of their potential to document the environment at a time when life may have appeared. Intriguingly, Martian sedimentary rocks show distinctly low thermal inertia values (300-700 J.m-2.K-1.s-1/2, indicative of a combination of low thermal conductivity, specific heat, and density) that are difficult to reconcile with their bedrock morphologies (where hundreds of magmatic bedrock occurrences have been mapped with thermal inertia values >> 1200 J.m-2.K-1.s-1/2). While low thermal conductivity and density values are sometimes invoked to lower the thermal inertia of massive bedrock, both are not sufficient to lower values below 1200 J.m-2.K-1.s-1/2, far above the numbers reported in the literature for Martian sedimentary/altered rocks. In addition, our limited knowledge of the specific heat of geological materials and their temperature dependency, especially below room temperature, have prevented accurate thermal modeling and impeded interpretation of the thermal inertia data. In this work, we have addressed that knowledge gap by conducting experimental measurements of the specific heat capacities of geological materials relevant to Martian sedimentary rocks at temperatures between 100 and 350 K. The results show that variation of the specific heat with temperature, while appreciable to some extent, is rather small and is unlikely to contribute significantly in the lowering of thermal inertia values. Therefore, thermal conductivity is the parameter that has the most potential in explaining this phenomenon. Such scenario could be possible if the sedimentary rocks are finely layered with poor thermal contact between each internal bed. As the density of most geological materials is well-known, the obtained specific heat data can be used to uniquely constrain the thermal conductivity, thereby improving thermal prediction models for Martian surface temperatures. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the NASA Solar System Workings Program and government sponsorship are acknowledged.

  7. Numerical study on the thermal behavior of graphene nanoplatelets/epoxy composites

    NASA Astrophysics Data System (ADS)

    Xiao, Wenkai; Zhai, Xian; Ma, Pengfei; Fan, Taotao; Li, Xiaotuo

    2018-06-01

    A three-dimensional computational model was developed using the finite element method (FEM) to evaluate the thermal behavior of graphene nanoplatelets (GNPs)/epoxy composites based on continuum mechanics. The model was validated with experimental data. The effects of the ratio of radius to thickness (Rrt) of GNPs, the interfacial thermal conductivity between GNPs and the matrix (Cgm), the contact thermal conductivity between GNPs (Cgg) and the agglomeration degree of GNPs on the thermal conductivity of composites (Kc) were quantified using this model. The results show that a larger Rrt is beneficial to Kc. GNPs could increase Kc only when the Cgm is greater than a critical value. A percolation phenomenon will occur when Cgg is larger than 1.0E8 W/(m2k) in randomly distributed GNPs/epoxy composites. The percolation effects become more obvious with the increase of Cgg and the volume fraction of GNPs. The agglomeration of GNPs has negative effects on the Kc. The higher the agglomeration degree of GNPs is, the lower Kc is. This is attributed to less beneficial interfacial areas, more inefficient contact areas, smaller Rrt and less effective connection/contact between GNPs.

  8. Thermal transport in the Fermi-Pasta-Ulam model with long-range interactions

    NASA Astrophysics Data System (ADS)

    Bagchi, Debarshee

    2017-03-01

    We study the thermal transport properties of the one-dimensional Fermi-Pasta-Ulam model (β type) with long-range interactions. The strength of the long-range interaction decreases with the (shortest) distance between the lattice sites as distance-δ, where δ ≥0 . Two Langevin heat baths at unequal temperatures are connected to the ends of the one-dimensional lattice via short-range harmonic interactions that drive the system away from thermal equilibrium. In the nonequilibrium steady state the heat current, thermal conductivity, and temperature profiles are computed by solving the equations of motion numerically. It is found that the conductivity κ has an interesting nonmonotonic dependence with δ with a maximum at δ =2.0 for this model. Moreover, at δ =2.0 ,κ diverges almost linearly with system size N and the temperature profile has a negligible slope, as one expects in ballistic transport for an integrable system. We demonstrate that the nonmonotonic behavior of the conductivity and the nearly ballistic thermal transport at δ =2.0 obtained under nonequilibrium conditions can be explained consistently by studying the variation of largest Lyapunov exponent λmax with δ , and excess energy diffusion in the equilibrium microcanonical system.

  9. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  10. Fiber-coupled thermal microscope for solid materials based on thermoreflectance method

    NASA Astrophysics Data System (ADS)

    Miyake, Shugo; Hatori, Kimihito; Ohtsuki, Tetsuya; Awano, Takaaki; Sekine, Makoto

    2018-06-01

    Measurement of the thermal properties of solid-state materials, including high- and low-thermal-conductivity materials in electronic devices, is very important to improve thermal design. The thermoreflectance method is well known as a powerful technique for measuring a wide range of thermal conductivity. However, in order to precisely determine the thermoreflectance signal, the alignment between two laser beams should be perfectly coaxial, similar to that in the numerical calculation model. In this paper, a developed fiber-coupled thermal microscope based on the thermoreflectance method is demonstrated, which we use to determine the frequency dependence of the temperature responses of silicon, sapphire, zirconium, and Pyrex glass samples.

  11. Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage

    NASA Astrophysics Data System (ADS)

    Dai, Gaole; Shang, Jin; Huang, Jiping

    2018-02-01

    Heat can transfer via thermal conduction, thermal radiation, and thermal convection. All the existing theories of transformation thermotics and optics can treat thermal conduction and thermal radiation, respectively. Unfortunately, thermal convection has seldom been touched in transformation theories due to the lack of a suitable theory, thus limiting applications associated with heat transfer through fluids (liquid or gas). Here, we develop a theory of transformation thermal convection by considering the convection-diffusion equation, the equation of continuity, and the Darcy law. By introducing porous media, we get a set of equations keeping their forms under coordinate transformation. As model applications, the theory helps to show the effects of cloaking, concentrating, and camouflage. Our finite-element simulations confirm the theoretical findings. This work offers a transformation theory for thermal convection, thus revealing novel behaviors associated with potential applications; it not only provides different hints on how to control heat transfer by combining thermal conduction, thermal convection, and thermal radiation, but also benefits mass diffusion and other related fields that contain a set of equations and need to transform velocities at the same time.

  12. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-01

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8–10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  13. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.

    PubMed

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-17

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  14. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE PAGES

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul; ...

    2017-12-11

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  15. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  16. Influence of defects on the thermal conductivity of compressed LiF

    DOE PAGES

    Jones, R. E.; Ward, D. K.

    2018-02-08

    We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less

  17. Influence of defects on the thermal conductivity of compressed LiF

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Ward, D. K.

    2018-02-01

    Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.

  18. Influence of defects on the thermal conductivity of compressed LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R. E.; Ward, D. K.

    We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less

  19. Experimental determination of the thermal conductivity of liquid UO2 near the melting point

    NASA Astrophysics Data System (ADS)

    Sheindlin, M.; Staicu, D.; Ronchi, C.; Game-Arnaud, L.; Remy, B.; Degiovanni, A.

    2007-05-01

    The article gives an account of measurements of the thermal conductivity of liquid UO2. The sample was heated up to above the melting point by a laser pulse of a controlled shape, and the produced thermogram of temperature history was measured by a fast and accurate pyrometer with a time resolution of 10 μs. The experiment shows that the rate of temperature increase during the ascending part of the pulse changes moderately across the melting point. Due to the high power input, this effect cannot be explained in terms of the sole intake of latent heat of fusion. By solving the related heat transfer equation with a 2D-axisymmetric numerical model, it is demonstrated that this feature depends principally on heat conduction in the sample, and proves that the thermal conductivities of solid and liquid are not very different. A theoretical sensitivity study assessing the influence of the liquid thermal conductivity on the pulse temperature evolution showed that the conductivity of the liquid can be deduced from the fitting of the thermograms with a numerical precision of the order of 1%. The analysis reveals that the thermal conductivity is weakly correlated with the effective heat losses during the pulse and to the melting enthalpy, so that the uncertainty in its evaluation by fitting the experimental thermograms with model predictions is satisfactory. The value of the thermal conductivity of liquid UO2 near the melting point resulted to be 2.6±0.35 W m-1 K-1, where the magnitude of the uncertainty is much lower than the scatter of the previously published, discordant measurements.

  20. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  1. Radiative-conductive inverse problem for lumped parameter systems

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2008-11-01

    The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.

  2. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  3. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    NASA Astrophysics Data System (ADS)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilberto

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  5. Flow of chemically reactive magneto Cross nanoliquid with temperature-dependent conductivity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Ullah, Ikram; Waqas, Muhammad; Alsaedi, Ahmed

    2018-05-01

    Influence of temperature-dependent thermal conductivity on MHD flow of Cross nanoliquid bounded by a stretched sheet is explored. The combined feature of Brownian motion and thermophoresis in nanoliquid modeling is retained. In addition, the attributes of zero mass flux at sheet are imposed. First-order chemical reaction is retained. The resulting problems are numerically computed. Plots and tabulated values are presented and examined. It is figured out that larger thermophoretic diffusion and thermal conductivity significantly rise the thermal field, whereas opposite situation is seen for heat transfer rate.

  6. Capability of GPGPU for Faster Thermal Analysis Used in Data Assimilation

    NASA Astrophysics Data System (ADS)

    Takaki, Ryoji; Akita, Takeshi; Shima, Eiji

    A thermal mathematical model plays an important role in operations on orbit as well as spacecraft thermal designs. The thermal mathematical model has some uncertain thermal characteristic parameters, such as thermal contact resistances between components, effective emittances of multilayer insulation (MLI) blankets, discouraging make up efficiency and accuracy of the model. A particle filter which is one of successive data assimilation methods has been applied to construct spacecraft thermal mathematical models. This method conducts a lot of ensemble computations, which require large computational power. Recently, General Purpose computing in Graphics Processing Unit (GPGPU) has been attracted attention in high performance computing. Therefore GPGPU is applied to increase the computational speed of thermal analysis used in the particle filter. This paper shows the speed-up results by using GPGPU as well as the application method of GPGPU.

  7. Validation of PICA Ablation and Thermal-Response Model at Low Heat Flux

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2009-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the forebody heatshield material on the Stardust sample-return capsule and is also a primary candidate material for the Mars Science Lander (MSL), the Orion Crew Module, and the SpaceX Dragon vehicle. As part of the heatshield qualification for Orion, physical and thermal properties of virgin and charred PICA were measured, and an ablation and thermal response model was developed. We validated the model by comparing it with recession and temperature data from stagnation arcjet tests conducted over a wide range of stagnation heat flux of 107 to 1102 W/sq cm. The effect of orthotropic thermal conductivity was evident in the thermal response of the arcjet models. In general, model predictions compared well with the data; however, the uncertainty of the recession prediction was greatest for heat fluxes below 200 W/sq cm. More recent MSL testing focused on the low heat flux regime of 45 to 250 W/sq cm. The new results confirm the recession uncertainty, especially for pressures below 6 kPa. In this work we focus on improving the model predictions for MSL and Orion tests below 250 W/sq cm.

  8. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    NASA Astrophysics Data System (ADS)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  9. Subcontinuum thermal transport in tip-based thermal engineering

    NASA Astrophysics Data System (ADS)

    Hamian, Sina

    For the past two decades, tip-based thermal engineering has made remarkable advances to realize unprecedented nanoscale thermal applications, such as thermomechanical data storage, thermophysical/chemical property characterization of materials in nanometer scale, and scanning thermal imaging and analysis. All these applications involve localized heating with elevated temperature, generally in the order of mean free paths of heat carriers, thus necessitates fundamental understanding of sub-continuum thermal transport across point constrictions and within thin films. Considering the demands, this dissertation is divided into three main scopes providing: (1) a numerical model that provides insight onto nanoscale thermal transport, (2) an electrothermal characterization of a heated microcantilever as a localized heating source, and (3) qualitative measurement of tip-substrate thermal transport using high resolution nanothermometer/heater. This dissertation starts with a literature review on the three aforementioned scopes followed by a numerical model for two-dimensional transient ballistic-diffusive heat transfer combining finite element analysis with discrete ordinate method (DOM-FEA), seeking to provide insight on subcontinuum thermal transport. The phonon Boltzmann transport equation (BTE) under grey relaxation time approximation is solved for different Knudsen numbers. Next, a thermal microcantilever, as one of the main tools in tip-based thermal engineering, is characterized under periodic heating operation in air and vacuum using 3o technique. A three-dimensional FEA simulation of a thermal microcantilever is used to model heat transfer in frequency domain resulting in good agreement with the experiment. Next, quantitative thermal transport is measured by a home-built nanothermometer fabricated using combination of electron-beam lithography and photolithography. An atomic force microscope (AFM) cantilever is used to scan over the sensing probe of the nanothermometer at an elevated temperature causing local cooling. The experiment is done in air resulting in a tip-substrate effective thermal conductance of 32.5 nW/K followed by theoretical calculations predicting contribution of solid-solid thermal conduction to be 48%. Finally, the same experiment is conducted in vacuum with similar operating condition, showing 50% contribution of solid-solid conductance, which is in good agreement with the theory, assuming no water meniscus in vacuum condition. The outcomes of these studies provide a strong platform to fundamentally understand thermal transport at the micro/nanometer scale.

  10. Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2012-12-01

    Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this reason, we have built a new type of apparatus to measure the thermal conductivity of sample significantly larger than previous apparatus under planetary conditions of atmosphere and gas composition. Samples' edges are cooled down from room to LN2 temperature and the surface material temperature is recorded by an infrared camera without inserting thermocouples or heat sources. Sample surface cooling trends are fit with finite element models of heat transfer to retrieve the material thermal conductivity. Preliminary results confirm independent numerical modeling results predicting the thermal conductivity of complex materials: the thermal inertia of particulate material under Mars conditions is temperature-dependent, small amounts of cements significantly increase the bulk conductivity and inertia of particulate material, and one-grain-thick armors similar to those observed by the Mars Exploration Rovers behave like a thin highly conductive layer that does not significantly influence apparent thermal inertias. These results are used to further our interpretation of Martian temperature observations. For example local amounts of subsurface water ice or the fraction of cementing phase in the global Martian duricrust can be constrained; the search for subtle changes in near-surface heat flow can be performed more accurately, and surface thermal inertias under various atmospheric conditions of pressure and gas composition can be predicted.

  11. Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    NASA Technical Reports Server (NTRS)

    Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran

    2007-01-01

    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.

  12. The role of the global magnetic field and thermal conduction on the structure of the accretion disks of all models

    NASA Astrophysics Data System (ADS)

    Farahinezhad, M.; Khesali, A. R.

    2018-05-01

    In this paper, the effects of global magnetic field and thermal conduction on the vertical structure of the accretion disks has been investigated. In this study, four types disks were examined: Gas pressure dominated the standard disk, while radiation pressure dominated the standard disk, ADAF disk, slim disk. Moreover, the general shape of the magnetic field, including toroidal and poloidal components, is considered. The magnetohydrodynamic equations were solved in spherical coordinates using self-similar assumptions in the radial direction. Following previous authors, the polar velocity vθ is non-zero and Trφ was considered as a dominant component of the stress tensor. The results show that the disk becomes thicker compared to the non-magnetic fields. It has also been shown that the presence of the thermal conduction in the ADAF model makes the disk thicker; the disk is expanded in the standard model.

  13. A thermal control system for long-term survival of scientific instruments on lunar surface.

    PubMed

    Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  14. Inverse problem to constrain the controlling parameters of large-scale heat transport processes: The Tiberias Basin example

    NASA Astrophysics Data System (ADS)

    Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien

    2015-04-01

    Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer- Verlag Berlin Heidelberg ,996p. Doherty J., 2010, PEST: Model-Independent Parameter Estimation. user manual 5th Edition. Watermark, Brisbane, Australia Magri, F., Inbar, N., Siebert C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520(0), 342-355.

  15. Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle

    PubMed Central

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-01-01

    Earth’s water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump−probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine−wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone. PMID:28377520

  16. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.

    2016-04-15

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  17. Geothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and numerical modeling of heat transfer

    NASA Astrophysics Data System (ADS)

    Vélez, Maria Isabel; Blessent, Daniela; Córdoba, Sebastián; López-Sánchez, Jacqueline; Raymond, Jasmin; Parra-Palacio, Eduardo

    2018-01-01

    This work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10-2 MWt m-1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10-2 MW m-1 (σ = 2.91 × 10-3 MW m-1) and 1.88 × 10-2 MW/m (σ = 2.91 × 10-3 MW m-1) for the two modeling scenario considered.

  18. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  19. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    PubMed

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Michael L.

    We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model,more » implementation, and validation.« less

  1. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  2. Heat Transfer Issues in Finite Element Analysis of Bounding Accidents in PPCS Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampin, R.; Karditsas, P.J.

    2005-05-15

    Modelling of temperature excursions in structures of conceptual power plants during hypothetical worst-case accidents has been performed within the European Power Plant Conceptual Study (PPCS). A new, 3D finite elements (FE) based tool, coupling the different calculations to the same tokamak geometry, has been extensively used to conduct the neutron transport, activation and thermal analyses for all PPCS plant models. During a total loss of cooling, the usual assumption for the bounding accident, passive removal of the decay heat from activated materials depends on conduction and radiation heat exchange between components. This paper presents and discusses results obtained during themore » PPCS bounding accident thermal analyses, examining the following issues: (a) radiation heat exchange between the inner surfaces of the tokamak, (b) the presence of air within the cryostat volume, and the heat flow arising from the circulation pattern provided by temperature differences between various parts, and (c) the thermal conductivity of pebble beds, and its degradation due to exposure to neutron irradiation, affecting the heat transfer capability and thermal response of a blanket based on these components.« less

  3. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    NASA Astrophysics Data System (ADS)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity compared to hydrostatically consolidated salt.

  4. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less

  5. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less

  6. Thermal conductivity of nanocrystalline SiGe alloys using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Abs da Cruz, Carolina; Katcho, Nebil A.; Mingo, Natalio; Veiga, Roberto G. A.

    2013-10-01

    We have studied the effect of nanocrystalline microstructure on the thermal conductivity of SiGe alloys using molecular dynamics simulations. Nanograins are modeled using both the coincidence site lattice and the Voronoi tessellation methods, and the thermal conductivity is computed using the Green-Kubo formalism. We analyze the dependence of the thermal conductivity with temperature, grain size L, and misorientation angle. We find a power dependence of L1/4 of the thermal conductivity with the grain size, instead of the linear dependence shown by non-alloyed nanograined systems. This dependence can be derived analytically underlines the important role that disorder scattering plays even when the grains are of the order of a few nm. This is in contrast to non-alloyed systems, where phonon transport is governed mainly by the boundary scattering. The temperature dependence is weak, in agreement with experimental measurements. The effect of angle misorientation is also small, which stresses the main role played by the disorder scattering.

  7. Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber.

    PubMed

    Schiffres, Scott N; Malen, Jonathan A

    2011-06-01

    A novel 3ω thermal conductivity measurement technique called metal-coated 3ω is introduced for use with liquids, gases, powders, and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3ω exceeds alternate 3ω based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases), using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques, including transient hot-wire, steady-state methods, and solid-wire 3ω are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3ω was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity. © 2011 American Institute of Physics

  8. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  9. Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials

    NASA Astrophysics Data System (ADS)

    Trifale, Ninad T.

    A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed. A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability. Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.

  10. Measuring thermal conductivity of thin films and coatings with the ultra-fast transient hot-strip technique

    NASA Astrophysics Data System (ADS)

    Belkerk, B. E.; Soussou, M. A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-07-01

    This paper reports the ultra-fast transient hot-strip (THS) technique for determining the thermal conductivity of thin films and coatings of materials on substrates. The film thicknesses can vary between 10 nm and more than 10 µm. Precise measurement of thermal conductivity was performed with an experimental device generating ultra-short electrical pulses, and subsequent temperature increases were electrically measured on nanosecond and microsecond time scales. The electrical pulses were applied within metallized micro-strips patterned on the sample films and the temperature increases were analysed within time periods selected in the window [100 ns-10 µs]. The thermal conductivity of the films was extracted from the time-dependent thermal impedance of the samples derived from a three-dimensional heat diffusion model. The technique is described and its performance demonstrated on different materials covering a large thermal conductivity range. Experiments were carried out on bulk Si and thin films of amorphous SiO2 and crystallized aluminum nitride (AlN). The present approach can assess film thermal resistances as low as 10-8 K m2 W-1 with a precision of about 10%. This has never been attained before with the THS technique.

  11. Computer simulation of thermal conductivity in vulcanized polyisoprene at variable strain and temperature

    NASA Astrophysics Data System (ADS)

    Engelmann, Sven; Meyer, Jan; Hentschke, Reinhard

    2017-08-01

    We study the thermal conductivity tensor in an atomistic model of vulcanized cis-1,4-polyisoprene (PI) rubber via molecular dynamics simulations. Our polymer force field is based on V. A. Harmandaris et al. [J. Chem. Phys. 116, 436 (2002), 10.1063/1.1416872], whereas the polymerization algorithm follows the description in J. Hager et al. [Macromolecules 48, 9039 (2015), 10.1021/acs.macromol.5b01864]. The polymer chains are chemically cross linked via sulfur bridges of adjustable cross-link density. A volume-conserving uniaxial strain of up to 200% is applied to the systems. The widely used GROMACS simulation package is adapted to allow using the Green-Kubo approach to calculate the thermal conductivity tensor components. Our analysis of the heat flux autocorrelation functions leads to the conclusion that the thermal conductivity in PI is governed by short-lived phonon modes at low wave numbers due to deformation of the monomers along the polymer backbone. Applying uniaxial strain causes increased orientation of monomers along the strain direction, which enhances the attendant thermal conductivity component. We find an exponential increase of the conductivity in stretch direction in terms of an attendant orientation order parameter. This is accompanied by a simultaneous decline of thermal conductivity in the orthogonal directions. Increase of the cross-link density only has a weak effect on thermal conductivity in the unstrained system, even at high cross-link density. In the strained system we do observed a rising thermal conductivity in the limit of high stress. This increase is attributed to enhanced coupling between chains rather than to their orientation.

  12. Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.

    2010-01-01

    A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESAT AN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the additional effort.

  13. Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.

    2010-01-01

    A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESATAN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the additional effort.

  14. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.

    1986-01-01

    A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.

  15. Effective Thermal Property Estimation of Unitary Pebble Beds Based on a CFD-DEM Coupled Method for a Fusion Blanket

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin

    2015-12-01

    Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  16. Heat transfer through particulated media in stagnant gases model and laboratory measurements: Application to Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, Sylvain Loic Lucien

    The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions <5% per volume are consistent with Martian thermal inertia data previously hypothesized to correspond to a global duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.

  17. Anisotropy in thermal conductivity of graphite flakes–SiC{sub p}/matrix composites: Implications in heat sinking design for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, J.M., E-mail: jmmj@ua.es; Departamento de Física Aplicada, Universidad de Alicante, Ap. 99, E-03080 Alicante; Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, | E-03080 Alicante

    2015-11-15

    Within the frame of heat dissipation for electronics, a very interesting family of anisotropic composite materials, fabricated by liquid infiltration of a matrix into preforms of oriented graphite flakes and SiC particles, has been recently proposed. Aiming to investigate the implications of the inherent anisotropy of these composites on their thermal conductivity, and hence on their potential applications, materials with matrices of Al–12 wt.% Si alloy and epoxy polymer have been fabricated. Samples have been cut at a variable angle with respect to the flakes plane and thermal conductivity has been measured by means of two standard techniques, namely, steadymore » state technique and laser flash method. Experimental results are presented and discussed in terms of current models, from which important technological implications for heat sinking design can be derived. - Highlights: • Anisotropy in thermal conductivity of graphite flakes-based composites is evaluated. • Samples are cut in a direction forming a variable angle with the oriented flakes. • For angles 0° and 90°, thermal conductivity does not depend on sample geometry. • For intermediate angles, thermal conductivity strongly depends on sample geometry. • “Thin” samples must be thicker than 600 μm, “thick” samples must be encapsulated.« less

  18. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  19. New portable instrument for the measurement of thermal conductivity in gas process conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queirós, C. S. G. P.; Lourenço, M. J. V., E-mail: mjlourenco@fc.ul.pt; Vieira, S. I.

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based onmore » a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future.« less

  20. Phonon Scattering and Confinement in Crystalline Films

    NASA Astrophysics Data System (ADS)

    Parrish, Kevin D.

    The operating temperature of energy conversion and electronic devices affects their efficiency and efficacy. In many devices, however, the reference values of the thermal properties of the materials used are no longer applicable due to processing techniques performed. This leads to challenges in thermal management and thermal engineering that demand accurate predictive tools and high fidelity measurements. The thermal conductivity of strained, nanostructured, and ultra-thin dielectrics are predicted computationally using solutions to the Boltzmann transport equation. Experimental measurements of thermal diffusivity are performed using transient grating spectroscopy. The thermal conductivities of argon, modeled using the Lennard-Jones potential, and silicon, modeled using density functional theory, are predicted under compressive and tensile strain from lattice dynamics calculations. The thermal conductivity of silicon is found to be invariant with compression, a result that is in disagreement with previous computational efforts. This difference is attributed to the more accurate force constants calculated from density functional theory. The invariance is found to be a result of competing effects of increased phonon group velocities and decreased phonon lifetimes, demonstrating how the anharmonic contribution of the atomic potential can scale differently than the harmonic contribution. Using three Monte Carlo techniques, the phonon-boundary scattering and the subsequent thermal conductivity reduction are predicted for nanoporous silicon thin films. The Monte Carlo techniques used are free path sampling, isotropic ray-tracing, and a new technique, modal ray-tracing. The thermal conductivity predictions from all three techniques are observed to be comparable to previous experimental measurements on nanoporous silicon films. The phonon mean free paths predicted from isotropic ray-tracing, however, are unphysical as compared to those predicted by free path sampling. Removing the isotropic assumption, leading to the formulation of modal ray-tracing, corrects the mean free path distribution. The effect of phonon line-of-sight is investigated in nanoporous silicon films using free path sampling. When the line-of-sight is cut off there is a distinct change in thermal conductivity versus porosity. By analyzing the free paths of an obstructed phonon mode, it is concluded that the trend change is due to a hard upper limit on the free paths that can exist due to the nanopore geometry in the material. The transient grating technique is an optical contact-less laser based experiment for measuring the in-plane thermal diffusivity of thin films and membranes. The theory of operation and physical setup of a transient grating experiment is detailed. The procedure for extracting the thermal diffusivity from the raw experimental signal is improved upon by removing arbitrary user choice in the fitting parameters used and constructing a parameterless error minimizing procedure. The thermal conductivity of ultra-thin argon films modeled with the Lennard-Jones potential is calculated from both the Monte Carlo free path sampling technique and from explicit reduced dimensionality lattice dynamics calculations. In these ultra-thin films, the phonon properties are altered in more than a perturbative manner, referred to as the confinement regime. The free path sampling technique, which is a perturbative method, is compared to a reduced dimensionality lattice dynamics calculation where the entire film thickness is taken as the unit cell. Divergence in thermal conductivity magnitude and trend is found at few unit cell thick argon films. Although the phonon group velocities and lifetimes are affected, it is found that alterations to the phonon density of states are the primary cause of the deviation in thermal conductivity in the confinement regime.

  1. Development of a Thermal Rectifier Usable at High Temperature

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsunehiro; Goto, Hiroki; Toyama, Yasuhiro; Itoh, Takashi; Mikami, Masashi

    2011-05-01

    By using Al-based metallic alloys characterized by a disordered structure and a narrow pseudogap of a few hundred meV in energy width persisting at the Fermi level, we succeeded in preparing materials possessing a large increase of thermal conductivity with increasing temperature. This unusual increase of thermal conductivity is caused by the electronic structure effect known as the bipolar diffusion effect (BDE) in the context of the two-band model. A thermal rectifier was constructed using materials exhibiting the BDE. By showing the thermal rectification of the bulk sample prepared in this study, we demonstrate that our newly proposed idea of a thermal rectifier using the BDE is applicable for practical use.

  2. Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshiyuki; Aoki, Takuya; Ogasawara, Toshio; Fujita, Kazuhisa

    2017-07-01

    In this study, the concept of a nonablative lightweight thermal protection system (NALT) were proposed for a Mars exploration mission currently under investigation in Japan. The NALT consists of a carbon/carbon (C/C) composite skin, insulator tiles, and a honeycomb sandwich panel. Basic thermal characteristics of the NALT were obtained by conducting heating tests in high-enthalpy facilities. Thermal conductivity values of the insulator tiles as well as the emissivity values of the C/C skin were measured to develop a numerical analysis code for predicting NALT's thermal performance in flight environments. Finally, a breadboard model of a 600-mm diameter NALT aeroshell was developed and qualified through vibration and thermal vacuum tests.

  3. Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling

    NASA Astrophysics Data System (ADS)

    Huebner, Torsten; Martens, Ulrike; Walowski, Jakob; Münzenberg, Markus; Thomas, Andy; Reiss, Günter; Kuschel, Timo

    2018-06-01

    In general, it is difficult to access the thermal conductivity of thin insulating films experimentally by electrical means. Here, we present a new approach utilizing the tunnel magneto-Seebeck effect (TMS) in combination with finite-element modeling (FEM). We detect the laser-induced TMS and the absolute thermovoltage of laser-heated magnetic tunnel junctions with 2.6 nm thin barriers of MgAl2O4 (MAO) and MgO, respectively. A second measurement of the absolute thermovoltage after a dielectric breakdown of the barrier grants insight into the remaining thermovoltage of the stack. Thus, the pure TMS without any parasitic Nernst contributions from the leads can be identified. In combination with FEM via COMSOL, we are able to extract values for the thermal conductivity of MAO (0.7 W (K · m)‑1) and MgO (5.8 W (K · m)‑1), which are in very good agreement with theoretical predictions. Our method provides a new promising way to extract the experimentally challenging parameter of the thermal conductivity of thin insulating films.

  4. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less

  5. Geometric dependence of the parasitic components and thermal properties of HEMTs

    NASA Astrophysics Data System (ADS)

    Vun, Peter V.; Parker, Anthony E.; Mahon, Simon J.; Fattorini, Anthony

    2007-12-01

    For integrated circuit design up to 50GHz and beyond accurate models of the transistor access structures and intrinsic structures are necessary for prediction of circuit performance. The circuit design process relies on optimising transistor geometry parameters such as unit gate width, number of gates, number of vias and gate-to-gate spacing. So the relationship between electrical and thermal parasitic components in transistor access structures, and transistor geometry is important to understand when developing models for transistors of differing geometries. Current approaches to describing the geometric dependence of models are limited to empirical methods which only describe a finite set of geometries and only include unit gate width and number of gates as variables. A better understanding of the geometric dependence is seen as a way to provide scalable models that remain accurate for continuous variation of all geometric parameters. Understanding the distribution of parasitic elements between the manifold, the terminal fingers, and the reference plane discontinuities is an issue identified as important in this regard. Examination of dc characteristics and thermal images indicates that gate-to-gate thermal coupling and increased thermal conductance at the gate ends, affects the device total thermal conductance. Consequently, a distributed thermal model is proposed which accounts for these effects. This work is seen as a starting point for developing comprehensive scalable models that will allow RF circuit designers to optimise circuit performance parameters such as total die area, maximum output power, power-added-efficiency (PAE) and channel temperature/lifetime.

  6. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    NASA Astrophysics Data System (ADS)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  7. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method.

    PubMed

    Leyde, Brian P; Klein, Sanford A; Nellis, Gregory F; Skye, Harrison

    2017-03-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model.

  8. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    PubMed

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  9. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering

    NASA Astrophysics Data System (ADS)

    Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2018-04-01

    We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

  10. Error and uncertainty in Raman thermal conductivity measurements

    DOE PAGES

    Thomas Edwin Beechem; Yates, Luke; Graham, Samuel

    2015-04-22

    We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materialsmore » under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.« less

  11. Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    NASA Technical Reports Server (NTRS)

    Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah

    2017-01-01

    Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.

  12. Thermal and mechanical properties of 3D printed boron nitride - ABS composites

    NASA Astrophysics Data System (ADS)

    Quill, Tyler J.; Smith, Matthew K.; Zhou, Tony; Baioumy, Mohamed Gamal Shafik; Berenguer, Joao Paulo; Cola, Baratunde A.; Kalaitzidou, Kyriaki; Bougher, Thomas L.

    2017-11-01

    The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of 3 for injection molding and 4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.

  13. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lackmore » of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk thermal conductivity for the M19 29 gauge material is 21.0 W/m-K. Density and specific heat were measured to be 7450 kg/m^3 and 463 J/kg-K, respectively. These results are helping, and will continue to help engineers and researchers in the design and development of motors.« less

  14. Transient variation of martian ground-atmosphere thermal boundary layer structure.

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.; Dannevik, W. P.

    1972-01-01

    Results of a numerical simulation of the diurnal redistribution of temperature by radiative and molecular-conductive processes in the Martian soil-atmosphere system. An attempt is made to assess the importance of atmospheric molecular conduction near the surface and to estimate the characteristic depth of the diurnal temperature wave. The computational results are found to indicate a dual structure in the diurnal temperature wave propagation pattern, with a diffusive-type wave in the lowest 150 m superimposed on a radiatively induced disturbance with a characteristic scale of 1.8 km. Atmospheric molecular thermal conduction typically accounts for about 15% of the total heating/cooling in the lowest 25 m. Thermal conduction in both the soil and atmosphere appears to be an important factor in the thermal coupling of these subsystems. A free-convection regime in the conduction layer is predicted by the model for about five hours of the Martian day.

  15. Lattice dynamics and lattice thermal conductivity of thorium dicarbide

    NASA Astrophysics Data System (ADS)

    Liao, Zongmeng; Huai, Ping; Qiu, Wujie; Ke, Xuezhi; Zhang, Wenqing; Zhu, Zhiyuan

    2014-11-01

    The elastic and thermodynamic properties of ThC2 with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C2 dimer in ThC2 is similar to that of a free standing C2 dimer. This indicates that the C2 dimer in ThC2 is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC2 was calculated by means of the Debye-Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC2 contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.

  16. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    PubMed

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of boron phosphide. The present study paves the way toward the establishment of a new framework, based on the phonon spectra-material structure relationship, for the rational design of high thermal conductivity materials and nano- to multiscale devices.

  17. Thermal properties of U-7Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong-Tak; Yang, Jae Ho; Oh, Jang Soo; Won, Ju-Jin; Sohn, Dong-Seong

    2017-12-01

    The thermal diffusivity and heat capacity of U-7Mo/Al and U-7Mo/Al-5Si as functions of U-Mo fuel volume fraction and temperature were measured. The density of the sample was measured at room temperature and estimated using thermal expansion data at elevated temperatures. Using the measured data, the thermal conductivity was obtained as a function of U-Mo volume fraction and temperature. The thermal conductivity of U-7Mo/Al-5Si was found to be lower than that of U-7Mo/Al because of the Si addition to the Al. Due to a lower porosity and reduced interaction between U-Mo and Al in the sample, the thermal conductivity data reported in the present study were higher than those in the literature. The present data were found to be in agreement with the predictions of theoretical models.

  18. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  19. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Anaya Calvo, J.; Kuball, M.

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reducedmore » channel thermal conductivity must be considered.« less

  20. Modeling diffusion in foamed polymer nanocomposites.

    PubMed

    Ippalapalli, Sandeep; Ranaprathapan, A Dileep; Singh, Sachchida N; Harikrishnan, G

    2013-04-15

    Two-way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady-state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas-transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect-ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal control unit for long-time survival of scientific instruments on lunar surface

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazunori; Iijima, Yuichi; Tanaka, Satoshi

    A thermal control unit (lunar survival module) is being developed for scientific instruments placed on the lunar surface. This unit is designed to be used on the future Japanese lunar landing mission SELENE-2. The lunar surface is a severe environment for scientific instruments. The absence of convective cooling by an atmosphere makes the ground surface temperature variable in the wide range of -200 to 100 degC, an environment in which space electronics can hardly survive. The surface elements must have a thermal control structure to maintain the inner temperature within the operable ranges of the instruments for long-time measurements, such as 1 month or longer beyond the lunar nights. The objectives of this study are to develop a thermal control unit for the SELENE-2 mission. So far, we conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. The basic structure of the thermal module is rather simple in that a heat insulating shell covers the scientific instruments. The concept is that the conical insulator retains heat in the regolith soil in the daylight, and it can keep the device warm in the night. Results of the model calculations indicated the high potential of long-time survival. A bread board model (BBM) was manufactured, and its thermal-vacuum tests were conducted in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The thermal condition of the lunar surface was simulated by glass beads paved in a vacuum chamber, and a temperature-controlled container. Temperature variations of the BBM in thermal cycling tests were compared to a thermal mathematical model, and the thermal parameters were finally assessed. Feeding the test results back into the thermal model for the lunar surface, some thermal parameters were updated but there was no critical effect on the survivability. The experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  2. Electrical and thermal behavior of unsaturated soils: experimental results

    NASA Astrophysics Data System (ADS)

    Nouveau, Marie; Grandjean, Gilles; Leroy, Philippe; Philippe, Mickael; Hedri, Estelle; Boukcim, Hassan

    2016-05-01

    When soil is affected by a heat source, some of its properties are modified, and in particular, the electrical resistivity due to changes in water content. As a result, these changes affect the thermal properties of soil, i.e., its thermal conductivity and diffusivity. We experimentally examine the changes in electrical resistivity and thermal conductivity for four soils with different grain size distributions and clay content over a wide range of temperatures, from 20 to 100 °C. This temperature range corresponds to the thermal conditions in the vicinity of a buried high voltage cable or a geothermal system. Experiments were conducted at the field scale, at a geothermal test facility, and in the laboratory using geophysical devices and probing systems. The results show that the electrical resistivity decreases and the thermal conductivity increases with temperature up to a critical temperature depending on soil types. At this critical temperature, the air volume in the pore space increases with temperature, and the resulting electrical resistivity also increases. For higher temperatures , the thermal conductivity increases sharply with temperature up to a second temperature limit. Beyond it, the thermal conductivity drops drastically. This limit corresponds to the temperature at which most of the water evaporates from the soil pore space. Once the evaporation is completed, the thermal conductivity stabilizes. To explain these experimental results, we modeled the electrical resistivity variations with temperature and water content in the temperature range 20 - 100°C, showing that two critical temperatures influence the main processes occurring during heating at temperatures below 100 °C.

  3. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  4. Modeling and Ab initio Calculations of Thermal Transport in Si-Based Clathrates and Solar Perovskites

    NASA Astrophysics Data System (ADS)

    He, Yuping

    2015-03-01

    We present calculations of the thermal transport coefficients of Si-based clathrates and solar perovskites, as obtained from ab initio calculations and models, where all input parameters derived from first principles. We elucidated the physical mechanisms responsible for the measured low thermal conductivity in Si-based clatherates and predicted their electronic properties and mobilities, which were later confirmed experimentally. We also predicted that by appropriately tuning the carrier concentration, the thermoelectric figure of merit of Sn and Pb based perovskites may reach values ranging between 1 and 2, which could possibly be further increased by optimizing the lattice thermal conductivity through engineering perovskite superlattices. Work done in collaboration with Prof. G. Galli, and supported by DOE/BES Grant No. DE-FG0206ER46262.

  5. Thermal conductivity of tubrostratic carbon nanofiber networks

    DOE PAGES

    Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; ...

    2016-01-01

    Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modificationmore » of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.« less

  6. Magneto thermal conductivity of superconducting Nb with intermediate level of impurity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.S. Sharath Chandra, M.K. Chattopadhyay, S.B. Roy, V.C. Sahni, G.R. Myneni

    2012-03-01

    Niobium materials with intermediate purity level are used for fabrication of superconducting radio frequency cavities (SCRF), and thermal conductivity is an important parameter influencing the performance of such SCRF cavities. We report here the temperature and magnetic field dependence of thermal conductivity {kappa} for superconducting niobium (Nb) samples, for which the electron mean free path I{sub e}, the phonon mean free path I{sub g}, and the vortex core diameter 2r{sub C} are of the same order of magnitude. The measured thermal conductivity is analyzed using the effective gap model (developed for I{sub e} >> 2r{sub C} (Dubeck et al 1963more » Phys. Rev. Lett. 10 98)) and the normal core model (developed for I{sub e} << 2r{sub C} (Ward and Dew-Hughes 1970 J. Phys. C: Solid St. Phys. 3 2245)). However, it is found that the effective gap model is not suitable for low temperatures when I{sub e} {approx} 2r{sub C}. The normal core model, on the other hand, is able to describe {kappa}(T,H) over the entire temperature range except in the field regime between H{sub C1} and H{sub C2} i.e. in the mixed state. It is shown that to understand the complete behavior of {kappa} in the mixed state, the scattering of quasi-particles from the vortex cores and the intervortex quasi-particle tunneling are to be invoked. The quasi-particle scattering from vortices for the present system is understood in terms of the framework of Sergeenkov and Ausloos (1995 Phys. Rev. B 52 3614) extending their approach to the case of Nb. The intervortex tunneling is understood within the framework of Schmidbauer et al (1970 Z. Phys. 240 30). Analysis of the field dependence of thermal conductivity shows that while the quasi-particle scattering from vortices dominates in the low fields, the intervortex quasi-particle tunneling dominates in high fields. Analysis of the temperature dependence of thermal conductivity shows that while the quasi-particle scattering is dominant at low temperatures, the intervortex quasi-particle tunneling is dominant at high temperatures.« less

  7. Machine learning with neural networks - a case study of estimating thermal conductivity with ancient well-log data

    NASA Astrophysics Data System (ADS)

    Harrison, Benjamin; Sandiford, Mike; McLaren, Sandra

    2016-04-01

    Supervised machine learning algorithms attempt to build a predictive model using empirical data. Their aim is to take a known set of input data along with known responses to the data, and adaptively train a model to generate predictions for new data inputs. A key attraction to their use is the ability to perform as function approximators where the definition of an explicit relationship between variables is infeasible. We present a novel means of estimating thermal conductivity using a supervised self-organising map algorithm, trained on about 150 thermal conductivity measurements, and using a suite of five electric logs common to 14 boreholes. A key motivation of the study was to supplement the small number of direct measurements of thermal conductivity with the decades of borehole data acquired in the Gippsland Basin to produce more confident calculations of surface heat flow. A previous attempt to generate estimates from well-log data in the Gippsland Basin using classic petrophysical log interpretation methods was able to produce reasonable synthetic thermal conductivity logs for only four boreholes. The current study has extended this to a further ten boreholes. Interesting outcomes from the study are: the method appears stable at very low sample sizes (< ~100); the SOM permits quantitative analysis of essentially qualitative uncalibrated well-log data; and the method's moderate success at prediction with minimal effort tuning the algorithm's parameters.

  8. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE PAGES

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska; ...

    2017-05-12

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  9. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  10. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  11. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    NASA Astrophysics Data System (ADS)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  12. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation.

    PubMed

    Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-09-22

    Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.

  13. Experimental and numerical study of two dimensional heat and mass transfer in unsaturated soil with and application to soil thermal energy storage (SBTES) systems

    NASA Astrophysics Data System (ADS)

    Moradi, A.; Smits, K. M.

    2014-12-01

    A promising energy storage option to compensate for daily and seasonal energy offsets is to inject and store heat generated from renewable energy sources (e.g. solar energy) in the ground, oftentimes referred to as soil borehole thermal energy storage (SBTES). Nonetheless in SBTES modeling efforts, it is widely recognized that the movement of water vapor is closely coupled to thermal processes. However, their mutual interactions are rarely considered in most soil water modeling efforts or in practical applications. The validation of numerical models that are designed to capture these processes is difficult due to the scarcity of experimental data, limiting the testing and refinement of heat and water transfer theories. A common assumption in most SBTES modeling approaches is to consider the soil as a purely conductive medium with constant hydraulic and thermal properties. However, this simplified approach can be improved upon by better understanding the coupled processes at play. Consequently, developing new modeling techniques along with suitable experimental tools to add more complexity in coupled processes has critical importance in obtaining necessary knowledge in efficient design and implementation of SBTES systems. The goal of this work is to better understand heat and mass transfer processes for SBTES. In this study, we implemented a fully coupled numerical model that solves for heat, liquid water and water vapor flux and allows for non-equilibrium liquid/gas phase change. This model was then used to investigate the influence of different hydraulic and thermal parameterizations on SBTES system efficiency. A two dimensional tank apparatus was used with a series of soil moisture, temperature and soil thermal properties sensors. Four experiments were performed with different test soils. Experimental results provide evidences of thermally induced moisture flow that was also confirmed by numerical results. Numerical results showed that for the test conditions applied here, moisture flow is more influenced by thermal gradients rather than hydraulic gradients. The results also demonstrate that convective fluxes are higher compared to conductive fluxes indicating that moisture flow has more contribution to the overall heat flux than conductive fluxes.

  14. Thermal Modeling on Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Hapke, B.W.

    2002-01-01

    The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.

  15. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  16. Thermal conductivity of a single polymer chain

    NASA Astrophysics Data System (ADS)

    Freeman, J. J.; Morgan, G. J.; Cullen, C. A.

    1987-05-01

    Numerical experiments have been performed with use of a fairly realistic model for polyethylene which has enabled the effects of anharmonicity, temperature, and positional disorder on the thermal conductivity to be investigated. It has been shown that the classical conductivity may be substantially increased by both increasing the strength of the anharmonic forces and by decreasing the chain temperature. Although the conductivity of individual chains is found to be high, realistic values for the conductivity of a bulk material may be understood provided that due account is taken of the polymer conformation and interchain coupling.

  17. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  18. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arhur T.

    1999-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  19. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Hemmat Esfe, Mohammad; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    The current paper first presents an empirical correlation based on experimental results for estimating thermal conductivity enhancement of MgO-water nanofluid using curve fitting method. Then, artificial neural networks (ANNs) with various numbers of neurons have been assessed by considering temperature and MgO volume fraction as the inputs variables and thermal conductivity enhancement as the output variable to select the most appropriate and optimized network. Results indicated that the network with 7 neurons had minimum error. Eventually, the output of artificial neural network was compared with the results of the proposed empirical correlation and those of the experiments. Comparisons revealed that ANN modeling was more accurate than curve-fitting method in the predicting the thermal conductivity enhancement of the nanofluid.

  20. Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan

    NASA Astrophysics Data System (ADS)

    Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.

    2017-10-01

    A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  1. A thermal control system for long-term survival of scientific instruments on lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, K., E-mail: ogawa@astrobio.k.u-tokyo.ac.jp; Iijima, Y.; Tanaka, S.

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is lessmore » variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.« less

  2. Phonon-defect scattering and thermal transport in semiconductors: developing guiding principles

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Lindsay, Lucas

    First principles calculations of thermal conductivity have shown remarkable agreement with measurements for high-quality crystals. Nevertheless, most materials contain defects that provide significant extrinsic resistance and lower the conductivity from that of a perfect sample. This effect is usually accounted for with simplified analytical models that neglect the atomistic details of the defect and the exact dynamical properties of the system, which limits prediction capabilities. Recently, a method based on Greens functions was developed to calculate the phonon-defect scattering rates from first principles. This method has shown the important role of point defects in determining thermal transport in diamond and boron arsenide, two competitors for the highest bulk thermal conductivity. Here, we study the role of point defects on other relatively high thermal conductivity semiconductors, e.g., BN, BeSe, SiC, GaN and Si. We compare their first principles defect-phonon scattering rates and effects on transport properties with those from simplified models and explore common principles that determine these. Efforts will focus on basic vibrational properties that vary from system to system, such as density of states, interatomic force constants and defect deformation. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. Study of cavity effect in micro-Pirani gauge chamber with improved sensitivity for high vacuum regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guohe; Lai, Junhua; Kong, Yanmei; Jiao, Binbin; Yun, Shichang; Ye, Yuxin

    2018-05-01

    Ultra-low pressure application of Pirani gauge needs significant improvement of sensitivity and expansion of measureable low pressure limit. However, the performance of Pirani gauge in high vacuum regime remains critical concerns since gaseous thermal conduction with high percentage is essential requirement. In this work, the heat transfer mechanism of micro-Pirani gauge packaged in a non-hermetic chamber was investigated and analyzed compared with the one before wafer-level packaging. The cavity effect, extremely important for the efficient detection of low pressure, was numerically and experimentally analyzed considering the influence of the pressure, the temperature and the effective heat transfer area in micro-Pirani gauge chamber. The thermal conduction model is validated by experiment data of MEMS Pirani gauges with and without capping. It is found that nature gaseous convection in chamber, determined by the Rayleigh number, should be taken into consideration. The experiment and model calculated results show that thermal resistance increases in the molecule regime, and further increases after capping due to the suppression of gaseous convection. The gaseous thermal conduction accounts for an increasing percentage of thermal conduction at low pressure while little changes at high pressure after capping because of the existence of cavity effect improving the sensitivity of cavity-effect-influenced Pirani gauge for high vacuum regime.

  4. Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment

    NASA Astrophysics Data System (ADS)

    Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei

    2018-01-01

    Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.

  5. Thermal modeling of carbon-epoxy laminates in fire environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGurn, Matthew T.; DesJardin, Paul Edward; Dodd, Amanda B.

    2010-10-01

    A thermal model is developed for the response of carbon-epoxy composite laminates in fire environments. The model is based on a porous media description that includes the effects of gas transport within the laminate along with swelling. Model comparisons are conducted against the data from Quintere et al. Simulations are conducted for both coupon level and intermediate scale one-sided heating tests. Comparisons of the heat release rate (HRR) as well as the final products (mass fractions, volume percentages, porosity, etc.) are conducted. Overall, the agreement between available the data and model is excellent considering the simplified approximations to account formore » flame heat flux. A sensitivity study using a newly developed swelling model shows the importance of accounting for laminate expansion for the prediction of burnout. Excellent agreement is observed between the model and data of the final product composition that includes porosity, mass fractions and volume expansion ratio.« less

  6. Heat Flow, Thermal Conductivity, and the Plausibility of the White Mars Hypothesis

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.; Gulick, V. C.

    2002-01-01

    Due to the low thermal conductivity of CO2 ice and clathrate vs. water ice, we find that liquid water reservoirs would not be confined to the deep subsurface as predicted by the controversial White Mars model, even assuming low global heat flow. Additional information is contained in the original extended abstract.

  7. Theoretical thermal conductivity equation for uniform density wood cells

    Treesearch

    John F. Hunt; Hongmei Gu; Patricia Lebow

    2008-01-01

    The anisotropy of wood creates a complex problem requiring that analyses be based on fundamental material properties and characteristics of the wood structure to solve heat transfer problems. A two-dimensional finite element model that evaluates the effective thermal conductivity of a wood cell over the full range of moisture contents and porosities was previously...

  8. Space Shuttle Orbiter flight heating rate measurement sensitivity to thermal protection system uncertainties

    NASA Technical Reports Server (NTRS)

    Bradley, P. F.; Throckmorton, D. A.

    1981-01-01

    A study was completed to determine the sensitivity of computed convective heating rates to uncertainties in the thermal protection system thermal model. Those parameters considered were: density, thermal conductivity, and specific heat of both the reusable surface insulation and its coating; coating thickness and emittance; and temperature measurement uncertainty. The assessment used a modified version of the computer program to calculate heating rates from temperature time histories. The original version of the program solves the direct one dimensional heating problem and this modified version of The program is set up to solve the inverse problem. The modified program was used in thermocouple data reduction for shuttle flight data. Both nominal thermal models and altered thermal models were used to determine the necessity for accurate knowledge of thermal protection system's material thermal properties. For many thermal properties, the sensitivity (inaccuracies created in the calculation of convective heating rate by an altered property) was very low.

  9. Quantitative scanning thermal microscopy of ErAs/GaAs superlattice structures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Park, K. W.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.

    2013-02-01

    A proximal probe-based quantitative measurement of thermal conductivity with ˜100-150 nm lateral and vertical spatial resolution has been implemented. Measurements on an ErAs/GaAs superlattice structure grown by molecular beam epitaxy with 3% volumetric ErAs content yielded thermal conductivity at room temperature of 9 ± 2 W/m K, approximately five times lower than that for GaAs. Numerical modeling of phonon scattering by ErAs nanoparticles yielded thermal conductivities in reasonable agreement with those measured experimentally and provides insight into the potential influence of nanoparticle shape on phonon scattering. Measurements of wedge-shaped samples created by focused ion beam milling provide direct confirmation of depth resolution achieved.

  10. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, Stan D; Childs, Kenneth W; King, Anthony Wayne

    2011-01-01

    A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proven valuable tools for interpreting the behavior of heat pulse, heat balance, and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probesmore » were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood, and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k defined as ( Tm T)/ T where Tm is the temperature differential ( T) between the heated and unheated probe under zero flow conditions was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for abrupt patterns of radial variation typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% over-estimation of sap flux density at modest flux rates. Future studies should verify these simulations and assess their utility in estimating sap flux density for this widely used technique.« less

  11. The study of thermal processes in control systems of heat consumption of buildings

    NASA Astrophysics Data System (ADS)

    Tsynaeva, E.; A, Tsynaeva

    2017-11-01

    The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.

  12. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  13. Finite Element and Molecular Dynamics Modeling and Simulation of Thermal Properties

    DTIC Science & Technology

    2007-06-01

    dots represent the experimental results of the normalized conductivity data ke/kf (ke is κ of the composite, kf is κ of the fluid) CNT in oil ...individual Single Walled Nanotube to four centimeters in length. [4] 6 Carbon based materials, in-plane pyrolytic graphite and diamonds, have the...conductivity of nanocomposites has not yet been achieved. A 2001 experiment studied the thermal conductivity of oil with CNT in suspension. The results

  14. Research@ARL: Materials Modeling at Multiple Scales. Volume 3, Issue 2

    DTIC Science & Technology

    2014-07-01

    possessing high ionic conductivity , low viscosity, and good thermal and electrochemical stability and, importantly, being compatible with electrodes. As... thermal and electrical properties. ARL conducts extensive research in graphene and other 2D materials such as BN, ZnO, and hybrid graphene-polyethylene...contribution at temperatures below 393 K. Thus, below 393 K, Li2EDC essentially acts as a single ion conductor . The isotropic ionic conductivity from MD

  15. Extending the 3ω method: thermal conductivity characterization of thin films.

    PubMed

    Bodenschatz, Nico; Liemert, André; Schnurr, Sebastian; Wiedwald, Ulf; Ziemann, Paul

    2013-08-01

    A lock-in technique for measurement of thermal conductivity and volumetric heat capacity of thin films is presented. The technique is based on the 3ω approach using electrical generation and detection of oscillatory heat along a thin metal strip. Thin films are deposited onto the backside of commercial silicon nitride membranes, forming a bilayer geometry with distinct thermal parameters. Stepwise comparison to an adapted heat diffusion model delivers these parameters for both layers. Highest sensitivity is found for metallic thin films.

  16. Thermal conductivity of MgO and MgSiO3 at lower mantle conditions from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jahn, S.; Haigis, V.; Salanne, M.

    2011-12-01

    Thermal conductivity is an important physical parameter that controls the heat flow in the Earth's core and mantle. The heat flow from the core to the mantle influences mantle dynamics and the convective regime of the liquid outer core, which drives the geodynamo. Although thermal conductivities of important mantle minerals at ambient pressure are well-known (Hofmeister, 1999), experimentalists encounter major difficulties to measure thermal conductivities at high pressures and temperatures. Extrapolations of experimental data to high pressures have a large uncertainty and hence the heat transport in minerals at conditions of the deep mantle is not well constrained. Recently, the thermal conductivity of MgO at lower mantle conditions was computed from first-principles simulations (e.g. de Koker (2009), Stackhouse et al. (2010)). Here, we used classical molecular dynamics to calculate thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite structures at different pressures and temperatures. The interactions between atoms were treated by an advanced ionic interaction model which was shown to describe the behavior of materials reliably within a wide pressure and temperature range (Jahn & Madden, 2007). Two alternative techniques were used and compared. In non-equilibrium MD, an energy flow is imposed on the system, and the thermal conductivity is taken to be inversely proportional to the temperature gradient that builds up in response to this flow. The other technique (which is still too expensive for first principles methods) uses standard equilibrium MD and extracts the thermal conductivity from energy current correlation functions, according to the Green-Kubo formula. As a benchmark for the interaction potential, we calculated the thermal conductivity of fcc MgO at 2000K and 149GPa, where data from ab-initio non-equilibrium MD are available (Stackhouse et al., 2010). The results agree within the error bars, which justifies the use of the model for the calculation of thermal conductivities. However, with the non-equilibrium technique, the conductivity depends strongly on the size of the simulation box. Therefore, a scaling to infinite system size has to be applied, which introduces some uncertainty to the final result. The equilibrium MD method, on the other hand, seems to be less sensitive to finite-size effects. We will present computed thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite structures at 138 GPa and temperatures of 300 K and 3000 K, the latter corresponding to conditions in the D'' layer. This allows an assessment of the extrapolations to high pressures and temperatures used in the literature. Jahn S & Madden PA (2007) Phys. Earth Planet. Int. 162, 129 de Koker N (2009) Phys. Rev. Lett. 103, 125902 Hofmeister AM (1999) Science 283, 1699 Stackhouse S et al. (2010) Phys. Rev. Lett. 104, 208501

  17. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    NASA Astrophysics Data System (ADS)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  18. Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2009-01-01

    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.

  19. Thermal conductivity of H2O-CH3OH mixtures at high pressures: Implications for the dynamics of icy super-Earths outer shells

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric

    2015-10-01

    Thermal conductivity of H2O-volatile mixtures at extreme pressure-temperature conditions is a key factor to determine the heat flux and profile of the interior temperature in icy bodies. We use time domain thermoreflectance and stimulated Brillouin scattering combined with diamond anvil cells to study the thermal conductivity and sound velocity of water (H2O)-methanol (CH3OH) mixtures to pressures as high as 12 GPa. Compared to pure H2O, the presence of 5-20 wt % CH3OH significantly reduces the thermal conductivity and sound velocity when the mixture becomes ice VI-CH3OH and ice VII-CH3OH phases at high pressures, indicating that the heat transfer is hindered within the icy body. We then apply these results to model the heat transfer through the icy mantles of super-Earths, assuming that these mantles are animated by thermal convection. Our calculations indicate that the decrease of thermal conductivity due to the presence of 10 wt % CH3OH induces a twofold decrease of the power transported by convection.

  20. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.

    PubMed

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-01

    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polarized Light Scanning Cryomacroscopy, Part II: Thermal Modeling and Analysis of Experimental Observations

    PubMed Central

    Feig, Justin S.G.; Solanki, Prem K.; Eisenberg, David P.; Rabin, Yoed

    2016-01-01

    This study aims at developing thermal analysis tools and explaining experimental observations made by means of polarized-light cryomacroscopy (Part I). Thermal modeling is based on finite elements analysis (FEA), where two model parameters are extracted from thermal measurements: (i) the overall heat transfer coefficient between the cuvette and the cooling chamber, and (ii) the effective thermal conductivity within the cryoprotective agent (CPA) at the upper part of the cryogenic temperature range. The effective thermal conductivity takes into account enhanced heat transfer due to convection currents within the CPA, creating the so-called Bénard cells. Comparison of experimental results with simulation data indicates that the uncertainty in simulations due to the propagation of uncertainty in measured physical properties exceeds the uncertainty in experimental measurements, which validates the modeling approach. It is shown in this study that while a cavity may form in the upper-center portion of the vitrified CPA, it has very little effect on estimating the temperature distribution within the domain. This cavity is driven by thermal contraction of the CPA, with the upper-center of the domain transitioning to glass last. Finally, it is demonstrated in this study that additional stresses may develop within the glass transition temperature range due to nonlinear behavior of the thermal expansion coefficient. This effect is reported here for the first time in the context of cryobiology, using the capabilities of polarized-light cryomacroscopy. PMID:27343139

  2. Polarized light scanning cryomacroscopy, part II: Thermal modeling and analysis of experimental observations.

    PubMed

    Feig, Justin S G; Solanki, Prem K; Eisenberg, David P; Rabin, Yoed

    2016-10-01

    This study aims at developing thermal analysis tools and explaining experimental observations made by means of polarized-light cryomacroscopy (Part I). Thermal modeling is based on finite elements analysis (FEA), where two model parameters are extracted from thermal measurements: (i) the overall heat transfer coefficient between the cuvette and the cooling chamber, and (ii) the effective thermal conductivity within the cryoprotective agent (CPA) at the upper part of the cryogenic temperature range. The effective thermal conductivity takes into account enhanced heat transfer due to convection currents within the CPA, creating the so-called Bénard cells. Comparison of experimental results with simulation data indicates that the uncertainty in simulations due to the propagation of uncertainty in measured physical properties exceeds the uncertainty in experimental measurements, which validates the modeling approach. It is shown in this study that while a cavity may form in the upper-center portion of the vitrified CPA, it has very little effect on estimating the temperature distribution within the domain. This cavity is driven by thermal contraction of the CPA, with the upper-center of the domain transitioning to glass last. Finally, it is demonstrated in this study that additional stresses may develop within the glass transition temperature range due to nonlinear behavior of the thermal expansion coefficient. This effect is reported here for the first time in the context of cryobiology, using the capabilities of polarized-light cryomacroscopy. Copyright © 2016. Published by Elsevier Inc.

  3. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  4. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  5. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  6. Effect of fiber content on the thermal conductivity and dielectric constant of hair fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2018-03-01

    This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.

  7. Large Enhancement of Thermal Conductivity and Lorenz Number in Topological Insulator Thin Films.

    PubMed

    Luo, Zhe; Tian, Jifa; Huang, Shouyuan; Srinivasan, Mithun; Maassen, Jesse; Chen, Yong P; Xu, Xianfan

    2018-02-27

    Topological insulators (TI) have attracted extensive research effort due to their insulating bulk states but conducting surface states. However, investigation and understanding of thermal transport in topological insulators, particularly the effect of surface states, are lacking. In this work, we studied thickness-dependent in-plane thermal and electrical conductivity of Bi 2 Te 2 Se TI thin films. A large enhancement in both thermal and electrical conductivity was observed for films with thicknesses below 20 nm, which is attributed to the surface states and bulk-insulating nature of these films. Moreover, a surface Lorenz number much larger than the Sommerfeld value was found. Systematic transport measurements indicated that the Fermi surface is located near the charge neutrality point (CNP) when the film thickness is below 20 nm. Possible reasons for the large Lorenz number include electrical and thermal current decoupling in the surface state Dirac fluid, and bipolar diffusion transport. A simple computational model indicates that the surface states and bipolar diffusion indeed can lead to enhanced electrical and thermal transport and a large Lorenz number.

  8. High-Thermal-Conductivity Fabrics

    NASA Technical Reports Server (NTRS)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be processed.The novel feature is that fabrics do not inherently possess good thermal conductivity. In fact, fabrics are used for thermal insulation, not heat removal. The technology represents the first material that is a wearable fabric, based on company textiles and materials that will significantly conduct heat.

  9. Communication: Is a coarse-grained model for water sufficient to compute Kapitza conductance on non-polar surfaces?

    PubMed

    Ardham, Vikram Reddy; Leroy, Frédéric

    2017-10-21

    Coarse-grained models have increasingly been used in large-scale particle-based simulations. However, due to their lack of degrees of freedom, it is a priori unlikely that they straightforwardly represent thermal properties with the same accuracy as their atomistic counterparts. We take a first step in addressing the impact of liquid coarse-graining on interfacial heat conduction by showing that an atomistic and a coarse-grained model of water may yield similar values of the Kapitza conductance on few-layer graphene with interactions ranging from hydrophobic to mildly hydrophilic. By design the water models employed yield similar liquid layer structures on the graphene surfaces. Moreover, they share common vibration properties close to the surfaces and thus couple with the vibrations of graphene in a similar way. These common properties explain why they yield similar Kapitza conductance values despite their bulk thermal conductivity differing by more than a factor of two.

  10. Dissipative models of colliding stellar winds - I. Effects of thermal conduction in wide binary systems

    NASA Astrophysics Data System (ADS)

    Myasnikov, A. V.; Zhekov, S. A.

    1998-11-01

    The influence of electron thermal conduction on the 2D gas dynamics of colliding stellar winds is investigated. It is shown that, as a result of the non-linear dependence of the electron thermal flux on the temperature, the pre-heating zones (in which the hot gas in the interaction region heats the cool winds in front of the shocks) have finite sizes. The dependence of the problem of the structure of the flow in the interaction region on the dimensionless parameters is studied, and a simple expression is derived for the size of the pre-heating zones at the axis of symmetry. It is shown that small values of the thermal conductivity do not suppress the Kelvin-Helmholtz instability if the adiabatic flow is subject to it. Further studies, both numerical and analytical, in this direction will be of great interest. The influence of thermal conduction on the X-ray emission from the interaction region is also estimated.

  11. Thermal regime of permafrost at Prudhoe Bay, Alaska

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cuttings permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperature gradient at ~600 m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady-state conditions. Interpretation of the gradient contrast in terms of a simple model for the conductivity of an aggregate yields the mean ice content and thermal conductivities for the frozen and thawed sections (8.1 and 4.7 mcal/cm sec ?C, respectively). These results yield a heat flow of ~1.3 HFU which is similar to other values on the Alaskan Arctic Coast; the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. Curvature in the upper 160 m of the temperature profiles represents a warming of ~1.8?C of the mean surface temperature, and a net accumulation of 5-6 kcal/cm 2 by the solid earth surface during the last 100 years or so. Rising sea level and thawing sea cliffs probably caused the shoreline to advance tens of kilometers in the last 20,000 years, inundating a portion of the continental shelf that is presently the target of intensive oil exploration. A simple conduction model suggests that this recently inundated region is underlain by near-melting ice-rich permafrost to depths of 300-500 m; its presence is important to seismic interpretations in oil exploration and to engineering considerations in oil production. With confirmation of the permafrost configuration by offshore drilling, heat-conduction models can yield reliable new information on the chronology of arctic shorelines.

  12. Automated combinatorial method for fast and robust prediction of lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Toher, Cormac; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano

    The lack of computationally inexpensive and accurate ab-initio based methodologies to predict lattice thermal conductivity, κl, without computing the anharmonic force constants or performing time-consuming ab-initio molecular dynamics, is one of the obstacles preventing the accelerated discovery of new high or low thermal conductivity materials. The Slack equation is the best alternative to other more expensive methodologies but is highly dependent on two variables: the acoustic Debye temperature, θa, and the Grüneisen parameter, γ. Furthermore, different definitions can be used for these two quantities depending on the model or approximation. Here, we present a combinatorial approach based on the quasi-harmonic approximation to elucidate which definitions of both variables produce the best predictions of κl. A set of 42 compounds was used to test accuracy and robustness of all possible combinations. This approach is ideal for obtaining more accurate values than fast screening models based on the Debye model, while being significantly less expensive than methodologies that solve the Boltzmann transport equation.

  13. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  14. Modelling the thermal conductivity of (U xTh 1-x)O 2 and (U xPu 1-x)O 2

    DOE PAGES

    Cooper, M. W. D.; Middleburgh, S. C.; Grimes, R. W.

    2015-07-15

    The degradation of thermal conductivity due to the non-uniform cation lattice of (U xTh 1-x)O 2 and (U xPu 1-x)O 2 solid solutions has been investigated by molecular dynamics, using the non-equilibrium method, from 300 to 2000 K. Degradation of thermal conductivity is predicted in (U xTh 1-x)O 2 and (U xPu 1-x)O 2 as compositions deviate from the pure end members: UO 2, PuO 2 and ThO 2. The reduction in thermal conductivity is most apparent at low temperatures where phonon-defect scattering dominates over phonon-phonon interactions. The effect is greater for (U xTh 1-x)O 2 than U xPu 1-x)Omore » 2 due to the greater mismatch in cation size. Parameters for an analytical expressions have been developed that describe the predicted thermal conductivities over the full temperature and compositional ranges. Finally, these expressions may be used in higher level fuel performance codes.« less

  15. A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M., E-mail: khodajm@auburn.edu

    2016-05-28

    Phase change materials such as n-alkanes that exhibit desirable characteristics such as high latent heat, chemical stability, and negligible supercooling are widely used in thermal energy storage applications. However, n-alkanes have the drawback of low thermal conductivity values. The low thermal conductivity of n-alkanes is linked to formation of randomly oriented nano-domains of molecules in their solid structure that is responsible for excessive phonon scattering at the grain boundaries. Thus, understanding the thermal boundary conductance at the grain boundaries can be crucial for improving the effectiveness of thermal storage systems. The concept of the ideal crystal is proposed in thismore » paper, which describes a simplified model such that all the nano-domains of long-chain n-alkanes are artificially aligned perfectly in one direction. In order to study thermal transport of the ideal crystal of long-chain n-alkanes, four (4) systems (C{sub 20}H{sub 42}, C{sub 24}H{sub 50}, C{sub 26}H{sub 54}, and C{sub 30}H{sub 62}) are investigated by the molecular dynamics simulations. Thermal boundary conductance between the layers of ideal crystals is determined using both non-equilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) simulations. Both NEMD and EMD simulations exhibit no significant change in thermal conductance with the molecular length. However, the values obtained from the EMD simulations are less than the values from NEMD simulations with the ratio being nearly three (3) in most cases. This difference is due to the nature of EMD simulations where all the phonons are assumed to be in equilibrium at the interface. Thermal conductivity of the n-alkanes in three structures including liquid, solid, and ideal crystal is investigated utilizing NEMD simulations. Our results exhibit a very slight rise in thermal conductivity values as the number of carbon atoms of the chain increases. The key understanding is that thermal transport can be significantly altered by how the molecules and the nano-domains are oriented in the structure rather than by the length of the n-alkane molecules.« less

  16. Thermal transport in tantalum oxide films for memristive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, Colin D.; Wilke, Rudeger H. T.; Brumbach, Michael T.

    2015-07-13

    The thermal conductivity of amorphous TaO{sub x} memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO{sub x} switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.

  17. Numerical modeling of reflux solar receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, R.E. Jr.

    1993-05-01

    Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is presently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, N. Mex. In support of this program, Sandia has developed two numerical models describing the thermal performance of pool-boiler and heat-pipe reflux receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. The primary difference between the models is the level of detailmore » in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. The numerical modeling concepts presented are applicable to conventional tube-type solar receivers, as well as to reflux receivers. Good agreement between the two models is demonstrated by comparing the predicted and measured performance of a pool-boiler reflux receiver being tested at Sandia. For design operating conditions, the receiver thermal efficiencies agree within 1 percent and the average receiver cavity temperature within 1.3 percent. The thermal efficiency and receiver temperatures predicted by the simpler thermal resistance model agree well with experimental data from on-sun tests of the Sandia reflux pool-boiler receiver. An analysis of these comparisons identifies several plausible explanations for the differences between the predicted results and the experimental data.« less

  18. TAP 2: A finite element program for thermal analysis of convectively cooled structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1980-01-01

    A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.

  19. Modeling the sharp compositional interface in the Pùu ̀Ṑō magma reservoir, Kīlauea volcano, Hawaìi

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Garcia, Michael O.

    2007-05-01

    Lavas from the early episodes of the Pu`u `Ō`ō eruption (1983-1985) of Kīlauea Volcano on the island of Hawai`i display rapid compositional variation over short periods for some episodes, especially the well-sampled episode 30 with ˜2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change, suggesting a sharp compositional interface within the Pu`u `Ō`ō dike-like shallow reservoir. Cooling-induced crystal fractionation in this reservoir is thought to be the main control on intraepisode compositional variation. Potential explanations for a sharp interface, such as changing reservoir width and wall rock thermal properties, are evaluated using a simple thermal model of a dike-like body surrounded by wall rock with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in wall rock thermal conductivity from 2.7 to 9 W m-1 C-1, which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted to shallow depths possibly by increasing numbers of dikes acting as aquicludes and/or decreasing pore space due to formation of secondary minerals. Results suggest that wall rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.

  20. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method

    PubMed Central

    Leyde, Brian P.; Klein, Sanford A; Nellis, Gregory F.; Skye, Harrison

    2017-01-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model. PMID:28785125

  1. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals

    PubMed Central

    Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.

    2015-01-01

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359

  2. Determination of the Thermal Properties of Sands as Affected by Water Content, Drainage/Wetting, and Porosity Conditions for Sands With Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-05-01

    It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.

  3. Thermal design and TDM test of the ETS-VI

    NASA Astrophysics Data System (ADS)

    Yoshinaka, T.; Kanamori, K.; Takenaka, N.; Kawashima, J.; Ido, Y.; Kuriyama, Y.

    The Engineering Test Satellite-VI (ETS-VI) thermal design, thermal development model (TDM) test, and evaluation results are described. The allocation of the thermal control materials on the spacecraft is illustrated. The principal design approach is to minimize the interactions between the antenna tower module and the main body, and between the main body and the liquid apogee propulsion system by means of multilayer insulation blankets and low conductance graphite epoxy support structures. The TDM test shows that the thermal control subsystem is capable of maintaining the on-board components within specified temperature limits. The heat pipe network is confirmed to operate properly, and a uniform panel temperature distribution is accomplished. The thermal analytical model is experimentally verified. The validity of the thermal control subsystem design is confirmed by the modified on-orbit analytical model.

  4. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites

    PubMed Central

    2011-01-01

    We employed an easy and direct method to measure the thermal conductivity of epoxy in the liquid (nanofluid) and solid (nanocomposite) states using both rodlike and platelet-like carbon-based nanostructures. Comparing the experimental results with the theoretical model, an anomalous enhancement was obtained with multiwall carbon nanotubes, probably due to their layered structure and lowest surface resistance. Puzzling results for functionalized graphene sheet nanocomposites suggest that phonon coupling of the vibrational modes of the graphene and of the polymeric matrix plays a dominant role on the thermal conductivities of the liquid and solid states. PACS: 74.25.fc; 81.05.Qk; 81.07.Pr. PMID:22133094

  5. Human body thermal images generated by conduction or radiation heat

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe; Sofron, Emil; Fumarel, Radu

    2009-01-01

    Humans and animals in general, are usually in a thermal steady state with respect to their surroundings. The tissues heat, generated at normal or diseases states, is lost to environment though several mechanisms: radiation, conduction, convection, evaporation, etc. Skin temperature is not the same on the entire body and a thermal body signature can be got. The temperature at skin level was measured by a thermistor, conduction component and by an IR camera, radiation component. A theoretical analysis using Weinhaum and JIJI model was done. The three images are investigated in order to get a cheap method for the early cancer diagnosis.

  6. In-plane and cross-plane thermal conductivity in La2-xSrxCuO4

    NASA Astrophysics Data System (ADS)

    Kumari, Anita; Gupta, Anushri; Verma, Sanjeev K.; Indu, B. D.

    2018-05-01

    The problem of heat transport anisotropy in layered cuprate high temperature superconductors (HTS) has been investigated in terms of a-, b-, c- axis thermal conductivity. Various inadequacies involved due to dispersion and violation of Matthessien's rule in the Callaway's model have been removed with the help of life time approach of quantum many body theory of scattering mechanisms. Based on this approach the thermal conductivity of La1.98Sr0.02CuO4 and La1.96Sr0.04CuO4 samples has been numerically estimated and the observed results are found in good agreement with experimental observations.

  7. Local measurement of thermal conductivity and diffusivity.

    PubMed

    Hurley, David H; Schley, Robert S; Khafizov, Marat; Wendt, Brycen L

    2015-12-01

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.

  8. Data assimilation for the investigation of deep temperature and geothermal energy in the Netherlands.

    NASA Astrophysics Data System (ADS)

    Bonté, Damien; Limberger, Jon; Lipsey, Lindsey; Cloetingh, Sierd; van Wees, Jan-Diederik

    2016-04-01

    Deep geothermal energy systems, mostly for the direct use of heat, have been attracting more and more interest in the past 10 years in Western Europe. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. To support the development of deep geothermal energy system, the scientific community has been working on tools that could be used to highlight area of potential interest for geothermal exploration. In the Netherlands, ThermoGIS is one such tool that has been developed to inform the general public, policy makers, and developers in the energy sector of the possibility of geothermal energy development. One major component incorporated in this tool is the temperature model. For the Netherlands, we created a thermal model at the lithospheric scale that focus on the sedimentary deposits for deep geothermal exploration. This regional thermal modelling concentrates on the variations of geological thermal conductivity and heat production both in the sediments and in the crust. In addition, we carried out special modelling in order to specifically understand convectivity in the basin, focusing on variations at a regional scale. These works, as well as recent improved of geological knowledge in the deeper part of the basin, show interesting evidence for geothermal energy development. At this scale, the aim of this work is to build on these models and, using data assimilation, to discriminate in the actual causes of the observed anomalies. The temperature results obtained for the Netherlands show some thermal patterns that relate to the variation of the thermal conductivity and the geometry of the sediments. There is also strong evidence to indicate that deep convective flows are responsible for thermal anomalies. The combination of conductive and local convective thermal patterns makes the deeper part of the Dutch sedimentary basin of great interest for the development of geothermal energy.

  9. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  10. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur

    2015-12-01

    While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells.

  11. Direct observation of vast off-stoichiometric defects in single crystalline SnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Wu, Lijun; He, Dongsheng

    Single crystalline tin selenide (SnSe) recently emerged as a very promising thermoelectric material for waste heat harvesting and thermoelectric cooling, due to its record high figure of merit ZT in mediate temperature range. The most striking feature of SnSe lies in its extremely low lattice thermal conductivity as ascribed to the anisotropic and highly distorted Sn-Se bonds as well as the giant bond anharmonicity by previous studies, yet no theoretical models so far can give a quantitative explanation to such low a lattice thermal conductivity. Here, we presented direct observation of an astonishingly vast number of off-stoichiometric Sn vacancies andmore » Se interstitials, using sophisticated aberration corrected scanning transmission electron microscope; and credited the previously reported ultralow thermal conductivity of the SnSe single crystalline samples partly to their off-stoichiometric feature. In order to further validate the conclusion, we also synthesized stoichiometric SnSe single crystalline samples, and illustrated that the lattice thermal conductivity is deed much higher as compared with the off-stoichiometric single crystals. Finally, the scattering efficiency of individual point defect on heat-carrying phonons was then discussed in the state-of-art Debye-Callaway model.« less

  12. Direct observation of vast off-stoichiometric defects in single crystalline SnSe

    DOE PAGES

    Wu, Di; Wu, Lijun; He, Dongsheng; ...

    2017-04-06

    Single crystalline tin selenide (SnSe) recently emerged as a very promising thermoelectric material for waste heat harvesting and thermoelectric cooling, due to its record high figure of merit ZT in mediate temperature range. The most striking feature of SnSe lies in its extremely low lattice thermal conductivity as ascribed to the anisotropic and highly distorted Sn-Se bonds as well as the giant bond anharmonicity by previous studies, yet no theoretical models so far can give a quantitative explanation to such low a lattice thermal conductivity. Here, we presented direct observation of an astonishingly vast number of off-stoichiometric Sn vacancies andmore » Se interstitials, using sophisticated aberration corrected scanning transmission electron microscope; and credited the previously reported ultralow thermal conductivity of the SnSe single crystalline samples partly to their off-stoichiometric feature. In order to further validate the conclusion, we also synthesized stoichiometric SnSe single crystalline samples, and illustrated that the lattice thermal conductivity is deed much higher as compared with the off-stoichiometric single crystals. Finally, the scattering efficiency of individual point defect on heat-carrying phonons was then discussed in the state-of-art Debye-Callaway model.« less

  13. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).

  14. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks

    NASA Astrophysics Data System (ADS)

    Vafaei, Masoud; Afrand, Masoud; Sina, Nima; Kalbasi, Rasool; Sourani, Forough; Teimouri, Hamid

    2017-01-01

    In this paper, the thermal conductivity ratio of MgO-MWCNTs/EG hybrid nanofluids has been predicted by an optimal artificial neural network at solid volume fractions of 0.05%, 0.1%, 0.15%, 0.2%, 0.4% and 0.6% in the temperature range of 25-50 °C. In this way, at the first, thirty six experimental data was presented to determine the thermal conductivity ratio of the hybrid nanofluid. Then, four optimal artificial neural networks with 6, 8, 10 and 12 neurons in hidden layer were designed to predict the thermal conductivity ratio of the nanofluid. The comparison between four optimal ANN results and experimental showed that the ANN with 12 neurons in hidden layer was the best model. Moreover, the results obtained from the best ANN indicated the maximum deviation margin of 0.8%.

  15. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application

    NASA Astrophysics Data System (ADS)

    Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang

    In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.

  16. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE PAGES

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    2017-09-01

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  17. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  18. Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1993-01-01

    This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.

  19. Modeling the effect of laser heating on the strength and failure of 7075-T6 aluminum

    DOE PAGES

    Florando, J. N.; Margraf, J. D.; Reus, J. F.; ...

    2015-06-06

    The effect of rapid laser heating on the response of 7075-T6 aluminum has been characterized using 3-D digital image correlation and a series of thermocouples. The experimental results indicate that as the samples are held under a constant load, the heating from the laser profile causes non-uniform temperature and strain fields, and the strain-rate increases dramatically as the sample nears failure. Simulations have been conducted using the LLNL multi-physics code ALE3D, and compared to the experiments. The strength and failure of the material was modeled using the Johnson–Cook strength and damage models. Here, in order to capture the response, amore » dual-condition criterion was utilized which calibrated one set of parameters to low temperature quasi-static strain rate data, while the other parameter set is calibrated to high temperature high strain rate data. The thermal effects were captured using temperature dependent thermal constants and invoking thermal transport with conduction, convection, and thermal radiation.« less

  20. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

Top