DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials
NASA Technical Reports Server (NTRS)
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.
Smith, J. C.; Pribram-Jones, A.; Burke, K.
2016-06-14
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J. C.; Pribram-Jones, A.; Burke, K.
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
Dimitrijevic, I M; Kocic, M N; Lazovic, M P; Mancic, D D; Marinkovic, O K; Zlatanovic, D S
2016-08-01
Lumbosacral radiculopathy is a pathological process that refers to the dysfunction of one or more spinal nerve roots in the lumbosacral region of the spine. Some studies have shown that infrared thermography can estimate the severity of the clinical manifestation of unilateral lumbosacral radiculopathy. This study aimed to examine the correlation of the regional thermal deficit of the affected lower extremity with pain intensity, mobility of the lumbar spine, and functional status in patients with unilateral lumbosacral radiculopathy. This cross-sectional study was conducted at the Clinic for Physical Medicine and Rehabilitation of the Clinical Center Niš, Serbia. A total of 69 patients with unilateral lumbosacral radiculopathy of discogenic origin were recruited, with the following clinical parameters evaluated: (1) pain intensity by using a visual analogue scale, separately at rest and during active movement; (2) mobility of the lumbar spine by Schober test and the fingertip-to-floor test; and (3) functional status by the Oswestry Disability Index. Temperature differences between the symmetrical regions of the lower extremities were detected by infrared thermography. A quantitative analysis of thermograms determined the regions of interest with maximum thermal deficit. Correlation of maximum thermal deficit with each tested parameter was then determined. A significant and strong positive correlation was found between the regional thermal deficit and pain intensity at rest, as well as pain during active movements (rVAS - rest=0.887, rVAS - activity=0.890; P<0.001). The regional thermal deficit significantly and strongly correlated with the Oswestry Disability Index score and limited mobility of the lumbar spine (P<0.001). In patients with unilateral lumbosacral radiculopathy, the values of regional thermal deficit of the affected lower extremity are correlated with pain intensity, mobility of the lumbar spine, and functional status of the patient.
Thermal noise in confined fluids.
Sanghi, T; Aluru, N R
2014-11-07
In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.
Thermal noise in confined fluids
NASA Astrophysics Data System (ADS)
Sanghi, T.; Aluru, N. R.
2014-11-01
In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.
Two-time correlation function of an open quantum system in contact with a Gaussian reservoir
NASA Astrophysics Data System (ADS)
Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki
2018-05-01
An exact formula of a two-time correlation function is derived for an open quantum system which interacts with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is shown that the two-time correlation function up to the first order is a good approximation to the exact one.
Entanglement properties of boundary state and thermalization
NASA Astrophysics Data System (ADS)
Guo, Wu-zhong
2018-06-01
We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.
Double-time correlation functions of two quantum operations in open systems
NASA Astrophysics Data System (ADS)
Ban, Masashi
2017-10-01
A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.
Thermal form-factor approach to dynamical correlation functions of integrable lattice models
NASA Astrophysics Data System (ADS)
Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Kozlowski, Karol K.; Suzuki, Junji
2017-11-01
We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.
Partial Thermalization of Correlations in pA and AA collisionss
NASA Astrophysics Data System (ADS)
Gavin, Sean; Moschelli, George; Zin, Christopher
2017-09-01
Correlations born before the onset of hydrodynamic flow can leave observable traces on the final state particles. Measurement of these correlations can yield important information on the isotropization and thermalization process. Starting with Israel-Stewart hydrodynamics and Boltzmann-like kinetic theory in the presence of dynamic Langevin noise, we derive new partial differential equations for two-particle correlation functions. To illustrate how these equations can be used, we study the effect of thermalization on long range correlations. We show quite generally that two particle correlations at early times depend on S, the average probability that a parton suffers no interactions. We extract S from transverse momentum fluctuations measured in Pb+Pb collisions and predict the degree of partial thermalization in pA experiments. NSF-PHY-1207687.
Black holes from large N singlet models
NASA Astrophysics Data System (ADS)
Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico
2018-03-01
The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.
Thermal modifications of charmonia and bottomonia from spatial correlation functions
NASA Astrophysics Data System (ADS)
Ding, Heng-Tong; Kaczmarek, Olaf; Kruse, Anna-lena; Mukherjee, Swagato; Ohno, Hiroshi; Sandmeyer, Hauke; Shu, Hai-Tao
2018-03-01
We present our study on the thermal modifications of charmonia and bottomonia from spatial correlation functions at zero and nonzero momenta in quenched QCD. To accommodate the heavy quarks on the lattice we performed simulations on very fine lattices at a fixed beta value corresponding to a lattice spacing a-1 = 22:8 GeV on 1923×32, 1923 × 48, 1923 × 56, 1923 × 64 and 1923 × 96 lattices using clover-improved Wilson fermions. These lattices correspond to temperatures of 2.25Tc, 1.50Tc, 1.25Tc, 1.10Tc and 0.75Tc. To increase the signal to noise ratio in the axial-vector and scalar channels we used multi-sources for the measurement of spatial correlation functions. By investigating on the differences between spatial and temporal correlators as well as the temperature dependence of screening masses we will discuss the thermal effects in different channels of quarkonium states. Besides this the dispersion relation of the screening mass at different momenta is also discussed.
Bose--Einstein Correlations and Thermal Cluster Formation in High-energy Collisions
NASA Astrophysics Data System (ADS)
Bialas, A.; Florkowski, W.; Zalewski, K.
The blast wave model is generalized to include the production of thermal clusters, as suggested by the apparent success of the statistical model of particle production at high energies. The formulae for the HBT correlation functions and the corresponding HBT radii are derived.
Matching-pursuit/split-operator-Fourier-transform computations of thermal correlation functions.
Chen, Xin; Wu, Yinghua; Batista, Victor S
2005-02-08
A rigorous and practical methodology for evaluating thermal-equilibrium density matrices, finite-temperature time-dependent expectation values, and time-correlation functions is described. The method involves an extension of the matching-pursuit/split-operator-Fourier-transform method to the solution of the Bloch equation via imaginary-time propagation of the density matrix and the evaluation of Heisenberg time-evolution operators through real-time propagation in dynamically adaptive coherent-state representations.
Connection formulas for thermal density functional theory
Pribram-Jones, A.; Burke, K.
2016-05-23
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes.
Culumber, Zachary W; Tobler, Michael
2018-05-01
The role of ecology in phenotypic and species diversification is widely documented. Nonetheless, numerous nonadaptive processes can shape realized niches and phenotypic variation in natural populations, complicating inferences about adaptive evolution at macroevolutionary scales. We tested for evolved differences in thermal tolerances and their association with the realized thermal niche (including metrics describing diurnal and seasonal patterns of temperature extremes and variability) across a genus of tropical freshwater fishes reared in a standardized environment. There was limited evolution along the thermal niche axis associated with variation in maximum temperature and in upper thermal limits. In contrast, there was considerable diversification along the first major axis of the thermal niche associated with minimum temperatures and in lower thermal limits. Across our adaptive landscape analyses, 70% of species exhibited evidence of divergence in thermal niches. Most importantly, the first two major axes of thermal niche variation were significantly correlated with variation in lower thermal limits. Our results indicate adaptation to divergent thermal niches and adaptive evolution of related functional traits, and highlight the importance of divergence in lower thermal limits for the evolution of tropical biodiversity. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Thermal transport in strongly correlated multilayered nanostructures
NASA Astrophysics Data System (ADS)
Freericks, James; Zlatic, Veljko
2006-03-01
The formalism for thermal transport in strongly correlated multilayered nanostructures is developed. We employ inhomogeneous dynamical mean-field theory and the Kubo formula to derive relevant thermal transport coefficients, which take the form of matrices with respect to the planar indices. We show how to define the local versions of the current and heat current operators so that heat-current correlation functions can be easily evaluated via the Jonson-Mahan theorem. Thermal transport in nanostructures is complicated by the fact that the thermal current need not be conserved through the device, and a given experimental set-up determines both how the thermal current can change through the device and how the steady-state temperature profile can be determined. Formulae to analyze classic experiments such as the Peltier and Seebeck effects, the thermal conductivity, and for running a thermoelectric cooler or power generator are also discussed.
Scrambling and thermalization in a diffusive quantum many-body system
Bohrdt, A.; Mendl, C. B.; Endres, M.; ...
2017-06-02
Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less
Scrambling and thermalization in a diffusive quantum many-body system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohrdt, A.; Mendl, C. B.; Endres, M.
Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbush, C.M.; Viswanath, D.S.; Hsieh, F.H.
Data on thermal conductivity of liquids, as a function of temperature, are essential in the design of heat- and mass- transfer equipment. A number of correlations have been developed to predict thermal conductivity of liquids with limited success. Among the correlations proposed so far, only the correlation due to Nagvekar and Daubert is based on group contributions. In this paper, a new group contribution method is developed based on the Klaas and Viswanath method for prediction of thermal conductivity of liquids and the results are compared to the method of Nagvekar and Daubert and other existing correlations. The present methodmore » predicts thermal conductivity of some 228 liquids that encompass 1487 experimental data points with an average absolute deviation of 2.5%. The group contribution method is used to examine the temperature dependence of Prandtl number for vegetable oils.« less
Liu, Jian; Miller, William H
2011-03-14
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.
Fourth-Order Spatial Correlation of Thermal Light
NASA Astrophysics Data System (ADS)
Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng
2014-11-01
We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.
Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François
2015-01-01
Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689
Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François
2015-09-01
Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.
Harmonic-phase path-integral approximation of thermal quantum correlation functions
NASA Astrophysics Data System (ADS)
Robertson, Christopher; Habershon, Scott
2018-03-01
We present an approximation to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that approximately recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this approximation method may be extended to many-dimensional systems.
Equilibrium time correlation functions and the dynamics of fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luban, Marshall; Luscombe, James H.
1999-12-01
Equilibrium time correlation functions are of great importance because they probe the equilibrium dynamical response to external perturbations. We discuss the properties of time correlation functions for several systems that are simple enough to illustrate the calculational steps involved. The discussion underscores the need for avoiding language which misleadingly suggests that thermal equilibrium is associated with a quiescent or moribund state of the system. (c) 1999 American Association of Physics Teachers.
Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
1998-01-01
Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.
NASA Astrophysics Data System (ADS)
Hemmat Esfe, Mohammad; Firouzi, Masoumeh; Afrand, Masoud
2018-01-01
In this paper, functionalized single walled carbon nanotubes (FSWCNTs) were suspended in Ethylene Glycol (EG) at different volume fractions. A KD2 pro thermal conductivity meter was used to measure the thermal conductivity in the temperature range from 30 to 50 °C. Nanofluids were prepared in solid volume fraction of 0.02, 0.05, 0.075, 0.1, 0.25, 0.5 and, 0.75%. Experimental results revealed that the thermal conductivity of the nanofluid is a non-linear function of temperature and SWCNTs volume fraction in the range of this investigation. Thermal conductivity increases with temperature and nanoparticles volume fraction as usual for this type of nanofluid. Maximum increment in thermal conductivity of the nanofluids was found to be about 45% at 0.75 vol fractions loading at 50 °C. Finally, a new correlation based on artificial neural network (ANN) approach has been proposed for SWCNT-EG thermal conductivity in terms of nanoparticles volume fraction and temperature using the experimental data. Used ANN approach has estimated the experimental values of thermal conductivity with the absolute average relative deviation lower than 0.9%, mean square error of 3.67 × 10-5 and regression coefficient of 0.9989. Comparison between the suggested techniques with various used correlation in the literatures established that the ANN approach is better to other presented methods and therefore can be proposed as a useful means for predicting of the nanofluids thermal conductivity.
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
NASA Astrophysics Data System (ADS)
Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; Gordon, Margaret E.; Bryan, Charles R.
2018-04-01
Elastic and thermodynamic properties of negative thermal expansion (NTE) α -ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ∼ 2 % with PBEsol and ∼ 6 % with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be CP0 = 192.2 and 193.8 J mol-1K-1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.
Multi-particle correlations in transverse momenta from statistical clusters
NASA Astrophysics Data System (ADS)
Bialas, Andrzej; Bzdak, Adam
2016-09-01
We evaluate n-particle (n = 2 , 3 , 4 , 5) transverse momentum correlations for pions and kaons following from the decay of statistical clusters. These correlation functions could provide strong constraints on a possible existence of thermal clusters in the process of particle production.
Thermal Properties of G-348 Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEligot, Donald; Swank, W. David; Cottle, David L.
2016-05-01
Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.
Thermal Properties of G-348 Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEligot, Donald M.; Swank, W. David; Cottle, David L.
Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.
Fluctuation of a Piston in Vacuum Induced by Thermal Radiation Pressure
NASA Astrophysics Data System (ADS)
Inui, Norio
2017-10-01
We consider the displacement of a piston dividing a vacuum cavity at a finite temperature T induced by fluctuations in the thermal radiation pressure. The correlation function of the thermal radiation pressure is calculated using the theoretical framework developed by Barton, which was first applied to the fluctuation of the Casimir force at absolute zero. We show that the variance of the radiation pressure at a fixed point is proportional to T8 and evaluate the mean square displacement for a piston with a small cross section in a characteristic correlation timescale ħ/(kBT). At room temperature, the contribution of the thermal radiation to the fluctuation is larger than that of the vacuum fluctuation.
NASA Astrophysics Data System (ADS)
Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.
2018-03-01
Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.
Laboratory demonstration of Stellar Intensity Interferometry using a software correlator
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David
2017-06-01
In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.
Engineering molecular machines
NASA Astrophysics Data System (ADS)
Erman, Burak
2016-04-01
Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.
Thermal dynamics on the lattice with exponentially improved accuracy
NASA Astrophysics Data System (ADS)
Pawlowski, Jan M.; Rothkopf, Alexander
2018-03-01
We present a novel simulation prescription for thermal quantum fields on a lattice that operates directly in imaginary frequency space. By distinguishing initial conditions from quantum dynamics it provides access to correlation functions also outside of the conventional Matsubara frequencies ωn = 2 πnT. In particular it resolves their frequency dependence between ω = 0 and ω1 = 2 πT, where the thermal physics ω ∼ T of e.g. transport phenomena is dominantly encoded. Real-time spectral functions are related to these correlators via an integral transform with rational kernel, so that their unfolding from the novel simulation data is exponentially improved compared to standard Euclidean simulations. We demonstrate this improvement within a non-trivial 0 + 1-dimensional quantum mechanical toy-model and show that spectral features inaccessible in standard Euclidean simulations are quantitatively captured.
Sound waves and flexural mode dynamics in two-dimensional crystals
NASA Astrophysics Data System (ADS)
Michel, K. H.; Scuracchio, P.; Peeters, F. M.
2017-09-01
Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and out-of-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
Liu, Jian; Miller, William H
2006-12-14
The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.
Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less
Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; ...
2018-03-15
Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less
Prediction of thermal cycling induced matrix cracking
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1992-01-01
Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.
Thermal and active fluctuations of a compressible bilayer vesicle
NASA Astrophysics Data System (ADS)
Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki
2018-05-01
We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.
Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity
NASA Technical Reports Server (NTRS)
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.
Brownian thermal noise in functional optical surfaces
NASA Astrophysics Data System (ADS)
Kroker, S.; Dickmann, J.; Rojas Hurtado, C. B.; Heinert, D.; Nawrodt, R.; Levin, Y.; Vyatchanin, S. P.
2017-07-01
We present a formalism to compute Brownian thermal noise in functional optical surfaces such as grating reflectors, photonic crystal slabs, or complex metamaterials. Such computations are based on a specific readout variable, typically a surface integral of a dielectric interface displacement weighed by a form factor. This paper shows how to relate this form factor to Maxwell's stress tensor computed on all interfaces of the moving surface. As an example, we examine Brownian thermal noise in monolithic T-shaped grating reflectors. The previous computations by Heinert et al. [Phys. Rev. D 88, 042001 (2013), 10.1103/PhysRevD.88.042001] utilizing a simplified readout form factor produced estimates of thermal noise that are tens of percent higher than those of the exact analysis in the present paper. The relation between the form factor and Maxwell's stress tensor implies a close correlation between the optical properties of functional optical surfaces and thermal noise.
NASA Astrophysics Data System (ADS)
Núñez, Alvaro; Starinets, Andrei O.
2003-06-01
We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green’s functions of N=4 SU(N) supersymmetric Yang-Mills theory in the limit of large N and large ’t Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory. Correlation functions of operators dual to massive scalar, vector and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are considered. We find asymptotic formulas for quasinormal frequencies in the massive scalar and tensor cases, and an exact expression for vector perturbations. In the long-distance, low-frequency limit we recover results of the hydrodynamic approximation to thermal Yang-Mills theory.
Four-Photon Imaging with Thermal Light
NASA Astrophysics Data System (ADS)
Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng
2014-10-01
In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.
Velocity persistence of Brownian particles generated in a glow discharge
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Ho, Pauline
1989-06-01
Quasielastic light scattering from Brownian particles in the rarefied environment of a glow discharge exhibits Gaussianlike intensity correlation functions owing to the long mean free paths of the particles. The shape of the correlation function depends on the particles' average thermal velocity and friction coefficient, which can be related to aggregate mass and structure, and indicates a crossover from kinetic to hydrodynamic behavior.
1993-08-01
calculated by dividing sweat production by trial length. Subjective Measures Subjective evaluations of rated perceived exertion (RPE) (10) and thermal comfort (TC...correlate with HR (10) . Thermal comfort is believed to be a relative indicator of Trask (11) . Significant differences in •’C ratings were seen only...activity. Data for mean RPE as a function of mean thermal comfort reveal a better relationship than that of RPE and HR. RPE may also be influenced by
Defect-Engineered Heat Transport in Graphene: A Route to High Efficient Thermal Rectification
Zhao, Weiwei; Wang, Yanlei; Wu, Zhangting; Wang, Wenhui; Bi, Kedong; Liang, Zheng; Yang, Juekuan; Chen, Yunfei; Xu, Zhiping; Ni, Zhenhua
2015-01-01
Low-dimensional materials such as graphene provide an ideal platform to probe the correlation between thermal transport and lattice defects, which could be engineered at the molecular level. In this work, we perform molecular dynamics simulations and non-contact optothermal Raman measurements to study this correlation. We find that oxygen plasma treatment could reduce the thermal conductivity of graphene significantly even at extremely low defect concentration (∼83% reduction for ∼0.1% defects), which could be attributed mainly to the creation of carbonyl pair defects. Other types of defects such as hydroxyl, epoxy groups and nano-holes demonstrate much weaker effects on the reduction where the sp2 nature of graphene is better preserved. With the capability of selectively functionalizing graphene, we propose an asymmetric junction between graphene and defective graphene with a high thermal rectification ratio of ∼46%, as demonstrated by our molecular dynamics simulation results. Our findings provide fundamental insights into the physics of thermal transport in defective graphene, and two-dimensional materials in general, which could help on the future design of functional applications such as optothermal and electrothermal devices. PMID:26132747
Thermal regulation in Macaca mulatta during space flight
NASA Technical Reports Server (NTRS)
Klimovitsky, V. Y.; Alpatov, A. M.; Hoban-Higgins, T. M.; Utekhina, E. S.; Fuller, C. A.
2000-01-01
The results of studies of body temperature and thermal regulation in Macaca mulatta flown on biosatellites Bion 6-11 are presented. The effect of microgravity on deep body temperature as compared to skin temperature was investigated. In most animals, deep body temperature declined moderately and then tended to return to normal. Brain temperature/ankle temperature correlation changed. The system of thermal regulation was found to function adequately in space.
Chai, Jeng-Da
2017-01-28
We propose hybrid schemes incorporating exact exchange into thermally assisted-occupation-density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved description of nonlocal exchange effects. With a few simple modifications, global and range-separated hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid functionals in TAO-DFT yield promising performance for systems with strong static correlation effects (e.g., the dissociation of H 2 and N 2 , twisted ethylene, and electronic properties of linear acenes), while maintaining similar performance for systems without strong static correlation effects. Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to semilocal density functionals in TAO-DFT, global hybrid functionals in TAO-DFT are generally superior in performance for a wide range of applications, such as thermochemistry, kinetics, reaction energies, and optimized geometries.
Calculation of phonon dispersion relation using new correlation functional
NASA Astrophysics Data System (ADS)
Jitropas, Ukrit; Hsu, Chung-Hao
2017-06-01
To extend the use of Local Density Approximation (LDA), a new analytical correlation functional is introduced. Correlation energy is an essential ingredient within density functional theory and used to determine ground state energy and other properties including phonon dispersion relation. Except for high and low density limit, the general expression of correlation energy is unknown. The approximation approach is therefore required. The accuracy of the modelling system depends on the quality of correlation energy approximation. Typical correlation functionals used in LDA such as Vosko-Wilk-Nusair (VWN) and Perdew-Wang (PW) were obtained from parameterizing the near-exact quantum Monte Carlo data of Ceperley and Alder. These functionals are presented in complex form and inconvenient to implement. Alternatively, the latest published formula of Chachiyo correlation functional provides a comparable result for those much more complicated functionals. In addition, it provides more predictive power based on the first principle approach, not fitting functionals. Nevertheless, the performance of Chachiyo formula for calculating phonon dispersion relation (a key to the thermal properties of materials) has not been tested yet. Here, the implementation of new correlation functional to calculate phonon dispersion relation is initiated. The accuracy and its validity will be explored.
Thermal noise model of antiferromagnetic dynamics: A macroscopic approach
NASA Astrophysics Data System (ADS)
Li, Xilai; Semenov, Yuriy; Kim, Ki Wook
In the search for post-silicon technologies, antiferromagnetic (AFM) spintronics is receiving widespread attention. Due to faster dynamics when compared with its ferromagnetic counterpart, AFM enables ultra-fast magnetization switching and THz oscillations. A crucial factor that affects the stability of antiferromagnetic dynamics is the thermal fluctuation, rarely considered in AFM research. Here, we derive from theory both stochastic dynamic equations for the macroscopic AFM Neel vector (L-vector) and the corresponding Fokker-Plank equation for the L-vector distribution function. For the dynamic equation approach, thermal noise is modeled by a stochastic fluctuating magnetic field that affects the AFM dynamics. The field is correlated within the correlation time and the amplitude is derived from the energy dissipation theory. For the distribution function approach, the inertial behavior of AFM dynamics forces consideration of the generalized space, including both coordinates and velocities. Finally, applying the proposed thermal noise model, we analyze a particular case of L-vector reversal of AFM nanoparticles by voltage controlled perpendicular magnetic anisotropy (PMA) with a tailored pulse width. This work was supported, in part, by SRC/NRI SWAN.
Computing thermal Wigner densities with the phase integration method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beutier, J.; Borgis, D.; Vuilleumier, R.
2014-08-28
We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta andmore » coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.« less
Computing thermal Wigner densities with the phase integration method.
Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S
2014-08-28
We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.
Multiscale Pores in TBCs for Lower Thermal Conductivity
NASA Astrophysics Data System (ADS)
Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun
2017-08-01
The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.
Dong, Jian-Jun; Zheng, Zhen-Yu; Li, Peng
2018-01-01
An unusual correlation function was conjectured by Campostrini et al. [Phys. Rev. E 91, 042123 (2015)PLEEE81539-375510.1103/PhysRevE.91.042123] for the ground state of a transverse Ising chain with geometrical frustration. Later, we provided a rigorous proof for it and demonstrated its nonlocal nature based on an evaluation of a Toeplitz determinant in the thermodynamic limit [J. Stat. Mech. (2016) 11310210.1088/1742-5468/2016/11/113102]. In this paper, we further prove that all the low excited energy states forming the gapless kink phase share the same asymptotic correlation function with the ground state. As a consequence, the thermal correlation function almost remains constant at low temperatures if one assumes a canonical ensemble.
Tunable thermal expansion and magnetism in Zr-doped ScF 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tao; Xu, Jiale; Hu, Lei
The negative thermal expansion (NTE) behavior provides us an opportunity to design materials with controllable coefficient of thermal expansion (CTE). In this letter, we report a tunable isotropic thermal expansion in the cubic (Sc1-xZrx)F3+δ over a wide temperature and CTE range (αl = -4.0 to +16.8 x 10-6 K-1, 298–648 K). The thermal expansion can be well adjusted from strong negative to zero, and finally to large positive. Intriguingly, isotropic zero thermal expansion (αl = 2.6 x 10-7 K-1, 298–648 K) has been observed in the composition of (Sc0.8Zr0.2)F3+δ. The controllable thermal expansion in (Sc1-xZrx)F3+δ is correlated to the localmore » structural distortion. Interestingly, the ordered magnetic behavior has been found in the zero thermal expansion compound of (Sc0.8Zr0.2)F3+δ at room temperature, which presumably correlates with the unpaired electron of the lower chemical valence of Zr cation. The present study provides a useful reference to control the thermal expansion and explore the multi-functionalization for NTE materials.« less
Thermal conductivity of microporous layers: Analytical modeling and experimental validation
NASA Astrophysics Data System (ADS)
Andisheh-Tadbir, Mehdi; Kjeang, Erik; Bahrami, Majid
2015-11-01
A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1-6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m-1 K-1. The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity.
Capo, A; Ismail, E; Cardone, D; Celletti, E; Auriemma, M; Sabatini, E; Merla, A; Amerio, P
2015-11-01
Functional infrared imaging (fIRI) is used to provide information on circulation, thermal properties and thermoregulatory function of the cutaneous tissue in several clinical settings. This study aims to evaluate the application of fIRI in Psoriatic Arthritis (PsA) assessment, evaluating the thermoregulatory alterations due to joint inflammation in PsA patients both in basal conditions and after a mild functional (isometric) exercise; fIRI outcomes were compared with those provided by Power Doppler Ultrasonography (PWD-US). 10 patients with PsA and 11 healthy controls were enrolled in the study. The cutaneous temperature dynamics of 20 regions of interest located on the dominant hand were recorded by means of high-resolution thermal imaging at baseline and after a functional exercise. Higher temperature values and faster temperature variations characterized the PsA group compared to healthy controls, confirming that the PsA-related inflammatory state alters the normal thermal proprieties of the skin overlying inflamed joints. fIRI outcomes correlated with the PWD-US findings. fIRI applied to the study of the response to a functional stimulus may represent an innovative, non-invasive, and operator-independent method for the assessment of peripheral PsA. Copyright © 2015 Elsevier Inc. All rights reserved.
Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics.
Pellegrino, F M D; Angilella, G G N; March, N H; Pucci, R
2007-12-01
After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio mu/k_(B)T of chemical potential to thermal energy being obtained numerically as a function of a scaled particle density. Pair correlation functions are also presented as a function of the statistical parameter, with Friedel oscillations developing close to the fermion limit, for sufficiently large density.
Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K
2013-08-16
We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.
Thermal field theory and generalized light front quantization
NASA Astrophysics Data System (ADS)
Weldon, H. Arthur
2003-04-01
The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Casimir Interaction from Magnetically Coupled Eddy Currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intravaia, Francesco; Henkel, Carsten
2009-09-25
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
Centaur Propellant Thermal Conditioning Study
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Pleasant, R. L.; Erickson, R. C.
1976-01-01
A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle.
Muraleedharan, Murali Gopal; Sundaram, Dilip Srinivas; Henry, Asegun; Yang, Vigor
2017-04-20
The presence of artificial correlations associated with Green-Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al 2 O 3 ) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents 'obstacles' with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles.
Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying
2012-03-01
The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2008-01-01
The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.
Experimental characterization of a quantum many-body system via higher-order correlations.
Schweigler, Thomas; Kasper, Valentin; Erne, Sebastian; Mazets, Igor; Rauer, Bernhard; Cataldini, Federica; Langen, Tim; Gasenzer, Thomas; Berges, Jürgen; Schmiedmayer, Jörg
2017-05-17
Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.
Scaling Theory of Entanglement at the Many-Body Localization Transition.
Dumitrescu, Philipp T; Vasseur, Romain; Potter, Andrew C
2017-09-15
We study the universal properties of eigenstate entanglement entropy across the transition between many-body localized (MBL) and thermal phases. We develop an improved real space renormalization group approach that enables numerical simulation of large system sizes and systematic extrapolation to the infinite system size limit. For systems smaller than the correlation length, the average entanglement follows a subthermal volume law, whose coefficient is a universal scaling function. The full distribution of entanglement follows a universal scaling form, and exhibits a bimodal structure that produces universal subleading power-law corrections to the leading volume law. For systems larger than the correlation length, the short interval entanglement exhibits a discontinuous jump at the transition from fully thermal volume law on the thermal side, to pure area law on the MBL side.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, A.; Burke, K.
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lillibridge, Sean; Navarro, Moses
2011-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recovering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TradeMark) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested, namely MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lilibridge, Sean T.; Navarro, Moses
2012-01-01
Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
Hydrodynamic correlation functions of hard-sphere fluids at short times
NASA Astrophysics Data System (ADS)
Leegwater, Jan A.; van Beijeren, Henk
1989-11-01
The short-time behavior of the coherent intermediate scattering function for a fluid of hard-sphere particles is calculated exactly through order t 4, and the other hydrodynamic correlation functions are calculated exactly through order t 2. It is shown that for all of the correlation functions considered the Enskog theory gives a fair approximation. Also, the initial time behavior of various Green-Kubo integrands is studied. For the shear-viscosity integrand it is found that at density nσ3=0.837 the prediction of the Enskog theory is 32% too low. The initial value of the bulk viscosity integrand is nonzero, in contrast to the Enskog result. The initial value of the thermal conductivity integrand at high densities is predicted well by Enskog theory.
Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe
2013-08-14
Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.
Rais, Amber; Miller, Nathan; Stillman, Jonathon H
2010-01-01
Many eurythermal organisms alter composition of their membranes to counter perturbing effects of environmental temperature variation on membrane fluidity, a process known as homeoviscous adaptation. Marine intertidal gastropods experience uniquely large thermal excursions that challenge the functional integrity of their membranes on tidal and seasonal timescales. This study measured and compared membrane fluidity in marine intertidal snail species under three scenarios: (1) laboratory thermal acclimation, (2) thermal acclimatization during a hot midday low tide, and (3) thermal acclimatization across the vertical intertidal zone gradient in temperature. For each scenario, we used fluorescence polarization of the membrane probe DPH to measure membrane fluidity in individual samples of gill and mantle tissue. A four-week thermal acclimation of Tegula funebralis to 5, 15, and 25°C did not induce differences in membrane fluidity. Littorina keenae sampled from two thermal microhabitats at the beginning and end of a hot midday low tide exhibited no significant differences in membrane fluidity, either as a function of time of day or as a function of thermal microhabitat, despite changes in body temperature up to 24°C within 8 h. Membrane fluidities of a diverse group of snails collected from high, middle, and low vertical regions of the intertidal zone varied among species but did not correlate with thermal microhabitat. Our data suggest intertidal gastropod snails do not exhibit homeoviscous adaptation of gill and mantle membranes. We discuss possible alternatives for how these organisms counter thermal excursions characteristic of the marine intertidal zone.
Thermal transport in the Falicov-Kimball model
NASA Astrophysics Data System (ADS)
Freericks, J. K.; Zlatić, V.
2001-12-01
We prove the Jonson-Mahan theorem for the thermopower of the Falicov-Kimball model by solving explicitly for correlation functions in the large dimensional limit. We prove a similar result for the thermal conductivity. We separate the results for thermal transport into the pieces of the heat current that arise from the kinetic energy and those that arise from the potential energy. Our method of proof is specific to the Falicov-Kimball model, but illustrates the near cancellations between the kinetic- and potential-energy pieces of the heat current implied by the Jonson-Mahan theorem.
Fluctuation-dissipation relation in accelerated frames
NASA Astrophysics Data System (ADS)
Adhikari, Ananya; Bhattacharya, Krishnakanta; Chowdhury, Chandramouli; Majhi, Bibhas Ranjan
2018-02-01
A uniformly accelerated (Rindler) observer will detect particles in the Minkowski vacuum, known as the Unruh effect. The spectrum is thermal and the temperature is given by that of the Killing horizon, which is proportional to the acceleration. Considering that these particles are kept in a thermal bath with this temperature, we find that the correlation function of the random force due to radiation acting on the particles, as measured by the accelerated frame, shows the fluctuation-dissipation relation. It is observed that the correlations, in both (1 +1 ) spacetime and (1 +3 ) dimensional spacetimes, are of the Brownian type. We discuss the implications of this new observation.
2012-08-08
simulation data is available on this system. Molecular simulation , ab initio simulations , thermal conductivity, biomimetic materials, phase transformation...MOLECULAR SIMULATIONS …………….. 28 §2.2.1 THERMAL CONDUCTION ANALYSES IN SUPERLATTICES AS A FUNCTION OF STRAIN……………………………………………………………. 29 §2.2.2...analyses also focus on Si-Ge interfaces and nanocomposites, as a lot of simulation data is available on this system. In terms of modeling the required
Remote Measurement of Heat Flux from Power Plant Cooling Lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Alfred J.; Kurzeja, Robert J.; Villa-Aleman, Eliel
2013-06-01
Laboratory experiments have demonstrated a correlation between the rate of heat loss q" from an experimental fluid to the air above and the standard deviation σ of the thermal variability in images of the fluid surface. These experimental results imply that q" can be derived directly from thermal imagery by computing σ. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q" and σ when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- andmore » helicopter-based imagery collections had correlation coefficients between σ and q" of 0.45 and 0.76, respectively. Values of q" computed from a function of σ and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q" (0.84 and 0.89). Finally, this research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.« less
NASA Astrophysics Data System (ADS)
Xiong, Daxing
2017-06-01
We employ the heat perturbation correlation function to study thermal transport in the one-dimensional Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion and nonlinearity that can strongly affect the heat correlation function's shape and scaling property. Specifically, for small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum perturbation correlation function and find a transition process with the same turning point of the anharmonicity as that shown in the heat correlation function. This suggests coupling between the momentum transport and the heat transport, in agreement with the theoretical arguments of mode cascade theory.
Thermal quantum time-correlation functions from classical-like dynamics
NASA Astrophysics Data System (ADS)
Hele, Timothy J. H.
2017-07-01
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.
Resonant activation in a colored multiplicative thermal noise driven closed system.
Ray, Somrita; Mondal, Debasish; Bag, Bidhan Chandra
2014-05-28
In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.
Thermal adaptation of net ecosystem exchange
Yuan, W.; Luo, Y.; Liang, S.; ...
2011-06-06
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less
Thermal adaptation of net ecosystem exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, W.; Luo, Y.; Liang, S.
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
NASA Technical Reports Server (NTRS)
Scanvic, J. Y. (Principal Investigator)
1980-01-01
Thermal zones delimited on HCMM images, by visual interpretation only, were correlated with geological units and carbonated rocks, granitic, and volcanic rocks were individualized rock signature is evolutive parameter and some distinctions were made by addition of day, night and seasonal thermal image interpretation. This analysis also demonstrated that forest cover does not mask the underlying rocks thermal signature. Thermal linears are associated with known tectonics but the observed thermal variations from day to night and from one to another represent a promising concept to be studied in function of neotectonics and hydrogeology. The thermal anomalies discovered represent a potential interest which is to be evaluated. Significant results were obtained in the Mont Dore area and additional geological targets were defined in the Paris Basin and the Montmarault granite.
Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation
Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.
2016-01-01
Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030
An estimate for the thermal photon rate from lattice QCD
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Francis, Anthony; Harris, Tim; Meyer, Harvey B.; Steinberg, Aman
2018-03-01
We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range πT/2 to 2πT. The relevant Euclidean vector current correlation functions are computed with Nf = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a modelindependent estimate from the Backus-Gilbert method to give an estimate for the photon rate.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Murshid, Ghulam; Shariff, Azmi Mohd; Lau, K. K.; Bustam, Mohammad Azmi; Ahmad, Faizan
2011-10-01
Physical properties such as density, viscosity, refractive index, surface tension, and thermal stability of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were experimentally measured. All the experimental measurements were made over a wide range of temperatures from (298.15 to 333.15) K and AHPD concentrations of (1, 7, 13, 19, and 25) mass%. An overall decrease in all the measured physical properties was observed with increasing temperature. The experimental results are presented as a function of temperature and AHPD mass fraction. All the measured physical properties were correlated as a function of temperature. Thermal decomposition of pure and aqueous solutions of AHPD was investigated using a thermo-gravimetric analyzer (TGA) at a heating rate of 10 K · min-1.
Butler, Michael W.; Stahlschmidt, Zachary R.; Ardia, Daniel R.; Davies, Scott; Davis, Jon; Guillette, Louis J.; Johnson, Nicholas; McCormick, Stephen D.; McGraw, Kevin J.; DeNardo, Dale F.
2013-01-01
Animal body temperature (Tbody) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in Tbody (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean Tbody) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.
Blackie, Caroline A; Carlson, Alan N; Korb, Donald R
2015-07-01
Meibomian gland dysfunction (MGD) is understood to be a highly prevalent, chronic progressive disease and the leading cause of dry eye. All available published peer-reviewed results of the novel vectored thermal pulsation therapy for patients with MGD are investigated. The PubMed and meeting abstract search revealed a total of 31 peer-reviewed reports on vectored thermal pulsation therapy at the time of the search (eight manuscripts and 23 meeting abstracts). All manuscripts evidence a significant increase in meibomian gland function (∼3×) and symptom improvement post a single 12-min treatment. Additional reported objective measures such as osmolarity, tear break-up time, or lipid layer thickness also increased as a result of the therapy; however, not all findings were statistically significant. The randomized controlled studies evidence sustained gland function and symptom relief lasting out to 12 months. The uncontrolled case series evidence significantly longer duration of effect. A single 12 minute vectored thermal pulsation treatment allows for reducing dry eye symptoms, improving meibomian gland function and other correlates of the ocular surface health.
NASA Astrophysics Data System (ADS)
Lee, Ji-Hwan; Tak, Youngjoo; Lee, Taehun; Soon, Aloysius
Ceria (CeO2-x) is widely studied as a choice electrolyte material for intermediate-temperature (~ 800 K) solid oxide fuel cells. At this temperature, maintaining its chemical stability and thermal-mechanical integrity of this oxide are of utmost importance. To understand their thermal-elastic properties, we firstly test the influence of various approximations to the density-functional theory (DFT) xc functionals on specific thermal-elastic properties of both CeO2 and Ce2O3. Namely, we consider the local-density approximation (LDA), the generalized gradient approximation (GGA-PBE) with and without additional Hubbard U as applied to the 4 f electron of Ce, as well as the recently popularized hybrid functional due to Heyd-Scuseria-Ernzehof (HSE06). Next, we then couple this to a volume-dependent Debye-Grüneisen model to determine the thermodynamic quantities of ceria at arbitrary temperatures. We find an explicit description of the strong correlation (e.g. via the DFT + U and hybrid functional approach) is necessary to have a good agreement with experimental values, in contrast to the mean-field treatment in standard xc approximations (such as LDA or GGA-PBE). We acknowledge support from Samsung Research Funding Center of Samsung Electronics (SRFC-MA1501-03).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, K.; Smith, J. C.; Grabowski, P. E.
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. Here, we derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe
2008-11-01
Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.
Cross-spectrum measurement of thermal-noise limited oscillators.
Hati, A; Nelson, C W; Howe, D A
2016-03-01
Cross-spectrum analysis is a commonly used technique for the detection of phase and amplitude noise of a signal in the presence of interfering uncorrelated noise. Recently, we demonstrated that the phase-inversion (anti-correlation) effect due to amplitude noise leakage can cause complete or partial collapse of the cross-spectral function. In this paper, we discuss the newly discovered effect of anti-correlated thermal noise that originates from the common-mode power divider (splitter), an essential component in a cross-spectrum noise measurement system. We studied this effect for different power splitters and discuss its influence on the measurement of thermal-noise limited oscillators. We provide theory, simulation and experimental results. In addition, we expand this study to reveal how the presence of ferrite-isolators and amplifiers at the output ports of the power splitters can affect the oscillator noise measurements. Finally, we discuss a possible solution to overcome this problem.
Mixing and transient interface condensation of a liquid hydrogen tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Nyland, T. W.
1993-01-01
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.
Transport property correlations for the niobium-1% zirconium alloy
NASA Astrophysics Data System (ADS)
Senor, David J.; Thomas, J. Kelly; Peddicord, K. L.
1990-10-01
Correlations were developed for the electrical resistivity (ρ), thermal conductivity ( k), and hemispherical total emittance (ɛ) of niobium-1% zirconium as functions of temperature. All three correlations were developed as empirical fits to experimental data. ρ = 5.571 + 4.160 × 10 -2(T) - 4.192 × 10 -6(T) 2 μΩcm , k = 13.16( T) 0.2149W/ mK, ɛ = 6.39 × 10 -2 + 4.98 × 10 -5( T) + 3.62 × 10 -8( T) 2 - 7.28 × 10 -12( T) 3. The relative standard deviation of the electrical resistivity correlation is 1.72% and it is valid over the temperature range 273 to 2700 K. The thermal conductivity correlation has a relative standard deviation of 3.24% and is valid over the temperature range 379 to 1421 K. The hemispherical total emittance correlation was developed for smooth surface materials only and represents a conservative estimate of the emittance of the alloy for space reactor fuel element modeling applications. It has a relative standard deviation of 9.50% and is valid over the temperature range 755 to 2670 K.
Electrical Transport Properties of Liquid Sn-Sb Binary Alloys
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Jani, A. R.
2010-06-01
The study of electrical transport properties viz. electrical resistivity, thermo electrical power and thermal conductivity of liquid Sn-Sb binary alloys have been made by our well recognized single parametric model potential. In the present work, screening functions due to Hartree, Taylor, Ichimaru et al.. Farid et al.. and Sarkar et al.. have been employed to incorporate the exchange and correlation effects. The liquid alloy is studied as a function of its composition at temperature 823 K according to the Faber-Ziman model. Further, thermoelectric power and thermal conductivity have been predicted. The values of electrical resistivity of binary alloys computed with Ichimaru et al. and Farid et al.. screening function are in good agreement with the experimental data.
NASA Technical Reports Server (NTRS)
Burnett, K.; Cooper, J.
1980-01-01
Computations were made of the scattering of monochromatic radiation by a degenerate atom in the binary-collision approximation for field strengths whose products of the Rabi frequency for atomic transition and the duration of a strong collision are much less than 1. An expression of motion for the correlation function is derived which does not exclude the region where thermal correlations may be neglected; the equation is valid outside the quantum-regression regime, and has a straightforward solution for practical cases. Solutions for the weak-field linear response regime are presented in terms of generalized absorption and emission profiles which depend on the indices of the atomic multipoles.
Shamsi, Tooba Naz; Parveen, Romana; Naz, Huma; Haque, Md Anzarul; Fatima, Sadaf
2017-10-01
In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa. The conformational stability, functional parameters and their correlation were estimated under different conditions using circular dichroism, fluorescence and activity measurements. ASPI was found to fall in belongs to α+β protein. It demonstrated structural and functional stability in the pH range 5.0-12.0 and up to70°C temperature. Further decrease in pH and increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were reversible and sigmoid. T m (midpoint of denaturation), ΔC p (constant pressure heat capacity change) and ΔH m (van't Hoff enthalpy change at T m were calculated to be 41.25±0.2°C, 1.3±0.07kcalmol -1 K -1 and 61±2kcalmol -1 respectively for thermally denatured ASPI earlier. The reversibility of the protein was confirmed for both thermally and chemically denatured ASPI. The results obtained from trypsin inhibitory activity assay and structural studies are found to be in a significant correlation and hence established structure-function relationship of ASPI. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schultz, Christian P.; Bârzu, Octavian; Mantsch, Henry H.
2000-03-01
The functional role of CMP kinases is to regenerate mono-phosphate nucleotides in cells by transferring phosphate residues from tri-phosphorylated nucleotides to monophosphorylated nucleotides. These enzymes possess two binding sites and maintain a highly conserved secondary structure. They are essential for cell survival. Herein we compare the infrared spectra of two similar, but not identical enzymes, the CMP kinases from Escherichia coli and Bacillus subtilis. A two-dimensional cross correlation analysis of the infrared spectra reveals differences in the denaturation behavior of the two proteins. Different secondary structure elements show different time-delayed or advanced unfolding events in the two enzymes. When bound to the active sites, the two nucleotide-substrates CMP and ATP exert a stabilizing effect on the structure of both proteins. The changes observed upon thermal denaturation are different for the two enzymes. Model 2D correlations are used to simulate the different denaturation of the two enzymes. Thermal denaturation and aggregation can be distinguished as two processes separated in time.
Twin Crystal Induced near Zero Thermal Expansion in SnO2 Nanowires.
Zhu, He; Li, Qiang; Yang, Chao; Zhang, Qinghua; Ren, Yang; Gao, Qilong; Wang, Na; Lin, Kun; Deng, Jinxia; Chen, Jun; Gu, Lin; Hong, Jiawang; Xing, Xianran
2018-06-20
Knowledge of controllable thermal expansion is a fundamental issue in the field of materials science and engineering. Direct blocking of the thermal expansions in positive thermal expansion materials is a challenging but fascinating task. Here we report a near zero thermal expansion (ZTE) of SnO 2 achieved from twin crystal nanowires, which is highly correlated to the twin boundaries. Local structural evolutions followed by pair distribution function revealed a remarkable thermal local distortion along the twin boundary. Lattice dynamics investigated by Raman scattering evidenced the hardening of phonon frequency induced by the twin crystal compressing, giving rise to the ZTE of SnO 2 nanowires. Further DFT calculation of Grüneisen parameters confirms the key role of compressive stress on ZTE. Our results provide an insight into the thermal expansion behavior regarding to twin crystal boundaries, which could be beneficial to the applications.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.
2015-08-01
Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.
2011-01-01
Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.
[The physiological classification of human thermal states under high environmental temperatures].
Bobrov, A F; Kuznets, E I
1995-01-01
The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.
Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2011-01-01
In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063
Exact conditions on the temperature dependence of density functionals
Burke, K.; Smith, J. C.; Grabowski, P. E.; ...
2016-05-15
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. Here, we derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test
NASA Technical Reports Server (NTRS)
Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert
2005-01-01
Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '
Mechanical Properties of Nylon Harp Strings
Lynch-Aird, Nicolas; Woodhouse, Jim
2017-01-01
Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858
Mechanical Properties of Nylon Harp Strings.
Lynch-Aird, Nicolas; Woodhouse, Jim
2017-05-04
Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young's modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young's modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.
Bruinsma, Robijn; Grosberg, Alexander Y; Rabin, Yitzhak; Zidovska, Alexandra
2014-05-06
Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory-the two-fluid model-in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model-the Maxwell fluid-for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra
2014-01-01
Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919
NASA Astrophysics Data System (ADS)
Kántor, Noémi; Égerházi, Lilla; Unger, János
2012-11-01
During two investigation periods in transient seasons (14 weekdays in autumn 2009 and 15 weekdays in spring 2010) 967 visitors in two inner city squares of Szeged (Hungary) were asked about their estimation of their thermal environment. Interrelationships of subjective assessments—thermal sensation, perceptions and preferences for individual climate parameters—were analyzed, as well as their connections with the prevailing thermal conditions [air temperature, relative humidity, wind velocity, mean radiant temperature and physiologically equivalent temperature (PET)]. Thermal sensation showed strong positive relationships with air temperature and solar radiation perception, while wind velocity and air humidity perception had a negative (and weaker) impact. If a parameter was perceived to be low or weak, then it was usually desired to be higher or stronger. This negative correlation was weakest in the case of humidity. Of the basic meteorological parameters, Hungarians are most sensitive to variations in wind. Above PET = 29°C, people usually prefer lower air temperature and less solar radiation. The temperature values perceived by the interviewees correlated stronger with PET, but their means were more similar to air temperature. It was also found that the mean thermal sensation of Hungarians in transient seasons depends on PET according to a quadratic function ( R 2 = 0.912) and, consequently, the thermal comfort ranges of the locals differ from that usually adopted.
Thermalization dynamics of two correlated bosonic quantum wires after a split
NASA Astrophysics Data System (ADS)
Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian
2018-04-01
Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.
Photoacoustic spectroscopy and thermal relaxation method to evaluate corn moisture content
NASA Astrophysics Data System (ADS)
Pedrochi, F.; Medina, A. N.; Bento, A. C.; Baesso, M. L.; Luz, M. L. S.; Dalpasquale, V. A.
2005-06-01
In this study, samples of popcorn with different degrees of moisture were analyzed. The optical absorption bands at the mid infrared were measured using photoacoustic spectroscopy and were correlated to the sample moisture. The results were in agreement with moisture data determined by the well known reference method, the Karl Fischer. In addition, the thermal relaxation method was used to determine the sample specific heat as a function of the moisture content. The results were also in agreement with the two mentioned methods.
An improved algorithm to reduce noise in high-order thermal ghost imaging.
Chen, Xi-Hao; Wu, Shuang-Shuang; Wu, Wei; Guo, Wang-Yuan; Meng, Shao-Ying; Sun, Zhi-Bin; Zhai, Guang-Jie; Li, Ming-Fei; Wu, Ling-An
2014-09-01
A modified Nth-order correlation function is derived that can effectively remove the noise background encountered in high-order thermal light ghost imaging (GI). Based on this, the quality of the reconstructed images in an Nth-order lensless GI setup has been greatly enhanced compared to former high-order schemes for the same sampling number. In addition, the dependence of the visibility and signal-to-noise ratio for different high-order images on the sampling number has been measured and compared.
Dynamic stimulation of quantum coherence in systems of lattice bosons.
Robertson, Andrew; Galitski, Victor M; Refael, Gil
2011-04-22
Thermal fluctuations tend to destroy long-range phase correlations. Consequently, bosons in a lattice will undergo a transition from a phase-coherent superfluid as the temperature rises. Contrary to common intuition, however, we show that nonequilibrium driving can be used to reverse this thermal decoherence. This is possible because the energy distribution at equilibrium is rarely optimal for the manifestation of a given quantum property. We demonstrate this in the Bose-Hubbard model by calculating the nonequilibrium spatial correlation function with periodic driving. We show that the nonequilibrium phase boundary between coherent and incoherent states at finite bath temperatures can be made qualitatively identical to the familiar zero-temperature phase diagram, and we discuss the experimental manifestation of this phenomenon in cold atoms.
Bioinspired engineering of thermal materials.
Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao
2015-01-21
In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tinianov, Brandon D.; Nakagawa, Masami; Muñoz, David R.
2006-02-01
This article describes a novel technique for the measurement of the thermal conductivity of low-density (12-18kg/m3) fiberglass insulation and other related fibrous insulation materials using a noninvasive acoustic apparatus. The experimental method is an extension of earlier acoustic methods based upon the evaluation of the propagation constant from the acoustic pressure transfer function across the test material. To accomplish this, an analytical model is employed that describes the behavior of sound waves at the outlet of a baffled waveguide. The model accounts for the behavior of the mixed impedance interface introduced by the test material. Current results show that the technique is stable for a broad range of absorber thicknesses and densities. Experimental results obtained in the laboratory show excellent correlation between the thermal conductivity and both the real and imaginary components of the propagation constant. Correlation of calculated propagation constant magnitude versus measured thermal conductivity gave an R2 of 0.94 for the bulk density range (12-18kg/m3) typical for manufactured fiberglass batt materials. As an improvement to earlier acoustic techniques, measurement is now possible in noisy manufacturing environments with a moving test material. Given the promise of such highly correlated measurements in a robust method, the acoustic technique is well suited to continuously measure the thermal conductivity of the material during its production, replacing current expensive off-line methods. Test cycle time is reduced from hours to seconds.
Craven, Galen T; Nitzan, Abraham
2018-01-28
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
NASA Astrophysics Data System (ADS)
Craven, Galen T.; Nitzan, Abraham
2018-01-01
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
Nonequilibrium Tuning of the Thermal Casimir Effect.
Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf
2016-06-17
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids
Agromayor, Roberto; Cabaleiro, David; Pardinas, Angel A.; Vallejo, Javier P.; Fernandez-Seara, Jose; Lugo, Luis
2016-01-01
The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt %) and 32% (0.5 wt %), respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids. PMID:28773578
Ares I-X Thermal Model Correlation and Lessons Learned
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
2010-01-01
The Ares I-X vehicle launched and flew successfully on October 28, 2009. This paper will describe the correlation of the vehicle thermal model to both ground testing and flight data. A main purpose of the vehicle model and ground testing was to ensure that the avionics within the vehicle were held within their thermal limits prior to launch and during flight. The correlation of the avionics box temperatures will be shown. Also, the lessons learned in the thermal discipline during the modeling, test, correlation to test, and flight of the Ares I-X flight test vehicle will be described. Lessons learned will cover thermal modeling, as well as management of the thermal discipline, thermal team, and thermal-related actions in design, testing, and flight.
Facial thermal variations: A new marker of emotional arousal.
Kosonogov, Vladimir; De Zorzi, Lucas; Honoré, Jacques; Martínez-Velázquez, Eduardo S; Nandrino, Jean-Louis; Martinez-Selva, José M; Sequeira, Henrique
2017-01-01
Functional infrared thermal imaging (fITI) is considered a promising method to measure emotional autonomic responses through facial cutaneous thermal variations. However, the facial thermal response to emotions still needs to be investigated within the framework of the dimensional approach to emotions. The main aim of this study was to assess how the facial thermal variations index the emotional arousal and valence dimensions of visual stimuli. Twenty-four participants were presented with three groups of standardized emotional pictures (unpleasant, neutral and pleasant) from the International Affective Picture System. Facial temperature was recorded at the nose tip, an important region of interest for facial thermal variations, and compared to electrodermal responses, a robust index of emotional arousal. Both types of responses were also compared to subjective ratings of pictures. An emotional arousal effect was found on the amplitude and latency of thermal responses and on the amplitude and frequency of electrodermal responses. The participants showed greater thermal and dermal responses to emotional than to neutral pictures with no difference between pleasant and unpleasant ones. Thermal responses correlated and the dermal ones tended to correlate with subjective ratings. Finally, in the emotional conditions compared to the neutral one, the frequency of simultaneous thermal and dermal responses increased while both thermal or dermal isolated responses decreased. Overall, this study brings convergent arguments to consider fITI as a promising method reflecting the arousal dimension of emotional stimulation and, consequently, as a credible alternative to the classical recording of electrodermal activity. The present research provides an original way to unveil autonomic implication in emotional processes and opens new perspectives to measure them in touchless conditions.
Comprehensive interpretation of thermal dileptons measured at the CERN super proton synchrotron.
van Hees, Hendrik; Rapp, Ralf
2006-09-08
Employing thermal dilepton rates based on a medium-modified electromagnetic correlation function we show that recent dimuon spectra of the NA60 Collaboration in central In-In collisions at the CERN-SPS can be understood in terms of radiation from a hot and dense hadronic medium. Earlier calculated in-medium rho-meson spectral functions provide an accurate description of the data up to dimuon invariant masses of about M approximately or equal to 0.9 GeV, with good sensitivity to the predicted rho-meson line shape, identifying baryon-induced modifications as the prevalent ones. A reliable evaluation of the contribution enables the study of further medium effects: at masses M>0.9 GeV, 4-pion type annihilation accounts for the experimentally observed excess (possibly augmented by effects of "chiral mixing"), while predictions for thermal emission from in-medium omega and phi mesons may be tested in the future.
Susceptibility of the Ising Model on a Kagomé Lattice by Using Wang-Landau Sampling
NASA Astrophysics Data System (ADS)
Kim, Seung-Yeon; Kwak, Wooseop
2018-03-01
The susceptibility of the Ising model on a kagomé lattice has never been obtained. We investigate the properties of the kagomé-lattice Ising model by using the Wang-Landau sampling method. We estimate both the magnetic scaling exponent yh = 1.90(1) and the thermal scaling exponent yt = 1.04(2) only from the susceptibility. From the estimated values of yh and yt, we obtain all the critical exponents, the specific-heat critical exponent α = 0.08(4), the spontaneous-magnetization critical exponent β = 0.10(1), the susceptibility critical exponent γ = 1.73(5), the isothermalmagnetization critical exponent δ = 16(4), the correlation-length critical exponent ν = 0.96(2), and the correlation-function critical exponent η = 0.20(4), without using any other thermodynamic function, such as the specific heat, magnetization, correlation length, and correlation function. One should note that the evaluation of all the critical exponents only from information on the susceptibility is an innovative approach.
NASA Technical Reports Server (NTRS)
Ganga, Ken; Cheng, ED; Meyer, Stephan; Page, Lyman
1993-01-01
This letter describes results of a cross-correlation between the 170 GHz partial-sky survey, made with a 3.8 deg beam balloon-borne instrument, and the COBE DMR 'Fit Technique' reduced galaxy all-sky map with a beam of 7 deg. The strong correlation between the data sets implies that the observed structure is consistent with thermal variations in a 2.7 K emitter. A chi-square analysis applied to the correlation function rules out the assumption that there is no structure in either of the two maps. A second test shows that if the DMR map has structure but the 170 GHz map does not, the probability of obtaining the observed correlation is small. Further analyses support the assumption that both maps have structure and that the 170 GHz-DMR cross-correlation is consistent with the analogous DMR correlation function. Maps containing various combinations of noise and Harrison-Zel'dovich power spectra are simulated and correlated to reinforce the result. The correlation provides compelling evidence that both instruments have observed fluctuations consistent with anisotropies in the cosmic microwave background.
Multiscale Evaluation of Thermal Dependence in the Glucocorticoid Response of Vertebrates.
Jessop, Tim S; Lane, Meagan L; Teasdale, Luisa; Stuart-Fox, Devi; Wilson, Robbie S; Careau, Vincent; Moore, Ignacio T
2016-09-01
Environmental temperature has profound effects on animal physiology, ecology, and evolution. Glucocorticoid (GC) hormones, through effects on phenotypic performance and life history, provide fundamental vertebrate physiological adaptations to environmental variation, yet we lack a comprehensive understanding of how temperature influences GC regulation in vertebrates. Using field studies and meta- and comparative phylogenetic analyses, we investigated how acute change and broadscale variation in temperature correlated with baseline and stress-induced GC levels. Glucocorticoid levels were found to be temperature and taxon dependent, but generally, vertebrates exhibited strong positive correlations with acute changes in temperature. Furthermore, reptile baseline, bird baseline, and capture stress-induced GC levels to some extent covaried with broadscale environmental temperature. Thus, vertebrate GC function appears clearly thermally influenced. However, we caution that lack of detailed knowledge of thermal plasticity, heritability, and the basis for strong phylogenetic signal in GC responses limits our current understanding of the role of GC hormones in species' responses to current and future climate variation.
The functional requirements of mammalian hair: a compromise between crypsis and thermoregulation?
Wacker, Chris B; McAllan, Bronwyn M; Körtner, Gerhard; Geiser, Fritz
2016-08-01
Mammalian fur often shows agouti banding with a proximal dark band near the skin and a lighter distal band. We examined the function of both bands in relation to camouflage, thermal properties of pelts, and thermal energetics of dunnarts (Sminthopsis crassicaudata), which are known to use torpor and basking. Although the distal band of dunnart fur darkened with increasing latitude, which is important for camouflage, it did not affect the thermal properties and the length of the dark band and total hair length were not correlated. In contrast, the length of the proximal dark band of preserved pelts exposed to sunlight was positively correlated (r (2) = 0.59) with the temperature underneath the pelt (T pelt). All dunnarts offered radiant heat basked by exposing the dark band of the hair during both rest and torpor. Basking dunnarts with longer dark bands had lower resting metabolism (r (2) = 0.69), warmed faster from torpor (r (2) = 0.77), required less energy to do so (r (2) = 0.32), and reached a higher subcutaneous temperature (T sub) at the end of rewarming (r (2) = 0.75). We provide the first experimental evidence on the possible dual function of the color banding of mammalian fur. The distal colored band appears to be important for camouflage, whereas the length of the dark proximal hair band facilitates heat gain for energy conservation and allows animals to rewarm quickly and economically from torpor.
The functional requirements of mammalian hair: a compromise between crypsis and thermoregulation?
NASA Astrophysics Data System (ADS)
Wacker, Chris B.; McAllan, Bronwyn M.; Körtner, Gerhard; Geiser, Fritz
2016-08-01
Mammalian fur often shows agouti banding with a proximal dark band near the skin and a lighter distal band. We examined the function of both bands in relation to camouflage, thermal properties of pelts, and thermal energetics of dunnarts ( Sminthopsis crassicaudata), which are known to use torpor and basking. Although the distal band of dunnart fur darkened with increasing latitude, which is important for camouflage, it did not affect the thermal properties and the length of the dark band and total hair length were not correlated. In contrast, the length of the proximal dark band of preserved pelts exposed to sunlight was positively correlated ( r 2 = 0.59) with the temperature underneath the pelt ( T pelt). All dunnarts offered radiant heat basked by exposing the dark band of the hair during both rest and torpor. Basking dunnarts with longer dark bands had lower resting metabolism ( r 2 = 0.69), warmed faster from torpor ( r 2 = 0.77), required less energy to do so ( r 2 = 0.32), and reached a higher subcutaneous temperature ( T sub) at the end of rewarming ( r 2 = 0.75). We provide the first experimental evidence on the possible dual function of the color banding of mammalian fur. The distal colored band appears to be important for camouflage, whereas the length of the dark proximal hair band facilitates heat gain for energy conservation and allows animals to rewarm quickly and economically from torpor.
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.
Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V
2017-05-01
This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.
Roberts, Daniel A; Stanford, Douglas
2015-09-25
We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators.
Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Eudell, A. H.; Patt, F. S.
1989-01-01
Results are presented on the temperature correlation of the relative coalignment between the fine pointing sun sensor (FPSS) and fixed head star trackers (FHSTs) on the Solar Maximum Mission (SMM). This correlation can be caused by spacecraft electronic and mechanical effects. Routine daily measurements reveal a time dependent sensor coalignment variation. The magnitude of the alignment variation is on the order of 120 arc seconds (arc sec), which greatly exceeds the prelaunch thermal structural analysis estimate of 15 acr sec. Differences between FPSS-only and FHST-only yaw solutions as a function of mission day are correlated with the relevant spacecraft temperature. If unaccounted for, the sensor misalignments due to thermal effects are a significant source of error in attitude determination accuracy. Prominent sources of temperature variation are identified and correlated with the temperature profile observed on the SMM. It was determined that even relatively small changes in spacecraft temperature can affect the coalignments between the attitude hardware on the SMM and the science instrument support plate and that frequent recalibration of sensor alignments is necessary to compensate for this effect. An alterntive to frequent recalibration is to model the variation of alignments as a function of temperature and use this to maintain accurate ground or onboard alignment estimates. These flight data analysis results may be important consierations for prelaunch analysis of future missions.
THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, A.L.
1980-07-01
The finite-temperature HFB cranking equations are solved for the two-level model. The pair gap, moment of inertia and internal energy are determined as functions of spin and temperature. Thermal excitations and rotations collaborate to destroy the pair correlations. Raising the temperature eliminates the backbending effect and improves the HFB approximation.
Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing
2017-02-01
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
NASA Astrophysics Data System (ADS)
Pereverzev, Andrey; Sewell, Tommy
2018-03-01
Lattice heat-current time correlation functions for insulators and semiconductors obtained using molecular dynamics (MD) simulations exhibit features of both pure exponential decay and oscillatory-exponential decay. For some materials the oscillatory terms contribute significantly to the lattice heat conductivity calculated from the correlation functions. However, the origin of the oscillatory terms is not well understood, and their contribution to the heat conductivity is accounted for by fitting them to empirical functions. Here, a translationally invariant expression for the heat current in terms of creation and annihilation operators is derived. By using this full phonon-picture definition of the heat current and applying the relaxation-time approximation we explain, at least in part, the origin of the oscillatory terms in the lattice heat-current correlation function. We discuss the relationship between the crystal Hamiltonian and the magnitude of the oscillatory terms. A solvable one-dimensional model is used to illustrate the potential importance of terms that are omitted in the commonly used phonon-picture expression for the heat current. While the derivations are fully quantum mechanical, classical-limit expressions are provided that enable direct contact with classical quantities obtainable from MD.
NASA Astrophysics Data System (ADS)
Ferreira, F. V.; Franceschi, W.; Menezes, B. R. C.; Brito, F. S.; Lozano, K.; Coutinho, A. R.; Cividanes, L. S.; Thim, G. P.
2017-07-01
This study presents the effect of dodecylamine (DDA) functionalization of carbon nanotubes (CNTs) on the thermo-physical and mechanical properties of high-density polyethylene (HDPE) based composites. Here, we showed that the functionalization with DDA improved the dispersion of the CNTs as well as the interfacial adhesion with the HDPE matrix via non-covalent interactions. The better dispersion and interaction of CNT in the HDPE matrix as a function of the surface chemistry was correlated with the improved thermo-physical and mechanical properties.
NASA Astrophysics Data System (ADS)
Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano
2016-04-01
In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.
Fine Grained Chaos in AdS2 Gravity
NASA Astrophysics Data System (ADS)
Haehl, Felix M.; Rozali, Moshe
2018-03-01
Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order four-point function up to a scrambling time u^*. We discuss generalizations of this statement for certain higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional time reparametrization mode, which describes two-dimensional anti-de Sitter space (AdS2 ) gravity and the low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2 k -point functions, characterized as being both "maximally braided" and "k -out of time order," which exhibit exponential growth until progressively longer time scales u^*(k)˜(k -1 )u^*. We suggest an interpretation as scrambling of increasingly fine grained measures of quantum information, which correspondingly take progressively longer time to reach their thermal values.
Fine Grained Chaos in AdS_{2} Gravity.
Haehl, Felix M; Rozali, Moshe
2018-03-23
Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order four-point function up to a scrambling time u[over ^]_{*}. We discuss generalizations of this statement for certain higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional time reparametrization mode, which describes two-dimensional anti-de Sitter space (AdS_{2}) gravity and the low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2k-point functions, characterized as being both "maximally braided" and "k-out of time order," which exhibit exponential growth until progressively longer time scales u[over ^]_{*}^{(k)}∼(k-1)u[over ^]_{*}. We suggest an interpretation as scrambling of increasingly fine grained measures of quantum information, which correspondingly take progressively longer time to reach their thermal values.
Quantum correlation of high dimensional system in a dephasing environment
NASA Astrophysics Data System (ADS)
Ji, Yinghua; Ke, Qiang; Hu, Juju
2018-05-01
For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David; LeBohec, Stephan
2018-06-01
We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.
Electrical Transport Properties of Liquid Al-Cu Alloys
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Khambholja, S. G.; Suthar, P. H.; Jani, A. R.
2010-06-01
Electrical transport properties viz. electrical resistivity, thermoelectric power and thermal conductivity of liquid Al-Cu alloys as a function of Cu concentration have been studied in the present paper. Ashcroft empty core model potential has been used to incorporate the ion-electron interaction. To incorporate the exchange and correlation effects, five different forms of local field correction functions viz. Hartree, Taylor, Ichimaru et al., Farid et al. and Sarkar et al. have been used. The transport properties of binary system have been studied using Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. The computed values of electrical resistivity are compared with experimental data and for low Cu concentration, good agreement has been observed. Further, thermoelectric power and thermal conductivity have also been predicted.
Correlation of LEND and Diviner Data
NASA Technical Reports Server (NTRS)
McClanahan, Tim; Boynton, William; Mitrofanov, Igor; Sagdeev, Raold; Bennet, Kristen; Starr, Richard; Evans, Larry; Paige, Dave; Sanin, Anton; Litvak, Max;
2011-01-01
Correlated results from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and Lunar Orbiting Laser Altimeter (LOLA) suggest insolation effects influence the spatial distribution of Lunar H poleward of 60deg latitude. Diviner results indicate an insolation induced thermal contrast between pole-facing and equator-facing slopes of crater walls. Our research shows that the contrasting thermal conditions observed in pole-facing vs equator-facing slopes and epithermal neutron rates from LEND are positively correlated. Numerical transformations of LOLA topography facilitated a systematic decomposition of LEND epithermal maps as a function of insolation effects. The results suggest a significantly positive local epithermal contrast in these regions. Comparing pole-facing and equator-facing slopes, we find that the pole-facing slopes show epithermal neutron suppression ranging from -0.005 to 0.02 cps relative to the equator-facing slopes .. We further investigate insolation effects on epithermal neutrons by comparing the predicted insolation contrast derived from the 3-D LOLA topography model with the LEND results. We also investigate and discuss the possibility of slope mass wasting effects being correlated with our insolation-effect hypothesis
Implications of Advanced Crew Escape Suit Transpiration for the Orion Program
NASA Technical Reports Server (NTRS)
Bue, Grant; Kuznetz, Lawrence
2009-01-01
Human testing was conducted to more fully characterize the integrated performance of the Advanced Crew Escape Suit (ACES) with liquid cooling provide by an Individual Cooling Unit (ICU) across a broad range of environmental conditions and metabolic rates. Together with a correlation for the ACES Liquid Cooling Garment as a function of inlet temperature, metabolic rate, and crew size, a reasonably conservative correlation for core temperature was achieved for the human thermal model applied to the ACES with ICU cooling. A key observation for this correlation was accounting for transpiration of evaporated sweat through the Gortex(Registered TradeMark) liner of the ACES indicated by as much as 0.6 lbm of sweat evaporated over the course of the 1 hour test profile, most of which could not be attributed to respiration or head sweat evaporation of the crew. Historically it has been assumed that transpiration was not an important design feature of the ACES suit. The correlated human thermal model will show transpiration to be highly useful in hot survival situations for the Orion Program when adequate liquid cooling is not available.
Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment.
Wang, Fei; Liang, Chunhao; Yuan, Yangsheng; Cai, Yangjian
2014-09-22
A new kind of partially coherent beam with non-conventional correlation function named generalized multi-Gaussian correlated Schell-model (GMGCSM) beam is proposed. The GMGCSM beam of the first or second kind is capable of producing dark hollow or flat-topped beam profile in the focal plane (or in the far field). Furthermore, we carry out experimental generation of a GMGCSM beam of the first or second kind, and measure its focused intensity. Our experimental results verify theoretical predictions. The GMGCSM beam will be useful for free-space optical communications, material thermal processing, particle or atom trapping.
{Phi}{sup 4} kinks: Statistical mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, S.
1995-12-31
Some recent investigations of the thermal equilibrium properties of kinks in a 1+1-dimensional, classical {phi}{sup 4} field theory are reviewed. The distribution function, kink density, correlation function, and certain thermodynamic quantities were studied both theoretically and via large scale simulations. A simple double Gaussian variational approach within the transfer operator formalism was shown to give good results in the intermediate temperature range where the dilute gas theory is known to fail.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.
Maldacena, Juan; Shenker, Stephen H.; Stanford, Douglas
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ L ≤ 2πk B T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Understanding photon sideband statistics and correlation for determining phonon coherence
NASA Astrophysics Data System (ADS)
Ding, Ding; Yin, Xiaobo; Li, Baowen
2018-01-01
Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.
Remarks on thermalization in 2D CFT
NASA Astrophysics Data System (ADS)
de Boer, Jan; Engelhardt, Dalit
2016-12-01
We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.
Functional organic materials for electronics industries
NASA Technical Reports Server (NTRS)
Shibayama, K.; Ono, H.
1982-01-01
Topics closely related with organic, high molecular weight material synthesis are discussed. These are related to applications such as display, recording, sensors, semiconductors, and I.C. correlation. New materials are also discussed. General principles of individual application are not included. Materials discussed include color, electrochromic, thermal recording, organic photoconductors for electrophotography, and photochromic materials.
NASA Technical Reports Server (NTRS)
Lawson, JOhn W.; Daw, Murray S.; Bauschlicher, Charles W.
2011-01-01
Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 are candidate materials for applications in extreme environments because of their high melting point, good mechanical properties and reasonable oxidation resistance. Unlike many ceramics, these materials have high thermal conductivity which can be advantageous, for example, to reduce thermal shock. Recently, we developed Tersoff style interatomic potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current. Results at room temperature and at elevated temperatures will be reported.
Comparing Geant4 hadronic models for the WENDI-II rem meter response function.
Vanaudenhove, T; Dubus, A; Pauly, N
2013-01-01
The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.
NASA Astrophysics Data System (ADS)
Hoheisel, C.; Vogelsang, R.; Schoen, M.
1987-12-01
Accurate data for the bulk viscosity ηv have been obtained by molecular dynamics calculations. Many thermodynamic states of the Lennard-Jones fluid were considered. The Green-Kubo integrand of ηv is analyzed in terms of partial correlation functions constituting the total one. These partial functions behave rather differently from those found for the shear viscosity or the thermal conductivity. Generally the total autocorrelation function of ηv shows a steeper initial decay and a more pronounced long time form than those of the shear viscosity or the thermal conductivity. For states near transition to solid phases, like the pseudotriple point of argon, the Green-Kubo integrand of ηv has a significantly longer ranged time behavior than that of the shear viscosity. Hence, for the latter states, a systematic error is expected for ηv using equilibrium molecular dynamics for its computation.
NASA Astrophysics Data System (ADS)
Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.
2014-12-01
Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.
NASA Astrophysics Data System (ADS)
Saddeek, Yasser B.; Mohamed, Hamdy F. M.; Azooz, Moenis A.
2004-07-01
Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B2O3 + 10 Al2O3 + 40 RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size.
NASA Astrophysics Data System (ADS)
Evans, Denis J.; Searles, Debra J.; Williams, Stephen R.
2010-01-01
We study the statistical mechanics of thermal conduction in a classical many-body system that is in contact with two thermal reservoirs maintained at different temperatures. The ratio of the probabilities, that when observed for a finite time, the time averaged heat flux flows in and against the direction required by Fourier's Law for heat flow, is derived from first principles. This result is obtained using the transient fluctuation theorem. We show that the argument of that theorem, namely, the dissipation function is, close to equilibrium, equal to a microscopic expression for the entropy production. We also prove that if transient time correlation functions of smooth zero mean variables decay to zero at long times, the system will relax to a unique nonequilibrium steady state, and for this state, the thermal conductivity must be positive. Our expressions are tested using nonequilibrium molecular dynamics simulations of heat flow between thermostated walls.
Aeroheating Thermal Model Correlation for Mars Global Surveyor (MGS) Solar Array
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.
2003-01-01
The Mars Global Surveyor (MGS) Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time dependent aerodynamic heating. Also, the thermal model itself needed to accurately capture the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar cell assembly properties, and adding detail to radiation and heat flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar array aeroheating analysis, which were used during onorbit operations.
Fragility correlates thermodynamic and kinetic properties of glass forming liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, C.Narayana; Viswanatha, R.; Chethana, B.K.
2015-03-15
Graphical abstract: The suggested new fragility parameter correlates viscosity and configurational entropy. - Highlights: • A new fragility function, F=ΔT/ΔC{sub p}×C{sub p}{sup l}/T{sub g} has been proposed. • A three parameter viscosity function using the new F reproduces Angell fragility plot. • A new ΔC{sub p} function is derived which directly relates Adam–Gibbs function with the fragility based viscosity function. - Abstract: In our earlier communication we proposed a simple fragility determining function, ([NBO]/V{sub m}{sup 3}T{sub g}), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, ΔC{sub p}/C{submore » p}{sup l}, introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both ΔC{sub p} and ΔT and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters ΔC{sub p}, C{sub p}{sup l}, T{sub g} and T{sub m}. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam–Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the ΔC{sub p} versus ln(T{sub r}) curves and hence the configurational entropy.« less
Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E; Ammann, Christof; Arain, M Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan; Beringer, Jason; Bernhofer, Christian; Black, T Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J; Dellwik, Ebba; Desai, Ankur R; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y; Jones, Mike B; Kiely, Gerard; Kolb, Thomas E; Kutsch, Werner L; Lafleur, Peter; Lawrence, David M; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J William; Noormets, Asko; Oechel, Walter; Olejnik, Janusz; Kyaw Tha Paw U; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L; Seufert, Günther; Spano, Donatella; Stoy, Paul; Sutton, Mark A; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, Xuhui
2012-05-01
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.
1991-01-01
Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.
The technological raw material heating furnaces operation efficiency improving issue
NASA Astrophysics Data System (ADS)
Paramonov, A. M.
2017-08-01
The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.
Uhlig, Christiane; Kabisch, Johannes; Palm, Gottfried J; Valentin, Klaus; Schweder, Thomas; Krell, Andreas
2011-12-01
Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53°C±0.53°C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34°C±0.25°C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability. Copyright © 2011 Elsevier Inc. All rights reserved.
Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd
2015-01-01
Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813
Test of quantum thermalization in the two-dimensional transverse-field Ising model
Blaß, Benjamin; Rieger, Heiko
2016-01-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523
Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae
2016-03-31
Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R = Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA + U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.
Brandt, I S; Rasskazov, S V; Brandt, S B; Ivanov, A V
2002-03-01
In application of radioactive isotope systems (K-Ar, Rb-Sr etc.) during the last decades, experience was gained not only on their geochronometrical uses, but also on estimations of some important parameters of geological processes, especially temperatures and durations of superimposed thermal events. In this paper, the formation of an exocontact thermal field of a magmatic intrusion is considered as a spreading of a thermal source delta-function. Appropriate solutions of the heat-transfer equation are deduced and correlated with diffusion parameters of the radiogenic argon, coupling radioactive, thermal and kinetic parameters in an exocontant zone of a magmatic body. These solutions were used for quantitative reinterpretations of data taken from Hart's classical paper [The petrology and isotopic mineral age relations of a contact zone in the Front Range, Colorado. J. Geol., 1964, v. 72, pp. 493-525]. Theoretic and measured radiogenic argon and strontium concentrations within exocontact aureoles are found to be in good concordance.
Incident Energy Dependence of p t Correlations at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.; Aggarwal, M. M.; Ahammed, Z.
2005-10-01
We present results for two-particle transverse momentum correlations, Δp t,iΔ t,j, as a function of event centrality for Au+Au collisions at √( sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or nomore » beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.« less
Nonperturbative finite-temperature Yang-Mills theory
NASA Astrophysics Data System (ADS)
Cyrol, Anton K.; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils
2018-03-01
We present nonperturbative correlation functions in Landau-gauge Yang-Mills theory at finite temperature. The results are obtained from the functional renormalisation group within a self-consistent approximation scheme. In particular, we compute the magnetic and electric components of the gluon propagator, and the three- and four-gluon vertices. We also show the ghost propagator and the ghost-gluon vertex at finite temperature. Our results for the propagators are confronted with lattice simulations and our Debye mass is compared to hard thermal loop perturbation theory.
Orbiter electrical equipment utilization baseline
NASA Technical Reports Server (NTRS)
1980-01-01
The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Smith, B. W.
1978-01-01
OSO 8 X-ray spectra from 2 to 20 keV have been analyzed for 26 clusters of galaxies. For 20 clusters temperatures, emission integrals, iron abundances, and low-energy absorption measurements are presented. The data give, in general, better fits to thermal bremsstrahlung than to power-law models. Eight clusters have positive iron emission-line detections at the 90% confidence level, and all 20 cluster spectra are consistent with Fe/H = 0.000014 by number with the possible exception of Virgo. Thus it is confirmed that X-ray emission in this energy band is predominantly thermal radiation from hot intracluster gas rather than inverse Compton radiation. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central-galaxy density than with richness; and (4) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.
Bath-induced correlations in an infinite-dimensional Hilbert space
NASA Astrophysics Data System (ADS)
Nizama, Marco; Cáceres, Manuel O.
2017-09-01
Quantum correlations between two free spinless dissipative distinguishable particles (interacting with a thermal bath) are studied analytically using the quantum master equation and tools of quantum information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are shown. We show that for temperature T> 0 the time-evolution of the reduced density matrix cannot be written as the direct product of two independent particles. We have found a time-scale that characterizes the time when the bath-induced coherence is maximum before being wiped out by dissipation (purity, relative entropy, spatial dispersion, and mirror correlations are studied). The Wigner function associated to the Wannier lattice (where the dissipative quantum walks move) is studied as an indirect measure of the induced correlations among particles. We have supported the quantum character of the correlations by analyzing the geometric quantum discord.
NASA Astrophysics Data System (ADS)
Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.
2018-05-01
Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.
Holographic thermalization with initial long range correlation
Lin, Shu
2016-01-19
Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS 3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v 2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integratedmore » Wightman correlator and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less
He, Yi-Ming; Ma, Bin-Guang
2016-01-01
Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions. PMID:27220911
NASA Astrophysics Data System (ADS)
He, Yi-Ming; Ma, Bin-Guang
2016-05-01
Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.
Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives
Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M; ...
2016-06-23
In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less
Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M
In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less
NASA Technical Reports Server (NTRS)
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2015-01-01
Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.
Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate.
Lopez, C; Lesieur, P; Bourgaux, C; Ollivon, M
2005-02-01
The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at cooling rates of 3 and 1 degrees C/ min from 60 to -10 degrees C to determine the triacylglycerol organizations formed. Simultaneous thermal analysis permitted the correlation of the formation/melting of the different crystalline species monitored by XRDT to the thermal events recorded by differential scanning calorimetry. At intermediate cooling rates, milk fat triacylglycerols sequentially crystallize in 3 different lamellar structures with double-chain length of 46 and 38.5 A and a triple-chain length of 72 A stackings of alpha type, which are correlated to 2 exothermic peaks at 17.2 and 13.7 degrees C, respectively. A time-dependent slow sub-alpha <--> alpha reversible transition is observed at -10 degrees C. Subsequent heating at 2 degrees C/min has shown numerous structural rearrangements of the alpha varieties into a single beta' form before final melting. This polymorphic evolution on heating, as well as the final melting point observed (approximately 39 degrees C), confirmed that cooling at 3 degrees C/min leads to the formation of crystalline varieties that are not at equilibrium. An overall comparison of the thermal and structural properties of the crystalline species formed as a function of the cooling rate and stabilization time is presented. The influence on crystal size of the cooling rates applied in situ using temperature-controlled polarized microscopy is also determined for comparison.
An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design
NASA Technical Reports Server (NTRS)
Dec, John A.; Braun, Robert D.
2005-01-01
A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.
An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design
NASA Technical Reports Server (NTRS)
Dec, John A.; Braun, Robert D.
2006-01-01
A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.
NASA Astrophysics Data System (ADS)
Suseel Jai Krishnan, S.; P. K., Nagarajan
2017-05-01
In this present investigation, experiments were conducted on the magnesia nanoparticles (8-18 nm) synthesized by the solution combustion method, which was dispersed in the binary mixture of water-ethylene glycol (50:50) to prepare stable MgO-water-ethylene glycol (50:50) nanofluids through continuous 26h ultrasonication. The effect of nanoparticle concentration (0 to 0.2 vol%) and temperature (25°C to 60°C) on the thermal conductivity of the nanofluids was investigated. The results clearly indicate that an increase in the nanoparticle concentration increases the thermal conductivity of the nanofluid. Similarly the thermal conductivity of the nanofluid increases with increase in temperature. The enhanced thermal conductivity in the nanofluids may be due to either or both, the Brownian movement and the nano-interfacial layering. The maximum enhancement of 16% was obtained at 0.2 vol% nanoparticle concentration and at 60°C. An accurate correlation, modeling the thermal conductivity as a function of nanoparticle concentration and temperature was also proposed based on the experimental data.
Thermal physiology of Amazonian lizards (Reptilia: Squamata)
Caetano, Gabriel H. O.; Pontes, Emerson; Ávila-Pires, Teresa C. S.
2018-01-01
We summarize thermal-biology data of 69 species of Amazonian lizards, including mode of thermoregulation and field-active body temperatures (Tb). We also provide new data on preferred temperatures (Tpref), voluntary and thermal-tolerance ranges, and thermal-performance curves (TPC’s) for 27 species from nine sites in the Brazilian Amazonia. We tested for phylogenetic signal and pairwise correlations among thermal traits. We found that species generally categorized as thermoregulators have the highest mean values for all thermal traits, and broader ranges for Tb, critical thermal maximum (CTmax) and optimal (Topt) temperatures. Species generally categorized as thermoconformers have large ranges for Tpref, critical thermal minimum (CTmin), and minimum voluntary (VTmin) temperatures for performance. Despite these differences, our results show that all thermal characteristics overlap between both groups and suggest that Amazonian lizards do not fit into discrete thermoregulatory categories. The traits are all correlated, with the exceptions of (1) Topt, which does not correlate with CTmax, and (2) CTmin, and correlates only with Topt. Weak phylogenetic signals for Tb, Tpref and VTmin indicate that these characters may be shaped by local environmental conditions and influenced by phylogeny. We found that open-habitat species perform well under present environmental conditions, without experiencing detectable thermal stress from high environmental temperatures induced in lab experiments. For forest-dwelling lizards, we expect warming trends in Amazonia to induce thermal stress, as temperatures surpass the thermal tolerances for these species. PMID:29513695
NASA Technical Reports Server (NTRS)
Dec, John A.; Gasbarre, Joseph F.; George, Benjamin E.
2002-01-01
The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecraft's solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecraft's velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.
Electrical and thermal investigations of the phase transition in sodium bicarbonate, NaHCO3
NASA Astrophysics Data System (ADS)
Abdel-Kader, M. M.; Fadly, M.; Abutaleb, M.; El-Tanahy, Z. H.; Eldehemy, K.; Ali, A. I.
1995-09-01
This paper reports on a structural phase transition in sodium hydrogen carbonate, NaHCO3 as revealed by the investigations of some electrical and thermal parameters. Measurements of d.c. electric conductivity (σ) and relative premittivity (epsilon) of polycrystalline samples of NaHCO3 as a function of temperature in the interval 300 < T < 400 K reveal the existence of a structural phase transition around 365 K. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were also performed in the same temperature range. The (DTA) results confirm the existence of a structural phase transition at cong 365 K whereas the (TGA) results show the absence of any actual loss in weight in the transition temperature region. The data are correlated to the crystal structure including the hydrogen bonding system.
Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yingchuan; College of Mathematics and Physics, University of South China, Hengyang 421001; Kuang Leman
2011-05-15
In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that themore » visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.« less
Transport driven by biharmonic forces: impact of correlated thermal noise.
Machura, L; Łuczka, J
2010-09-01
We study an inertial brownian particle moving in a symmetric periodic substrate, driven by a zero-mean biharmonic force and correlated thermal noise. The brownian motion is described in terms of a generalized Langevin equation with an exponentially correlated gaussian noise term, obeying the fluctuation-dissipation theorem. We analyze impact of nonzero correlation time of thermal noise on transport properties of the brownian particle. We identify regimes where the increase of the correlation time intensifies long-time transport of the brownian particle. The opposite effect is also found: longer correlation time reduces the stationary velocity of the particle. The correlation time induced multiple current reversal is detected. We reveal that thermal noise of nonzero correlation time can radically enhance long-time velocity of the brownian particle in regimes where in the white noise limit the velocity is extremely small. All transport properties can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device.
Correleation of the SAGE III on ISS Thermal Models in Thermal Desktop
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Davis, Warren T.; Liles, Kaitlin, A. K.; McLeod, Shawn C.
2017-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III was launched on February 19, 2017 and mounted to the International Space Station (ISS) to begin its three-year mission. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Correlation of the thermal model is important since the payload will be expected to survive a three-year mission on ISS under varying thermal environments. Three major thermal vacuum (TVAC) tests were completed during the development of the SAGE III Instrument Payload (IP); two subsystem-level tests and a payload-level test. Additionally, a characterization TVAC test was performed in order to verify performance of a system of heater plates that was designed to allow the IP to achieve the required temperatures during payload-level testing; model correlation was performed for this test configuration as well as those including the SAGE III flight hardware. This document presents the methods that were used to correlate the SAGE III models to TVAC at the subsystem and IP level, including the approach for modeling the parts of the payload in the thermal chamber, generating pre-test predictions, and making adjustments to the model to align predictions with temperatures observed during testing. Model correlation quality will be presented and discussed, and lessons learned during the correlation process will be shared.
Liu, Jian; Miller, William H
2008-09-28
The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.
Dynamics of entanglement in expanding quantum fields
NASA Astrophysics Data System (ADS)
Berges, Jürgen; Floerchinger, Stefan; Venugopalan, Raju
2018-04-01
We develop a functional real-time approach to computing the entanglement between spatial regions for Gaussian states in quantum field theory. The entanglement entropy is characterized in terms of local correlation functions on space-like Cauchy hypersurfaces. The framework is applied to explore an expanding light cone geometry in the particular case of the Schwinger model for quantum electrodynamics in 1+1 space-time dimensions. We observe that the entanglement entropy becomes extensive in rapidity at early times and that the corresponding local reduced density matrix is a thermal density matrix for excitations around a coherent field with a time dependent temperature. Since the Schwinger model successfully describes many features of multiparticle production in e + e - collisions, our results provide an attractive explanation in this framework for the apparent thermal nature of multiparticle production even in the absence of significant final state scattering.
Thermal Management and Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Hasnain, Aqib
2016-01-01
During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun's rays directly impinging on the system. Heating rate of the lamps were calculated by knowing fraction of emitted energy in a wavelength interval and the filament temperature. This version of the model can be used to predict performance of the system under vacuum with extreme cold or hot conditions. Initial testing of the PTMS showed promise, and the thermal math model predicts even better performance in thermal vacuum testing. ii) Thermal Protection Systems (TPS) are required for vehicles which enter earth's atmosphere to protect from aerodynamic heating caused by the friction between the vehicle and atmospheric gases. Orion's heat shield design has two aspects which needed to be analyzed thermally: i) a small excess of adhesive used to bond the outer AVCOAT layer to the inner composite structure tends to seep from under the AVCOAT and form a small bead in between two bricks of AVCOAT, ii) a silicone rubber with different thermophysical properties than AVCOAT fills the gap between two bricks of AVCOAT. I created a thermal model using TD to determine temperature differences that are caused by these two features. To prevent false results, all TD models must be verified against something known. In this case, the TD model was correlated to CHAR, an ablation modelling software used to analyze TPS. Analyzing a node far from the concerning features, we saw that the TD model data match CHAR data, verifying the TD model. Next, the temperature of the silicone rubber as well as the bead of adhesive were analyzed to determine if they exceeded allowable temperatures. It was determined that these two features do not have a significant effect on the max temperature of the heat shield. This model can be modified to check temperatures at various locations of the heat shield where the composite thickness varies.
EFFECT OF CORRELATIONS ON THE TRANSPORT COEFFICIENTS OF A PLASMA (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.; de Gottal, Ph.
1961-01-01
A closed formula is obtained for the long-lived corre1ations in an inhomogeneous plasma; it is expressed in terms of the one particle distribution function. This forms an appropriate starting point for a rigorous theory of transport phenomena in plasmas, including the effect of molecular corrclations. An expressson is obtained for the thermal conductivity. (auth)
NASA Astrophysics Data System (ADS)
Ridley, Michael; MacKinnon, Angus; Kantorovich, Lev
2017-04-01
Working within the nonequilibrium Green's function formalism, a formula for the two-time current correlation function is derived for the case of transport through a nanojunction in response to an arbitrary time-dependent bias. The one-particle Hamiltonian and the wide-band limit approximation are assumed, enabling us to extract all necessary Green's functions and self-energies for the system, extending the analytic work presented previously [Ridley et al., Phys. Rev. B 91, 125433 (2015), 10.1103/PhysRevB.91.125433]. We show that our expression for the two-time correlation function generalizes the Büttiker theory of shot and thermal noise on the current through a nanojunction to the time-dependent bias case including the transient regime following the switch-on. Transient terms in the correlation function arise from an initial state that does not assume (as is usually done) that the system is initially uncoupled, i.e., our approach is partition free. We show that when the bias loses its time dependence, the long-time limit of the current correlation function depends on the time difference only, as in this case an ideal steady state is reached. This enables derivation of known results for the single-frequency power spectrum and for the zero-frequency limit of this power spectrum. In addition, we present a technique which facilitates fast calculations of the transient quantum noise, valid for arbitrary temperature, time, and voltage scales. We apply this formalism to a molecular wire system for both dc and ac biases, and find a signature of the traversal time for electrons crossing the wire in the time-dependent cross-lead current correlations.
NASA Astrophysics Data System (ADS)
Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.
2011-09-01
A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
Gao, Yan-Song; Su, Jing-Tan; Yan, Yong-Bin
2010-06-25
The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.
Robinson, A. M.; Fishman, A. J.; Bendok, B. R.; Richter, C.-P.
2015-01-01
This study compared functional and physical collateral damage to a nerve when operating a Codman MALIS Bipolar Electrosurgical System CMC-III or a CO2 laser coupled to a laser, with correlation to an in vitro model of heating profiles created by the devices in thermochromic ink agarose. Functional damage of the rat sciatic nerve after operating the MALIS or CO2 laser at various power settings and proximities to the nerve was measured by electrically evoked nerve action potentials, and histology of the nerve was used to assess physical damage. Thermochromic ink dissolved in agarose was used to model the spatial and temporal profile of the collateral heating zone of the electrosurgical system and the laser ablation cone. We found that this laser can be operated at 2 W directly above the nerve with minimal damage, while power settings of 5 W and 10 W resulted in acute functional and physical nerve damage, correlating with the maximal heating cone in the thermochromic ink model. MALIS settings up to 40 (11 W) did not result in major functional or physical nerve damage until the nerve was between the forceps tips, correlating with the hottest zone, localized discretely between the tips. PMID:25699266
Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2012-01-01
An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.
Quaternion Based Thermal Condition Monitoring System
NASA Astrophysics Data System (ADS)
Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee
In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.
The spatial variability of coastal surface water temperature during upwelling. [in Lake Superior
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Green, T., III
1979-01-01
Thermal scanner imagery acquired during a field experiment designed to study an upwelling event in Lake Superior is investigated. Temperature data were measured by the thermal scanner, with a spatial resolution of 7 m. These data were correlated with temperatures measured from boats. One- and two-dimensional Fourier transforms of the data were calculated and temperature variances as a function of wavenumber were plotted. A k-to-the-minus-three dependence of the temperature variance on wavenumber was found in the wavenumber range of 1-25/km. At wavenumbers greater than 25/km, a k-to-the-minus-five-thirds dependence was found.
Decoherence and thermalization of a pure quantum state in quantum field theory.
Giraud, Alexandre; Serreau, Julien
2010-06-11
We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.
Spin noise spectroscopy beyond thermal equilibrium and linear response.
Glasenapp, P; Sinitsyn, N A; Yang, Luyi; Rickel, D G; Roy, D; Greilich, A; Bayer, M; Crooker, S A
2014-10-10
Per the fluctuation-dissipation theorem, the information obtained from spin fluctuation studies in thermal equilibrium is necessarily constrained by the system's linear response functions. However, by including weak radio frequency magnetic fields, we demonstrate that intrinsic and random spin fluctuations even in strictly unpolarized ensembles can reveal underlying patterns of correlation and coupling beyond linear response, and can be used to study nonequilibrium and even multiphoton coherent spin phenomena. We demonstrate this capability in a classical vapor of (41)K alkali atoms, where spin fluctuations alone directly reveal Rabi splittings, the formation of Mollow triplets and Autler-Townes doublets, ac Zeeman shifts, and even nonlinear multiphoton coherences.
NASA Astrophysics Data System (ADS)
Joshi, V.; Manivannan, N.; Jarry, Z.; Carmichael, J.; Vahtel, M.; Zamora, G.; Calder, C.; Simon, J.; Burge, M.; Soliz, P.
2018-02-01
Diabetic peripheral neuropathy (DPN) accounts for around 73,000 lower-limb amputations annually in the US on patients with diabetes. Early detection of DPN is critical. Current clinical methods for diagnosing DPN are subjective and effective only at later stages. Until recently, thermal cameras used for medical imaging have been expensive and hence prohibitive to be installed in primary care setting. The objective of this study is to compare results from a low-cost thermal camera with a high-end thermal camera used in screening for DPN. Thermal imaging has demonstrated changes in microvascular function that correlates with nerve function affected by DPN. The limitations for using low-cost cameras for DPN imaging are: less resolution (active pixels), frame rate, thermal sensitivity etc. We integrated two FLIR Lepton (80x60 active pixels, 50° HFOV, thermal sensitivity < 50mK) as one unit. Right and left cameras record the videos of right and left foot respectively. A compactible embedded system (raspberry pi3 model Bv1.2) is used to configure the sensors, capture and stream the video via ethernet. The resulting video has 160x120 active pixels (8 frames/second). We compared the temperature measurement of feet obtained using low-cost camera against the gold standard highend FLIR SC305. Twelve subjects (aged 35-76) were recruited. Difference in the temperature measurements between cameras was calculated for each subject and the results show that the difference between the temperature measurements of two cameras (mean difference=0.4, p-value=0.2) is not statistically significant. We conclude that the low-cost thermal camera system shows potential for use in detecting early-signs of DPN in under-served and rural clinics.
Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Kastoryano, Michael J.
2018-05-01
Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.
Partial removal of correlated noise in thermal imagery
NASA Astrophysics Data System (ADS)
Borel, Christoph C.; Cooke, Bradly J.; Laubscher, Bryan E.
1996-05-01
Correlated noise occurs in many imaging systems such as scanners and push-broom imagers. The sources of correlated noise can be from the detectors, pre-amplifiers and sampling circuits. Correlated noise appears as streaking along the scan direction of a scanner or in the along track direction of a push-broom imager. We have developed algorithms to simulate correlated noise and pre-filter to reduce the amount of streaking while not destroying the scene content. The pre-filter in the Fourier domain consists of the product of two filters. One filter models the correlated noise spectrum, the other is a windowing function, e.g. Gaussian or Hanning window with variable width to block high frequency noise away from the origin of the Fourier Transform of the image data. We have optimized the filter parameters for various scenes and find improvements of the RMS error of the original minus the pre-filtered noisy image.
Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety
NASA Astrophysics Data System (ADS)
Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.
2017-06-01
Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet's memory must reflect the input generator's memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite "negentropy". We conclude with an outline of the collective thermodynamics of information-ratchet swarms.
Dilation Behavior of Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Bejarano Lopez, Miryan Lorena
Thermal Spray (TS) is a very versatile manufacturing process to deposit thick coatings on a variety of substrates. Coatings are used in protective (i.e. wear, chemical attack, high temperature, etc.) and functional (i.e. sensors) applications. TS coatings have a unique lamellar microstructure as a result of the overlapping of millions of molten and partially-molten particles. During processing, high deformation by impact, high temperature, and rapid solidification lead to a complex hierarchical material system that contains a high amount of microstructural defects. The presence of defects in the microstructure contribute to differences in property values in comparison to bulk materials. Thermal stresses and residual strains arise from processing, thermal gradients and thermal exposure. Evaluation of thermal properties, in this case, the coefficient of thermal expansion (CTE) is of vital importance to enhance coating performance. In this dissertation, expansion measurements of various metals, alloys, ceramics, and cermet coatings; were carried out using various techniques (push rod dilatometry, x-ray diffraction XRD, digital image correlation DIC, and curvature method) to determine the dilation behavior at the atomic, micro- and macro-scale levels. The main results were. 1) Mathematical models (Turner and Kerner) used for composite materials, successfully predicted the CTE property of a TS coating where the primary phase is the coating material and the secondary phases can be oxides, precipitates, etc. (formed as a byproduct of the spraying process). CTE was found not to be affected by porosity. 2) Despite the anisotropic behavior characteristic of TS coatings, the experimental results shown that CTE results to be reasonable isotropic within the scope of this study. 3) The curvature method was found to be an alternative technique to obtain the CTE, as well as the Young's modulus of coating in a bi-material strip, with good approximation. 4) An anomalous expansion behavior during the first heating exposure was exhibited by all coatings. The effect was named here, as "thermal shakedown", and is magnified in metals and alloys. 5) Non-isothermal rapid annealing of defects was correlated to this first irreversible contraction or expansion behavior. Although observed in most thermal spray materials, two material systems, pure Al and Ni-5Al were evaluated in-depth to quantify the mechanisms contributing to this behavior: vacancy formation, dislocation annealing, grain boundaries annihilation, residual stress relief, inelastic mechanical effects, etc. Correct determination of CTE values are important for design to assure integrity and functionality of coatings. Considerations of appropriate measurements are described in this dissertation.
Thermo-electrochemical evaluation of lithium-ion batteries for space applications
NASA Astrophysics Data System (ADS)
Walker, W.; Yayathi, S.; Shaw, J.; Ardebili, H.
2015-12-01
Advanced energy storage and power management systems designed through rigorous materials selection, testing and analysis processes are essential to ensuring mission longevity and success for space exploration applications. Comprehensive testing of Boston Power Swing 5300 lithium-ion (Li-ion) cells utilized by the National Aeronautics and Space Administration (NASA) to power humanoid robot Robonaut 2 (R2) is conducted to support the development of a test-correlated Thermal Desktop (TD) Systems Improved Numerical Differencing Analyzer (SINDA) (TD-S) model for evaluation of power system thermal performance. Temperature, current, working voltage and open circuit voltage measurements are taken during nominal charge-discharge operations to provide necessary characterization of the Swing 5300 cells for TD-S model correlation. Building from test data, embedded FORTRAN statements directly simulate Ohmic heat generation of the cells during charge-discharge as a function of surrounding temperature, local cell temperature and state of charge. The unique capability gained by using TD-S is demonstrated by simulating R2 battery thermal performance in example orbital environments for hypothetical extra-vehicular activities (EVA) exterior to a small satellite. Results provide necessary demonstration of this TD-S technique for thermo-electrochemical analysis of Li-ion cells operating in space environments.
Mixing and transient interface condensation of a liquid hydrogen tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Nyland, T. W.
1993-01-01
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.
Freezable Radiator Coupon Testing and Full Scale Radiator Design
NASA Technical Reports Server (NTRS)
Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses
2009-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.
Thermal conductivity of the Lennard-Jones chain fluid model.
Galliero, Guillaume; Boned, Christian
2009-12-01
Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8
Vibrational Relaxation and Dynamical Transitions in Atactic Polystyrene
NASA Astrophysics Data System (ADS)
Zhao, Hanqing; Park, Yung; Painter, Paul
2009-03-01
Infrared bands and Raman lines recorded in the frequency domain have a counterpart in the time domain in the form of time-correlation functions, which are sensitive to molecular dynamics on the picosecond time scale. This is explored by calculating time correlation functions and their variation with temperature for the conformationally insensitive modes observed near 1601 cm-1 and 1583 cm-1 in the infrared spectrum of atactic polystyrene. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fundamental mode, near 1583 cm-1, is inhomogeneously broadened, but the relaxation time calculated for this mode is sensitive to temperature as a result of anharmonic coupling to a combination mode. A change in the modulation of the 1583 cm-1 band becomes apparent about 10--20 degrees below the thermally measured Tg. Relaxation times at first increase then decrease and becomes negligible at temperatures near 180 degrees. These results are consistent with theories of the glass transition.
NASA Astrophysics Data System (ADS)
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recati, A.; Physik-Department, Technische Universitaet Muenchen, D-85748 Garching; Pavloff, N.
2009-10-15
We apply the microscopic Bogoliubov theory of dilute Bose-Einstein condensates to analyze quantum and thermal fluctuations in a flowing atomic condensate in the presence of a sonic horizon. For the simplest case of a step-like horizon, closed-form analytical expressions are found for the spectral distribution of the analog Hawking radiation and for the density correlation function. The peculiar long-distance density correlations that appear as a consequence of the Hawking emission features turns out to be reinforced by a finite initial temperature of the condensate. The analytical results are in good quantitative agreement with first principle numerical calculations.
Off-equilibrium sphaleron transitions in the Glasma
Mace, Mark; Schlichting, Soren; Venugopalan, Raju
2016-04-28
We perform the first, to our knowledge, classical-statistical real time lattice simulations of topological transitions in the nonequilibrium glasma of weakly coupled but highly occupied gauge fields created immediately after the collision of ultrarelativistic nuclei. Simplifying our description by employing SU(2) gauge fields, and neglecting their longitudinal expansion, we find that the rate of topological transitions is initially strongly enhanced relative to the thermal sphaleron transition rate and decays with time during the thermalization process. Qualitative features of the time dependence of this nonequilibrium transition rate can be understood when expressed in terms of the magnetic screening length, which wemore » also extract nonperturbatively. Furthermore, a detailed investigation of auto-correlation functions of the Chern-Simons number (N CS) reveals non-Markovian features of the evolution distinct from previous simulations of non-Abelian plasmas in thermal equilibrium.« less
NASA Technical Reports Server (NTRS)
McKim, Stephen A.
2016-01-01
This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
NASA Astrophysics Data System (ADS)
Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín
2017-04-01
In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org
NASA Astrophysics Data System (ADS)
Scalese, S.; Baldo, S.; D'Angelo, D.; Filice, S.; Bongiorno, C.; Reitano, R.; Fazio, E.; Conoci, S.; La Magna, A.
2017-04-01
Graphene-based materials are among the most innovative and promising materials for the development of high-performance sensing devices, mainly due to the large surface area and the possibility to modify their reactivity by suitable functionalization. In the field of sensing applications, the peculiarities of innovative materials can be exploited only if chemical and physical properties are fully understood and correlated with each other. To this aim, in this work, graphene oxide (GO) and ethanol-treated GO (GOEt) were investigated from chemical and structural points of view. Electrical characterization was performed by depositing GO and GOEt between two electrodes by dielectrophoresis. All the investigations were repeated on GO materials after thermal treatment in a low temperature range (60 °C-300 °C). Furthermore, the electrical conductivity of GO was investigated by changing the temperature and the environment (air or N2) during the characterization: an increase in the conductivity of the as-deposited GO was observed when the device is cooled down and this effect is reversible with the temperature. GOEt and the thermally treated GO and GOEt show an opposite trend, confirming the key role of the oxygen functionalities in the conduction mechanisms and, therefore, in the conductivity of the GO layers.
NASA Astrophysics Data System (ADS)
Dong, Haikuan; Fan, Zheyong; Shi, Libin; Harju, Ari; Ala-Nissila, Tapio
2018-03-01
Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD) simulations or using Fourier's law in nonequilibrium MD (NEMD) simulations. These two methods have not been systematically compared for materials with different dimensions and inconsistencies between them have been occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence in computing thermal conductivity.
Observation of negative differential resistance in mesoscopic graphene oxide devices.
Rathi, Servin; Lee, Inyeal; Kang, Moonshik; Lim, Dongsuk; Lee, Yoontae; Yamacli, Serhan; Joh, Han-Ik; Kim, Seongsu; Kim, Sang-Woo; Yun, Sun Jin; Choi, Sukwon; Kim, Gil-Ho
2018-05-08
The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area. With this precise control of carbon-oxygen ratio, negative differential resistance (NDR) is observed in the current-voltage characteristics of a two-terminal device in the ambient environment due to charge-activated electrochemical reactions at the GO surface. This experimental observation correlates with the optical and chemical characterizations. This NDR behavior offers new opportunities for the fabrication and application of such novel electronic devices in a wide range of devices applications including switches and oscillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki
We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less
Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...
2016-09-01
We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less
NASA Astrophysics Data System (ADS)
Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas
2016-12-01
Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.
Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension
NASA Astrophysics Data System (ADS)
Yin, Xiao; Radzihovsky, Leo
2016-12-01
We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.
Thermo-acousto-photonics for noncontact temperature measurement in silicon wafer processing
NASA Astrophysics Data System (ADS)
Suh, Chii-Der S.; Rabroker, G. Andrew; Chona, Ravinder; Burger, Christian P.
1999-10-01
A non-contact thermometry technique has been developed to characterize the thermal state of silicon wafers during rapid thermal processing. Information on thermal variations is obtained from the dispersion relations of the propagating waveguide mode excited in wafers using a non-contact, broadband optical system referred to as Thermal Acousto- Photonics for Non-Destructive Evaluation. Variations of thermo-mechanical properties in silicon wafers are correlated to temperature changes by performing simultaneous time-frequency analyses on Lamb waveforms acquired with a fiber-tip interferometer sensor. Experimental Lamb wave data collected for cases ranging from room temperature to 400 degrees C is presented. The results show that the temporal progressions of all spectral elements found in the fundamental antisymmetric mode are strong functions of temperature. This particular attribute is exploited to achieve a thermal resolution superior to the +/- 5 degrees C attainable through current pyrometric techniques. By analyzing the temperature-dependent group velocity of a specific frequency component over the temperature range considered and then comparing the results to an analytical model developed for silicon wafers undergoing annealing, excellent agreement was obtained. Presented results demonstrate the feasibility of applying laser-induced stress waves as a temperature diagnostic during rapid thermal processing.
Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva
2013-01-01
Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was -0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners.
Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan
2018-01-01
Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23-2.42 °C and increase the relative humidity by 2.4-4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80-1.20, with 0.6-0.75 for trees and 0.20-0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people's perception of a desirable vegetation density.
Li, Zhigang; Chen, Dan; Cai, Shize; Che, Shengquan
2018-01-01
Mitigating extreme heat in urban areas is beneficial and sometimes critical to human health. Thriving plant communities in community parks play an important role in mitigating extreme heat through providing cooling effect, while inevitably affecting how people perceive the benefits of using community parks for recreation. Thus, the impacts of plant communities on the thermal environment should be quantified to determine the optimal structure of the plant community. The goal would be to harmonize the functions of improving the thermal environment with the preferences people have related to the recreational benefits of plant communities with various levels of vegetation density. In this paper, the correlations between the structural characteristics of plant communities and their function in mitigating the thermal environment were investigated on calm summer days in Xincheng Central Park, Minhang District, Shanghai, China. In addition to analyzing the plant communities present and their effects on the park microclimate, a questionnaire was employed to determine the plant community preferences of recreational park users. The results showed that plant communities could reduce the air temperature by 1.23–2.42 °C and increase the relative humidity by 2.4–4.2% during the daytime. The microclimate conditions in plant communities with varying vegetation densities were significantly different. The canopy density and leaf area index primarily controlled the temperature reduction, while the canopy density and total canopy cover ratio primarily controlled the increase in humidity; meanwhile, these correlations varied at different times of the day. Moreover, most of the park users preferred a moderately dense plant community which met their environmental perceptions for recreation in parks. Age or education level variables of park users would also predict preferences for different plant community densities. Ultimately, one plant community pattern with appropriate canopy density (60%), leaf area index (≥3) and canopy cover ratio (total 0.80–1.20, with 0.6–0.75 for trees and 0.20–0.45 for shrubs/woodland area) was recommended, which would harmonize the functions of the mitigation of the thermal environment with most people’s perception of a desirable vegetation density. PMID:29694401
Assael, Marc J.; Chatzimichailidis, Arsenios; Antoniadis, Konstantinos D.; Wakeham, William A.; Huber, Marcia L.; Fukuyama, Hiroyuki
2017-01-01
The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level. PMID:29353915
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Rao, A. S.
2016-04-28
Cast austenitic stainless steel (CASS) materials, which have a duplex structure consisting of austenite and ferrite phases, are susceptible to thermal embrittlement during reactor service. In addition, the prolonged exposure of these materials, which are used in reactor core internals, to neutron irradiation changes their microstructure and microchemistry, and these changes degrade their fracture properties even further. This paper presents a revision of the procedure and correlations presented in NUREG/CR-4513, Rev. 1 (Aug. 1994) for predicting the change in fracture toughness and tensile properties of CASS components due to thermal aging during service in light water reactors (LWRs) at 280–330more » °C (535–625 °F). The methodology is applicable to CF-3, CF-3M, CF-8, and CF-8M materials with a ferrite content of up to 40%. The fracture toughness, tensile strength, and Charpy-impact energy of aged CASS materials are estimated from known material information. Embrittlement is characterized in terms of room-temperature (RT) Charpy-impact energy. The extent or degree of thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a material after long-term aging) is determined from the chemical composition of the material. Charpy-impact energy as a function of the time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The fracture toughness J-R curve for the aged material is then obtained by correlating RT Charpy-impact energy with fracture toughness parameters. A common “predicted lower-bound” J-R curve for CASS materials of unknown chemical composition is also defined for a given grade of material, range of ferrite content, and temperature. In addition, guidance is provided for evaluating the combined effects of thermal and neutron embrittlement of CASS materials used in the reactor core internal components. The correlations for estimating the change in tensile strength, including the Ramberg/Osgood parameters for strain hardening, are also described.« less
Statistical Features of the Thermal Neutron Capture Cross Sections
Hussein, M. S.; Carlson, B. V.; Kerman, A. K.
2016-02-01
In this paper, we discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, < n A >more » in the capture cross section is calculated and related to the underlying cross section correlation function and found to be < n A > = 3/(π√2γ A), where γ A is a characteristic mass correlation width which designates the degree of remnant coherence in the system. Finally, we trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.« less
Statistical Features of the Thermal Neutron Capture Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, M. S.; Carlson, B. V.; Kerman, A. K.
In this paper, we discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, < n A >more » in the capture cross section is calculated and related to the underlying cross section correlation function and found to be < n A > = 3/(π√2γ A), where γ A is a characteristic mass correlation width which designates the degree of remnant coherence in the system. Finally, we trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra; Fitzsimmons, M. R.; Lookman, T.
We measured the chemical and magnetic depth profiles of a single crystalline film grown on a NdGaO 3 substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first order ferromagnetic transition at low temperatures
Magnetic nonuniformity and thermal hysteresis of magnetism in a manganite thin film.
Singh, Surendra; Fitzsimmons, M R; Lookman, T; Thompson, J D; Jeen, H; Biswas, A; Roldan, M A; Varela, M
2012-02-17
We measured the chemical and magnetic depth profiles of a single crystalline (La(1-x)Pr(x))(1-y)Ca(y)MnO(3-δ) (x=0.52±0.05, y=0.23±0.04, δ=0.14±0.10) film grown on a NdGaO(3) substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy, and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first-order ferromagnetic transition at low temperatures.
Design of crystal-like aperiodic solids with selective disorder–phonon coupling
Overy, Alistair R.; Cairns, Andrew B.; Cliffe, Matthew J.; Simonov, Arkadiy; Tucker, Matthew G.; Goodwin, Andrew L.
2016-01-01
Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic ‘procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood ‘waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics. PMID:26842772
Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories
NASA Astrophysics Data System (ADS)
Burnier, Yannis; Rothkopf, Alexander
2013-11-01
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33TC.
Bayesian approach to spectral function reconstruction for Euclidean quantum field theories.
Burnier, Yannis; Rothkopf, Alexander
2013-11-01
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33T(C).
Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis.
Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V; Grau-Crespo, Ricardo
2018-05-10
Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E 2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially 'erases' the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.
Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis
NASA Astrophysics Data System (ADS)
Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V.; Grau-Crespo, Ricardo
2018-05-01
Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially ‘erases’ the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.
NASA Astrophysics Data System (ADS)
Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, Ch.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J.
2016-07-01
Carbon felt electrodes for vanadium redox flow batteries are obtained by the graphitization of polyacrylonitrile based felts at different temperatures. Subsequently, the surface of the felts is modified via thermal oxidation at various temperatures. A single-cell experiment shows that the voltage efficiency is increased by this treatment. Electrode potentials measured with reference electrode setup show that this voltage efficiency increase is caused mainly by a reduction of the overpotential of the negative half-cell reaction. Consequently, this reaction is investigated further by cyclic voltammetry and the electrode activity is correlated with structural and surface chemical properties of the carbon fibers. By Raman, X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy the role of edge sites and oxygen containing functional groups (OCFs) for the electrochemical activity are elucidated. A significant activity increase is observed in correlation with these two characteristics. The amount of OCFs is correlated with structural defects (e.g. edge sites) of the carbon fibers and therefore decreases with an increasing graphitization degree. Thus, for the same thermal oxidation temperature carbon fibers graphitized at a lower temperature show higher activities than those graphitized at a higher temperature.
Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations
NASA Astrophysics Data System (ADS)
Makwana, Kirit; Li, Hui; Guo, Fan; Li, Xiaocan
2017-05-01
We simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope between {k}\\perp -1.3 and {k}\\perp -1.1, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. Heating by the parallel E∥ · J∥ term dominates the perpendicular E⊥ · J⊥ term. Regions of strong E∥ · J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.
Spatial correlation in the ambient core noise field of a turbofan engine.
Miles, Jeffrey Hilton
2012-06-01
An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NO(x) and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.
Giloh, M; Shinder, D; Yahav, S
2012-01-01
Extreme thermal conditions may dramatically affect the performance of broilers and other domestic animals, thereby impairing animal welfare and causing economic losses. Although body core temperature is the parameter that best reflects a bird's thermal status, practical and physiological obstacles make it irrelevant as a source of information on the thermal status of commercial flocks. Advances in the technology of infrared thermal imaging have enabled highly accurate, noncontact, and noninvasive measurements of skin surface temperature. Providing that skin surface temperature correlates with body temperature, this technology could enable acquisition of reliable information on the thermal status of animals, thereby improving diagnoses of environmental stress in a flock. This study of broiler chickens found a strong positive correlation between body core temperature and facial surface temperature, as recorded by infrared thermal imaging. The correlation was equally strong at all ages from 8 to 36 d during exposure to acute heat stress with or without proper ventilation and after acclimation to chronic heat exposure. A similar correlation was found by measurements in commercial flocks of broilers. Measurements of blood plasma concentrations of corticosterone, thyroid hormones, and arginine vasotocin confirmed that metabolic activity was low after acclimation to chronic exposure to heat, whereas ventilation was at least as efficient as acclimation in reducing thermal stress but did not impair metabolism. In light of these novel results, commercial benefits of infrared thermal imaging technology are suggested, especially in climate control for commercial poultry flocks. The application of this technique to other domestic animals should be investigated in future experiments.
NASA Astrophysics Data System (ADS)
Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.
2016-12-01
National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.
The contribution of lysophospholipids to pasting and thermal properties of nonwaxy rice starch.
Tong, Chuan; Liu, Lei; Waters, Daniel L E; Huang, Yan; Bao, Jinsong
2015-11-20
It is known that lysophospholipids (LPLs) may affect rice starch pasting and thermal properties possibly through the formation of an amylose-lipid complex. However, whether these effects of rice LPLs are independent of amylose are still not understood. Here, the diversity of rice flour pasting and thermal properties and their relationship with individual LPL components in native rice endosperm were studied. Several significant correlations between LPLs and pasting properties, such as cool paste viscosity (CPV), breakdown (BD) and consistency (CS) were clearly evident. Thermal properties generally had no relationship with LPLs except for gelatinization enthalpy. Using partial correlation analysis we found that, irrespective of apparent amylose content, CPV and individual LPLs were positively correlated, while BD, CS and other individual LPLs were negatively correlated. This study suggests naturally occurring individual LPLs can contribute to rice flour pasting and thermal properties, either independently or in combination with amylose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.
Liu, Chaoren; Beratan, David N; Zhang, Peng
2016-04-21
System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (
Dimension of quantum phase space measured by photon correlations
NASA Astrophysics Data System (ADS)
Leuchs, Gerd; Glauber, Roy J.; Schleich, Wolfgang P.
2015-06-01
We show that the different values 1, 2 and 3 of the normalized second-order correlation function {g}(2)(0) corresponding to a coherent state, a thermal state and a highly squeezed vacuum originate from the different dimensionality of these states in phase space. In particular, we derive an exact expression for {g}(2)(0) in terms of the ratio of the moments of the classical energy evaluated with the Wigner function of the quantum state of interest and corrections proportional to the reciprocal of powers of the average number of photons. In this way we establish a direct link between {g}(2)(0) and the shape of the state in phase space. Moreover, we illuminate this connection by demonstrating that in the semi-classical limit the familiar photon statistics of a thermal state arise from an area in phase space weighted by a two-dimensional Gaussian, whereas those of a highly squeezed state are governed by a line-integral of a one-dimensional Gaussian. We dedicate this article to Margarita and Vladimir Man’ko on the occasion of their birthdays. The topic of our contribution is deeply rooted in and motivated by their love for non-classical light, quantum mechanical phase space distribution functions and orthogonal polynomials. Indeed, through their articles, talks and most importantly by many stimulating discussions and intensive collaborations with us they have contributed much to our understanding of physics. Happy birthday to you both!
Jiao, Yu; Yu, Hang; Wang, Tian; An, Yusong; Yu, Yifan
2017-12-01
The relationship between thermal environmental parameters and clothing insulation is an important element in improving thermal comfort for the elderly. A field study was conducted on the indoor, transition space, and outdoor thermal environments of 17 elderly facilities in Shanghai, China. A random questionnaire survey was used to gather data from 672 valid samples. A statistical analysis of the data was conducted, and multiple linear regression models were established to quantify the relationships between clothing insulation, respondent age, indoor air temperature, and indoor relative humidity. Results indicated that the average thermal insulation of winter and summer clothing is 1.38 clo and 0.44 clo, respectively, for elderly men and 1.39 clo and 0.45 clo, respectively, for elderly women. It was also found that the thermal insulation of winter clothing is linearly correlated with age, and that there were seasonal differences in the relationship between clothing insulation and the environment. During winter, the clothing insulation is negatively correlated only with indoor temperature parameters (air temperature and operative temperature) for elderly males, while it is negatively correlated with indoor temperature parameters as well as transition space and outdoor air temperature for elderly females. In summer, clothing insulation for both elderly males and females is negatively correlated with outdoor temperature, as well as indoor temperature parameters (air temperature and operative temperature). The thermal insulation of summer clothing is also negatively correlated with transitional space temperature for males. Copyright © 2017 Elsevier Ltd. All rights reserved.
Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva
2013-01-01
Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner Model) were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Results. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was −0.38 (P = 0.002). Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r = 0.241, P = 0.33) but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r = 0.019). Conclusion. Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners. PMID:23476674
Experimental controlled-NOT gate simulation with thermal light
Peng, Tao; Tamma, Vincenzo; Shih, Yanhua
2016-01-01
We report a recent experimental simulation of a controlled-NOT gate operation based on polarization correlation measurements of thermal fields in photon-number fluctuations. The interference between pairs of correlated paths at the very heart of these experiments has the potential for the simulation of correlations between a larger number of qubits. PMID:27439330
Plutonium hexaboride is a correlated topological insulator.
Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel
2013-10-25
We predict that plutonium hexaboride (PuB(6)) is a strongly correlated topological insulator, with Pu in an intermediate valence state of Pu(2.7+). Within the combination of dynamical mean field theory and density functional theory, we show that PuB(6) is an insulator in the bulk, with nontrivial Z(2) topological invariants. Its metallic surface states have a large Fermi pocket at the X[over ¯] point and the Dirac cones inside the bulk derived electronic states, causing a large surface thermal conductivity. PuB(6) has also a very high melting temperature; therefore, it has ideal solid state properties for a nuclear fuel material.
Heat transfer in the coolant channel of a heat-exchanger system based on fluctuation theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz-Guilera, A.; Rodriguez, M.A.; Rubi, J.M.
1988-11-01
We present a model to study the heat transfer in the coolant channel of a heat-exchanger system. Such a model introduces thermal fluctuations as well as external noises due to different mechanisms of heat interchange. A unified treatment of both kinds of noise is carried out. The stationary mean value of the channel temperature is studied, obtaining effective transport coefficients which affect the stability of the system. The effects of the different noises are visualized in a correlation length obtained from the temperature correlation function. The model has practical implications in the field of nuclear-reactor noise theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghvaei, Amir Hossein, E-mail: amirtaghvaei@gmail.com; Shahabi, Hamed Shakur; Bednarčik, Jozef
2014-11-14
Atomic structure and thermal behavior of Co{sub 40}Fe{sub 22}Ta{sub 8-x}Y{sub x}B{sub 30} (x = 0, 2.5, 4, 6, and 8) metallic glasses with good soft magnetic properties have been investigated by high-energy synchrotron X-ray diffraction and differential scanning calorimeter, respectively. It has been shown that the extension of the supercooled liquid region first increases and reaches a large value of 95 K and subsequently decreases as a function of Y content. Analysis of the structure factors and pair correlation functions in the reciprocal-space and real-space have indicated that the addition of Y noticeably changes the atomic structure and reduces the degree of themore » medium-range order. Magnetic measurements have implied that the introduction of Y enhances both saturation magnetization and Curie temperatures of the ribbons, while keeping their coercivity very small. The underlying mechanisms for changes in the atomic structure, improving the thermal stability and magnetic properties upon Y addition have been discussed.« less
Detection of Fiber Layer-Up Lamination Order of CFRP Composite Using Thermal-Wave Radar Imaging
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Liu, Yang; Wang, Yang; Gong, Jinlong
2016-09-01
In this paper, thermal-wave radar imaging (TWRI) is used as a nondestructive inspection method to evaluate carbon-fiber-reinforced-polymer (CFRP) composite. An inverse methodology that combines TWRI with numerical optimization technique is proposed to determine the fiber layer-up lamination sequences of anisotropic CFRP composite. A 7-layer CFRP laminate [0°/45°/90°/0°]_{{s}} is heated by a chirp-modulated Gaussian laser beam, and then finite element method (FEM) is employed to calculate the temperature field of CFRP laminates. The phase based on lock-in correlation between reference chirp signal and the thermal-wave signal is performed to obtain the phase image of TWRI, and the least square method is applied to reconstruct the cost function that minimizes the square of the difference between the phase of TWRI inspection and numerical calculation. A hybrid algorithm that combines the simulation annealing with Nelder-Mead simplex research method is employed to solve the reconstructed cost function and find the global optimal solution of the layer-up sequences of CFRP composite. The result shows the feasibility of estimating the fiber layer-up lamination sequences of CFRP composite with optimal discrete and constraint conditions.
Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, K. J.
2012-02-01
Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.
Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice
Suo, Meng; Wang, Ping
2016-01-01
Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985
NASA Astrophysics Data System (ADS)
Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin
2018-03-01
A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.
Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe
NASA Astrophysics Data System (ADS)
Saha, S. K.; Dutta, G.
2016-09-01
We determine the elastic properties of the layered thermoelectrics BiOCuSe and LaOCuSe using first-principles density functional theory calculations. To predict their stability, we calculate six distinct elastic constants, where all of them are positive, and suggest mechanically stable tetragonal crystals. As elastic properties relate to the nature and the strength of the chemical bond, the latter is analyzed by means of real-space descriptors, such as the electron localization function (ELF) and Bader charge. From elastic constants, a set of related properties, namely, bulk modulus, shear modulus, Young's modulus, sound velocity, Debye temperature, Grüneisen parameter, and thermal conductivity, are evaluated. Both materials are found to be ductile in nature and not brittle. We find BiOCuSe to have a smaller sound velocity and, hence, within the accuracy of the used Slack's model, a smaller thermal conductivity than LaOCuSe. Our calculations also reveal that the elastic properties and the related lattice thermal transport of both materials exhibit a much larger anisotropy than their electronic band properties that are known to be moderately anisotropic because of a moderate effective-electron-mass anisotropy. Finally, we determine the lattice dynamical properties, such as phonon dispersion, atomic displacement, and mode Grüneisen parameters, in order to correlate the elastic response, chemical bonding, and lattice dynamics.
Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling
NASA Astrophysics Data System (ADS)
Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.
2018-03-01
We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.
Nonequilibrium self-energy functional theory
NASA Astrophysics Data System (ADS)
Hofmann, Felix; Eckstein, Martin; Arrigoni, Enrico; Potthoff, Michael
2013-10-01
The self-energy functional theory (SFT) is generalized to describe the real-time dynamics of correlated lattice-fermion models far from thermal equilibrium. This is achieved by starting from a reformulation of the original equilibrium theory in terms of double-time Green's functions on the Keldysh-Matsubara contour. With the help of a generalized Luttinger-Ward functional, we construct a functional Ω̂[Σ] which is stationary at the physical (nonequilibrium) self-energy Σ and which yields the grand potential of the initial thermal state Ω at the physical point. Nonperturbative approximations can be defined by specifying a reference system that serves to generate trial self-energies. These self-energies are varied by varying the reference system's one-particle parameters on the Keldysh-Matsubara contour. In the case of thermal equilibrium, this approach reduces to the conventional SFT. Contrary to the equilibrium theory, however, “unphysical” variations, i.e., variations that are different on the upper and the lower branches of the Keldysh contour, must be considered to fix the time dependence of the optimal physical parameters via the variational principle. Functional derivatives in the nonequilibrium SFT Euler equation are carried out analytically to derive conditional equations for the variational parameters that are accessible to a numerical evaluation via a time-propagation scheme. Approximations constructed by means of the nonequilibrium SFT are shown to be inherently causal, internally consistent, and to respect macroscopic conservation laws resulting from gauge symmetries of the Hamiltonian. This comprises the nonequilibrium dynamical mean-field theory but also dynamical-impurity and variational-cluster approximations that are specified by reference systems with a finite number of degrees of freedom. In this way, nonperturbative and consistent approximations can be set up, the numerical evaluation of which is accessible to an exact-diagonalization approach.
NASA Astrophysics Data System (ADS)
Zeng, YuLang; Dong, Liang
2015-01-01
The outdoor thermal environment of a public space is highly relevant to the thermal perception of individuals, thereby affecting the use of space. This study aims to connect thermal human biometeorological conditions and subjective thermal sensation in hot and humid regions and to find its influence on street use. We performed a thermal comfort survey at three locations in a pedestrian precinct of Chengdu, China. Meteorological measurements and questionnaire surveys were used to assess the thermal sensation of respondents. The number of people visiting the streets was counted. Meanwhile, mean radiant temperature ( T mrt) and the physiological equivalent temperature (PET) index were used to evaluate the thermal environment. Analytical results reveal that weather and street design drive the trend of diurnal micrometeorological conditions of the street. With the same geometry and orientation, a street with no trees had wider ranges of meteorological parameters and a longer period of discomfort. The neutral temperature in Chengdu (24.4 °C PET) is similar to that in Taiwan, demonstrating substantial human tolerance to hot conditions in hot and humid regions. Visitors' thermal sensation votes showed the strongest positive relationships with air temperature. Overall comfort level was strongly related to every corresponding meteorological parameter, indicating the complexity of people's comfort in outdoor environments. In major alleys with multiple functions, the number of people in the street decreased as thermal indices increased; T mrt and PET had significant negative correlations with the number of people. This study aids in understanding pedestrian street use in hot and humid regions.
Approaches to flame resistant polymeric materials
NASA Technical Reports Server (NTRS)
Liepins, R.
1975-01-01
Four research and development areas are considered for further exploration in the quest of more flame-resistant polymeric materials. It is suggested that improvements in phenolphthalein polycarbonate processability may be gained through linear free energy relationship correlations. Looped functionality in the backbone of a polymer leads to both improved thermal resistance and increased solubility. The guidelines used in the pyrolytic carbon production constitute a good starting point for the development of improved flame-resistant materials. Numerous organic reactions requiring high temperatures and the techniques of protected functionality and latent functionality constitute the third area for exploration. Finally, some well-known organic reactions are suggested for the formation of polymers that were not made before.
Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N
2005-05-01
This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result, the non-linear temperature response of RF induced heating can be adequately expressed mathematically as a function of electrical conductivity, radius and thermal conductivity. Hence, thermal conductivity accounts for some of the previously unexplained variance. Furthermore, the addition of this variable into the mathematical model substantially simplifies the equations and, as such, it is expected that this will permit improved prediction of RF ablation induced temperatures in clinical practice.
Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques
2018-01-01
The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18 : 2), about 49%, and the oleic monounsaturated (18 : 1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18 : 3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.
Influence of Van der Waals interaction on the thermodynamics properties of NaCl
NASA Astrophysics Data System (ADS)
Marcondes, M. L.; Wentzcovitch, R. M.; Assali, L. V. C.
2016-12-01
Equations of state (EoS) are extremely important in several scientific domains. However, many applications require EoS parameters at high pressures and temperatures. Experimental determination of these parameters is limited in such conditions and ab initio calculations have become important in computing them. Density Functional Theory (DFT) with its various approximations for exchange and correlation energy is the method of choice, but lack of a good description of the exchange-correlation energy results in large errors in EoS parameters. It is well known that the alkali halides have been problematic from the onset and the quest for DFT functionals appropriate for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate the thermal equation of state and thermodynamic properties of the B1 NaCl phase. Our results show a remarkable improvement over the performance of standard the LDA and GGA functionals. This is hardly surprising given that ions in this system have nearly closed shell configurations.
Kainer, Manuela; Antes, Bernhard; Wiederkum, Susanne; Wozniak-Knopp, Gordana; Bauer, Anton; Rüker, Florian; Woisetschläger, Max
2012-10-15
Antigen binding immunoglobulin Fc fragments (Fcab) are generated by engineering loop regions in the CH3 domain of human IgG1 Fc. Variants of an Fcab specific for Her-2 were designed to display either enhanced (S239D:A330L:I332E) or diminished (L234A:L235A) binding affinities to the Fc receptor CD16a based on mutations described previously. The two mutant Fcab proteins demonstrated the expected modulation of CD16a binding. Interaction with recombinant or cell surface expressed Her-2 was unaffected in both mutants compared to the parental Fcab. Binding affinities for CD16a correlated with the ADCC-potencies of the Fcab variants. Additional studies indicated that the L234A:L235A variant Fcab had equivalent structural features as the unmodified Fcab since their DSC profiles were similar and antigen binding after re-folding upon partial heat denaturation had not changed. Introduction of the S239D:A330L:I332E mutations resulted in a significant reduction of the CH2 domain melting temperature, a moderate decrease of the thermal transition of the CH3 domain and lower antigen binding after thermal stress compared to the parental Fcab. We conclude that the known correlation between CD16a binding affinity and ADCC potency is also valid in Fcab proteins and that antigen specific Fcab molecules can be further engineered for fine tuning of immuno effector functions. Copyright © 2012 Elsevier Inc. All rights reserved.
A first principles study of the electronic structure, elastic and thermal properties of UB2
NASA Astrophysics Data System (ADS)
Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.
2017-07-01
Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.
NASA Astrophysics Data System (ADS)
Yang, Xueming; Wu, Sihan; Xu, Jiangxin; Cao, Bingyang; To, Albert C.
2018-02-01
Although the AIREBO potential can well describe the mechanical and thermal transport of the carbon nanostructures under normal conditions, previous studies have shown that it may overestimate the simulated mechanical properties of carbon nanostructures in extreme strains near fracture. It is still unknown whether such overestimation would also appear in the thermal transport of nanostructrues. In this paper, the mechanical and thermal transport of graphene nanoribbon under extreme deformation conditions are studied by MD simulations using both the original and modified AIREBO potential. Results show that the cutoff function of the original AIREBO potential produces an overestimation on thermal conductivity in extreme strains near fracture stage. Spurious heat conduction behavior appears, e.g., the thermal conductivity of GNRs does not monotonically decrease with increasing strain, and even shows a ;V; shaped reversed and nonphysical trend. Phonon spectrum analysis show that it also results in an artificial blue shift of G peak and phonon stiffening of the optical phonon modes. The correlation between spurious heat conduction behavior and overestimation of mechanical properties near the fracture stage caused by the original AIREBO potential are explored and revealed.
Work and information from thermal states after subtraction of energy quanta.
Hloušek, J; Ježek, M; Filip, R
2017-10-12
Quantum oscillators prepared out of thermal equilibrium can be used to produce work and transmit information. By intensive cooling of a single oscillator, its thermal energy deterministically dissipates to a colder environment, and the oscillator substantially reduces its entropy. This out-of-equilibrium state allows us to obtain work and to carry information. Here, we propose and experimentally demonstrate an advanced approach, conditionally preparing more efficient out-of-equilibrium states only by a weak dissipation, an inefficient quantum measurement of the dissipated thermal energy, and subsequent triggering of that states. Although it conditionally subtracts the energy quanta from the oscillator, average energy grows, and second-order correlation function approaches unity as by coherent external driving. On the other hand, the Fano factor remains constant and the entropy of the subtracted state increases, which raise doubts about a possible application of this approach. To resolve it, we predict and experimentally verify that both available work and transmitted information can be conditionally higher in this case than by arbitrary cooling or adequate thermal heating up to the same average energy. It qualifies the conditional procedure as a useful source for experiments in quantum information and thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, T.; Nattress, J.; Mayer, Michael F.
2016-12-11
An exothermic neutron capture reaction can be used to uniquely identify neutrons in particle detectors. With the use of a capture-gated coincidence technique, the sequence of scatter events that lead to neutron thermalization prior to the neutron capture can also be used to measure neutron energy. We report on the measurement of thermalization light yield via a time-of-flight technique in a polyvinyl toluene-based scintillator EJ-290 within a heterogeneous composite detector that also includes 6Li-doped glass scintillator. The thermalization light output exhibits a strong correlation with neutron energy because of the preference for near-complete energy deposition prior to the 6Li(n,t)4He neutronmore » capture reaction. The nonproportionality of the light yield from nuclear recoils contributes to the observed broadening of the distribution of thermalization light output. The nonproportional dependence of the scintillation light output in the EJ-290 scintillator as a function of proton recoil energy has been characterized in the range of 0.3–14.1 MeV via the Birks parametrization through a combination of time-of-flight measurement and previously conducted measurements with Monoenergetic neutron sources.« less
Derivation of martian surface slope characteristics from directional thermal infrared radiometry
NASA Astrophysics Data System (ADS)
Bandfield, Joshua L.; Edwards, Christopher S.
2008-01-01
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.
Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars
Johnson, J. R.; Christensen, P.R.; Lucey, P.G.
2002-01-01
Thin coatings of atmospherically deposited dust can mask the spectral characteristics of underlying surfaces on Mars from the visible to thermal infrared wavelengths, making identification of substrate and coating mineralogy difficult from lander and orbiter spectrometer data. To study the spectral effects of dust coatings, we acquired thermal emission and hemispherical reflectance spectra (5-25 μm; 2000-400 cm-1) of basaltic andesite coated with different thicknesses of air fall-deposited palagonitic soils, fine-grained ceramic clay powders, and terrestrial loess. The results show that thin coatings (10-20 μm) reduce the spectral contrast of the rock substrate substantially, consistent with previous work. This contrast reduction continues linearly with increasing coating thickness until a "saturation thickness" is reached, after which little further change is observed. The saturation thickness of the spectrally flat palagonite coatings is ~100-120 μm, whereas that for coatings with higher spectral contrast is only ~50-75 μm. Spectral differences among coated and uncoated samples correlate with measured coating thicknesses in a quadratic manner, whereas correlations with estimated surface area coverage are better fit by linear functions. Linear mixture modeling of coated samples using the rock substrate and coating materials as end-members is also consistent with their measured coating thicknesses and areal coverage. A comparison of ratios of Thermal Emission Spectrometer (TES) spectra of dark and bright intracrater and windstreak deposits associated with Radau crater suggests that the dark windstreak material may be coated with as much as 90% areal coverage of palagonitic dust. The data presented here also will help improve interpretations of upcoming mini-TES and Thermal Emission Imaging System (THEMIS) observations of coated Mars surface materials.
Quantum correlations from a room-temperature optomechanical cavity
NASA Astrophysics Data System (ADS)
Purdy, T. P.; Grutter, K. E.; Srinivasan, K.; Taylor, J. M.
2017-06-01
The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks.
Pain modality- and sex-specific effects of COMT genetic functional variants
Belfer, Inna; Segall, Samantha K.; Lariviere, William R.; Smith, Shad B.; Dai, Feng; Slade, Gary G.; Rashid, Naim U.; Mogil, Jeffrey S.; Campbell, Claudia; Edwards, Robert; Liu, Qian; Bair, Eric; Maixner, William; Diatchenko, Luda
2013-01-01
The enzyme catechol-O-methyltransferase (COMT) metabolizes catecholamine neurotransmitters involved in a number of physiological functions including pain perception. Both human and mouse COMT genes possess functional polymorphisms contributing to inter-individual variability in pain phenotypes such as sensitivity to noxious stimuli, severity of clinical pain and response to pain treatment. In this study, we found that the effects of Comt functional variation in mice are modality-specific. Spontaneous inflammatory nociception and thermal nociception behaviors were correlated the most with the presence of the B2 SINE transposon insertion residing in the 3’UTR mRNA region. Similarly, in humans, COMT functional haplotypes were associated with thermal pain perception and with capsaicin-induced pain. Furthermore, COMT genetic variations contributed to pain behaviors in mice and pain ratings in humans in a sex-specific manner. The ancestral Comt variant, without a B2 SINE insertion, was more strongly associated with sensitivity to capsaicin in female versus male mice. In humans, the haplotype coding for low COMT activity increased capsaicin-induced pain perception in women, but not men. These findings reemphasize the fundamental contribution of COMT to pain processes, and provide a fine-grained resolution of this contribution at the genetic level that can be used to guide future studies in the area of pain genetics. PMID:23701723
Thermal comfort in naturally ventilated buildings in Maceio, Brazil
NASA Astrophysics Data System (ADS)
Djamila, Harimi
2017-11-01
This article presents the results from thermal comfort survey carried out in classrooms over two different seasons in Maceio, Brazil. The secondary data were collected from thermal comfort field study conducted in naturally ventilated classrooms. Objective and subjective parameters were explored to evaluate thermal comfort conditions. The potential effect of air movement on subjects' vote under neutrality was evaluated. Overall, the indoor climate of the surveyed location was classified warm and humid. Conflicting results were depicted when analyzing the effect of air movements on subjects' vote. The mean air temperature for subjects feeling hot was found to be lower than those feeling warm. A reasonable approach to tackle these two unpredictable results was suggested. Correlation matrix between selected thermal comfort variables was developed. Globe temperature recorded the highest correlation with subjects' response on ASHRAE seven-point scale. The correlation was significant at the 0.01 level. On the other hand, the correlation between air movement and subjects' response on ASHRAE seven-point scale was weak but significant. Further field studies on the current topic were recommended.
Recent applications of THERMUS
NASA Astrophysics Data System (ADS)
Wheaton, S.; Hauer, M.
2011-12-01
Some of the most recent applications of the statistical-thermal model package, THERMUS, are reviewed. These applications focus on fluctuation and correlation observables in an ideal particle and anti-particle gas in limited momentum space segments, as well as in a hadron resonance gas. In the case of the latter, a Monte Carlo event generator, utilising THERMUS functionality and assuming thermal production of hadrons, is discussed. The system under consideration is sampled grand canonically in the Boltzmann approximation. A re-weighting scheme is then introduced to account for conservation of charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing for extrapolation of grand canonical results to the micro canonical limit. The approach utilised in this and other applications suggests improvements to existing THERMUS calculations.
Thermal contact through a two-temperature kinetic Ising chain
NASA Astrophysics Data System (ADS)
Bauer, M.; Cornu, F.
2018-05-01
We consider a model for thermal contact through a diathermal interface between two macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor interactions is endowed with a Glauber dynamics with different temperatures and kinetic parameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with respect to the model of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence upon the stationary non equilibrium values of the two-spin correlations at any distance. By mapping to the dynamics of spin domain walls and using free fermion techniques, we determine the scaled generating function for the cumulants of the exchanged heat amounts per unit of time in the long time limit.
The role of stabilization centers in protein thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magyar, Csaba; Gromiha, M. Michael; Sávoly, Zoltán
2016-02-26
The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilizationmore » of proteins. - Highlights: • Stabilization centers contribute to thermal stabilization of protein structures. • Stabilization center content correlates with melting temperature of proteins. • Exposed stabilization center content correlates with stability even in hyperthermophiles. • Stability changing mutations are frequently found at stabilization centers.« less
Anttila, Katja; Dhillon, Rashpal S; Boulding, Elizabeth G; Farrell, Anthony P; Glebe, Brian D; Elliott, Jake A K; Wolters, William R; Schulte, Patricia M
2013-04-01
In fishes, performance failure at high temperature is thought to be due to a limitation on oxygen delivery (the theory of oxygen and capacity limited thermal tolerance, OCLTT), which suggests that thermal tolerance and hypoxia tolerance might be functionally associated. Here we examined variation in temperature and hypoxia tolerance among 41 families of Atlantic salmon (Salmo salar), which allowed us to evaluate the association between these two traits. Both temperature and hypoxia tolerance varied significantly among families and there was a significant positive correlation between critical maximum temperature (CTmax) and hypoxia tolerance, supporting the OCLTT concept. At the organ and cellular levels, we also discovered support for the OCLTT concept as relative ventricle mass (RVM) and cardiac myoglobin (Mb) levels both correlated positively with CTmax (R(2)=0.21, P<0.001 and R(2)=0.17, P=0.003, respectively). A large RVM has previously been shown to be associated with high cardiac output, which might facilitate tissue oxygen supply during elevated oxygen demand at high temperatures, while Mb facilitates the oxygen transfer from the blood to tissues, especially during hypoxia. The data presented here demonstrate for the first time that RVM and Mb are correlated with increased upper temperature tolerance in fish. High phenotypic variation between families and greater similarity among full- and half-siblings suggests that there is substantial standing genetic variation in thermal and hypoxia tolerance, which could respond to selection either in aquaculture or in response to anthropogenic stressors such as global climate change.
NASA Astrophysics Data System (ADS)
Folgosi-Correa, M. S.; Nogueira, G. E. C.
2012-06-01
The laser Doppler flowmetry allows the non-invasive assessment of the skin perfusion in real-time, being an attractive technique to study the human microcirculation in clinical settings. Low-frequency oscillations in the laser Doppler blood flow signal from the skin have been related to the endothelial, endothelial-metabolic, neurogenic and myogenic mechanisms of microvascular flow control, in the range 0.005-0.0095 Hz, 0.0095-0.021 Hz, 0.021-0.052 Hz and 0.052- 0.145 Hz respectively. The mean Amplitude (A) of the periodic fluctuations in the laser Doppler blood flow signal, in each frequency range, derived from the respective wavelet-transformed coefficients, has been used to assess the function and dysfunctions of each mechanism of flow control. Known sources of flow signal variances include spatial and temporal variability, diminishing the discriminatory capability of the technique. Here a new time domain method of analysis is proposed, based on the Time of Correlation (TC) of flow fluctuations between two adjacent sites. Registers of blood flow from two adjacent regions, for skin temperature at 32 0C (basal) and thermally stimulated (42 0C) of volar forearms from 20 healthy volunteers were collected and analyzed. The results obtained revealed high time of correlation between two adjacent regions when thermally stimulated, for signals in the endothelial, endothelial-metabolic, neurogenic and myogenic frequency ranges. Experimental data also indicate lower variability for TC when compared to A, when thermally stimulated, suggesting a new promising parameter for assessment of the microvascular flow control.
NASA Technical Reports Server (NTRS)
Spilkera, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Pearl, John C.; Cuzzi, Jeffrey N.; Brooks, Shawn M.; Altobelli, Nicolas; Edgington, Scott G.; Showalter, Mark; Flasar, F. Michael;
2006-01-01
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, (alpha), on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with (alpha), and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes. The temperatures of the A and B rings are correlated with their optical depth, (tau), when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest (tau), these temperatures are also the same at both low and high a, suggesting that little sunlight is penetrating these regions. The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.
Noninvasive imaging techniques in the assessment of scleroderma spectrum disorders.
Murray, Andrea K; Moore, Tonia L; Manning, Joanne B; Taylor, Christopher; Griffiths, Christopher E M; Herrick, Ariane L
2009-08-15
Systemic sclerosis (SSc) affects both microvascular structure and function. Laser Doppler imaging (LDI) and thermal imaging can be used to measure cutaneous blood vessel function. Nailfold capillaroscopy (NC) measures capillary morphology. The aim of this study was to investigate the relationship between capillary morphology and blood flow, and to determine which combination of techniques allows the best discrimination between patients with SSc, primary Raynaud's phenomenon (RP), and healthy controls. NC was performed in 16 patients with SSc, 14 patients with primary RP, and 16 healthy controls. In addition, participants underwent cold stimulus with cold water. Hands were imaged to monitor rewarming and reperfusion. Nailfold morphologic features were measured and baseline images and rewarming curves were analyzed. Significant differences were found between groups (analysis of variance) for capillary morphologic features and rewarming curve characteristics. A correlation (P < 0.001) was found between LDI and thermal imaging at baseline (0.667) and maximum (0.729) blood flow and skin temperature, and for the areas under the rewarming curves (0.684). Receiver operating characteristic curves indicated that NC, thermal imaging, and LDI allowed 89%, 74%, and 72%, respectively, of SSc patient data to be correctly classified versus primary RP patients and controls. NC, LDI, and thermal imaging each independently provide good discrimination between patients with SSc and those with primary RP and healthy controls (NC being the most suitable technique for classifying patient groups). However, a combination of all 3 techniques improves classification. LDI and thermal imaging give equivalent information on dynamic changes in the cutaneous microcirculation; however, these only weakly correspond to capillary morphology.
Effect of helicity on the correlation time of large scales in turbulent flows
NASA Astrophysics Data System (ADS)
Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne
2017-11-01
Solutions of the forced Navier-Stokes equation have been conjectured to thermalize at scales larger than the forcing scale, similar to an absolute equilibrium obtained for the spectrally truncated Euler equation. Using direct numeric simulations of Taylor-Green flows and general-periodic helical flows, we present results on the probability density function, energy spectrum, autocorrelation function, and correlation time that compare the two systems. In the case of highly helical flows, we derive an analytic expression describing the correlation time for the absolute equilibrium of helical flows that is different from the E-1 /2k-1 scaling law of weakly helical flows. This model predicts a new helicity-based scaling law for the correlation time as τ (k ) ˜H-1 /2k-1 /2 . This scaling law is verified in simulations of the truncated Euler equation. In simulations of the Navier-Stokes equations the large-scale modes of forced Taylor-Green symmetric flows (with zero total helicity and large separation of scales) follow the same properties as absolute equilibrium including a τ (k ) ˜E-1 /2k-1 scaling for the correlation time. General-periodic helical flows also show similarities between the two systems; however, the largest scales of the forced flows deviate from the absolute equilibrium solutions.
Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph
2018-02-14
We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.
Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.
Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya
2011-05-28
Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics
In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
Lee, Jun Yong; Jung, Sung-No; Kwon, Ho
2015-01-01
To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.
Organic and inorganic decomposition products from the thermal desorption of atmospheric particles
NASA Astrophysics Data System (ADS)
Williams, B. J.; Zhang, Y.; Zuo, X.; Martinez, R. E.; Walker, M. J.; Kreisberg, N. M.; Goldstein, A. H.; Docherty, K. S.; Jimenez, J. L.
2015-12-01
Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, re-desorptions of the CTD cell following ambient sample analysis shows some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.
Organic and inorganic decomposition products from the thermal desorption of atmospheric particles
NASA Astrophysics Data System (ADS)
Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.
2016-04-01
Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.
Organic and inorganic decomposition products from the thermal desorption of atmospheric particles
Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; ...
2016-04-11
Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO + ( m/z 30), NO 2 + ( m/z 46), SO + ( m/z 48), and SO 2 + ( m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO 2 + ( m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.« less
Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations
Makwana, Kirit; Li, Hui; Guo, Fan; ...
2017-05-30
Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less
Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makwana, Kirit; Li, Hui; Guo, Fan
Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less
Thermal effects in light scattering from ultracold bosons in an optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakomy, Kazimierz; Idziaszek, Zbigniew; Trippenbach, Marek
2009-10-15
We study the scattering of a weak and far-detuned light from a system of ultracold bosons in one-dimensional and three-dimensional optical lattices. We show the connection between angular distributions of the scattered light and statistical properties of a Bose gas in a periodic potential. The angular patterns are determined by the Fourier transform of the second-order correlation function, and thus they can be used to retrieve information on particle number fluctuations and correlations. We consider superfluid and Mott-insulator phases of the Bose gas in a lattice and we analyze in detail how the scattering depends on the system dimensionality, temperature,more » and atom-atom interactions.« less
Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki
2016-08-01
The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.
Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr
2014-03-01
In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p < 0.001 at 95% confidence interval). Thermal fluctuations in left and right eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.
Daily temperature variations on Mars
NASA Technical Reports Server (NTRS)
Ditteon, R.
1982-01-01
It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.
Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar
2014-01-01
Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Isfahan hospitals in 2012. To measure the SA, sleep quality, visual fatigue and thermal comfort, Spielberger state-trait anxiety inventory, Pittsburg sleep quality index, eye fatigue questionnaire and thermal comfort questionnaire were used respectively. The data were analyzed with descriptive statistics, student test and correlation analysis. Correlation between SA and sleep quality was -0.664(P < 0001), Pearson correlation between SA and thermal comfort was -0.276(P = 0.016) and between SA and eye fatigue was 0.57 (P < 0001). Based on these results, it can be concluded that improvement of thermal conditions and reduce state anxiety level can be reduce eye fatigue and increase the sleep quality in shift work nurses.
Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar
2014-01-01
Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. Methods: This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Isfahan hospitals in 2012. To measure the SA, sleep quality, visual fatigue and thermal comfort, Spielberger state-trait anxiety inventory, Pittsburg sleep quality index, eye fatigue questionnaire and thermal comfort questionnaire were used respectively. The data were analyzed with descriptive statistics, student test and correlation analysis. Results: Correlation between SA and sleep quality was −0.664(P < 0001), Pearson correlation between SA and thermal comfort was −0.276(P = 0.016) and between SA and eye fatigue was 0.57 (P < 0001). Conclusion: Based on these results, it can be concluded that improvement of thermal conditions and reduce state anxiety level can be reduce eye fatigue and increase the sleep quality in shift work nurses. PMID:25077165
Thermal Testing and Model Correlation of the Magnetospheric Multiscale (MMS) Observatories
NASA Technical Reports Server (NTRS)
Kim, Jong S.; Teti, Nicholas M.
2015-01-01
International Conference on Envronmental Systems (ICES), Seattle WA NCTS 20964-15. The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earths magnetosphere as a laboratory tostudy the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. This paper presents the complete thermal balance (TB) test performed on the first of four observatories to go through thermal vacuum (TV) and the minibalance testing that was performed on the subsequent observatories to provide a comparison of all four. The TV and TB tests were conducted in a thermal vacuum chamber at the Naval Research Laboratory (NRL) in Washington, D.C. with the vacuum level higher than 1.3 x 10-4 Pa (10-6 torr)and the surrounding temperature achieving -180 C. Three TB test cases were performed that included hot operational science, cold operational science and a cold survival case. In addition to the three balance cases a two hour eclipse and a four hour eclipse simulation was performed during the TV test to provide additional transient data points that represent the orbit in eclipse (or Earth's shadow) The goal was to perform testing such that the flight orbital environments could be simulated as closely as possible. A thermal model correlation between the thermal analysis and the test results was completed. Over 400 1-Wire temperature sensors, 200 thermocouples and 125 flight thermistor temperature sensors recorded data during TV and TB testing. These temperatureversus time profiles and their agreements with the analytical results obtained using Thermal Desktop and SINDAFLUINT are discussed. The model correlation for the thermal mathematical model (TMM) is conducted based on the numerical analysis results and the test data. The philosophy of model correlation was to correlate the model to within 3 C of the test data using the standard deviation and mean deviation error calculation. Individual temperature error goal is to be within 5 C and the heater power goal is to be within 5 of test data. The results of the model correlation are discussed and the effect of some material and interface parameters on the temperature profiles are presented.
Thermal Testing and Model Correlation of the Magnetospheric Multiscale (MMS) Observatories
NASA Technical Reports Server (NTRS)
Kim, Jong S.; Teti, Nicholas M.
2015-01-01
The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. This paper presents the complete thermal balance (TB) test performed on the first of four observatories to go through thermal vacuum (TV) and the minibalance testing that was performed on the subsequent observatories to provide a comparison of all four. The TV and TB tests were conducted in a thermal vacuum chamber at the Naval Research Laboratory (NRL) in Washington, D.C. with the vacuum level higher than 1.3 x 10 (sup -4) pascals (10 (sup -6) torr) and the surrounding temperature achieving -180 degrees Centigrade. Three TB test cases were performed that included hot operational science, cold operational science and a cold survival case. In addition to the three balance cases a two hour eclipse and a four hour eclipse simulation was performed during the TV test to provide additional transient data points that represent the orbit in eclipse (or Earth's shadow) The goal was to perform testing such that the flight orbital environments could be simulated as closely as possible. A thermal model correlation between the thermal analysis and the test results was completed. Over 400 1-Wire temperature sensors, 200 thermocouples and 125 flight thermistor temperature sensors recorded data during TV and TB testing. These temperature versus time profiles and their agreements with the analytical results obtained using Thermal Desktop and SINDA/FLUINT are discussed. The model correlation for the thermal mathematical model (TMM) is conducted based on the numerical analysis results and the test data. The philosophy of model correlation was to correlate the model to within 3 degrees Centigrade of the test data using the standard deviation and mean deviation error calculation. Individual temperature error goal is to be within 5 degrees Centigrade and the heater power goal is to be within 5 percent of test data. The results of the model correlation are discussed and the effect of some material and interface parameters on the temperature profiles are presented.
NASA Astrophysics Data System (ADS)
Sebbani, Mohamed Jamal Eddine
2001-07-01
This work is a theoretical and experimental study of the correlation between the resistance to thermal shock and mechanical shock of refractory materials. The study of thermal shock showed that the Bahr and Hasselman approaches are alike and that they can be combined into a single, more general approach. This generalisation allowed the division of the theoretical models into two groups: the Hasselman model and the Harmuth model. However, neither of these approaches can predict the behaviour of all refractory materials submitted to thermal shock. Therefore, the generalisation of the Hasselman approach is more appropriate for more dense materials while the Hartmuth approach is more appropriate for less dense materials. The influence of porosity on the energy of rupture helped to explain the behaviour of the less dense material. The absence of generalisation in this case allows those parameters that could be correlated with thermal shock resistance to be dependent on the type of refractory. The study of mechanical shock provided a better understanding of this mechanism. The work performed showed, theoretically and experimentally, that the resistance of the refractory materials could be correlated with the parameter s20 Egwof n-22 . This new parameter helped to explain the statistical correlation between the resistance to mechanical impact and the soxRst parameter established in earlier work. The sintering influence, which makes the refractories more resistant to this type of demand, notably by reducing the "n" coefficient, was shown. This part of the study allowed the establishment of equivalence between thermal fatigue and fatigue by mechanical impact. An evaluation of the correlation between the two mechanisms demonstrated, theoretically and experimentally, that the mechanical and thermal demands could only be exceptionally correlated. In the case of thermal shock, which are imposed deformation demands, it is the shorter cracks which are the most dangerous. However, in the case of mechanical shock, which is constraint imposed, it is the longer cracks that are the most harmful. (Abstract shortened by UMI.)
Thermal Spray Maps: Material Genomics of Processing Technologies
NASA Astrophysics Data System (ADS)
Ang, Andrew Siao Ming; Sanpo, Noppakun; Sesso, Mitchell L.; Kim, Sun Yung; Berndt, Christopher C.
2013-10-01
There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as "TS maps" in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.
Xue, Qiao; Huang, Lei; Hu, Dongxia; Yan, Ping; Gong, Mali
2014-01-10
For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and influence-function controlling abilities. This is verified by the simulations and the contrast experiments of two prototypes: one of which utilizes air convection, the other uses water convection. Controlling the thermal fields will greatly promote the influence-function adjustability and aberration correction ability of thermal DMs.
Effects of static tensile load on the thermal expansion of Gr/PI composite material
NASA Technical Reports Server (NTRS)
Farley, G. L.
1981-01-01
The effect of static tensile load on the thermal expansion of Gr/PI composite material was measured for seven different laminate configurations. A computer program was developed which implements laminate theory in a piecewise linear fashion to predict the coupled nonlinear thermomechanical behavior. Static tensile load significantly affected the thermal expansion characteristics of the laminates tested. This effect is attributed to a fiber instability micromechanical behavior of the constituent materials. Analytical results correlated reasonably well with free thermal expansion tests (no load applied to the specimen). However, correlation was poor for tests with an applied load.
The correlation study of temperature distribution with the immunology response under laser radiation
NASA Astrophysics Data System (ADS)
Chen, Yichao; Nordquist, Robert E.; Naylor, Mark F.; Wu, Feng; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.
2008-02-01
The 3-D, in vivo temperature distributions within tumor-bearing rats were measured using Magnetic Resonance Imaging (MRI) technique. The in vivo thermal distributions of rats were measured using MRI chemical shift of water proton density. DMBA-4 tumor bearing rats are treated using laser photothermal therapy combined with immunoadjuvant under the observation of MRI. The thermal images and the immunological responses were studied and their relationships were investigated. The study of thermal distribution and correlation with the immunological response under laser treatment provided rich information with potential guidance for thermal-immunological therapy.
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
Aerobiology in the operating room and its implications for working standards.
Friberg, B; Friberg, S
2005-01-01
Two novel operating room (OR) ventilation concepts, i.e. the upward displacement or thermal convection system and the exponential ultra-clean laminar air flow (LAF) designed to function without extra walls, were evaluated from a bacteriological point of view. The thermal convection system (17 air changes/h) was compared with conventional ventilation (16 air changes/h) with an air inlet at the ceiling and evacuation at floor level. The exponential LAF was compared with the vertical ultra-clean LAF and the horizontal ultra-clean LAF, both with extra side walls. The comparison was made using strictly standardized simulated operations and, except for the horizontal LAF, it was performed in the same OR where the type of ventilation was changed. In the different areas important for surgical asepsis, the thermal system resulted in a twofold to threefold increase in bacterial air and surface counts compared to the conventional system (statistical significance = p < 0.05-0.0001). The bacteriological efficiency of the exponential LAF was equal to the horizontal and vertical LAF units with extra walls in the OR, and all three systems easily fulfilled the criteria for ultra-clean air, i.e. bacteria-carrying particles < 10/m3. In the areas important for surgical asepsis the turbulent ventilation systems yielded highly significant correlation between air and surface contamination (p < 0.02-0.0006). No such correlation existed in the LAF systems.
Yu, Ying; Liu, Liang; Shao, Ziying; Ju, Tianyu; Sun, Bing; Benadda, Belkacem
2016-01-01
A soil-column gas chromatography approach was developed to simulate the mass transfer process of hydrocarbons between gas and soil during thermally enhanced soil vapor extraction (T-SVE). Four kinds of hydrocarbons-methylbenzene, n-hexane, n-decane, and n-tetradecane-were flowed by nitrogen gas. The retention factor k' and the tailing factor T f were calculated to reflect the desorption velocities of fast and slow desorption fractions, respectively. The results clearly indicated two different mechanisms on the thermal desorption behaviors of fast and slow desorption fractions. The desorption velocity of fast desorption fraction was an exponential function of the reciprocal of soil absolute temperature and inversely correlated with hydrocarbon's boiling point, whereas the desorption velocity of slow desorption fraction was an inverse proportional function of soil absolute temperature, and inversely proportional to the log K OW value of the hydrocarbons. The higher activation energy of adsorption was found on loamy soil with higher organic content. The increase of carrier gas flow rate led to a reduction in the apparent activation energy of adsorption of slow desorption fraction, and thus desorption efficiency was significantly enhanced. The obtained results are of practical interest for the design of high-efficiency T-SVE system and may be used to predict the remediation time.
Ultrasonic Characterization of Superhard Material: Osmium Diboride
NASA Astrophysics Data System (ADS)
Yadawa, P. K.
2012-12-01
Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.
Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A
2017-01-01
In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.
Thermal Analysis of the Fastrac Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
Thermal Analysis of the MC-1 Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell W.; Phelps, Lisa H. (Technical Monitor)
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the MC-1 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)
NASA Technical Reports Server (NTRS)
Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark
2012-01-01
The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.
Zeilig, Gabi; Rivel, Michal; Doron, Dana; Defrin, Ruth
2016-10-01
Hemiplegic shoulder pain (HSP) is a common poststroke complication and is considered to be a chronic pain syndrome. It is negatively correlated with the functional recovery of the affected arm and the quality of life of the individual. It also leads to a longer length of stay in rehabilitation. Today, there is no consensus as to the underlying mechanism causing HSP, making the syndrome difficult to treat. The aim of this study was to compare the clinical and sensory profile of individuals with HSP to that of individuals with established central neuropathic pain (CNP) in order to identify common features and the presence of neuropathic components in HSP. Cross sectional controlled study. Outpatient rehabilitation clinics. Sixteen chronic HSP patients and 18 chronic CNP patients with spinal cord injury (SCI-CNP). The chronic pain characteristics, thresholds of thermal and tactile sensations and presence of pathological sensations were compared between groups, and between painful and pain free body regions within groups. Correlations were calculated between HSP intensity and sensory and musculoskeletal characteristics. Patients with HSP and patients with SCI-CNP had similar decrease of thermal sensibility in the painful compared to intact body regions and both groups presented similar rates of pathological sensations in painful regions. HSP and SCI-CNP differed however, in the quality of pain and aggravating factors. Significant correlations were found between HSP intensity and heat-pain threshold, presence of subluxation and spasticity. The similarities between HSP and SCI-CNP and the altered spinothalamic function and sensitization suggest that HSP has neuropathic components in its mechanism. Nevertheless, the unique features of HSP point towards additional possible mechanisms. The use of specific therapy options for neuropathic pain should be considered when treating patients with HSP.
Spectral Correlation of Thermal and Magnetotelluric Responses in a 2D Geothermal System
NASA Astrophysics Data System (ADS)
Pacheco, M. A.
2008-05-01
A methodology of thermal response observations at regional scale in geothermal systems was implemented using magnetotelluric(MT) data that was analyzed by spectral correlation of EM anomalies. Local favorability indices were obtained enhancing the anomalies of thermal flow and their corresponding magnetotelluric responses related to a common source. A C++ code was developed to compute magnetotelluric and thermal responses using finite differences of a geothermal field model. The problem of thermal convection was solved numerically using the approach of Boussinesq and temperature and thermal flow profiles are obtained, also is solved to the equations of electromagnetic induction 2D that govern the wave equation for the H-polarization case in a two-dimensional model of the system. This methodology is useful to find thermal anomalies in conductive or resistive structures of a geothermal system, which is directly associated with the litology of the model such as magmatic chamber, basement and hydrothermal reservoir.
Porosity Measurement in Laminated Composites by Thermography and FEA
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.
Wald, Lawrence L; Polimeni, Jonathan R
2017-07-01
We review the components of time-series noise in fMRI experiments and the effect of image acquisition parameters on the noise. In addition to helping determine the total amount of signal and noise (and thus temporal SNR), the acquisition parameters have been shown to be critical in determining the ratio of thermal to physiological induced noise components in the time series. Although limited attention has been given to this latter metric, we show that it determines the degree of spatial correlations seen in the time-series noise. The spatially correlations of the physiological noise component are well known, but recent studies have shown that they can lead to a higher than expected false-positive rate in cluster-wise inference based on parametric statistical methods used by many researchers. Based on understanding the effect of acquisition parameters on the noise mixture, we propose several acquisition strategies that might be helpful reducing this elevated false-positive rate, such as moving to high spatial resolution or using highly-accelerated acquisitions where thermal sources dominate. We suggest that the spatial noise correlations at the root of the inflated false-positive rate problem can be limited with these strategies, and the well-behaved spatial auto-correlation functions (ACFs) assumed by the conventional statistical methods are retained if the high resolution data is smoothed to conventional resolutions. Copyright © 2017 Elsevier Inc. All rights reserved.
Exploring the nonequilibrium reactivity of molecules with platinum(111)
NASA Astrophysics Data System (ADS)
Dewitt, Kristin Marie
Various aspects of the nonequilibrium reactivity of several, catalytically important, small molecules with Pt(111)were explored. The effect of alkali metal promotion on the thermal chemistry and photochemistry of CH4,N 2, and CO2 was studied. Dissociative sticking coefficients for methane and ethane were measured as a function of gas temperature ( Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated gas dosing methods. Coupled with physisorbed complex microcanonical unimolecular rate theory these measurements provide a predictive understanding for the kinetics of these C-H bond activation reactions, i.e. allowing us to predict the sticking coefficient of CH 4 and C2H6 for any combination of T s and Tg. Work function thermal programmed desorption was used to examine the correlation between surface structure and surface work function for CH3Br and CO2. Preliminary two-photon photoemission and broad-band infrared-visible sum frequency generation experiments introduce these nonlinear spectroscopy techniques to the arsenal of surface characterization techniques available in our group. All of the disparate components of this work are tied together by one overall theme, developing an improved molecular-level understanding of the reaction dynamics of catalysis.
NASA Astrophysics Data System (ADS)
Moradi, A.
2015-12-01
To properly model soil thermal performance in unsaturated porous media, for applications such as SBTES systems, knowledge of both soil hydraulic and thermal properties and how they change in space and time is needed. Knowledge obtained from pore scale to macroscopic scale studies can help us to better understand these systems and contribute to the state of knowledge which can then be translated to engineering applications in the field (i.e. implementation of SBTES systems at the field scale). One important thermal property that varies with soil water content, effective thermal conductivity, is oftentimes included in numerical models through the use of empirical relationships and simplified mathematical formulations developed based on experimental data obtained at either small laboratory or field scales. These models assume that there is local thermodynamic equilibrium between the air and water phases for a representative elementary volume. However, this assumption may not always be valid at the pore scale, thus questioning the validity of current modeling approaches. The purpose of this work is to evaluate the validity of the local thermodynamic equilibrium assumption as related to the effective thermal conductivity at pore scale. A numerical model based on the coupled Cahn-Hilliard and heat transfer equation was developed to solve for liquid flow and heat transfer through variably saturated porous media. In this model, the evolution of phases and the interfaces between phases are related to a functional form of the total free energy of the system. A unique solution for the system is obtained by solving the Navier-Stokes equation through free energy minimization. Preliminary results demonstrate that there is a correlation between soil temperature / degree of saturation and equivalent thermal conductivity / heat flux. Results also confirm the correlation between pressure differential magnitude and equilibrium time for multiphase flow to reach steady state conditions. Based on these results, the equivalent time for steady-state heat transfer is much larger than the equivalent time for steady-state multiphase flow for a given pressure differential. Moreover, the wetting phase flow and consequently heat transfer appear to be sensitive to contact angle and porosity of the domain.
Thermal design verification testing of the Clementine spacecraft: Quick, cheap, and useful
NASA Technical Reports Server (NTRS)
Kim, Jeong H.; Hyman, Nelson L.
1994-01-01
At this writing, Clementine had successfully fulfilled its moon-mapping mission; at this reading it will have also, with continued good fortune, taken a close look at the asteroid Geographos. The thermal design that made all this possible was indeed formidable in many respects, with very high ratios of requirements-to-available resources and performance-to-cost and mass. There was no question that a test verification of this quite unique and complex design was essential, but it had to be squeezed into an unyielding schedule and executed with bare-bones cost and manpower. After describing the thermal control subsystem's features, we report all the drama, close-calls, and cost-cutting, how objectives were achieved under severe handicap but (thankfully) with little management and documentation interference. Topics include the newly refurbished chamber (ready just in time), the reality level of the engineering model, using the analytical thermal model, the manner of environment simulation, the hand-scratched film heaters, functioning of all three types of heat pipes (but not all heat pipes), and the BMDO sensors' checkout through the chamber window. Test results revealed some surprises and much valuable data, resulting in thermal model and flight hardware refinements. We conclude with the level of correlation between predictions and both test temperatures and flight telemetry.
Harmonic Chain with Velocity Flips: Thermalization and Kinetic Theory
NASA Astrophysics Data System (ADS)
Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia
2016-12-01
We consider the detailed structure of correlations in harmonic chains with pinning and a bulk velocity flip noise during the heat relaxation phase which occurs on diffusive time scales, for t=O(L^2) where L is the chain length. It has been shown earlier that for non-degenerate harmonic interactions these systems thermalize, and the dominant part of the correlations is given by local thermal equilibrium determined by a temperature profile which satisfies a linear heat equation. Here we are concerned with two new aspects about the thermalization process: the first order corrections in 1 / L to the local equilibrium correlations and the applicability of kinetic theory to study the relaxation process. Employing previously derived explicit uniform estimates for the temperature profile, we first derive an explicit form for the first order corrections to the particle position-momentum correlations. By suitably revising the definition of the Wigner transform and the kinetic scaling limit we derive a phonon Boltzmann equation whose predictions agree with the explicit computation. Comparing the two results, the corrections can be understood as arising from two different sources: a current-related term and a correction to the position-position correlations related to spatial changes in the phonon eigenbasis.
Convection's enhancement in thermal micro pipes using extra fluid and shape memory material
NASA Astrophysics Data System (ADS)
Mihai, Ioan; Sprinceana, Siviu
2016-12-01
Up to now, there have been developed various applications of thermal micro pipes[1-3], such as refrigerating systems, high heat flux electronics cooling, and biological devices etc., based on vacuum vaporization followed by a convective phenomenon that allows vapor transfer from the vaporization area to the condensation one. This article presents studies carried out on the enhancement of the convective phenomenon taking place in flat thermal micro pipes. The proposed method[4] is aimed at the cooling of power electronics components, such as microprocessors. The conducted research focused on the use of shape memory materials that allow, by a semi-active method, to bring extra fluid in the vaporization area of the thermal micro pipe. The conducted investigations analyzed the variation of the liquid layer thickness in the trapezoidal micro channels and the thermal flow change over time. The modification of liquid flow was studied in correlation with the capacity of the polysynthetic material to retain the most extra fluid in its pores. The enhancement of the convective heat transfer phenomenon in flat thermal micro pipes was investigated in correspondence to the increase of liquid quantity in the vaporization zone. The charts obtained by aid of Mathcad[5] allowed to represent the evolution during a period of time (or with the pipe's length) of the liquid film thickness, the flow and the thermal flow, as a function of the liquid supply variation due to the shape memory materials and the modification of the working temperature.
Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; ...
2017-12-20
The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. Here, these results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prange, Micah P.; Xie, YuLong; Campbell, Luke W.
2017-12-21
The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less
Whitney, Anna; Shakhnovich, Eugene I.
2015-01-01
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910
Exploring optimal topology of thermal cloaks by CMA-ES
NASA Astrophysics Data System (ADS)
Fujii, Garuda; Akimoto, Youhei; Takahashi, Masayuki
2018-02-01
This paper presents topology optimization for thermal cloaks expressed by level-set functions and explored using the covariance matrix adaptation evolution strategy (CMA-ES). Designed optimal configurations provide superior performances in thermal cloaks for the steady-state thermal conduction and succeed in realizing thermal invisibility, despite the structures being simply composed of iron and aluminum and without inhomogeneities caused by employing metamaterials. To design thermal cloaks, a prescribed objective function is used to evaluate the difference between the temperature field controlled by a thermal cloak and when no thermal insulator is present. The CMA-ES involves searches for optimal sets of level-set functions as design variables that minimize a regularized fitness involving a perimeter constraint. Through topology optimization subject to structural symmetries about four axes, we obtain a concept design of a thermal cloak that functions in an isotropic heat flux.
NASA Astrophysics Data System (ADS)
Ahmadi Nadooshan, Afshin
2017-03-01
In this study, the effects of temperature (20 °C
Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.
2001-01-01
Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.
Effect of Load Carriage on Upper Limb Performance.
Hadid, Amir; Katz, Inbar; Haker, Tal; Zeilig, Gabi; Defrin, Ruth; Epstein, Yoram; Gefen, Amit
2017-05-01
Carrying heavy backpacks are often associated with shoulder discomfort or pain, loss of sensorimotor functions, and brachial plexus injuries that might hamper performance. On the basis of previous research, the cause of these symptoms could be tissue deformations of the brachial plexus and the subclavian artery caused by the shoulder straps. This study aimed to evaluate the changes in the upper extremity hemodynamic and neural function and to assess how they are associated with brachial plexus tissue deformation during heavy load carriage. Ten young healthy adults carried for 45 min a backpack load (40% of their body weight) while standing freely, followed by 15 min of recovery (unloaded). Index-finger microvascular flow and sensorimotor function were measured before and after carrying the load, and after recovery. The following sensorimotor functions were measured: light touch thresholds by the index finger and little finger, forearm thermal sensation thresholds, and gross motor function. In addition, marksmanship accuracy, as an indication for fine motor function, was tested. Load carriage resulted in an average decrease of ~40% in microvascular flow and a significant decrement in light touch sensation (P < 0.05), but not in thermal sensation and gross motor functions. An increase in the light touch threshold was highly correlated with a reduced index-finger microvascular blood flow (r = 0.79, P = 0.007). These physiological effects were associated with a functional 34% decrement in the accuracy of target acquisition. Heavy load carriage resulted in impaired light touch sensitivity and fine motor function, which were associated with reduced finger microvascular blood flow.
A study on the correlation between the dewetting temperature of Ag film and SERS intensity.
Quan, Jiamin; Zhang, Jie; Qi, Xueqiang; Li, Junying; Wang, Ning; Zhu, Yong
2017-11-07
The thermally dewetted metal nano-islands have been actively investigated as cost-effective SERS-active substrates with a large area, good reproducibility and repeatability via simple fabrication process. However, the correlation between the dewetting temperature of metal film and SERS intensity hasn't been systematically studied. In this work, taking Ag nano-islands (AgNIs) as an example, we reported a strategy to investigate the correlation between the dewetting temperature of metal film and SERS intensity. We described the morphology evolution of AgNIs on the SiO 2 planar substrate in different temperatures and got the quantitative information in surface-limited diffusion process (SLDP) as a function of annealing temperature via classical mean-field nucleation theory. Those functions were further used in the simulation of electromagnetic field to obtain the correlation between the dewetting temperature of Ag film and theoretical analysis. In addition, Raman mapping was done on samples annealed at different temperatures, with R6G as an analyte, to accomplish the analysis of the correlation between the dewetting temperature of Ag film and SERS intensity, which is consistent with the theoretical analysis. For SLDP, we used the morphological characterization of five samples prepared by different annealing temperatures to successfully illustrate the change in SERS intensity with the temperature fluctuation, obtaining a small deviation between the experimental results and theoretic prediction.
Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)
NASA Technical Reports Server (NTRS)
Patel, Deepak
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.
Apollo telescope mount thermal systems unit thermal vacuum test
NASA Technical Reports Server (NTRS)
Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.
1971-01-01
The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.
MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E
2009-01-20
The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less
Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data
NASA Astrophysics Data System (ADS)
Gulbe, Linda; Caune, Vairis; Korats, Gundars
2017-12-01
The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.
NASA Astrophysics Data System (ADS)
Lo, Wen; Chang, Yu-Lin; Liu, Jia-Shiu; Hseuh, Chiu-Mei; Hovhannisyan, Vladimir; Chen, Shean-Jen; Tan, Hsin-Yuan; Dong, Chen-Yuan
2009-09-01
We used the combination of multiphoton autofluorescence (MAF), forward second-harmonic generation (FWSHG), and backward second-harmonic generation (BWSHG) imaging for the qualitative and quantitative characterization of thermal damage of ex vivo bovine cornea. We attempt to characterize the structural alterations by qualitative MAF, FWSHG, and BWSHG imaging in the temperature range of 37 to 90°C. In addition to measuring the absolute changes in the three types of signals at the stromal surface, we also performed image correlation analysis between FWSHG and BWSHG and demonstrate that with increasing thermal damage, image correlation between FWSHG and BWSHG significantly increases. Our results show that while MAF and BWSHG intensities may be used as preliminary indicators of the extent of corneal thermal damage, the most sensitive measures are provided by the decay in FWSHG intensity and the convergence of FWSHG and BWSHG images.
Quantum correlations from a room-temperature optomechanical cavity.
Purdy, T P; Grutter, K E; Srinivasan, K; Taylor, J M
2017-06-23
The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Dietrich, Susanne; Borst, Nadine; Schlee, Sandra; Schneider, Daniel; Janda, Jan-Oliver; Sterner, Reinhard; Merkl, Rainer
2012-07-17
The analysis of a multiple-sequence alignment (MSA) with correlation methods identifies pairs of residue positions whose occupation with amino acids changes in a concerted manner. It is plausible to assume that positions that are part of many such correlation pairs are important for protein function or stability. We have used the algorithm H2r to identify positions k in the MSAs of the enzymes anthranilate phosphoribosyl transferase (AnPRT) and indole-3-glycerol phosphate synthase (IGPS) that show a high conn(k) value, i.e., a large number of significant correlations in which k is involved. The importance of the identified residues was experimentally validated by performing mutagenesis studies with sAnPRT and sIGPS from the archaeon Sulfolobus solfataricus. For sAnPRT, five H2r mutant proteins were generated by replacing nonconserved residues with alanine or the prevalent residue of the MSA. As a control, five residues with conn(k) values of zero were chosen randomly and replaced with alanine. The catalytic activities and conformational stabilities of the H2r and control mutant proteins were analyzed by steady-state enzyme kinetics and thermal unfolding studies. Compared to wild-type sAnPRT, the catalytic efficiencies (k(cat)/K(M)) were largely unaltered. In contrast, the apparent thermal unfolding temperature (T(M)(app)) was lowered in most proteins. Remarkably, the strongest observed destabilization (ΔT(M)(app) = 14 °C) was caused by the V284A exchange, which pertains to the position with the highest correlation signal [conn(k) = 11]. For sIGPS, six H2r mutant and four control proteins with alanine exchanges were generated and characterized. The k(cat)/K(M) values of four H2r mutant proteins were reduced between 13- and 120-fold, and their T(M)(app) values were decreased by up to 5 °C. For the sIGPS control proteins, the observed activity and stability decreases were much less severe. Our findings demonstrate that positions with high conn(k) values have an increased probability of being important for enzyme function or stability.
Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission
NASA Astrophysics Data System (ADS)
Lestone, J. P.
2016-01-01
A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.
Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys
NASA Astrophysics Data System (ADS)
Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas
2017-11-01
We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.
Quantum correlations for bipartite continuous-variable systems
NASA Astrophysics Data System (ADS)
Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang
2018-04-01
Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.
The estimation of electrical cable fire-induced damage limits
NASA Astrophysics Data System (ADS)
Nowlen, S. P.; Jacobus, M. J.
Sandia National Laboratories has, for several years, been engaged in the performance of both fire safety and electrical equipment qualification research under independent programs sponsored by the US Nuclear Regulatory Commission. Recent comparisons between electrical cable thermal damageability data gathered independently in these two efforts indicate that a direct correlation exists between certain of the recent cable thermal vulnerability information gathered under equipment qualification conditions and thermal damageability in a fire environment. This direct correlation allows for a significant expansion of the data base on estimated cable thermal vulnerability limits in a fire environment because of the wide range of cable types and products that have been evaluated as a part of the equipment qualification research. This paper provides a discussion of the basis for the derived correlation, and presents estimated cable thermal damage limits for a wide range of generic cable types and specific cable products. The supposition that a direct correlation exists is supported through direct comparisons of the test results for certain specific cable products. The proposed supplemental cable fire vulnerability data gained from examination of the equipment qualification results is presented. These results should be of particular interest to those engaged in the evaluation of fire risk for industrial facilities, including nuclear power plants.
The correlation between thermal comfort in buildings and fashion products.
Giesel, Aline; de Mello Souza, Patrícia
2012-01-01
This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.
Entropy generation method to quantify thermal comfort.
Boregowda, S C; Tiwari, S N; Chaturvedi, S K
2001-12-01
The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study is needed in the future to fully establish the validity of the OTCI formula and the model. One of the practical applications of this index is that could it be integrated in thermal control systems to develop human-centered environmental control systems for potential use in aircraft, mass transit vehicles, intelligent building systems, and space vehicles.
Entropy generation method to quantify thermal comfort
NASA Technical Reports Server (NTRS)
Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.
2001-01-01
The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study is needed in the future to fully establish the validity of the OTCI formula and the model. One of the practical applications of this index is that could it be integrated in thermal control systems to develop human-centered environmental control systems for potential use in aircraft, mass transit vehicles, intelligent building systems, and space vehicles.
Evaluation of physiological strain in hot work areas using thermal imagery.
Holm, Clint A; Pahler, Leon; Thiese, Matthew S; Handy, Rodney
2016-10-01
Monitoring core body temperature to identify heat strain in workers engaged in hot work in heat stress environments is intrusive and expensive. Nonintrusive, inexpensive methods are needed to calculate individual Physiological Strain Index (PSI). Thermal imaging and heart rate monitoring were used in this study to calculate Physiological Strain Index (PSI) from thermal imaging temperatures of human subjects wearing thermal protective garments during recovery from hot work. Ten male subjects were evaluated for physiological strain while participating in hot work. Thermal images of the head and neck were captured with a high-resolution thermal imaging camera concomitant with measures of gastrointestinal and skin temperature. Lin's concordance correlation coefficient (rho_c), Pearson's coefficient (r) and bias correction factor (C-b) were calculated to compare thermal imaging based temperatures to gastrointestinal temperatures. Calculations of PSI based thermal imaging recorded temperatures were compared to gastrointestinal based PSI. Participants reached a peak PSI of 5.2, indicating moderate heat strain. Sagittal measurements showed low correlation (rho_c=0.133), moderate precision (r=0.496) and low accuracy (C_b=0.269) with gastrointestinal temperature. Bland-Altman plots of imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the Limits of Agreement (LoA) fell outside the ±0.25C range of clinical significance. Bland-Altman plots of PSI calculated from imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the LoA fell outside the ±0.5 range of clinical significance. Results of this study confirmed previous research showing thermal imagery is not highly correlated to body core temperature during recovery from moderate heat strain in mild ambient conditions. Measurements display a trend toward increasing correlation at higher body core temperatures. Accuracy was not sufficient at mild to moderate heat strain to allow calculation of individual physiological stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal Aging of Oceanic Asthenosphere
NASA Astrophysics Data System (ADS)
Paulson, E.; Jordan, T. H.
2013-12-01
To investigate the depth extent of mantle thermal aging beneath ocean basins, we project 3D Voigt-averaged S-velocity variations from an ensemble of global tomographic models onto a 1x1 degree age-based regionalization and average over bins delineated by equal increments in the square-root of crustal age. From comparisons among the bin-averaged S-wave profiles, we estimate age-dependent convergence depths (minimum depths where the age variations become statistically insignificant) as well as S travel times from these depths to a shallow reference surface. Using recently published techniques (Jordan & Paulson, JGR, doi:10.1002/jgrb.50263, 2013), we account for the aleatory variability in the bin-averaged S-wave profiles using the angular correlation functions of the individual tomographic models, we correct the convergence depths for vertical-smearing bias using their radial correlation functions, and we account for epistemic uncertainties through Bayesian averaging over the tomographic model ensemble. From this probabilistic analysis, we can assert with 90% confidence that the age-correlated variations in Voigt-averaged S velocities persist to depths greater than 170 km; i.e., more than 100 km below the mean depth of the G discontinuity (~70 km). Moreover, the S travel time above the convergence depth decays almost linearly with the square-root of crustal age out to 200 Ma, consistent with a half-space cooling model. Given the strong evidence that the G discontinuity approximates the lithosphere-asthenosphere boundary (LAB) beneath ocean basins, we conclude that the upper (and probably weakest) part of the oceanic asthenosphere, like the oceanic lithosphere, participates in the cooling that forms the kinematic plates, or tectosphere. In other words, the thermal boundary layer of a mature oceanic plate appears to be more than twice the thickness of its mechanical boundary layer. We do not discount the possibility that small-scale convection creates heterogeneities in the oceanic upper mantle; however, the large-scale flow evidently advects these small-scale heterogeneities along with the plates, allowing the upper part of the asthenosphere to continue cooling with lithospheric age. The dominance of this large-scale horizontal flow may be related to the high stresses associated with its channelization in a thin (~100 km) asthenosphere, as well as the possible focusing of the subtectospheric strain in a low-viscosity channel immediately above the 410-km discontinuity. These speculations aside, the observed thermal aging of oceanic asthenosphere is inconsistent with a tenet of plate tectonics, the LAB hypothesis, which states that lithospheric plates are decoupled from deeper mantle flow by a shear zone in the upper part of the asthenosphere.
Mo, Xueyin; Zhang, Jinglu; Fan, Yuan; Svensson, Peter; Wang, Kelun
2015-01-01
To explore the hypothesis that burning mouth syndrome (BMS) probably is a neuropathic pain condition, thermal and mechanical sensory and pain thresholds were tested and compared with age- and gender-matched control participants using a standardized battery of psychophysical techniques. Twenty-five BMS patients (men: 8, women: 17, age: 49.5 ± 11.4 years) and 19 age- and gender-matched healthy control participants were included. The cold detection threshold (CDT), warm detection threshold (WDT), cold pain threshold (CPT), heat pain threshold (HPT), mechanical detection threshold (MDT) and mechanical pain threshold (MPT), in accordance with the German Network of Neuropathic Pain guidelines, were measured at the following four sites: the dorsum of the left hand (hand), the skin at the mental foramen (chin), on the tip of the tongue (tongue), and the mucosa of the lower lip (lip). Statistical analysis was performed using ANOVA with repeated measures to compare the means within and between groups. Furthermore, Z-score profiles were generated, and exploratory correlation analyses between QST and clinical variables were performed. Two-tailed tests with a significance level of 5 % were used throughout. CDTs (P < 0.02) were significantly lower (less sensitivity) and HPTs (P < 0.001) were significantly higher (less sensitivity) at the tongue and lip in BMS patients compared to control participants. WDT (P = 0.007) was also significantly higher at the tongue in BMS patients compared to control subjects . There were no significant differences in MDT and MPT between the BMS patients and healthy subjects at any of the four test sites. Z-scores showed that significant loss of function can be identified for CDT (Z-scores = -0.9±1.1) and HPT (Z-scores = 1.5±0.4). There were no significant correlations between QST and clinical variables (pain intensity, duration, depressions scores). BMS patients had a significant loss of thermal function but not mechanical function, supporting the hypothesis that BMS may be a probable neuropathic pain condition. Further studies including e.g. electrophysiological or imaging techniques are needed to clarify the underlying mechanisms of BMS.
Crack propagation in functionally graded strip under thermal shock
NASA Astrophysics Data System (ADS)
Ivanov, I. V.; Sadowski, T.; Pietras, D.
2013-09-01
The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.
Higher curvature self-interaction corrections to Hawking radiation
NASA Astrophysics Data System (ADS)
Fairoos, C.; Sarkar, Sudipta; Yogendran, K. P.
2017-07-01
The purely thermal nature of Hawking radiation from evaporating black holes leads to the information loss paradox. A possible route to its resolution could be if (enough) correlations are shown to be present in the radiation emitted from evaporating black holes. A reanalysis of Hawking's derivation including the effects of self-interactions in general relativity shows that the emitted radiation does deviate from pure thermality; however no correlations exist between successively emitted Hawking quanta. We extend the calculations to Einstein-Gauss-Bonnet gravity and investigate if higher curvature corrections to the action lead to some new correlations in the Hawking spectra. The effective trajectory of a massless shell is determined by solving the constraint equations and the semiclassical tunneling probability is calculated. As in the case of general relativity, the radiation is no longer thermal and there is no correlation between successive emissions. The absence of any extra correlations in the emitted radiations even in Gauss-Bonnet gravity suggests that the resolution of the paradox is beyond the scope of semiclassical gravity.
Differential coding of hyperalgesia in the human brain: a functional MRI study.
Maihöfner, Christian; Handwerker, Hermann O
2005-12-01
Neuropathic pain can be both ongoing or stimulus-induced. Stimulus-induced pain, also known as hyperalgesia, can be differentiated into primary and secondary hyperalgesia. The former results from sensitization of peripheral nociceptive structures, the latter involves sensitization processes within the central nervous system (CNS). Hypersensitivity towards heat stimuli, i.e. thermal hyperalgesia, is a key feature of primary hyperalgesia, whereas secondary hyperalgesia is characterized by hypersensitivity towards mechanical (e.g. pin-prick) stimulation. Using functional magnetic resonance imaging (fMRI), we investigated if brain activation patterns associated with primary and secondary hyperalgesia might differ. Thermal and pin-prick hyperalgesia were induced on the left forearm in 12 healthy subjects by topical capsaicin (2.5%, 30 min) application. Equal pain intensities of both hyperalgesia types were applied during fMRI experiments, based on previous quantitative sensory testing. Simultaneously, subjects had to rate the unpleasantness of stimulus-related pain. Pin-prick hyperalgesia (i.e. subtraction of brain activations during pin-prick stimulation before and after capsaicin exposure) led to activations of primary and secondary somatosensory cortices (S1 and S2), associative-somatosensory cortices, insula and superior and inferior frontal cortices (SFC, IFC). Brain areas activated during thermal hyperalgesia (i.e. subtraction of brain activations during thermal stimulation before and after capsaicin exposure) were S1 and S2, insula, associative-somatosensory cortices, cingulate cortex (GC), SFC, middle frontal cortex (MFC) and IFC. When compared to pin-prick hyperalgesia, thermal hyperalgesia led to an increased activation of bilateral anterior insular cortices, MFC, GC (Brodmann area 24' and 32') and contralateral SFC and IFC, despite equal pain intensities. Interestingly, stronger activations of GC, contralateral MFC and anterior insula significantly correlated to higher ratings of the stimulus-related unpleasantness. We conclude that thermal and mechanical hyperalgesia produce substantially different brain activation patterns. This is linked to different psychophysical properties.
NASA Astrophysics Data System (ADS)
Meshgin, Pania
2011-12-01
This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.
Triantafyllou, Christina; Polimeni, Jonathan R; Keil, Boris; Wald, Lawrence L
2016-12-01
Physiological nuisance fluctuations ("physiological noise") are a major contribution to the time-series signal-to-noise ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR 0 ), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. We extend the theoretical relationship between tSNR and SNR 0 to include a time-series noise covariance matrix Ψ t , distinct from the thermal noise covariance matrix Ψ 0 , and compare its structure to Ψ 0 and the signal coupling matrix SS H formed from the signal intensity vectors S. Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR 0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ 0 or SS H . Time-series noise covariances in array coils are found to differ from Ψ 0 and more surprisingly, from the signal coupling matrix SS H . Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. Magn Reson Med 76:1708-1719, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Numerical simulation of turbulent forced convection in liquid metals
NASA Astrophysics Data System (ADS)
Vodret, S.; Vitale Di Maio, D.; Caruso, G.
2014-11-01
In the frame of the future generation of nuclear reactors, liquid metals are foreseen to be used as a primary coolant. Liquid metals are characterized by a very low Prandtl number due to their very high heat diffusivity. As such, they do not meet the so-called Reynolds analogy which assumes a complete similarity between the momentum and the thermal boundary layers via the use of the turbulent Prandtl number. Particularly, in the case of industrial fluid-dynamic calculations where a resolved computation near walls could be extremely time consuming and could need very large computational resources, the use of the classical wall function approach could lead to an inaccurate description of the temperature profile close to the wall. The first aim of the present study is to investigate the ability of a well- established commercial code (ANSYS FLUENT v.14) to deal with this issue, validating a suitable expression for the turbulent Prandtl number. Moreover, a thermal wall-function developed at Universite Catholique de Louvain has been implemented in FLUENT and validated, overcoming the limits of the solver to define it directly. Both the resolved and unresolved approaches have been carried out for a channel flow case and assessed against available direct numerical and large eddy simulations. A comparison between the numerically evaluated Nusselt number and the main correlations available in the literature has been also carried out. Finally, an application of the proposed methodology to a typical sub-channel case has been performed, comparing the results with literature correlations for tube banks.
Blankenburg, M; Junker, J; Hirschfeld, G; Michel, E; Aksu, F; Wager, J; Zernikow, B
2018-05-01
Many patients with cerebral palsy (CP) suffer chronic pain as one of the most limiting factors in their quality of life. In CP patients, pain mechanisms are not well understood, and pain therapy remains a challenge. Quantitative sensory testing (QST) might provide unique information about the functional status of the somatosensory system and therefore better guide pain treatment. To understand better the underlying pain mechanisms in pediatric CP patients, we aimed to assess clinical and pain parameters, as well as QST profiles, which were matched to the patients' cerebral imaging pathology. Thirty CP patients aged 6-20 years old (mean age 12 years) without intellectual impairment underwent standardized assessments of QST. Cerebral imaging was reassessed. QST results were compared to age- and sex-matched controls (multiple linear regression; Fisher's exact test; linear correlation analysis). CP patients were less sensitive to all mechanical and thermal stimuli than healthy controls but more sensitive to all mechanical pain stimuli (each p < 0.001). Fifty percent of CP patients showed a combination of mechanical hypoesthesia, thermal hypoesthesia and mechanical hyperalgesia; 67% of CP patients had periventricular leukomalacia (PVL), which was correlated with mechanic (r = 0.661; p < 0.001) and thermal (r = 0.624; p = 0.001) hypoesthesia. The combination of mechanical hypoesthesia, thermal hypoesthesia and mechanical hyperalgesia in our CP patients implicates lemniscal and extralemniscal neuron dysfunction in the thalamus region, likely due to PVL. We suspect that extralemniscal tracts are involved in the original of pain in our CP patients, as in adults. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System
NASA Technical Reports Server (NTRS)
Moskito, John
1996-01-01
This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.
Counting of fermions and spins in strongly correlated systems in and out of thermal equilibrium
NASA Astrophysics Data System (ADS)
Braungardt, Sibylle; Rodríguez, Mirta; Sen(de), Aditi; Sen, Ujjwal; Glauber, Roy J.; Lewenstein, Maciej
2011-01-01
Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.
2011-12-01
image) ................. 114 Figure 156 – Abaqus thermal model attempting to characterize the thermal profile seen in the test data...optimization process ... 118 Figure 159 – Thermal profile for optimized Abaqus thermal solution ....................................... 119 Figure 160 – LVDT...Coefficients of thermal expansion results ................................................................. 121 Table 12 – LVDT correlation results
NASA Astrophysics Data System (ADS)
Hijas, K. M.; Madan Kumar, S.; Byrappa, K.; Geethakrishnan, T.; Jeyaram, S.; Nagalakshmi, R.
2018-03-01
Single crystals of 2-methoxy-4(phenyliminomethyl)phenol were grown from ethanol by slow evaporation solution growth technique. Single crystal X-ray diffraction experiment reveals the crystallization in orthorhombic system having non-centrosymmetric space group C2221. Geometrical optimization by density functional theory method was carried out using Gaussian program and compared with experimental results. Detailed experimental and theoretical vibrational analyses were carried out and the results were correlated to find close agreement. Thermal analyses show the material is thermally stable with a melting point of 159 °C. Natural bond orbital analysis was carried out to explain charge transfer interactions through hydrogen bonding. Relatively smaller HOMO-LUMO band gap favors the non linear optical activity of the molecule. Natural population analysis and molecular electrostatic potential calculations visualize the charge distribution in an isolated molecule. Calculated first-order molecular hyperpolarizability and preliminary second harmonic generation test carried out using Kurtz-Perry technique establish 2-methoxy-4(phenyliminomethyl)phenol crystal as a good non linear optical material. Z-scan proposes the material for reverse saturable absorption.
Characterization of the crosslinking reaction in high performance phenolic resins
NASA Astrophysics Data System (ADS)
Patel, Jigneshkumar; Zou, Guo Xiang; Hsu, Shaw Ling; university of massachusetts/Polymer science; Engineering Team
In this study, a combination of thermal analysis, infrared spectroscopy (near and mid) in conjunction with low field NMR, was used to characterize the crosslinking reaction involving phenol formaldehyde resin and a crosslinking agent, Hexamethylenetetramine (HMTA). The strong hydrogen bonds in the resin and the completely crystalline HMTA (Tm = 280 °C) severely hamper the crosslinking process. Yet the addition of a small amount of plasticizer can induce a highly efficient crosslinking reaction to achieve the desired mechanical properties needed in a number of high performance organic-inorganic composites. The infrared spectroscopy clarifies the dissolution process of the crystalline crosslinker and the specific interactions needed to achieve miscibility of the reactants. The thermal analysis enabled us to follow the changing mobility of the system as a function of temperature. The low field NMR with the T1 inverse recovery technique allowed us to monitor the crosslinking process directly. For the first time, it is now possible to identify the functionality of the plasticizer and correlate the crosslinked structure achieved to the macroscopic performance needed for high performance organic-inorganic composites.
Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.
Li, Guantian; Zhu, Fan
2017-05-15
Structure-function relationships of starch components remain a subject of research interest. Quinoa starch has very small granules (∼2μm) with unique properties. In this study, nine quinoa starches varied greatly in composition, structure, and physicochemical properties were selected for the analysis of structure-function relationships. Pearson correlation analysis revealed that the properties related to gelatinization such as swelling power, water solubility index, crystallinity, pasting, and thermal properties are much affected by the amylopectin chain profile and amylose content. The parameters of gel texture and amylose leaching are much related to amylopectin internal structure. Other properties such as enzyme susceptibility and particle size distribution are also strongly correlated with starch composition and amylopectin structure. Interesting findings indicate the importance of amylopectin internal structure and individual unit chain profile in determining the physicochemical properties of starch. This work highlights some relationships among composition, amylopectin structure and physicochemical properties of quinoa starch. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions.
Karasiev, Valentin V; Dufty, James W; Trickey, S B
2018-02-16
Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (XC) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T. Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.
Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions
NASA Astrophysics Data System (ADS)
Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.
2018-02-01
Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (X C ) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation X C free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T , high-T , and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T . Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.
Visual information without thermal energy may induce thermoregulatory-like cardiovascular responses
2013-01-01
Background Human core body temperature is kept quasi-constant regardless of varying thermal environments. It is well known that physiological thermoregulatory systems are under the control of central and peripheral sensory organs that are sensitive to thermal energy. If these systems wrongly respond to non-thermal stimuli, it may disturb human homeostasis. Methods Fifteen participants viewed video images evoking hot or cold impressions in a thermally constant environment. Cardiovascular indices were recorded during the experiments. Correlations between the ‘hot-cold’ impression scores and cardiovascular indices were calculated. Results The changes of heart rate, cardiac output, and total peripheral resistance were significantly correlated with the ‘hot-cold’ impression scores, and the tendencies were similar to those in actual thermal environments corresponding to the impressions. Conclusions The present results suggest that visual information without any thermal energy can affect physiological thermoregulatory systems at least superficially. To avoid such ‘virtual’ environments disturbing human homeostasis, further study and more attention are needed. PMID:24373765
Mission Life Thermal Analysis and Environment Correlation for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Garrison, Matthew B.; Peabody, Hume
2012-01-01
Standard thermal analysis practices include stacking worst-case conditions including environmental heat loads, thermo-optical properties and orbital beta angles. This results in the design being driven by a few bounding thermal cases, although those cases may only represent a very small portion of the actual mission life. The NASA Goddard Space Flight Center Thermal Branch developed a procedure to predict the flight temperatures over the entire mission life, assuming a known beta angle progression, variation in the thermal environment, and a degradation rate in the coatings. This was applied to the Global Precipitation Measurement core spacecraft. In order to assess the validity of this process, this work applies the similar process to the Lunar Reconnaissance Orbiter. A flight-correlated thermal model was exercised to give predictions of the thermal performance over the mission life. These results were then compared against flight data from the first two years of the spacecraft s use. This is used to validate the process and to suggest possible improvements for future analyses.
Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools
NASA Astrophysics Data System (ADS)
El Moumni, H.
2018-01-01
In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.
Thermoviscoplastic model with application to copper
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
A viscoplastic model is developed which is applicable to anisothermal, cyclic, and multiaxial loading conditions. Three internal state variables are used in the model; one to account for kinematic effects, and the other two to account for isotropic effects. One of the isotropic variables is a measure of yield strength, while the other is a measure of limit strength. Each internal state variable evolves through a process of competition between strain hardening and recovery. There is no explicit coupling between dynamic and thermal recovery in any evolutionary equation, which is a useful simplification in the development of the model. The thermodynamic condition of intrinsic dissipation constrains the thermal recovery function of the model. Application of the model is made to copper, and cyclic experiments under isothermal, thermomechanical, and nonproportional loading conditions are considered. Correlations and predictions of the model are representative of observed material behavior.
Anttila, Katja; Casselman, Matthew T; Schulte, Patricia M; Farrell, Anthony P
2013-01-01
Temperature affects processes at all levels of biological organization, but it is unclear whether processes at different levels have similar thermal optima (T(opt)). Here, we compare the T(opt) for aerobic scope, a whole-organism measure of performance, with both the Arrhenius breakpoint temperature for maximum heart rate (HR-ABT), a measure of tissue level performance, and the temperature at which AMP-activated protein kinase (AMPK) is phosphorylated in the heart, an indicator of an increase in dependence on anaerobic energy metabolism at the cellular level in juvenile rainbow trout Oncorhynchus mykiss. The T(opt) for aerobic scope was 19°C, with aerobic scope being maintained at ≥90% of maximum (termed a "T(opt) window") from 16.5° to 20.5°C. HR-ABT occurred at [Formula: see text], while the profile of AMPK phosphorylation started to change from baseline at 19°C, suggesting that these processes have similar thermal sensitivities as a fish is warmed to T(opt). The effects of temperature on AMPK phosphorylation were also measured in coho salmon Oncorhynchus kisutch hearts and compared with previously published values for HR-ABT and aerobic scope T(opt). AMPK phosphorylation in coho hearts began to change at temperatures above 17°C, which again is comparable with the published T(opt) for aerobic scope (17°C) and HR-ABT ([Formula: see text]) in these individuals. Thus, the thermal sensitivity of these subcellular, tissue, and whole-organism functions are highly correlated in both rainbow trout and coho salmon and may depend on each other.
Black Box Real-Time Transient Absorption Spectroscopy and Electron Correlation
NASA Astrophysics Data System (ADS)
Parkhill, John
2017-06-01
We introduce an atomistic, all-electron, black-box electronic structure code to simulate transient absorption (TA) spectra and apply it to simulate pyrazole and a GFP- chromophore derivative1. The method is an application of OSCF2, our dissipative exten- sion of time-dependent density-functional theory. We compare our simulated spectra directly with recent ultra-fast spectroscopic experiments. We identify features in the TA spectra to Pauli-blocking which may be missed without a first-principles model. An important ingredient in this method is the stationary-TDDFT correction scheme recently put forwards by Fischer, Govind, and Cramer which allows us to overcome a limitation of adiabatic TDDFT. We demonstrate that OSCF2 is able to reproduce the energies of bleaches and induced absorptions, as well as the decay of the transient spectrum, with only the molecular structure as input. We show that the treatment of electron correlation is the biggest hurdle for TA simulations, which motivates the second half of the talk a new method for realtime electron correlation. We continue to derive and propagate self-consistent electronic dynamics. Extending our derivation of OSCF2 to include electron correlation we obtain a non-linear correlated one-body equation of motion which corrects TDHF. Similar equations are known in quantum kinetic theory, but rare in electronic structure. We introduce approximations that stabilize the theory and reduce its computational cost. We compare the resulting dynamics with well-known exact and approximate theories showing improvements over TDHF. When propagated EE2 changes occupation numbers like exact theory, an important feature missing from TDHF or TDDFT. We introduce a rotating wave approximation to reduce the scaling of the model to O(N^4), and enable propagation on realistically large systems. The equation-of-motion does not rely on a pure-state model for the electronic state, and could be used to study the relationship between electron correlation and relaxation/dephasing or as a non-adiabatic kernel for TDDFT. We show that a quasi-thermal Fermi-Dirac population of one-particle states is a stationary state of the method reached as the endpoint of propagation in some limits. We discuss this 'thermalization' of an isolated quantum many-body system in the context of the eigenstate thermalization hypothesis.
Thermal expansion coefficient determination of polylactic acid using digital image correlation
NASA Astrophysics Data System (ADS)
Botean, Adrian-Ioan
2018-02-01
This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.
Fernández-Muñoz, Juan J; Palacios-Ceña, María; Cigarán-Méndez, Margarita; Ortega-Santiago, Ricardo; de-la-Llave-Rincón, Ana I; Salom-Moreno, Jaime; Fernández-de-las-Peñas, César
2016-02-01
To investigate potential relationships of clinical (age, function, side of pain, years with pain), physical (cervical range of motion, pinch grip force), psychological (depression), and neurophysiological (pressure and thermal pain thresholds) outcomes and hand pain intensity in carpal tunnel syndrome (CTS). Two hundred and forty-four (n=224) women with CTS were recruited. Demographic data, duration of the symptoms, function and severity of the disease, pain intensity, depression, cervical range of motion, pinch tip grip force, heat/cold pain thresholds (HPT/CPT), and pressure pain thresholds (PPT) were collected. Correlation and regression analysis were performed to determine the association among those variables and to determine the proportions of explained variance in hand pain intensity. Significant negative correlations existed between the intensity of pain and PPTs over the radial nerve, C5/C6 zygapophyseal joint, carpal tunnel and tibialis anterior muscle, HPT over the carpal tunnel, cervical extension and lateral-flexion, and thumb-middle, fourth, and little finger pinch tip forces. Significant positive correlations between the intensity of hand pain with function and depression were also observed. Stepwise regression analyses revealed that function, thumb-middle finger pinch, thumb-little finger pinch, depression, PPT radial nerve, PPT carpal tunnel, and HPT carpal tunnel were significant predictors of intensity of hand pain (R²=0.364; R² adjusted=0.343; F=16.87; P<0.001). This study showed that 36.5% of the variance of pain intensity was associated to clinical (function), neurophysiological (localized PPT and HPT), psychological (depression), and physical (finger pinch tip force) outcomes in women with chronic CTS.
Thermal Behaviors and Their Correlations of Mg(BH4)2-Contained Explosives
NASA Astrophysics Data System (ADS)
Yue, Yue; Chen, Liping; Peng, Jinhua
2018-01-01
In order to explore the effect of metal hydride on energetic materials' thermal behaviors and their correlations, we studied the heats of combustion and detonation of RDX, TNT, and Mg(BH4)2-containing explosives both theoretically and experimentally. The results showed that Mg(BH4)2 can significantly improve the energy of explosive. As the mass fraction of Mg(BH4)2 increases, the combustion heat of composite explosives increases gradually, while the combustion efficiency decreases. When its mass fraction is about 30%, the theoretical heats of detonation of RDX/Mg(BH4)2 and TNT/Mg(BH4)2 reach maximum, which are 7418.47 and 7032.46 kJ/kg, respectively. When we compared the errors between calculation and experimental values, we found that L-C method is more accurate in calculating oxygen-enriched and oxygen-balanced explosives, and that minimum free energy method is more suitable for seriously negative oxygen-balanced explosive. For single explosive, there are three kinds of relationships between heat of combustion and detonation according to the oxygen balance. For Mg(BH4)2-containing explosives, the relationship is in accordance with Boltzmann function.
Thouless energy and multifractality across the many-body localization transition
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.
2017-09-01
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.
Thermograpic study of upper extremities in patients with cerebral palsy
NASA Astrophysics Data System (ADS)
Lampe, R.; Kawelke, S.; Mitternacht, J.; Turova, V.; Blumenstein, T.; Alves-Pinto, A.
2015-03-01
Trophic disorders like reduced skin blood circulation are well-known epiphenomenon of cerebral palsy (CP). They can influence quality of life and can lead to skin damages and, as a consequence, to decubitus. Therefore, it is important to analyse temperature regulation in patients with CP. Thermal imaging camera FLIR BCAM SD was used to study the dependency of skin blood circulation in upper extremities of patients with CP on hand dominance, hand force and hand volume. The hand force was evaluated using a conventional dynamometer. The hand volume was measured with a volumeter. A cold stress test for hands was applied in 22 patients with CP and 6 healthy subjects. The warming up process after the test was recorded with the thermal camera. It was confirmed that the hands of patients warm up slower comparing to healthy persons. The patients' working hands warm up faster than non-working ones. A slight correlation was established between the hand grip force of the working hands and their warm up time. No correlation was found between the warming up time and the volume of the hand. The results confirm our assumption that there is a connection of peripheral blood circulation to upper limb motor functions.
Novel methods of imaging and analysis for the thermoregulatory sweat test.
Carroll, Michael Sean; Reed, David W; Kuntz, Nancy L; Weese-Mayer, Debra Ellyn
2018-06-07
The thermoregulatory sweat test (TST) can be central to the identification and management of disorders affecting sudomotor function and small sensory and autonomic nerve fibers, but the cumbersome nature of the standard testing protocol has prevented its widespread adoption. A high resolution, quantitative, clean and simple assay of sweating could significantly improve identification and management of these disorders. Images from 89 clinical TSTs were analyzed retrospectively using two novel techniques. First, using the standard indicator powder, skin surface sweat distributions were determined algorithmically for each patient. Second, a fundamentally novel method using thermal imaging of forced evaporative cooling was evaluated through comparison with the standard technique. Correlation and receiver operating characteristic analyses were used to determine the degree of match between these methods, and the potential limits of thermal imaging were examined through cumulative analysis of all studied patients. Algorithmic encoding of sweating and non-sweating regions produces a more objective analysis for clinical decision making. Additionally, results from the forced cooling method correspond well with those from indicator powder imaging, with a correlation across spatial regions of -0.78 (CI: -0.84 to -0.71). The method works similarly across body regions, and frame-by-frame analysis suggests the ability to identify sweating regions within about 1 second of imaging. While algorithmic encoding can enhance the standard sweat testing protocol, thermal imaging with forced evaporative cooling can dramatically improve the TST by making it less time-consuming and more patient-friendly than the current approach.
Urban, Michael J.; Pan, Pan; Farmer, Kevin L.; Zhao, Huiping; Blagg, Brian S.J.; Dobrowsky, Rick T.
2012-01-01
Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20 mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons. PMID:22465570
Non-invasive thermal IR detection of breast tumor development in vivo
NASA Astrophysics Data System (ADS)
Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.
2015-03-01
Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.
Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment
Xu, Lin-Yu; Yin, Hao; Xie, Xiao-Dong
2014-01-01
Inhalable particulate matter (PM10) is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI) effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). With the correlation between difference vegetation index (DVI) and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144) from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones. PMID:25464132
Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions
NASA Astrophysics Data System (ADS)
Kuang, W.; Tangborn, A.; Jiang, W.
2011-12-01
It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.
NASA Astrophysics Data System (ADS)
Pinti, Paola; Cardone, Daniela; Merla, Arcangelo
2015-12-01
Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.
Kuhtz-Buschbeck, Johann P; Andresen, Wiebke; Göbel, Stephan; Gilster, René; Stick, Carsten
2010-06-01
About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025-1043, 1969). They discovered polymodal nociceptors, which responded to mechanical, thermal, and chemical stimuli in the noxious range, and differentiated them from low-threshold thermoreceptors. Their classic findings form the basis of the present method that undergraduate medical students experience during laboratory exercises of sensory physiology, namely, quantitative testing of the thermal detection and pain thresholds. This diagnostic method examines the function of thin afferent nerve fibers. We collected data from nearly 300 students that showed that 1) women are more sensitive to thermal detection and thermal pain at the thenar than men, 2) habituation shifts thermal pain thresholds during repetititve testing, 3) the cold pain threshold is rather variable and lower when tested after heat pain than in the reverse case (order effect), and 4) ratings of pain intensity on a visual analog scale are correlated with the threshold temperature for heat pain but not for cold pain. Median group results could be reproduced in a retest. Quantitative sensory testing of thermal thresholds is feasible and instructive in the setting of a laboratory exercise and is appreciated by the students as a relevant and interesting technique.
A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints
NASA Astrophysics Data System (ADS)
Borgesen, Peter; Wentlent, Luke; Hamasha, Sa'd.; Khasawneh, Saif; Shirazi, Sam; Schmitz, Debora; Alghoul, Thaer; Greene, Chris; Yin, Liang
2018-02-01
The present work offers both a complete, quantitative model and a conservative acceleration factor expression for the life span of SnAgCu solder joints in thermal cycling. A broad range of thermal cycling experiments, conducted over many years, has revealed a series of systematic trends that are not compatible with common damage functions or constitutive relations. Complementary mechanical testing and systematic studies of the evolution of the microstructure and damage have led to a fundamental understanding of the progression of thermal fatigue and failure. A special experiment was developed to allow the effective deconstruction of conventional thermal cycling experiments and the finalization of our model. According to this model, the evolution of damage and failure in thermal cycling is controlled by a continuous recrystallization process which is dominated by the coalescence and rotation of dislocation cell structures continuously added to during the high-temperature dwell. The dominance of this dynamic recrystallization contribution is not consistent with the common assumption of a correlation between the number of cycles to failure and the total work done on the solder joint in question in each cycle. It is, however, consistent with an apparent dependence on the work done during the high-temperature dwell. Importantly, the onset of this recrystallization is delayed by pinning on the Ag3Sn precipitates until these have coarsened sufficiently, leading to a model with two terms where one tends to dominate in service and the other in accelerated thermal cycling tests. Accumulation of damage under realistic service conditions with varying dwell temperatures and times is also addressed.
Mineral Information Extraction Based on GAOFEN-5'S Thermal Infrared Data
NASA Astrophysics Data System (ADS)
Liu, L.; Shang, K.
2018-04-01
Gaofen-5 carries six instruments aimed at various land and atmosphere applications, and it's an important unit of China High-resolution Earth Observation System. As Gaofen-5's thermal infrared payload is similar to that of ASTER, which is widely used in mineral exploration, application of Gaofen-5's thermal infrared data is discussed regarding its capability in mineral classification and silica content estimation. First, spectra of silicate, carbonate, sulfate minerals from a spectral library are used to conduct spectral feature analysis on Gaofen-5's thermal infrared emissivities. Spectral indices of band emissivities are proposed, and by setting thresholds of these spectral indices, it can classify three types of minerals mentioned above. This classification method is tested on a simulated Gaofen-5 emissivity image. With samples acquired from the study area, this method is proven to be feasible. Second, with band emissivities of silicate and their silica content from the same spectral library, correlation models have been tried to be built for silica content inversion. However, the highest correlation coefficient is merely 0.592, which is much lower than that of correlation model built on ASTER thermal infrared emissivity. It can be concluded that GF-5's thermal infrared data can be utilized in mineral classification but not in silica content inversion.
A candidate multimodal functional genetic network for thermal adaptation
Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D.
2014-01-01
Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other vertebrate ectotherms. PMID:25289178
Hall Thruster Thermal Modeling and Test Data Correlation
NASA Technical Reports Server (NTRS)
Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren
2016-01-01
The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.
Kinetic evolution and correlation of fluctuations in an expanding quark gluon plasma
NASA Astrophysics Data System (ADS)
Sarwar, Golam; Alam, Jan-E.
2018-03-01
Evolution of spatially anisotropic perturbation created in the system formed after Relativistic Heavy Ion Collisions has been studied. The microscopic evolution of the fluctuations has been examined within the ambit of Boltzmann Transport Equation (BTE) in a hydrodynamically expanding background. The expansion of the background composed of quark gluon plasma (QGP) is treated within the framework of relativistic hydrodynamics. Spatial anisotropic fluctuations with different geometries have been evolved through Boltzmann equation. It is observed that the trace of such fluctuation survives the evolution. Within the relaxation time approximation, analytical results have been obtained for the evolution of these anisotropies. Explicit relations between fluctuations and transport coefficients have been derived. The mixing of various Fourier (or k) modes of the perturbations during the evolution of the system has been explicitly demonstrated. This study is very useful in understanding the presumption that the measured anisotropies in the data from heavy ion collisions at relativistic energies imitate the initial state effects. The evolution of correlation function for the perturbation in pressure has been studied and shows that the initial correlation between two neighbouring points in real space evolves to a constant value at later time which gives rise to Dirac delta function for the correlation function in Fourier space. The power spectrum of the fluctuation in thermodynamic quantities (like temperature estimated in this work) can be connected to the fluctuation in transverse momentum of the thermal hadrons measured experimentally. The bulk viscous coefficient of the QGP has been estimated by using correlations of pressure fluctuation with the help of Green-Kubo relation. Angular power spectrum of the anisotropies has been estimated in the appendix.
THERMAL-INERTIA MAPPING IN VEGETATED TERRAIN FROM HEAT CAPACITY MAPPING MISSION SATELLITE DATA.
Watson, Ken; Hummer-Miller, Susanne
1984-01-01
Thermal-inertia data, derived from the Heat Capacity Mapping Mission (HCMM) satellite, were analyzed in areas of varying amounts of vegetation cover. Thermal differences which appear to correlate with lithologic differences have been observed previously in areas of substantial vegetation cover. However, the energy exchange occurring within the canopy is much more complex than that used to develop the methods employed to produce thermal-inertia images. Because adequate models are lacking at present, the interpretation is largely dependent on comparison, correlation, and inference. Two study areas were selected in the western United States: the Richfield, Utah and the Silver City, Arizona-New Mexico, 1 degree multiplied by 2 degree quadrangles. Many thermal-inertia highs were found to be associated with geologic-unit boundaries, faults, and ridges. Lows occur in valleys with residual soil cover.
The relationship of nerve fibre pathology to sensory function in entrapment neuropathy
Schmid, Annina B.; Bland, Jeremy D. P.; Bhat, Manzoor A.
2014-01-01
Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients’ symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity. PMID:25348629
Clark, Natalie J; Gordos, Matthew A; Franklin, Craig E
2008-01-01
Locomotion is a common measure of performance used in studies of thermal acclimation because of its correlation with predator escape and prey capture. However, for sedentary animals such as freshwater turtles, we propose that diving behavior may be a more ecologically relevant measure of performance. Increasing dive duration in hatchling turtles reduces predator exposure and therefore functions as an ecological benefit. Diving behavior is thermally dependent, and in some species of freshwater turtles, it is also reliant on aquatic respiration. This study examined the influence of thermal acclimation on diving behavior, aquatic respiration, and locomotor performance in the endangered, bimodally respiring Mary River turtle Elusor macrurus. Diving behavior was found to partially acclimate at 17 degrees C, with turtles acclimated to a cold temperature (17 degrees C) having a significantly longer dive duration than hatchlings acclimated to a warm temperature (28 degrees C). This increase in dive duration at 17 degrees C was not a result of physiological alterations in metabolic rate but was due instead to an increase in aquatic oxygen consumption. Increasing aquatic oxygen consumption permitted cold-acclimated hatchlings to remain submerged for significantly longer periods, with one turtle undertaking a dive of over 2.5 d. When burst-swimming speed was used as the measure of performance, thermal acclimation was not detected. Overall, E. macrurus demonstrated a partial ability to acclimate to changes in environmental temperature.
Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology
NASA Astrophysics Data System (ADS)
Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund
2017-06-01
Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our compan-ion paper [1]. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a ba-sic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general prin-ciples, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.
Hamiltonian of Mean Force and Dissipative Scalar Field Theory
NASA Astrophysics Data System (ADS)
Jafari, Marjan; Kheirandish, Fardin
2018-04-01
Quantum dynamics of a dissipative scalar field is investigated. Using the Hamiltonian of mean force, internal energy, free energy and entropy of a dissipative scalar field are obtained. It is shown that a dissipative massive scalar field can be considered as a free massive scalar field described by an effective mass and dispersion relation. Internal energy of the scalar field, as the subsystem, is found in the limit of low temperature and weak and strong couplings to an Ohimc heat bath. Correlation functions for thermal and coherent states are derived.
Photon interferometry of Au+Au collisions at the BNL Relativistic Heavy-Ion Collider.
Bass, Steffen A; Müller, Berndt; Srivastava, Dinesh K
2004-10-15
We calculate the two-body correlation function of direct photons produced in central Au+Au collisions at the Relativistic Heavy-Ion Collider. Our calculation includes contributions from the early preequilibrium phase in which photons are produced via hard parton scatterings as well as radiation of photons from a thermalized quark-gluon plasma and the subsequent expanding hadron gas. We find that high energy photon interferometry provides a faithful probe of the details of the space-time evolution and of the early reaction stages of the system.
A quantitative analysis of TIMS data obtained on the Learjet 23 at various altitudes
NASA Technical Reports Server (NTRS)
Jaggi, S.
1992-01-01
A series of Thermal Infrared Multispectral Scanner (TIMS) data acquisition flights were conducted on the NASA Learjet 23 at different altitudes over a test site. The objective was to monitor the performance of the TIMS (its estimation of the brightness temperatures of the ground scene) with increasing altitude. The results do not show any significant correlation between the brightness temperatures and the altitude. The analysis indicates that the estimation of the temperatures is a function of the accuracy of the atmospheric correction used for each altitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.
Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s{sup −1}) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s{sup −1}. Thismore » invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Robert; Goudey, Howdy; Curcija, D. Charlie
Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less
Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model
NASA Astrophysics Data System (ADS)
Ahadpour, S.; Mirmasoudi, F.
2018-04-01
We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.
Huber, M. L.; Sykioti, E. A.; Assael, M. J.; Perkins, R. A.
2016-01-01
This paper contains new, representative reference equations for the thermal conductivity of carbon dioxide. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. In the case of the dilute-gas thermal conductivity, we incorporated recent theoretical calculations to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1100 K and pressures up to 200 MPa. The overall uncertainty (at the 95% confidence level) of the proposed correlation varies depending on the state point from a low of 1% at very low pressures below 0.1 MPa between 300 K and 700 K, to 5% at the higher pressures of the range of validity. PMID:27064300
Hart, Robert; Goudey, Howdy; Curcija, D. Charlie
2017-05-16
Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.
2012-01-01
Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.
Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.
2012-01-01
Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.
Nanoscale Ex-Situ Thermal Impulse Sensors for Structural Fire Forensics.
Anderson, Benjamin R; Gese, Natalie; Gunawidjaja, Ray; Eilers, Hergen
2017-01-01
We develop nanoscale ex situ thermal impulse (i.e., the temperature and duration of a heating event) sensors for structural fire forensics using a mixture of two lanthanide-doped oxide precursors (precursor Eu:ZrO 2 and precursor Dy:Y 2 O 3 ) that undergo irreversible phase changes when heated. These changes are probed using photoluminescence (PL) spectroscopy with the PL spectra being dependent on the thermal impulse (TI) experienced by the sensors. By correlating the PL spectra to different in-lab TIs, we are able to produce a spectroscopic calibration for our sensors. This calibration allows us to determine an unknown TI of a heating event using only the PL spectrum of the heated TI sensors. In this study, we report on the calibration of these sensors for isothermal heating durations up to 600 s and isothermal temperatures up to 1273 K. Using this calibration, we also demonstrate their ability to determine an unknown TI and demonstrate their functionality when dispersed into paint, which is heated in the presence of drywall.
A transient analysis of frost formation on a parallel plate evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.
1996-12-31
This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for airmore » and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.« less
Mathematical modeling of moving boundary problems in thermal energy storage
NASA Technical Reports Server (NTRS)
Solomon, A. D.
1980-01-01
The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.
Statistical mechanics of the cluster Ising model
NASA Astrophysics Data System (ADS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-08-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
NASA Astrophysics Data System (ADS)
Phi Long, Nguyen; Matsunaga, Yukihiro; Hanari, Toshihide; Yamada, Tomonori; Muramatsu, Toshiharu
2016-10-01
Experiment of temperature measurement was performed to investigate the transient temperature characteristics of molten metal during laser cutting. The aim of this study was to establish a method for measuring the surface temperature variation near the molten pool correlated with changes in cutting parameters. The relationship between temperature inside the kerf cut and characteristic of the cut surface was investigated by using thermography and thermocouples. Results show strong correlations between the transient temperatures and the thermal image for different cutting conditions. In addition, two-color thermometer has been used to obtain radiation intensity emitted from the irradiating zone as a function of operating conditions. Experiments have shown that one can detect the cutting quality by characterization of the surface temperature during laser cutting process.
A study of the coherence length of ULF waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.
1990-01-01
High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.
Nespolo, Roberto F; Arim, Matías; Bozinovic, Francisco
2003-07-01
Body size is one of the most important determinants of energy metabolism in mammals. However, the usual physiological variables measured to characterize energy metabolism and heat dissipation in endotherms are strongly affected by thermal acclimation, and are also correlated among themselves. In addition to choosing the appropriate measurement of body size, these problems create additional complications when analyzing the relationships among physiological variables such as basal metabolism, non-shivering thermogenesis, thermoregulatory maximum metabolic rate and minimum thermal conductance, body size dependence, and the effect of thermal acclimation on them. We measured these variables in Phyllotis darwini, a murid rodent from central Chile, under conditions of warm and cold acclimation. In addition to standard statistical analyses to determine the effect of thermal acclimation on each variable and the body-mass-controlled correlation among them, we performed a Structural Equation Modeling analysis to evaluate the effects of three different measurements of body size (body mass, m(b); body length, L(b) and foot length, L(f)) on energy metabolism and thermal conductance. We found that thermal acclimation changed the correlation among physiological variables. Only cold-acclimated animals supported our a priori path models, and m(b) appeared to be the best descriptor of body size (compared with L(b) and L(f)) when dealing with energy metabolism and thermal conductance. However, while m(b) appeared to be the strongest determinant of energy metabolism, there was an important and significant contribution of L(b) (but not L(f)) to thermal conductance. This study demonstrates how additional information can be drawn from physiological ecology and general organismal studies by applying Structural Equation Modeling when multiple variables are measured in the same individuals.
Giaconia, Carlo; Orioli, Aldo; Di Gangi, Alessandra
2015-05-01
The results of an experimental investigation on the human thermal comfort inside the cabin of some Airbus A319 aircrafts during 14 short-haul domestic flights, linking various Italian cities, are presented and used to define a correlation among the predicted mean vote (PMV), a procedure which is commonly used to assess the thermal comfort in inhabited environments, and the equivalent temperature and mean thermal vote (MTV), which are the parameters suggested by the European Standard EN ISO 14505-2 for the evaluation of the thermal environment in vehicles. The measurements of the radiant temperature, air temperature and relative humidity during flights were performed. The air temperature varied between 22.2 °C and 26.0 °C; the relative humidity ranged from 8.7% to 59.2%. The calculated values of the PMV varied from -0.16 to 0.90 and were confirmed by the answers of the passengers. The equivalent temperature was evaluated using the equations of Fanger or on the basis of the values of the skin temperature measured on some volunteers. The correlation linking the thermal sensation scales and zones used by the PMV and the MTV resulted quite accurate because the minimum value of the absolute difference between such environmental indexes equalled 0.0073 and the maximum difference did not exceed the value of 0.0589. Even though the equivalent temperature and the MTV were specifically proposed to evaluate the thermal sensation in vehicles, their use may be effectively extended to the assessment of the thermal comfort in airplanes or other occupied places. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board
NASA Technical Reports Server (NTRS)
Breeding, Shawn; Khodabandeh, Julia
2002-01-01
Contents include the following: Quench Module Insert (QMI) science requirements. QMI interfaces. QMI design layout. QMI thermal analysis and design methodology. QMI bread board testing and instrumentation approach. QMI thermal probe design parameters. Design features for gradient measurement. Design features for heated zone measurements. Thermal gradient analysis results. Heated zone analysis results. Bread board thermal probe layout. QMI bread board correlation and performance. Summary and conclusions.
NASA Technical Reports Server (NTRS)
Van De Griend, A. A.; Owe, M.
1993-01-01
The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.
Resonant Thermalization of Periodically Driven Strongly Correlated Electrons
NASA Astrophysics Data System (ADS)
Peronaci, Francesco; Schiró, Marco; Parcollet, Olivier
2018-05-01
We study the dynamics of the Fermi-Hubbard model driven by a time-periodic modulation of the interaction within nonequilibrium dynamical mean-field theory. For moderate interaction, we find clear evidence of thermalization to a genuine infinite-temperature state with no residual oscillations. Quite differently, in the strongly correlated regime, we find a quasistationary extremely long-lived state with oscillations synchronized with the drive (Floquet prethermalization). Remarkably, the nature of this state dramatically changes upon tuning the drive frequency. In particular, we show the existence of a critical frequency at which the system rapidly thermalizes despite the large interaction. We characterize this resonant thermalization and provide an analytical understanding in terms of a breakdown of the periodic Schrieffer-Wolff transformation.
Disentanglement versus decoherence of two qubits in thermal noise.
Zampetaki, A V; Diakonos, F K
2012-08-31
We show that the influence of thermal noise, simulated by a 2D ferromagnetic Ising spin lattice on a pair of noninteracting, initially entangled qubits, represented by quantum spins, leads to unexpected evolution of quantum correlations. The high temperature noise leads to ultraslow decay of the quantum correlations. Decreasing the noise temperature we observe a decrease of the characteristic decay time scale. When the noise originates from a critical state, a revival of the quantum correlations is observed. This revival becomes oscillatory with a slowly decaying amplitude when the temperature is decreased below the critical region, leading to persistence of the quantum correlations.
NASA Astrophysics Data System (ADS)
Rathi, Sonika; Chauhan, Gayatri; Gupta, Saral K.; Srivastava, Ritu; Singh, Amarjeet
2017-02-01
A blend of poly(3-hexylthiophene-2,5diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is popularly used as an active medium in polymeric solar devices. According to the most recent understanding, the blend is a three-phase system contrary to its earlier understanding of two-phase bicontinuous network. We have synthesized a P3HT-PCBM based layered heterostructure system by spin coating and thermal vacuum evaporations. Current density ( J) was measured as a function of applied electric field ( E) across the system bound between two metal electrodes. J- E relations were analyzed into the backdrop of space charge limited current model and Schottky model. The later was used to predict dc-dielectric constants from the linear slopes of ln ( J) versus E 1/2. The curves were not monotonously linear, but observe a knee-bend separating into two linear segments for each curve. Thermal annealing from 40°C to 80°C was used as an activation tool for driving changes in the internal morphology via inter-diffusion of polymers and current measurements were performed at room temperature after each annealing. At the last stage of annealing the two linear slopes were highly distinct. The presence of sharp knee-bend results in approximately 20 times jump in dielectric constant as a function of electric field. Such high jumps in dielectric constant illustrate the potential for switching applications and charge storage. The high dielectric constants can be understood in terms of space charge polarization due to isolated domains which hindrance to charge transport. The high dielectric constants were confirmed by another experiment of capacitance measurements of a different set of similar samples. A study of thermal evolution of internal morphology was also carried out using x-ray diffraction and scanning electron microscopy techniques to correlate the morphological changes with the transport properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannantonio, T.; et al.
Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-pointmore » functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.« less
Straka, Michal; Lantto, Perttu; Vaara, Juha
2008-03-27
We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized continuum model are found to be very small.
NASA Astrophysics Data System (ADS)
El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.
2018-06-01
The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.
NASA Technical Reports Server (NTRS)
Denman, Kenneth L.; Abbott, Mark R.
1994-01-01
We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the mesoscale and that growth, death, and sinking of phytoplankton collectively play at most a mariginal role in determining the spectral statistics of the pigment patterns.
Horton, Kyle G; Shriver, W Gregory; Buler, Jeffrey J
2015-03-01
There are several remote-sensing tools readily available for the study of nocturnally flying animals (e.g., migrating birds), each possessing unique measurement biases. We used three tools (weather surveillance radar, thermal infrared camera, and acoustic recorder) to measure temporal and spatial patterns of nocturnal traffic estimates of flying animals during the spring and fall of 2011 and 2012 in Lewes, Delaware, USA. Our objective was to compare measures among different technologies to better understand their animal detection biases. For radar and thermal imaging, the greatest observed traffic rate tended to occur at, or shortly after, evening twilight, whereas for the acoustic recorder, peak bird flight-calling activity was observed just prior to morning twilight. Comparing traffic rates during the night for all seasons, we found that mean nightly correlations between acoustics and the other two tools were weakly correlated (thermal infrared camera and acoustics, r = 0.004 ± 0.04 SE, n = 100 nights; radar and acoustics, r = 0.14 ± 0.04 SE, n = 101 nights), but highly variable on an individual nightly basis (range = -0.84 to 0.92, range = -0.73 to 0.94). The mean nightly correlations between traffic rates estimated by radar and by thermal infrared camera during the night were more strongly positively correlated (r = 0.39 ± 0.04 SE, n = 125 nights), but also were highly variable for individual nights (range = -0.76 to 0.98). Through comparison with radar data among numerous height intervals, we determined that flying animal height above the ground influenced thermal imaging positively and flight call detections negatively. Moreover, thermal imaging detections decreased with the presence of cloud cover and increased with mean ground flight speed of animals, whereas acoustic detections showed no relationship with cloud cover presence but did decrease with increased flight speed. We found sampling methods to be positively correlated when comparing mean nightly traffic rates across nights. The strength of these correlations generally increased throughout the night, peaking 2-3 hours before morning twilight. Given the convergence of measures by different tools at this time, we suggest that researchers consider sampling flight activity in the hours before morning twilight when differences due to detection biases among sampling tools appear to be minimized.
A hydrodynamic treatment of the cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah
1992-01-01
The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.
Computational modeling of unsteady loads in tidal boundary layers
NASA Astrophysics Data System (ADS)
Alexander, Spencer R.
As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.
Thermotropic Properties of Thermophilic, Mesophilic, and Psychrophilic Blue-green Algae
Chen, Chang-Hwei; Berns, Donald S.
1980-01-01
Thermotropic properties of blue-green algae grown at high, room, and low temperatures in H2O and D2O media were studied by highly sensitive differential scanning microcalorimetry. The thermograms of these organisms contain an endothermal peak in the temperature range of 50 to 70 C with an endothermal heat ranging from 0.14 to 1.91 joules per gram organism. The temperature at which the endothermal peak occurs is comparable with the thermal denaturation temperature of phycocyanin, the major biliprotein isolated from these algae. A good correlation can be found for the relative thermal stability of various organisms with that of the isolated biliproteins. The ability of these algae to resist thermal disruption is correlated with the thermal environments in which these algal cells grow. The thermal stability of normal algae is in the order of thermophile > mesophile > psychrophile. It was found that the deuterated mesophilic algae were less able to resist thermal disruption than ordinary mesophilic algae. PMID:16661485
Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon
2017-01-01
Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials. PMID:28106156
NASA Astrophysics Data System (ADS)
Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon
2017-01-01
Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials.
Webb, R. Chad; Pielak, Rafal M.; Bastien, Philippe; Ayers, Joshua; Niittynen, Juha; Kurniawan, Jonas; Manco, Megan; Lin, Athena; Cho, Nam Heon; Malyrchuk, Viktor; Balooch, Guive; Rogers, John A.
2015-01-01
Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions. PMID:25658947
Webb, R Chad; Pielak, Rafal M; Bastien, Philippe; Ayers, Joshua; Niittynen, Juha; Kurniawan, Jonas; Manco, Megan; Lin, Athena; Cho, Nam Heon; Malyrchuk, Viktor; Balooch, Guive; Rogers, John A
2015-01-01
Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions.
Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinsman, Colin; Li, Gang; Asaba, Tomoya
2016-06-27
The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO{sub 3}). SrTiO{sub 3}more » approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.« less
Correlation analysis of the heat capacity and thermal expansion of solid mercury
NASA Astrophysics Data System (ADS)
Bodryakov, V. Yu.; Babintsev, Yu. N.
2015-06-01
A detailed analysis of the correlation between the volumetric thermal expansion coefficient o( T) and heat capacity C( T) of solid mercury has been performed. It has been shown that there is a clear correlation dependence o( C) not only in the low-temperature range, where it is linear and known as the Grüneisen law, but also up to the melting point of mercury. The dependence o( C) substantially deviates from the low-temperature linear behavior when the heat capacity reaches the classical Dulong-Petit limit of 3 R.
NASA Astrophysics Data System (ADS)
Vasu, V.; Rama Krishna, K.; Kumar, A. C. S.
2007-09-01
Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al_{2}O_{3} + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.
The molecular mechanism of thermal noise in rod photoreceptors.
Gozem, Samer; Schapiro, Igor; Ferré, Nicolas; Olivucci, Massimo
2012-09-07
Spontaneous electrical signals in the retina's photoreceptors impose a limit on visual sensitivity. Their origin is attributed to a thermal, rather than photochemical, activation of the transduction cascade. Although the mechanism of such a process is under debate, the observation of a relationship between the maximum absorption wavelength (λ(max)) and the thermal activation kinetic constant (k) of different visual pigments (the Barlow correlation) indicates that the thermal and photochemical activations are related. Here we show that a quantum chemical model of the bovine rod pigment provides a molecular-level understanding of the Barlow correlation. The transition state mediating thermal activation has the same electronic structure as the photoreceptor excited state, thus creating a direct link between λ(max) and k. Such a link appears to be the manifestation of intrinsic chromophore features associated with the existence of a conical intersection between its ground and excited states.
Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas
We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations inmore » InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.« less
Physical properties of molybdenum monoboride: Ab-initio study
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.
2018-02-01
The Ab initio investigations on structural, electronic, optical and thermal properties of MoB have been reported using full potential linearised-augmented plane wave method within the framework of density functional theory. The exchange and correlation potentials were calculated using the Perdew-Burke-Ernzerhof-Sol generalised gradient approximation. The calculated equilibrium lattice constants and cell volume are in excellent agreement with the experimental results as compared to the available theoretical data. Electronic band structure shows that MoB is metallic in nature. From the partial densities of states of MoB it has been found that major contribution on the Fermi level is due to Mo-4d states. Among the reported optical parameters the large value of reflectivity at low energy shows that MoB can be used as a coating material in IR region. Maximum absorption in extreme UV region shows that it can be used in production of electricity through solar power in space vehicles. Various thermal properties have been calculated in a wide temperature range at high pressures. Change in thermal expansion coefficient with respect to temperature shows that anharmonic effect in MoB is very weak at high temperature. The optical and thermal properties of MoB are presented for the first time in this work.
Thermal and electron transport studies on the valence fluctuating compound YbNiAl4
NASA Astrophysics Data System (ADS)
Falkowski, M.; Kowalczyk, A.
2018-05-01
We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.
Decay constants of the charmed tensor mesons at finite temperature
NASA Astrophysics Data System (ADS)
Azizi, K.; Sundu, H.; Türkan, A.; Veliev, E. Veli
2016-01-01
Investigation of the thermal properties of the mesons with higher spin is one of the important problems in the hadron physics. At finite temperature, the Lorentz invariance is broken by the choice of a preferred frame of reference and some new operators appear in the Wilson expansion. Taking into account these additional operators, we calculate the thermal two-point correlation function for D2*(2460 ) and Ds2 *(2573 ) tensor mesons. In order to perform the numerical analysis, we use the fermionic part of the energy density obtained both from lattice QCD and Chiral perturbation theory. We also use the temperature dependent continuum threshold and show that the values of the decay constants decrease considerably near to the critical temperature compared to their values in the vacuum. Our results at zero temperature are in good consistency with predictions of other nonperturbative models.
Modeling the field of a passive scalar in a nonisothermal turbulent plane gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrashin, V.N.; Barykin, V.N.; Martynenko, O.G.
The problem of the distribution of thermal characteristics in a plane nonisothermal turbulent gas jet in the case of large Reynolds numbers and a small temperature difference, allowing heat to be regarded as a passive impurity, is solved in the range of jet cross sections 20-100 caliber by a second-order correlational model of turbulence and an effective numerical algorithm. Analysis of the results show that the model allows computational data in good agreement with experiment to be obtained in the range of jet cross section 20-100 diameters. The relative error in determining the maximum values of the functions is 3-10%more » for the dynamic characteristics while the mean temperature and its mean square pulsations are determined with an accuracy of 5-10%; the corresponding figures for the thermal characteristics are 5-15% and 5-10%.« less
Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong
2015-06-04
Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain.
Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong
2015-01-01
Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637
Elastically driven intermittent microscopic dynamics in soft solids
NASA Astrophysics Data System (ADS)
Bouzid, Mehdi; Colombo, Jader; Barbosa, Lucas Vieira; Del Gado, Emanuela
2017-06-01
Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.
Bandura, Andrei V; Evarestov, Robert A
2012-07-05
The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.
In Search of Functional Advantages of Knots in Proteins.
Dabrowski-Tumanski, Pawel; Stasiak, Andrzej; Sulkowska, Joanna I
2016-01-01
We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whereas their solvent accessibility was decreased. Interestingly, the active sites within these knotted proteins preferentially located in the regions with increased number of contacts that also have increased thermal stability and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains provides a favourable environment for the active sites observed in knotted proteins. Some knotted proteins have homologues without a knot. Interestingly, these unknotted homologues form local entanglements that retain structural characteristics of the knotted cores.
NASA Astrophysics Data System (ADS)
Clarage, James Braun, II
1990-01-01
Methods have been developed for analyzing the diffuse x-ray scattering in the halos about a crystal's Bragg reflections as a means of determining correlations in atomic displacements in protein crystals. The diffuse intensity distribution for rhombohedral insulin, tetragonal lysozyme, and triclinic lysozyme crystals was best simulated in terms of exponential displacement correlation functions. About 90% of the disorder can be accounted for by internal movements correlated with a decay distance of about 6A; the remaining 10% corresponds to intermolecular movements that decay in a distance the order of size of the protein molecule. The results demonstrate that protein crystals fit into neither the Einstein nor the Debye paradigms for thermally fluctuating crystalline solids. Unlike the Einstein model, there are correlations in the atomic displacements, but these correlations decay more steeply with distance than predicted by the Debye-Waller model for an elastic solid. The observed displacement correlations are liquid -like in the sense that they decay exponentially with the distance between atoms, just as positional correlations in a liquid. This liquid-like disorder is similar to the disorder observed in 2-D crystals of polystyrene latex spheres, and similar systems where repulsive interactions dominate; hence, these colloidal crystals appear to provide a better analogy for the dynamics of protein crystals than perfectly elastic lattices.
NASA Astrophysics Data System (ADS)
Song, Gook-Sup; Jeong, Mi-Ae
2016-07-01
The purpose of this study was to elucidate the effect of urban morphology representing sky view factor (SVF) on urban microclimate and on human thermal responses. The physical environments and the changes in body temperatures as well as psychological responses were investigated in summer in Bucheon, Korea. The dry bulb temperature ranged from 31.5 °C at SVF 0.082 site to 35.7 °C at SVF 0.922 site. Most of the environmental elements were statistically correlated to the SVF: the dry bulb temperature R 2 = 0.602, UVB R 2 = 0.556 and the illumination level R 2 = 0.609. The mean skin temperature increased up to 36.0 °C at the SVF 0.940 site and decreased to 33.9 °C at the SVF 0.082 site. The mean skin temperature was statistically correlated to the SVF ( p = 0.005). However, the core body temperature was not correlated to SVF because of time delay effect to the previously exposed thermal environment. In the investigation of thermal acceptability, only 5 % of subjects were dissatisfied with the road that was covered with plentiful trees; in contrast, approximately 50 % of subjects were dissatisfied with the road with poor solar obstacles in the summer. The thermal stress was affected by the urban morphology, and the plentiful urban greening improved thermal comfort.
Jones, Reese E; Mandadapu, Kranthi K
2012-04-21
We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)] and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.
NASA Astrophysics Data System (ADS)
Jones, Reese E.; Mandadapu, Kranthi K.
2012-04-01
We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.
Cury, Rubens G; Galhardoni, Ricardo; Teixeira, Manoel J; Dos Santos Ghilardi, Maria G; Silva, Valquiria; Myczkowski, Martin L; Marcolin, Marco A; Barbosa, Egberto R; Fonoff, Erich T; Ciampi de Andrade, Daniel
2016-12-01
Subthalamic deep brain stimulation (STN-DBS) is used to treat refractory motor complications in Parkinson disease (PD), but its effects on nonmotor symptoms remain uncertain. Up to 80% of patients with PD may have pain relief after STN-DBS, but it is unknown whether its analgesic properties are related to potential effects on sensory thresholds or secondary to motor improvement. We have previously reported significant and long-lasting pain relief after DBS, which did not correlate with motor symptomatic control. Here we present secondary data exploring the effects of DBS on sensory thresholds in a controlled way and have explored the relationship between these changes and clinical pain and motor improvement after surgery. Thirty-seven patients were prospectively evaluated before STN-DBS and 12 months after the procedure compared with healthy controls. Compared with baseline, patients with PD showed lower thermal and mechanical detection and higher cold pain thresholds after surgery. There were no changes in heat and mechanical pain thresholds. Compared with baseline values in healthy controls, patients with PD had higher thermal and mechanical detection thresholds, which decreased after surgery toward normalization. These sensory changes had no correlation with motor or clinical pain improvement after surgery. These data confirm the existence of sensory abnormalities in PD and suggest that STN-DBS mainly influenced the detection thresholds rather than painful sensations. However, these changes may depend on the specific effects of DBS on somatosensory loops with no correlation to motor or clinical pain improvement.
NASA Astrophysics Data System (ADS)
Karasiev, V. V.
2017-10-01
Free-energy density functional theory (DFT) is one of the standard tools in high-energy-density physics used to determine the fundamental properties of dense plasmas, especially in cold and warm regimes when quantum effects are essential. DFT is usually implemented via the orbital-dependent Kohn-Sham (KS) procedure. There are two challenges of conventional implementation: (1) KS computational cost becomes prohibitively expensive at high temperatures; and (2) ground-state exchange-correlation (XC) functionals do not take into account the XC thermal effects. This talk will address both challenges and report details of the formal development of new generalized gradient approximation (GGA) XC free-energy functional which bridges low-temperature (ground state) and high-temperature (plasma) limits. Recent progress on development of functionals for orbital-free DFT as a way to address the second challenge will also be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances.
Levin, Rachel A; Beltran, Victor H; Hill, Ross; Kjelleberg, Staffan; McDougald, Diane; Steinberg, Peter D; van Oppen, Madeleine J H
2016-09-01
Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sheetal; Department of Physics, Panjab University, Chandigarh 160014; Verma, A.S., E-mail: ajay_phy@rediffmail.com
2014-05-01
Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potentialmore » linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.« less
Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances
Levin, Rachel A.; Beltran, Victor H.; Hill, Ross; Kjelleberg, Staffan; McDougald, Diane; Steinberg, Peter D.; van Oppen, Madeleine J. H.
2016-01-01
Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching. PMID:27301593
Thermal Model Correlation for Mars Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Dec, John A.; Gasbarre, Joseph F.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun. The data obtained from these maneuvers allowed the model to be well-correlated with regard to thermal mass, conductive connections, and solar response well before arrival at the planet. Correlation against flight data for both in-cruise maneuvers and drag passes was performed. Adjustments made to the model included orientation during the drag pass, solar flux, Martian surface temperature, through-array resistance, aeroheating gradient due to angle of attack, and aeroheating accommodation coefficient. Methods of correlation included comparing the model to flight temperatures, slopes, temperature deltas between sensors, and solar and planet direction vectors. Correlation and model accuracy over 400 aeroheating drag passes were determined, with overall model accuracy better than 5 C.
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Dean, W. G.; Karu, Z. S.
1976-01-01
The thermal acoustic oscillations (TAO) data base was expanded by running a large number of tubes over a wide range of parameters known to affect the TAO phenomenon. These parameters include tube length, wall thickness, diameter, material, insertion length and length-to-diameter ratio. Emphasis was placed on getting good boiloff data. A large quantity of data was obtained, reduced, correlated and analyzed and is presented. Also presented are comparisons with previous types of correlations. These comparisons show that the boiloff data did not correlate with intensity. The data did correlate in the form used by Rott, that is boiloff versus TAO pressure squared times frequency to the one-half power. However, this latter correlation required a different set of correlation constants, slope and intercept, for each tube tested.
Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A
2013-06-25
Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.
Kuisma, Mikael J; Lundin, Angelica M; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul
2016-02-25
Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can vary dramatically depending on the chosen substituents. The molecular design of optimal compounds therefore requires a detailed understanding of the effect of individual substituents as well as their interplay. Here, we model absorption spectra, potential energy storage, and thermal barriers for back-conversion of several substituted systems using both single-reference (density functional theory using PBE, B3LYP, CAM-B3LYP, M06, M06-2x, and M06-L functionals as well as MP2 calculations) and multireference methods (complete active space techniques). Already the diaryl substituted compound displays a strong red-shift compared to the unsubstituted system, which is shown to result from the extension of the conjugated π-system upon substitution. Using specific donor/acceptor groups gives rise to a further albeit relatively smaller red-shift. The calculated storage energy is found to be rather insensitive to the specific substituents, although solvent effects are likely to be important and require further study. The barrier for thermal back-conversion exhibits strong multireference character and as a result is noticeably correlated with the red-shift. Two possible reaction paths for the thermal back-conversion of diaryl substituted quadricyclane are identified and it is shown that among the compounds considered the path via the acceptor side is systematically favored. Finally, the present study establishes the basis for high-throughput screening of norbornadiene-quadricyclane compounds as it provides guidelines for the level of accuracy that can be expected for key properties from several different techniques.
Bagavathiappan, Subramnaiam; Philip, John; Jayakumar, Tammana; Raj, Baldev; Rao, Pallela Narayana Someshwar; Varalakshmi, Muthukrishnan; Mohan, Viswanathan
2010-01-01
Background Diabetic neuropathy consists of multiple clinical manifestations of which loss of sensation is most prominent. High temperatures under the foot coupled with reduced or complete loss of sensation can predispose the patient to foot ulceration. The aim of this study was to look at the correlation between plantar foot temperature and diabetic neuropathy using a noninvasive infrared thermal imaging technique. Methods Infrared thermal imaging, a remote and noncontact experimental tool, was used to study the plantar foot temperatures of 112 subjects with type 2 diabetes selected from a tertiary diabetes centre in South India. Results Patients with diabetic neuropathy (defined as vibration perception threshold (VPT) values on biothesiometry greater than 20 V) had a higher foot temperature (32–35 °C) compared to patients without neuropathy (27–30 °C). Diabetic subjects with neuropathy also had higher mean foot temperature (MFT) (p = .001) compared to non-neuropathic subjects. MFT also showed a positive correlation with right great toe (r = 0.301, p = .001) and left great toe VPT values (r = 0.292, p = .002). However, there was no correlation between glycated hemoglobin and MFT. Conclusion Infrared thermal imaging may be used as an additional tool for evaluation of high risk diabetic feet. PMID:21129334
Effects of Tropospheric Spatio-Temporal Correlated Noise on the Analysis of Space Geodetic Data
NASA Technical Reports Server (NTRS)
Romero-Wolf, A. F.; Jacobs, C. S.
2011-01-01
The standard VLBI analysis models measurement noise as purely thermal errors modeled according to uncorrelated Gaussian distributions. As the price of recording bits steadily decreases, thermal errors will soon no longer dominate. It is therefore expected that troposphere and instrumentation/clock errors will increasingly become more dominant. Given that both of these errors have correlated spectra, properly modeling the error distributions will become more relevant for optimal analysis. This paper will discuss the advantages of including the correlations between tropospheric delays using a Kolmogorov spectrum and the frozen ow model pioneered by Treuhaft and Lanyi. We will show examples of applying these correlated noise spectra to the weighting of VLBI data analysis.
Brain stem representation of thermal and psychogenic sweating in humans.
Farrell, Michael J; Trevaks, David; Taylor, Nigel A S; McAllen, Robin M
2013-05-15
Functional MRI was used to identify regions in the human brain stem activated during thermal and psychogenic sweating. Two groups of healthy participants aged 34.4 ± 10.2 and 35.3 ± 11.8 years (both groups comprising 1 woman and 10 men) were either heated by a water-perfused tube suit or subjected to a Stroop test, while they lay supine with their head in a 3-T MRI scanner. Sweating events were recorded as electrodermal responses (increases in AC conductance) from the palmar surfaces of fingers. Each experimental session consisted of two 7.9-min runs, during which a mean of 7.3 ± 2.1 and 10.2 ± 2.5 irregular sweating events occurred during psychogenic (Stroop test) and thermal sweating, respectively. The electrodermal waveform was used as the regressor in each subject and run to identify brain stem clusters with significantly correlated blood oxygen level-dependent signals in the group mean data. Clusters of significant activation were found with both psychogenic and thermal sweating, but a voxelwise comparison revealed no brain stem cluster whose signal differed significantly between the two conditions. Bilaterally symmetric regions that were activated by both psychogenic and thermal sweating were identified in the rostral lateral midbrain and in the rostral lateral medulla. The latter site, between the facial nuclei and pyramidal tracts, corresponds to a neuron group found to drive sweating in animals. These studies have identified the brain stem regions that are activated with sweating in humans and indicate that common descending pathways may mediate both thermal and psychogenic sweating.
NASA Astrophysics Data System (ADS)
Tai, Y.; Watanabe, T.; Nagata, K.
2018-03-01
A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.
Iacarella, Josephine C; Dick, Jaimie T A; Alexander, Mhairi E; Ricciardi, Anthony
2015-04-01
Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response (the relationship between predation rate and prey supply) of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across. relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.
NASA Astrophysics Data System (ADS)
Lee, J.-M.; Fletcher, L. N.; Irwin, P. G. J.
2012-02-01
Recent spectroscopic observations of transiting hot Jupiters have permitted the derivation of the thermal structure and molecular abundances of H2O, CO2, CO and CH4 in these extreme atmospheres. Here, for the first time, we apply the technique of optimal estimation to determine the thermal structure and composition of an exoplanet by solving the inverse problem. The development of a suite of radiative transfer and retrieval tools for exoplanet atmospheres is described, building upon a retrieval algorithm which is extensively used in the study of our own Solar system. First, we discuss the plausibility of detection of different molecules in the dayside atmosphere of HD 189733b and the best-fitting spectrum retrieved from all publicly available sets of secondary eclipse observations between 1.45 and 24 μm. Additionally, we use contribution functions to assess the vertical sensitivity of the emission spectrum to temperatures and molecular composition. Over the altitudes probed by the contribution functions, the retrieved thermal structure shows an isothermal upper atmosphere overlying a deeper adiabatic layer (temperature decreasing with altitude), which is consistent with previously reported dynamical and observational results. The formal uncertainties on retrieved parameters are estimated conservatively using an analysis of the cross-correlation functions and the degeneracy between different atmospheric properties. The formal solution of the inverse problem suggests that the uncertainties on retrieved parameters are larger than suggested in previous studies, and that the presence of CO and CH4 is only marginally supported by the available data. Nevertheless, by including as broad a wavelength range as possible in the retrieval, we demonstrate that available spectra of HD 189733b can constrain a family of potential solutions for the atmospheric structure.
Effects of Co doping on the metamagnetic states of the ferromagnetic fcc Fe-Co alloy.
Ortiz-Chi, Filiberto; Aguayo, Aarón; de Coss, Romeo
2013-01-16
The evolution of the metamagnetic states in the ferromagnetic face centered cubic (fcc) Fe(1-x)Co(x) alloy as a function of Co concentration has been studied by means of first-principles calculations. The ground state properties were obtained using the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The alloying was modeled using the virtual crystal approximation and the magnetic states were obtained from the calculations of the total energy as a function of the spin moment, using the fixed spin moment method. For ferromagnetic fcc Fe, the binding-energy curve shows metamagnetic behavior, with two minima corresponding to a small-volume, low-spin (LS) state and a large-volume, high-spin (HS) state, which are separated by a small energy (E(LS) ≲ E(HS)). The evolution of the magnetic moment, the exchange integral (J), and the binding-energy curve is analyzed in the whole range of Co concentrations (x). The magnetic moment corresponding to the HS state decreases monotonically from 2.6 μ(B)/atom in fcc Fe to 1.7 μ(B)/atom in fcc Co. In contrast, the exchange integral for the HS state shows a maximum at around x = 0.45. The thermal dependence of the lattice parameter is evaluated with a method based on statistical mechanics using the binding-energy curve as an effective potential. It is observed that the behavior of the lattice parameter with temperature is tuned by Co doping, from negative thermal expansion in fcc Fe to positive thermal expansion in fcc Co, through the modification of the energetics of the metamagnetic states.
NASA Astrophysics Data System (ADS)
Texier, Christophe; Mitscherling, Johannes
2018-02-01
We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and
NASA Astrophysics Data System (ADS)
Zhou, J.-S.; Marshall, L. G.; Goodenough, J. B.
2014-06-01
Measurements of physical properties, including transport and magnetic properties, specific heat, and thermal conductivity, have been performed on high-quality samples of LaNiO3 and LaCuO3 synthesized under high pressure. Some measurements, such as thermoelectric power and magnetic susceptibility, have been made under high pressure. The availability of a complete set of data enables a side-by-side comparison between these two narrowband systems. We have demonstrated unambiguously the mass enhancement due to electron-electron correlations in both systems relative to the recent density functional theory results. Correlations in these narrowband systems also enhance the magnetic susceptibility. Ferromagnetic spin fluctuations give rise to a strong Stoner enhancement in the magnetic susceptibility in the quarter-filled LaNiO3. Although we are able to tune the bandwidth by either chemical substitutions or by applying hydrostatic pressure on LaNiO3, the Stoner enhancement does not lead to the Stoner instability.
NASA Astrophysics Data System (ADS)
Anderson, Martha C.; Zolin, Cornelio A.; Hain, Christopher R.; Semmens, Kathryn; Tugrul Yilmaz, M.; Gao, Feng
2015-07-01
Shortwave vegetation index (VI) and leaf area index (LAI) remote sensing products yield inconsistent depictions of biophysical response to drought and pluvial events that have occurred in Brazil over the past decade. Conflicting reports of severity of drought impacts on vegetation health and functioning have been attributed to cloud and aerosol contamination of shortwave reflectance composites, particularly over the rainforested regions of the Amazon basin which are subject to prolonged periods of cloud cover and episodes of intense biomass burning. This study compares timeseries of satellite-derived maps of LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) and precipitation from the Tropical Rainfall Mapping Mission (TRMM) with a diagnostic Evaporative Stress Index (ESI) retrieved using thermal infrared remote sensing over South America for the period 2003-2013. This period includes several severe droughts and floods that occurred both over the Amazon and over unforested savanna and agricultural areas in Brazil. Cross-correlations between absolute values and standardized anomalies in monthly LAI and precipitation composites as well as the actual-to-reference evapotranspiration (ET) ratio used in the ESI were computed for representative forested and agricultural regions. The correlation analyses reveal strong apparent anticorrelation between MODIS LAI and TRMM precipitation anomalies over the Amazon, but better coupling over regions vegetated with shorter grass and crop canopies. The ESI was more consistently correlated with precipitation patterns over both landcover types. Temporal comparisons between ESI and TRMM anomalies suggest longer moisture buffering timescales in the deeper rooted rainforest systems. Diagnostic thermal-based retrievals of ET and ET anomalies, such as used in the ESI, provide independent information on the impacts of extreme hydrologic events on vegetation health in comparison with VI and precipitation-based drought indicators, and used in concert may provide a more reliable evaluation of natural and managed ecosystem response to variable climate regimes.
Huber, M. L.; Sykioti, E. A.; Assael, M. J.; ...
2016-02-25
This article contains new, representative reference equations for the thermal conductivity of carbon dioxide. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. In the case of the dilute-gas thermal conductivity, we incorporated recent theoretical calculations to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlation is applicable for the temperature range from the triple pointmore » to 1100 K and pressures up to 200 MPa. Lastly, the overall uncertainty (at the 95% confidence level) of the proposed correlation varies depending on the state point from a low of 1% at very low pressures below 0.1 MPa between 300 and 700 K, to 5% at the higher pressures of the range of validity.« less
Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T
2018-01-15
The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.
Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions
Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.
2018-02-14
The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less
Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.
The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less
Two-mode thermal-noise squeezing in an electromechanical resonator.
Mahboob, I; Okamoto, H; Onomitsu, K; Yamaguchi, H
2014-10-17
An electromechanical resonator is developed in which mechanical nonlinearities can be dynamically engineered to emulate the nondegenerate parametric down-conversion interaction. In this configuration, phonons are simultaneously generated in pairs in two macroscopic vibration modes, resulting in the amplification of their motion. In parallel, two-mode thermal squeezed states are also created, which exhibit fluctuations below the thermal motion of their constituent modes as well as harboring correlations between the modes that become almost perfect as their amplification is increased. The existence of correlations between two massive phonon ensembles paves the way towards an entangled macroscopic mechanical system at the single phonon level.
NASA Astrophysics Data System (ADS)
Cohen, R. E.; Driver, K.; Wu, Z.; Militzer, B.; Rios, P. L.; Towler, M.; Needs, R.
2009-03-01
We have used diffusion quantum Monte Carlo (DMC) with the CASINO code with thermal free energies from phonons computed using density functional perturbation theory (DFPT) with the ABINIT code to obtain phase transition curves and thermal equations of state of silica phases under pressure. We obtain excellent agreement with experiments for the metastable phase transition from quartz to stishovite. The local density approximation (LDA) incorrectly gives stishovite as the ground state. The generalized gradient approximation (GGA) correctly gives quartz as the ground state, but does worse than LDA for the equations of state. DMC, variational quantum Monte Carlo (VMC), and DFT all give good results for the ferroelastic transition of stishovite to the CaCl2 structure, and LDA or the WC exchange correlation potentials give good results within a given silica phase. The δV and δH from the CaCl2 structure to α-PbO2 is small, giving uncertainly in the theoretical transition pressure. It is interesting that DFT has trouble with silica transitions, although the electronic structures of silica are insulating, simple closed-shell with ionic/covalent bonding. It seems like the errors in DFT are from not precisely giving the ion sizes.
Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans.
Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Madsen, Peter Teglberg; Wang, Tobias; Bayley, Mark
2015-06-01
Thermal sensitivity of the cardiorespiratory oxygen supply capacity has been proposed as the cardinal link underlying the upper boundary of the temperature niche in aquatic ectotherms. Here we examined the evidence for this link in two eurythermal decapods, the Giant tiger shrimp (Penaeus monodon) and the European crayfish (Astacus astacus). We found that both species have a temperature resistant cardiorespiratory system, capable of maintaining oxygen delivery up to their upper critical temperature (Tcrit). In neither species was Tcrit reduced in hypoxia (60% air saturation) and both species showed an exponential increase in heart and gill ventilation rates up to their Tcrit. Further, failure of action potential conduction in preparations of A. astacus motor neurons coincided with Tcrit, indicating that compromised nervous function may provide the underlying determinant for Tcrit rather than oxygen delivery. At high temperatures, absolute aerobic scope was maintained in P. monodon, but reduced in A. astacus. However, A. astacus also displayed reduced exercise intensity indicating that impaired muscle performance with resulting reduced tissue oxygen demand may explain the reduced scope rather than insufficient oxygen supply capacity. This interpretation agrees with early literature on aquatic ectotherms, correlating loss of nervous function with impaired locomotion as temperatures approach Tcrit.
Reaction path of energetic materials using THOR code
NASA Astrophysics Data System (ADS)
Duraes, L.; Campos, J.; Portugal, A.
1997-07-01
The method of predicting reaction path, using a thermochemical computer code, named THOR, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using a thermal equation of state (EoS). The used HL EoS is a new EoS developed in previous works. HL EoS is supported by a Boltzmann EoS, taking α =13.5 to the exponent of the intermolecular potential and θ=1.4 to the adimensional temperature. This code allows now the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, described, calculated and discussed - Ammonium Nitrate based explosives and Nitromethane - because they are very known explosives and their equivalence ratio is respectively near and greater than the stoicheiometry. Predictions of detonation properties of other condensed explosives, as a function of energy release, present results in good correlation with experimental values.
Cozzan, Clayton; Laurita, Geneva; Gaultois, Michael W.; ...
2017-09-21
Inorganic phosphor materials play a crucial role in the creation of white light from blue and near-UV solid-state light-emitting diodes. Understanding the intricacies of the phosphor structure is key for setting the stage for improved, more efficient functionality. Average structure and coordination environment analysis of the robust and efficient green-emitting phosphor, β-SiAlON:Eu 2+ (β-Si 6–zAl zO zN 8–zEu 0.009), is combined here with a range of property measurements to elucidate the role of Al content ( z) in luminescence properties, including the red shift of emission and the thermal quenching of luminescence as a function of increasing Al content z.more » Average structure techniques reveal changes in polyhedral distortion with increasing z for the 9-coordinate Eu site in β-SiAlON:Eu 2+. X-ray absorption near edge structure (XANES) is used to confirm that the majority of the activator Eu is in the Eu 2+ state, exhibiting the symmetry-allowed and efficient 4f 75d 0 → 4f 65d 1 transitions. As a result, room temperature and temperature-dependent luminescence indicate a curious increase in thermal stability with increasing z over a small range due to an increasing barrier for thermal ionization, which is correlated to an increase in the quantum yield of the phosphor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzan, Clayton; Laurita, Geneva; Gaultois, Michael W.
Inorganic phosphor materials play a crucial role in the creation of white light from blue and near-UV solid-state light-emitting diodes. Understanding the intricacies of the phosphor structure is key for setting the stage for improved, more efficient functionality. Average structure and coordination environment analysis of the robust and efficient green-emitting phosphor, β-SiAlON:Eu 2+ (β-Si 6–zAl zO zN 8–zEu 0.009), is combined here with a range of property measurements to elucidate the role of Al content ( z) in luminescence properties, including the red shift of emission and the thermal quenching of luminescence as a function of increasing Al content z.more » Average structure techniques reveal changes in polyhedral distortion with increasing z for the 9-coordinate Eu site in β-SiAlON:Eu 2+. X-ray absorption near edge structure (XANES) is used to confirm that the majority of the activator Eu is in the Eu 2+ state, exhibiting the symmetry-allowed and efficient 4f 75d 0 → 4f 65d 1 transitions. As a result, room temperature and temperature-dependent luminescence indicate a curious increase in thermal stability with increasing z over a small range due to an increasing barrier for thermal ionization, which is correlated to an increase in the quantum yield of the phosphor.« less
NASA Astrophysics Data System (ADS)
Bodryakov, V. Yu.; Bykov, A. A.
2016-05-01
The correlation between the volumetric thermal expansion coefficient β( T) and the heat capacity C( T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β( C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong-Petit limit of 3 R ( R is the universal gas constant).
FASTSAT-HSV01 Thermal Math Model Correlation
NASA Technical Reports Server (NTRS)
McKelvey, Callie
2011-01-01
This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72deg and an altitude of 650 kilometers. The mission has been successful to date with science experiment activities still taking place daily. The thermal control system on this spacecraft was a passive design relying on thermo-optical properties and six heaters placed on specific components. Flight temperature data is being recorded every minute from the 48 Resistance Temperature Devices (RTDs) onboard the satellite structure and many of its avionics boxes. An effort has been made to correlate the thermal math model to the flight temperature data using Cullimore and Ring's Thermal Desktop and by obtaining Earth and Sun vector data from the Attitude Control System (ACS) team to create an "as-flown" orbit. Several model parameters were studied during this task to understand the spacecraft's sensitivity to these changes. Many "lessons learned" have been noted from this activity that will be directly applicable to future small satellite programs.
Heterogeneous activation in 2D colloidal glass-forming liquids classified by machine learning
NASA Astrophysics Data System (ADS)
Ma, Xiaoguang; Davidson, Zoey; Still, Tim; Ivancic, Robert; Schoenholz, Sam S.; Sussman, Daniel M.; Liu, A. J.; Yodh, A. G.
The trajectories of particles in colloidal glass-forming liquids are often characterized by long periods of ``in-cage'' fluctuations and rapid ``cage-breaking'' rearrangements. We study the rate of such rearrangements and its connection with local cage structures in a 2D binary mixture of poly(N-isopropyl acrylamide) spheres. We use the hopping function, Phop (t) , to identify rearrangements within particle trajectories. Then we obtain distributions of the residence time tR between consecutive rearrangements. The mean residence time tR (S) is found to correlate with the local configurations for the rearranging particles, characterized by 70 radial structural features and softness S, which ranks the structural similarities with respect to rearranging particles. Furthermore, tR (S) for particles with similar softness decays monotonically with increasing softness, indicating correlation between rearrangement rates and softness S. Finally we find that the conditional and full probability distribution functions, P (tR | S) and P (tR) , are well explained by a thermal activation model. We acknowledge financial supports from NSF-MRSEC DMR11-20901, NSF DMR16-07378, and NASA NNX08AO0G.
Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages
NASA Technical Reports Server (NTRS)
Olson, D. A.
1992-01-01
Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.
NASA Astrophysics Data System (ADS)
Bera, Sangita; Lekala, Mantile Leslie; Chakrabarti, Barnali; Bhattacharyya, Satadal; Rampho, Gaotsiwe Joel
2017-09-01
'We study the condensate fluctuation and several statistics of weakly interacting attractive Bose gas of 7 Li atoms in harmonic trap. Using exact recursion relation we calculate canonical ensemble partition function and study the thermal evolution of the condensate. As 7 Li condensate is associated with collapse, the number of condensate atom is truly finite and it facilitates to study the condensate in mesoscopic region. Being highly correlated, we utilize the two-body correlated basis function to get the many-body effective potential which is further used to calculate the energy levels. Taking van der Waals interaction as interatomic interaction we calculate several quantities like condensate fraction
NASA Astrophysics Data System (ADS)
Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.
2018-04-01
Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.
Boguta, Patrycja; Sokołowska, Zofia; Skic, Kamil
2017-01-01
Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin.
Sokołowska, Zofia; Skic, Kamil
2017-01-01
Thermogravimetry–coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)–was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40–220°C; R2, 220–430°C; and R3, 430–650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin. PMID:29240819
Mechanism of Resilin Elasticity
Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.
2012-01-01
Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127
He, Jiazhen; Lu, Yehu; Chen, Yan; Li, Jun
2017-09-15
In addition to direct thermal energy from a heating source, a large amount of thermal energy stored in clothing will continuously discharge to skin after exposure. Investigating the thermal hazardous effect of clothing caused by stored energy discharge is crucial for the reliability of thermal protective clothing. In this study several indices were proposed and applied to evaluate the impact of thermal energy discharge on human skin. The heat discharge from different layers of fabric systems was investigated, and the influences of air gaps and applied compression were examined. Heat fluxes at the boundaries of fabric layers and the distribution of heat discharge were determined. Additionally, the correlation between heat storage during exposure and heat discharge after exposure was identified. The results demonstrated that heat discharge to the skin could be correlated with heat storage within the fabric, however, it highly depended on the air gap under clothing, the applied compression, and the insulation provided by the fabric layers. Results from this study could contribute to thoroughly understanding the thermal hazardous effect of clothing and enhance the technical basis for developing new fabric combinations to minimize energy discharge after exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend
NASA Astrophysics Data System (ADS)
Abdou, Saleh M.; Elnahas, H. H.; El-Zahed, H.; Abdeldaym, A.
2016-05-01
The thermal properties of low-density polyethylene (LDPE)/paraffin wax blends were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and melt flow index (MFI). Blends of LDPE/wax in ratios of 100/0, 98/2, 96/4, 94/6, 92/8, 90/10 and 85/15 (w/w) were prepared by melt-mixing at the temperature of 150°C. It was found that increasing the wax content more than 15% leads to phase separation. DSC results showed that for all blends both the melting temperature (Tm) and the melting enthalpy (ΔHm) decrease linearly with an increase in wax content. TGA analysis showed that the thermal stability of all blends decreases linearly with increasing wax content. No clear correlation was observed between the melting point and thermal stability. Horowitz and Metzger method was used to determine the thermal activation energy (Ea). MFI increased exponentially by increasing the wax content. The effect of gamma irradiation on the thermal behavior of the blends was also investigated at different gamma irradiation doses. Significant correlations were found between the thermal parameters (Tm, ΔHm, T5%, Ea and MFI) and the amount of wax content and gamma irradiation.
RCC Plug Repair Thermal Tools for Shuttle Mission Support
NASA Technical Reports Server (NTRS)
Rodriguez, Alvaro C.; Anderson, Brian P.
2010-01-01
A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.
NASA Technical Reports Server (NTRS)
Scanvic, J. Y. (Principal Investigator)
1980-01-01
Thermal zones delimited on HCMM images, by visual interpretation only, were correlated with geological units and carbonated rocks, granitic, and volcanic rocks were individualized. Rock signature is an evolutive parameter and some distinctions were made by addition of day, night and seasonal thermal image interpretation. This analysis also demonstrated that forest cover does not mask the underlying rocks thermal signature. Thermal anomalies were discovered. Geological targets were defined in the Paris Basin and the Montmarault granite.
Space tug thermal control follow-on
NASA Technical Reports Server (NTRS)
Ward, T. L.
1975-01-01
The Space Tug Thermal Control Follow-On program was conducted to further explore some of the thermal control concepts proposed for use in space tug in a breadboard test program. The objectives were to demonstrate the thermal control capabilities of a louver/battery configuration and a thermal conditioning panel/heat pipe radiator configuration. An additional objective was added to model the header pipe and radiator of the second test and correlate the analysis with the test results. These three objectives were achieved and are discussed within this report.
Study of the thermal effect on silicon surface induced by ion beam from plasma focus device
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Ahmad, M.; Al-Hawat, Sh.; Akel, M.
2017-04-01
Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.