Sample records for thermal conductivity decrease

  1. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    USGS Publications Warehouse

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  2. Thermal conductivity of supercooled water.

    PubMed

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  3. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.

    PubMed

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.

  4. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures

    PubMed Central

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, <100>, is better than the <111> crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials. PMID:28469733

  5. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  6. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1991-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  7. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  8. Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization

    NASA Astrophysics Data System (ADS)

    Wang, Yingjun; Xie, Guofeng

    2015-12-01

    The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction-dependent phonon-boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron-length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.

  9. Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Jorand, Rachel; Fehr, Annick; Koch, Andreas; Clauser, Christoph

    2011-08-01

    In this paper, we present a method that allows one to correct thermal conductivity measurements for the effect of water loss when extrapolating laboratory data to in situ conditions. The water loss in shales and unconsolidated rocks is a serious problem that can introduce errors in the characterization of reservoirs. For this study, we measure the thermal conductivity of four sandstones with and without clay minerals according to different water saturation levels using an optical scanner. Thermal conductivity does not decrease linearly with water saturation. At high saturation and very low saturation, thermal conductivity decreases more quickly because of spontaneous liquid displacement and capillarity effects. Apart from these two effects, thermal conductivity decreases quasi-linearly. We also notice that the samples containing clay minerals are not completely drained, and thermal conductivity reaches a minimum value. In order to fit the variation of thermal conductivity with the water saturation as a whole, we used modified models commonly presented in thermal conductivity studies: harmonic and arithmetic mean and geometric models. These models take into account different types of porosity, especially those attributable to the abundance of clay, using measurements obtained from nuclear magnetic resonance (NMR). For argillaceous sandstones, a modified arithmetic-harmonic model fits the data best. For clean quartz sandstones under low water saturation, the closest fit to the data is obtained with the modified arithmetic-harmonic model, while for high water saturation, a modified geometric mean model proves to be the best.

  10. Thermal conductivity of bulk and thin film β-Ga2O3 measured by the 3ω technique

    NASA Astrophysics Data System (ADS)

    Blumenschein, N.; Slomski, M.; Paskov, P. P.; Kaess, F.; Breckenridge, M. H.; Muth, J. F.; Paskova, T.

    2018-02-01

    Thermal conductivity of undoped and Sn-doped β-Ga2O3 bulk and single-crystalline thin films have been measured by the 3ω technique. The bulk samples were grown by edge-defined film-field growth (EFG) method, while the thin films were grown on c-plane sapphire by pulsed-laser deposition (PLD). All samples were with (-201) surface orientation. Thermal conductivity of bulk samples was calculated along the in-plane and cross-plane crystallographic directions, yielding a maximum value of 29 W/m-K in the [010] direction at room temperature. A slight thermal conductivity decrease was observed in the Sn-doped bulk samples, which was attributed to enhanced phonon-impurity scattering. The differential 3ω method was used for β-Ga2O3 thin film samples due to the small film thickness. Results show that both undoped and Sndoped films have a much lower thermal conductivity than that of the bulk samples, which is consistent with previous reports in the literature showing a linear relationship between thermal conductivity and film thickness. Similarly to bulk samples, Sn-doped thin films have exhibited a thermal conductivity decrease. However, this decrease was found to be much greater in thin film samples, and increased with Sn doping concentration. A correlation between thermal conductivity and defect/dislocation density was made for the undoped thin films.

  11. SOLID SOLUTION EFFECTS ON THE THERMAL PROPERTIES IN THE MgAl2O4-MgGa2O4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Kelley; Smith, Jeffrey D; Sander, Todd P.

    Solid solution eects on thermal conductivity within the MgO-Al2O3-Ga2O3 system were studied. Samples with systematically varied additions of MgGa2O4 to MgAl2O4 were prepared and the laser ash technique was used to determine thermal diusivity at temperatures between 200C and 1300C. Heat capacity as a function of temperature from room temperature to 800C was also determined using dierential scanning calorimetry. Solid solution in the MgAl2O4-MgGa2O4 system decreases the thermal conductivity up to 1000C. At 200C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. At 1000C the thermal conductivity decreased 13% with a 5 mol% addition.more » Steady state calculations showed a 12.5% decrease in heat ux with 5 mol% MgGa2O4 considered across a 12 inch thickness.« less

  12. Anomalous thermal conductivity of monolayer boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabarraei, Alireza, E-mail: atabarra@uncc.edu; Wang, Xiaonan

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate themore » mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.« less

  13. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less

  14. Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method

    NASA Astrophysics Data System (ADS)

    Potenza, M.; Cataldo, A.; Bovesecchi, G.; Corasaniti, S.; Coppa, P.; Bellucci, S.

    2017-07-01

    The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg.m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.

  15. Effect of graphene nanofillers on the enhanced thermoelectric properties of Bi2Te3 nanosheets: elucidating the role of interface in de-coupling the electrical and thermal characteristics

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Singh, Simrjit; Dhawan, Punit Kumar; Yadav, R. R.; Khare, Neeraj

    2018-04-01

    In this report, we investigate the effect of graphene nanofillers on the thermoelectric properties of Bi2Te3 nanosheets and demonstrate the role of interface for enhancing the overall figure of merit (ZT) ∼ 53%. The enhancement in the ZT is obtained due to an increase in the electrical conductivity (∼111%) and decrease in the thermal conductivity (∼12%) resulting from increased conducting channels and phonon scattering, respectively at the interfaces between graphene and Bi2Te3 nanosheets. A detailed analysis of the thermal conductivity reveals ∼4 times decrease in the lattice thermal conductivity in contrast to ∼2 times increase in the electronic thermal conductivity after the addition of graphene. Kelvin probe measurements have also been carried which reveals presence of low potential barrier at the interface between graphene and Bi2Te3 nanosheets which assist the flow of charge carriers thereby, increasing the mobility of the carriers. Thus, our results reveals a significant decrease in the lattice thermal conductivity (due to the formation of interfaces) and increase in the electron mobility (due to conducting paths at the interfaces) strongly participate in deciding observed enhancement in the thermoelectric figure of merit.

  16. Effect of graphene nanofillers on the enhanced thermoelectric properties of Bi2Te3 nanosheets: elucidating the role of interface in de-coupling the electrical and thermal characteristics.

    PubMed

    Kumar, Sunil; Singh, Simrjit; Dhawan, Punit Kumar; Yadav, R R; Khare, Neeraj

    2018-04-03

    In this report, we investigate the effect of graphene nanofillers on the thermoelectric properties of Bi 2 Te 3 nanosheets and demonstrate the role of interface for enhancing the overall figure of merit (ZT) ∼ 53%. The enhancement in the ZT is obtained due to an increase in the electrical conductivity (∼111%) and decrease in the thermal conductivity (∼12%) resulting from increased conducting channels and phonon scattering, respectively at the interfaces between graphene and Bi 2 Te 3 nanosheets. A detailed analysis of the thermal conductivity reveals ∼4 times decrease in the lattice thermal conductivity in contrast to ∼2 times increase in the electronic thermal conductivity after the addition of graphene. Kelvin probe measurements have also been carried which reveals presence of low potential barrier at the interface between graphene and Bi 2 Te 3 nanosheets which assist the flow of charge carriers thereby, increasing the mobility of the carriers. Thus, our results reveals a significant decrease in the lattice thermal conductivity (due to the formation of interfaces) and increase in the electron mobility (due to conducting paths at the interfaces) strongly participate in deciding observed enhancement in the thermoelectric figure of merit.

  17. Simultaneous measurement for thermal conductivity, diffusivity, and specific heat of methane hydrate bearing sediments recovered from Nankai-Trough wells

    NASA Astrophysics Data System (ADS)

    Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.

    2014-12-01

    This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.

  18. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  19. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    PubMed Central

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Urquhart, Alexander

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature upmore » to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.« less

  1. How much improvement in thermoelectric performance can come from reducing thermal conductivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaultois, Michael W., E-mail: mgaultois@mrl.ucsb.edu; Sparks, Taylor D., E-mail: sparks@eng.utah.edu

    Large improvements in the performance of thermoelectric materials have come from designing materials with reduced thermal conductivity. Yet as the thermal conductivity of some materials now approaches their amorphous limit, it is unclear if microstructure engineering can further improve thermoelectric performance in these cases. In this contribution, we use large data sets to examine 300 compositions in 11 families of thermoelectric materials and present a type of plot that quickly reveals the maximum possible zT that can be achieved by reducing the thermal conductivity. This plot allows researchers to quickly distinguish materials where the thermal conductivity has been optimized frommore » those where improvement can be made. Moreover, through these large data sets we examine structure-property relationships to identify methods that decrease thermal conductivity and improve thermoelectric performance. We validate, with the data, that increasing (i) the volume of a unit cell and/or (ii) the number of atoms in the unit cell decreases the thermal conductivity of many classes of materials, without changing the electrical resistivity.« less

  2. Heat Transfar Properties of Flat-Panel Evacuated Porous Insrlators

    NASA Astrophysics Data System (ADS)

    Yoneno, Hirosyi; Yamamoto, Ryoichi

    Flat Panel evacuated porous insulators have been produced by filling powder or fiber (such as perlite powder, diatomaceous earth powder, silica aerogel powder, g lass fiber and ceramic fiber) in film-like laminated plastic container and by evacuating to form vacuum in it is interior. Heat transfer properties of these evacuated insulators have been studied under various conditions (such as particle diameter, surface area, packing density, solid volume fraction and void dimension). The apparent mean thermal conductivity has been measured for the boundary surface temperature at cold face temperature 13°C and hot face temperature 35°. The effect of air pressure ranging from 1 Pa to one atomosphere (105 Pa) was examined. The results were as follows. (1) For each powder the apparent mean thermal conductivity decreases with decreasing residual air pressure, and at very low pressure bellow 1 -103 Pa the conductivity becomes indeqendent of pressure. The thermal conductivity at 1.3Pa is 0.0053 W/mK for perlite powder, 0.0048W/mK for diatomaceous earth powder, 0.0043 W/mK for silica aerogel powder and 0.0029W/mK for glass fiber. (2) With decreasing particle size, the apparent mean thermal conductivity is constant independent of residual air pressure in higher pressure region. It is that void dimension continues to decrease with particle size and the mean free path of air becomes comparable with void dimension. (3) In the range of minor solid volume fraction, the apparent mean thermal conductivity at very low precreases with decreasing particle size. This shows the thermal contact resistance of the solid particle increases with decreasing particle size.

  3. Probing Nanoscale Thermal Transport in Surfactant Solutions

    PubMed Central

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  4. Strain-controlled thermal conductivity in ferroic twinned films

    PubMed Central

    Li, Suzhi; Ding, Xiangdong; Ren, Jie; Moya, Xavier; Li, Ju; Sun, Jun; Salje, Ekhard K. H.

    2014-01-01

    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity κ of ferroic twinned thin films can be reversibly controlled by strain. Nonequilibrium molecular dynamics simulations reveal that thermal conductivity decreases linearly with the number of twin boundaries perpendicular to the direction of heat flow. Our demonstration of large and reversible changes in thermal conductivity driven by strain may inspire the design of controllable thermal switches for thermal logic gates and all-solid-state cooling devices. PMID:25224749

  5. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  6. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  7. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  8. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Langrand, C.; Hilairet, N.; Konopkova, Z.; Andrault, D.

    2016-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  9. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Sawchuk, K. L. S.; Kavner, A.

    2017-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  10. Thermal conductivity of the Lennard-Jones chain fluid model.

    PubMed

    Galliero, Guillaume; Boned, Christian

    2009-12-01

    Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8

  11. Effects of torsion on the thermal conductivity of multi-layer graphene

    NASA Astrophysics Data System (ADS)

    Si, Chao; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai

    2017-05-01

    This work employs the equilibrium molecular dynamics method to study the effects of torsion on the thermal conductivity of multi-layer graphene. Thermal conductivities of twisted 10-layer 433.91 × 99.68 Å2 graphene with torsion angles of 0°, 11.25°, 22.5°, 33.75°, 45°, 67.5°, 90°, 112.5°, and 135° are calculated. The corresponding radial distribution functions and nearest atomic distances are calculated to reveal the effects of torsion on lattice structures. The spectral energy density (SED) method is utilized to analyze the phonon transport properties. It is very interesting that the thermal conductivity of multi-layer graphene decreases slightly at first and then increases with the increasing torsion angle, and the valley is located at θG = 22.5° with the lowest thermal conductivity of 4692.40 W m-1 K-1. The torsion effect can be considered as a combination of the compression effect and the dislocation effect. Further SED analysis confirms that the effect of dislocation on thermal conductivities can be negligible, while the compression effect decreases the phonon lifetimes of flexural out-of-plane acoustic (ZA) branches and increases the ZA group velocities and the phonon specific heat. The decrease becomes dominated when the torsion angle is small, whereas the increase becomes more and more dominated when the torsion angle becomes larger, which are responsible for the reported variation of thermal conductivities.

  12. Strain effects on the anisotropic thermal transport in crystalline polyethylene

    NASA Astrophysics Data System (ADS)

    He, Jixiong; Kim, Kyunghoon; Wang, Yangchao; Liu, Jun

    2018-01-01

    Thermal transport in the axial direction of polymers has been extensively studied, while the strain effect on the thermal conductivity, especially in the radial direction, remains unknown. In this work, we calculated the thermal conductivity in the radial direction of a crystalline polyethylene model and simulated the uniaxial strain effect on the thermal conductivity tensor by molecular dynamics simulations. We found a strong size effect of the thermal transport in the radial direction and estimated that the phonon mean free path can be much larger than the prediction from the classic kinetic theory. We also found that the thermal conductivity in the axial direction increases dramatically with strain, while the thermal conductivity in the radial direction decreases with uniaxial strain. We attribute the reduction of thermal conductivity in the radial direction to the decreases in inter-chain van der Waals forces with strains. The facts that the chains in the crystalline polyethylene became stiffer and more ordered along the chain direction could be the reasons for the increasing thermal conductivity in the axial direction during stretching. Besides, we observed longer phonon lifetime in acoustic branches and higher group velocity in optical branches after uniaxial stretching. Our work provides fundamental understandings on the phonon transport in crystalline polymers, the structure-property relationship in crystalline polymers, and the strain effect in highly anisotropic materials.

  13. Research on thermal conductivity of HGMs at vacuum in room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Liao, Bin; An, Zhenguo; Yan, Kaiqi; Zhang, Jingjie

    2018-05-01

    Hollow glass microspheres (HGMs) can be used as thermal insulation materials owing to its hollow structure which brings excellent thermal insulation property and low density. At present, most researches on thermal conductivity of HGMs are focused on polymer matrix/HGMs composite materials. However, thermal conductivity of HGMs at vacuum in room temperature has rarely been investigated. In this work, thermal conductivity of six types of HGMs (T17 (0.17g/cm3), T20 (0.20g/cm3), T22 (0.22g/cm3), T25 (0.25g/cm3), T32 (0.32g/cm3) and T40 (0.40g/cm3)) at vacuum in room temperature were calculated by heat transfer of solid conduction and radiation. The calculation results showed that thermal conductivity of HGMs would be decreased by an order of magnitude compared with no vacuum. In order to verify the calculation and study vacuum thermal insulation properties of HGMs, thermal conductivity of above-mentioned HGMs at no vacuum and high vacuum in room temperature were measured by a self-made thermal conductivity measuring apparatus which was based on the transient plane source (TPS) method. The experimental results showed that thermal conductivity of HGMs were in the range of 4.2030E-02 to 6.3300E-02 W/m.K (at no vacuum) and 3.8160E-03 to 4.9660E-03 W/m.K (at high vacuum). The results indicated that experimental thermal conductivity was consistent with the calculation results and both of them were all decreased by 8-13 times at vacuum compared with no vacuum. In addition, the relationship with physical properties and thermal conductivity of HGMs has been discussed in detail. In conclusion, HGMs possess excellent thermal insulation performance at high vacuum in room temperature and have potential to further reduce thermal conductivity at the same conditions.

  14. Nanostructure-thermal conductivity relationships in protic ionic liquids.

    PubMed

    Murphy, Thomas; Varela, Luis M; Webber, Grant B; Warr, Gregory G; Atkin, Rob

    2014-10-16

    The thermal conductivities of nine protic ionic liquids (ILs) have been investigated between 293 and 340 K. Within this range, the thermal conductivities are between 0.18 and 0.30 W · m(-1) · K(-1). These values are higher than those typically associated with oils and aprotic ILs, but lower than those of strongly hydrogen bonding solvents like water. Weak linear decreases in thermal conductivity with temperature are noted, with the exception of ethanolammonium nitrate (EtAN) where the thermal conductivity increases with temperature. The dependence of thermal conductivity on IL type is analyzed with use of the Bahe-Varela pseudolattice theory. This theory treats the bulk IL as an array of ordered domains with intervening domains of uncorrelated structure which enable and provide barriers to heat propagation (respectively) via allowed vibrational modes. For the protic ILs investigated, thermal conductivity depends strongly on the IL cation alkyl chain length. This is because the cation alkyl chain controls the dimensions of the IL bulk nanostructure, which consists of charged (ordered domains) and uncharged regions (disordered domains). As the cation alkyl chain controls the dimensions of the disordered domains, it thus limits the thermal conductivity. To test the generality of this interpretation, the thermal conductivities of propylammonium nitrate (PAN) and PAN-octanol mixtures were examined; water selectively swells the PAN charged domain, while octanol swells the uncharged regions. Up to a certain concentration, adding water increases thermal conduction and octanol decreases it, as expected. However, at high solute concentrations the IL nanostructure is broken. When additional solvent is added above this concentration the rate of change in thermal conductivity is greatly reduced. This is because, in the absence of nanostructure, the added solvent only serves to dilute the salt solution.

  15. Sensitivity of thermal transport in thorium dioxide to defects

    NASA Astrophysics Data System (ADS)

    Park, Jungkyu; Farfán, Eduardo B.; Mitchell, Katherine; Resnick, Alex; Enriquez, Christian; Yee, Tien

    2018-06-01

    In this research, the reverse non-equilibrium molecular dynamics is employed to investigate the effect of vacancy and substitutional defects on the thermal transport in thorium dioxide (ThO2). Vacancy defects are shown to severely alter the thermal conductivity of ThO2. The thermal conductivity of ThO2 decreases significantly with increasing the defect concentration of oxygen vacancy; the thermal conductivity of ThO2 decreases by 20% when 0.1% oxygen vacancy defects are introduced in the 100 unit cells of ThO2. The effect of thorium vacancy defect on the thermal transport in ThO2 is even more detrimental; ThO2 with 0.1% thorium vacancy defect concentration exhibits a 38.2% reduction in its thermal conductivity and the thermal conductivity becomes only 8.2% of that of the pristine sample when the thorium vacancy defect concentration is increased to 5%. In addition, neutron activation of thorium produces uranium and this uranium substitutional defects in ThO2 are observed to affect the thermal transport in ThO2 marginally when compared to vacancy defects. This indicates that in the thorium fuel cycle, fissile products such as 233U is not likely to alter the thermal transport in ThO2 fuel.

  16. Reduced Lattice Thermal Conductivity of Fe-bearing Bridgmanite in Earth's Deep Mantle

    NASA Astrophysics Data System (ADS)

    Hsieh, W. P.; Deschamps, F.; Okuchi, T.; Lin, J. F.

    2017-12-01

    Complex seismic and thermo-chemical features have been revealed in Earth's lowermost mantle. Particularly, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, which, in turn, may alter the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion in bridgmanite could affect its lattice thermal conductivity, but this effect remains largely unknown. Here we report our measurements of the lattice thermal conductivity of Fe-bearing and (Fe,Al)-bearing bridgmanites to 120 GPa using optical pump-probe spectroscopy. The thermal conductivity of Fe-bearing bridgmanite increases monotonically with pressure, but drops significantly around 45 GPa presumably due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000-km depth. Modeling of our results applied to the LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that, while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.

  17. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle: Reduced Conductivity of Fe-Bridgmanite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo

    Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermalmore » conductivity of Fe-bearing bridgmanite to 120 GPa using optical pump-probe spectroscopy. The conductivity of Fe-bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.« less

  18. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  19. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Noshin, Maliha; Intisar Khan, Asir; Subrina, Samia

    2018-05-01

    Recently, stanene and silicene based nanostructures with low thermal conductivity have incited noteworthy interest due to their prospect in thermoelectrics. Aiming at the possibility of extracting lower thermal conductivity, in this study, we have proposed and modeled stanene/silicene heterobilayer nanoribbons, a new heterostructure and subsequently characterized their thermal transport by using an equilibrium molecular dynamics simulation. In addition, the thermal transport in bilayer stanene is also studied and compared. We have computed the thermal conductivity of the stanene/silicene and bilayer stanene nanostructures to characterize their thermal transport phenomena. The studied nanostructures show good thermal stability within the temperature range of 100-600 K. The room temperature thermal conductivities of pristine 10 nm × 3 nm stanene/silicene hetero-bilayer and stanene bilayer are estimated to be 3.63 ± 0.27 W m-1 K-1 and 1.31 ± 0.34 W m-1 K-1, respectively, which are smaller than that of silicene, graphene and some other 2D monolayers as well as heterobilayers such as stanene/graphene and silicene/graphene. In the temperature range of 100-600 K, the thermal conductivity of our studied bilayer nanoribbons decreases with an increase in the temperature. Furthermore, we have investigated the dependence of our estimated thermal conductivity on the size of the considered nanoribbons. The thermal conductivities of both the nanoribbons are found to increase with an increase in the width of the structure. The thermal conductivity shows a similar increasing trend with the increase in the ribbon length, as well. Our results suggest that, the low thermal conductivity of our studied bilayer structures can be further decreased by nanostructuring. The significantly low thermal conductivity of the stanene/silicene heterobilayer and stanene bilayer nanoribbons realized in our study would provide a good insight and encouragement into their appealing prospect in the thermoelectric applications.

  20. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.

    PubMed

    Noshin, Maliha; Khan, Asir Intisar; Subrina, Samia

    2018-05-04

    Recently, stanene and silicene based nanostructures with low thermal conductivity have incited noteworthy interest due to their prospect in thermoelectrics. Aiming at the possibility of extracting lower thermal conductivity, in this study, we have proposed and modeled stanene/silicene heterobilayer nanoribbons, a new heterostructure and subsequently characterized their thermal transport by using an equilibrium molecular dynamics simulation. In addition, the thermal transport in bilayer stanene is also studied and compared. We have computed the thermal conductivity of the stanene/silicene and bilayer stanene nanostructures to characterize their thermal transport phenomena. The studied nanostructures show good thermal stability within the temperature range of 100-600 K. The room temperature thermal conductivities of pristine 10 nm × 3 nm stanene/silicene hetero-bilayer and stanene bilayer are estimated to be 3.63 ± 0.27 W m -1 K -1 and 1.31 ± 0.34 W m -1 K -1 , respectively, which are smaller than that of silicene, graphene and some other 2D monolayers as well as heterobilayers such as stanene/graphene and silicene/graphene. In the temperature range of 100-600 K, the thermal conductivity of our studied bilayer nanoribbons decreases with an increase in the temperature. Furthermore, we have investigated the dependence of our estimated thermal conductivity on the size of the considered nanoribbons. The thermal conductivities of both the nanoribbons are found to increase with an increase in the width of the structure. The thermal conductivity shows a similar increasing trend with the increase in the ribbon length, as well. Our results suggest that, the low thermal conductivity of our studied bilayer structures can be further decreased by nanostructuring. The significantly low thermal conductivity of the stanene/silicene heterobilayer and stanene bilayer nanoribbons realized in our study would provide a good insight and encouragement into their appealing prospect in the thermoelectric applications.

  1. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  2. Electrical and thermal transport properties of layered Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Yu; Pei, Yanling; Chang, Cheng

    Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} possesses a low thermal conductivity and high electrical conductivity at room temperature, which was considered as a potential thermoelectric material. In this work, we have investigated the electrical and thermal transport properties of Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} system in the temperature range from 300 K to 873 K. We found that the total thermal conductivity decreases from ~1.8 W m{sup −1} K{sup −1} to ~0.9 W m{sup −1} K{sup −1}, and the electrical conductivity decreases from ~850 S/cm to ~163 S/cm in the measured temperature range. To investigate how potential of Bi{sub 2}YO{sub 4}Cu{submore » 2}Se{sub 2} system, we prepared the heavily Iodine doped samples to counter-dope intrinsically high carrier concentration and improve the electrical transport properties. Interestingly, the Seebeck coefficient could be enhanced to ~+80 μV/K at 873 K, meanwhile, we found that a low thermal conductivity of ~0.7 W m{sup −1} K{sup −1} could be achieved. The intrinsically low thermal conductivity in this system is related to the low elastic properties, such as Young's modulus of 70–72 GPa, and Grüneisen parameters of 1.55–1.71. The low thermal conductivity makes Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} system to be a potential thermoelectric material, the ZT value ~0.06 at 873 K was obtained, a higher performance is expected by optimizing electrical transport properties through selecting suitable dopants, modifying band structures or by further reducing thermal conductivity through nanostructuring etc. - Highlights: • The total thermal conductivity decreases from 1.8 to 0.9 Wm{sup –1}K{sup –1} at 300–873K. • The electrical conductivity decreased from 850 to 163 S/cm at 300–873K. • The Seebeck coefficients were enhanced through heavily Iodine doping. • The ZT ~0.06 at 873K suggests that Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} systems are potential thermoelectrical materials.« less

  3. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    NASA Astrophysics Data System (ADS)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  4. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness

    PubMed Central

    2014-01-01

    We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400 nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-ω) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300 K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51 W/m · K at 300 K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52 W/m · K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300 K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices. PMID:24571956

  5. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

    NASA Astrophysics Data System (ADS)

    Lugo, J. M.; Oliva, A. I.

    2017-02-01

    The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

  6. Ash effects on the thermal conductivity of a mediterranean loam soil

    NASA Astrophysics Data System (ADS)

    Rubio, Carles; Pereira, Paulo; Ubeda, Xavier

    2014-05-01

    The purpose of this work is to explore the variability on the soil thermal conductivity for a burnt soil and assessing the effects of the ashes on the heat transfer when they were incorporated into the soil matrix. A set of 42 soil samples from the Montgrí massif experimental plot between surface and 5 cm depth was collected before and after the soil was burnt. A thermal characterization of the soil was carried out. For that a dry out curve was constructed, which presented the relationship between water content and thermal conductivity for both types of soil samples, burnt and non-burnt soil. The results shown changes in the heat pulse transfer, being more conductive the soil before to be burnt (0.378 W•m-1•C-1) than the soil after to be exposed to the fire (0.337 W•m-1•C-1). Indeed, on the whole of moisture scenarios the values of thermal conductivity decreased after soil was burnt. Another experimental concern was based on to observe the soil thermal behaviour when ash collected after fire was incorporated into the burnt soil matrix. In this case, soil thermal and soil hydrodynamic behaviour presented differences according to the type of ash. Soil mixed with fly ash showed higher thermal conductivity than soil mixed with bottom ash. To sum up; the soil thermal conductivity decreased when soil was burnt. On the other hand, soil thermal conductivity shown differences depending on the type of ash incorporated into the matrix. Fly ash transferred the heat pulse better than bottom ash.

  7. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.

    PubMed

    Bartlett, Michael D; Kazem, Navid; Powell-Palm, Matthew J; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A; Majidi, Carmel

    2017-02-28

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity ( k ) to decrease monotonically with decreasing elastic modulus ( E ). This thermal-mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young's modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m -1 ⋅K -1 ) over the base polymer (0.20 ± 0.01 W⋅m -1 ·K -1 ) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m -1 ·K -1 ) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal-mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.

  8. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  9. Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour

    NASA Astrophysics Data System (ADS)

    Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.

    1997-02-01

    The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.

  10. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators

    PubMed Central

    Ehrlich, Lili E.; Malen, Jonathan A.; Rabin, Yoed

    2016-01-01

    The thermal conductivity of the cryoprotective agent (CPA) cocktail DP6 in combination with synthetic ice modulators (SIMs) is measured in this study, using a transient hot-wire method. DP6 is a mixture of 3M dimethyl sulfoxide (DMSO) and 3M propylene glycol, which received significant attention in the cryobiology community in recent years. Tested SIMs include 6% 1,3Cyclohexanediol, 6% 2,3Butanediol, and 12% PEG400 (percentage by volume). This study integrates the scanning cryomacroscope for visual verification of crystallization and vitrification events. It is demonstrated that the thermal conductivity of the vitrifying CPA cocktail decreases monotonically with the decreasing temperature down to −180°C. By contrast, the thermal conductivity of the crystalline material increases with decreasing temperature in the same temperature range. Results of this study demonstrate that the thermal conductivity may vary by three fold between the amorphous and crystalline phases of DP6 below the glass transition temperature of DP6 (Tg = −119°C). The selected SIMs demonstrate the ability to inhibit crystallization in DP6, even at subcritical cooling rates. An additional ice suppression capability is observed by the Euro-Collins as a vehicle solution, disproportionate to its volume ratio in the cocktail. The implication of the observed thermal conductivity differences between the amorphous and crystalline phases of the same cocktail on cryopreservation simulations is significant in some cases and must be taken into account in thermal analyses of cryopreservation protocols. PMID:27471057

  11. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.

    PubMed

    Ehrlich, Lili E; Malen, Jonathan A; Rabin, Yoed

    2016-10-01

    The thermal conductivity of the cryoprotective agent (CPA) cocktail DP6 in combination with synthetic ice modulators (SIMs) is measured in this study, using a transient hot-wire method. DP6 is a mixture of 3 M dimethyl sulfoxide (DMSO) and 3 M propylene glycol, which received significant attention in the cryobiology community in recent years. Tested SIMs include 6% 1,3Cyclohexanediol, 6% 2,3Butanediol, and 12% PEG400 (percentage by volume). This study integrates the scanning cryomacroscope for visual verification of crystallization and vitrification events. It is demonstrated that the thermal conductivity of the vitrifying CPA cocktail decreases monotonically with the decreasing temperature down to -180 °C. By contrast, the thermal conductivity of the crystalline material increases with decreasing temperature in the same temperature range. Results of this study demonstrate that the thermal conductivity may vary by three fold between the amorphous and crystalline phases of DP6 below the glass transition temperature of DP6 (Tg = -119 °C). The selected SIMs demonstrate the ability to inhibit crystallization in DP6, even at subcritical cooling rates. An additional ice suppression capability is observed by the Euro-Collins as a vehicle solution, disproportionate to its volume ratio in the cocktail. The implication of the observed thermal conductivity differences between the amorphous and crystalline phases of the same cocktail on cryopreservation simulations is significant in some cases and must be taken into account in thermal analyses of cryopreservation protocols. Copyright © 2016. Published by Elsevier Inc.

  12. Effects of fullerene coalescence on the thermal conductivity of carbon nanopeapods

    NASA Astrophysics Data System (ADS)

    Li, Jiaqian; Shen, Haijun

    2018-05-01

    The heat conduction and its dependence on fullerene coalescence in carbon nanopeapods (CNPs) have been investigated by equilibrium molecular dynamics simulations. The effects of fullerene coalescence on the thermal conductivity of CNPs were discussed under different temperatures. It is shown that the thermal conductivity of the CNPs decreases with the coalescence of encapsulated fullerene molecules. The thermal transmission mechanism of the effect of fullerene coalescence was analysed by the mass transfer contribution, the relative contributions of phonon oscillation frequencies to total heat current and the phonon vibrational density of states (VDOS). The mass transfer in CNPs is mainly attributed to the motion of encapsulated fullerene molecule and it gets more restricted with the coalescence of the fullerene. It shows that the low-frequency phonon modes below 20 THz contribute mostly to thermal conductivity in CNPs. The analysis of VDOS demonstrates that the dominating contribution to heat transfer is from the inner fullerene chain. With the coalescence of fullerene, the interfacial heat transfer between the CNT and fullerene chain is strengthened; however, the heat conduction of the fullerene chain decreases more rapidly at the same time.

  13. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    NASA Astrophysics Data System (ADS)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2017-11-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  14. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    NASA Astrophysics Data System (ADS)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2018-06-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  15. Differential and directional effects of perfusion on electrical and thermal conductivities in liver.

    PubMed

    Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L

    2009-01-01

    Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.

  16. Influence of the Thermal Conductivity of Thermally Conductive Plastics on the Thermal Distribution of an Light-Emitting Diode Headlight for Vehicles.

    PubMed

    Lee, Dong Kyu; Lee, Jae Min; Cho, Moon Uk; Park, Hyun Jung; Cha, Yu-Jung; Kim, Hyeong Jin; Kwak, Joon Seop

    2018-09-01

    This paper investigates the thermal distribution of an LED headlight for vehicles based on the thermal conductivity of thermally conductive plastics (TCP). In general, heat dissipation structures used for LED headlights are made from metallic materials. However, headlight structures made from TCP have not been investigated. The headlights made from TCP having a various thermal conductivity were fabricated by injection molding with and without a metal plate insert. The temperature characteristics were compared and analyzed using thermal simulations and measurement. The inserted metal in TCP greatly reduced the temperature at solder point, indicating that the fast heat dissipation from the high power LED package to TCP though the inserted metal is essential. The measured temperature at solder points decreased as the thermal conductivity of TCP increased, which is well matched to the simulation results. The measured temperature at the solder point was lower than 150 °C when the thermal conductivity of the TCP was 10 W/mK.

  17. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    NASA Astrophysics Data System (ADS)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  18. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    NASA Astrophysics Data System (ADS)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity compared to hydrostatically consolidated salt.

  19. Thermo-mechanical properties of carbon nanotubes and applications in thermal management

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Hong; Thang Bui, Hung; Trinh Pham, Van; Phan, Ngoc Hong; Nguyen, Tuan Hong; Chuc Nguyen, Van; Quang Le, Dinh; Khoi Phan, Hong; Phan, Ngoc Minh

    2016-06-01

    Thanks to their very high thermal conductivity, high Young’s modulus and unique tensile strength, carbon nanotubes (CNTs) have become one of the most suitable nano additives for heat conductive materials. In this work, we present results obtained for the synthesis of heat conductive materials containing CNT based thermal greases, nanoliquids and lubricating oils. These synthesized heat conductive materials were applied to thermal management for high power electronic devices (CPUs, LEDs) and internal combustion engines. The simulation and experimental results on thermal greases for an Intel Pentium IV processor showed that the thermal conductivity of greases increases 1.4 times and the saturation temperature of the CPU decreased by 5 °C by using thermal grease containing 2 wt% CNTs. Nanoliquids containing CNT based distilled water/ethylene glycol were successfully applied in heat dissipation for an Intel Core i5 processor and a 450 W floodlight LED. The experimental results showed that the saturation temperature of the Intel Core i5 processor and the 450 W floodlight LED decreased by about 6 °C and 3.5 °C, respectively, when using nanoliquids containing 1 g l-1 of CNTs. The CNTs were also effectively utilized additive materials for the synthesis of lubricating oils to improve the thermal conductivity, heat dissipation efficiency and performance efficiency of engines. The experimental results show that the thermal conductivity of lubricating oils increased by 12.5%, the engine saved 15% fuel consumption, and the longevity of the lubricating oil increased up to 20 000 km by using 0.1% vol. CNTs in the lubricating oils. All above results have confirmed the tremendous application potential of heat conductive materials containing CNTs in thermal management for high power electronic devices, internal combustion engines and other high power apparatus.

  20. Anisotropic in-plane thermal conductivity in multilayer silicene

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Guo, Zhi-Xin; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2018-06-01

    We systematically study thermal conductivity of multilayer silicene by means of Boltzmann Transportation Equation (BTE) method. We find that their thermal conductivity strongly depends on the surface structures. Thermal conductivity of bilayer silicene varies from 3.31 W/mK to 57.9 W/mK with different surface structures. Also, the 2 × 1 surface reconstruction induces unusual large thermal conductivity anisotropy, which reaches 70% in a four-layer silicene. We also find that the anisotropy decreases with silicene thickness increasing, owing to the significant reduction of thermal conductivity in the zigzag direction and its slight increment in the armchair direction. Finally, we find that both the phonon-lifetime anisotropy and the phonon-group-velocity anisotropy contribute to the thermal conductivity anisotropy of multilayer silicene. These findings could be helpful in the field of heat management, thermoelectric applications involving silicene and other multilayer nanomaterials with surface reconstructions in the future.

  1. Thermal conductivity of SrVO3-SrTiO3 thin films: Evidence of intrinsic thermal resistance at the interface between oxide layers

    NASA Astrophysics Data System (ADS)

    Katsufuji, T.; Saiki, T.; Okubo, S.; Katayama, Y.; Ueno, K.

    2018-05-01

    By using a technique of thermoreflectance that can precisely measure the thermal conductivity of thin films, we found that the thermal conductivity of SrVO3-SrTiO3 multilayer thin films normal to the surface was substantially reduced by decreasing the thickness of each layer. This indicates that a large intrinsic thermal resistance exists at the interface between SrVO3 and SrTiO3 in spite of the similar phononic properties for these two compounds.

  2. Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from -75°C to 300°C

    DOE PAGES

    Urquhart, Alexander; Bauer, Stephen

    2015-05-19

    The thermal properties of halite have broad practical importance, from design and long-term modeling of nuclear waste repositories to analysis and performance assessment of underground natural gas, petroleum and air storage facilities. Using a computer-controlled transient plane source method, single-crystal halite thermal conductivity, thermal diffusivity and specific heat were measured from -75°C to 300°C. These measurements reproduce historical high-temperature experiments and extend the lower temperature extreme into cryogenic conditions. Measurements were taken in 25-degree increments from -75°C to 300°C. Over this temperature range, thermal conductivity decreases by a factor of 3.7, from 9.975 to 2.699 W/mK , and thermal diffusivitymore » decreases by a factor of 3.6, from 5.032 to 1.396 mm²/s. Specific heat does not appear to be temperature dependent, remaining near 2.0 MJ/m³K at all temperatures. This work is intended to develop and expand the existing dataset of halite thermal properties, which are of particular value in defining the parameters of salt storage thermophysical models. The work was motivated by a need for thermal conductivity values in a mixture theory model used to determine bulk thermal conductivity of reconsolidating crushed salt.« less

  3. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    NASA Astrophysics Data System (ADS)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  4. Thermal conductivity of H2O-CH3OH mixtures at high pressures: Implications for the dynamics of icy super-Earths outer shells

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric

    2015-10-01

    Thermal conductivity of H2O-volatile mixtures at extreme pressure-temperature conditions is a key factor to determine the heat flux and profile of the interior temperature in icy bodies. We use time domain thermoreflectance and stimulated Brillouin scattering combined with diamond anvil cells to study the thermal conductivity and sound velocity of water (H2O)-methanol (CH3OH) mixtures to pressures as high as 12 GPa. Compared to pure H2O, the presence of 5-20 wt % CH3OH significantly reduces the thermal conductivity and sound velocity when the mixture becomes ice VI-CH3OH and ice VII-CH3OH phases at high pressures, indicating that the heat transfer is hindered within the icy body. We then apply these results to model the heat transfer through the icy mantles of super-Earths, assuming that these mantles are animated by thermal convection. Our calculations indicate that the decrease of thermal conductivity due to the presence of 10 wt % CH3OH induces a twofold decrease of the power transported by convection.

  5. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    PubMed

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    NASA Astrophysics Data System (ADS)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  7. Electrical and thermal transport properties of layered Bi2YO4Cu2Se2

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Pei, Yanling; Chang, Cheng; Zhang, Xiao; Tan, Xing; Ye, Xinxin; Gong, Shengkai; Lin, Yuanhua; He, Jiaqing; Zhao, Li-Dong

    2016-07-01

    Bi2YO4Cu2Se2 possesses a low thermal conductivity and high electrical conductivity at room temperature, which was considered as a potential thermoelectric material. In this work, we have investigated the electrical and thermal transport properties of Bi2YO4Cu2Se2 system in the temperature range from 300 K to 873 K. We found that the total thermal conductivity decreases from 1.8 W m-1 K-1 to 0.9 W m-1 K-1, and the electrical conductivity decreases from 850 S/cm to 163 S/cm in the measured temperature range. To investigate how potential of Bi2YO4Cu2Se2 system, we prepared the heavily Iodine doped samples to counter-dope intrinsically high carrier concentration and improve the electrical transport properties. Interestingly, the Seebeck coefficient could be enhanced to +80 μV/K at 873 K, meanwhile, we found that a low thermal conductivity of 0.7 W m-1 K-1 could be achieved. The intrinsically low thermal conductivity in this system is related to the low elastic properties, such as Young's modulus of 70-72 GPa, and Grüneisen parameters of 1.55-1.71. The low thermal conductivity makes Bi2YO4Cu2Se2 system to be a potential thermoelectric material, the ZT value 0.06 at 873 K was obtained, a higher performance is expected by optimizing electrical transport properties through selecting suitable dopants, modifying band structures or by further reducing thermal conductivity through nanostructuring etc.

  8. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    NASA Astrophysics Data System (ADS)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  9. Reduction of thermal conductivity in phononic nanomesh structures.

    PubMed

    Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R

    2010-10-01

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

  10. In-situ Observation of Size and Irradiation Effects on Thermoelectric Properties of Bi-Sb-Te Nanowire in FIB Trimming

    PubMed Central

    Chien, Chia-Hua; Lee, Ping-Chung; Tsai, Wei-Han; Lin, Chien-Hung; Lee, Chih-Hao; Chen, Yang-Yuan

    2016-01-01

    In this report, the thermoelectric properties of a Bi0.8Sb1.2Te2.9 nanowire (NW) were in-situ studied as it was trimmed from 750 down to 490 and 285 nm in diameter by a focused ion beam. While electrical and thermal conductivities both indubitably decrease with the diameter reduction, the two physical properties clearly exhibit different diameter dependent behaviors. For 750 and 490 nm NWs, much lower thermal conductivities (0.72 and 0.69 W/m-K respectively) were observed as compared with the theoretical prediction of Callaway model. The consequence indicates that in addition to the size effect, extra phonon scattering of defects created by Ga ion irradiation was attributed to the reduction of thermal conductivities. As the NW was further trimmed down to 285 nm, both the electrical and thermal conductivities exhibited a dramatic reduction which was ascribed to the formation of amorphous structure due to Ga ion irradiation. The size dependence of Seebeck coefficient and figure of merit (ZT) show the maximum at 750 nm, then decrease linearly with size decrease. The study not only provides the thoroughly understanding of the size and defect effects on the thermoelectric properties but also proposes a possible method to manipulate the thermal conductivity of NWs via ion irradiation. PMID:27030206

  11. Thermal conductivity of fresh and irradiated U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  12. Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity

    PubMed Central

    Wang, Ning; Chen, Haijun; He, Hongcai; Norimatsu, Wataru; Kusunoki, Michiko; Koumoto, Kunihito

    2013-01-01

    Authors reported an effective path to increase the electrical conductivity while to decrease the thermal conductivity, and thus to enhance the ZT value by nano-inclusions. By this method, the ZT value of Nb-doped SrTiO3 was enhanced 9-fold by yttria stabilized zirconia (YSZ) nano-inclusions. YSZ inclusions, located inside grain and in triple junction, can reduce the thermal conductivity by effective interface phonon scattering, enhance the electrical conductivity by promoting the abnormal grain growth, and thus lead to the obvious enhancement of ZT value, which strongly suggests that, it is possible to not only reduce the thermal conductivity, but also increase the electrical conductivity by nano-inclusions with low thermal conductivity. This study will give some useful enlightenment to the preparation of high-performance oxide thermoelectric materials. PMID:24316665

  13. Structure-induced variation of thermal conductivity in epoxy resin fibers.

    PubMed

    Zeng, Xiaoliang; Xiong, Yucheng; Fu, Qiang; Sun, Rong; Xu, Jianbin; Xu, Dongyan; Wong, Ching-Ping

    2017-08-03

    The ability to control thermal conductivity is important in a wide variety of applications, especially in heat removal, heat insulation, and thermoelectric energy conversion. Herein, we reveal that the thermal conductivity of epoxy resin fibers increases on decreasing the fiber diameter and surpasses the bulk value (0.25 W m -1 K -1 at 300 K) for the fiber with a diameter of 211 nm. The variation of thermal conductivity in epoxy resin fibers can likely be attributed to their microstructure change-enhanced interface phonon scattering between amorphous and crystalline regions and the enhanced alignment of the molecular chain orientation.

  14. Experimental investigation on thermal conductivity and viscosity of maghemite (γ –Fe2O3) water-based nanofluids

    NASA Astrophysics Data System (ADS)

    Nurdin, I.; Johan, M. R.; Ang, B. C.

    2018-03-01

    Thermal conductivity and kinematic viscosity of maghemite nanofluids were experimentally investigated at a small volume fraction of maghemite nanoparticles and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. Results show that the thermal conductivity of maghemite nanofluids linearly increase with increasing particle volume fraction and temperature, while kinematic viscosity increase with increasing particle volume fraction and decrease with increasing temperature. The highest enhancement of thermal conductivity and kinematic viscosity are 18.84% and 13.66% respectively, at particle volume fraction 0.6% and temperature 35.

  15. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport

    NASA Astrophysics Data System (ADS)

    Cheaito, Ramez; Polanco, Carlos A.; Addamane, Sadhvikas; Zhang, Jingjie; Ghosh, Avik W.; Balakrishnan, Ganesh; Hopkins, Patrick E.

    2018-02-01

    We report on the room temperature thermal conductivity of AlAs-GaAs superlattices (SLs), in which we systematically vary the period thickness and total thickness between 2 -24 nm and 20.1 -2 ,160 nm , respectively. The thermal conductivity increases with the SL thickness and plateaus at a thickness around 200 nm, showing a clear transition from a quasiballistic to a diffusive phonon transport regime. These results demonstrate the existence of classical size effects in SLs, even at the highest interface density samples. We use harmonic atomistic Green's function calculations to capture incoherence in phonon transport by averaging the calculated transmission over several purely coherent simulations of independent SL with different random mixing at the AlAs-GaAs interfaces. These simulations demonstrate the significant contribution of incoherent phonon transport through the decrease in the transmission and conductance in the SLs as the number of interfaces increases. In spite of this conductance decrease, our simulations show a quasilinear increase in thermal conductivity with the superlattice thickness. This suggests that the observation of a quasilinear increase in thermal conductivity can have important contributions from incoherent phonon transport. Furthermore, this seemingly linear slope in thermal conductivity versus SL thickness data may actually be nonlinear when extended to a larger number of periods, which is a signature of incoherent effects. Indeed, this trend for superlattices with interatomic mixing at the interfaces could easily be interpreted as linear when the number of periods is small. Our results reveal that the change in thermal conductivity with period thickness is dominated by incoherent (particlelike) phonons, whose properties are not dictated by changes in the AlAs or GaAs phonon dispersion relations. This work demonstrates the importance of studying both period and sample thickness dependencies of thermal conductivity to understand the relative contributions of coherent and incoherent phonon transport in the thermal conductivity in SLs.

  16. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  17. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand

    USGS Publications Warehouse

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  18. Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles.

    PubMed

    Chung, Shyan-Lung; Lin, Jeng-Shung

    2016-05-20

    The thermal conductivity of epoxy resin composites filled with combustion-synthesized hexagonal boron nitride (h-BN) particles was investigated. The mixing of the composite constituents was carried out by either a dry method (involving no use of solvent) for low filler loadings or a solvent method (using acetone as solvent) for higher filler loadings. It was found that surface treatment of the h-BN particles using the silane 3-glycidoxypropyltrimethoxysilane (GPTMS) increases the thermal conductivity of the resultant composites in a lesser amount compared to the values reported by other studies. This was explained by the fact that the combustion synthesized h-BN particles contain less -OH or active sites on the surface, thus adsorbing less amounts of GPTMS. However, the thermal conductivity of the composites filled with the combustion synthesized h-BN was found to be comparable to that with commercially available h-BN reported in other studies. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was also found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher porosity at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites) were suggested to be a factor causing this decrease of the thermal conductivity. The measured thermal conductivities were compared to theoretical predictions based on the Nielsen and Lewis theory. The theoretical predictions were found to be lower than the experimental values at low filler contents (< 60 vol %) and became increasing higher than the experimental values at high filler contents (> 60 vol %).

  19. Thermal properties of spinel based solid solutions

    NASA Astrophysics Data System (ADS)

    O'Hara, Kelley Rae

    Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in final chemistry (38.3 wt% Al20 3) caused by the nucleation and growth region in the system.

  20. Thermal properties of soils: effect of biochar application

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy

    2014-05-01

    Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity that decreased in soil with addition of biochar and pure biochar. The reduction of both properties was mostly due to decrease in both particle density and bulk density. Both biochar and the organic amendments addition resulted in a decrease of the heat capacity of the mixtures in dry state and considerable increase in wet state. The lowest and highest reduction in the thermal conductivity with decreasing water content was obtained for pure biochar and mineral soil, respectively. The thermal diffusivity had a characteristic maximum at higher bulk densities and lower water contents. The wetland soil higher in organic matter content exhibit smaller temporal variation of the thermal properties compared to soils lower in organic matter content in response to changes of water content. The statistical-physical model was found to be useful for satisfactory predicting thermal properties of the soil with addition of biochar and organic amendments. Usowicz B. et al., 2006. Thermal conductivity modelling of terrestrial soil media - A comparative study. Planetary and Space Science 54, 1086-1095.

  1. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  2. Size dictated thermal conductivity of GaN

    NASA Astrophysics Data System (ADS)

    Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-09-01

    The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.

  3. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 < 10 K. We carried out thermal analysis considering heat generation, conduction and transfer under conduction-cooling condition, and reproduced the electrical and thermal characteristics of the conduction-cooled HTS coil, taking account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  4. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

    PubMed

    Hu, Jiuning; Ruan, Xiulin; Chen, Yong P

    2009-07-01

    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

  5. Thermal conductivity anisotropy of rocks

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Shin, Sang Ho

    2013-04-01

    The interior heat of the lithosphere of the Earth is mainly transferred by conduction that depends on thermal conductivity of rocks. Many sedimentary and metamorphic rocks have thermal conductivity anisotropy, i.e. heat is preferentially transferred in the direction parallel to the bedding and foliation of these rocks. Deming (JGR, 1994) proposed an empirical relationship between K(perp) and anisotropy (K(par)/K(perp)) using 89 measurements on rock samples from literatures. In Deming's model, thermal conductivity is almost isotropic for K(perp) > 4 W/mK, but anisotropy is exponentially increasing with decreasing K(perp), with final anisotropy of ~2.5 at K(perp) < 1.0 W/mK. However, Davis et al. (JGR, 2007) argued that there is little evidence for Deming's suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for rocks with low thermal conductivity. Davis et al. insisted that Deming's increase in anisotropy for 1 < K(perp) < 4 W/mK with decreasing K(perp) could be due to the fractures filled with air or water, which causes thermal conductivity anisotropy. To test Deming's suggestion and Davis et al.'s argument on thermal conductivity anisotropy, we measured thermal conductivity parallel (K(par)) and perpendicular (K(perp)) to bedding or foliation and performed analytical & numerical modeling. Our measurements on 53 rock samples show the anisotropy range from 0.79 to 1.36 for 1.84 < K(prep) < 4.06 W/mK. Analytical models show that anisotropy can increase or stay the same at the range of 1 < K(perp) < 4 W/mK. Numerical modeling for gneiss shows that anisotropy ranges 1.21 to 1.36 for 2.5 < K(perp) < 4.8 W/mK. Another numerical modeling with interbedded coal layers in high thermal conductivity rocks (3.5 W/mK) shows anisotropy of 1.87 when K(perp) is 1.7 W/mK. Finally, numerical modeling with fractures indicates that the fractures does not seem to affect thermal conductivity anisotropy significantly. In conclusion, our preliminary results imply that thermal conductivity anisotropy can increase or stay at low value in the range of 1.0 < K(perp) < 4.0 W/mK. Both cases are shown to be possible through lab measurements and analytical & numerical modeling.

  6. Solid state thermal rectifier

    DOEpatents

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  7. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    DTIC Science & Technology

    2013-10-01

    coated microwire to change the temperature of an FBG. We show below that the proposed sensor probe, with a relatively poor thermal coupling with FBG...Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales, including enhanced...nanocomposites as compared to bulk polycrystalline materials, in addition to similar thermal conductivities , results in enhanced room temperature ZT as

  8. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-01-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity (k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  9. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-06-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity ( k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  10. Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide

    NASA Astrophysics Data System (ADS)

    Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine

    2018-03-01

    Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.

  11. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.

    PubMed

    Bethke, Kevin; Andrei, Virgil; Rademann, Klaus

    2016-01-01

    As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.

  12. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers

    PubMed Central

    Bethke, Kevin; Andrei, Virgil; Rademann, Klaus

    2016-01-01

    As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes. PMID:26982458

  13. High thermal conductivity in soft elastomers with elongated liquid metal inclusions

    PubMed Central

    Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    2017-01-01

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m−1⋅K−1) over the base polymer (0.20 ± 0.01 W⋅m−1·K−1) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m−1·K−1) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal−mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot. PMID:28193902

  14. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.

    NASA Astrophysics Data System (ADS)

    Kazem, Navid; Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrains thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E) . This is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with a dielectric composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (E <100kPa), and extreme deformations capability (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a 25x increase in thermal conductivity (4.7 +/-0.2 W/mK) over the base polymer (0.20 +/-0.01 W/mK) under stress-free conditions and a 50x increase (9.8 +/-0.8 W/mK) when strained. This exceptional combination of thermal and mechanical properties is through the deformation of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer new possibilities for passive heat exchange in stretchable electronics and bio-inspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high power LED lamp and a swimming soft robot. AFOSR Young Investigator Program (Mechanics of Multifunctional Materials and Microsystems; Dr. Les Lee; FA9550-13-1-0123), NASA Early Career Faculty Award (NNX14AO49G), Army Research Office Grant W911NF-14-0350.

  15. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling

    PubMed Central

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-01-01

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694

  16. Low thermal conductivity in ultrathin carbon nanotube (2, 1)

    PubMed Central

    Zhu, Liyan; Li, Baowen

    2014-01-01

    Molecular dynamic simulations reveal that the ultrathin carbon nanotube (CNT) (2, 1) with a reconstructed structure exhibits a surprisingly low thermal conductivity, which is only ~16–30% of those in regular CNTs, e.g. CNT (2, 2) and (5, 5). Detailed lattice dynamic calculations suggest that the acoustic phonon modes greatly soften in CNT (2, 1) as compared to regular CNTs. Moreover, both phonon group velocities and phonon lifetimes strikingly decrease in CNT (2, 1), which result in the remarkable reduction of thermal conductivity. Besides, isotope doping and chemical functionalization enable the further reduction of thermal conductivity in CNT (2, 1). PMID:24815003

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Hua; College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024; Kioussis, Nicholas, E-mail: nick.kioussis@csun.edu

    Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that resultsmore » in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.« less

  18. Low-temperature thermal conductivity of ferroelastic Gd 2(MoO 4) 3

    NASA Astrophysics Data System (ADS)

    Mielcarek, S.; Mróz, B.; Tylczyński, Z.; Piskunowicz, P.; Trybuła, Z.; Bromberek, M.

    2001-05-01

    Thermal conductivity, k, of GMO crystal has been measured in temperatures from 0.5 to 80 K. The maximum of k appears at 18 K and its value depends on the current domain state of the sample. The ferroelastic domain walls and antiphase boundaries, characterised by elastic inhomogeneities, are responsible for additional phonon scattering and a decrease in the thermal conductivity. The deviation of the temperature dependence of thermal conductivity from the classical Debye theory observed below 4 K is related to the anomalous behaviour of specific heat in the region of the antiferromagnetic transition at T N=0.3 K .

  19. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.

    PubMed

    Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S

    2014-11-26

    Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.

  20. Novel polymer composite having diamond particles and boron nitride platelets for thermal management of electric vehicle motors

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Shoji, Atsushi; Yonemori, Kei; Seo, Nobuhide

    2016-02-01

    Thermal conductivities of silicone matrix polymers including fillers of diamond particles and/or hexagonal boron nitride (h-BN) platelets were systematically investigated in an attempt to find a thermal interface material (TIM) having high isotropic thermal conductivity and high electrical insulating ability to enable efficient heat dissipation from the motor coil ends of electric vehicles. The TIM with mixed fillers of diamond particles and h-BN platelets had a maximum thermal conductivity of 6.1 W m-1 K-1 that was almost isotropic. This is the highest value among the thermal conductivities of TIMs with silicone matrix polymer reported to date. The mechanism behind the thermal conductivity of the TIMs was also examined from the viewpoint of the change in the number of thermally conductive networks and/or a decrease in the thermal resistivity of junctions of neighboring diamond particles through the incorporation of h-BN platelets. The TIMs developed in this study will make it possible to manage the heat of electric motors and will help to popularize electric vehicles.

  1. Thermal, Morphological and Rheological Properties of Rigid Polyurethane Foams as Thermal Insulating Materials

    NASA Astrophysics Data System (ADS)

    Kim, Ji Mun; Han, Mi Sun; Kim, Youn Hee; Kim, Woo Nyon

    2008-07-01

    The polyurethane foams (PUFs) were prepared by polyether polyols, polymeric 4,4'-diphenylmethane diisocyanate (PMDI), silicone surfactants, amine catalysts and cyclopentane as a blowing agent. Solid and liquid type fillers were used as a nucleating agent to decrease a cell size of the PUFs as well as improve the thermal insulating properties of the PUFs. The PUFs were prepared by adding solid and liquid type fillers in the range of 1 to 3 wt%. For the liquid type fillers, the cell size of the PUFs showed minimum and found to decrease compared the PUF without adding fillers. Also, thermal conductivity of the PUFs with adding fillers showed minimum. For the solid type fillers, cell size and thermal conductivity of the PUFs were observed to decrease with the filler content up to 3 wt%. From these results, it is suggested that the thermal insulating property of the PUFs can be improved by adding fillers as a nucleating agent. Also, storage and loss modulus of the PUFs will be presented to study gelling points of the PUFs.

  2. Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials.

    PubMed

    Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming

    2015-04-01

    Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.

  3. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation.

    PubMed

    Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2015-11-11

    Understanding phonon transport at a molecular scale is fundamental to the development of high-performance thermoelectric materials for the conversion of waste heat into electricity. We have studied phonon and electron transport in alkane and oligoyne chains of various lengths and find that, due to the more rigid nature of the latter, the phonon thermal conductances of oligoynes are counterintuitively lower than that of the corresponding alkanes. The thermal conductance of oligoynes decreases monotonically with increasing length, whereas the thermal conductance of alkanes initially increases with length and then decreases. This difference in behavior arises from phonon filtering by the gold electrodes and disappears when higher-Debye-frequency electrodes are used. Consequently a molecule that better transmits higher-frequency phonon modes, combined with a low-Debye-frequency electrode that filters high-energy phonons is a viable strategy for suppressing phonon transmission through the molecular junctions. The low thermal conductance of oligoynes, combined with their higher thermopower and higher electrical conductance lead to a maximum thermoelectric figure of merit of ZT = 1.4, which is several orders of magnitude higher than that of alkanes.

  4. Thermal Conductivity and Expansion Coefficient of (Sm1- x Yb x )2Ce2O7 Ceramics for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Xiaoge, Chen; Hongsong, Zhang; Kun, Sun; Xudan, Dang; Haoming, Zhang; Bo, Ren; An, Tang

    2017-12-01

    In the current paper, the (Sm1- x Yb x )2Ce2O7 ceramics were prepared via sol-gel and high-temperature solid reaction methods. The phase composition, microstructure, thermal conductivity, and expansion coefficient were investigated. Results indicate that pure (Sm1- x Yb x )2Ce2O7 ceramics with single defect-fluorite structure are synthesized successfully. Owing to the phonon scattering caused by Yb addition, the thermal conductivity of (Sm1- x Yb x )2Ce2O7 ceramics decreases with increasing Yb2O3 content at identical temperatures, which is lower than that of YSZ. Due to the relatively low ionic radius of Yb3+ ions, the addition of Yb2O3 decreases the thermal expansion coefficient of (Sm1- x Yb x )2Ce2O7 ceramics, which is higher than that of 8YSZ. The synthesized (Sm1- x Yb x )2Ce2O7 ceramics can be explored as candidate materials for thermal barrier coatings.

  5. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  6. Ultrasonication effect on thermophysical properties of Al2O3 nanofluids

    NASA Astrophysics Data System (ADS)

    Shah, Janki; Ranjan, Mukesh; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-04-01

    In this work, we studied the thermal conductivity and viscosity of alumina nanofluids for their excellent thermophysical properties. Here we considered the bath sonication time effects on thermal conductivity, viscosity and zeta potential of alumina nanofluid with different concentration (0.2, 0.3, 0.4, 0.5 Vol.%). We observed that the thermal conductivity of the nanofluids increased nonlinearly with an increased sonication time/energy as well as viscosity decreased. An enhancement of the thermal conductivity and viscosity at higher particle concentration is also observed. The results indicate that thermal properties of Al2O3 nanofluid enhances as the sonication time increases and prove Al2O3 nanofluid is one of the best thermostable heat transfer fluids compared to conventional cooling fluids.

  7. Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction.

    PubMed

    Johansson, Johannes D; Eriksson, Ola; Wren, Joakim; Loyd, Dan; Wårdell, Karin

    2006-09-01

    Radio-frequency brain lesioning is a method for reducing e.g. symptoms of movement disorders. A small electrode is used to thermally coagulate malfunctioning tissue. Influence on lesion size from thermal and electric conductivity of the tissue, microvascular perfusion and preset electrode temperature was investigated using a finite-element model. Perfusion was modelled as an increased thermal conductivity in non-coagulated tissue. The parameters were analysed using a 2(4)-factorial design (n=16) and quadratic regression analysis (n=47). Increased thermal conductivity of the tissue increased lesion volume, while increased perfusion decreased it since coagulation creates a thermally insulating layer due to the cessation of blood perfusion. These effects were strengthened with increased preset temperature. The electric conductivity had negligible effect. Simulations were found realistic compared to in vivo experimental lesions.

  8. Heat dissipation for microprocessor using multiwalled carbon nanotubes based liquid.

    PubMed

    Hung Thang, Bui; Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc

    2013-01-01

    Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU's temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU's temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ -processor and other high power electronic devices.

  9. Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, G. P.; Mangal, Ravindra; Bhojak, N.

    2010-06-29

    Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less

  10. Study of the transport parameters of cloud lightning plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-11-15

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less

  11. Studying the Transient Thermal Contact Conductance Between the Exhaust Valve and Its Seat Using the Inverse Method

    NASA Astrophysics Data System (ADS)

    Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid

    2016-02-01

    In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.

  12. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan

    2016-12-01

    It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.

  13. Temperature dependency of the thermal conductivity of porous heat storage media

    NASA Astrophysics Data System (ADS)

    Hailemariam, Henok; Wuttke, Frank

    2018-04-01

    Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named - Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.

  14. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.

    PubMed

    Wu, Xufei; Varshney, Vikas; Lee, Jonghoon; Zhang, Teng; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-06-08

    Penta-graphene (PG) has been identified as a novel two-dimensional (2D) material with an intrinsic bandgap, which makes it especially promising for electronics applications. In this work, we use first-principles lattice dynamics and iterative solution of the phonon Boltzmann transport equation (BTE) to determine the thermal conductivity of PG and its more stable derivative, hydrogenated penta-graphene (HPG). As a comparison, we also studied the effect of hydrogenation on graphene thermal conductivity. In contrast to hydrogenation of graphene, which leads to a dramatic decrease in thermal conductivity, HPG shows a notable increase in thermal conductivity, which is much higher than that of PG. Considering the necessity of using the same thickness when comparing thermal conductivity values of different 2D materials, hydrogenation leads to a 63% reduction in thermal conductivity for graphene, while it results in a 76% increase for PG. The high thermal conductivity of HPG makes it more thermally conductive than most other semiconducting 2D materials, such as the transition metal chalcogenides. Our detailed analyses show that the primary reason for the counterintuitive hydrogenation-induced thermal conductivity enhancement is the weaker bond anharmonicity in HPG than PG. This leads to weaker phonon scattering after hydrogenation, despite the increase in the phonon scattering phase space. The high thermal conductivity of HPG may inspire intensive research around HPG and other derivatives of PG as potential materials for future nanoelectronic devices. The fundamental physics understood from this study may open up a new strategy to engineer thermal transport properties of other 2D materials by controlling bond anharmonicity via functionalization.

  15. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te₃.

    PubMed

    Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng

    2017-07-06

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi 0.48 Sb 1.52 Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi 0.48-x Pb x Sb 1.52 Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  16. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3

    PubMed Central

    Kim, Hyun-sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-il; Kim, Sung Wng

    2017-01-01

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi2Te3-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te3. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te3 due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14–22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye–Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction. PMID:28773118

  17. The Thermal Conductivity of Granular Materials as a Function of Grain Size Distribution and Gas Pressure

    NASA Astrophysics Data System (ADS)

    Hütter, Erika S.; Kömle, Norbert I.

    2007-08-01

    Many planetary bodies - in particular those with no or thin atmospheres - are covered by so-called regolith layers which usually constitute the uppermost metres of their surfaces. Examples are the Moon, the icy satellites of the outer solar system, asteroids and comets. The thermal conductivity of these surface layers controls to a high extent the energy balance of the body as a whole. Under low pressure conditions the effective thermal conductivity of granular materials is known to be very low, because the mutual contact area contact between individual particles is small. Therefore regolith surface layers are acting as thermal insulators. Up to now only a few thermal conductivity measurements in an extraterrestrial environment have been carried out, namely on the Moon in the frame of the Apollo Moon Lander missions. For the future several missions involving landers on asteroids, comets, and the Moon are planned by various space agencies. Thus the development of reliable instruments for the measurement of the thermal properties of regolith is of high interest. For this purpose thermal conductivity measurements with various regolith analogue materials under low pressure conditions need to be done. In order to contribute to this goal, we have performed a series of experiments using glass beads with various size distributions as analogue materials. To sort out the influence of the environmental gas pressure on the effective thermal conductivity each sample was embedded into a nitrogen atmosphere and the pressure was systematically varied from 10-4mbar (high vacuum range) up to 1 bar. The grain sizes used for the glass spheres were in the range from 0.1 mm to 4.3 mm. Additionally a mixture of different grain sizes was analysed. We report on the results of thermal conductivity measurements obtained for the different size fractions as a function of gas pressure. Our results indicate a strong influence of both the gas pressure and the grain size on the value of the thermal conductivity of the glass beads samples. For all cases measured a decrease of the pressure led to a corresponding decrease of the thermal conductivity. In the high vacuum conditions it was found to be approximately 30 times smaller than under normal atmospheric pressure. The strongest decay occurs in the pressure range from 102 down to 10-1mbar. At lower pressures no significant dependence of the thermal conductivity on the gas pressure was observed. The relation between the used grain sizes and the thermal conductivity was found to be linear.

  18. ELECTRON THERMAL CONDUCTION AS A POSSIBLE PHYSICAL MECHANISM TO MAKE THE INNER HELIOSHEATH THINNER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izmodenov, V. V.; Alexashov, D. B.; Ruderman, M. S., E-mail: izmod@ipmnet.ru

    2014-11-01

    We show that electron thermal conductivity may strongly affect the heliosheath plasma flow and the global pattern of the solar wind's interaction with the local interstellar medium. In particular, it leads to strong reduction of the inner heliosheath thickness, which makes it possible to explain (qualitatively) why Voyager 1 (V1) has crossed the heliopause at an unexpectedly small heliocentric distance of 122 AU. To estimate the effect of thermal conductivity, we consider a limiting case when thermal conduction is very effective. To do that, we assume the plasma flow in the entire heliosphere is nearly isothermal. Due to this effect,more » the heliospheric distance of the termination shock has increased by about 15 AU in the V1 direction compared with the adiabatic case with γ = 5/3. The heliospheric distance of the heliopause has decreased by about 27 AU. As a result, the thickness of the inner heliosheath in the model has decreased by about 42 AU and has become equal to 32 AU.« less

  19. Transient in-plane thermal transport in nanofilms with internal heating

    PubMed Central

    Cao, Bing-Yang

    2016-01-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903

  20. Transient in-plane thermal transport in nanofilms with internal heating.

    PubMed

    Hua, Yu-Chao; Cao, Bing-Yang

    2016-02-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.

  1. Thermal Conductivity Measurement of Low-k Dielectric Films: Effect of Porosity and Density

    NASA Astrophysics Data System (ADS)

    Alam, M. T.; Pulavarthy, R. A.; Bielefeld, J.; King, S. W.; Haque, M. A.

    2014-03-01

    The thermal conductivity of low-dielectric-constant (low-k) SiOC:H and SiC:H thin films has been measured as a function of porosity using a heat transfer model based on a microfin geometry and infrared thermometry. Microscale specimens were patterned from blanket films, released from the substrate, and subsequently integrated with the experimental setup. Results show that the thermal conductivity of a dense specimen, 0.7 W/mK, can be reduced to as low as 0.1 W/mK by introducing 30% porosity into it. The measured thermal conductivity shows a nonlinear decrease with increasing porosity that approximately follows the porosity-weighted simple medium model for porous materials. Neither the differential effective medium nor the coherent potential model could predict the density dependence of the thermal conductivity. These results suggest that more careful consideration is required for application of generic porous materials modeling to low-k dielectrics.

  2. Thermally conductive cementitious grout for geothermal heat pump systems

    DOEpatents

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  3. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  4. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Kedong, E-mail: lishi@mail.utexas.edu, E-mail: kedongbi@seu.edu.cn; Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712; Weathers, Annie

    2013-11-21

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m{sup −1} K{sup −1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, themore » PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.« less

  5. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  6. Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites

    NASA Astrophysics Data System (ADS)

    Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.

    2017-04-01

    We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 < T < 500 K yielding a fair agreement with experiment at around room temperature. It is worth noticing that the predicted room-temperature thermal conductivity in a-SiO2 is in very good agreement with the experimental result, which is in marked contrast with the thermal conductivity calculated employing the widely used van Beest-Kramer-van Santen (BKS) potential. We show that the thermal conductivity of composite nc-Ge/a-SiO2 systems decreases steadily with increasing the volume fraction of Ge inclusions, indicative of enhanced interface scattering of phonons imposed by embedded Ge nanocrystals. We also observe that increasing the volume fractions above a certain threshold value results in a progressively increased thermal conductivity of the nanocomposite, which can be explained by increasing volume fraction of a better thermally conducting Ge. Finally, non-equilibrium molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.

  7. Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects

    DOE PAGES

    Liu, Ying; Hu, Chongze; Huang, Jingsong; ...

    2015-06-23

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less

  8. Thermoelectric properties of p-type perovskite compounds LaCoO3 systems containing the A-site vacancy

    NASA Astrophysics Data System (ADS)

    Anzai, Mayuka; Kawakami, Hiroshi; Saito, Miwa; Yamamura, Hiroshi

    2011-05-01

    Thermoelectric properties of Sr-doped LaCoO3 system which includes both La1-xSrxCoO3 and La0.95-xSrxsquare0.05CoO3 containing the A-site vacancy were prepared by solid state reaction. The crystal phases of the samples were investigated by X-ray diffraction method. The electrical conductivity, Seebeck coefficient, and thermal conductivity were investigated, focusing the effect of A-site vacancy. Doping of Sr to LaCoO3 improved the electrical conductivity but decreased the seebeck coefficient and increased the thermal conductivity. A-site vacancy of La0.95-xSrxsquare0.05CoO3 system, in comparison with La1-xSrxCoO3 system, increased electrical conductivity, and decreased lattice thermal conductivity. As a result, it was found that the thermoelectric properties of La0.95-xSrxsquare0.05CoO3 containing the A-site vacancy showed the higher values than those of La1-xSrxCoO3. The introduction of A-site vacancy was effective on the improvement of thermoelectric property.

  9. Low Temperature (<100K) Regolith Thermal Conductivity - Preliminary Laboratory Data

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Zhong, F.; Woods-Robinson, R.; Paige, D. A.

    2016-12-01

    The Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, has shown materials with in the polar cold traps of the Moon to have thermal inertias at least 1 order of magnitude than the rest of the lunar surface. This detection was unexpected, but has a potentially straight-forward explanation in solid state theory (see companion Woods-Robinson et. al. abstract). Thermal conductivity, λ, of a solid should be directly proportional to the specific heat capacity, cp, phonon mean-free path, l, and phonon velocity, v, as: λ(T)=cplvAs temperature decreases, cp also decreases, while l increases. Phonon velocity, v, is generally thought to be constant with temperature. Therefore, thermal conductivity, λ, as a function temperature, T, can be thought of as a battle between cp and l. In crystalline materials, the increase of l with decreasing T generally dominates. However, in polycrystalline materials, like are found on most planetary surfaces, the growth of l (which is fundimantally a measurement of likelihood of phonon scattering) is limited by phonon scattering off of individual grains and subgrain boundaries. In these cases, cpdominates, causing thermal conductivity to plummet at low (<100K for silicate materials) temperatures. Therefore, thermal conductivity as a function of temperature should be inherently related to crystallinity of a given material. In regolith, this solid state drop in material thermal conductivity of polycrystalline materials will act on top of a well understood, but difficult to predict, physical bottleneck of heat transfer at grain contact points. This leads to λ on the order of 10-3 Wm-1K-1 in lunar regolith. Preliminary models predict thermal conductivities on the order 10-5 to 10-4 Wm-1K-1are likely at temperatures below 50K for materials dominated by small crystals (amorphous materials such as glass). Here we report on preliminary laboratory measurements of regolith and regolith simulants down to 15K and 10-7 torr. These results are obtained through an active heated needle measurement within a 10cc samples of regolith from the Apollo 11 and 16 missions at roughly 1500g/cc densities. The samples chamber is nested within a sterling-cooled cryogenic system located at JPL. We will also show results from glass beads (an amorphous "end member") as well as lunar regolith simulants.

  10. Measurements of interfacial thermal contact conductance between pressed alloys at low temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Jiang; Li, Yanzhong; Chen, Pengwei; Yin, Geyuan; Luo, Huaihua

    2016-12-01

    Interfacial thermal contact conductance is the primary factor limiting the heat transfer in many cryogenic engineering applications. This paper presents an experimental apparatus to measure interfacial thermal contact conductance between pressed alloys in a vacuum environment at low temperatures. The measurements of thermal contact conductance between pressed alloys are conducted by using the developed apparatus. The results show that the contact conductance increases with the decrease of surface roughness, the increase of interface temperature and contact pressure. The temperature dependence of thermal conductivity and mechanical properties is analyzed to explain the results. Thermal contact conductance of a pair of stainless steel specimens is obtained in the interface temperature range of 135-245 K and in the contact pressure range of 1-9 MPa. The results are regressed as a power function of temperature and load. Thermal conductance is also obtained between aluminums as well as between stainless steel and aluminum. The load exponents of the regressed relations for different contacts are compared. Existing theoretical models (the Cooper-Mikic-Yovanovich plastic model, the Mikic elastic model and the improved Kimura model) are reviewed and compared with the experimental results. The Cooper-Mikic-Yovanovich model predictions are found to be in good agreement with experimental results, especially with measurements between aluminums.

  11. Electrical and thermal response of carbon nanotube composites under quasi-static and dynamic loading

    NASA Astrophysics Data System (ADS)

    O'Connell, Christopher D.

    Carbon nanotube (CNT) composites have attracted much interest due to their possible technical applications as conductive polymers and sensory materials. This study will consist of two major objectives: 1.) to investigate the thermal conductivity and thermal response of multi-wall carbon nanotube (MWCNT) composites under quasi-static loading, and 2.) to investigate the electrical response of carboxyl-terminated butadiene (CTBN) rubber-reinforced MWCNT/Epoxy composites under quasi-static and dynamic loading. Similar studies have shown that the electrical conductivity of CNT/Epoxy composites dramatically increases with compressive strains up to 15%. Part 1 seeks to find out if thermal conductivity show a similar response to electrical conductivity under an applied load. Part 2 seeks to investigate how the addition of rubber affects the mechanical and electrical response of the composite subjected to quasi-static and dynamic loading. By knowing how thermal and electrical properties change under a given applied strain, we attempt to broaden the breadth of understanding of CNT/epoxy composites and inqure the microscopic interactions occurring between the two. Electrical experiments sought to investigate the electrical response of rubber-reinforced carbon nanotube epoxy composites under quasi-static and dynamic loading. Specimens were fabricated with CTBN rubber content of 10 parts per hundredth resin (phr), 20 phr, 30 phr and 0 phr for a basis comparison. Both quasi-static and dynamic mechanical response showed a consistent decrease in peak stress and Young's modulus with increasing rubber content. Trends in the electrical response between each case were clearly observed with peak resistance changes ranging from 58% to 73% and with each peak occurring at a higher value with increasing rubber content, with the exception of the rubber-free specimens. It was concluded that among the rubber-embedded specimens, the addition of rubber helped to delay micro-cracking and degradation and thus prolong the electrical response of the specimen to higher strains. Thermal experiments were first established by designing and fabricating an apparatus to determine the thermal conductivity of an unknown material. The principle of the apparatus is a steady-state one-dimensional comparative method where reference materials of known thermal conductivity are used to determine the system heat flux and in turn, the thermal conductivity of a given specimen. A thermal percolation study was conducted in order to determine a possible threshold of thermal transport of the material. The recorded values of thermal conductivity from 0 -- 0.2 wt% showed no such threshold with all specimens of different CNT loadings yielding similar values of thermal conductivity. The apparatus containing the CNT/epoxy specimen was then quasi-statically compressed to observe how the thermal conductivity changes with strains up to 20%. While a small decrease in thermal conductivity was observed under strain, it can mostly be attributed to material degradation and bulging.

  12. The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix

    NASA Astrophysics Data System (ADS)

    Zhong, Nan; Garcia, Santiago J.; van der Zwaag, Sybrand

    2016-08-01

    Thermal interface materials (TIMs) are widely used in all kinds of electronic devices to handle the heat dissipation and the mechanical anchoring of the heat producing component. The aging of TIMs may lead to delamination and internal crack formation causing a loss of heat transfer and mechanical integrity both leading to premature device failure. In the present work, a novel TIM system based on a self-healing organic-inorganic polymer matrix filled with spherical glass beads is presented which is capable of healing both the thermal conductivity and the mechanical properties upon thermal activation. The effect of particle volume concentration (PVC) and particle size on tensile strength and thermal conductivity healing behavior is investigated. The results show that a higher PVC increases the mechanical property but decreases mechanical healing. For the same PVC, bigger particles lead to lower mechanical properties but higher thermal conductivities and higher mechanical healing efficiencies.

  13. Thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x solid solutions

    NASA Astrophysics Data System (ADS)

    Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo

    2013-09-01

    The authors prepared the sintered sample of (Np0.20Pu0.50Am0.25Cm0.05)O2-x (2 - x = 1.98, 1.96) solid solution and evaluated the dependence of the thermal conductivity on storage time and temperature. The heat capacity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was measured between 324 and 1082 K by a drop calorimetry. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was measured when the storage time became 48, 216, 720 and 1584 h and that of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 was measured when the storage time became 0,528 and 1386 h. In this study, the latter sample was annealed at 1423 K in vacuum with background pressure of less than 2.0 × 10-4 Pa just after the measurement on the storage time, 1386 h. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 just after annealing returned to the values of the storage time, 0 h. This result reveals the thermal recovery behavior by annealing. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x was determined from the measured thermal diffusivity, heat capacity and bulk density. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x exponentially decreased with increasing storage time. This result suggested that the decrease of the thermal conductivity was attributed to the accumulation of lattice defects caused by self-irradiation. The heat capacity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was expressed by Cp (J mol-1 K-1) = 1.7314 × 10-2T + 75.720 - 1.0579 × 106 T-2. The heat capacity at higher than 473 K was almost close to those of stoichiometric actinide dioxide within at least ±5%. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x decreased with increasing storage time in the temperature range from 473 to 573 K. The decrease of the thermal diffusivity was attributed by the lattice defect rapidly accumulated by the α-decay of 244Cm. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 just after annealing returned to the values of the storage time, 0 h. This result reveals the thermal recovery behavior by annealing. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x was smaller than those of PuO2 and (Pu0.91Cm0.09)O2 mainly because of the oxygen vacancies as is seen other actinide dioxide, such as mixed oxide (MOX) fuels.

  14. Thermal conductivity of graphene with defects induced by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management. Electronic supplementary information (ESI) available: Additional thermal conductivity measurements data. See DOI: 10.1039/c6nr03470e

  15. The role of anisotropic thermal conduction in a collisionless magnetized hot accretion flow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam

    2018-06-01

    We study the importance and the effects of anisotropic thermal conduction in a collisionless magnetized advection dominated accretion flow in the presence of discontinuity of mass, angular momentum and energy between inflow and outflow. In this paper, we have considered that the thermal conduction is a heating mechanism like viscosity and leads to an increase in the temperature of the gas. A set of self similar solutions are used for steady state and axisymmetric structure of such hot accretion disc to solve the MHD equations in our model. Based on these solutions, we have found that increasing the level of two parts of anisotropic thermal conduction (parallel & transverse) results in increasing the mass accretion rate or radial velocity but decreasing the rotational velocity. Also both radial and rotational velocities are sub-Keplerian. Also we have shown that the anisotropic thermal conduction can be effective in the parameter space of specific energy of outflow, toroidal and vertical components of magnetic field according to a physical constraint tinfall ≥ t⊥, conduction.

  16. Thin Semiconductor/Metal Films For Infrared Devices

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Nagendra, Channamallappa L.

    1995-01-01

    Spectral responses of absorbers and reflectors tailored. Thin cermet films composites of metals and semiconductors undergoing development for use as broadband infrared reflectors and absorbers. Development extends concepts of semiconductor and dielectric films used as interference filters for infrared light and visible light. Composite films offer advantages over semiconductor films. Addition of metal particles contributes additional thermal conductivity, reducing thermal gradients and associated thermal stresses, with resultant enhancements of thermal stability. Because values of n in composite films made large, same optical effects achieved with lesser thicknesses. By decreasing thicknesses of films, one not only decreases weights but also contributes further to reductions of thermal stresses.

  17. Extraction of temperature dependent electrical resistivity and thermal conductivity from silicon microwires self-heated to melting temperature

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Adnane, Lhacene; Gokirmak, Ali; Silva, Helena

    2012-09-01

    Temperature-dependent electrical resistivity, ρ(T), and thermal conductivity, k(T), of nanocrystalline silicon microwires self-heated to melt are extracted by matching simulated current-voltage (I-V) characteristics to experimental I-V characteristics. Electrical resistivity is extracted from highly doped p-type wires on silicon dioxide in which the heat losses are predominantly to the substrate and the self-heating depends mainly on ρ(T) of the wires. The extracted ρ(T) decreases from 11.8 mΩ cm at room-temperature to 5.2 mΩ cm at 1690 K, in reasonable agreement with the values measured up to ˜650 K. Electrical resistivity and thermal conductivity are extracted from suspended highly doped n-type silicon wires in which the heat losses are predominantly through the wires. In this case, measured ρ(T) (decreasing from 20.5 mΩ cm at room temperature to 12 mΩ cm at 620 K) is used to extract ρ(T) at higher temperatures (decreasing to 1 mΩ cm at 1690 K) and k(T) (decreasing from 30 W m-1 K-1 at room temperature to 20 W m-1 K-1 at 1690 K). The method is tested by using the extracted parameters to model wires with different dimensions. The experimental and simulated I-V curves for these wires show good agreement up to high voltage and temperature levels. This technique allows extraction of the electrical resistivity and thermal conductivity up to very high temperatures from self-heated microstructures.

  18. Enhanced thermoelectric performance of defected silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Guo, Z. X.; Zhang, Y.; Ding, J. W.; Zheng, X. J.

    2016-02-01

    Based on non-equilibrium Green's function method, we investigate the thermoelectric performance for both zigzag (ZSiNRs) and armchair (ASiNRs) silicene nanoribbons with central or edge defects. For perfect silicene nanoribbons (SiNRs), it is shown that with its width increasing, the maximum of ZT values (ZTM) decreases monotonously while the phononic thermal conductance increases linearly. For various types of edges and defects, with increasing defect numbers in longitudinal direction, ZTM increases monotonously while the phononic thermal conductance decreases. Comparing with ZSiNRs, defected ASiNRs possess higher thermoelectric performance due to higher Seebeck coefficient and lower thermal conductance. In particular, about 2.5 times enhancement to ZT values is obtained in ASiNRs with edge defects. Our theoretical simulations indicate that by controlling the type and number of defects, ZT values of SiNRs could be enhanced greatly which suggests their very appealing thermoelectric applications.

  19. Spin-State Transition in La1-xSrxCoO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Bhardwaj, S.; Prabhakaran, D.; Awasthi, A. M.

    2011-07-01

    We present a study of the thermal conductivity (κ), specific heat (Cp) and Raman spectra of La1-xSrxCoO3 (x = 0,0.1) single crystals. Both the specimens have low thermal conductivity and board Raman peaks, arising from strong scattering of phonons by lattice disorder, produced by (and doping-enhanced) spin-states admixture of the Co3+ ions. The thermal conductivity anomalously deviates from ˜1/T behaviour at high (room) temperatures, expected of an insulator. High-temperature specific heat reveals large decrease in the metal-insulator (M-I) transition temperature with Sr-doping.

  20. Thermal conductivity of a single polymer chain

    NASA Astrophysics Data System (ADS)

    Freeman, J. J.; Morgan, G. J.; Cullen, C. A.

    1987-05-01

    Numerical experiments have been performed with use of a fairly realistic model for polyethylene which has enabled the effects of anharmonicity, temperature, and positional disorder on the thermal conductivity to be investigated. It has been shown that the classical conductivity may be substantially increased by both increasing the strength of the anharmonic forces and by decreasing the chain temperature. Although the conductivity of individual chains is found to be high, realistic values for the conductivity of a bulk material may be understood provided that due account is taken of the polymer conformation and interchain coupling.

  1. Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.

    Phase Change Materials (PCMs), like paraffin wax, can be used for passive thermal management of portable electronics if their overall bulk thermal conductivity is increased through the addition of highly conducting nanoparticles. Finite Element Analysis (FEA) is used to investigate the influence of nanoparticle agglomeration on the overall conductive thermal transport in a nanoenhanced composite by dictating the thermal conductivity of individual elements according to their local inclusion volume fraction and characteristics inside a low conducting PCM matrix. The inclusion density distribution is dictated by an agglomeration factor, and the effective thermal conductivity of each element is calculated from the nanoparticle volume fraction using a method similar to the Representative Volume Element (RVE) methodology. FEA studies are performed for 2-D and 3-D models. In the 2-D model, the grain boundary is fixed at x = 0 for simplicity. For the 3-D model, the grain boundary geometry is randomly varied. A negligible 2-D effect on thermal transport in the 2-D model is seen, so a 1-D thermal resistance network is created for comparison, and the results agree within 4%.The influence of the agglomeration factor and contact Biot number on the overall bulk thermal conductivity is determined by applying Fourier's Law on the entire simulated composite. For the 2-D and 3-D models with a contact Biot number above 1, the overall bulk thermal conductivity decreases prior to the percolation threshold being met and then increases with increasing agglomeration. Finally, a MatlabRTM based image processing tool is created to estimate the agglomeration factor based on an experimental image of a nanoparticle distribution, with a calculated approximate agglomeration value of Beta*L = 5 which results in a bulk thermal conductivity of 0.278 W/(m-K).

  2. Ultra-low thermal conductivity of high-interface density Si/Ge amorphous multilayers

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Xu, Yibin; Zhan, Tianzhuo; Sasaki, Michiko; Nishimura, Chikashi; Kinoshita, Yohei; Ishikiriyama, Mamoru

    2018-04-01

    Owing to their phonon scattering and interfacial thermal resistance (ITR) characteristics, inorganic multilayers (MLs) have attracted considerable attention for thermal barrier applications. In this study, a-Si/a-Ge MLs with layer thicknesses ranging from 0.3 to 5 nm and different interfacial elemental mixture states were fabricated using a combinatorial sputter-coating system, and their thermal conductivities were measured via a frequency-domain thermo-reflectance method. An ultra-low thermal conductivity of κ = 0.29 ± 0.01 W K-1 m-1 was achieved for a layer thickness of 0.8 nm. The ITR was found to decrease from 8.5 × 10-9 to 3.6 × 10-9 m2 K W-1 when the interfacial density increases from 0.15 to 0.77 nm-1.

  3. Multiscale Pores in TBCs for Lower Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun

    2017-08-01

    The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.

  4. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    NASA Astrophysics Data System (ADS)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2018-06-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  5. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-01

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8–10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  6. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.

    PubMed

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-17

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  7. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.

    PubMed

    Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D

    2017-07-02

    Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m -3 ), thermal conductivity (0.0128-0.0207 W·m -1 ·K -1 ), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.

  8. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  9. Investigation of Thermal Conductivities and Expansion Coefficients of (Yb1 - x La x )2AlTaO7 Ceramics

    NASA Astrophysics Data System (ADS)

    Xiaoge, Chen; Hongsong, Zhang; Sai, Su; Yongde, Zhao; An, Tang; Haoming, Zhang

    2017-12-01

    The (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3, 0.5) ceramics were prepared by solid-state reaction method. The phase composition, microstructure, thermophysical properties of (Yb1 - x La x )2AlTaO7 ceramics were investigated. Results reveal that (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3) ceramics exhibit a single pyrochlore-type structure, and the (Yb0.5La0.5)2AlTaO7 has an orthorhombic weberite structure. The thermal conductivities of (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3) ceramics decrease with increasing Yb2O3 contents. (Yb0.5La0.5)2AlTaO7 has the highest thermal conductivity among all the ceramics studied, within the range of 1.48-1.75 W/m K (20-1200 °C). The thermal expansion coefficients of (Yb1 - x La x )2AlTaO7 ceramics decrease gradually with increasing La2O3 fractions, and the thermal expansion coefficients are close to those of YSZ.

  10. Phonon thermal properties of graphene on h-BN from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zou, Ji-Hang; Cao, Bing-Yang

    2017-03-01

    Phonon thermal properties of graphene on hexagonal boron nitride are investigated by the molecular dynamics simulations combined with lattice dynamics theory. It is found that the dispersion curves have minor changes for supported graphene because the interlayer coupling is too weak to shift the harmonic phonon properties. The ZA and ZO phonon lifetimes are significantly reduced in supported graphene due to the breakdown of the symmetry-based selection rule. The dominant mean free path (MFP) of graphene is reduced from 90-800 nm to 60-500 nm at 300 K. The mode thermal conductivities of free and supported graphene are 3517 W/ (m.K) and 2200 W/ (m.K) at 300 K, respectively. The thermal conductivity of supported graphene decreases by about 37.4% due to the large reduction of flexural phonon lifetimes, and the relative contribution of flexural modes decreases from 35.0% to 16.7%.

  11. FORTRAN 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization

    USGS Publications Warehouse

    Delaney, P.T.

    1988-01-01

    Temperature histories obtained from transient heat-conduction theory are applicable to most dikes despite potential complicating effects related to magma flow during emplacement, groundwater circulation, and metamorphic reaction during cooling. Here. machine-independent FORTRAN 77 programs are presented to calculate temperatures in and around dikes as they cool conductively. Analytical solutions can treat thermal-property contrasts between the dike and host rocks, but cannot address the release of magmatic heat of crystallization after the early stages of cooling or the appreciable temperature dependence of thermal conductivity and diffusivity displayed by most rock types. Numerical solutions can incorporate these additional factors. The heat of crystallization can raise the initial temperature at the dike contact, ??c1, about 100??C above that which would be estimated if it were neglected, and can decrease the rate at which the front of solidified magma moves to the dike center by a factor of as much as three. Thermal conductivity and diffusivity of rocks increase with decreasing temperature and, at low temperatures, these properties increase more if the rocks are saturated with water. Models that treat these temperature dependencies yield estimates of ??c1 that are as much as 75??C beneath those which would be predicted if they were neglected. ?? 1988.

  12. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.

    PubMed

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-04-18

    Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.

  13. The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy

    NASA Astrophysics Data System (ADS)

    Ismadi, A. I.; Othman, R. N.

    2017-12-01

    Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.

  14. Strain effect on the heat transport properties of bismuth telluride nanofilms with a hole

    NASA Astrophysics Data System (ADS)

    Fang, Te-Hua; Chang, Win-Jin; Wang, Kuan-Yu; Huang, Chao-Chun

    2018-06-01

    We investigated the mechanical behavior of bismuth telluride nanofilms with holes by using an equilibrium molecular dynamics (MD) approach. The holes had diameters of 20, 30, 40, and 50 Å. The thermal conductivity values of the nanofilms were calculated under different strains at different temperatures using a nonequilibrium MD simulation. The simulation revealed that the thermal conductivity of a bismuth telluride nanofilm with a hole decreases with an increase in hole diameter at different strains. For a film with a perfect structure at 300 K, a 48% reduction (from 0.33 to 0.17 W/m K) in the thermal conductivity was observed at a 7% tensile strain. In addition, the thermal conductivity increased by approximately 39% (from 0.33 to 0.46 W/m K) at a 7% compressive strain. A very low value (0.11 W/m K) of thermal conductivity is obtained for the nanofilm with a hole diameter of 50 Å at a 7% tensile strain at 300 K.

  15. First-Principles Determination of Ultralow Thermal Conductivity of monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-10-01

    By using first-principles calculations combined with the phonon Boltzmann transport equation, we systematically investigate the phonon transport of monolayer WSe2. Compared with other 2D materials, the monolayer WSe2 is found to have an ultralow thermal conductivity due to the ultralow Debye frequency and heavy atom mass. The room temperature thermal conductivity for a typical sample size of 1 μm is 3.935  W/m K, which is one order of magnitude lower than that of MoS2. And the room temperature thermal conductivity can be further decreased by about 95% in 10 nm sized samples. Moreover, we also find the ZA phonons have the dominant contribution to the thermal conductivity, and the relative contribution is almost 80% at room temperature, which is remarkably higher than that for monolayer MoS2. This is because the ZA phonons have longer lifetime than that of LA and TA phonons in monolayer WSe2.

  16. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  17. Thermoelectric Properties and Hall Effect of Bi2Te3-xSex Polycrystalline Materials Prepared by a Hot Press Method

    NASA Astrophysics Data System (ADS)

    Yashima, Isamu; Watanave, Hiroshi; Ogisu, Takayasu; Tsukuda, Ryouma; Sato, Susumu

    1998-05-01

    Bi2Te3-xSex (0≦x<1) polycrystalline solids are prepared by a hot press method and their thermoelectric properties are studied. The samples show the maximum value of Z = 2.3×10-3 K-1 at x=0.22. The lattice thermal conductivity is smaller than that of a single crystal. The lattice constant and power factor decrease upon increasing the selenium substitution while thermal conductivity decreases for x values up to 0.33 and becomes constant for x values greater than 0.33.

  18. Thermophysical Properties and Temperature of the Start of Titanium Recrystallization in Different Structural States

    NASA Astrophysics Data System (ADS)

    Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.

    2017-05-01

    The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.

  19. Novel high refractive index, thermally conductive additives for high brightness white LEDs

    NASA Astrophysics Data System (ADS)

    Hutchison, Richard Stephen

    In prior works the inclusion of nanoparticle fillers has typically been shown to increase the thermal conductivity or refractive index of polymer nanocomposites separately. High refractive index zirconia nanoparticles have already proved their merit in increasing the optical efficiency of encapsulated light emitting diodes. However, the thermal properties of zirconia-silicone nanocomposites have yet to be investigated. While phosphor-converted light emitting diodes are at the forefront of solid-state lighting technologies for producing white light, they are plagued by efficiency losses due to excessive heating at the semiconductor die and in and around the phosphor particles, as well as photon scattering losses in the phosphor layer. It would then be of great interest if the high refractive index nanoparticles were found to both be capable of increasing the refractive index, thus reducing the optical scattering, and also the thermal conductivity, channeling more heat away from the LED die and phosphors, mitigating efficiency losses from heat. Thermal conductance measurements on unfilled and nanoparticle loaded silicone samples were conducted to quantify the effect of the zirconia nanoparticle loading on silicone nanocomposite thermal conductivity. An increase in thermal conductivity from 0.27 W/mK to 0.49 W/mK from base silicone to silicone with 33.5 wt% zirconia nanoparticles was observed. This trend closely mirrored a basic rule of mixtures prediction, implying a further enhancement in thermal conductivity could be achieved at higher nanoparticle loadings. The optical properties of transparency and light extraction efficiency of these composites were also investigated. While overall the zirconia nanocomposite showed good transparency, there was a slight decrease at the shorter wavelengths with increasing zirconia content. For longer wavelength LEDs, such as green or red, this might not matter, but phosphor-converted white LEDs use a blue LED as the photon source making this decrease in transparency important to note. This decrease in transparency may be partially or wholly why a decrease in light extraction efficiency is observed at the 33.5 wt% zirconia loading fraction used for the LED samples. Preliminary aging studies under full and enhanced power conditions were conducted over 500 and 1000 hours to observe any changes in the spectral output power and phosphor conversion efficiency of the LEDs due to inclusion of the zirconia nanoparticles. It was found that the nanoparticles have no negative effect on the aging properties but also show no enhancement in relative output power over a preliminary aging study. However, their inclusion did result in increased phosphor conversion efficiency over the use of an unfilled silicone. This increase was seen as around a 10% or greater enhancement for the nanocomposite over that for the base Sylgard silicone. These experiments were originally conducted on the commercially available methylated Sylgard 184 silicone and then again on a higher refractive index methyl-phenyl silicone from Momentive. While some of the results from the Momentive silicone were perplexing, it was seen that, even without the inclusion of nanoparticles, the Momentive silicone had a higher refractive index, better aging properties, and a higher phosphor conversion efficiency over 500 hours under enhanced power conditions, warranting further studies into methyl-phenyl silicone nanocomposites.

  20. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.

    PubMed

    Hu, Ming; Giapis, Konstantinos P; Goicochea, Javier V; Zhang, Xiaoliang; Poulikakos, Dimos

    2011-02-09

    We report on the effect of germanium (Ge) coatings on the thermal transport properties of silicon (Si) nanowires using nonequilibrium molecular dynamics simulations. Our results show that a simple deposition of a Ge shell of only 1 to 2 unit cells in thickness on a single crystalline Si nanowire can lead to a dramatic 75% decrease in thermal conductivity at room temperature compared to an uncoated Si nanowire. By analyzing the vibrational density states of phonons and the participation ratio of each specific mode, we demonstrate that the reduction in the thermal conductivity of Si/Ge core-shell nanowire stems from the depression and localization of long-wavelength phonon modes at the Si/Ge interface and of high frequency nonpropagating diffusive modes.

  1. Using atomic layer deposited tungsten to increase thermal conductivity of a packed bed

    DOE PAGES

    Van Norman, Staci A.; Tringe, Joseph W.; Sain, John D.; ...

    2015-04-13

    This paper investigated the effective thermal conductivity (k eff) of packed-beds that contained porous particles with nanoscale tungsten (W) films of different thicknesses formed by atomic layer deposition (ALD). A continuous film on the particles is vital towards increasing k eff of the packed beds. For example, the keff of an alumina packed bed was increased by three times after an ~8-nm continuous W film with 20 cycles of W ALD, whereas k eff was decreased on a polymer packed bed with discontinuous, evenly dispersed W-islands due to nanoparticle scattering of phonons. For catalysts, understanding the thermal properties of thesemore » packed beds is essential for developing thermally conductive supports as alternatives to structured supports.« less

  2. Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2006-01-01

    The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite.

  3. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    USGS Publications Warehouse

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  4. Thermal conductivity of fresh and irradiated U-Mo fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, the thermal conductivity of fresh dispersion fuel at a temperature of 150°C decreases from 59 W/m ·K down to 18  W/m ·K at a burn-up of 4.9 ·10 21 f/cc and further down to 9 W/m·K at a burn-up of 6.1·10 21 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep as for the dispersion fuel. For a burn-up ofmore » 3.5·10 21 f /cc of monolithic fuel 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. The difference of the decrease of both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increasing burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice affects both dispersion and monolithic fuel.« less

  5. Effects of lithium insertion on thermal conductivity of silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen; Institute of High Performance Computing, A*STAR, Singapore, Singapore 138632; Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg

    2015-04-27

    Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reductionmore » in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.« less

  6. Effects of lithium insertion on thermal conductivity of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-04-01

    Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reduction in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.

  7. Porosity and Mineralogy Control on the Thermal Properties of Sediments in Off-Shimokita Deep-Water Coal Bed Basin

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Tadai, O.; Morita, S.; Lin, W.; Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.

    2014-12-01

    Heat transport properties such as thermal conductivity, heat capacity, and thermal diffusivity are significant parameters that influence on geothermal process in sedimentary basins at depth. We measured the thermal properties of sediment core samples at off-Shimokita basin obtained from the IODP Expedition 337 and Expedition CK06-06 in D/V Chikyu shakedown cruise. Overall, thermal conductivity and thermal diffusivity increased with depth and heat capacity decreased with depth, although the data was highly scattered at the depth of approximately 2000 meters below sea floor, where coal-layers were formed. The increase of thermal conductivity is mainly explained by the porosity reduction of sediment by the consolidation during sedimentation. The highly variation of the thermal conductivity at the same core section is probably caused by the various lithological rocks formed at the same section. Coal shows the lowest thermal conductivity of 0.4 Wm-1K-1, and the calcite cemented sandstone/siltstone shows highest conductivity around 3 Wm-1K-1. The thermal diffusivity and heat capacity are influenced by the porosity and lithological contrast as well. The relationship between thermal conductivity and porosity in this site is well explained by the mixed-law model of Maxwell or geometric mean. One dimensional temperature-depth profile at Site C0020 in Expedition 337 estimated from measured physical properties and radiative heat production data shows regression of thermal gradient with depth. Surface heat flow value was evaluated as 29~30 mWm-2, and the value is consistent with the heat flow data near this site. Our results suggest that increase of thermal conductivity with depth significantly controls on temperature profile at depth of basin. If we assume constant thermal conductivity or constant geothermal gradient, we might overestimate temperature at depth, which might cause big error to predict the heat transport or hydrocarbon formation in deepwater sedimentary basins.

  8. Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Wirth, Brian D.; Maroudas, Dimitrios

    2017-08-01

    We report results on the lattice thermal conductivities of tungsten single crystals containing nanoscale-sized pores or voids and helium (He) nanobubbles as a function of void/bubble size and gas pressure in the He bubbles based on molecular-dynamics simulations. For reference, we calculated lattice thermal conductivities of perfect tungsten single crystals along different crystallographic directions at room temperature and found them to be about 10% of the overall thermal conductivity of tungsten with a weak dependence on the heat flux direction. The presence of nanoscale voids in the crystal causes a significant reduction in its lattice thermal conductivity, which decreases with increasing void size. Filling the voids with He to form He nanobubbles and increasing the bubble pressure leads to further significant reduction of the tungsten lattice thermal conductivity, down to ˜20% of that of the perfect crystal. The anisotropy in heat conduction remains weak for tungsten single crystals containing nanoscale-sized voids and He nanobubbles throughout the pressure range examined. Analysis of the pressure and atomic displacement fields in the crystalline region that surrounds the He nanobubbles reveals that the significant reduction of tungsten lattice thermal conductivity in this region is due to phonon scattering from the nanobubbles, as well as lattice deformation around the nanobubbles and formation of lattice imperfections at higher bubble pressure.

  9. Remarks on the thermal stability of an Ohmic-heated nanowire

    NASA Astrophysics Data System (ADS)

    Timsit, Roland S.

    2018-05-01

    The rise in temperature of a wire made from specific materials, due to ohmic heating by a DC electrical current, may lead to uncontrollable thermal runaway with ensuing melting. Thermal runaway stems from a steep decrease with increasing temperature of the thermal conductivity of the conducting material and subsequent trapping of the ohmic heat in the wire, i.e., from the inability of the wire to dissipate the heat sufficiently quickly by conduction to the cooler ends of the wire. In this paper, we show that the theory used to evaluate the temperature of contacting surfaces in a bulk electrical contact may be applied to calculate the conditions for thermal runaway in a nanowire. Implications of this effect for electrical contacts are addressed. A possible implication for memory devices using ohmic-heated nanofilms or nanowires is also discussed.

  10. Phonon wave interference in graphene and boron nitride superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xue-Kun; Zhou, Wu-Xing; Tang, Li-Ming

    2016-07-11

    The thermal transport properties of the graphene and boron nitride superlattice (CBNSL) are investigated via nonequilibrium molecular dynamics simulations. The simulation results show that a minimum lattice thermal conductivity can be achieved by changing the period length of the superlattice. Additionally, it is found that the period length at the minimum shifts to lower values at higher temperatures, and that the depth of the minimum increases with decreasing temperature. In particular, at 200 K, the thermal conductivities of CBNSLs with certain specific period lengths are nearly equal to the corresponding values at 300 K. A detailed analysis of the phonon spectra showsmore » that this anomalous thermal conductivity behavior is a result of strong phonon wave interference. These observations indicate a promising strategy for manipulation of thermal transport in superlattices.« less

  11. Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Son, Youngjin; Ronney, Paul D.; Olson, Sandra (Technical Monitor); Gokoglu, Suleyman (Technical Monitor)

    2001-01-01

    Microgravity experiments on flame spread over thermally thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) compared to dense fuels such as PMMA. This scheme enabled meaningful results to lie obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understanding; steady spread can occur over thick fuels in quiescent microgravity environments, especially when a radiatively active diluent gas such as CO2 is employed. This is proposed to be due to radiative transfer from the flame to the fuel surface. Additionally, the transition from thermally thick to thermally thin behavior with decreasing bed thickness is demonstrated.

  12. Spin-dependent heat transport and thermal boundary resistance

    NASA Astrophysics Data System (ADS)

    Jeong, Taehee

    In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport in thin film structures. A transient theraroreflectance (TTR) technique can be used for measuring the thermal conductivity of thin films in cross-sectional direction. In this study, a pump-probe scheme was employed for the TTR technique. We built an optical pump-probe system by using a nanosecond pulse laser for pumping and a continuous-wave laser for probing. A short-time heating event occured at the surface of a sample by shining a laser pulse on the surface. Then the time-resolved thermoreflectance signals were detected using a photodetector and an oscilloscope. The increased temperature decreases slowly and its thermal decay depends on the thermal properties of a sample. Since the reflectivity is linearly proportional to the temperature, the time-resolved thermoreflectance signals have the information of the thermal properties of a sample. In order to extract the thermal properties of a sample, a thermal analysis was performed by fitting the experimental data with thermal models. We developed 2-layered and 3-layered thermal models using the analogies between thermal conduction and electric conduction and a transmission-line concept. We used two sets of sample structures: Au/SiNx/Si substrate and Au/CoFe/SiNx/Si substrate with various thickness of SiN x layer. Using the pump-probe system, we measured the time-resolved thermoreflectance signals for each sample. Then, the thermal conductivity and thermal boundary resistance were obtained by fitting the experimental data with the thermal models. The thermal conductivity of SiNx films was measured to be 2.0 W/mK for both structures. In the case of the thermal boundary resistance, it was 0.81x10-5 m 2K/W at the Au/SiNx interface and 0.54x10 -5 m2K/W at the CoFe/SiNx interface, respectively. The difference of the thermal boundary resistance between Au/SiNx and CoFe/SiNx might be came from the different phonon dispersion of Au and CoFe. The thermal conductivity did not depend on the thickness of SiNx films in the thickness range of 50-200nm. However, the thermal boundary resistance at metal/SiNx interfaces will impact overall thermal conduction when the thickness of SiNx thin films is in a nanometer order. For example, apparent thermal conductivity of SiN x film becomes half of the intrinsic thermal conductivity when the thickness decreases to 16nm. Therefore, it is advised that the thermal boundary resistance between metal and dielectrics should be counted in nano-scale electronic devices. (Abstract shortened by UMI.)

  13. Probing the low thermal conductivity of single-crystalline porous Si nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, Yunshan; Lina Yang Collaboration; Lingyu Kong Collaboration; Baowen Li Collaboration; John T L Thong Collaboration; Kedar Hippalgaonkar Collaboration

    Pore-like structures provide a novel way to reduce the thermal conductivity of silicon nanowires, compared to both smooth-surface VLS nanowires and rough EE nanowires. Because of enhanced phonon scattering with interface and decrease in phonon transport path, the porous nanostructures show reduction in thermal conductance by few orders of magnitude. It proves to be extremely challenging to evaluate porosity accurately in an experimental manner and further understand its effect on thermal transport. In this study, we use the newly developed electron-beam based micro-electrothermal device technique to study the porosity dependent thermal conductivity of mesoporous silicon nanowires that have single-crystalline scaffolding. Based on the Casino simulation, the power absorbed by the nanowire, coming from the loss of travelling electron energy, has a linear relationship with it cross section. The relationship has been verified experimentally as well. Monte Carlo simulation is carried out to theoretically predict the thermal conductivity of silicon nanowires with a specific value of porosity. These single-crystalline porous silicon nanowires show extremely low thermal conductivity, even below the amorphous limit. These structures together with our experimental techniques provide a particularly intriguing platform to understand the phonon transport in nanoscale and aid the performance improvement in future nanowires-based devices.

  14. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  15. Thermoelectric Properties of Cu-doped Bi2-xSbxTe3 Prepared by Encapsulated Melting and Hot Pressing

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Jin; Kim, Il-Ho

    2018-03-01

    P-type Bi2-xSbxTe3:Cum (x = 1.5-1.7 and m = 0.002-0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.

  16. Damage Accumulation and Failure of Plasma-Sprayed Thermal Barrier Coatings under Thermal Gradient Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.

  17. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  18. Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle

    PubMed Central

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-01-01

    Earth’s water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump−probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine−wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone. PMID:28377520

  19. Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2005-01-01

    Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiangfeng; Tanihata, Kimiaki; Miyamoto, Yoshinari

    A TiC/Ni functionally gradient material (FGM) fabricated via gas-pressure combustion sintering is presently investigated to establish its mechanical and thermal properties. Attention is given to the FGM's specific thermal conductivities with different thermal cycling conditions; these are found to decrease with thermal cycling in all samples tested, implying that the lateral cracks are generated in the FGM and then propagated by the thermal cycle. High compressive stresses are induced at the TiC surface when this is constrained by a Cu block. 6 refs.

  1. Thermal and mechanical properties of 3D printed boron nitride - ABS composites

    NASA Astrophysics Data System (ADS)

    Quill, Tyler J.; Smith, Matthew K.; Zhou, Tony; Baioumy, Mohamed Gamal Shafik; Berenguer, Joao Paulo; Cola, Baratunde A.; Kalaitzidou, Kyriaki; Bougher, Thomas L.

    2017-11-01

    The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of 3 for injection molding and 4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.

  2. Effect of confinement on anharmonic phonon scattering and thermal conductivity in pristine silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rashid, Zahid; Zhu, Liyan; Li, Wu

    2018-02-01

    The effect of confinement on the anharmonic phonon scattering rates and the consequences thereof on the thermal transport properties in ultrathin silicon nanowires with a diameter of 1-4 nm have been characterized using atomistic simulations and the phonon Boltzmann transport equation. The phonon density of states (PDOS) for ultrathin nanowires approaches a constant value in the vicinity of the Γ point and increases with decreasing diameter, which indicates the increasing importance of the low-frequency phonons as heat carriers. The anharmonic phonon scattering becomes dramatically enhanced with decreasing thickness of the nanowires. In the thinnest nanowire, the scattering rates for phonons above 1 THz are one order of magnitude higher than those in the bulk Si. Below 1 THz, the increase in scattering rates is even much more appreciable. Our numerical calculations revealed that the scattering rates for transverse (longitudinal) acoustic modes follow √{ω } (1 /√{ω } ) dependence at the low-frequency limit, whereas those for the degenerate flexural modes asymptotically approach a constant value. In addition, the group velocities of phonons are reduced compared with bulk Si except for low-frequency phonons (<1 -2 THz depending on the thickness of the nanowires). The increased scattering rates combined with reduced group velocities lead to a severely reduced thermal conductivity contribution from the high-frequency phonons. Although the thermal conductivity contributed by those phonons with low frequencies is instead increased mainly due to the increased PDOS, the total thermal conductivity is still reduced compared to that of the bulk. This work reveals an unexplored mechanism to understand the measured ultralow thermal conductivity of silicon nanowires.

  3. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  4. Infrared Detector System with Controlled Thermal Conductance

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor)

    2000-01-01

    A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.

  5. Using atomic layer deposited tungsten to increase thermal conductivity of a packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Norman, Staci A.; Falconer, John L.; Weimer, Alan W., E-mail: alan.weimer@colorado.edu

    2015-04-13

    This study investigated the effective thermal conductivity (k{sub eff}) of packed-beds that contained porous particles with nanoscale tungsten (W) films of different thicknesses formed by atomic layer deposition (ALD). A continuous film on the particles is vital towards increasing k{sub eff} of the packed beds. For example, the k{sub eff} of an alumina packed bed was increased by three times after an ∼8-nm continuous W film with 20 cycles of W ALD, whereas k{sub eff} was decreased on a polymer packed bed with discontinuous, evenly dispersed W-islands due to nanoparticle scattering of phonons. For catalysts, understanding the thermal properties ofmore » these packed beds is essential for developing thermally conductive supports as alternatives to structured supports.« less

  6. Enhanced thermal conductivity of form-stable phase change composite with single-walled carbon nanotubes for thermal energy storage.

    PubMed

    Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong'en

    2017-03-16

    A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating.

  7. Enhanced thermal conductivity of form-stable phase change composite with single-walled carbon nanotubes for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong'En

    2017-03-01

    A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating.

  8. Enhanced thermal conductivity of form-stable phase change composite with single-walled carbon nanotubes for thermal energy storage

    PubMed Central

    Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong’en

    2017-01-01

    A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating. PMID:28300191

  9. A thermal conductivity model for U-­Si compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Andersson, Anders David Ragnar

    U 3Si 2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO 2 in commercial light water reactors (LWRs). One of its main benefits compared to UO 2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO 2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U 3Si 2, as compared to the phonon mechanism responsible for thermal transport in UO 2. The phonon thermal conductivity in UO 2 is unusually low for a fluorite oxidemore » due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U 3Si 2 as well as other U-­Si compounds has been measured experimentally [1-­4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO 2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U 3Si 2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO 2 (semi-conductor) and U 3Si 2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-­Si compounds with the goal of capturing the effect of damage in U 3Si 2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.« less

  10. Specific heat and thermal conductivity of nanomaterials

    NASA Astrophysics Data System (ADS)

    Bhatt, Sandhya; Kumar, Raghuvesh; Kumar, Munish

    2017-01-01

    A model is proposed to study the size and shape effects on specific heat and thermal conductivity of nanomaterials. The formulation developed for specific heat is based on the basic concept of cohesive energy and melting temperature. The specific heat of Ag and Au nanoparticles is reported and the effect of size and shape has been studied. We observed that specific heat increases with the reduction of particle size having maximum shape effect for spherical nanoparticle. To provide a more critical test, we extended our model to study the thermal conductivity and used it for the study of Si, diamond, Cu, Ni, Ar, ZrO2, BaTiO3 and SrTiO3 nanomaterials. A significant reduction is found in the thermal conductivity for nanomaterials by decreasing the size. The model predictions are consistent with the available experimental and simulation results. This demonstrates the suitability of the model proposed in this paper.

  11. Heat capacities and thermal conductivities of AmO 2 and AmO 1.5

    NASA Astrophysics Data System (ADS)

    Nishi, Tsuyoshi; Itoh, Akinori; Ichise, Kenichi; Arai, Yasuo

    2011-07-01

    The thermal diffusivity of AmO 2 was measured from 473 to 773 K and that of AmO 1.5 between 473 and 1373 K using a laser flash method. The enthalpy increment of AmO 2 was measured from 335 to 1081 K and that of AmO 1.5 between 335 and 1086 K using drop calorimetry. The heat capacities of AmO 2 and AmO 1.5 were derived from the enthalpy increment measurements. The thermal conductivity was determined from the measured thermal diffusivity, heat capacity and bulk density. The heat capacities of AmO 2 was found larger than that of AmO 1.5. The thermal conductivities of AmO 2 and AmO 1.5 were found to decrease with increasing temperature in the investigated temperature range. The thermal conductivity of AmO 1.5 with A -type hexagonal structure was smaller than that of AmO 2 with C-type fluorite structure but larger than that of sub-stoichiometric AmO 1.73.

  12. Thermal conductivity of graphene with defects induced by electron beam irradiation.

    PubMed

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L; Mulchandani, Ashok; Lake, Roger K; Balandin, Alexander A

    2016-08-14

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.

  13. Dynamical effects on the core-mantle boundary from depth-dependent thermodynamical properties of the lower mantle

    NASA Technical Reports Server (NTRS)

    Zhang, Shuxia; Yuen, David A.

    1988-01-01

    A common assumption in modeling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth-dependent thermodynamic properties on the thermal-mechanical state of the lower mantle are examined with the spherical-shell mean-field equations. It is found that the thermal structure of the seismically resolved anomalous zone at the base of the mantle is strongly influenced by these variable properties and, in particular, that the convective distortion of the core-mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism must be operating at the CMB.

  14. Effects of Variable Thermal Conductivity and Non-linear Thermal Radiation Past an Eyring Powell Nanofluid Flow with Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Kanwal, Shamsa; Chung, Jae Dong

    2017-06-01

    Present analysis discusses the boundary layer flow of Eyring Powell nanofluid past a constantly moving surface under the influence of nonlinear thermal radiation. Heat and mass transfer mechanisms are examined under the physically suitable convective boundary condition. Effects of variable thermal conductivity and chemical reaction are also considered. Series solutions of all involved distributions using Homotopy Analysis method (HAM) are obtained. Impacts of dominating embedded flow parameters are discussed through graphical illustrations. It is observed that thermal radiation parameter shows increasing tendency in relation to temperature profile. However, chemical reaction parameter exhibits decreasing behavior versus concentration distribution. Supported by the World Class 300 Project (No. S2367878) of the SMBA (Korea)

  15. Electrical and thermal behavior of unsaturated soils: experimental results

    NASA Astrophysics Data System (ADS)

    Nouveau, Marie; Grandjean, Gilles; Leroy, Philippe; Philippe, Mickael; Hedri, Estelle; Boukcim, Hassan

    2016-05-01

    When soil is affected by a heat source, some of its properties are modified, and in particular, the electrical resistivity due to changes in water content. As a result, these changes affect the thermal properties of soil, i.e., its thermal conductivity and diffusivity. We experimentally examine the changes in electrical resistivity and thermal conductivity for four soils with different grain size distributions and clay content over a wide range of temperatures, from 20 to 100 °C. This temperature range corresponds to the thermal conditions in the vicinity of a buried high voltage cable or a geothermal system. Experiments were conducted at the field scale, at a geothermal test facility, and in the laboratory using geophysical devices and probing systems. The results show that the electrical resistivity decreases and the thermal conductivity increases with temperature up to a critical temperature depending on soil types. At this critical temperature, the air volume in the pore space increases with temperature, and the resulting electrical resistivity also increases. For higher temperatures , the thermal conductivity increases sharply with temperature up to a second temperature limit. Beyond it, the thermal conductivity drops drastically. This limit corresponds to the temperature at which most of the water evaporates from the soil pore space. Once the evaporation is completed, the thermal conductivity stabilizes. To explain these experimental results, we modeled the electrical resistivity variations with temperature and water content in the temperature range 20 - 100°C, showing that two critical temperatures influence the main processes occurring during heating at temperatures below 100 °C.

  16. Thermoelectric bolometers based on silicon membranes

    NASA Astrophysics Data System (ADS)

    Varpula, Aapo; Timofeev, Andrey V.; Shchepetov, Andrey; Grigoras, Kestutis; Ahopelto, Jouni; Prunnila, Mika

    2017-05-01

    State-of-the-art high performance IR sensing and imaging systems utilize highly expensive photodetector technology, which requires exotic and toxic materials and cooling. Cost-effective alternatives, uncooled bolometer detectors, are widely used in commercial long-wave IR (LWIR) systems. Compared to the cooled detectors they are much slower and have approximately an order of magnitude lower detectivity in the LWIR. We present uncooled bolometer technology which is foreseen to be capable of narrowing the gap between the cooled and uncooled technologies. The proposed technology is based on ultra-thin silicon membranes, the thermal conductivity and electrical properties of which can be controlled by membrane thickness and doping, respectively. The thermal signal is transduced into electric voltage using thermocouple consisting of highly-doped n and p type Si beams. Reducing the thickness of the Si membrane improves the performance (i.e. sensitivity and speed) as thermal conductivity and thermal mass of Si membrane decreases with decreasing thickness. Based on experimental data we estimate the performance of these uncooled thermoelectric bolometers.

  17. Impact of generalized Fourier's and Fick's laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Chung, Jae Dong; Lu, Dian Chen; Farooq, Umer

    2017-09-01

    A mathematical model has been established to study the magnetohydrodynamic second grade nanofluid flow past a bidirectional stretched surface. The flow is induced by Cattaneo-Christov thermal and concentration diffusion fluxes. Novel characteristics of Brownian motion and thermophoresis are accompanied by temperature dependent thermal conductivity and convective heat and mass boundary conditions. Apposite transformations are betrothed to transform a system of nonlinear partial differential equations to nonlinear ordinary differential equations. Analytic solutions of the obtained nonlinear system are obtained via a convergent method. Graphs are plotted to examine how velocity, temperature, and concentration distributions are affected by varied physical involved parameters. Effects of skin friction coefficients along the x- and y-direction versus various parameters are also shown through graphs and are well debated. Our findings show that velocities along both the x and y axes exhibit a decreasing trend for the Hartmann number. Moreover, temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters.

  18. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    PubMed

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  19. Low-temperature magnetothermal transport investigation of a Ni-based superconductor BaNi2As2: evidence for fully gapped superconductivity.

    PubMed

    Kurita, N; Ronning, F; Tokiwa, Y; Bauer, E D; Subedi, A; Singh, D J; Thompson, J D; Movshovich, R

    2009-04-10

    We have performed low-temperature specific heat and thermal conductivity measurements of the Ni-based superconductor BaNi2As2 (T{c}=0.7 K) in a magnetic field. In a zero field, thermal conductivity shows T-linear behavior in the normal state and exhibits a BCS-like exponential decrease below T{c}. The field dependence of the residual thermal conductivity extrapolated to zero temperature is indicative of a fully gapped superconductor. This conclusion is supported by the analysis of the specific heat data, which are well fit by the BCS temperature dependence from T{c} down to the lowest temperature of 0.1 K.

  20. The effect of replaced recycled glass on thermal conductivity and compression properties of cement

    NASA Astrophysics Data System (ADS)

    khalil, A. S.; Mahmoud, M. A.; AL-Hathal, A.; Jawad, M. K.; Mozahim, B. M.

    2018-05-01

    This study deal with recycling of waste colorless glass bottles which are prepared as a powder and use them as an alternative for cement to save the environment from west and reduce some of cement(ceramic) damage and interactions with conserving physical properties of block concrete. Different weight percentage (0%, 2%, 4%, 5%, 6%, 8%, 10%, 15%, 20% and 25%) of recycled glass bottle were use in this research to be replaced by a certain percentages of cement. Thermal conductivity was studied for prepared samples. Results show that the thermal conductivity decrease with the increase of weight percentage of glass powder comparing with the stander sample.

  1. Experimental Investigation of the Thermophysical Properties of TiO2/Propylene Glycol-Water Nanofluids for Heat-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Leena, M.; Srinivasan, S.

    2018-05-01

    Nanofluids have been prepared by dispersing TiO2 nanoparticles in 70:30% (by weight) water-propylene glycol mixture. The thermal conductivity and viscosity were found experimentally at various temperatures with the volume concentrations 0.1-0.8%. The results indicate that the thermal conductivity of the nanofluids increases with the volume concentration and temperature. Similarly, the viscosity of the nanofluids increases with the volume concentration but decreases with increase in the temperature. Correlations have been proposed for estimating the thermal conductivity and viscosity of the nanofluids. The potential heat transfer benefits of their use in laminar and turbulent flow conditions has been explained.

  2. TiO2-Nanofillers Effects on Some Properties of Highly- Impact Resin Using Different Processing Techniques.

    PubMed

    Aziz, Hawraa Khalid

    2018-01-01

    The criteria of conventional curing of polymethyl methacrylate do not match the standard properties of the denture base materials. This research was conducted to investigate the addition of TiO 2 nano practical on impact strength, thermal conductivity and color stability of acrylic resin cured by microwave in comparison to the conventional cured of heat-polymerized acrylic resin. 120 specimens made of high impact acrylic resin were divided into two main groups according to the type of curing (water bath, microwave), then each group was subdivided into two groups according to the addition of 3% TiO 2 nano-fillers and control group (without the addition of TiO 2 0%). Each group was subdivided according to the type of test into 3 groups with 10 specimens for each group. Data were statistically analyzed using Student t-test to detect the significant differences between tested and control groups at significance level ( P <0.05). According to curing type methods, the results showed that there was a significant decrease in impact strength of microwaved cured resin, but there was no significant difference in the thermal conductivity and color stability of resin. In addition, by using nanofiller, there was a significant increase in the impact strength and color stability with the addition of 3% TiO 2 nanofillers, but no significant difference was found in the thermal conductivity of the acrylic resin. The microwave curing of acrylic resin had no change in the color stability and thermal conductivity in comparison to the water bath, but the impact strength was decreased. The addition of 3% TiO 2 improved the impact and the color stability, but the thermal conductivity did not change.

  3. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  4. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  5. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  6. Influence of Water Saturation on Thermal Conductivity in Sandstones

    NASA Astrophysics Data System (ADS)

    Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.

    2009-04-01

    Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.

  7. Dependence of Thermal Conductivity on Water Saturation of Sandstones

    NASA Astrophysics Data System (ADS)

    Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.

    2008-12-01

    Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.

  8. A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy

    NASA Astrophysics Data System (ADS)

    Si, Chao; Li, Liang; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai

    2018-04-01

    Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.

  9. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  10. Manipulation and simulations of thermal field profiles in laser heat-mode lithography

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long

    2017-12-01

    Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.

  11. Thermal properties of nonstoichiometry uranium dioxide

    NASA Astrophysics Data System (ADS)

    Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.

    2016-04-01

    In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.

  12. Thermal modelling of normal distributed nanoparticles through thickness in an inorganic material matrix

    NASA Astrophysics Data System (ADS)

    Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.

    2017-10-01

    Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.

  13. Thermal Properties of Jojoba Oil Between 20°C and 45°C

    NASA Astrophysics Data System (ADS)

    Lara-Hernández, G.; Flores-Cuautle, J. J. A.; Hernandez-Aguilar, C.; Suaste-Gómez, E.; Cruz-Orea, A.

    2017-08-01

    Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba ( Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between 20°C and 45°C were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 W\\cdot s^{1/2}\\cdot m^{-2}\\cdot K^{-1} to 378 W\\cdot s^{1/2}m^{-2}\\cdot K^{-1} as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between 20°C and 45°C.

  14. Thermal conductivity of hydrate-bearing sediments

    USGS Publications Warehouse

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  15. Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.

    PubMed

    Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V

    2017-05-01

    This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Heat Transfer Enhancement of Metal Hydride Particle Bed for Heat Driven Type Refrigerator by Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Chul; Tanae, Takayuki; Monde, Masanori; Katsuta, Masafumi

    A series of study has been performed on the metal hydride particle beds of Ti0.15Zr0.85Cr0.9Fe0.6Ni0.2Mn0.3Cu0.05 (MH-1, using for heat source), Ti0.73Zr0.27Cr1.2Fe0.3Ni0.1Mn0.4Cu0.05 (MH-2, using for cooling load) to measure the effective thermal conductivities. The effective thermal conductivities of activated and oxidized MH particle bed in helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in low pressure range (<0.5 MPa). And that influence decreases rapidly with increase of gas pressure. The reason of pressure dependence at low pressure range is that the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism of particle bed. In order to enhance the poor thermal conductivity of metal hydride particle bed, carbon fiber mixing method has been used in this study. Three types, two insert methods and five mass percentages of carbon fiber have been examined and compared. The highest effective thermal conductivity of MH particle bed has been reached with Type B carbon fiber which has second higher thermal conductivity, and 2 weight percentage. This method has acquired 5-6 times higher thermal conductivity than pure metal hydride particle beds with quite low quantity of additives, only 2 mass% of carbon fiber. This is a good result comparing to other method which can reach higher effective thermal conductivity but needs much higher percentage of additives too.

  17. Thermoelectric properties of pressure-sintered Si(0.8)Ge(0.2) thermoelectric alloys

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Laskow, William; Hanson, Jack O.; Van Der Beck, Roland R.; Gorsuch, Paul D.

    1991-01-01

    The thermoelectric properties of 28 sintered Si(0.8)Ge(0.2) alloys, heavily doped with either B or P and prepared from powders with median particle sizes ranging from about 1 to over 100 microns, have been determined from 300 to 1300 K. The thermal conductivity decreases with decreasing particle size; however, the figure of merit is not significantly increased due to a compensating reduction in the electrical conductivity. The thermoelectric figure of merit is in good agreement with results of Dismukes et al. (1964) on similarly doped alloys prepared by zone-leveling techniques. The electrical and thermal conductivity are found to be sensitive to preparation procedure while the Seebeck coefficient and figure of merit are much less sensitive. The high-temperature electrical properties are consistent with charge carrier scattering by acoustic or optical phonons.

  18. The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves

    NASA Astrophysics Data System (ADS)

    Bahari, K.; Shahhosaini, N.

    2018-05-01

    longitudinal Magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first order approximation the time dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.

  19. The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves

    NASA Astrophysics Data System (ADS)

    Bahari, K.; Shahhosaini, N.

    2018-07-01

    Longitudinal magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. The WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first-order approximation the time-dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.

  20. Thermoelectric Performance of n-Type Bi2Te3/Cu Composites Fabricated by Nanoparticle Decoration and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Sie, F. R.; Kuo, C. H.; Hwang, C. S.; Chou, Y. W.; Yeh, C. H.; Lin, Y. L.; Huang, J. Y.

    2016-03-01

    Dense n-type Bi2Te3/Cu composites were prepared using Cu-based acetate decomposition and spark plasma sintering at 673 K and 50 MPa. The effects of Cu addition into ball-milled Bi2Te3 on the thermoelectric properties of composites were investigated. The scanning electron microscopy results reveal that Cu nanoparticles with a size of 50-100 nm were dispersed in the Bi2Te3 matrix and also pinned at Bi2Te3 grain boundaries. The thermoelectric performance of all specimens was measured in the temperature range of 300-500 K. The electrical conduction transformed from metallic to semiconducting with an increase in Cu content due to a decrease in carrier concentration. Hence, the variation in the carrier concentration is determined by the role of Cu dopant in Bi2Te3. Furthermore, the thermal conductivity decreased due to lower electronic thermal conductivity and electrical conductivity. In comparison with Bi2Te3, the room-temperature ZT value for the Bi2Te3/Cu (1.0 wt.%) sample increased from 0.31 to 0.60 due primarily to the significant increase in the power factor and reduction in thermal conductivity.

  1. Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Koh, Yee Rui; Comparan, Jonathan; Sadasivam, Sridhar; Schroeder, Jeremy L.; Garbrecht, Magnus; Mohammed, Amr; Birch, Jens; Fisher, Timothy; Shakouri, Ali; Sands, Timothy D.

    2016-01-01

    Reduction of cross-plane thermal conductivity and understanding of the mechanisms of heat transport in nanostructured metal/semiconductor superlattices are crucial for their potential applications in thermoelectric and thermionic energy conversion devices, thermal management systems, and thermal barrier coatings. We have developed epitaxial (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices with periodicity ranging from 1 nm to 240 nm that show significantly lower thermal conductivity compared to the parent TiN/(Al,Sc)N superlattice system. The (Ti,W)N/(Al,Sc)N superlattices grow with [001] orientation on the MgO(001) substrates with well-defined coherent layers and are nominally single crystalline with low densities of extended defects. Cross-plane thermal conductivity (measured by time-domain thermoreflectance) decreases with an increase in the superlattice interface density in a manner that is consistent with incoherent phonon boundary scattering. Thermal conductivity values saturate at 1.7 W m-1K-1 for short superlattice periods possibly due to a delicate balance between long-wavelength coherent phonon modes and incoherent phonon scattering from heavy tungsten atomic sites and superlattice interfaces. First-principles density functional perturbation theory based calculations are performed to model the vibrational spectrum of the individual component materials, and transport models are used to explain the interface thermal conductance across the (Ti,W)N/(Al,Sc)N interfaces as a function of periodicity. The long-wavelength coherent phonon modes are expected to play a dominant role in the thermal transport properties of the short-period superlattices. Our analysis of the thermal transport properties of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices addresses fundamental questions about heat transport in multilayer materials.

  2. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE PAGES

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; ...

    2016-08-28

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  3. Thermal Conductivity Changes Due to Degradation of Cathode Film Subjected to Charge-Discharge Cycles in a Li Ion Battery

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2018-05-01

    A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.

  4. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  5. Thermal conductivity of electron-irradiated graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  6. Thermal Properties of SiOC Glasses and Glass Ceramics at Elevated Temperatures

    PubMed Central

    Stabler, Christina; Reitz, Andreas; Stein, Peter; Albert, Barbara; Riedel, Ralf

    2018-01-01

    In the present study, the effect of the chemical and phase composition on the thermal properties of silicon oxide carbides (SiOC) has been investigated. Dense monolithic SiOC materials with various carbon contents were prepared and characterized with respect to their thermal expansion, as well as thermal conductivity. SiOC glass has been shown to exhibit low thermal expansion (e.g., ca. 3.2 × 10−6 K−1 for a SiOC sample free of segregated carbon) and thermal conductivity (ca. 1.5 W/(m∙K)). Furthermore, it has been observed that the phase separation, which typically occurs in SiOC exposed to temperatures beyond 1000–1200 °C, leads to a decrease of the thermal expansion (i.e., to 1.83 × 10−6 K−1 for the sample above); whereas the thermal conductivity increases upon phase separation (i.e., to ca. 1.7 W/(m∙K) for the sample mentioned above). Upon adjusting the amount of segregated carbon content in SiOC, its thermal expansion can be tuned; thus, SiOC glass ceramics with carbon contents larger than 10–15 vol % exhibit similar coefficients of thermal expansion to that of the SiOC glass. Increasing the carbon and SiC content in the studied SiOC glass ceramics leads to an increase in their thermal conductivity: SiOC with relatively large carbon and silicon carbides (SiC) volume fractions (i.e., 12–15 and 20–30 vol %, respectively) were shown to possess thermal conductivities in the range from 1.8 to 2.7 W/(m∙K). PMID:29439441

  7. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.

    PubMed

    Guo, San-Dong; Liu, Jiang-Tao

    2017-12-06

    Phonon transport in group-VA element (As, Sb and Bi) monolayer semiconductors has been widely investigated in theory, and, of them, monolayer Sb (antimonene) has recently been synthesized. In this work, phonon transport in monolayer SbAs is investigated with a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the lattice thermal conductivity of monolayer SbAs is lower than those of both monolayer As and Sb, and the corresponding sheet thermal conductance is 28.8 W K -1 at room temperature. To understand the lower lattice thermal conductivity in monolayer SbAs than those in monolayer As and Sb, the group velocities and phonon lifetimes of monolayer As, SbAs and Sb are calculated. The calculated results show that the group velocities of monolayer SbAs are between those of monolayer As and Sb, but that the phonon lifetimes of SbAs are smaller than those of both monolayer As and Sb. Hence, the low lattice thermal conductivity in monolayer SbAs is attributed to very small phonon lifetimes. Unexpectedly, the ZA branch has very little contribution to the total thermal conductivity, only 2.4%, which is obviously different from those of monolayer As and Sb with very large contributions. This can be explained by very small phonon lifetimes for the ZA branch of monolayer SbAs. The lower lattice thermal conductivity of monolayer SbAs compared to that of monolayer As or Sb can be understood by the alloying of As (Sb) with Sb (As), which should introduce phonon point defect scattering. We also consider the isotope and size effects on the lattice thermal conductivity. It is found that isotope scattering produces a neglectful effect, and the lattice thermal conductivity with a characteristic length smaller than 30 nm can reach a decrease of about 47%. These results may offer perspectives on tuning the lattice thermal conductivity by the mixture of multiple elements for applications of thermal management and thermoelectricity, and motivate further experimental efforts to synthesize monolayer SbAs.

  8. Spurious heat conduction behavior of finite-size graphene nanoribbon under extreme uniaxial strain caused by the AIREBO potential

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Wu, Sihan; Xu, Jiangxin; Cao, Bingyang; To, Albert C.

    2018-02-01

    Although the AIREBO potential can well describe the mechanical and thermal transport of the carbon nanostructures under normal conditions, previous studies have shown that it may overestimate the simulated mechanical properties of carbon nanostructures in extreme strains near fracture. It is still unknown whether such overestimation would also appear in the thermal transport of nanostructrues. In this paper, the mechanical and thermal transport of graphene nanoribbon under extreme deformation conditions are studied by MD simulations using both the original and modified AIREBO potential. Results show that the cutoff function of the original AIREBO potential produces an overestimation on thermal conductivity in extreme strains near fracture stage. Spurious heat conduction behavior appears, e.g., the thermal conductivity of GNRs does not monotonically decrease with increasing strain, and even shows a ;V; shaped reversed and nonphysical trend. Phonon spectrum analysis show that it also results in an artificial blue shift of G peak and phonon stiffening of the optical phonon modes. The correlation between spurious heat conduction behavior and overestimation of mechanical properties near the fracture stage caused by the original AIREBO potential are explored and revealed.

  9. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    NASA Astrophysics Data System (ADS)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  10. Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity.

    PubMed

    Wang, Jue; Xie, Fang; Cao, Xuan-Hao; An, Si-Cong; Zhou, Wu-Xing; Tang, Li-Ming; Chen, Ke-Qiu

    2017-01-25

    By using first-principles calculations combined with the nonequilibrium Green's function method and phonon Boltzmann transport equation, we systematically investigate the influence of chirality, temperature and size on the thermoelectric properties of monolayer WSe 2 nanoribbons. The results show that the armchair WSe 2 nanoribbons have much higher ZT values than zigzag WSe 2 nanoribbons. The ZT values of armchair WSe 2 nanoribbons can reach 1.4 at room temperature, which is about seven times greater than that of zigzag WSe 2 nanoribbons. We also find that the ZT values of WSe 2 nanoribbons increase first and then decrease with the increase of temperature, and reach a maximum value of 2.14 at temperature of 500 K. It is because the total thermal conductance reaches the minimum value at 500 K. Moreover, the impact of width on the thermoelectric properties in WSe 2 nanoribbons is not obvious, the overall trend of ZT value decreases lightly with the increasing temperature. This trend of ZT value originates from the almost constant power factor and growing phonon thermal conductance.

  11. High temperature dependence of thermal transport in graphene foam.

    PubMed

    Li, Man; Sun, Yi; Xiao, Huying; Hu, Xuejiao; Yue, Yanan

    2015-03-13

    In contrast to the decreased thermal property of carbon materials with temperature according to the Umklapp phonon scattering theory, highly porous free-standing graphene foam (GF) exhibits an abnormal characteristic that its thermal property increases with temperature above room temperature. In this work, the temperature dependence of thermal properties of free-standing GF is investigated by using the transient electro-thermal technique. Significant increase for thermal conductivity and thermal diffusivity from ∼0.3 to 1.5 W m(-1) K(-1) and ∼4 × 10(-5) to ∼2 × 10(-4) m(2) s(-1) respectively is observed with temperature from 310 K to 440 K for three GF samples. The quantitative analysis based on a physical model for porous media of Schuetz confirms that the thermal conductance across graphene contacts rather than the heat conductance inside graphene dominates thermal transport of our GFs. The thermal expansion effect at an elevated temperature makes the highly porous structure much tighter is responsible for the reduction in thermal contact resistance. Besides, the radiation heat exchange inside the pores of GFs improves the thermal transport at high temperatures. Since free-standing GF has great potential for being used as supercapacitor and battery electrode where the working temperature is always above room temperature, this finding is beneficial for thermal design of GF-based energy applications.

  12. Temperature-dependent thermal conductivity of silicone-Al2O3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Moreira, D. C.; Braga Junior, N. R.; Benevides, R. O.; Sphaier, L. A.; Nunes, L. C. S.

    2015-11-01

    This paper presents an experimental investigation of thermophysical properties of elastomeric nano-composites. Spherical alumina nanoparticles with a diameter of 150 nm were added to polydimethylsiloxane (PDMS), and batches of nanocomposites with different volume concentrations (up to 5 %) were produced. The thermal conductivity of the samples was acquired through the guarded heat flow meter method at nine temperature setpoints, ranging from 0 to 80 °C, and density measurements were carried out, in order to evaluate the composition of the samples. The results showed a significant increase in the thermal conductivity of PDMS with small additions of alumina nanoparticles. In addition, a notable linear decrease in conductivity was observed with increasing temperature. Finally, classical models were fitted to the experimental data and a discussion about the physical meaning of the adjusted parameters was carried out.

  13. Thermal measurements of short-duration CO2 laser resurfacing

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Fried, Daniel; Reinisch, Lou; Bell, Thomas; Lyver, Rex

    1997-05-01

    The thermal consequences of a 100 microsecond carbon-dioxide laser used for skin resurfacing were examined with infrared radiometry. Human skin was evaluated in a cosmetic surgery clinic and extirpated rodent skin was measured in a research laboratory. Thermal relaxation following single pulses of in vivo human and ex vivo animal skin were quantitatively similar in the 30 - 1000 msec range. The thermal emission from the area of the irradiated tissue increased monotonically with increasing incident laser fluence. Extremely high peak temperatures during the 100 microsecond pulse are attributed to plume incandescence. Ejecta thermal emission may also contribute to our measurements during the first several msecs. The data are combined into a thermal relaxation model. Given known coefficients, and adjusting tissue absorption to reflect a 50% water content, and thermal conductivity of 2.3 times that of water, the measured (both animal back and human forearm) and calculated values coincide. The high thermal conductance suggests preferential thermal conduction along the protein matrix. The clinical observation of a resurfacing procedure clearly shows thermal overlap and build-up is a result of sequential, adjacent pulses. A decrease of 4 - 6 degrees Celsius in surface temperature at the treatment site that appeared immediately post-Tx and gradually diminished over several days is possibly a sign of dermal convective and/or evaporative cooling.

  14. Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor

    2013-03-01

    Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.

  15. Tuning the thermal conductance of molecular junctions with interference effects

    NASA Astrophysics Data System (ADS)

    Klöckner, J. C.; Cuevas, J. C.; Pauly, F.

    2017-12-01

    We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.

  16. Oxidation resistance, thermal conductivity, and spectral emittance of fully dense zirconium diboride with silicon carbide and tantalum diboride additives

    NASA Astrophysics Data System (ADS)

    Van Laningham, Gregg Thomas

    Zirconium diboride (ZrB2) is a ceramic material possessing ultra-high melting temperatures. As such, this compound could be useful in the construction of thermal protection systems for aerospace applications. This work addresses a primary shortcoming of this material, namely its propensity to destructively oxidize at high temperatures, as well as secondary issues concerning its heat transport properties. To characterize and improve oxidation properties, thermogravimetric studies were performed using a specially constructed experimental setup. ZrB 2-SiC two-phase ceramic composites were isothermally oxidized for ~90 min in flowing air in the range 1500-1900°C. Specimens with 30 mol% SiC formed distinctive reaction product layers which were highly protective; 28 mol% SiC - 6 mol% TaB2 performed similarly. At higher temperatures, specimens containing lower amounts of SiC were shown to be non-protective, whereas specimens containing greater amounts of SiC produced unstable oxide layers due to gas evolution. Oxide coating thicknesses calculated from weight loss data were consistent with those measured from SEM micrographs. In order to characterize one aspect of the materials' heat transport properties, the thermal diffusivities of ZrB2-SiC composites were measured using the laser flash technique. These were converted to thermal conductivities using temperature dependent specific heat and density data; thermal conductivity decreased with increasing temperature over the range 25-2000°C. The composition with the highest SiC content showed the highest thermal conductivity at room temperature, but the lowest at temperatures in excess of ~400°C, because of the greater temperature sensitivity of the thermal conductivity of the SiC phase, as compared to more electrically-conductive ZrB2. Subsequent finite difference calculations were good predictors of multi-phase thermal conductvities for the compositions examined. The thermal conductivities of pure ZrB2 as a function of temperature were back-calculated from the experimental results for the multi-phase materials, and literature thermal conductivities of the other two phases. This established a relatively constant thermal conductivity of 88-104 W·K over the evaluated temperature range. Further heat transport characterization was performed using pre-oxidized, directly resistively heated ZrB2-30 mol% SiC ribbon specimens under the observation of a spectral radiometer. The ribbons were heated and held at specific temperatures over the range 1100-1330°C in flowing Ar, and normal spectral emittance values were recorded over the 1-6 μm range with a resolution of 10 nm. The normal spectral emittance was shown to decrease with loss of the borosilicate layer over the course of the data collection time periods. This change was measured and compensated for to produce traces showing the emittance of the oxidized composition rising from ~0.7 to ~0.9 over the range of wavelengths measured (1-6 μm).

  17. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions

    PubMed Central

    2012-01-01

    The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application. PMID:22333487

  18. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension.

    PubMed

    Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav

    2017-11-08

    Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

  19. Thermal Barrier and Protective Coatings to Improve the Durability of a Combustor Under a Pulse Detonation Engine Environment

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming

    2008-01-01

    Pulse detonation engine (PDE) concepts are receiving increasing attention for future aeronautic propulsion applications, due to their potential thermodynamic cycle efficiency and higher thrust to density ratio that lead to the decrease in fuel consumption. But the resulting high gas temperature and pressure fluctuation distributions at high frequency generated with every detonation are viewed to be detrimental to the combustor liner material. Experimental studies on a typical metal combustion material exposed to a laser simulated pulse heating showed extensive surface cracking. Coating of the combustor materials with low thermal conductivity ceramics is shown to protect the metal substrate, reduce the thermal stresses, and hence increase the durability of the PDE combustor liner material. Furthermore, the temperature fluctuation and depth of penetration is observed to decrease with increasing the detonation frequency. A crack propagation rate in the coating is deduced by monitoring the variation of the coating apparent thermal conductivity with time that can be utilized as a health monitoring technique for the coating system under a rapid fluctuating heat flux.

  20. Determination of thermal contact conductance in vacuum-bagged thermoplastic prepreg stacks using infrared thermography

    NASA Astrophysics Data System (ADS)

    Baumard, Théo; De Almeida, Olivier; Menary, Gary; Le Maoult, Yannick; Schmidt, Fabrice; Bikard, Jérôme

    2016-10-01

    The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.

  1. Waterside corrosion of Zircaloy-clad fuel rods in a PWR environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzarolli, F.; Jorde, D.; Manzel, R.

    A data base of Zircaloy corrosion behavior under PWR operating conditions has been established from previously published reports as well as from new Kraftwerk Union (KWU) fuel examinations. The data show that the reactor environment increases the corrosion. ZrO/sub 2/ film thermal conductivity is another major factor that influences corrosion behavior. It was inferred from KWU film thickness data that the oxide film thermal conductivity may decrease once circumferential cracks develop in the layer. 57 refs.

  2. Theoretical and Experimental Studies of Functionalized Carbon Nanotubes for Improved Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul

    The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.

  3. Size effect on thermoelectric properties of Bi2Te3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhary, K. K.; Sharma, Uttam; Lodhi, Pavitra Devi; Kaurav, Netram

    2018-05-01

    Bi2Te3 nanoparticles exhibit size dependent thermoelectric properties which gives an opportunity to tune the size for optimization of the thermoelectric figure of merit (ZT). We have quantitatively analyzed the thermoelectric properties of Bi2Te3 using phonon scattering mechanism by incorporating the scattering of phonons with defects, grain boundaries, electrons and Umklapp phonon scatterings. The maximum value of ZT = 0.92 is obtained at T = 400 K for 30 nm Bi2Te3 nanoparticles in comparison to ZT = 0.45 for 150 nm nanoparticles at the same temperature. With decrease in size of nanoparticles interface volume ratio increases which increase the phonon scatterings with grain boundaries and point defects, results in decrease in thermal conductivity due to reduction in mean free path of phonons. As a result of decrease in thermal conductivity (κ), Seeback coefficient (S) and ZT increases.

  4. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.

    PubMed

    Messina, Elena; Leone, Nancy; Foti, Antonino; Di Marco, Gaetano; Riccucci, Cristina; Di Carlo, Gabriella; Di Maggio, Francesco; Cassata, Antonio; Gargano, Leonardo; D'Andrea, Cristiano; Fazio, Barbara; Maragò, Onofrio Maria; Robba, Benedetto; Vasi, Cirino; Ingo, Gabriel Maria; Gucciardi, Pietro Giuseppe

    2016-09-07

    Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 μΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.

  5. Fly ash carbon passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most ofmore » the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.« less

  6. Strain-modulated electronic and thermal transport properties of two-dimensional O-silica

    NASA Astrophysics Data System (ADS)

    Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming

    2016-07-01

    Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  7. Strain-modulated electronic and thermal transport properties of two-dimensional O-silica.

    PubMed

    Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming

    2016-07-01

    Silica is one of the most abundant materials in the Earth's crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  8. Fabrication of Conductive Macroporous Structures Through Nano-phase Separation Method

    NASA Astrophysics Data System (ADS)

    Kim, Soohyun; Lee, Hyunjung

    2018-03-01

    Thermoelectric power generation performance is characterized on the basis of the figure of merit, which tends to be high in thermoelectric materials with high electrical conductivity and low thermal conductivity. Porous structures cause phonon scattering, which decreases thermal conductivity. In this study, we fabricated porous structures for thermoelectric devices via nano-phase separation of silica particles from a polyacrylonitrile (PAN) matrix via a sol-gel process. The porosity was determined by control of silica particle size with various the mixing ratio of tetraethylorthosilicate as the precursor of silica particles to PAN. High electrical conductivity was maintained by subsequent carbonization of the PAN matrix in spited of a high porosity. As the results, the conductive porous structures having porosity from 13.9 to 83.3 (%) was successfully fabricated, keeping their electrical conductivities.

  9. Soliton microdynamics and thermal conductivity of uranium nitride at high temperatures

    NASA Astrophysics Data System (ADS)

    Dubovsky, O. A.; Orlov, A. V.; Semenov, V. A.

    2011-09-01

    The microdynamics of soliton waves and localized modes of nonlinear vibrations of the acoustic and optical types in uranium nitride has been investigated. It has been shown that, with an increase in the excitation energy in the spectral gap between the bands of optical and acoustic phonons, the energies of solitons increase, whereas the energies of local modes decrease. The previously experimentally observed unidentified quasi-resonant features, which shift in the gap with variations in the temperature, can represent the revealed soliton waves and local modes. The microdynamics of heat conduction of uranium nitride has been studied for the stochastic generation of soliton waves and local modes in the case of spatially distant energy absorption. The thermal conductivity coefficient determined from the temperature gradient and the absorbed energy flux insignificantly exceeds the experimentally observed values, which are decreased because of the presence of structural defects of different types in the material.

  10. Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PbZr 1- xTi xO 3) thin films across the compositional phase diagram

    DOE PAGES

    Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher; ...

    2017-05-23

    This paper represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr 1–xTi xO 3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropicmore » phase boundary (MPB, x = 0.48) where there is a 20%–25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ(x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. Finally, this is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).« less

  11. Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PbZr 1- xTi xO 3) thin films across the compositional phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher

    This paper represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr 1–xTi xO 3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropicmore » phase boundary (MPB, x = 0.48) where there is a 20%–25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ(x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. Finally, this is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).« less

  12. Synthesis and thermoelectric properties of tantalum-doped ZrNiSn half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Zuo, Min; Wang, Zhenqing; Teng, Xinying; Geng, Haoran

    2014-04-01

    The Ta-doped ZrNiSn half-Heusler alloys, Zr1-xTaxNiSn, were synthesized by arc melting and hot-press sintering. Microstructure of Zr1-xTaxNiSn compounds were analyzed and the thermoelectric (TE) properties of Zr1-xTaxNiSn compounds were measured from room temperature to 823 K. The electrical conductivity increased with increasing Ta content. The Seebeck coefficient of Zr1-xTaxNiSn compounds was sharply decreased with increasing Ta content. The Hall mobility was proportional to T-1.5 above 673 K, indicating that the acoustic phonon scattering was predominant in the temperature range. The thermal conductivity was effectively depressed by introducing Ta substitution. The figure of merit of ZrNiSn compounds was improved due to the decreased thermal conductivity and increased electrical conductivity. The maximum ZT value of 0.60 was achieved for Zr0.97Ta0.03NiSn sample at 823 K.

  13. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

    PubMed

    Vilčáková, Jarmila; Moučka, Robert; Svoboda, Petr; Ilčíková, Markéta; Kazantseva, Natalia; Hřibová, Martina; Mičušík, Matej; Omastová, Mária

    2012-11-05

    The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  14. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  15. Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa

    NASA Astrophysics Data System (ADS)

    Littleton, Joshua A. H.; Secco, Richard A.; Yong, Wenjun

    2018-04-01

    The electrical resistivity of Ag was experimentally measured at high pressures up to 5 GPa and at temperatures up to ∼300 K above melting. The resistivity decreased as a function of pressure and increased as a function of temperature as expected and is in very good agreement with 1 atm data. Observed melting temperatures at high pressures also agree well with previous experimental and theoretical studies. The main finding of this study is that resistivity of Ag decreases along the pressure- and temperature-dependent melting boundary, in conflict with prediction of resistivity invariance. This result is discussed in terms of the dominant contribution of the increasing energy separation between the Fermi level and 4d-band as a function of pressure. Calculated from the resistivity using the Wiedemann-Franz law, the electronic thermal conductivity increased as a function of pressure and decreased as a function of temperature as expected. The decrease in the high pressure thermal conductivity in the liquid phase as a function of temperature contrasts with the behavior of the 1 atm data.

  16. No Radiative Heat Transport Through Pyrolitic Lower Mantle

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Holtgrewe, N.; Badro, J.; Goncharov, A. F.

    2017-12-01

    Transport properties of the lower mantle, such as its thermal conductivity, are key parameters required to understand the nature and dynamics of the core-mantle boundary (CMB) region. Radiative thermal conductivity (krad) of the mantle is determined by its visible-infrared absorption coefficient (α) at high pressure (P) and temperature (T). The latter is highly uncertain at the CMB conditions as optical measurements at high temperature suffer from intense thermal radiation that diminishes the probe contrast. Room-temperature high-pressure studies of bridgmanite and ferropericlase absorption coefficients suggest a steady increase of mantle radiative conductivity with depth mirroring the temperature increase along the geotherm (Goncharov et al., 2008; Keppler et al., 2008). Here we reconstruct optical properties of the mantle as a function of depth by using fast time-resolved spectroscopic technology combined with laser-heated diamond anvil cells. We found a strong increase in the rock absorption coefficient upon heating to 3000 K at 40-135 GPa. Using the pressure- and temperature-dependent pyrolite absorption coefficient we establish that lower mantle radiative thermal conductivity is decreasing with depth from 0.35 W/m/K at 1000 km to 0.15 W/m/K at the CMB, making it 50 times smaller than the corresponding lattice thermal conductivity at such conditions (Ohta et al., 2017; Okuda et al., 2017). Combining our results with models of lattice thermal conductivity in pyrolitic lower mantle we obtain a CMB heat flow of 8.5 TW. This estimate implies an inner core age of 0.7-1.3 Gy and favors a low-to-moderate core thermal conductivity (< 80 W/m/K). A core with higher thermal conductivity (Ohta et al., 2016; Pozzo et al., 2012) would be thermally stratified, halting a thermally driven dynamo prior to the inner core growth, if no other mechanism is invoked, such as MgO (Badro et al., 2016) or SiO2 (Hirose et al., 2017) exsolution. On the other hand, the low iron thermal conductivity scenario (Konopkova et al., 2016) combined with our model of low thermal conductivity at the base of the mantle, suggests that core convection could have taken place prior to inner core growth whether sources of chemical buoyancy were present or not.

  17. Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity

    PubMed Central

    Huang, Sheng-Yun; Zhao, Bo; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-01-01

    Large-area freestanding graphene films are facilely fabricated by reducing graphene oxide films on recyclable Cu foils in H2-containing atmosphere at high temperature. Cu might act as efficient catalysts for considerably improved reduction of graphene oxide according to the SEM, EDS, XRD, XPS, Raman and TGA results. Comparing to the graphene films with ~30 μm thickness reduced without Cu substrate at 900 °C, the thermal conductivity and electrical conductivity of graphene films reduced on Cu foils are enhanced about 140% to 902 Wm−1K−1 and 3.6 × 104 S/m, respectively. Moreover, the graphene films demonstrate superior thermal conductivity of ~1219 Wm−1K−1 as decreasing the thickness of films to ~10 μm. The graphene films also exhibit excellent mechanical properties and flexibility. PMID:26404674

  18. Electrical transport and optical band gap of NiFe2Ox thin films

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  19. High temperature thermal management with boron nitride nanosheets.

    PubMed

    Wang, Yilin; Xu, Lisha; Yang, Zhi; Xie, Hua; Jiang, Puqing; Dai, Jiaqi; Luo, Wei; Yao, Yonggang; Hitz, Emily; Yang, Ronggui; Yang, Bao; Hu, Liangbing

    2017-12-21

    The rapid development of high power density devices requires more efficient heat dissipation. Recently, two-dimensional layered materials have attracted significant interest due to their superior thermal conductivity, ease of production and chemical stability. Among them, hexagonal boron nitride (h-BN) is electrically insulating, making it a promising thermal management material for next-generation electronics. In this work, we demonstrated that an h-BN thin film composed of layer-by-layer laminated h-BN nanosheets can effectively enhance the lateral heat dissipation on the substrate. We found that by using the BN-coated glass instead of bare glass as the substrate, the highest operating temperature of a reduced graphene oxide (RGO) based device could increase from 700 °C to 1000 °C, and at the same input power, the operating temperature of the RGO device is effectively decreased. The remarkable performance improvement using the BN coating originates from its anisotropic thermal conductivity: a high in-plane thermal conductivity of 14 W m -1 K -1 for spreading and a low cross-plane thermal conductivity of 0.4 W m -1 K -1 to avoid a hot spot right underneath the device. Our results provide an effective approach to improve the heat dissipation in integrated circuits and high power devices.

  20. Constructing nanoporous carbon nanotubes/Bi2Te3 composite for synchronous regulation of the electrical and thermal performances

    NASA Astrophysics Data System (ADS)

    Zhang, Qihao; Xu, Leilei; Zhou, Zhenxing; Wang, Lianjun; Jiang, Wan; Chen, Lidong

    2017-02-01

    Porous nanograined thermoelectric materials exhibit low thermal conductivity due to scattering of phonons by pores, which are favorable for thermoelectric applications. However, the benefit is not large enough to overcome the deficiency in the electrical performance. Herein, an approach is presented to reduce the thermal conductivity and synchronously enhance the electrical conductivity through constructing a nanoporous thermoelectric composite. Carbon nanotubes (CNTs) are truncated and homogeneously dispersed within the Bi2Te3 matrix by a cryogenic grinding (CG) technique for the first time, which efficiently suppress the Bi2Te3 grain growth and create nanopores with the size ranging from dozens to hundreds of nanometers. The lattice thermal conductivity is substantially decreased by broad wavelength phonon scattering resulting from nanopores, increased grain boundaries, and newly formed interfaces. Meanwhile, the electrical conductivity is improved due to the enhanced carrier mobility, which may originate from the bridging effect between the Bi2Te3 grains and CNTs. The maximum ZT is improved by almost a factor of 2 due to the simultaneous optimization of electrical and thermal performances. Our study demonstrates the superiority of constructing a bulk thermoelectric composite with nanopores by the uniform dispersion of CNTs through a CG technique for enhanced thermoelectric properties, which provides a wider approach to thermoelectric nanostructure engineering.

  1. PIC Simulations of Velocity-space Instabilities in a Decreasing Magnetic Field: Viscosity and Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario; Quataert, Eliot; Verscharen, Daniel

    2018-02-01

    We use particle-in-cell (PIC) simulations of a collisionless, electron–ion plasma with a decreasing background magnetic field, {\\boldsymbol{B}}, to study the effect of velocity-space instabilities on the viscous heating and thermal conduction of the plasma. If | {\\boldsymbol{B}}| decreases, the adiabatic invariance of the magnetic moment gives rise to pressure anisotropies with {p}| | ,j> {p}\\perp ,j ({p}| | ,j and {p}\\perp ,j represent the pressure of species j (electron or ion) parallel and perpendicular to B ). Linear theory indicates that, for sufficiently large anisotropies, different velocity-space instabilities can be triggered. These instabilities in principle have the ability to pitch-angle scatter the particles, limiting the growth of the anisotropies. Our simulations focus on the nonlinear, saturated regime of the instabilities. This is done through the permanent decrease of | {\\boldsymbol{B}}| by an imposed plasma shear. We show that, in the regime 2≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated ion and electron pressure anisotropies are controlled by the combined effect of the oblique ion firehose and the fast magnetosonic/whistler instabilities. These instabilities grow preferentially on the scale of the ion Larmor radius, and make {{Δ }}{p}e/{p}| | ,e≈ {{Δ }}{p}i/{p}| | ,i (where {{Δ }}{p}j={p}\\perp ,j-{p}| | ,j). We also quantify the thermal conduction of the plasma by directly calculating the mean free path of electrons, {λ }e, along the mean magnetic field, finding that {λ }e depends strongly on whether | {\\boldsymbol{B}}| decreases or increases. Our results can be applied in studies of low-collisionality plasmas such as the solar wind, the intracluster medium, and some accretion disks around black holes.

  2. G-Jitter Induced Magnetohydrodynamics Flow of Nanofluid with Constant Convective Thermal and Solutal Boundary Conditions

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066

  3. A Novel Approach to Enhance the Mechanical Strength and Electrical and Thermal Conductivity of Cu-GNP Nanocomposites

    NASA Astrophysics Data System (ADS)

    Saboori, Abdollah; Pavese, Matteo; Badini, Claudio; Fino, Paolo

    2018-01-01

    Copper/graphene nanoplatelet (GNP) nanocomposites were produced by a wet mixing method followed by a classical powder metallurgy technique. A qualitative evaluation of the structure of graphene after mixing indicated that wet mixing is an appropriate dispersion method. Thereafter, the effects of two post-processing techniques such as repressing-annealing and hot isostatic pressing (HIP) on density, interfacial bonding, hardness, and thermal and electrical conductivity of the nanocomposites were analyzed. Density evaluations showed that the relative density of specimens increased after the post-processing steps so that after HIPing almost full densification was achieved. The Vickers hardness of specimens increased considerably after the post-processing techniques. The thermal conductivity of pure copper was very low in the case of the as-sintered samples containing 2 to 3 pct porosity and increased considerably to a maximum value in the case of HIPed samples which contained only 0.1 to 0.2 pct porosity. Electrical conductivity measurements showed that by increasing the graphene content electrical conductivity decreased.

  4. Activated carbon from peach stones using phosphoric acid activation at medium temperatures.

    PubMed

    Kim, Dong-Su

    2004-01-01

    In the present study, the activation features of phosphoric acid have been investigated using waste peach stones as the raw material in the production of granular activated carbon. Thermogravimetry/differential thermal analysis was conducted to characterize the thermal behavior of peach stone and titration method was used to evaluate the adsorption capacity of the produced activated carbon. It was observed that the iodine value of the activated carbon increased with activation temperature. However, temperatures higher than 500 degrees C caused a thermal destruction, which resulted in the decrease of the adsorption capacity. Activation longer than 1.5 h at 500 degrees C resulted in thermal degradation of the porous structure of the activated carbon. The adsorption capacity was enhanced with increasing of amounts of phosphoric acid, however, excessive phosphoric acid caused a decrease in the iodine value. In addition, it was found that the carbon yields generally decreased with activation temperature and activation time. Scanning electron microscopy analysis was conducted to observe the changes in the poros structure of the activated carbon produced in different temperatures. Activation of carbon by phosphoric acid was found to be superior to that by CaCl2 and gas activation. The activated carbon produced from peach stone was applied as an adsorbent in the treatment of synthesized wastewater containing cadmium ion and its adsorption capacity was found to be as good as that of the commercial one.

  5. Thermoelectric Properties of Dy-Doped SrTiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, C. L.; Peng, H.; Su, W. B.; Wang, H. C.; Li, J. C.; Zhang, J. L.; Mei, L. M.

    2012-11-01

    Sr1- x Dy x TiO3 ( x = 0.02, 0.05, 0.10) ceramics were prepared by the reduced solid-state reaction method, and their thermoelectric properties were investigated from room temperature to 973 K. The resistivity increases with temperature, showing metallic behavior. The Seebeck coefficients tend to saturate at high temperatures, presenting narrow-band behavior, as proved by ab initio calculations of the electronic structure. The magnitudes of the Seebeck coefficient and the electrical resistivity decrease with increasing Dy content. At the same time, the thermal conductivity decreases because the lattice thermal conductivity is reduced by Dy substitution. The maximum value of the figure of merit reaches 0.25 at 973 K for the Sr0.9Dy0.1TiO3 sample.

  6. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers.

    PubMed

    Kul, Esra; Aladağ, Lütfü İhsan; Yesildal, Ruhi

    2016-11-01

    Poly(methyl methacrylate) (PMMA) is widely used in prosthodontics as a denture base material. However, it has several disadvantages, including low strength and low thermal conductivity. The purpose of this in vitro study was to evaluate thermal conductivity and flexural strength after adding powdered Ag, TiO 2 , ZrO 2 , Al 2 O 3 , SiC, SiC-nano, Si 3 N 4 , and HA-nano in ratios of 10 wt% to PMMA. A total of 144 specimens were fabricated and divided into 18 groups. Specimens were left in water for 30 days. Thermal conductivity values were measured using a heat flowmeter, flexural strength was measured with a 3-point bend test, and specimens were investigated with environmental scanning electron microscopy. One-way ANOVA was used to compare means followed by using Duncan multiple range test (α=.05). The thermal conductivity value of PMMA increased significantly after the addition of Si 3 N 4 , SiC, Al 2 O 3 , SiC-nano, TiO 2 , ZrO 2 , HA-nano, and Ag. Progressive increases in thermal conductivity were observed in Si 3 N 4 , SiC, and Al 2 O 3 fillers. Flexural strength values of the control group were not significantly different from those of the SiC, Al 2 O 3 , or Ag group (P>.05). In the other groups, flexural strength values decreased significantly (P<.05). On the basis of electron microscopy, we observed that Si 3 N 4 , SiC, and Al 2 O 3 powders had higher thermal conductivity values that are dissipated more homogeneously in PMMA. Although the addition of 10 wt% SiC, Al 2 O 3, and Ag powder to PMMA significantly increased thermal conductivity, the flexural strength values of PMMA were not significantly changed. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus

    PubMed Central

    Luo, Zhe; Maassen, Jesse; Deng, Yexin; Du, Yuchen; Garrelts, Richard P.; Lundstrom, Mark S; Ye, Peide D.; Xu, Xianfan

    2015-01-01

    Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m−1 K−1 for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m−1 K−1 as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons. PMID:26472191

  8. Two dimensional analysis of low pressure flows in the annulus region between two concentric cylinders.

    PubMed

    Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil

    2016-01-01

    A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.

  9. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Chen, Di; Wang, Xuemei

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNTmore » films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.« less

  10. Thermal force induced by the presence of a particle near a solidifying interface.

    PubMed

    Hadji, L

    2001-11-01

    The presence of a foreign particle in the melt, ahead of a solid-liquid interface, leads to the onset of interfacial deformations if the thermal conductivity of the particle, k(p), differs from that of the melt, k(l). In this paper, the influence of the thermal conductivity contrast on the interaction between the solidifying interface and the particle is quantified. We show that the interface distortion gives rise to a thermal force whose expression is given by F(th)=2piLGa3(1-alpha)/(2+alpha)T(m), where L is the latent heat of fusion per unit volume, T(m) is the melting point, a is the particle's radius, G the thermal gradient in the liquid phase and alpha=k(p)/k(l). The derivation makes use of the following assumptions: (i) the particle is small compared to the horizontal extent of the interface, (ii) the particle is placed in the near proximity of the deformable solid-liquid interface, and (iii) the interface is practically immobile in the calculation of the thermal field, i.e., V

  11. Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba

    2018-04-01

    The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.

  12. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    1990-01-01

    Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  13. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Jin Man; Kim, TaeJoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, HangJin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan

    2014-01-01

    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF. PMID:25182076

  14. Improvement of thermal radiation characteristic of AC servomotor using Al-CNT composite material

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Wakiwaka, H.; Yanagihara, M.

    2018-02-01

    This study deals with a high thermal conductivity material of aluminum-carbon nanotube (CNT) composite with carbon fiber (CF) and the high radiation performance of AC servomotor using a stator made of nanotube composite material. The composite fabrication process was performed by melting a mixture of granular aluminum of less than 200 μm and CNT under conditions of pressed atmosphere at the same time. Two kinds of motors made using aluminum and the composite were evaluated to confirm the effect of thermal conductivity as the motor stator. A test rod of the composite with 14 wt% CF-7 wt% CNT-aluminum indicated the excellent thermal conductivity of 169 W/(mK) in the radial direction and 173 W/(mK) in the lengthwise direction. According to the obtained temperature radiation characteristic of the AC servomotor, the composite stator using CNT decreased the consumption energy to 16% compared to the conventional one. As a result, the highly efficient motor improved the radiation characteristic using the CNT composite stator.

  15. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    NASA Astrophysics Data System (ADS)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  16. Tuning Thermoelectric Properties of Type I Clathrate K 8–x Ba x Al 8+x Si 38–x through Barium Substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sui, Fan; Kauzlarich, Susan M.

    2016-05-10

    The thermal stability and thermoelectric properties of type I clathrate K8Al8Si38 up to 873 K are reported. K8Al8Si38 possesses a high absolute Seebeck coefficient value and high electrical resistivity in the temperature range of 323 to 873 K, which is consistent with previously reported low temperature thermoelectric properties. Samples with Ba partial substitution at the K guest atom sites were synthesized from metal hydride precursors. The samples with the nominal chemical formula of K8–xBaxAl8+xSi38–x (x = 1, 1.5, 2) possess type I clathrate structure (cubic, Pm3n), confirmed by X-ray diffraction. The guest atom site occupancies and thermal motions were investigatedmore » with Rietveld refinement of synchrotron powder X-ray diffraction. Transport properties of Ba-containing samples were characterized from 2 to 300 K. The K–Ba alloy phases showed low thermal conductivity and improved electrical conductivity compared to K8Al8Si38. Electrical resistivity and Seebeck coefficients were measured over the temperature range of 323 to 873 K. Thermal conductivity from 323 to 873 K was estimated from the Wiedemann–Franz relation and lattice thermal conductivity extrapolation from 300 to 873 K. K8–xBaxAl8+xSi38–x (x = 1, 1.5) synthesized with Al deficiency showed enhanced electrical conductivity, and the absolute Seebeck coefficients decrease with the increased carrier concentration. When x = 2, the Al content increases toward the electron balanced composition, and the electrical resistivity increases with the decreasing charge carrier concentration. Overall, K6.5Ba1.5Al9Si37 achieves an enhanced zT of 0.4 at 873 K.« less

  17. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer

    NASA Technical Reports Server (NTRS)

    Hass, Derek D.; Prasad, B. Durga; Glass, David E.; Wiedemann, Karl E.

    1997-01-01

    Radiative heat transfer through fibrous insulation used in thermal protection systems (TPS) is significant at high temperatures (1200 C). Decreasing the radiative heat transfer through the fibrous insulation can thus have a major impact on the insulating ability of the TPS. Reflective coatings applied directly to the individual fibers in fibrous insulation should decrease the radiative heat transfer leading to an insulation with decreased effective thermal conductivity. Coatings with high infrared reflectance have been developed using sol-gel techniques. Using this technique, uniform coatings can be applied to fibrous insulation without an appreciable increase in insulation weight or density. Scanning electron microscopy, Fourier Transform infrared spectroscopy, and ellipsometry have been performed to evaluate coating performance.

  18. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE PAGES

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; ...

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with smallmore » mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  19. Effects of anisotropic conduction and heat pipe interaction on minimum mass space radiators

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Lund, Kurt O.

    1991-01-01

    Equations are formulated for the two dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field was obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the axial boundary condition, simplifies the analysis and renders the results applicable to general heat pipe/conduction fin interface designs. The thermal results are summarized in terms of the fin efficiency, a radiation/axial conductance number, and a transverse conductance surface Biot number. These relations, together with those for mass distribution between fins and heat pipes, were used in predicting the minimum radiator mass for fixed thermal properties and fin efficiency. This mass is found to decrease monotonically with increasing fin conductivity. Sensitivities of the minimum mass designs to the problem parameters are determined.

  20. A study of thermal conductivity in graphene diodes and transistors with intrinsic defects and subjected to metal impurities

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Rezapour, Navid

    2016-12-01

    In this paper, the effect of the presence of cavities resulting from the fabrication process and the effect of common metal impurities added during the synthesis process on the thermal conductivity of single-layer graphene sheets, diodes and transistors have been investigated by using the Reverse Non Equilibrium Molecular Dynamics (RNEMD) method. The obtained results show that thermal conductivity generally diminishes by increasing the concentration of nanoparticles and increases when porosities and impurities are at the edges of sheets. Regarding a better thermal management in graphene with the addition of nanoparticles, and considering its existing porosity, a lower thermal conductivity is achieved by adding more nanoparticles. By increasing the diameter of pores from 0.5 nm to 4.4 nm in a specific single-layer graphene sheet, thermal conductivity diminishes from 67 W/mk to 1.43 W/mk; while it diminishes from 45 to 1.0 W/mk for the same structure containing both the defects and nanoparticles over the defects. In evaluating the influences of cavities and metallic nanoparticles on thermal conductivity, it was observed that changing the share of cavities or nanoparticles has a significant effect on the thermal conductivity of graphene diodes and transistors. The rectification efficiency of diodes diminished from about 100% for the defect-free diode to about 19% for the diode containing 2 nm cavities and then increased to 75% for the diode with 5 nm cavities. While, with the increase in the concentration of iron nanoparticles, the rectification efficiency increased from about 100% for the diode with no iron particles to about 255% for the diode containing 13 wt % of iron particles. Final results demonstrate that the metallic nanoparticles and also defects with specific diameters can be effectively exploited to increase or decrease the efficiency of nanodiodes and nanotransistors. This leads to engineered design of nanodiodes and nanotransistors for various applications.

  1. Determining in-situ thermal conductivity of coarse textured materials through numerical analysis of thermal

    NASA Astrophysics Data System (ADS)

    Saito, H.; Hamamoto, S.; Moldrup, P.; Komatsu, T.

    2013-12-01

    Ground source heat pump (GSHP) systems use ground or groundwater as a heat/cooling source, typically by circulating anti-freezing solution inside a vertically installed closed-loop tube known as a U-tube to transfer heat to/from the ground. Since GSHP systems are based on renewable energy and can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems, use of GSHP systems has been rapidly increasing worldwide. However, environmental impacts by GSHP systems including thermal effects on subsurface physical-chemical and microbiological properties have not been fully investigated. To rigorously assess GSHP impact on the subsurface environment, ground thermal properties including thermal conductivity and heat capacity need to be accurately characterized. Ground thermal properties were investigated at two experimental sites at Tokyo University of Agriculture and Technology (TAT) and Saitama University (SA), both located in the Kanto area of Japan. Thermal properties were evaluated both by thermal probe measurements on boring core samples and by performing in-situ Thermal Response Tests (TRT) in 50-80 m deep U-tubes. At both TAT and SU sites, heat-pulse probe measurements gave unrealistic low thermal conductivities for coarse textured materials (dominated by particles > 75 micrometers). Such underestimation can be partly due to poor contact between probe and porous material and partly to markedly decreasing sample water content during drilling, carrying, and storing sandy/gravelly samples. A more reliable approach for estimating in-situ thermal conductivity of coarse textured materials is therefore needed, and may be based on the commonly used TRT test. However, analyses of TRT data is typically based on Kelvin's line source model and provides an average (effective) thermal property for the whole soil profile around the U-tube but not for each geological layer. The main objective of this study was therefore to develop a method for estimating thermal conductivity values of coarse textured layers by numerically analyzing TRT data. A numerical technique combining three-dimensional conductive heat transport and one-dimensional convective heat transport to simulate heat exchange processes between the U-tube and the ground was used. In the numerical simulations, the thermal conductivities for the fine textured layers were kept at the probe-measured values, while the thermal conductivity for the coarse textured layers (constituting around half of the profile depth at both sites) was calibrated. The numerically-based method yielded more reasonable thermal conductivity values for the coarse-textured materials at both TAT and SU sites as compared to the heat pulse probe measurements, while the temperature changes of the heat carry fluid inside the U-tubes were also well simulated.

  2. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Bao, Hua; Hu, Ming

    2015-03-01

    Silicene, the silicon-based counterpart of graphene, has received exceptional attention from a wide community of scientists and engineers in addition to graphene, due to its unique and fascinating physical and chemical properties. Recently, the thermal transport of the atomic thin Si layer, critical to various applications in nanoelectronics, has been studied; however, to date, the substrate effect has not been investigated. In this paper, we present our nonequilibrium molecular dynamics studies on the phonon transport of silicene supported on different substrates. A counter-intuitive phenomenon, in which the thermal conductivity of silicene can be either enhanced or suppressed by changing the surface crystal plane of the substrate, has been observed. This phenomenon is fundamentally different from the general understanding of supported graphene, a representative two-dimensional material, in which the substrate always has a negative effect on the phonon transport of graphene. By performing phonon polarization and spectral energy density analysis, we explain the underlying physics of the new phenomenon in terms of the different impacts on the dominant phonons in the thermal transport of silicene induced by the substrate: the dramatic increase in the thermal conductivity of silicene supported on the 6H-SiC substrate is due to the augmented lifetime of the majority of the acoustic phonons, while the significant decrease in the thermal conductivity of silicene supported on the 3C-SiC substrate results from the reduction in the lifetime of almost the entire phonon spectrum. Our results suggest that, by choosing different substrates, the thermal conductivity of silicene can be largely tuned, which paves the way for manipulating the thermal transport properties of silicene for future emerging applications.

  3. Synergistic Strategy to Enhance the Thermoelectric Properties of CoSbS1-xSex Compounds via Solid Solution.

    PubMed

    Yao, Wei; Yang, Dingfeng; Yan, Yanci; Peng, Kunling; Zhan, Heng; Liu, Anping; Lu, Xu; Wang, Guoyu; Zhou, Xiaoyuan

    2017-03-29

    High thermal conductivity of CoSbS-based limited its own prospect application in thermoelectric energy conversion. Solid solution is an effective approach to optimize the performance of thermoelectric materials with high lattice thermal conductivity because of the enhanced phonons scattering from disorder atoms. In this paper, we have synthesized and measured the thermoelectric properties of solid solution CoSbS 1-x Se x (x = 0, 0.05, 0.10, 0.15, 0.20, 0.30) series samples. The collaborative optimization (enhancing the power factors and reducing the thermal conductivities) to add zT values were realized via substitution of S atoms with the isoelectronic Se atoms in the matrix. Meanwhile, the lowest room temperature lattice thermal conductivity in CoSbS-based materials is obtained (4.72 W m -1 K -1 ) at present. Benefiting from the results of synergistic strategy, a zT of 0.35 was achieved at 923 K for sample CoSbS 0.85 Se 0.15 , a 59% improvement as compared with that of the pristine CoSbS. Band calculation demonstrated that CoSbS 0.85 Se 0.15 present a similar band dispersion with CoSbS. The mechanism of point defect scattering for reducing the lattice thermal conductivity at room temperature, was also analyzed by the Callaway model. The contributions to decrease the room temperature lattice thermal conductivity from the mass and the strain fluctuation in the crystal are comparable. These results can also be extended to other high-efficiency thermoelectric materials with stiff bond and smaller Gruneisen parameters.

  4. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz

    NASA Astrophysics Data System (ADS)

    Zhao, Yibo; Dang, Haizheng

    2016-01-01

    A two-dimensional axis-symmetric CFD model of a miniature coaxial Stirling-type pulse tube cryocooler with an overall weight of 920 g operating at 128 Hz is established, and systematic simulations of the performance characteristics at different temperatures are conducted. Both thermal equilibrium and non-equilibrium mechanisms for the porous matrix are considered, and the regenerator losses including the gas and solid conduction, the pressure drop and the imperfect interfacial heat transfer are calculated, respectively. The results indicate that the pressure drop loss is dominant during the first 85% and 78% of regenerator length for the thermal equilibrium and non-equilibrium models, respectively, and it decreases monotonously from warm to cold end due to the steadily decreasing Darcy and Forchheimer terms, whereas other entropy generations share similar changing tendencies, going up gradually near the warm end, increasing dramatically from about 60% of length and then decreasing sharply near the cold end. The reasons for these entropy variations are discussed.

  5. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage

    PubMed Central

    Wang, Enyu; Kong, Xiangfei; Rong, Xian; Yao, Chengqiang; Yang, Hua; Qi, Chengying

    2016-01-01

    Phase change material (PCM) used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD) and lauric acid (LA) absorbed into the expanded perlite (EP) using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP) additive. Besides, the styrene-acrylic emulsion has been mixed with the composite PCM particles to form the protective film, so as to solve the problem of leakage. Thus, a novel PCM panel (PCMP) has been prepared using compression moulding forming method. The thermal property, microstructure characteristic, mechanical property, thermal conductivity, thermal reliability and leakage of the composite PCM have been investigated and analysed. Meanwhile, the thermal performance of the prepared PCMP was tested through PCMPs installed on the inside wall of a cell under outdoor climatic conditions. The composite PCM has a melting temperature of 24.9 °C, a freezing temperature of 25.2 °C, a melting latent heat of 78.2 J/g and a freezing latent heat of 81.3 J/g. The thermal conductivity test exposed that the thermal conductivity has been enhanced with the addition of AP and the latent heat has been decreased, but it still remains in a high level. The leakage test result has proven that liquid PCM leaking has been avoided by the surface film method. The thermal performance experiment has shown the significant function of PCMP about adjusting the indoor temperature and reducing the heats transferring between the wall inside and outside. In view of the thermal performance, mechanical property and thermal reliability results, it can be concluded that the prepared PCMP has a promising building application potential. PMID:28774020

  6. Structural, electrical conductivity and dielectric behavior of Na2SO4-LDT composite solid electrolyte.

    PubMed

    Iqbal, Mohd Z; Rafiuddin

    2016-01-01

    A series of composite materials of general molecular formula (1 - x) Na2SO4 - (x) LDT was prepared by solid state reaction method. The phase structure and functionalization of these materials were defined by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) respectively. Differential thermal analysis (DTA) revealed that the hump of phase transition at 250 °C has decreased while its thermal stability was enhanced. Scanning electron microscopy signifies the presence of improved rigid surfaces and interphases that are accountable for the high ionic conduction due to dispersion of LDT particles in the composite systems. Arrhenius plots of the conductance show the maximum conductivity, σ = 4.56 × 10(-4) S cm(-1) at 500 °C for the x = 0.4 composition with the lowest activation energy 0.34 eV in the temperature range of 573-773 K. The value of dielectric constant was decreased with increasing frequency and follows the usual trend.

  7. High-power flexible AlGaN/GaN heterostructure field-effect transistors with suppression of negative differential conductance

    NASA Astrophysics Data System (ADS)

    Oh, Seung Kyu; Cho, Moon Uk; Dallas, James; Jang, Taehoon; Lee, Dong Gyu; Pouladi, Sara; Chen, Jie; Wang, Weijie; Shervin, Shahab; Kim, Hyunsoo; Shin, Seungha; Choi, Sukwon; Kwak, Joon Seop; Ryou, Jae-Hyun

    2017-09-01

    We investigate thermo-electronic behaviors of flexible AlGaN/GaN heterostructure field-effect transistors (HFETs) for high-power operation of the devices using Raman thermometry, infrared imaging, and current-voltage characteristics. A large negative differential conductance observed in HFETs on polymeric flexible substrates is confirmed to originate from the decreasing mobility of the two-dimensional electron gas channel caused by the self-heating effect. We develop high-power transistors by suppressing the negative differential conductance in the flexible HFETs using chemical lift-off and modified Ti/Au/In metal bonding processes with copper (Cu) tapes for high thermal conductivity and low thermal interfacial resistance in the flexible hybrid structures. Among different flexible HFETs, the ID of the HFETs on Cu with Ni/Au/In structures decreases only by 11.3% with increasing drain bias from the peak current to the current at VDS = 20 V, which is close to that of the HFETs on Si (9.6%), solving the problem of previous flexible AlGaN/GaN transistors.

  8. Analysis of Advanced Thermoelectric Materials and Their Functional Limits

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung

    2015-01-01

    The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit imposed by of the effect of phonon lattice oscillation and energetic electrons towards thermal conductivity? Is the Seebeck coefficient, based on the difference in voltage over temperature gradient ( deltaV/deltaT), an intrinsic parameter of each material? All these parameters were manipulated using nano-bridge and twin-lattice structural concepts at the NASA Langley Research Center. This talk will review the current trend of TE research to optimize the ZT and discuss about new approaches on increasing ZT within functional limits of each parameter.

  9. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity

    PubMed Central

    Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho

    2016-01-01

    In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K−1 for 16-nm-thick samples at 300 K. PMID:27323662

  10. Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor.

    PubMed

    Park, Kunsu; Ahn, Kyunghan; Cha, Joonil; Lee, Sanghwa; Chae, Sue In; Cho, Sung-Pyo; Ryee, Siheon; Im, Jino; Lee, Jaeki; Park, Su-Dong; Han, Myung Joon; Chung, In; Hyeon, Taeghwan

    2016-11-02

    Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi 2 Te 3 ) that violates phase equilibrium, namely, phase-pure n-type K 0.06 Bi 2 Te 3.18 . Incorporated potassium and tellurium in Bi 2 Te 3 far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 μW cm -1 K -2 and a high ZT > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications.

  11. Thermal conductivity of graphene and graphite: collective excitations and mean free paths.

    PubMed

    Fugallo, Giorgia; Cepellotti, Andrea; Paulatto, Lorenzo; Lazzeri, Michele; Marzari, Nicola; Mauri, Francesco

    2014-11-12

    We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane, and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phonon collision rates obtained from density functional perturbation theory. For graphite, the results are found to be in excellent agreement with experiments; notably, the thermal conductivity is 1 order of magnitude larger than what found by solving the Boltzmann equation in the single mode approximation, commonly used to describe heat transport. For graphene, we point out that a meaningful value of intrinsic thermal conductivity at room temperature can be obtained only for sample sizes of the order of 1 mm, something not considered previously. This unusual requirement is because collective phonon excitations, and not single phonons, are the main heat carriers in these materials; these excitations are characterized by mean free paths of the order of hundreds of micrometers. As a result, even Fourier's law becomes questionable in typical sample sizes, because its statistical nature makes it applicable only in the thermodynamic limit to systems larger than a few mean free paths. Finally, we discuss the effects of isotopic disorder, strain, and chemical functionalization on thermal performance. Only chemical functionalization is found to play an important role, decreasing the conductivity by a factor of 2 in hydrogenated graphene, and by 1 order of magnitude in fluorogenated graphene.

  12. Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2010-01-01

    Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S(exp 2)(sigma)T/Kappa, T is temperature, S is the Seebeck coefficient, sigma is conductance and Kappa is thermal conductivity. For a lower thermal conductivity Kappa and high power factor (S(exp 2)(sigma)), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe "twin lattice structure (TLS)" plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60 X rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.

  13. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles

    DOE PAGES

    Protik, Nakib Haider; Katre, Ankita; Lindsay, Lucas R.; ...

    2017-06-07

    Here, silicon carbide (SiC) is a wide band gap semiconductor with a variety of industrial applications. Among its many useful properties is its high thermal conductivity, which makes it advantageous for thermal management applications. In this paper we present ab initio calculations of the in-plane and cross-plane thermal conductivities, κ in and κ out, of three common hexagonal polytypes of SiC: 2H, 4H and 6H. The phonon Boltzmann transport equation is solved iteratively using as input interatomic force constants determined from density functional theory. Both κ in and κ out decrease with increasing n in nH SiC because of additionalmore » low-lying optic phonon branches. These optic branches are characterized by low phonon group velocities, and they increase the phase space for phonon-phonon scattering of acoustic modes. Also, for all n, κ in is found to be larger than κ out in the temperature range considered. At electron concentrations present in experimental samples, scattering of phonons by electrons is shown to be negligible except well below room temperature where it can lead to a significant reduction of the lattice thermal conductivity. This work highlights the power of ab initio approaches in giving quantitative, predictive descriptions of thermal transport in materials. It helps explain the qualitative disagreement that exists among different sets of measured thermal conductivity data and provides information of the relative quality of samples from which measured data was obtained.« less

  14. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protik, Nakib Haider; Katre, Ankita; Lindsay, Lucas R.

    Here, silicon carbide (SiC) is a wide band gap semiconductor with a variety of industrial applications. Among its many useful properties is its high thermal conductivity, which makes it advantageous for thermal management applications. In this paper we present ab initio calculations of the in-plane and cross-plane thermal conductivities, κ in and κ out, of three common hexagonal polytypes of SiC: 2H, 4H and 6H. The phonon Boltzmann transport equation is solved iteratively using as input interatomic force constants determined from density functional theory. Both κ in and κ out decrease with increasing n in nH SiC because of additionalmore » low-lying optic phonon branches. These optic branches are characterized by low phonon group velocities, and they increase the phase space for phonon-phonon scattering of acoustic modes. Also, for all n, κ in is found to be larger than κ out in the temperature range considered. At electron concentrations present in experimental samples, scattering of phonons by electrons is shown to be negligible except well below room temperature where it can lead to a significant reduction of the lattice thermal conductivity. This work highlights the power of ab initio approaches in giving quantitative, predictive descriptions of thermal transport in materials. It helps explain the qualitative disagreement that exists among different sets of measured thermal conductivity data and provides information of the relative quality of samples from which measured data was obtained.« less

  15. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

    PubMed Central

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-01-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670

  16. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    PubMed Central

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology. PMID:28084447

  17. The time and temperature dependence of the thermoelectric properties of silicon-germanium alloy

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1975-01-01

    Experimental data on the electrical resistivity and Seebeck coefficient of n-type and p-type silicon-germanium alloys are analyzed in terms of a solid-state dopant precipitation model proposed by Lifshitz and Slyozov (1961). Experimental findings on the time and temperature dependence of the thermal conductivity of these two types of alloy indicate that the thermal conductivity of silicon-germanium alloys changes with time, contrary to previous hypothesis. A preliminary model is presented which stipulates that the observed thermal conductivity decrease in silicon-germanium alloys is due partly to dopant precipitation underlying the electrical property changes and partly to enhanced alloying of the material. It is significant that all three properties asymptotically approach equilibrium values with time. Total characterization of these properties will enable the time change to be fully compensated in the design of a thermoelectric device employing silicon-germanium alloys.

  18. Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.

    PubMed

    Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong

    2017-11-01

    High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    NASA Astrophysics Data System (ADS)

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology.

  20. Bimodal Control of Heat Transport at Graphene–Metal Interfaces Using Disorder in Graphene

    PubMed Central

    Kim, Jaehyeon; Khan, Muhammad Ejaz; Ko, Jae-Hyeon; Kim, Jong Hun; Lee, Eui-Sup; Suh, Joonki; Wu, Junqiao; Kim, Yong-Hyun; Park, Jeong Young; Lyeo, Ho-Ki

    2016-01-01

    Thermal energy transport across the interfaces of physically and chemically modified graphene with two metals, Al and Cu, was investigated by measuring thermal conductance using the time-domain thermoreflectance method. Graphene was processed using a He2+ ion-beam with a Gaussian distribution or by exposure to ultraviolet/O3, which generates structural or chemical disorder, respectively. Hereby, we could monitor changes in the thermal conductance in response to varying degrees of disorder. We find that the measured conductance increases as the density of the physical disorder increases, but undergoes an abrupt modulation with increasing degrees of chemical modification, which decreases at first and then increases considerably. Moreover, we find that the conductance varies inverse proportionally to the average distance between the structural defects in the graphene, implying a strong in-plane influence of phonon kinetics on interfacial heat flow. We attribute the bimodal results to an interplay between the distinct effects on graphene’s vibrational modes exerted by graphene modification and by the scattering of modes. PMID:27698372

  1. Exploratory Thermal-mechanical Fatigue Results for Rene' 80 in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Sheinker, A. A.

    1978-01-01

    A limited study was conducted of the use of strainage partitioning for predicting the thermalmechanical fatigue life of cast nickel-base superalloy Rene' 80. The fatigue lives obtained by combined inphase thermal and mechanical strain cycling between 400 C (752 F) and 1000 C (1802 F) in an ultrahigh vacuum were considerably shorter than those represented by the four basic partitioned inelastic strainrange fatigue life relationships established previously for this alloy at 871 C (1600 F) and 1000 C (1832 F) in an ultrahigh vacuum. This behavior was attributed to the drastic decrease in ductility with decreasing temperature for this alloy. These results indicated that the prediction of the thermal-mechanical fatigue life of Rene' 80 by the method of strainrange partioning may be improved if based on the four basic fatigue life relationships determined at a lower temperature in the thermal-mechanical strain cycle.

  2. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery

    PubMed Central

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-01-01

    This study addresses the effects of the SOC (State of Charge) and the charging–discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging. PMID:28772588

  3. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.

    PubMed

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-02-25

    This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  4. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains

    DOE PAGES

    Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling

    2015-01-01

    High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less

  5. Thermoelectric Properties Studies on n-type Bi2Te3-xSex

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Yan, Xiao; Ma, Yi; Poudel, Bed; Lan, Yucheng; Wang, D. Z.; Ren, Z. F.; Hao, Q.; Chen, G.

    2008-03-01

    Bi2Te3-xSex is a classic room temperature n-type thermoelectric material. In spite of the long history of research, its ZT is still below 1. By directly making nano sized particles using mechanical alloy from element, then pressing the nanoparticles into 100% dense bulk sample with nano-structures by hot press, we expect to decrease the thermal conductivity by the increased grain boundary scattering of phonons so to improve the ZT above 1. The ratio of Te/Se was varied systematically to investigate its effect on thermal conductivity.

  6. Tuning the Electrical and Thermal Conductivities of Thermoelectric Oxides through Impurity Doping

    NASA Astrophysics Data System (ADS)

    Torres Arango, Maria A.

    Waste heat and thermal gradients available at power plants can be harvested to power wireless networks and sensors by using thermoelectric (TE) generators that directly transform temperature differentials into electrical power. Oxide materials are promising for TE applications in harsh industrial environments for waste heat recovery at high temperatures in air, because they are lightweight, cheaply produced, highly efficient, and stable at high temperatures in air. Ca3Co4O9(CCO) with layered structure is a promising p-type thermoelectric oxide with extrapolated ZT value of 0.87 in single crystal form [1]. However the ZT values for the polycrystalline ceramics remain low of ˜0.1-0.3. In this research, nanostructure engineering approaches including doping and addition of nanoinclusions were applied to the polycrystalline CCO ceramic to improve the energy conversion efficiency. Polycrystalline CCO samples with various Bi doping levels were prepared through the sol-gel chemical route synthesis of powders, pressing and sintering of the pellets. Microstructure features of Bi doped ceramic bulk samples such as porosity, development of crystal texture, grain boundary dislocations and segregation of Bi dopants at various grain boundaries are investigated from microns to atomic scale. The results of the present study show that the Bi-doping is affecting both the electrical conductivity and thermal conductivity simultaneously, and the optimum Bi doping level is strongly correlated with the microstructure and the processing conditions of the ceramic samples. At the optimum doping level and processing conditions of the ceramic samples, the Bi substitution of Ca results in the increase of the electrical conductivity, decrease of the thermal conductivity, and improvement of the crystal texture. The atomic resolution Scanning Transmission Electron Microscopy (STEM) Z-contrast imaging and the chemistry analysis also reveal the Bi-segregation at grain boundaries of CCO polycrystalline samples. In order to further decrease the thermal conductivity and increase the overall energy conversion efficiency of ceramic samples. The highest ZT value obtained is 0.32 at 973K for Ca and Co site Bi doping. The effect of the nanoinclusions on the performance and the microstructure of CCO were investigated as well.

  7. The Shubnikov-de Haas effect and thermoelectric properties of Tl-doped Sb{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, V. A., E-mail: kulb@mig.phys.msu.ru; Kudryashov, A. A.; Kytin, V. G.

    2015-06-15

    The influence of doping with Tl on the Shubnikov-de Haas effect at T = 4.2 K in magnetic fields up to 38 T in p-Sb{sub 2−x}Tl{sub x}Te{sub 3} (x = 0, 0.005, 0.015, and 0.05) and n-Bi{sub 2−x}Tl{sub x}Se{sub 3} (x = 0, 0.01, 0.02, 0.04, and 0.06) single crystals is investigated. Extreme cross-sections of the Fermi surface in both materials decrease upon doping with Tl: the hole concentration decreases in Sb{sub 2−x}Tl{sub x}Te{sub 3} due to the donor effect of Tl and the electron concentration in n-Bi{sub 2−x}Tl{sub x}Se{sub 3} decreases due to the acceptor effect of Tl. Themore » temperature dependences of the Seebeck coefficient, electrical conductivity, thermal conductivity, and dimensionless thermoelectric figure of merit in a temperature range of 77–300 K are measured. The thermal conductivity and electrical conductivity decrease upon doping with Tl both in p-Sb{sub 2−x}Tl{sub x}Te{sub 3} and in n-Bi{sub 2−x}Tl{sub x}Se{sub 3}. The Seebeck coefficient increases in all compositions upon an increase in doping over the entire measured temperature range. The thermoelectric figure of merit increases upon doping with Tl.« less

  8. Resistivity and resistivity fluctuations of thin-film platinum-aluminum oxide granular metal-insulator composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantese, J.V.

    1986-01-01

    Thin film metal-insulator composites were used to study how the resistivity and fluctuations in the resistivity were altered by changes in conduction mechanism so as to understand the source of the fluctuations and to better understand the conduction processes themselves. Metal-insulator composites were prepared by co-evaporation of platinum and aluminum oxide in a high vacuum system to create a series of films which had a range of metal volume fill fractions, p, from 23 to 100%. The samples were patterned using standard photolithographic techniques to form sample geometries of typical dimensions, length approx.40 ..mu..m, width approx.2 ..mu..m, and thickness approx.1500more » A. The resistivity rho, and power spectral density of the resistivity fluctuations, S/sub rho/(f), were measured as a function of p and temperature, T. Rho(p,T) was found to be a rapidly increasing function of decreasing p, rising monotonically by more than 7 orders of magnitude as p was decreased from 100% to 23%. For p greater than or equal to 59% the resistivity decreased linearly with decreasing temperature until limited by impurity scattering. The resistivities for the low metal fill fraction materials (P greater than or equal to 50%) increased as the temperature was reduced as expected of thermally assisted tunneling conduction in metal-insulator composites. The transition from metallic conduction to thermally assisted tunneling occurred at a critical value, p/sub c/, between 59% and 50% Pt.« less

  9. Thermal properties of Pr2/3Sr1/3MnO3 manganites:PdO composites

    NASA Astrophysics Data System (ADS)

    Rao, Ashok; Manjunatha, S. O.; Bhatt, Ramesh Chandra; Awana, V. P. S.; Lin, C. F.; Kuo, Y. K.; Poornesh, P.

    2017-10-01

    In the present communication the results on thermal conductivity, Seebeck coefficient and specific heat of Pr2/3Sr1/3MnO3:PdO composites are reported. All the samples exhibit a pronounced anomaly in thermal conductivity (κ) at their respective Curie temperatures, TC of the samples. It is also observed that the overall magnitude of κ decreases with increasing Pd content. The observed reduction of the total k(T) is discussed with various thermal scattering mechanisms. The temperature-dependent Seebeck coefficient data S(T) in the high temperature region is analyzed within the framework of Mott's polaron hopping model. The analysis of low-temperature S(T) data reveals that the electron-magnon scattering contribution dominates the thermoelectric transport at low temperatures. The magnetic contribution for the CP and change in entropy (ΔS) during the magnetic phase transition is also evaluated.

  10. Palm oil based nanofluids for enhancing heat transfer and rheological properties

    NASA Astrophysics Data System (ADS)

    Hussein, A. M.; Lingenthiran; Kadirgamma, K.; Noor, M. M.; Aik, L. K.

    2018-04-01

    Colloidal suspensions of nanomaterials size not more than 100 nm in basefluid are defined as nanofluids. The thermal and rheological properties study of oil based nanofluid is conducted to develop stable transformers palm oil based nanofluid. This paper describes the analysis techniques to determine the enhancement of thermal properties of nanofluids. Titanium dioxide (TiO2) has dispersed in the palm oil to prepare nanofluids with volume concentration (0.01-0.09) percentage. Both thermal conductivity and viscosity of nanofluid have measured by using the hot wire method and viscometer equipment respectively. Results indicate that the stable nanofluids improve the thermal properties as compared to palm oil. Results showed that the friction factor decreases as the Reynolds number increases and increases as the volume concentration increases. Additionally, the Nusselt number increases as the Reynolds number and volume concentration of the nanofluid increases.

  11. Simultaneous Measurement of Thermophysical Properties of Tissue-Mimicking Phantoms for High Intensity Focused Ultrasound (HIFU) Exposures

    NASA Astrophysics Data System (ADS)

    Gao, Jing; You, Jiang; Huang, Zhihong; Cochran, Sandy; Corner, George

    2012-03-01

    Tissue-mimicking phantoms, including bovine serum albumin phantoms and egg white phantoms, have been developed for, and in laboratory use for, real-time visualization of high intensity focused ultrasound-induced thermal coagulative necrosis since 2001. However, until now, very few data are available concerning their thermophysical properties. In this article, a step-wise transient plane source method has been used to determine the values of thermal conductivity, thermal diffusivity, and specific heat capacity of egg white phantoms with elevated egg white concentrations (0 v/v% to 40 v/v%, by 10 v/v% interval) at room temperature (~20 °C). The measured thermophysical properties were close to previously reported values; the thermal conductivity and thermal diffusivity were linearly proportional to the egg white concentration within the investigation range, while the specific heat capacity decreased as the egg white concentration increased. Taking account of large differences between real experiment and ideal model, data variations within 20 % were accepted.

  12. Experimental investigation of a molten salt thermocline storage tank

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  13. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  14. An investigation of enhanced capability thermal barrier coating systems for diesel engine components

    NASA Technical Reports Server (NTRS)

    Holtzman, R. L.; Layne, J. L.; Schechter, B.

    1984-01-01

    Material systems and processes for the development of effective and durable thermal barriers for heavy duty diesel engines were investigated. Seven coating systems were evaluated for thermal conductivity, erosion resistance, corrosion/oxidation resistance, and thermal shock resistance. An advanced coating system based on plasma sprayed particle yttria stabilized zirconia (PS/HYSZ) was judged superior in these tests. The measured thermal conductivity of the selected coating was 0.893 W/m C at 371 C. The PS/HYSZ coating system was applied to the piston crown, fire deck and valves of a single cylinder low heat rejection diesel engine. The coated engine components were tested for 24 hr at power levels from 0.83 MPa to 1.17 MPa brake mean effective pressure. The component coatings survived the engine tests with a minimum of distress. The measured fire deck temperatures decreased 86 C (155 F) on the intake side and 42 C (75 F) on the exhaust side with the coating applied.

  15. Understanding lattice thermal conductivity in thermoelectric clathrates: A density functional theory study on binary Si-based type-I clathrates

    NASA Astrophysics Data System (ADS)

    Euchner, Holger; Pailhès, Stéphane; Giordano, Valentina M.; de Boissieu, Marc

    2018-01-01

    Despite their crystalline nature, thermoelectric clathrates exhibit a strongly reduced lattice thermal conductivity. While the reason for this unexpected behavior is known to lie in the peculiarities of the complex crystal structure and the interplay of the underlying guest-host framework, their respective roles are still not fully disentangled and understood. Our ab initio study of the most simple type-I clathrate phase, the binary compound Ba8Si46 and its derivatives Ba8 -xSi46 seeks to identify these mechanisms and provides insight into their origin. Indeed, the strongly decreased lattice thermal conductivity in thermoelectric clathrates is a consequence of a reduction of the acoustic phonon bandwidth, a lowering of the acoustic phonon group velocities, and the amplification of three-phonon-scattering processes. While the complexity of the crystal structure is demonstrated not to be the leading factor, the reasons are manifold. A modified Si-Si interaction causes a first decrease of the sound velocity, whereas the presence of flat Ba modes results in an additional lowering. These modes correspond to confined Bloch states that are localized on the Ba atoms and significantly increase the scattering phase space and, together with an increased anharmonicity of the interatomic interactions, strongly affect the phonon lifetimes.

  16. Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumour model of different sizes.

    PubMed

    Jamil, Muhammad; Ng, E Y K

    2015-07-01

    Radiofrequency ablation (RFA) has been increasingly used in treating cancer for multitude of situations in various tissue types. To perform the therapy safely and reliably, the effect of critical parameters needs to be known beforehand. Temperature plays an important role in the outcome of the therapy and any uncertainties in temperature assessment can be lethal. This study presents the RFA case of fixed tip temperature where we've analysed the effect of electrical conductivity, thermal conductivity and blood perfusion rate of the tumour and surrounding normal tissue on the radiofrequency ablation. Ablation volume was chosen as the characteristic to be optimised and temperature control was achieved via PID controller. The effect of all 6 parameters each having 3 levels was quantified with minimum number of experiments harnessing the fractional factorial characteristic of Taguchi's orthogonal arrays. It was observed that as the blood perfusion increases the ablation volume decreases. Increasing electrical conductivity of the tumour results in increase of ablation volume whereas increase in normal tissue conductivity tends to decrease the ablation volume and vice versa. Likewise, increasing thermal conductivity of the tumour results in enhanced ablation volume whereas an increase in thermal conductivity of the surrounding normal tissue has a debilitating effect on the ablation volume and vice versa. With increase in the size of the tumour (i.e., 2-3cm) the effect of each parameter is not linear. The parameter effect varies with change in size of the tumour that is manifested by the different gradient observed in ablation volume. Most important is the relative insensitivity of ablation volume to blood perfusion rate for smaller tumour size (2cm) that is also in accordance with the previous results presented in literature. These findings will provide initial insight for safe, reliable and improved treatment planning perceptively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Thermal transport in the Fermi-Pasta-Ulam model with long-range interactions

    NASA Astrophysics Data System (ADS)

    Bagchi, Debarshee

    2017-03-01

    We study the thermal transport properties of the one-dimensional Fermi-Pasta-Ulam model (β type) with long-range interactions. The strength of the long-range interaction decreases with the (shortest) distance between the lattice sites as distance-δ, where δ ≥0 . Two Langevin heat baths at unequal temperatures are connected to the ends of the one-dimensional lattice via short-range harmonic interactions that drive the system away from thermal equilibrium. In the nonequilibrium steady state the heat current, thermal conductivity, and temperature profiles are computed by solving the equations of motion numerically. It is found that the conductivity κ has an interesting nonmonotonic dependence with δ with a maximum at δ =2.0 for this model. Moreover, at δ =2.0 ,κ diverges almost linearly with system size N and the temperature profile has a negligible slope, as one expects in ballistic transport for an integrable system. We demonstrate that the nonmonotonic behavior of the conductivity and the nearly ballistic thermal transport at δ =2.0 obtained under nonequilibrium conditions can be explained consistently by studying the variation of largest Lyapunov exponent λmax with δ , and excess energy diffusion in the equilibrium microcanonical system.

  18. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  19. Strain effects on thermal conductivity of nanostructured silicon by Raman piezothermography

    NASA Astrophysics Data System (ADS)

    Murphy, Kathryn Fay

    A fundamental problem facing the rational design of materials is the independent control of electrical and thermal properties, with implications for a wide range of applications including thermoelectrics, solar thermal power generation, and thermal logic. One strategy for controlling transport involves manipulating the length scales which affect it. For instance, Si thermal conductivity may be reduced with relatively little change in electrical properties when the confining dimension (e.g., nanowire diameter) is small enough that heat carriers are preferentially scattered at free surfaces. However, tailoring properties by geometry or chemistry alone does not allow for on-demand modification, precluding applications which require responsive behavior such as thermal transistors, thermoelectric modules which adapt to their environmental temperature, or switchable thermal barriers. One means of tuning transport is elastic strain, which has long been exploited to improve carrier mobility in electronic devices. Uniform strain is predicted to affect thermal conductivity primarily via changes in heat capacity and phonon velocity, and crystalline defects such as vacancies or dislocations---which induce large strain gradients---should lower thermal conductivity by decreasing the phonon mean free path. Nanowires are ideal for the study of strain and defect effects due to the availability of a range of elastic strain an order of magnitude larger than in bulk and due to their small volumes. However, experimental measurements of strain-mediated thermal conductivity in nanowires have been limited due to the complexity of simultaneously applying and measuring stress or strain, heating, and measuring temperature. In this dissertation, we measure strain effects on thermal conductivity using a novel non-contact approach which we name Raman piezothermography. We apply a uniaxial load to individual Si nanowires, Si thin films, and Si micromeshes under a confocal mu-Raman microscope and, using the Raman laser as a heat source and the Raman spectrum as a measure of temperature, determine thermal transport properties. We show that uniaxial strain up to ˜1% has a weak effect on Si nanowire or thin film thermal conductivity, but irradiation-induced defects in nanowires yield dramatic reductions due to increased phonon scattering. Such defects are accompanied by large strain gradients, but decoupling the effect of these gradients from local changes in mass and interatomic potential is experimentally untenable. To isolate the effect of strain gradients, we extend our method to Si micromeshes, which exhibit nonuniform strains upon loading. The complex strain states achieved cause more drastic reductions of thermal conductivity due to enhanced phonon-phonon scattering in the presence of a strain gradient. The directions suggested by our experiments, as well as the development of the method, will allow for more robust understanding and control of thermal transport in nanostructures.

  20. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system

    NASA Astrophysics Data System (ADS)

    Liu, Minsheng; Lin, Mark Chingcheng; Wang, Chichuan

    2011-12-01

    In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid.

  1. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system

    PubMed Central

    2011-01-01

    In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid. PMID:21711787

  2. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system.

    PubMed

    Liu, Minsheng; Lin, Mark Chingcheng; Wang, Chichuan

    2011-04-05

    In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ruikang; Hu, Run, E-mail: hurun@hust.edu.cn, E-mail: luoxb@hust.edu.cn; Luo, Xiaobing, E-mail: hurun@hust.edu.cn, E-mail: luoxb@hust.edu.cn

    In this study, we developed a first-principle-based full-dispersion Monte Carlo simulation method to study the anisotropic phonon transport in wurtzite GaN thin film. The input data of thermal properties in MC simulations were calculated based on the first-principle method. The anisotropy of thermal conductivity in bulk wurtzite GaN is found to be strengthened by isotopic scatterings and reduced temperature, and the anisotropy reaches 40.08% for natural bulk GaN at 100 K. With the GaN thin film thickness decreasing, the anisotropy of the out-of-plane thermal conductivity is heavily reduced due to both the ballistic transport and the less importance of the low-frequencymore » phonons with anisotropic group velocities. On the contrary, it is observed that the in-plane thermal conductivity anisotropy of the GaN thin film is strengthened by reducing the film thickness. And the anisotropy reaches 35.63% when the natural GaN thin film thickness reduces to 50 nm at 300 K with the degree of specularity being zero. The anisotropy is also improved by increasing the surface roughness of the GaN thin film.« less

  4. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.

    PubMed

    Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo

    2013-10-01

    Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing thermotherapy is expected. 2013. Published by Elsevier Inc

  5. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir properties based on outcrop and drilling data demonstrates that this approach is a powerful tool for exploration and operation of geothermal reservoirs.

  6. High thermal conductivity liquid metal pad for heat dissipation in electronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Zuoye; Liu, Huiqiang; Li, Qiuguo; Liu, Han; Chu, Sheng; Yang, Yuhua; Chu, Guang

    2018-05-01

    Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.

  7. The Thermoelectric Properties and Flexural Strength of Nano-TiN/Co4Sb11.3Te0.58Se0.12 Composites Affected by Annealing Treatment

    NASA Astrophysics Data System (ADS)

    Pengfei, Wen; Pengcheng, Zhai; Shijie, Ding; Bo, Duan; Yao, Li

    2017-05-01

    This paper is devoted to investigating the thermoelectric properties and flexural strength of the nano-TiN (1 vol.%) dispersed Co4Sb11.3Te0.58Se0.12 composites affected by different thermal annealing treatments at 773 K in a vacuum. After 200 h of annealing treatment, the density of the sample decreases by 4% compared with that before annealing. Moreover, the electrical conductivity and thermal conductivity decline because of the higher porosity in the annealed sample. However, the Seebeck coefficient changes little after annealing. As a result, the ZT value varies slightly after 200 h of annealing. In addition, it is noteworthy that the flexural strength decreases by 16% after 200 h of annealing treatment. Furthermore, the discrete degree of the flexural strength increases with increasing annealing time.

  8. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  9. Electronic and transport properties of fluorite structure of La2Ce2O7

    NASA Astrophysics Data System (ADS)

    Mahida, H. R.; Singh, Deobrat; Gupta, Sanjeev K.; Sonvane, Yogesh; Thakor, P. B.

    2017-05-01

    In this paper, we have symmetrically investigated the structural, electronic and transport properties of fluorite structure of lanthanum cerate oxide (La2Ce2O7) using density functional theory (DFT). The electronic band structure of La2Ce2O7 show semiconducting in nature with band gap of 1.54 eV (indirect at R-X points) and 1.71 eV (direct at R points). We have also calculated the susceptibility, hall resistance, electrical, and thermal conductivity by using Boltztrap equation. The electrical conductivity decreases where as thermal conductivity increases with increase in the temperature. Our result shows that La2Ce2O7 has application in Proton exchange membrane (PEM) fuel cells applications.

  10. Enhancement of thermoelectric properties in the Nb–Co–Sn half-Heusler/Heusler system through spontaneous inclusion of a coherent second phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffon, Malinda L. C., E-mail: mandibuffon@mrl.ucsb.edu; Verma, Nisha; Lamontagne, Leo

    Half-Heusler XYZ compounds with an 18 valence electron count are promising thermoelectric materials, being thermally and chemically stable, deriving from relatively earth-abundant components, and possessing appropriate electrical transport properties. The typical drawback with this family of compounds is their high thermal conductivity. A strategy for reducing thermal conductivity is through the inclusion of secondary phases designed to minimize negative impact on other properties. Here, we achieve this through the addition of excess Co to half-Heusler NbCoSn, which introduces precipitates of a semi-coherent NbCo{sub 2}Sn Heusler phase. A series of NbCo{sub 1+x}Sn materials are characterized here using X-ray and neutron diffractionmore » studies and electron microscopy. Electrical and thermal transport measurements and electronic structure calculations are used to understand property evolution. We find that annealing has an important role to play in determining antisite ordering and properties. Antisite disorder in the as-prepared samples improves thermoelectric performance through the reduction of thermal conductivity, but annealing during the measurement degrades properties to resemble those of the annealed samples. Similar to the more widely studied TiNi{sub 1+x}Sn system, Co addition to the NbCoSn phase results in improved thermoelectric performance through a decrease in thermal conductivity which results in a 20% improvement in the thermoelectric figure of merit, zT.« less

  11. Effect of Si content on microstructure and thermo-physical properties of the joint of Sip/6063Al composite by laser melting deposition

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Tian, Ze; Li, Peng; Chen, Yanbin; Zhang, Hengquan; Gu, Jingyan; Su, Xuan

    2017-12-01

    Laser melting deposition (LMD), an additive manufacturing-based technology, was utilized to join Sip/6063Al composite creatively with different Si weight contents (Al-Si 5%, 12%, 20% and 30%). Influence of the Si content on the constitutional phases, microstructural characteristics, and thermo-physical properties of the layer by layer built-up weld beads was investigated. Experimental results showed that the increasing of deposited Si content could lead to a marked increment of both size and volume of precipitated Si phase, and the circled α-Al phase decreased as a whole. The Si/Al interface began to decrease for the sample Al-Si30 wt.% due to the connection of Si phases. The α-Al phase within the (Al, Si) eutectic were observed to exhibit two sub-micron solidification morphologies, columnar grains and equiaxed grains, respectively. In general, by increasing the content of the deposited Si, the thermal conductivity decreased owing to the decreasing of α-Al phase with high conductivity, and the coefficient of thermal expansion (CTE) had the same varying trend which was attributed to the increasing volume fraction of stiff precipitated Si phase and Si-Si contiguity.

  12. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    PubMed

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  13. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).

  14. Thermal conductivity calculation of nano-suspensions using Green-Kubo relations with reduced artificial correlations.

    PubMed

    Muraleedharan, Murali Gopal; Sundaram, Dilip Srinivas; Henry, Asegun; Yang, Vigor

    2017-04-20

    The presence of artificial correlations associated with Green-Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al 2 O 3 ) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents 'obstacles' with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles.

  15. Strong anharmonic phonon scattering induced giant reduction of thermal conductivity in PbTe nanotwin boundary

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Yang, Jia-Yue; Cheng, Long; Hu, Ming

    2018-02-01

    Lead telluride (PbTe) is a renowned thermoelectric material with high energy conversion efficiency in medium to high temperature range. However, the performance of PbTe at room temperature is poor due to its relatively high lattice thermal conductivity, which is difficult to be engineered due to its intrinsic very short phonon mean-free path. By performing systematic first-principles and molecular-dynamics simulations, we report that the room-temperature lattice thermal conductivity of PbTe can be reduced by almost one order of magnitude (86%) using the recent experimentally observed nanotwin structure. The mechanism responsible for the dramatic decrease of thermal conductivity strongly depends on the type and mass of atoms at the twin boundary. For PbTe nanotwinned structures with Te at the twin boundary, phonon transport is dominated by the phonon confinement effect and phonon-twin boundary scattering, and the thermal conductivity converges to the bulk value when half of the periodic length is larger than the dominant phonon mean-free path. The same phenomenon is found in another comparison system of KCl nanotwinned structures. However, when Pb is present at the twin boundary, a scattering mechanism occurs: anharmonicity induced by the twin boundary. Due to the mass difference between Pb and Te, the thermal resistance for Pb residing at the twin boundary is found to be one order of magnitude larger than the case with Te at the twin boundary, which results in much stronger phonon-twin boundary scattering. Consequently, the lowest thermal conductivity of such PbTe nanotwinned structure is only 0.4 W/mK, which is reduced by about sevenfold compared to the bulk value of 2.85 W/mK; finally, the converged thermal conductivity cannot restore the bulk value even when half of the periodic length is much larger than the dominant mean-free path. These results offer useful guidance for the development of PbTe-based thermoelectrics and also suggest that nanotwins are excellent building blocks for enhancing the performance of existing thermoelectrics.

  16. Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites

    NASA Astrophysics Data System (ADS)

    Lee, Min Ho; Rhyee, Jong-Soo; Vaseem, Mohammad; Hahn, Yoon-Bong; Park, Su-Dong; Jin Kim, Hee; Kim, Sung-Jin; Lee, Hyeung Jin; Kim, Chilsung

    2013-06-01

    We investigated the thermoelectric properties of the InSe, InSe/In4Se3 composite, and SrTiO3 (STO) nano-particles dispersed InSe/In4Se3 bulk composites. The electrical conductivity of the InSe/In4Se3 composite with self-assembled phase separation is significantly increased compared with those of InSe and In4Se3-δ implying the enhancement of surface conductivity between grain boundaries. The thermal conductivity of InSe/In4Se3 composite is decreased compared to those of InSe. When the STO nano-particle dispersion was employed in the InSe/In4Se3 composite, a coherent interface was observed between nano-particle precipitates and the InSe bulk matrix with a reduction of the thermal conductivity.

  17. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    NASA Astrophysics Data System (ADS)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  18. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    NASA Astrophysics Data System (ADS)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  19. Simulation study on heat conduction of a nanoscale phase-change random access memory cell.

    PubMed

    Kim, Junho; Song, Ki-Bong

    2006-11-01

    We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.

  20. Dielectric and impedance spectral characteristics of bulk ZnIn2Se4

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2014-02-01

    The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.

  1. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of the studied rocks. The studies revealed thermal loading caused rapid decrease of thermal conductivity of a rock. The decrease of up to 30.6% was observed in sandstones. Reduction up to 16% was found in the granite, 12.3% in the syenite, 12.1% in the gneiss, 10.1% in the serpentinite, 8.1% in the melaphyr and 5.9 - 6.5% in ignimbites. Thermal loading initiated insignificant decrement of the thermal capacity. The capacity loss was usually less than 2%. Increasing content of water caused increase in the measured thermal characteristics. Saturated melaphyr showed 29% higher conductivity and 17.8% higher capacity comparing to the dried one. In the ignibrites there was found growth up to 23.5% in the thermal conductivity and 14.9% in the capacity, 12.1-17.6% and 4.5-5.9% in granites, 9.1% and 11.1% in the serpetinite, 7.9% and 7.9% in the gneiss and 1.2% and 3.4% in the syenite. This work was funded by the Technology Agency of the CR (TA01020348) and Ministry of Industry and trade of the CR (FR-TI3/325). Reference Sanyal, S.K., 2005. Classification of geothermal systems - a possible scheme, Proceedings, 30th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, p. 85-88.

  2. Thermal properties and unfrozen water content of frozen volcanic ash as a modelling input parameters in mountainous volcanic areas

    NASA Astrophysics Data System (ADS)

    Kuznetsova, E.

    2016-12-01

    Volcanic eruptions are one of the major causes of the burial of ice and snow in volcanic areas. This has been demonstrated on volcanoes, e.g. in Iceland, Russia, USA and Chile, where the combination of a permafrost-favorable climate and a thin layer of tephra is sufficient to reduce the sub-tephra layer snow ablation substantially, even to zero, causing ground ice formation and permafrost aggradation. Many numerical models that have been used to investigate and predict the evolution of cold regions as the result of climatic changes are lacking the accurate data of the thermal properties —thermal conductivity, heat capacity, thermal diffusivity—of soils or debris layers involved. The angular shape of the fragments that make up ash and scoria makes it inappropriate to apply existing models to estimate bulk thermal conductivity. The lack of experimental data on the thermal conductivity of volcanic deposits will hinder the development of realistic models. The decreasing thermal conductivity of volcanic ash in the frozen state is associated with the development and presence of unfrozen water films that may have a direct mechanical impact on the movement or slippage between ice and particle, and thus, change the stress transfer. This becomes particularly significant during periods of climate change when enhanced temperatures and associated melting could weaken polythermal glaciers and affect areas with warm and discontinuous permafrost, and induce ice or land movements, perhaps on a catastrophic scale. In the presentation, we will summarize existing data regarding: (i) the thermal properties and unfrozen water content in frozen volcanic ash and cinder, (ii) the effects of cold temperatures on weathering processes of volcanic glass, (iii) the relationship between the mineralogy of frozen volcanic deposits and their thermal properties —and then discusses their significance in relation to the numerical modelling of glaciers and permafrost's thermal behavior.

  3. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  4. Improving the thermal and physical properties of fire clay refractory bricks by added magnesia

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sarmad I.; Ali, Nahedh M.; Abood, Tamara W.

    2018-05-01

    In this study, the Local natural Iraqi rocks kaolin with the addition of different proportions of MgO along with its effects on the physical and thermal properties of the prepared refractories were investigated. kaolin/MgO mixture was milled and classified into various size fractions, the kaolin (less than 105 µm) and MgO (less than 50µm). The specimens were mixed from kaolin and MgO in range M1 (95+5)%, M2 (90+10) %, M3(85+15)% and M4(80+20)% respectively. The green specimens were shaped by the semi-dry method using a hydraulic press and a molding pressure of (5)Ton with addition of (9-12) %wt. of pva solution ratio. After molding and drying, the specimens were fired at (1100, 1200 and 1300)°C. Physical properties (density, porosity, Water Absorption) and thermal properties (thermal conductivity) were measured for all the prepared samples. The results showed that the porosity was increased and the density was decreased, such increase &decrease affected on to the thermal properties for refractory.

  5. Electrothermal feedback in kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Guruswamy, T.; Thomas, C. N.; Withington, S.; Goldie, D. J.

    2017-06-01

    In kinetic inductance detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the noise equivalent power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.

  6. An intercomparison of the thermal offset for different pyranometers

    NASA Astrophysics Data System (ADS)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2016-07-01

    An unprecedented intensive intercomparison campaign focused on the experimental measurement of the thermal offset of pyranometers has been conducted at Badajoz (Spain) with the participation of three main manufacturers. The purpose of this study is to compare the thermal offset of six commercially available pyranometers, being some of them widely used and others recently commercialized. In this campaign, the capping methodology has been used to experimentally measure the daytime thermal offset of the pyranometers. Thus, a short but intense campaign has been conducted in two selected summer days under clear-sky conditions, covering a large range of solar zenith angle, irradiance, and temperature. Along the campaign, a total of 305 capping events have been performed, 61 for each pyranometer. The daytime thermal offset obtained for different pyranometers ranges between 0 and -16.8 W/m2 depending on the environmental conditions, being sometimes notably higher than values estimated indoors by manufacturers. The thermal offset absolute value of all instruments shows a diurnal cycle, increasing from sunrise to central hours of the day and decreasing from midafternoon to sunset. The analysis demonstrates that thermal offset is notably higher and more variable during daytime than during nighttime, requiring specific daytime measurements. Main results emphasize the key role played by wind speed in modulating the thermal offset.

  7. Low temperature thermoelectric properties of hot pressed composite samples of CrSb2: evidence for possible phonon-drag effect.

    NASA Astrophysics Data System (ADS)

    Pokharel, Mani; Koirala, Machhindra; Ren, Zhifeng; Opeil, Cyril

    We present on the thermoelectric transport properties of CrSb2 samples prepared by hot-press densification in the temperature range of 2 - 350 K. At around 10 K, the thermal conductivity of CrSb2 decreases dramatically by three orders of magnitude compared to the single crystal counterpart. Analysis shows that the reduced thermal conductivity results from increased scattering of the phonons off the grain-boundaries within the samples. A strong interrelationship between the thermal conductivity and the Seebeck coefficient is observed; indicating a significant presence of phonon-drag effect in this system. With ZT = 0.018 at 310 K for the sample hot pressed at 600 oC, an increase in ZT by 80 % over the previously reported values for polycrystalline samples is achieved. We gratefully acknowledge funding for this work by the Department of Defense, United States Air Force Office of Scientific Researchs MURI program under contract FA9550-10-1-0533.

  8. Enhanced thermoelectric performance realized in AgBiS2 composited AgBiSe2 through indium doping and mechanical alloying

    NASA Astrophysics Data System (ADS)

    Guan, Yingdong; Huang, Yi; Wu, Di; Feng, Dan; He, Mingkai; He, Jiaqing

    2018-05-01

    AgBiSe2 is deemed as a decent candidate of state-of-arts thermoelectric lead chalcogenides due to its intrinsically low lattice thermal conductivity. In this work, we report that a peak figure of merit of ˜0.9 can be realized at 773 K in n-type AgBiSe2 when it is simultaneously doped with indium and composited with AgBiS2 through the ball milling process. The enhancement of thermoelectric performance of AgBiSe2 largely comes from the significant reduction of thermal conductivity from ˜0.5 W/mK to 0.33 W/mK at 773 K, which is the record low value ever reported in this specific system. The decrease in thermal conductivity can be ascribed to the combination of grain size reduction and enhanced alloy scattering from S-Se substitution during the high energy ball milling processes.

  9. Altering thermal transport by strained-layer epitaxy

    NASA Astrophysics Data System (ADS)

    Majdi, Tahereh; Pal, Souvik; Hafreager, Anders; Murad, Sohail; Sahu, Rakesh P.; Puri, Ishwar K.

    2018-05-01

    Since strain changes the interatomic spacing of matter and alters electron and phonon dispersion, an applied strain can modify the thermal conductivity k of a material. We show how the strain induced by heteroepitaxy is a passive mechanism to change k in a thin film. Molecular dynamics simulations of the deposition and epitaxial growth of ZnTe thin films provide insights into the role of interfacial strain in the conductivity of a deposited film. ZnTe films grow strain-free on lattice-matched ZnTe substrates, but similar thin films grown on a lattice-mismatched CdTe substrate exhibit ˜6% biaxial in-plane tensile strain and ˜7% uniaxial out-of-plane compressive strain. In the T = 700 K-1100 K temperature range, the conductivities of strained ZnTe layers decrease to ˜60% of their unstrained values. The resulting understanding of dk/dT shows that strain engineering can be used to alter the performance of a thermal rectifier and also provides a framework for enhancing thermoelectric devices.

  10. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.

    2005-11-01

    Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.

  11. Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 ≤ x ≤ 0.025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis.

    PubMed

    Zhang, Qiang; Su, Xianli; Yan, Yonggao; Xie, Hongyao; Liang, Tao; You, Yonghui; Tang, Xinfeng; Uher, Ctirad

    2016-02-10

    A series of Sb-doped Mg2Si(1-x)Sb(x) compounds with the Sb content x within 0 ≤ x ≤ 0.025 were prepared by self-propagating high-temperature synthesis (SHS) combined with plasma activated sintering (PAS) method in less than 20 min. Thermodynamic parameters of the SHS process, such as adiabatic temperature, ignition temperature, combustion temperature, and propagation speed of the combustion wave, were determined for the first time. Nanoprecipitates were observed for the samples doped with Sb. Thermoelectric properties were characterized in the temperature range of 300-875 K. With the increasing content of Sb, the electrical conductivity σ rises markedly while the Seebeck coefficient α decreases, which is attributed to the increase in carrier concentration. The carrier mobility μ(H) decreases slightly with the increasing carrier concentration but remains larger than the Sb-doped samples prepared by other methods, which is ascribed to the self-purification process associated with the SHS synthesis. In spite of the increasing electrical conductivity with the increasing Sb content x, the overall thermal conductivity κ decreases on account of a significantly falled lattice thermal conductivity κ(L) due to the strong point defect scattering on Sb impurities and possibly enhanced interface scattering on nanoprecipitates. As a result, the sample with x = 0.02 achieves the thermoelectric figure of merit ZT ∼ 0.65 at 873 K, one of the highest values for the Sb-doped binary Mg2Si compounds investigated so far. A subsequent annealing treatment on the sample with x = 0.02 at 773 K for 7 days has resulted in no noticeble changes in the thermoelectric transport properties, indicating an excellent thermal stability of the compounds prepared by the SHS method. Therefore, SHS method can serve as an effective alternative fabrication route to synthesize Mg-Si based themoelectrics and some other functional materials due to the resulting high performance, perfect thermal stability, and feasible production in large scale for commercial application.

  12. NiMnGa/Si Shape Memory Bimorph Nanoactuation

    NASA Astrophysics Data System (ADS)

    Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred

    2016-12-01

    The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.

  13. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression - Part II: Thermal conductivity

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina

    2016-07-01

    The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.

  14. Experimental Investigation on Mechanical and Thermal Properties of Marble Dust Particulate-Filled Needle-Punched Nonwoven Jute Fiber/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Sharma, Ankush; Patnaik, Amar

    2018-03-01

    The present investigation evaluates the effects of waste marble dust, collected from the marble industries of Rajasthan, India, on the mechanical properties of needle-punched nonwoven jute fiber/epoxy composites. The composites with varying filler contents from 0 wt.% to 30 wt.% marble dust were prepared using vacuum-assisted resin-transfer molding. The influences of the filler material on the void content, tensile strength, flexural strength, interlaminar shear strength (ILSS), and thermal conductivity of the hybrid composites have been analyzed experimentally under the desired optimal conditions. The addition of marble dust up to 30 wt.% increases the flexural strength, ILSS, and thermal conductivity, but decreases the tensile strength. Subsequently, the fractured surfaces of the particulate-filled jute/epoxy composites were analyzed microstructurally by field-emission scanning electron microscopy.

  15. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.

    PubMed

    Du, Ai; Liu, Mingfang; Huang, Shangming; Li, Conghang; Zhou, Bin

    2018-06-24

    Aerogel materials are recognized as promising candidates for the thermal insulator and have achieved great successes for the aerospace applications. However, the harsh environment on the exoplanet, especially for the tremendous temperature difference, tends to affect the tenuous skeleton and performances of the aerogels. In this paper, an evaluation method was proposed to simulate the environment of exoplanet and study the influence on the fiber-reinforced silica aerogels with different supercritical point drying (SPD) technology. Thermal conductivity, mechanical property and the microstructure were characterized for understanding the thermal failure mechanism. It was found that structure and thermal property were significantly influenced by the adsorbed water in the aerogels under the thermal shocks. The thermal conductivity of CO₂-SPD aerogel increased 35.5% after the first shock and kept in a high value, while that of the ethanol-SPD aerogel increased only 19.5% and kept in a relatively low value. Pore size distribution results showed that after the first shock the peak pore size of the CO₂-SPD aerogel increased from 18 nm to 25 nm due to the shrinkage of the skeleton, while the peak pore size of the ethanol-SPD aerogel kept at ~9 nm probably induced by the spring-back effect. An 80 °C treatment under vacuum was demonstrated to be an effective way for retaining the good performance of ethanol-SPD aerogels under the thermal shock. The thermal conductivity increases of the ethanol-SPD aerogels after 5 shocks decreased from ~30 to ~0% via vacuum drying, while the increase of the CO₂-SPD aerogels via the same treatments remains ~28%. The high-strain hardening and low-strain soften behaviors further demonstrated the skeleton shrinkage of the CO₂-SPD aerogel.

  16. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyun; Evans, Daniel A.; Sellan, Daniel P.; Williams, Owen M.; Ou, Eric; Cowley, Alan H.; Shi, Li

    2016-05-01

    Recent first principles calculations have predicted that boron arsenide (BAs) can possess an unexpectedly high thermal conductivity that depends sensitively on the crystal size and defect concentration. However, few experimental results have been obtained to verify these predictions. In the present work, we report four-probe thermal and thermoelectric transport measurements of an individual BAs microstructure that was synthesized via a vapor transport method. The measured thermal conductivity was found to decrease slightly with temperature in the range between 250 K and 350 K. The temperature dependence suggests that the extrinsic phonon scattering processes play an important role in addition to intrinsic phonon-phonon scattering. The room temperature value of (186 ± 46) W m-1 K-1 is higher than that of bulk silicon but still a factor of four lower than the calculated result for a defect-free, non-degenerate BAs rod with a similar diameter of 1.15 μm. The measured p-type Seebeck coefficient and thermoelectric power factor are comparable to those of bismuth telluride, which is a commonly used thermoelectric material. The foregoing results also suggest that it is necessary to not only reduce defect and boundary scatterings but also to better understand and control the electron scattering of phonons in order to achieve the predicted ultrahigh intrinsic lattice thermal conductivity of BAs.

  17. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    PubMed

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  18. Numerical simulation of the nanoparticle diameter effect on the thermal performance of a nanofluid in a cooling chamber

    NASA Astrophysics Data System (ADS)

    Ghafouri, A.; Pourmahmoud, N.; Jozaei, A. F.

    2017-03-01

    The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.

  19. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    DOE PAGES

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; ...

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K -1 m -1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constantsmore » were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K -1 m -1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less

  20. Thermophysical properties of enzyme clarified Lime (Citrus aurantifolia L) juice at different moisture contents.

    PubMed

    Manjunatha, S S; Raju, P S; Bawa, A S

    2014-11-01

    Thermophysical properties of enzyme clarified lime (Citrus aurantifolia L.) juice were evaluated at different moisture contents ranging from 30.37 % to 89.30 % (wet basis) corresponding to a water activity range of 0.835 to 0.979. The thermophysical properties evaluated were density, Newtonian viscosity, thermal conductivity, specific heat and thermal diffusivity. The investigation showed that density and Newtonian viscosity of enzyme clarified lime juice decreased significantly (p < 0.05) with increase in moisture content and water activity, whereas thermal conductivity and specific heat increased significantly (p < 0.05) with increase in moisture content and water activity and the thermal diffusivity increased marginally. Empirical mathematical models were established relating to thermophysical properties of enzyme clarified lime juice with moisture content/water activity employing regression analysis by the method of least square approximation. Results indicated the existence of strong correlation between thermophysical properties and moisture content/water activity of enzyme clarified lime juice, a significant (p < 0.0001) negative correlation between physical and thermal properties was observed.

  1. Thermal diffusivity of rhyolitic glasses and melts: effects of temperature, crystals and dissolved water

    NASA Astrophysics Data System (ADS)

    Romine, William L.; Whittington, Alan G.; Nabelek, Peter I.; Hofmeister, Anne M.

    2012-12-01

    Thermal diffusivity ( D) was measured using laser-flash analysis on pristine and remelted obsidian samples from Mono Craters, California. These high-silica rhyolites contain between 0.013 and 1.10 wt% H2O and 0 to 2 vol% crystallites. At room temperature, D glass varies from 0.63 to 0.68 mm2 s-1, with more crystalline samples having higher D. As T increases, D glass decreases, approaching a constant value of ˜0.55 mm2 s-1 near 700 K. The glass data are fit with a simple model as an exponential function of temperature and a linear function of crystallinity. Dissolved water contents up to 1.1 wt% have no statistically significant effect on the thermal diffusivity of the glass. Upon crossing the glass transition, D decreases rapidly near ˜1,000 K for the hydrous melts and ˜1,200 K for anhydrous melts. Rhyolitic melts have a D melt of ˜0.51 mm2 s-1. Thermal conductivity ( k = D· ρ· C P) of rhyolitic glass and melt increases slightly with T because heat capacity ( C P) increases with T more strongly than density ( ρ) and D decrease. The thermal conductivity of rhyolitic melts is ˜1.5 W m-1 K-1, and should vary little over the likely range of magmatic temperatures and water contents. These values of D and k are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization. Latent heat release enables bodies that crystallize to remain at high temperatures for much longer times and cool more slowly than glassy bodies. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition in the first case, and cooling only to the solidus in the second.

  2. Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinsong, E-mail: lijinsong@buaa.edu.cn; School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191; Luo, Ruiying, E-mail: ryluo@buaa.edu.cn

    Highlights: {yields} The CNFs improve the infiltration rate and thermal properties of carbon/carbon composites. {yields} The densification rate increases with the CNF content increasing at the beginning of infiltration. {yields} The values of the thermal conductivity of the composite obtain their maximum values at 5 wt.%. -- Abstract: Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated using the electrified preform heating chemical vapor infiltration method (ECVI) under atmospheric pressure. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. Scanning electronmore » microscopy, polarized light micrograph and X-ray diffraction technique were used to analyze the experiment results. The results showed that the infiltration rate increased with the rising of CNF content, and after 120 h of infiltration, the density was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 wt.% to 20 wt.%. CNF-reinforced C/C composites have enhanced thermal conductivity, the values at 5 wt.% were increased by nearly 5.5-24.1% in the X-Y direction and 153.8-251.3% in the Z direction compared to those with no CNFs. When the additive content was increased to 20 wt.%, due to the holes and cavities in the CNF web and between carbon cloth and matrix, the thermal conductivities in the X-Y and Z directions decreased from their maximum values at 5 wt.%.« less

  3. Prepared by Thermal Hydro-decomposition

    NASA Astrophysics Data System (ADS)

    Prasoetsopha, N.; Pinitsoontorn, S.; Kamwanna, T.; Kurosaki, K.; Ohishi, Y.; Muta, H.; Yamanaka, S.

    2014-06-01

    The polycrystalline samples of Ca3Co4- x Ga x O9+ δ (0 ≤ x ≤ 0.15) were prepared by a simple thermal hydro-decomposition method. The high density ceramics were fabricated using a spark plasma sintering technique. The crystal structure of calcined powders was characterized by x-ray diffraction. The single phase of Ca3Co4- x Ga x O9+ δ was obtained. The scanning electron micrograph illustrated the grain alignment perpendicular to the direction of the pressure in the sintering process. The evidence from x-ray absorption near edge spectra were used to confirm the oxidation state of the Ga dopant. The thermoelectric properties of the misfit-layered of Ca3Co4- x Ga x O9+ δ were investigated. Seebeck coefficient tended to decrease with increasing Ga content due to the hole-doping effect. The electrical resistivity and thermal conductivity were monotonically decreased with increasing Ga content. The Ga doping of x = 0.15 showed the highest power factor of 3.99 × 10-4 W/mK2 at 1,023 K and the lowest thermal conductivity of 1.45 W/mK at 1,073 K. This resulted in the highest ZT of 0.29 at 1,073 K. From the optical absorption spectra, the electronic structure near the Fermi level show no significant change with Ga doping.

  4. Thermal contact conductance as a method of rectification in bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Robert A.

    2016-08-01

    A thermal rectifier that utilizes thermal expansion to directionally control interfacial conductance between two contacting surfaces is presented. The device consists of two thermal reservoirs contacting a beam with one rough and one smooth end. When the temperature of reservoir in contact with the smooth surface is raised, a similar temperature rise will occur in the beam, causing it to expand, thus increasing the contact pressure at the rough interface and reducing the interfacial contact resistance. However, if the temperature of the reservoir in contact with the rough interface is raised, the large contact resistance will prevent a similar temperaturemore » rise in the beam. As a result, the contact pressure will be marginally affected and the contact resistance will not change appreciably. Owing to the decreased contact resistance of the first scenario compared to the second, thermal rectification occurs. A parametric analysis is used to determine optimal device parameters including surface roughness, contact pressure, and device length. Modeling predicts that rectification factors greater than 2 are possible at thermal biases as small as 3 K. Lastly, thin surface coatings are discussed as a method to control the temperature bias at which maximum rectification occurs.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel

    The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm 2 and 1.55 W/cm 2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energymore » storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m 3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.« less

  6. Holt film wall shear instrumentation for boundary layer transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1994-01-01

    Measurements of the performance of hot-film wall-shear sensors were performed to aid development of improved sensors. The effect of film size and substrate properties on the sensor performance was quantified through parametric studies carried out both electronically and in a shock tube. The results show that sensor frequency response increases with decreasing sensor size, while at the same time sensitivity decreases. Substrate effects were also studied, through parametric variation of thermal conductivity and heat capacity. Early studies used complex dual-layer substrates, while later studies were designed for both single-layer and dual-layer substrates. Sensor failures and funding limitations have precluded completion of the substrate thermal-property tests.

  7. Roll-to-Roll Continuous Manufacturing Multifunctional Nanocomposites by Electric-Field-Assisted "Z" Direction Alignment of Graphite Flakes in Poly(dimethylsiloxane).

    PubMed

    Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko

    2017-01-11

    A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.

  8. Thermal and electrochemical behavior of Cu{sub 4−x}Li{sub x}S{sub 2} (x=1, 2, 3) phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Erica M.; Poudeu, Pierre F.P., E-mail: ppoudeup@umich.edu

    Several compositions of the Cu{sub 4−x}Li{sub x}S{sub 2} (x=1, 2, 3) series were synthesized via solid-state reaction of the elements. The structural stability at various temperatures and the effect of Li:Cu ratio on the thermal conductivity and the electrochemical performance of Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells during charge–discharge process were investigated. Differential scanning calorimetry (DSC) measurements showed a sharp endothermic peak at 140 °C for Cu{sub 4−x}Li{sub x}S{sub 2} samples with x=1 and 2, which is ascribed to a structural phase transition. X-ray diffraction (XRD) measurements on various Cu{sub 4−x}Li{sub x}S{sub 2} samples at temperatures below and above 140 °Cmore » indicated a structural phase transition from the room temperature low-symmetry structure to the high temperature cubic structure of Cu{sub 2}S. The thermal conductivity of Cu{sub 4−x}Li{sub x}S{sub 2} samples decreases with decreasing Cu:Li ratio and with increasing temperature. The thermal conductivity of Cu{sub 4−x}Li{sub x}S{sub 2} samples at room temperature decreases from 1.2 W/m K for Cu:Li=3:1 to 0.7 W/m K for Cu:Li=1:3. Cyclic voltammetry of Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells showed that high discharge capacity (165 mA h g{sup −1}) and stable reversible charge–discharge process is observed for Cu:Li=2:2, whereas other Cu:Li ratios lead to low discharge capacity and poor reversibility. The electrochemical behavior of Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells is rationalized by taking into account the competing reactions of Li{sup +} ions with CuS and Cu{sub 2}S during discharge. - Graphical abstract: Tuning Li content in Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells to maintain a Cu/Li ratio equal to unity affords maximum capacity and high stability of the charge–discharge process. - Highlights: • Cu:Li ratio strongly influenced crystal structure and properties of Cu{sub 4-x}Li{sub x}S{sub 2}. • Compositions with x = 1 and 2 undergo structural transformation at above 140 °C. • Thermal conductivity of Cu{sub 4-x}Li{sub x}S{sub 2} phases increases with decreasing Cu:Li ratio. • Stability of Cu{sub 4-x}Li{sub x}S{sub 2}/Li half-cells decreases with Cu:Li ratio. • Initial charge capacity of Cu{sub 4-x}Li{sub x}S{sub 2}/Li half-cells increases with Cu:Li ratio.« less

  9. Evaluation of the Epoxy/Antimony Trioxide Nanocomposites as Flame Retardant

    NASA Astrophysics Data System (ADS)

    Dheyaa, Balqees M.; Jassim, Widad H.; Hameed, Noor A.

    2018-05-01

    Antimony trioxide nanopowder was added for epoxy resin in various amount weight percentages (0, 2, 4, 6, 8, and 10) wt% to increase the combustion resistance and decrease the flammability for it. The study included three standard tests used to measure: limiting oxygen index (LOI), rate of burning (R.B), burning extent (E.B), burning time (T.B), maximum flame height (H) and residue percentage after burning in order to determine the effectiveness of the used additives to decrease the flammability of epoxy resin and increase the combustion resistance. Thermal test was done by using Lee’s disk to measure the thermal conductivity coefficient. The thermal stability and degradation kinetics of epoxy resin without reinforcement and with reinforcement by (10 wt%) were studied by using thermogravimetric analysis (TGA). The recorded results indicated that epoxy reinforced by (10 wt%) has a good effect as flame retardants for epoxy resin and active to inhibit burning and reduce the flammability.

  10. Thermal charging study of compressed expanded natural graphite/phase change material composites

    DOE PAGES

    Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel

    2016-08-12

    The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm 2 and 1.55 W/cm 2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energymore » storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m 3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.« less

  11. A Study on Variation of Thermal Characteristics of Insulation Materials for Buildings According to Actual Long-Term Annual Aging Variation

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Kang, Jae-Sik; Huh, Jung-Ho

    2018-01-01

    Insulation materials used for buildings are broadly classified as organic insulation materials or inorganic insulation materials. Foam gas is used for producing organic insulation materials. The thermal conductivity of foam gas is generally lower than that of air. As a result, foam gas is discharged over time and replaced by outside air that has relatively less thermal resistance. The gas composition ratio in air bubbles inside the insulation materials changes rapidly, causing the performance degradation of insulation materials. Such performance degradation can be classified into different stages. Stage 1 appears to have a duration of 5 years, and Stage 2 takes a period of over 10 years. In this study, two insulation materials that are most frequently used in South Korea were analyzed, focusing on the changes thermal resistance for the period of over 5000 days. The measurement result indicated that the thermal resistance of expanded polystyrene fell below the KS performance standards after about 80-150 days from its production date. After about 5000 days, its thermal resistance decreased by 25.7 % to 42.7 % in comparison with the initial thermal resistance. In the case of rigid polyurethane, a pattern of rapid performance degradation appeared about 100 days post-production, and the thermal resistance fell below the KS performance standards after about 1000 days. The thermal resistance decreased by 22.5 % to 27.4 % in comparison with the initial thermal resistance after about 5000 days.

  12. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting.

    PubMed

    Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G

    2012-06-01

    This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures

    DOE PAGES

    Zheng, Wei; Xu, Biao; Zhou, Lin; ...

    2017-03-27

    Thermoelectric materials, which can convert waste heat into electricity, have received increasing interest in these years. This paper describes the recent progress in thermoelectric nanocomposite based on solution-synthesized nanoheterostructures. We start our discussion with the strategies of improving power factor of a given material by using nanoheterostructures. Then we discuss the methods of decreasing thermal conductivity. Finally, we highlight one way to decouple power factor and thermal conductivity, namely, incorporating phase-transition materials into a nanowire heterostructure. We have explored the lead telluride-copper telluride thermoelectric nanowire heterostructure in our group. Future possible ways to improve figure of merit are discussed atmore » the end of this paper.« less

  14. Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; Xu, Biao; Zhou, Lin

    Thermoelectric materials, which can convert waste heat into electricity, have received increasing interest in these years. This paper describes the recent progress in thermoelectric nanocomposite based on solution-synthesized nanoheterostructures. We start our discussion with the strategies of improving power factor of a given material by using nanoheterostructures. Then we discuss the methods of decreasing thermal conductivity. Finally, we highlight one way to decouple power factor and thermal conductivity, namely, incorporating phase-transition materials into a nanowire heterostructure. We have explored the lead telluride-copper telluride thermoelectric nanowire heterostructure in our group. Future possible ways to improve figure of merit are discussed atmore » the end of this paper.« less

  15. Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-zhi; Koumoto, Kunihito

    2013-07-01

    The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.

  16. Resistivity and Resistivity Fluctuations of Thin Film Platinum-Aluminum Oxide Granular Metal-Insulator Composites

    NASA Astrophysics Data System (ADS)

    Mantese, Joseph Vito

    Thin film metal-insulator composites were used to study how the resistivity and fluctuations in the resistivity were altered by changes in conduction mechanism so as to understand the source of the fluctuations and to better understand the conduction processes themselves. Metal-insulator composites were prepared by co -evaporation of platinum and aluminum oxide in a high vacuum system to create a series of films which had a range of metal volume fill fractions, p, from 23% to 100%. The samples were patterned using standard photolithographic techniques to form sample geometries of typical dimensions, length (TURN) 40(mu)m, width (TURN) 2(mu)m and thickness (TURN) 1500(ANGSTROM). The resistivity, (rho), and power spectral density of the resistivity fluctuations, S(,(rho))(f), were measured as a function of p and temperature, T. (rho)(p,T) was found to be a rapidly increasing function of decreasing p, rising monotonically by more than 7 orders of magnitude as p was decreased from 100% to 23%. For p (GREATERTHEQ) 59% the resistivity decreased linearly with decreasing temperature until limited by impurity scattering. The resistivities for the low metal fill fraction materials (p (LESSTHEQ) 50%) increased as the temperature was reduced as expected of thermally assisted tunneling conduction in metal-insulator composites. The transition from metallic conduction to thermally assisted tunneling occurred at a critical value, p(,c), between 59% and 50% Pt. For all samples at all p and T, S(,(rho))(f)(PROPORTIONAL)1/f('(alpha)) (1/f noise) with 0.8 (LESSTHEQ) (alpha) (LESSTHEQ) .1.2 and f the frequency in Hertz. No systematic dependence upon either p or T was found. The normalized noise intensity fS(,(rho))(f)/(rho)('2) (,1) (,Hz) was found to increase monotonically by 5 orders of magnitude with decreasing p then saturate at p(,c) where the conduction mechanism changed from metallic conduction to thermally assisted tunneling. Effective medium theory was used to analyze the role of charge tunneling on (rho)(p) and fS(,(rho))(f,p)/(rho)(p)('2) (,1 Hz). It was found that the experimental results could be interpreted in terms of a two component medium consisting of noisy tunnel junctions and quiet metallic particles. For p > p(,c) the continuous metallic paths served to short out some of the conductance fluctuations of the tunnel junctions without themselves adding significantly to the observed noise. For p < p(,c) both S(,(rho))(f) and (rho)('2) were dominated by tunneling. Thus it was concluded that the 1/f noise arose from local microscopic noise sources with the metal percolation network merely moderating the bulk noise intensity.

  17. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  18. Secondary pool boiling effects

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  19. Thermoelectric Figures of Merit of Zn4Sb3 and Zrnisn-based Half-heusler Compounds Influenced by Mev Ion-beam Bombardments

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C. I.; Ila, D.

    Semiconducting β-Zn4Sb3 and ZrNiSn-based half-Heusler compound thin films with applications as thermoelectric (TE) materials were prepared using ion beam assisted deposition (IBAD). High-purity solid zinc (Zn) and antimony (Sb) were evaporated by electron beam to grow the β-Zn4Sb3 thin film while high-purity zirconium (Zr) powder and nickel (Ni) tin (Sn) powders were evaporated by electron beam to grow the ZrNiSn-based half-Heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardment for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardment. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam couldcause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ω-method (3rd harmonic) measurement system to measure the cross-plane thermal conductivity, the van der Pauw measurement system to measure the electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.

  20. Radiation modification of Ni nanotubes by electrons

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, A.; Kaikanov, M.; Tikhonov, A.; Kenzhina, I.; Ponomarev, D.; Zdorovets, M.

    2017-10-01

    Electron irradiation of metal nanostructures is an effective tool for stimulating a controlled modification of the structural and conductive material properties. Use of the electron irradiation with energies less than 500 keV allows conducting controlled annealing of nanotube defects, which leads to the improvement of the conductive properties due to decreasing resistance. In this case, the use of radiation doses above 150 kGy induces the samples destruction, caused by the thermal heating of nanotubes, leading to the crystal lattice destruction and the sample amorphization.

  1. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P. A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F. P.

    2012-06-01

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m2/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery.

  2. Interface structure and properties of CNTs/Cu composites fabricated by electroless deposition and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Song, Qi; Yin, Shi-Pan

    2018-01-01

    In this paper, we fabricated a novel copper matrix composites reinforced by carbon nanotubes (CNTs) using electroless deposition (ED) and spark plasma sintering technique. Microstructure, mechanical, electric conductivity, and thermal properties of the CNTs/Cu composites were investigated. The results show that a favorable interface containing C-O and O-Cu bond was formed between CNTs and matrix when the CNTs were coated with nano-Cu by ED method. Thus, we accomplished the uniformly dispersed CNTs in the CNTs/Cu powders and compacted composites, which eventually leads to the enhancement of the mechanical properties of the CNTs/Cu composites in the macro-scale environment. However, the interface structure can hinder the movement of carriers and free electrons and increase the interface thermal resistance, which leads to modest decrease of electrical and thermal conductivity of the CNTs/Cu composites.

  3. Irradiation effects on thermal properties of LWR hydride fuel

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  4. Electrical conductivity of high-purity germanium crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  5. Silver nanoparticle assisted urine sugar determination using thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Lincy; John, Jisha; George, Nibu A.; Kurian, Achamma

    2014-11-01

    Nanotechnology plays a vital role in the development of biosensors by enhancing their sensitivity and performance. In this paper, we report a novel urine sugar sensing method that makes use of the unique properties of silver-nanofluids in combination with the laser induced photothermal lens technique. The thermal lens signal decreases with increase in sugar levels in urine samples, which may be attributed to the enhanced interaction of glucose and conduction electrons of silver-nanoparticles, thereby changing the surface plasmon energy.

  6. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.

    PubMed

    Zhou, X; Ouyang, Q; Zhu, Y; Feng, C; Zhang, X

    2014-04-01

    To investigate whether occupants' anticipated control of their thermal environment can influence their thermal comfort and to explain why the acceptable temperature range in naturally ventilated environments is greater than that in air-conditioned environments, a series of experiments were conducted in a climate chamber in which the thermal environment remained the same but the psychological environment varied. The results of the experiments show that the ability to control the environment can improve occupants' thermal sensation and thermal comfort. Specifically, occupants' anticipated control decreased their thermal sensation vote (TSV) by 0.4-0.5 and improved their thermal comfort vote (TCV) by 0.3-0.4 in neutral-warm environment. This improvement was due exclusively to psychological factors. In addition, having to pay the cost of cooling had no significant influence on the occupants' thermal sensation and thermal comfort in this experiment. Thus, having the ability to control the thermal environment can improve occupants' comfort even if there is a monetary cost involved. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  8. The Study of Simulated Space Radiation Environment Effect on Conductive Properties of ITO Thermal Control Materials

    NASA Astrophysics Data System (ADS)

    Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao

    In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.

  9. Creation of a sharp compositional interface in the Pu`u `O`o shallow magma reservoir, Kilauea volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Garcia, M. O.

    2006-12-01

    Lavas from the early episodes of the Pu`u `O`O eruption (1983-85) of Kilauea Volcano on the island of Hawai'i display rapid compositional variation over short periods for some episodes, especially from the well sampled episode 30 with ~2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change suggesting a sharp compositional interface within the Pu`u `O`o dike-like shallow reservoir. The change in lava composition throughout the eruption is due to changes in cooling within the dike-like shallow reservoir of Pu`u `O`o. Potential explanations for a sharp interface, such as a reservoir of changing width and changing country rock thermal properties, are evaluated using a simple thermal model of a dike-like body with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in thermal conductivity from 2.7 to 11 W m-1 C-1. which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted at depth possibly by increasing numbers of dikes acting as acuacludes or decreasing pore space due to formation of secondary minerals. Results suggest that country rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.

  10. Modeling the sharp compositional interface in the Pùu ̀Ṑō magma reservoir, Kīlauea volcano, Hawaìi

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Garcia, Michael O.

    2007-05-01

    Lavas from the early episodes of the Pu`u `Ō`ō eruption (1983-1985) of Kīlauea Volcano on the island of Hawai`i display rapid compositional variation over short periods for some episodes, especially the well-sampled episode 30 with ˜2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change, suggesting a sharp compositional interface within the Pu`u `Ō`ō dike-like shallow reservoir. Cooling-induced crystal fractionation in this reservoir is thought to be the main control on intraepisode compositional variation. Potential explanations for a sharp interface, such as changing reservoir width and wall rock thermal properties, are evaluated using a simple thermal model of a dike-like body surrounded by wall rock with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in wall rock thermal conductivity from 2.7 to 9 W m-1 C-1, which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted to shallow depths possibly by increasing numbers of dikes acting as aquicludes and/or decreasing pore space due to formation of secondary minerals. Results suggest that wall rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.

  11. Quantifying MLI Thermal Conduction in Cryogenic Applications from Experimental Data

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    2015-12-01

    Multilayer Insulation (MLI) uses stacks of low-emittance metalized sheets combined with low-conduction spacer features to greatly reduce the heat transfer to cryogenic applications from higher temperature surrounds. However, as the hot-side temperature decreases from room temperature to cryogenic temperatures, the level of radiant heat transfer drops as the fourth power of the temperature, while the heat transfer by conduction only falls off linearly. This results in cryogenic MLI being dominated by conduction, a quantity that is extremely sensitive to MLI blanket construction and very poorly quantified in the literature. To develop useful quantitative data on cryogenic blanket conduction, multilayer nonlinear heat transfer models are used to analyze extensive heat transfer data measured by Lockheed Palo Alto on their cryogenic dewar MLI and measured by JPL on their spacecraft MLI. The data-fitting aspect of the modeling allows the radiative and conductive thermal properties of the tested blankets to be explicitly quantified. Results are presented showing that MLI conductance varies by a factor of 600 between spacecraft MLI and Lockheed's best cryogenic MLI.

  12. On volcanism and thermal tectonics on one-plate planets

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1978-01-01

    For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.

  13. [Canopy conductance characteristics of poplar in agroforestry system in west Liaoning Province of Northeast China].

    PubMed

    Li, Zheng; Niu, Li-Hua; Yuan, Feng-Hui; Guan, De-Xin; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing

    2012-11-01

    By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend. There was a negative logarithm relationship between the canopy conductance and vapor pressure deficit, with the sensitivity of canopy conductance to vapor pressure deficit change decreased gradually from May to September. The canopy conductance had a positive relationship with solar radiation. In different months, the correlation degree of canopy conductance with environmental factors differed. The vapor pressure deficit in the whole growth period of poplar was the most significant environmental factor correlated with the canopy conductance.

  14. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties

    PubMed Central

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-01-01

    P–type SnS compound and SnS1−xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS–pressurizing direction in the temperature range 323–823 Κ. SnS compound and SnS1−xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m−1 K−1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction. PMID:28240324

  15. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    PubMed

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1  K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.

  16. Thermoelectric properties and figure of merit of perovskite-type Ba1-xLaxSnO3 with x=0.002-0.008

    NASA Astrophysics Data System (ADS)

    Yasukawa, Masahiro; Kono, Toshio; Ueda, Kazushige; Yanagi, Hiroshi; Wng Kim, Sung; Hosono, Hideo

    2013-10-01

    Thermoelectric properties and figure of merit were evaluated from the Seebeck coefficient S, electrical conductivity σ, and thermal conductivity κ measured at high temperatures for perovskite-type ceramics of Ba1-xLaxSnO3 with x=0.002, 0.005, and 0.008, which were prepared by a polymerized complex method and a subsequent spark plasma sintering technique. All the polycrystalline dense ceramics showed n-type degenerate semiconducting behavior in the temperature range of 373-1073 K. The La content dependence of the S values revealed successful increase in the electron carriers with the La doping in this x range. The κ values remained almost unchanged with x showing ~9.6 Wm-1 K-1 at room temperature and decreased with increasing temperature. The electronic thermal conductivities calculated by the Wiedemann-Franz law as well as the T-1 dependence of the κ values indicate that the phonon thermal conductivity was dominant. The dimensionless figure of merit ZT increased with increasing temperature for all the ceramics and showed ~0.1 at 1073 K for the ceramics with x=0.002 and 0.005.

  17. Temperature measurement and control system for transtibial prostheses: Functional evaluation.

    PubMed

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza

    2018-01-01

    The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.

  18. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and 25.8˜373 kg/m3, respectively, much lower than bulk values. Then single anatase TiO2 nanowire is synthesized to understand intrinsic thermophysical properties and secondary porosity. Thermal diffusivity of nanowires varies from 1.76 to 5.08 × 10-6 m 2/s, while thermal conductivity alters from 1.38 to 6.01 W/m·K. SEM image of TiO2 nanowire shows secondary porous surface structure. In addition, nonlinear effects are also observed with experimental data. Two methods, generalized function analysis and direct capacitance derivation, are developed to suppress nonlinear effects. Effective thermal diffusivities from both modified analysis agree well with each other.

  19. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaehyun; Sellan, Daniel P.; Ou, Eric

    2016-05-16

    Recent first principles calculations have predicted that boron arsenide (BAs) can possess an unexpectedly high thermal conductivity that depends sensitively on the crystal size and defect concentration. However, few experimental results have been obtained to verify these predictions. In the present work, we report four-probe thermal and thermoelectric transport measurements of an individual BAs microstructure that was synthesized via a vapor transport method. The measured thermal conductivity was found to decrease slightly with temperature in the range between 250 K and 350 K. The temperature dependence suggests that the extrinsic phonon scattering processes play an important role in addition to intrinsic phonon-phononmore » scattering. The room temperature value of (186 ± 46) W m{sup −1 }K{sup −1} is higher than that of bulk silicon but still a factor of four lower than the calculated result for a defect-free, non-degenerate BAs rod with a similar diameter of 1.15 μm. The measured p-type Seebeck coefficient and thermoelectric power factor are comparable to those of bismuth telluride, which is a commonly used thermoelectric material. The foregoing results also suggest that it is necessary to not only reduce defect and boundary scatterings but also to better understand and control the electron scattering of phonons in order to achieve the predicted ultrahigh intrinsic lattice thermal conductivity of BAs.« less

  20. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  1. THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoi, J.; Chujo, K.; Saji, K.

    1959-01-01

    A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less

  2. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.

    PubMed

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal-oxide-semiconductor-compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm 2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance.

  3. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation

    PubMed Central

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    Abstract For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal–oxide–semiconductor–compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance. PMID:29868148

  4. Thermal conductivity and rectification in asymmetric archaeal lipid membranes

    NASA Astrophysics Data System (ADS)

    Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven

    2018-05-01

    Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering applications.

  5. Exploration on effects of 15 nm SiO2 filler on miscibility, thermal stability and ionic conductivity of PMMA/ENR 50 electrolytes

    NASA Astrophysics Data System (ADS)

    Zamri, S. F. M.; Latif, F. A.; Ali, A. M. M.; Ibrahim, R.; Azuan, S. I. H. M.; Kamaluddin, N.; Hadip, F.

    2017-02-01

    The effects of silicon dioxide (SiO2) (15 nm) filler on miscibility, thermal stability and ionic conductivity of polymethyl methacrylate/50% epoxidized narural rubber (PMMA/ENR 50) electrolytes were successfully explored. Samples were prepared by solvent casting method with tetrahydrofuran (THF) as solvent and doped with lithium tetrafluoroborate (LiBF4). Fourier transform infrared spectroscopy (FTIR) confirmed the present of hydrogen bond between PMMA and ENR 50. However, the hydrogen bond was reduced when SiO2 was added. Differential scanning calorimeter (DSC) analysis shows that PMMA/ENR 50 blends exhibit two glass transition temperatures (Tgs) recorded at -35 and 89 °C corresponding to the Tg of ENR 50 rich phase (Tg1) and PMMA rich phase (Tg2), respectively. However, the two Tgs almost merging and reduced when SiO2 was added. Tg1 was found increases as SiO2 weight percent increased. Thermogravimetric analysis (TGA) revealed that thermal degradation temperatures (Tds) of SiO2 filled PMMA/ENR 50 was similar as PMMA/ENR 50. Interestingly, thermal degradation temperatures of the loss of impurities (Td1) and thermal degradation temperatures of PMMA side chain (Td2) were increased when SiO2 was added. Meanwhile thermal degradation temperatures of main PMMA and ENR 50 main chain (Td3) was decreased as SiO2 was added. There was no significant change in Td1, Td2 and Td3 as SiO2 weight percent was varied. Electrochemical impedence spectroscopy (EIS) analysis shows that room temperature ionic conductivity of SiO2 filled PMMA/ENR 50 electrolytes were higher compaed PMMA/ENR 50 electrolyte with two conductivity maxima.

  6. A MEMS Infrared Thermopile Fabricated from Silicon-On-Insulator with Phononic Crystal Structures and Carbon Nanotube Absorption Layer

    NASA Astrophysics Data System (ADS)

    Gray, Kory Forrest

    The goal of this project was to examine the possibility of creating a novel thermal infrared detector based on silicon CMOS technology that has been enhanced by the latest nano-engineering discoveries. Silicon typically is not thought as an efficient thermoelectric material. However recent advancements in nanotechnology have improved the potential for a highly sensitive infrared detector based on nano-structured silicon. The thermal conductivity of silicon has been shown to be reduced from 150 W/mK down to 60 W/mK just by decreasing the scale of the silicon from bulk down to the sub-micron scale. Further reduction of the thermal conductivity has been shown by patterning silicon with a phonon crystal structure which has been reported to have thermal conductivities down to 10 W/mK. The phonon crystal structure consists of a 2D array of holes that are etched into the silicon. The size and pitch of the holes are on the order of the mean free path of the phonons in silicon which is approximately 200-500nm. This particular device had 200nm holes on a 400nm pitch. The Seebeck coefficient of silicon can also be enhanced by the reduction of the material from the bulk to sub-micron scale and with degenerate level doping. The combination of decreased thermal conductivity and increased Seebeck coefficient allow silicon to be a promising material for thermoelectric infrared detectors. The highly doped silicon is desired to reduce the electrical resistance of the device. The low electrical resistance is required to reduce the Johnson noise of the device which is the dominant noise source for most thermal detectors. This project designed a MEMS thermopile using a silicon-on-insulator substrate, and a CMOS compatible process. The basic thermopile consists of a silicon dioxide membrane with phononic crystal patterned silicon thermocouples around the edges of the membrane. Vertical aligned, multi-walled, carbon nanotubes were used as the infrared absorption layer. A MEMS thermoelectric detector with a D* of 3 * 107 cm Hz 0.5/W was demonstrated with a time response of 3-10 milliseconds. With this initial research, it is possible to improve the D* to the high 108 cm Hz 0.5/W range by slightly changing the design of the thermopile and patterning the absorption layer.

  7. Studies on the thermal behavior of CS:LiTFSI:[Amim] Cl polymer electrolytes exerted by different [Amim] Cl content

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Shanti, R.; Morris, Ezra

    2012-01-01

    The principle motivation of this research work is to develop environmental-friendly polymer electrolytes utilizing corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1-allyl-3-methylimidazolium chloride ([Amim] Cl) by solution casting technique. The highest ionic conductivity value was achieved for the composition CS:LiTFSI:[Amim] Cl (14 wt. %:6 wt. %:80 wt. %) which exhibits the ionic conductivity value of 5.68 × 10 -2 S cm -1 at 40 °C with the activation energy of 4.86 kJ mol -1. This sample possess high concentration of amorphous phase coupled with greater presence of conducting cations (lithium, Li + and imidazolium, [Amim] +) as depicted by the dielectric loss tangent plot. The conductivity-temperature plots were found to obey Arrhenius rule in which the conductivity mechanism is thermally assisted. The melting temperature of polymer electrolyte decreases with increase in [Amim] Cl content. This is attributed to the good miscibility of [Amim] Cl in CS:LiTFSI matrix inducing structural disorderliness. Reference to the TGA results it is found that the addition of [Amim] Cl diminishes the heat-resistivity whereas enhancement in the thermal stability occurred at the initial addition and declines with further doping of [Amim] Cl.

  8. Phonon Scattering and Confinement in Crystalline Films

    NASA Astrophysics Data System (ADS)

    Parrish, Kevin D.

    The operating temperature of energy conversion and electronic devices affects their efficiency and efficacy. In many devices, however, the reference values of the thermal properties of the materials used are no longer applicable due to processing techniques performed. This leads to challenges in thermal management and thermal engineering that demand accurate predictive tools and high fidelity measurements. The thermal conductivity of strained, nanostructured, and ultra-thin dielectrics are predicted computationally using solutions to the Boltzmann transport equation. Experimental measurements of thermal diffusivity are performed using transient grating spectroscopy. The thermal conductivities of argon, modeled using the Lennard-Jones potential, and silicon, modeled using density functional theory, are predicted under compressive and tensile strain from lattice dynamics calculations. The thermal conductivity of silicon is found to be invariant with compression, a result that is in disagreement with previous computational efforts. This difference is attributed to the more accurate force constants calculated from density functional theory. The invariance is found to be a result of competing effects of increased phonon group velocities and decreased phonon lifetimes, demonstrating how the anharmonic contribution of the atomic potential can scale differently than the harmonic contribution. Using three Monte Carlo techniques, the phonon-boundary scattering and the subsequent thermal conductivity reduction are predicted for nanoporous silicon thin films. The Monte Carlo techniques used are free path sampling, isotropic ray-tracing, and a new technique, modal ray-tracing. The thermal conductivity predictions from all three techniques are observed to be comparable to previous experimental measurements on nanoporous silicon films. The phonon mean free paths predicted from isotropic ray-tracing, however, are unphysical as compared to those predicted by free path sampling. Removing the isotropic assumption, leading to the formulation of modal ray-tracing, corrects the mean free path distribution. The effect of phonon line-of-sight is investigated in nanoporous silicon films using free path sampling. When the line-of-sight is cut off there is a distinct change in thermal conductivity versus porosity. By analyzing the free paths of an obstructed phonon mode, it is concluded that the trend change is due to a hard upper limit on the free paths that can exist due to the nanopore geometry in the material. The transient grating technique is an optical contact-less laser based experiment for measuring the in-plane thermal diffusivity of thin films and membranes. The theory of operation and physical setup of a transient grating experiment is detailed. The procedure for extracting the thermal diffusivity from the raw experimental signal is improved upon by removing arbitrary user choice in the fitting parameters used and constructing a parameterless error minimizing procedure. The thermal conductivity of ultra-thin argon films modeled with the Lennard-Jones potential is calculated from both the Monte Carlo free path sampling technique and from explicit reduced dimensionality lattice dynamics calculations. In these ultra-thin films, the phonon properties are altered in more than a perturbative manner, referred to as the confinement regime. The free path sampling technique, which is a perturbative method, is compared to a reduced dimensionality lattice dynamics calculation where the entire film thickness is taken as the unit cell. Divergence in thermal conductivity magnitude and trend is found at few unit cell thick argon films. Although the phonon group velocities and lifetimes are affected, it is found that alterations to the phonon density of states are the primary cause of the deviation in thermal conductivity in the confinement regime.

  9. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  10. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  11. Thermally activated charge transport in microbial protein nanowires

    PubMed Central

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  12. Beneficial Effect of S-Filling on Thermoelectric Properties of S x Co4Sb11.2Te0.8 Skutterudite

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Duan, Bo; Bai, Guanghui; Li, Jialiang; Yu, Yue; Yang, Houjiang; Chen, Gang; Zhai, Pengcheng

    2018-06-01

    In this work, Te-doped and S-filled S x Co4Sb11.2Te0.8 ( x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4) skutterudite compounds have been prepared using solid state reaction and spark plasma sintering. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300-850 K, and the influences of S-addition on the thermoelectric properties of S x Co4Sb11.2Te0.8 skutterudites are systematically investigated. The results indicate that the addition of sulfur and tellurium is effective in reducing lattice thermal conductivity due to the point-defect scattering caused by tellurium substitutions and the cluster vibration brought by S-filling. The solubility of tellurium in skutterudites is enhanced with sulfur addition via charge compensation. The thermal conductivity decreases with increasing sulfur content. The highest figure of merit, ZT = 1.5, was obtained at 850 K for S0.3Co4Sb11.2Te0.8 sample, because of the low lattice thermal conductivity.

  13. Thermally activated charge transport in microbial protein nanowires

    NASA Astrophysics Data System (ADS)

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-03-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  14. Thermally activated charge transport in microbial protein nanowires.

    PubMed

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-03-24

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  15. Mechanical properties experimental investigation of HTPB propellant after thermal accelerated aging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Sun, Chaoxiang; Zhang, Junfa; Xu, Jinsheng; Tan, Bingdong

    2017-04-01

    To get accurate aging mechanical properties of aged HTPB propellant, the thermal accelerated aging experiment method is utilized and the uniaxial tensile experiments were conducted to obtain the mechanical data of aged HTPB propellants, and the maximum tensile strength, σm, maximum tensile strain, ɛm, and the fracture tensile strain, ɛb, of HTPB propellant with different aging time and various aging temperatures,were obtained, using universal material testing machine. The experimental results show that the σm of HTPB propellant initially increases, subsequently decreases and finally increases with aging time. The ɛm and ɛb generally decrease with increasing aging time, what's more, the decrease rate of both ɛm and ɛb reduce with the aging time. What's more, the postcure effect and oxidation reaction occurred inside HTPB matrix, including the chain degradation reaction and oxidation-induced crosslinking, were discussed to explain the mechanical aging rule of HTPB propellant.

  16. Viscoelastic Behavior of PDMS Filled with Boron Nitrides

    NASA Astrophysics Data System (ADS)

    Bian, J. F.; Weinkauf, D. H.; Jeon, H. S.

    2004-03-01

    The addition of high thermal conductive filler particles such as boron nitride, aluminum nitride, or carbon fiber is an effective way to increase the thermal conductivity of polymeric materials for the industrial applications such as electronic packaging materials, encapsulants, and thermal fluids among others. The effects of particle dispersions, concentrations, and the interactions between BN and polymer matrix on the viscoelastic properties of the boron nitride (BN)/polydimethylsiloxane (PDMS) composites prepared by mechanical mixing are investigated using oscillatory shear rheology. Both untreated and plasma treated boron nitride (BNP) particles with hexafluoropropylene oxide monomers have been used in this study. The addition of the plasma treated BN particles to the PDMS matrix decrease significantly the complex viscosity as well as storage and loss modulus of the composites due to the reduced interfacial energy between the surface of BNP and PDMS chains. For the PDMS/BN and PDMS/BNP composites, the maximum volume packing fraction ( ˜0.4) of the particles has been determined from the complex viscosity as a function of the frequency. Additionally, the shear-induced alignment of the BN particles dispersed in the PDMS matrix decreases the viscoelastic properties of the composites with the irregular oscillations which is related to the network formation of dispersed BN particles at the higher volume fractions (> ˜0.2).

  17. Thermal properties variations in unconsolidated material for very shallow geothermal application (ITER project)

    NASA Astrophysics Data System (ADS)

    Sipio, Eloisa Di; Bertermann, David

    2018-04-01

    In engineering, agricultural and meteorological project design, sediment thermal properties are highly important parameters, and thermal conductivity plays a fundamental role when dimensioning ground heat exchangers, especially in very shallow geothermal systems. Herein, the first 2 m of depth from surface is of critical importance. However, the heat transfer determination in unconsolidated material is difficult to estimate, as it depends on several factors, including particle size, bulk density, water content, mineralogy composition and ground temperature. The performance of a very shallow geothermal system, as a horizontal collector or heat basket, is strongly correlated to the type of sediment at disposal and rapidly decreases in the case of dry-unsaturated conditions. The available experimental data are often scattered, incomplete and do not fully support thermo-active ground structure modeling. The ITER project, funded by the European Union, contributes to a better knowledge of the relationship between thermal conductivity and water content, required for understanding the very shallow geothermal systems behaviour in saturated and unsaturated conditions. So as to enhance the performance of horizontal geothermal heat exchangers, thermally enhanced backfilling material were tested in the laboratory, and an overview of physical-thermal properties variations under several moisture and load conditions for different mixtures of natural material was here presented.

  18. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  19. Spin-Current-Controlled Modulation of the Magnon Spin Conductance in a Three-Terminal Magnon Transistor

    NASA Astrophysics Data System (ADS)

    Cornelissen, L. J.; Liu, J.; van Wees, B. J.; Duine, R. A.

    2018-03-01

    Efficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The magnon spin conductance of the channel is altered by increasing or decreasing the magnon chemical potential via spin Hall injection of magnons by a third modulator electrode. We obtain a modulation efficiency of 1.6 %/mA at T =250 K . Finite element modeling shows that this could be increased to well above 10 %/mA by reducing the thickness of the channel, providing interesting prospects for the development of thermal-magnon-based logic circuits.

  20. Thermoelectric Properties of Selenospinel Cu6Fe4Sn12Se32

    NASA Astrophysics Data System (ADS)

    Suekuni, Koichiro; Kunii, Masaru; Nishiate, Hirotaka; Ohta, Michihiro; Yamamoto, Atsushi; Koyano, Mikio

    2012-06-01

    This report describes thermoelectric properties up to 500 K for polycrystalline selenospinel Cu6Fe4Sn12Se32 samples. Thermal conductivity shows a low value of 1 W/Km because of their structural complexity such as Fe/Sn site disorder. Electrical resistivity ρ varies as exp( T 0/ T 1/4) and thermopower S varies as T 1/2 at low temperatures, which indicates that Mott variable-range hopping is the dominant conduction mechanism. However, at high temperatures (above 350 K), ρ and S decrease simultaneously. The temperature dependences are attributed to the thermal excitation of electrons. The possible band structure for Cu6Fe4Sn12Se32 is examined to clarify the behavior of ρ and S.

  1. Thermal diffusivity of four Apollo 17 rock samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horai, K.; Winkler, J.L. Jr.

    1976-01-01

    The thermal diffusivities of four Apollo 17 rock samples (70017,77; 70215,18; 72395,14; and 77035,44) are measured in the temperature range between 180/sup 0/K and 460/sup 0/K at interstitial gaseous pressures of 1 atm and 10/sup -6/ torr of air. The thermal diffusivities at 1 atm are decreasing functions of temperature. Basalt samples (70017,77 and 70215,18) show higher thermal diffusivities than breccias (72395,14 and 77035,44), indicating that the thermal contact between mineral grains is better in crystalline rocks than in breccias. The magnitude of thermal diffusivities of the Apollo 17 basalt samples is intermediate between published diffusivities of Apollo 11 andmore » 12 basalts, suggesting that the intergranular cohesion of Apollo 17 basalts is weaker than that of Apollo 11 basalts but is stronger than that of Apollo 12 basalt. The thermal diffusivities measured at 10/sup -6/ torr are less temperature dependent. The basalt samples still show higher thermal diffusivities than the breccias, however. The low thermal diffusivity of the porous breccia sample (72395,14) is comparable to the lunar anorthositic gabbro (77017,24) studied by Mizutani and Osako (1974) that has the lowest thermal diffusivity of lunar rock samples ever reported. The difference between the thermal diffusivities the samples exhibit under atmospheric and vacuum conditions cannot be explained by the effect of thermal conduction through the gas medium filling the interstices of the samples that are absent under vacuum condition. A hypothesis is presented that the thermal conduction across the intergranular contact surfaces is strongly influenced by the adsorption of gas molecules on the surfaces of mineral grains. Measurements are also made in carbon dioxide atmosphere, in the temperature range between 200/sup 0/K and 460/sup 0/K.« less

  2. Study of the effects of adding Yttrium oxide particles in some physical, thermal, and mechanical properties of heat-curing acrylic resin

    NASA Astrophysics Data System (ADS)

    Khalil, Bassam I.; Gharkan, Mohammed R.; Ali, Ahmed H.

    2018-05-01

    Extensively use of hot-curing acrylic in prosthetic dentistry field, increase the needed to modifying its mechanical, thermal, and physical properties. In this work Yttrium oxide had added with different weight fractions, (5%, 10%, 15% and 20%), as reinforcement phase on purpose of developing these properties. Tensile strength, hardness, density, water adsorption, and thermal conductivity had been investigated for prepared composite specimens. The results show that the maximum tensile strength was at (10) % wt. of Y2O3 addition, (19) %more than that of plain acrylic, maximum hardness was at (15) % wt. of Y2O3 addition, (8.5) % more than that of plain acrylic, maximum density was at (20) % wt. of Y2O3 addition, (18.2) % more than that of plain acrylic, maximum decrease in water absorption was at (10) % wt. of Y2O3 addition, (29) % less than that of plain acrylic. Finally the maximum thermal conductivity was at (20) % wt. of Y2O3 addition, (16) % more than that of plain acrylic.

  3. Effect of CNT as a Nucleating Agent on Cell Morphology and Thermal Insulation Property of the Rigid Polyurethane Foams.

    PubMed

    Ahn, WonSool; Lee, Joon-Man

    2015-11-01

    The effects of MWCNT on the cell sizes, cell uniformities, thermal conductivities, bulk densities, foaming kinetics, and compressive mechanical properties of the rigid PUFs were investigated. To obtain the better uniform dispersed state of MWCNT, grease-type master batch of MWCNT/surfactant was prepared by three-roll mill. Average cell size of the PUF samples decreased from 185.1 for the neat PUF to 162.9 μm for the sample of 0.01 phr of MWCNT concentration. Cell uniformity was also enhanced showing the standard cell-size deviation of 61.7 and 35.2, respectively. While the thermal conductivity of the neat PUF was 0.0222 W/m(o)K, that of the sample with 0.01 phr of MWCNT showed 0.0204 W/m(o)K, resulting 8.2% reduction of the thermal conductivity. Bulk density of the PUF samples was observed as nearly the same values as 30.0 ± 1.0 g/cm3 regardless of MWCNT. Temperature profiles during foaming process showed that an indirect indication of the nucleation effect of MWCNT for the PUF foaming system, showing faster and higher temperature rising with time. The compressive yield stress is nearly the same as 0.030 x 10(5) Pa regardless of MWCNT.

  4. A study on thermal properties of biodegradable polymers using photothermal methods

    NASA Astrophysics Data System (ADS)

    Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.

    2005-06-01

    In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.

  5. High thermal conductivity materials for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  6. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G

    2015-05-15

    A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Early detection and classification of powdery mildew-infected rose leaves using ANFIS based on extracted features of thermal images

    NASA Astrophysics Data System (ADS)

    Jafari, Mehrnoosh; Minaei, Saeid; Safaie, Naser; Torkamani-Azar, Farah

    2016-05-01

    Spatial and temporal changes in surface temperature of infected and non-infected rose plant (Rosa hybrida cv. 'Angelina') leaves were visualized using digital infrared thermography. Infected areas exhibited a presymptomatic decrease in leaf temperature up to 2.3 °C. In this study, two experiments were conducted: one in the greenhouse (semi-controlled ambient conditions) and the other, in a growth chamber (controlled ambient conditions). Effect of drought stress and darkness on the thermal images were also studied in this research. It was found that thermal histograms of the infected leaves closely follow a standard normal distribution. They have a skewness near zero, kurtosis under 3, standard deviation larger than 0.6, and a Maximum Temperature Difference (MTD) more than 4. For each thermal histogram, central tendency, variability, and parameters of the best fitted Standard Normal and Laplace distributions were estimated. To classify healthy and infected leaves, feature selection was conducted and the best extracted thermal features with the largest linguistic hedge values were chosen. Among those features independent of absolute temperature measurement, MTD, SD, skewness, R2l, kurtosis and bn were selected. Then, a neuro-fuzzy classifier was trained to recognize the healthy leaves from the infected ones. The k-means clustering method was utilized to obtain the initial parameters and the fuzzy "if-then" rules. Best estimation rates of 92.55% and 92.3% were achieved in training and testing the classifier with 8 clusters. Results showed that drought stress had an adverse effect on the classification of healthy leaves. More healthy leaves under drought stress condition were classified as infected causing PPV and Specificity index values to decrease, accordingly. Image acquisition in the dark had no significant effect on the classification performance.

  8. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGES

    Xu, E. Z.; Li, Z.; Martinez, J. A.; ...

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ~ 218 to ~ 913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ~ 913 nm to ~more » 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Lastly, temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density.« less

  9. Enhanced thermoelectric properties of N-type polycrystalline In4Se3-x compounds via thermally induced Se deficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Shu, Yu-Tian; Guo, Fu

    2014-03-01

    In4Se3-x compound is considered as a potential thermoelectric material due to its comparably low thermal conductivity among all existing ones. While most studies investigated In4Se3-x thermoelectric properties by controlling selennium or other dopants concentrations, in the current study, it was found that even for a fixed initial In/Se ratio, the resulting In/Se ratio varied significantly with different thermal processing histories (i.e., melting and annealing), which also resulted in varied thermoelectric properties as well as fracture surface morphologies of In4Se3-x polycrystalline specimens. Single phase polycrystalline In4Se3-x compounds were synthesized by combining a sequence of melting, annealing, pulverizing, and spark plasma sintering. The extension of previous thermal history was observed to significantly improve the electrical conductivity (about 121%) and figure of merit (about 53%) of In4Se3-x polycrystalline compounds. The extended thermal history resulted in the increase of Se deficiency (x) from 0.39 to 0.53. This thermally induced Se deficiency was observed to associate with increasing carrier mobility but decreasing concentration, which differs from the general trend observed for the initially adjusted Se deficiency at room temperature. Unusually large dispersed grains with nanosize layers were observed in specimens with the longest thermal history. The mechanism(s) by which previous thermal processing enhances carrier mobility and affect microstructural evolution are briefly discussed.

  10. Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal

    NASA Astrophysics Data System (ADS)

    Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.

    2018-03-01

    Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.

  11. Field-induced thermal metal-to-insulator transition in underdoped La(2-x)Sr(x)CuO(4+delta).

    PubMed

    Hawthorn, D G; Hill, R W; Proust, C; Ronning, F; Sutherland, Mike; Boaknin, Etienne; Lupien, C; Tanatar, M A; Paglione, Johnpierre; Wakimoto, S; Zhang, H; Taillefer, Louis; Kimura, T; Nohara, M; Takagi, H; Hussey, N E

    2003-05-16

    The transport of heat and charge in cuprates was measured in single crystals of La(2-x)Sr(x)CuO(4+delta) (LSCO) across the doping phase diagram at low temperatures. In underdoped LSCO, the thermal conductivity is found to decrease with increasing magnetic field in the T-->0 limit, in striking contrast to the increase observed in all superconductors, including cuprates at higher doping. In heavily underdoped LSCO, where superconductivity can be entirely suppressed with an applied magnetic field, we show that a novel thermal metal-to-insulator transition takes place upon going from the superconducting state to the field-induced normal state.

  12. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature

    PubMed Central

    Eisenach, James C.; Ririe, Douglas G.

    2015-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  13. Thermal conductivity and thermoelectric power of melt processed (Nd/Y)BCO intergrowth crystals

    NASA Astrophysics Data System (ADS)

    Shams, G. A.; Cochrane, J. W.; Russell, G. J.

    2000-07-01

    In a previous paper [C. Cipagauta Mino, J.W. Cochrane, E.H. Volckmann, G.J. Russell, J. Electron. Mater. 26 (1997) 915.], we described a cryogenic thermoelectric cooler with a superconducting passive branch. The efficiency of this device depends on selecting an optimal cross-sectional area for the superconducting element based on its thermal conductivity in a magnetic field. (Nd/Y)BCO intergrowth crystals make an ideal superconducting element due to their relativity low thermal conductivity, high critical current, and large size. In this paper, we describe the thermal conductivity and thermoelectric power over the temperature range 20-300 K in applied magnetic fields up to 5000 G, for a specimen cut from a large high quality melt processed (Nd/Y)BCO intergrowth crystal that has almost optimum oxygen content, estimated to be 6.92±0.02. The shape of the κab and κc curves, without applied field, are similar to those reported for Y123 single crystals, but the absolute values are significantly smaller. This result is discussed in terms of the presence of dispersed particles of the (Nd/Y)211 phase and increased phonon and carrier scattering. However, in the normal state, the anisotropic ratio κabn/ κcn is almost identical in shape and magnitude to that of the electrical conductivity ratio σabn/ σcn. The application of magnetic fields either parallel or perpendicular to the heat flow direction always decreases κab and κc for temperatures below Tc and 120 K, respectively. Superconducting fluctuation phenomena was observed about Tc for both the thermoelectric power and κab data.

  14. Aerogels for Thermal Insulation of Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Fleurial, Jean-Pierre; Snyder, Jeffrey; Jones, Steven; Caillat, Thierry

    2006-01-01

    Silica aerogels have been shown to be attractive for use as thermal-insulation materials for thermoelectric devices. It is desirable to thermally insulate the legs of thermoelectric devices to suppress lateral heat leaks that degrade thermal efficiency. Aerogels offer not only high thermal- insulation effectiveness, but also a combination of other properties that are especially advantageous in thermoelectric- device applications. Aerogels are synthesized by means of sol-gel chemistry, which is ideal for casting insulation into place. As the scale of the devices to be insulated decreases, the castability from liquid solutions becomes increasingly advantageous: By virtue of castability, aerogel insulation can be made to encapsulate devices having any size from macroscopic down to nanoscopic and possibly having complex, three-dimensional shapes. Castable aerogels can permeate voids having characteristic dimensions as small as nanometers. Hence, practically all the void space surrounding the legs of thermoelectric devices could be filled with aerogel insulation, making the insulation highly effective. Because aerogels have the lowest densities of any known solid materials, they would add very little mass to the encapsulated devices. The thermal-conductivity values of aerogels are among the lowest reported for any material, even after taking account of the contributions of convection and radiation (in addition to true thermal conduction) to overall effective thermal conductivities. Even in ambient air, the contribution of convection to effective overall thermal conductivity of an aerogel is extremely low because of the highly tortuous nature of the flow paths through the porous aerogel structure. For applications that involve operating temperatures high enough to give rise to significant amounts of infrared radiation, opacifiers could be added to aerogels to reduce the radiative contributions to overall effective thermal conductivities. One example of an opacifier is carbon black, which absorbs infrared radiation. Another example of an opacifier is micron- sized metal flakes, which reflect infrared radiation. Encapsulation in cast aerogel insulation also can help prolong the operational lifetimes of thermoelectric devices that must operate in vacuum and that contain SiGe or such advanced skutterudite thermoelectric materials as CoSb3 and CeFe3.5Co0.5Sb12. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation (e.g., sublimation of Sb from CoSb3) at typical high operating temperatures. Aerogel present near the surface of CoSb3 can impede the outward transport of Sb vapor by establishing a highly localized, equilibrium Sb vapor atmosphere at the surface of the CoSb3.

  15. On the relation between the peak frequency and the corresponding rise time of solar microwave impulsive bursts and the height dependence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhao, Ren-Yang; Magun, Andreas; Schanda, Erwin

    1990-12-01

    Results are reported from a correlation analysis for 57 microwave impulsive bursts observed at six frequencies. A regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts is obtained, with a correlation coefficient of -0.43. This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f(p) on t(r). This decrease of magnetic field with height in burst sources is based on the relationship between f(p) and t(r) found by assuming a thermal flare model with a collisionless conduction front.

  16. Thermal management of the remote phosphor layer in LED systems

    NASA Astrophysics Data System (ADS)

    Perera, Indika U.; Narendran, Nadarajah

    2013-09-01

    Generally in a white light-emitting diode (LED), a phosphor slurry is placed around the semiconductor chip or the phosphor is conformally coated over the chip to covert the narrowband, short-wavelength radiation to a broadband white light. Over the past few years, the remote-phosphor method has provided significant improvement in overall system efficiency by reducing the photons absorbed by the LED chip and reducing the phosphor quenching effects. However, increased light output and smaller light engine requirements are causing high radiant energy density on the remotephosphor plates, thus heating the phosphor layer. The phosphor layer temperature rise increases when the phosphor material conversion efficiency decreases. Phosphor layer heating can negatively affect performance in terms of luminous efficacy, color shift, and life. In such cases, the performance of remote-phosphor LED lighting systems can be improved by suitable thermal management to reduce the temperature of the phosphor layer. To verify this hypothesis and to understand the factors that influence the reduction in temperature, a phosphor layer was embedded in a perforated metal heatsink to remove the heat; the parameters that influence the effectiveness of heat extraction were then studied. These parameters included the heatsink-to-phosphor layer interface area and the thermal conductivity of the heatsink. The temperature of the remote-phosphor surface was measured using IR thermography. The results showed that when the heat conduction area of the heatsink increased, the phosphor layer temperature decreased, but at the same time the overall light output of the remote phosphor light engine used in this study decreased due to light absorption by the metal areas.

  17. Structural, electronic, and thermal properties of indium-filled InxIr4Sb12 skutterudites

    NASA Astrophysics Data System (ADS)

    Wallace, M. K.; Li, Jun; Subramanian, M. A.

    2018-06-01

    The "phonon-glass/electron-crystal" approach has been implemented through incorporation of "rattlers" into skutterudite void sites to increase phonon scattering and thus increase the thermoelectric efficiency. Indium filled IrSb3 skutterudites are reported for the first time. Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2) were prepared by solid-state reaction under a gas mixture of 5% H2 and 95% Ar. The solubility limit of InxIr4Sb12 was found to be close to 0.18. Synchrotron X-ray diffraction refinements reveal all InxIr4Sb12 phases crystallized in body-centered cubic structure (space group : Im 3 bar) with ∼8% antimony site vacancy and with indium partially occupying the 16f site. Unlike known rattler filled skutterudites, under synthetic conditions employed, indium filling in IrSb3 significantly increases the electrical resistivity and decreases the Seebeck coefficient (n-type) while reducing the thermal conductivity by ∼30%. The resultant power factor offsets the decrease in total thermal conductivity giving rise to a substantial decrease in ZT. Principal thermoelectric properties of InxM4Sb12 (M = Co, Rh, Ir) phases are compared. As iridium is a 5d transition metal, zero field cooled (ZFC) magnetization were performed to unravel the effect of spin-orbit interaction on the electronic properties. These results serve to advance the understanding of filled skutterudites, and provide additional insight on the less explored smaller "rattlers" and their influence on key thermoelectric properties.

  18. Thermoregulation in multiple sclerosis.

    PubMed

    Davis, Scott L; Wilson, Thad E; White, Andrea T; Frohman, Elliot M

    2010-11-01

    Multiple sclerosis (MS) is a progressive neurological disorder that disrupts axonal myelin in the central nervous system. Demyelination produces alterations in saltatory conduction, slowed conduction velocity, and a predisposition to conduction block. An estimated 60-80% of MS patients experience temporary worsening of clinical signs and neurological symptoms with heat exposure. Additionally, MS may produce impaired neural control of autonomic and endocrine functions. This review focuses on five main themes regarding the current understanding of thermoregulatory dysfunction in MS: 1) heat sensitivity; 2) central regulation of body temperature; 3) thermoregulatory effector responses; 4) heat-induced fatigue; and 5) countermeasures to improve or maintain function during thermal stress. Heat sensitivity in MS is related to the detrimental effects of increased temperature on action potential propagation in demyelinated axons, resulting in conduction slowing and/or block, which can be quantitatively characterized using precise measurements of ocular movements. MS lesions can also occur in areas of the brain responsible for the control and regulation of body temperature and thermoregulatory effector responses, resulting in impaired neural control of sudomotor pathways or neural-induced changes in eccrine sweat glands, as evidenced by observations of reduced sweating responses in MS patients. Fatigue during thermal stress is common in MS and results in decreased motor function and increased symptomatology likely due to impairments in central conduction. Although not comprehensive, some evidence exists concerning treatments (cooling, precooling, and pharmacological) for the MS patient to preserve function and decrease symptom worsening during heat stress.

  19. Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface

    PubMed Central

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737

  20. Unsteady convection flow and heat transfer over a vertical stretching surface.

    PubMed

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  1. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage.

    PubMed

    Cui, Hongzhi; Liao, Wenyu; Memon, Shazim Ali; Dong, Biqin; Tang, Waiching

    2014-12-16

    In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35-36 °C, 55-56 °C and 72-74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55-56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.

  2. Ab initio study of the structural, electronic, elastic and thermal conductivity properties of SrClF with pressure effects

    NASA Astrophysics Data System (ADS)

    Lv, Zhen-Long; Cui, Hong-Ling; Wang, Hui; Li, Xiao-Hong; Ji, Guang-Fu

    2017-04-01

    SrClF is an important optical crystal and can be used as pressure gauge in diamond anvil cell at high pressure. In this work, we performed a systematic study on the structural, electronic and elastic properties of SrClF under pressure, as well as its thermal conductivity, by first-principles calculation. Different exchange-correlation functionals were tested and PBESOL was finally chosen to study these properties of SrClF. Studies reveal that SrClF has a bulk modulus of about 56.2 GPa (by fitting equation of states) or 54.3 GPa (derived from elastic constants), which agree well with the experimental result. SrClF is mechanically and dynamically stable up to 50 GPa. Its elastic constants increase with the applied pressure, but its mechanical anisotropy deteriorates as the pressure increases. Investigation of its electronic properties reveals that SrClF is a direct band-gap insulator with a gap value of 5.73 eV at 0 GPa, which decreases with the increasing pressure and the reason is found by analysing the partial density of states. Based on the calculated phonon dispersion curves, thermal conductivity of SrClF is predicated. At ambient conditions, the predicted thermal conductivity is about 3.74 Wm-1 K-1, while that obtained using the simplified Slack model give a slightly larger value of 4.62 Wm-1 K-1.

  3. Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism.

    PubMed

    Whittington, Alan G; Hofmeister, Anne M; Nabelek, Peter I

    2009-03-19

    The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between heating, increased thermal insulation and partial melting is predicted to occur in many tectonic settings, and in both the crust and the mantle, facilitating crustal reworking and planetary differentiation.

  4. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    NASA Astrophysics Data System (ADS)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae. Exfoliated graphite (EG) as a sole filler is more effective than carbon nanotube (SWCNT/MWCNT), halloysite nanotube (HNT) or nanoclay as sole fillers in enhancing the loss tangent, if the curing pressure is 2.0 (not 0.5) MPa. The MWCNT, SiC whisker and halloysite nanotube as sole fillers are effective for increasing the storage modulus. The combined use of a storage-modulus-enhancing filler (CNT, SiC whisker or HNT) and a loss-tangent-enhancing filler (EG or nanoclay) gives the best performance. With EG, HNT and 2.0-MPa curing, the loss modulus is increased by 110%, while the flexural strength is decreased by 14% and the flexural modulus is not affected. With nanoclay, HNT and 0.5-MPa curing, the loss modulus is increased by 96%, while the flexural strength and modulus are essentially not affected. The low through-thickness thermal conductivity limits heat dissipation from continuous carbon fiber polymer-matrix composites. This conductivity is increased by up to 60% by raising the curing pressure from 0.1 to 2.0 MPa and up to 33% by incorporation of a filler (61.5 vol.%) at the interlaminar interface. The thermal resistivity is dominated by the lamina resistivity (which is contributed substantially by the intralaminar fiber--fiber interfacial resistivity), with the interlaminar interface thermal resistivity being unexpectedly negligible. The lamina resistivity and intralaminar fiber-fiber interfacial resistivity are decreased by up to 56% by raising the curing pressure and up to 36% by filler incorporation. Thermoelectric structural materials are potentially attractive for large-scale energy harvesting. Through filler incorporation and unprecedented decoupling of the bulk (laminae) and interfacial (interlaminar interfaces) contributions to the Seebeck voltage (through-thickness Seebeck voltage of a crossply continuous carbon fiber/epoxy composite laminate), this work provides thermoelectric power magnitudes at ˜70°C up to 110, 1670 and 11000 microV/K for the laminate, a lamina and an interlaminar interface respectively. The interface provides an apparent thermoelectric effect due to carrier backflow. The interfacial voltage is opposite in sign from the laminate and lamina voltages and is slightly lower in magnitude than the lamina voltage. The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix structural composites has been greatly improved by the use of tellurium particles (13 vol.% of composite), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%) at the interlaminar interface. The thermoelectric power is increased from 8 to 163 microV/K, while the electrical resistivity is decreased from 0.17 to 0.02 O.cm, the thermal conductivity is decreased from 1.31 to 0.51 W/m.K, and the dimensionless thermoelectric figure of merit ZT at 70°C is increased from 9 x 10-6 to 9 x 10-2. Decrease in the curing pressure from 4.0 to 0.5 MPa decreases ZT slightly, mainly due to the increase in electrical resistivity.

  5. Fin-and-tube heat exchanger material and inlet velocity effect under frosting conditions

    NASA Astrophysics Data System (ADS)

    Keryakos, Elie; Toubassy, Joseph; Danlos, Amélie; Clodic, Denis; Descombes, Georges

    2017-02-01

    The frosting fin-and-tube heat exchanger used in this study is implemented in the dehydration process of a biogas upgrading pilot. Water is separated from the biogas by frosting it at very low temperatures on the cold surfaces of the fin-and-tube heat exchanger. Once frosted, a defrosting system is used to remove water from the process. The main interest of this study is the frosting system. The effects of the biogas velocity, fin material, tube material and frost layer thickness on the performance of the fin-and-tube heat exchanger are investigated. Increasing the biogas velocity tends to increase the frosting layer thickness and the external pressure drop. This will lead to decrease the heat exchanger performance and the frosting cycle duration. The thermal conductivity of the fins and tubes has a major effect on the performance of the heat exchanger. Higher thermal conductivity decreases the heat exchanged surface. A numerical model has been developed, then numerical and experimental results extracted from a biogas upgrading pilot are compared.

  6. Characterisation of the thermally stimulated conductivity and thermoluminescence of natural topaz.

    PubMed

    Yukihara, E G; McKeever, S W S; Okuno, E; Yoshimura, E M

    2002-01-01

    Thermally stimulated conductivity (TSC) and thermoluminescence (TL) measurements were conducted to investigate the mechanisms of charge transfer and luminescence emission in natural samples of Brazilian topaz irradiated with beta particles from a 90Sr/90Y source or with a 1.75 MeV Van de Graaff electron beam. The luminescence and conductivity were simultaneously monitored during the heating of the samples, allowing direct comparison of the TL and TSC peaks. The results show that the three main TL peaks are accompanied by corresponding TSC peaks, usually shifted to higher temperatures. Comparison of the relative TL/TSC intensities of peaks 2 and 3 indicates that the process of thermal quenching of the luminescence is probably active, which is also supported by TL/TSC measurements at different heating rates. Results on the dose response of TL/TSC peaks also reveal an interesting feature: the TL intensity shows a monotonic increase with dose in the range of study (50 Gy-3 kGy) comprising a linear-supralinear-saturation characteristic, while the TSC peaks exhibit an increase from 50 Gy to 1 kGy, followed by a small decrease for doses greater than 1 kGy. This result is interpreted in terms of a model involving multiple traps and one recombination centre.

  7. Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity.

    PubMed

    Zhang, Hemin; Tsuchiya, Takashi; Liang, Changhao; Terabe, Kazuya

    2015-08-12

    Nanoscaled ionic conductors are crucial for future nanodevices. A well-known ionic conductor, AgI, exhibited conductivity greater than 1 Ω(-1) cm(-1) in α-phase and transformed into poorly conducting β-/γ-phase below 147 °C, thereby limiting applications. Here, we report that transition temperatures both from the β-/γ- to α-phase (Tc↑) and the α- to β-/γ-phase (Tc↓) are tuned by AgI/Ag heteronanowires embedded in anodic aluminum oxide (AAO) membranes with 10-30 nm pores. Tc↑ and Tc↓ shift to correspondingly higher and lower temperature as pore size decreases, generating a progressively enlarged thermal hysteresis. Tc↑ and Tc↓ specifically achieve 185 and 52 °C in 10 nm pores, and the final survived conductivity reaches ∼8.3 × 10(-3) Ω(-1) cm(-1) at room temperature. Moreover, the low-temperature stabilizing α-phase (down to 21 °C, the lowest in state of the art temperatures) is reproducible and survives further thermal cycling. The low-temperature phase stabilization and enhancement conductivity reported here suggest promising applications in silver-ion-based future nanodevices.

  8. Basic principles for rational design of high-performance nanostructured silicon-based thermoelectric materials.

    PubMed

    Yang, Chun Cheng; Li, Sean

    2011-12-23

    Recently, nanostructured silicon-based thermoelectric materials have drawn great attention owing to their excellent thermoelectric performance in the temperature range around 450 °C, which is eminently applicable for concentrated solar thermal technology. In this work, a unified nanothermodynamic model is developed to investigate the predominant factors that determine the lattice thermal conductivity of nanocrystalline, nanoporous, and nanostructured bulk Si. A systematic study shows that the thermoelectric performance of these materials can be substantially enhanced by the following three basic principles: 1) artificial manipulation and optimization of roughness with surface/interface patterning/engineering; 2) grain-size reduction with innovative fabrication techniques in a controllable fashion; and 3) optimization of material parameters, such as bulk solid-vapor transition entropy, bulk vibrational entropy, dimensionality, and porosity, to decrease the lattice thermal conductivity. These principles may be used to rationally design novel nanostructured Si-based thermoelectric materials for renewable energy applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novascone, Stephen Rhead; Peterson, John William

    Abstract This report documents the progress of simulating pore migration in ceramic (UO 2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-diffusion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of themore » fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.« less

  10. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  11. Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity.

    PubMed

    An, Cheng Jin; Kang, Young Hun; Lee, A-Young; Jang, Kwang-Suk; Jeong, Youngjin; Cho, Song Yun

    2016-08-31

    We suggest the fabrication of foldable thermoelectric (TE) materials by embedding conducting polymers into Au-doped CNT webs. The CNT bundles, which are interconnected by a direct spinning method to form 3D networks without interfacial contact resistance, provide both high electrical conductivity and high carrier mobility. The ZT value of the spun CNT web is significantly enhanced through two simple processes. Decorating the porous CNT webs with Au nanoparticles increases the electrical conductivity, resulting in an optimal ZT of 0.163, which represents a more than 2-fold improvement compared to the ZT of pristine CNT webs (0.079). After decoration, polyaniline (PANI) is integrated into the Au-doped CNT webs both to improve the Seebeck coefficient by an energy-filtering effect and to decrease the thermal conductivity by the phonon-scattering effect. This leads to a ZT of 0.203, which is one of the highest ZT values reported for organic TE materials. Moreover, Au-doped CNT/PANI web is ultralightweight, free-standing, thermally stable, and mechanically robust, which makes it a viable candidate for a hybrid TE conversion device for wearable electronics. When a 20 K temperature gradient is applied to the TE module consisting of seven p-n couples, 1.74 μW of power is generated.

  12. Spin-Current-Controlled Modulation of the Magnon Spin Conductance in a Three-Terminal Magnon Transistor.

    PubMed

    Cornelissen, L J; Liu, J; van Wees, B J; Duine, R A

    2018-03-02

    Efficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The magnon spin conductance of the channel is altered by increasing or decreasing the magnon chemical potential via spin Hall injection of magnons by a third modulator electrode. We obtain a modulation efficiency of 1.6%/mA at T=250  K. Finite element modeling shows that this could be increased to well above 10%/mA by reducing the thickness of the channel, providing interesting prospects for the development of thermal-magnon-based logic circuits.

  13. Temperature-induced changes in neuromuscular function: central and peripheral mechanisms.

    PubMed

    Goodman, D; Hancock, P A; Runnings, D W; Brown, S L

    1984-10-01

    Three series of experimental tests were conducted on subjects under both elevated and depressed thermal conditions. Tripartite series consisted of whole-body immersion excepting the head, whole-body immersion excepting the head and response limb, and immersion of the discrete-response limb. Measures of physiological and behavioural responses were made at sequential .4 degrees C changes during whole-body immersions and approximately 5 degrees C changes of water temperature during the immersion of a limb only. Results suggested that velocity of nerve conduction decreased with thermal depression. Premotor, motor, simple, and choice reaction times varied differentially as a function of the hot and cold conditions. Implications of these differential effects on neuromuscular function are examined with respect to person-machine performance in artificially induced or naturally occurring extremes of ambient temperature.

  14. High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite

    NASA Astrophysics Data System (ADS)

    Suekuni, Koichiro; Tsuruta, Kojiro; Kunii, Masaru; Nishiate, Hirotaka; Nishibori, Eiji; Maki, Sachiko; Ohta, Michihiro; Yamamoto, Atsushi; Koyano, Mikio

    2013-01-01

    X-ray structural analysis and high-temperature thermoelectric properties measurements are performed on polycrystalline samples of artificial mineral Cu12-xNixSb4S13 tetrahedrite. Analysis of the atomic displacement parameter manifests low-energy vibration of Cu(2) out of CuS3 triangle plane. The vibration results in low lattice thermal conductivity of less than 0.5 W K-1 m-1. By tuning of the Ni composition x and decrease of electronic thermal conductivity, dimensionless thermoelectric figure of merit for x = 1.5 achieves 0.7 at 665 K, which is a considerably high value among p-type Pb-free sulfides. Because the tetrahedrite is an environmentally friendly material, it constitutes a good thermoelectric material for use in support of a sustainable society.

  15. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling

    NASA Astrophysics Data System (ADS)

    Ren, Zongqing; Lee, Jaeho

    2018-01-01

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  16. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.

    PubMed

    Ren, Zongqing; Lee, Jaeho

    2018-01-26

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  17. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium.

    PubMed

    Zhang, Qian; Cao, Feng; Lukas, Kevin; Liu, Weishu; Esfarjani, Keivan; Opeil, Cyril; Broido, David; Parker, David; Singh, David J; Chen, Gang; Ren, Zhifeng

    2012-10-24

    Group IIIA elements (B, Ga, In, and Tl) have been doped into PbSe for enhancement of thermoelectric properties. The electrical conductivity, Seebeck coefficient, and thermal conductivity were systematically studied. Room-temperature Hall measurements showed an effective increase in the electron concentration upon both Ga and In doping and the hole concentration upon Tl doping to ~7 × 10(19) cm(-3). No resonant doping phenomenon was observed when PbSe was doped with B, Ga, or In. The highest room-temperature power factor ~2.5 × 10(-3) W m(-1) K(-2) was obtained for PbSe doped with 2 atom % B. However, the power factor in B-doped samples decreased with increasing temperature, opposite to the trend for the other dopants. A figure of merit (ZT) of ~1.2 at ~873 K was achieved in PbSe doped with 0.5 atom % Ga or In. With Tl doping, modification of the band structure around the Fermi level helped to increase the Seebeck coefficient, and the lattice thermal conductivity decreased, probably as a result of effective phonon scattering by both the heavy Tl(3+) ions and the increased grain boundary density after ball milling. The highest p-type ZT value was ~1.0 at ~723 K.

  18. Conductive pathway on cotton fabric created using solution with silver organometallic compound

    NASA Astrophysics Data System (ADS)

    Campbell, Eric E.; He, Ruijian; Mayer, Michael

    2017-10-01

    A knitted cotton fabric is made conductive by thermal deposition of an organometallic silver compound (OSC). For the thermal process, the fabric was soaked with the OSC liquid and heated to 225 °C for 4 min. The cured state of the OSC is determined by the stabilization in the electrical resistance. The resulting silver metallization is shaped as nanoparticles and a continuous film. A typical resistance of a 10 cm  ×  1.5 cm metallized strip made with 1.9 ml OSC is 1.70 Ω. Various other resistance levels were achieved. A higher volume of OSC provided a lower electrical resistance for the metallized conductive path but increased its stiffness. Lower resistance was achieved by increasing the number of repeat coatings while keeping the OSC volume constant. The resistance decreased when the OSC coated fabric was elongated, an effect similar to negative piezoresistivity. A resistance of initially 0.34 Ω decreased to a minimum of 0.29 Ω at 10% elongation under repeated stretching and relaxation cycling. The metallization method reported here can be suitable for applications in the field know as technical textiles, electronic textiles (e-textiles), wearable electronics, functional garments, or smart fabrics.

  19. Thermal expansion anomaly regulated by entropy.

    PubMed

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-11-13

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  20. Thermal Expansion Anomaly Regulated by Entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Kui; Wang, Yi; Shang, Shunli

    2014-11-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  1. Electronic structure and thermoelectric transport properties of the golden Th{sub 2}S{sub 3}-type Ti{sub 2}O{sub 3} under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Bin, E-mail: hnsqxubin@163.com; Gao, Changzheng; Zhang, Jing

    2016-05-15

    A lot of physical properties of Th{sub 2}S{sub 3}-type Ti{sub 2}O{sub 3} have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30 GPa to 35 GPa, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease withmore » increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.« less

  2. Thermal behavior modeling of a cabinet direct solar dryer as influenced by sensible heat storage in a fractured porous medium

    NASA Astrophysics Data System (ADS)

    Sandali, Messaoud; Boubekri, Abdelghani; Mennouche, Djamel

    2018-05-01

    Numerical simulation method has been employed to improve the thermal performance of cabinet direct solar dryer. The present study focused on the numerical simulation of a direct solar dryer with integration of a flat layer of fractured porous medium above the absorber plate in the aim to store thermal energy by sensible heat. Several calculations were conducted, using the finite volume method with a two-dimensional unsteady model implemented in the Fluent CFD software. The porous medium has been integrated with different thickness to show the influence of the medium thickness on the thermal performance of solar dryer. Different kinds of materials have been tested and studied. The effect of porosity of porous medium has been studied. The obtained results showed that the temperature of drying air is increased by 4°C with integration of porous medium. The increasing in the thickness of the porous medium by 1cm leads to increase the temperature of drying air by 2°C. The increasing of the medium porosity by 10% leads to decrease the temperature of drying air by 1°C. The best material is the one that has a highest specific heat and thermal conductivity.

  3. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  4. New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications

    NASA Technical Reports Server (NTRS)

    Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.

    2000-01-01

    New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.

  5. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics.

    PubMed

    Lin, Keng-Hua; Strachan, Alejandro

    2015-07-21

    Motivated by significant interest in metal-semiconductor and metal-insulator interfaces and superlattices for energy conversion applications, we developed a molecular dynamics-based model that captures the thermal transport role of conduction electrons in metals and heat transport across these types of interface. Key features of our model, denoted eleDID (electronic version of dynamics with implicit degrees of freedom), are the natural description of interfaces and free surfaces and the ability to control the spatial extent of electron-phonon (e-ph) coupling. Non-local e-ph coupling enables the energy of conduction electrons to be transferred directly to the semiconductor/insulator phonons (as opposed to having to first couple to the phonons in the metal). We characterize the effect of the spatial e-ph coupling range on interface resistance by simulating heat transport through a metal-semiconductor interface to mimic the conditions of ultrafast laser heating experiments. Direct energy transfer from the conduction electrons to the semiconductor phonons not only decreases interfacial resistance but also increases the ballistic transport behavior in the semiconductor layer. These results provide new insight for experiments designed to characterize e-ph coupling and thermal transport at the metal-semiconductor/insulator interfaces.

  6. Thermal properties of composite materials : effective conductivity tensor and edge effects

    NASA Astrophysics Data System (ADS)

    Matine, A.; Boyard, N.; Cartraud, P.; Legrain, G.; Jarny, Y.

    2012-11-01

    The homogenization theory is a powerful approach to determine the effective thermal conductivity tensor of heterogeneous materials such as composites, including thermoset matrix and fibres. Once the effective properties are calculated, they can be used to solve a heat conduction problem on the composite structure at the macroscopic scale. This approach leads to good approximations of both the heat flux and temperature in the interior zone of the structure, however edge effects occur in the vicinity of the domain boundaries. In this paper, following the approach proposed in [10] for elasticity, it is shown how these edge effects can be corrected. Thus an additional asymptotic expansion is introduced, which plays the role of a edge effect term. This expansion tends to zero far from the boundary, and is assumed to decrease exponentially. Moreover, the length of the edge effect region can be determined from the solution of an eigenvalue problem. Numerical examples are considered for a standard multilayered material. The homogenized solutions computed with a finite element software, and corrected with the edge effect terms, are compared to a heterogeneous finite element solution at the microscopic scale. The influences of the thermal contrast and scale factor are illustrated for different kind of boundary conditions.

  7. High temperature XRD of Cu2GeSe3

    NASA Astrophysics Data System (ADS)

    Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra

    2015-06-01

    The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

  8. Charge Transport and Thermoelectric Properties of (Nd1- z Yb z ) y Fe4- x Co x Sb12 Skutterudites

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Kil; Jang, Kyung-Wook; Choi, Soon-Mok; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho

    2018-06-01

    Partially double-filled (Nd1- z Yb z ) y Fe4- x Co x Sb12 ( z = 0.25, 0.75, y = 0.8, and x = 0, 0.5, 1.0) skutterudites were prepared by encapsulated melting, annealing, and hot pressing, and the effects of Nd/Yb partial double filling and Co charge compensation on the microstructure, charge transport, and thermoelectric properties were investigated. All the specimens were transformed to the skutterudite phase together with a few secondary phases such as FeSb2, but FeSb2 formation was suppressed on increasing Co content. Nd and Yb were successfully double-filled in the voids of the skutterudite lattice and Co was well substituted at Fe sites, as indicated by changes in the lattice constant with Nd/Yb filling and Fe/Co substitution. All the specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at temperatures from 323 K to 823 K, and the charge transport properties depended on the filling ratio of Nd and Yb because of the difference between the valencies of Nd and Yb. The electrical conductivity decreased and the Seebeck coefficient increased owing to a decrease in the carrier concentration with increasing Co content. The lattice thermal conductivity decreased because phonon scattering was enhanced by Nd and Yb partial double filling, but partially double-filled specimens did not exhibit a further significant reduction in the lattice thermal conductivity compared with the completely double-filled specimens. A maximum ZT of 0.83 was obtained for (Nd0.75Yb0.25)0.8Fe3CoSb12 at 723 K.

  9. Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.

    2014-03-01

    The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.

  10. A Comparative Study of Thermal Conductivity and Tribological Behavior of Squeeze Cast A359/AlN and A359/SiC Composites

    NASA Astrophysics Data System (ADS)

    Shalaby, Essam. A. M.; Churyumov, Alexander. Yu.; Besisa, Dina. H. A.; Daoud, A.; Abou El-khair, M. T.

    2017-07-01

    A comparative study of thermal and wear behavior of squeeze cast A359 alloy and composites containing 5, 10 and 15 wt.% AlN and SiC particulates was investigated. It was pointed out that A359/AlN composites have a superior thermal conductivity as compared to A359 alloy or even to A359/SiC composites. Composites wear characteristics were achieved by pins-on-disk instrument over a load range of 20-60 N and a sliding speed of 2.75 m/s. Results showed that A359/AlN and A359/SiC composites exhibited higher wear resistance values compared to A359 alloy. Moreover, A359/AlN composites showed superior values of wear resistance than A359/SiC composites at relatively high loads. Friction coefficients and contact surface temperature for A359/AlN specimens decreased as AlN content increased, while they increased for A359/SiC. Investigations of worn surfaces revealed that A359/AlN composites were covered up by aluminum nitrides and iron oxides, which acted as smooth layers. However, A359/SiC composites were mainly covered only by iron oxides. The superior thermal conductivity and the significant wear resistance of the developed A359/AlN composites provided a high durable material suitable for industrial applications.

  11. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    PubMed

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  12. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.

    PubMed

    Khadem, Masoud H; Wemhoff, Aaron P

    2013-02-28

    Non-equilibrium molecular dynamics (NEMD) simulations are used to investigate the thermal conductivity of herringbone graphite nanofibers (GNFs) at room temperature by breaking down the axial and transverse conductivity values into intralayer and interlayer components. The optimized Tersoff potential is used to account for intralayer carbon-carbon interactions while the Lennard-Jones potential is used to model the interlayer carbon-carbon interactions. The intralayer thermal conductivity of the graphene layers near room temperature is calculated for different crease angles and number of layers using NEMD with a constant applied heat flux. The edge effect on a layer's thermal conductivity is investigated by computing the thermal conductivity values in both zigzag and armchair directions of the heat flow. The interlayer thermal conductivity is also predicted by imposing hot and cold Nosé-Hoover thermostats on two layers. The limiting case of a 90° crease angle is used to compare the results with those of single-layer graphene and few-layer graphene. The axial and transverse thermal conductivities are then calculated using standard trigonometric conversions of the calculated intralayer and interlayer thermal conductivities, along with calculations of few-layer graphene without a crease. The results show a large influence of the crease angle on the intralayer thermal conductivity, and the saturation of thermal conductivity occurs when number of layers is more than three. The axial thermal conductivity, transverse thermal conductivity in the crease direction, and transverse thermal conductivity normal to the crease for the case of a five-layer herringbone GNF with a 45° crease angle are calculated to be 27 W∕m K, 263 W∕m K, and 1500 W∕m K, respectively, where the axial thermal conductivity is in good agreement with experimental measurements.

  13. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites.

    PubMed

    Liao, Quanwen; Liu, Zhichun; Liu, Wei; Deng, Chengcheng; Yang, Nuo

    2015-11-10

    The ultra-low thermal conductivity of bulk polymers may be enhanced by combining them with high thermal conductivity materials such as carbon nanotubes. Different from random doping, we find that the aligned carbon nanotube-polyethylene composites has a high thermal conductivity by non-equilibrium molecular dynamics simulations. The analyses indicate that the aligned composite not only take advantage of the high thermal conduction of carbon nanotubes, but enhance thermal conduction of polyethylene chains.

  14. Transient thermal analysis during friction stir welding between AA2014-T6 and pure copper

    NASA Astrophysics Data System (ADS)

    Gadhavi, A. R.; Ghetiya, N. D.; Patel, K. M.

    2018-04-01

    AA2xxx-Cu alloys showed larger applications in the defence sectors and in aerospace industries due to high strength to weight ratio and toughness. FSW in a butt joint configuration was carried out between AA2014-T6 and pure Copper placing AA2014 on AS and Cu on RS. Temperature profiles were observed by inserting K-type thermocouples in the mid-thickness at various locations of the plate. A sharp decrease in temperature profiles was observed on Copper side due to its higher thermal conductivity. A thermal numerical model was prepared in ANSYS to compare the simulated temperature profiles with the experimental temperature profiles and both the temperature profiles were found to be in good agreement.

  15. Effect of heat wave at the initial stage in spark plasma sintering.

    PubMed

    Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan

    2016-01-01

    Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering.

  16. Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization

    NASA Technical Reports Server (NTRS)

    Moeller, Timothy M.; Wilhite, Alan W.; Liles, Kaitlin A.

    2014-01-01

    Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately.

  17. Investigation on Prototype Superconducting Linear Synchronous Motor (LSM) for 600-km/h Wheel-Type Railway

    NASA Astrophysics Data System (ADS)

    Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon

    The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.

  18. Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers

    PubMed Central

    Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo

    2016-01-01

    Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644

  19. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. Copyright © 2016 the American Physiological Society.

  20. Characterization of Lorenz number with Seebeck coefficient measurement

    DOE PAGES

    Kim, Hyun -Sik; Gibbs, Zachary M.; Tang, Yinglu; ...

    2015-04-01

    In analyzing zT improvements due to lattice thermal conductivity (κ L ) reduction, electrical conductivity (σ) and total thermal conductivity (κ Total ) are often used to estimate the electronic component of the thermal conductivity (κ E ) and in turn κ L from κ L = ~ κ Total - LσT. The Wiedemann-Franz law, κ E = LσT, where L is Lorenz number, is widely used to estimate κ E from σ measurements. It is a common practice to treat L as a universal factor with 2.44 × 10⁻⁸ WΩK⁻² (degenerate limit). However, significant deviations from the degenerate limitmore » (approximately 40% or more for Kane bands) are known to occur for non-degenerate semiconductors where L converges to 1.5 × 10⁻⁸ WΩK⁻² for acoustic phonon scattering. The decrease in L is correlated with an increase in thermopower (absolute value of Seebeck coefficient (S)). Thus, a first order correction to the degenerate limit of L can be based on the measured thermopower, |S|, independent of temperature or doping. We propose the equation: (where L is in 10⁻⁸ WΩK⁻² and S in μV/K) as a satisfactory approximation for L. This equation is accurate within 5% for single parabolic band/acoustic phonon scattering assumption and within 20% for PbSe, PbS, PbTe, Si₀.₈Ge₀.₂ where more complexity is introduced, such as non-parabolic Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of this equation for L rather than a constant value (when detailed band structure and scattering mechanism is not known) will significantly improve the estimation of lattice thermal conductivity. L = 1.5 + exp [-|S|116]« less

  1. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  2. Optimization and Analysis of Thermoelectric Properties of Unfilled Co(1-x-y)Ni(x)Fe(y)Sb3 Synthesized via a Rapid Hydrothermal Procedure.

    PubMed

    Gharleghi, Ahmad; Chu, Yu-Hsien; Lin, Fei-Hung; Yang, Zong-Ren; Pai, Yi-Hsuan; Liu, Chia-Jyi

    2016-03-02

    A series of nanostructured co-doped Co(1-x-y)Ni(x)Fe(y)Sb3 were fabricated using a rapid hydrothermal method at 170 °C for a duration of 12 h, followed by evacuated-and-encapsulated heating at 580 °C for a short period of 5 h. The resulting samples were characterized using powder X-ray diffraction, field emission scanning electron microscopy, bulk density, electronic and thermal transport measurements. The power factor of Co(1-x-y)Ni(x)Fe(y)Sb3 is significantly enhanced in the high-temperature region due to significant enhancement of the electrical conductivity and absolute value of thermopower. The latter arises from the onset of bipolar effect being shifted to higher temperatures as compared with the non-doped CoSb3. The room temperature thermal conductivity falls in the range between 1.22 and 1.67 W m(-1) K(-1) for Co(1-x-y)Ni(x)Fe(y)Sb3. The thermal conductivity of both the (x,y) = (0.14,10) and (0.14,12) samples is measured up to 600 K and found to decrease with increasing temperature. The thermal conductivity of the (0.14,10) sample goes down to ∼1.02 W m(-1) K(-1). As a result, zT = 0.68 is attained at 600 K. The lattice thermal conductivity is analyzed to gain insight into the contribution of various scattering processes that suppress the heat transfer through the phonons in Co(1-x-y)Ni(x)Fe(y)Sb3. The effect of the simultaneous presence of Co, Ni, and Fe elements on the electronic structure and transport properties of Co(1-x-y)Ni(x)Fe(y)Sb3 is described using the quantum mechanical tunneling theory of electron transmission among the potential barriers.

  3. On the relation between the peak frequency and the corresponding rise time of solar microwave impulsive bursts and the height dependence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Ren-Yang, Zhao; Magun, Andreas; Schanda, Erwin

    1990-12-01

    In the present paper we report the results of a correlation analysis for 57 microwave impulsive bursts observed at six frequencies in which we have obtained a regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts: {ie361-01} (with a correlation coefficient of - 0.43). This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f p on t r . This decrease of magnetic field with height in burst sources is based on the relationship between f p and t r found by assuming a thermal flare model with a collisionless conduction front.

  4. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  5. Heat loss and hypothermia in free diving: Estimation of survival time under water

    NASA Astrophysics Data System (ADS)

    Aguilella-Arzo, Marcel; Alcaraz, Antonio; Aguilella, Vicente M.

    2003-04-01

    The heat exchange between a diver and the colder surrounding water is analyzed on the basis of the fundamental equations of thermal transport. To estimate the decrease in the diver's body temperature as a function of time, we discuss the complex interplay of several factors including the body heat production rate, the role of the diver's wet suit, and the way different heat exchange mechanisms (conduction, convection, and radiation) contribute to thermal transport. This knowledge could be useful to prevent physiological disorders that occur when the human body temperature drops below 35 °C.

  6. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  7. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete.

    PubMed

    Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo

    2017-02-23

    Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing-thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  8. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    PubMed Central

    Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo

    2017-01-01

    Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation. PMID:28772580

  9. Thermal conductivity model for nanofiber networks

    NASA Astrophysics Data System (ADS)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  10. Thermal conductivity model for nanofiber networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network ismore » revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.« less

  11. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  12. Influence of defects and doping on phonon transport properties of monolayer MoSe2

    NASA Astrophysics Data System (ADS)

    Yan, Zhequan; Yoon, Mina; Kumar, Satish

    2018-07-01

    The doping of monolayer MoSe2 by tungsten (W) can suppress the Se vacancy concentration, but how doping and resulting change in defect concentration can tune its thermal properties is not understood yet. We use first-principles density functional theory (DFT) along with the phonon Boltzmann transport equation (BTE) to study the phonon transport properties of pristine MoSe2 and W doped MoSe2 with and without the presence of Se vacancies. We found that for samples without Se vacancy, the W doping could enhance the thermal transport of monolayer MoSe2 due to reduced three-phonon scattering phase space. For example, we observed that the 16.7% W doping increases the thermal conductivity of the monolayer MoSe2 with 2% Se vacancy by 80% if all vacancies can be suppressed by W-doping. However, the W doping in the defective MoSe2 amplifies the influence of the phonon scattering caused by the Se vacancies, which results in a further decrease in thermal conductivity of monolayer MoSe2 with defects. This is found to be related with higher phonon density of states of Mo0.83W0.17Se2 and larger mass difference between W and Se atoms compared to Mo and Se atoms. This study deciphers the effect of defects and doping on the thermal conductivity of monolayer MoSe2, which helps us understand the mechanism of defect-induced phonon transport, and provides insights into enhancing the heat dissipation in MoSe2-based electronic devices.

  13. Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhao, Jianjian; Hu, Dawei; Skoczylas, Frederic; Shao, Jianfu

    2018-03-01

    High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson's ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic-plastic behavior.

  14. Revisiting the block method for evaluating thermal conductivities of clay and granite

    USDA-ARS?s Scientific Manuscript database

    Determination of thermal conductivities of porous media using the contact method is revisited and revalidated with consideration of thermal contact resistance. Problems that limit the accuracy of determination of thermal conductivities of porous media are discussed. Thermal conductivities of granite...

  15. Heterogeneous in-situ nanostructure contributes to the thermoelectric performance of Zn{sub 4}Sb{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jianping; Ma, Lingzhi; Yang, Baifeng

    Single-phase Zn{sub 4}Sb{sub 3} and ZnSb-containing samples were prepared by Plasma Activated Sintering. An abrupt decrease of thermal conductivity was found at about 400 K, which is attributed to the microstructure change of Zn{sub 4}Sb{sub 3}. Nanoscale inclusions and compositional inhomogeneities were found in Zn{sub 4}Sb{sub 3} sample at 473 K by high-resolution transmission electron microscopy. The phonon scattering is enhanced by increasing grain boundaries and chaotic structure, which reduces the thermal conductivity and increases the thermoelectric performance of Zn{sub 4}Sb{sub 3} at elevated temperature. The Rietveld refinement results show that large ZnSb grains in ZnSb-containing samples will accommodate excessmore » Zn atoms, and then reduce thermoelectric performance.« less

  16. Optical and thermal simulation for wide acceptance angle CPV module

    NASA Astrophysics Data System (ADS)

    Ahmad, Nawwar; Ota, Yasuyuki; Araki, Kenji; Lee, Kan-Hua; Yamaguchi, Masafumi; Nishioka, Kensuke

    2017-09-01

    Concentrator photovoltaic (CPV) technology has the potential to decrease the cost of systems in the near future by using less expensive optical elements in the system which replace the receiving surface aperture and concentrate the sunlight onto small solar cells. One of the main concerns of CPV is the need for high precision tracking system and the relation to the acceptance angle. In this paper, we proposed a CPV module with concentration ratio larger than 100 times and wide acceptance angle. An optical simulation for the module with S-TIM2 glass as a lens material was conducted to estimate the optical performance of the module. Thermal and electrical simulation was also conducted using COMSOL Multiphysics and SPICE respectively to evaluate the working temperature and electrical characteristics of the multijunction solar cell under concentration conditions.

  17. Electrothermal DC characterization of GaN on Si MOS-HEMTs

    NASA Astrophysics Data System (ADS)

    Rodríguez, R.; González, B.; García, J.; Núñez, A.

    2017-11-01

    DC characteristics of AlGaN/GaN on Si single finger MOS-HEMTs, for different gate geometries, have been measured and numerically simulated with substrate temperatures up to 150 °C. Defect density, depending on gate width, and thermal resistance, depending additionally on temperature, are extracted from transfer characteristics displacement and the AC output conductance method, respectively, and modeled for numerical simulations with Atlas. The thermal conductivity degradation in thin films is also included for accurate simulation of the heating response. With an appropriate methodology, the internal model parameters for temperature dependencies have been established. The numerical simulations show a relative error lower than 4.6% overall, for drain current and channel temperature behavior, and account for the measured device temperature decrease with the channel length increase as well as with the channel width reduction, for a set bias.

  18. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGES

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; ...

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less

  19. Physical Properties of Pyridinium Fluorohydrogenate, [pyridine · H+][H2F3]-

    NASA Astrophysics Data System (ADS)

    Hulse, Ryan; Singh, Rajiv

    2008-12-01

    Ionic liquids (ILs), also referred to as molten salts, have found application as electrolytes for batteries and super-capacitors, in electroplating baths, as designer solvents, and as reaction media. A few of the desired properties of a super-capacitor electrolyte are nonflammability, thermal stability, and electrochemical stability. ILs containing aromatic cations have been shown to have low viscosity which results in a high electrochemical conductivity. There is a delicate balance between increasing the thermal stability, or decreasing the melting point, and increasing the electrochemical conductivity of the IL. This study focuses on pyridinium fluorohydrogenate, [pyridine · H+][H2F3]-. Pyridinium fluorohydrogenate has been synthesized by the reaction of pyridine and anhydrous hydrofluoric acid. This IL has a relatively high electrical conductivity (~98 mS · cm-1 at 23 °C), a wide electrochemical window, and a boiling point of 186 °C. A stable gel can also be formed by combining [pyridine · H+][H2F3]- and a super absorbent polymer such as polyacrylic acid. The gel adds mechanical stability to the matrix while not greatly affecting the conductivity of the IL.

  20. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.

    PubMed

    Han, Haoxue; Mérabia, Samy; Müller-Plathe, Florian

    2017-05-04

    The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.

Top