Sample records for thermal interface material

  1. CNT-based Thermal Interface Materials for Load-Bearing Aerospace Applications

    DTIC Science & Technology

    2012-08-01

    CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications Michael Bifano, Pankaj Kaul and Vikas Prakash (PI) Department...4. TITLE AND SUBTITLE CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Z39-18 Objective Develop multifunctional CNT -epoxy Thermal Interface Materials (TIMs) for load bearing aerospace applications. Emphasis - To

  2. Thermal Protection Supplement for Reducing Interface Thermal Mismatch

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)

    2017-01-01

    A thermal protection system that reduces a mismatch of thermal expansion coefficients CTE between a first material layer (CTE1) and a second material layer (CTE2) at a first layer-second layer interface. A portion of aluminum borosilicate (abs) or another suitable additive (add), whose CTE value, CTE(add), satisfies (CTE(add)-CTE1)(CTE(add)-CTE2)<0, is distributed with variable additive density,.rho.(z;add), in the first material layer and/or in the second material layer, with.rho.(z;add) near the materials interface being relatively high (alternatively, relatively low) and.rho.(z;add) in a region spaced apart from the interface being relatively low (alternatively, relatively high).

  3. Impacts and Awards | Transportation Research | NREL

    Science.gov Websites

    for Si-based materials and the electrochemical lithiation and delithiation of the coated materials -cooling lab equipment New Thermal Interface Materials Deliver Ultralow Thermal Resistance for Compact Electronics Graphic of data chart showing thermal contact resistances at various interfaces. Optical Thermal

  4. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, S. D.; Kittredge, K. B.

    2003-01-01

    A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

  5. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, Shaun; Kittredge, Ken

    2003-01-01

    A thermal interface material is one of the many tools that are often used as part of the thermal control scheme for space-based applications. These materials are placed between, for example, an avionics box and a cold plate, in order to improve the conduction heat transfer so that proper temperatures can be maintained. Historically at Marshall Space Flight Center, CHO-THERM@ 1671 has primarily been used for applications where an interface material was deemed necessary. However, there have been numerous alternatives come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and they do not take into consideration other design issues such as off-gassing, electrical conduction or isolation, etc. This paper details the materials tested, test apparatus, procedures, and results of these tests.

  6. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  7. Interface-based two-way tuning of the in-plane thermal transport in nanofilms

    NASA Astrophysics Data System (ADS)

    Hua, Yu-Chao; Cao, Bing-Yang

    2018-03-01

    Here, the two-way tuning of in-plane thermal transport is obtained in the bi-layer nanofilms with an interfacial effect by using the Boltzmann transport equation (BTE) and the phonon Monte Carlo (MC) technique. A thermal conductivity model was derived from the BTE and verified by the MC simulations. Both the model and the MC simulations indicate that the tuning of the thermal transport can be bidirectional (reduced or enhanced), depending on the interface conditions (i.e., roughness and adhesion energy) and the phonon property dissimilarity at the interface. For the identical-material interface, the emergence of thermal conductivity variation requires two conditions: (a) the interface is not completely specular and (b) the transmission specularity parameter differs from the reflection specularity parameter at the interface. When the transmission specularity parameter is larger than the reflection specularity parameter at the interface, the thermal conductivity improvement effect emerges, whereas the thermal conductivity reduction effect occurs. For the disparate-material interface, the phonon property perturbation near the interface causes the thermal conductivity variation, even when neither the above two conditions are satisfied. The mean free path ratio (γ) between the disparate materials was defined to characterize the phonon property dissimilarity. γ > 1 can lead to the thermal conductivity improvement effect, while γ < 1 corresponds to the thermal conductivity reduction effect. Our work provides a more in-depth understanding of the interfacial effect on the nanoscale thermal transport, with an applicable predictive model, which can be helpful for predicting and manipulating phonon transport in nanofilms.

  8. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas

    2015-01-12

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significantmore » effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar, 2013) to report the framework and findings in tropocollagen-hydroxyapatite based idealized biomaterial interfaces. PHYSICAL FINDINGS 1. Analyses using experiments have revealed that in the case of bone thermal conductivity and thermal diffusivity at micron scale shows significant dependence on compressive stress and temperature. Overall, there is a decrease with respect to increase in temperature and increase with respect to increase in compressive stress. Bio-molecular simulations on idealized tropocollagen-hydroxyapatite interfaces confirm such findings. However, simulations also reveal that thermal diffusivity and thermal conductivity can be significantly tailored by interfacial orientation. More importantly, in inorganic materials, interfaces contribute to reduce thermal conductivity and diffusivity. However, analyses here reveal that both can be increased despite presence of a lot of interfaces. 2. Based on significant role played by interfaces in affecting bone thermal properties, a crustacean-exoskeleton system is examined for thermal diffusivity using the newly developed setup. Special emphasis here is on this system since such arrangement is found to be common in fresh water shrimp as well as in some deep water organisms surviving in environment extremes. Experiments reveal that in such system thermal diffusivity is highly tailorable. 3. Overall, experiments and models have established that in biomaterial interfaces a counterintuitive role of interfaces in mediating thermal conduction as a function of stress and temperature is possible in contrast to inorganic materials where interfaces almost always lead to reduction of thermal conductivity as a function of such factors. More investigations are underway to reveal physical origins of such counter-physical characteristics. Such principles can be significantly useful in developing new and innovative bioenergy and inorganic energy systems where heat dissipation significantly affects system performance.« less

  9. Thermal interface material characterization for cryogenic electronic packaging solutions

    NASA Astrophysics Data System (ADS)

    Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.

    2017-12-01

    As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.

  10. Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells

    NASA Astrophysics Data System (ADS)

    Saadah, Mohammed Ahmed

    The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.

  11. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X.; King, C.; DeVoto, D.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less

  12. Phonon-interface scattering in multilayer graphene on an amorphous support

    PubMed Central

    Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li

    2013-01-01

    The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG. PMID:24067656

  13. Thermal Interface Comparisons Under Flight Like Conditions

    NASA Technical Reports Server (NTRS)

    Rodriquez-Ruiz, Juan

    2008-01-01

    Thermal interface materials are used in bolted interfaces to promote good thermal conduction between the two. The mounting surface can include panels, heat pipes, electronics boxes, etc.. . On Lunar Reconnaissance Orbiter (LRO) project the results are directly applicable: a) Several high power avionics boxes b) Several interfaces from RWA to radiator through heat pipe network

  14. Characterization of the Heat Extraction Capability of a Compliant, Sliding, Thermal Interface for Use in a High Temperature, Vacuum, Microgravity Furnace

    NASA Technical Reports Server (NTRS)

    Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie

    2001-01-01

    A compliant, thermal interface material is tested to evaluate its thermal behavior at elevated temperatures, in vacuum conditions, and under varying levels of compression. Preliminary results indicate that the thermal performance of this polymer fiber-based, felt-like material is sufficient to meet thermal extraction requirements for the Quench Module Insert, a Bridgman furnace for microgravity material science investigation. This paper discusses testing and modeling approaches employed, gives of a status of characterization activities and provides preliminary test results.

  15. Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, D. J.; Paret, P. P.; Wereszczak, A. A.

    2014-08-01

    In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesismore » of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.« less

  16. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment.

    PubMed

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-12-16

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.

  17. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.

    PubMed

    Liu, Donghuan; Zhang, Jing

    2018-01-01

    High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.

  18. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism

    PubMed Central

    Zhang, Jing

    2018-01-01

    High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651

  19. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  20. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment

    PubMed Central

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673

  1. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  2. Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces

    NASA Astrophysics Data System (ADS)

    Muscatello, Jordan; Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando

    2017-07-01

    The interfacial thermal resistance determines condensation-evaporation processes and thermal transport across material-fluid interfaces. Despite its importance in transport processes, the interfacial structure responsible for the thermal resistance is still unknown. By combining nonequilibrium molecular dynamics simulations and interfacial analyses that remove the interfacial thermal fluctuations we show that the thermal resistance of liquid-vapor interfaces is connected to a low density fluid layer that is adsorbed at the liquid surface. This thermal resistance layer (TRL) defines the boundary where the thermal transport mechanism changes from that of gases (ballistic) to that characteristic of dense liquids, dominated by frequent particle collisions involving very short mean free paths. We show that the thermal conductance is proportional to the number of atoms adsorbed in the TRL, and hence we explain the structural origin of the thermal resistance in liquid-vapor interfaces.

  3. Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch (Overview)

    DTIC Science & Technology

    2010-09-01

    Molecular Mechanics for thermo-mechanical response Materials Characterization • CNT modified durable thermal interface ( DTI ) • MEMS-based RTD micro...stabilization. Surface Characterization by Atomic Force Microscopy: Probing Thermal, Electrical, and Mechanical Properties Heater Current Path Anchor Leg 50 µm

  4. Modeling of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  5. Thermal Stir Welder

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding apparatus is provided for forming a weld joint between first and second elements of a workpiece. The apparatus heats the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding mixer, to remove any dendritic-type weld microstructures introduced into the interface material during heating.

  6. Thermal conductivity investigation of adhesive-free bond laser components

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Vedula, MahaLakshmi; Meissner, Helmuth E.

    2017-02-01

    An interferometric method has been developed and employed at Onyx Optics, Inc. to accurately measure the thermal conductivity of laser-active crystals as function of dopant concentration or inactive materials such as single crystals, optical ceramics and glasses relative to a standard of assumed to be known thermal conductivity [1]. This technique can also provide information on heat transfer resistance at the interface between two materials in close thermal contact. While the technique appears generally applicable to composites between optically homogeneous materials, we report on thermal conductivities and heat transfer coefficients of selected adhesive-free bond (AFB®) laser composites. Single crystal bars and AFB bonded crystal doublets with the combinations of various rare-earth (Nd3+, Yb3+, Er3+, and Tm3+ trivalent ion doped YAG, and un-doped YAG have been fabricated with the AFB technique. By loading the test sample in a vacuum cryostat, with a precisely controlled heat load at one end of the doublets, the temperature distribution inside the single crystal or the composite samples can been precisely mapped by measuring the optical path difference interferometrically, given the material's thermal-optical properties. No measurable heat transfer resistance can be identified for the AFB interfaces between low-concentration doped YAG and un-doped YAG. For the heavily doped RE3+:YAG, for example, 10% Yb:YAG, the thermal conductivity measured in our experiment is 8.3 W/m•K, using the thermal conductivity of undoped YAG reported in [1] as basis. The thermal transfer resistance of the AFB interface with un-doped YAG, if there is any at the AFB interface, could be less than 1.29×10-6 m2•K/W.

  7. Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals

    DOE PAGES

    Zheng, Shijian; Carpenter, John S.; McCabe, Rodney J.; ...

    2014-02-27

    Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. In this paper, we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability ofmore » one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. As a result, we demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials.« less

  8. Thermal stir welding process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  9. Thermal stir welding apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  10. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    NASA Astrophysics Data System (ADS)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  11. Carbon nanotube thermal interfaces and related applications

    NASA Astrophysics Data System (ADS)

    Hodson, Stephen L.

    The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical conducting elements. Within the community of TIM engineers, the vision driving the development of CNT TIMs was born from measurements that revealed impressively high thermal conductivities of individual CNTs. This vision was then projected to efforts focused on packing many individual CNTs on a single substrate that efficiently conduct heat in parallel and ultimately through many contact regions at CNT-to-substrate contacts. This thesis encompasses a comprehensive investigation of the viability of carbon nanotube based thermal interface materials (CNT TIMs) to efficiently conduct heat across two contacting materials. The efforts in this work were initially devoted to engaging CNT TIMs with an opposing substrate using two bonding techniques. Using palladium hexadecanethiolate, Pd(SC16H35)2 the CNT ends were bonded to an opposing substrate (one-sided interface) or opposing CNT array (two-sided interface) to enhance contact conductance while maintaining a compliant joint. The palladium weld is particularly attractive for its mechanical stability at high temperatures. The engagement of CNT TIMs with an opposing substrate was also achieved by inserting a solder foil between the CNT TIM and opposing substrate and subsequently raising the temperature of the interface above the eutectic point of the solder foil. This bonding technique creates a strong weld that not only reduces the thermal resistance significantly but also minimizes the change in thermal resistance with an applied compressive load. The thermal performance was further improved by infiltrating the CNT TIM with paraffin wax, which serves as an alternate pathway for heat conduction across the interface that ultimately reduces the bulk thermal resistance of the CNT TIM. For CNT TIMs synthesized at the Birck Nanotechnology Center at Purdue University, the thermal resistance was shown to scale linearly with their aggregate, as-grown height. Thus, the bulk thermal resistance can alternatively be tuned by adjusting the as-grown height. The linear relationship between thermal resistance and CNT TIM height provides a simple and efficient methodology to estimate the contact resistance and effective thermal conductivity of CNT TIMs. In this work, the contact resistance and effective thermal conductivity were estimated using two measurement techniques: (i) one-dimensional, steady-state reference bar and (ii) photoacoustic technique. A discrepancy in the estimated contact resistance exists between the two measurement techniques, which is due to the difficulty in measuring the true contact area. In contrast, the effective thermal conductivities estimated from both measurement techniques moderately agreed and were estimated to be on the order of O(1 W/mK). The final chapter is in collaboration with Sandia National Laboratories and focuses on the development of an apparatus to measure the thermal conductivity of insulation materials critical for the operation of molten salt batteries. Molten salt batteries are particularly useful power sources for radar and guidance systems in military applications such as guided missiles, ordinance, and other weapons. Molten salt batteries are activated by raising the temperature of the electrolyte above its melting temperature using pyrotechnic heat pellets. The battery will remain active as long as the electrolyte is molten. As a result, the thermal processes within the components and interactions between them are critical to the overall performance of molten salt batteries. A molten salt battery is typically thermally insulated using wrappable and board-like insulation materials such as Fiberfrax wrap, Fiberfrax board, and Min-K insulation. The Fiberfrax board and Min-K insulation are composites of alumino-silicate and fumed silica-titania, respectively. In Chapter 9, the thermal conductivities of the Fiberfrax board and Min-K insulation were measured under different uniaxial compressive states and ambient environments. The thermal conductivity of the mixed separator pellets (LiCl/MgO/KCl) was also measured along with its contact resistances with interfacing members. To measure the thermal quantities, a steady-state reference bar with thermocouples was employed. The resulting values serve as inputs to a thermal model that aims to predict lifetimes of the batteries. (Abstract shortened by ProQuest.).

  12. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  13. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    NASA Astrophysics Data System (ADS)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  14. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  15. Nano Enabled Thermo-Mechanical Materials in Adhesive Joints: A New Paradigm to Materials Functionality (Preprint)

    DTIC Science & Technology

    2006-12-01

    interface as well as to minimize the interface contact resistance. There is an on- going effort by numerous researchers of dispersing conductive nano...constituents (single wall carbon nanotube (SWCNT), multi wall carbon nano tube ( MWCNT )) in polymers (adhesive) to enhance its thermal conductivity [1...propose to use vertically aligned MWCNT in joints to enhance through-thickness conductivity [10] because of its known high thermal conductivity

  16. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    NASA Astrophysics Data System (ADS)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  17. Intercalated water layers promote thermal dissipation at bio-nano interfaces.

    PubMed

    Wang, Yanlei; Qin, Zhao; Buehler, Markus J; Xu, Zhiping

    2016-09-23

    The increasing interest in developing nanodevices for biophysical and biomedical applications results in concerns about thermal management at interfaces between tissues and electronic devices. However, there is neither sufficient knowledge nor suitable tools for the characterization of thermal properties at interfaces between materials of contrasting mechanics, which are essential for design with reliability. Here we use computational simulations to quantify thermal transfer across the cell membrane-graphene interface. We find that the intercalated water displays a layered order below a critical value of ∼1 nm nanoconfinement, mediating the interfacial thermal coupling, and efficiently enhancing the thermal dissipation. We thereafter develop an analytical model to evaluate the critical value for power generation in graphene before significant heat is accumulated to disturb living tissues. These findings may provide a basis for the rational design of wearable and implantable nanodevices in biosensing and thermotherapic treatments where thermal dissipation and transport processes are crucial.

  18. Reliability of emerging bonded interface materials for large-area attachments

    DOE PAGES

    Paret, Paul P.; DeVoto, Douglas J.; Narumanchi, Sreekant

    2015-12-30

    In this study, conventional thermal interface materials (TIMs), such as greases, gels, and phase change materials, pose bottlenecks to heat removal and have long caused reliability issues in automotive power electronics packages. Bonded interface materials (BIMs) with superior thermal performance have the potential to be a replacement to the conventional TIMs. However, due to coefficient of thermal expansion mismatches between different components in a package and resultant thermomechanical stresses, fractures or delamination could occur, causing serious reliability concerns. These defects manifest themselves in increased thermal resistance in the package. In this paper, the results of reliability evaluation of emerging BIMsmore » for large-area attachments in power electronics packaging are reported. Thermoplastic (polyamide) adhesive with embedded near-vertical-aligned carbon fibers, sintered silver, and conventional lead solder (Sn 63Pb 37) materials were bonded between 50.8 mm x 50.8 mm cross-sectional footprint silicon nitride substrates and copper base plate samples, and were subjected to accelerated thermal cycling until failure or 2500 cycles. Damage in the BIMs was monitored every 100 cycles by scanning acoustic microscopy. Thermoplastic with embedded carbon fibers performed the best with no defects, whereas sintered silver and lead solder failed at 2300 and 1400 thermal cycles, respectively. Besides thermal cycling, additional lead solder samples were subjected to thermal shock and thermal cycling with extended dwell periods. A finite element method (FEM)-based model was developed to simulate the behavior of lead solder under thermomechanical loading. Strain energy density per cycle results were calculated from the FEM simulations. A predictive lifetime model was formulated for lead solder by correlating strain energy density results extracted from modeling with cycles-to-failure obtained from experimental accelerated tests. A power-law-based approach was used to formulate the - redictive lifetime model.« less

  19. Characterization of the heat transfer properties of thermal interface materials

    NASA Astrophysics Data System (ADS)

    Fullem, Travis Z.

    Physicists have studied the thermal conductivity of solids for decades. As a result of these efforts, thermal conduction in crystalline solids is well understood; there are detailed theories describing thermal conduction due to electrons and phonons. Phonon scattering and transmission at solid/solid interfaces, particularly above cryogenic temperatures, is not well understood and more work is needed in this area. The desire to solve engineering problems which require good thermal contact between mating surfaces has provided enhanced motivation for furthering the state of the art on this topic. Effective thermal management is an important design consideration in microelectronic systems. A common technique for removing excess heat from an electronic device is to attach a heatsink to the device; it is desirable to minimize the thermal resistance between the device and the heatsink. This can be accomplished by placing a thermal interface material (TIM) between the two surfaces. Due to the ever-increasing power densities found in electronic components, there is a desire to design better TIMs, which necessitates the ability to characterize TIM bondlines and to better understand the physics of heat conduction through TIM bondlines. A micro Fourier apparatus which employs Pt thin film thermometers of our design has been built and is capable of precisely quantifying the thermal resistance of thermal interface materials. In the present work several types of commercially available TIMs have been studied using this apparatus, including: greases, filled epoxies, and thermally conductive pads. In the case of filled epoxies, bondlines of various thicknesses, ranging from thirty microns to several hundred microns, have been measured. The microstructure of these bondlines has been investigated using optical microscopy and acoustic microscopy. Measured values of thermal conductivity are considered in terms of microstructural features such as percolation networks and filler particle depleted regions at the interface between the TIM and the substrate. The extent to which depleted regions contribute to the interfacial resistance is examined. The relationship between electrical and thermal resistance of the TIM bondline is considered in the context of comparing the relative contribution of electron and phonon heat conduction and how this correlates to microstructural features.

  20. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur

    2015-12-01

    While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells.

  1. Scaled-Up Production and Transport Applications of Graphitic Carbon Nanomaterials

    NASA Astrophysics Data System (ADS)

    Saviers, Kimberly R.

    Graphitic carbon nanomaterials enhance the performance of engineered systems for energy harvesting and storage. However, commercial availability remains largely cost-prohibitive due to technical barriers to mass production. This thesis examines both the scaled-up production and energy transport applications of graphitic materials. Cost driven-production of graphitic petals is developed, carbon nanotube array thermal interface materials enhance waste heat energy harvesting, and microsupercapacitors are visually examined using a new electroreflectance measurement method. Graphitic materials have previously been synthesized using batch-style processing methods with small sample sizes, limiting their commercial viability. In order to increase production throughput, a roll-to-roll radio-frequency plasma chemical vapor deposition method is employed to continuously deposit graphitic petals on carbon fiber tow. In consideration of a full production framework, efficient and informative characterization methods in the form of electrical resistance and electrochemical capacitance are highlighted. To co-optimize the functional characteristics of the material, the processing conditions are comprehensively varied using a data-driven predictive design of experiments method. Repeatable and reliable production of graphitic materials will enable a host of creative graphene-based devices to emerge into the marketplace. Two such applications are discussed in the remaining chapters. Waste heat is most efficiently harvested at high temperatures, such as vehicle exhaust systems near 600°C. However, the resistance to heat flux at the interfaces between the harvesting device and its surroundings is detrimental to the system-level performance. To study the performance of thermal interface materials up to 700°C, a reference bar measurement method was designed. Design considerations are discussed and compared to past implementations, particularly regarding radiation heat flux and thermal expansion at these elevated temperatures. The microscale roughness of the contacting measurement surface is fully characterized, as it fundamentally affects the resulting thermal interface resistance. This comprehensive method for determining thermal interface resistance at high temperatures includes the physical equipment, data acquisition system, and data analysis method. Thermomechanical evaluation of carbon nanotube arrays up to 700°C has shown that the arrays provide mechanical flexibility to accommodate thermal expansion in a thermomechanically mismatched interface. To demonstrate the application of the arrays for improving energy generation, they were evaluated in conjunction with a thermoelectric module. The system-level efficiency increases significantly when a carbon nanotube array is applied to the hot side of the thermoelectric module. Additional materials characterization suggests the presence of a strong thermal connection between the carbon nanotubes and their catalyst layers, due to covalent bonding between them. In another application of harvesting waste heat, the carbon nanotube arrays increase the performance of a thermo-magnetically actuated shuttle device for solar photovoltaic cells due to decreased thermal interface resistance. Vertically-oriented graphitic petals have previously enhanced supercapacitor power density. Here, a spatiotemporal characterization method is developed and utilized to study ageing phenomena in microsupercapacitor electrodes. The electroreflectance method captures images of charge accumulation in the electrodes at varying states during each charge-discharge cycle. The method was exploited by imaging each an ideal device and a device with defects over an extended period of over four million cycles. The charge accumulation patterns over the ageing period relate to the physical transport behavior. During a single discharge cycle, one may visually observe the electrons drifting out of the electrode. Overall, the investigations herein determine the following. Continuous production of graphitic petals is possible and is optimized by considering the effect of plasma conditions on the resulting functional performance of the material. Thermal interface resistance may be measured at high temperatures in order to understand the viability of interface materials for energy harvesting applications. Carbon nanotube array thermal interface materials lead to increased energy generation from thermoelectric modules. Spatial electroreflectance measurements of microsupercapacitors lead to observation of decreased physical wetting between the electrode and electrolyte, impacting device performance. Looking forward, creative application of graphitic carbon nanomaterials, coupled with cost-driven production capability, will launch them into the commercial marketplace.

  2. The energetics of adhesion in composite materials

    NASA Astrophysics Data System (ADS)

    Harding, Philip Hiram

    Composite materials are used throughout modern society, and often the most important parameter in determining their properties is the adhesion at material interfaces within the composite. A broad investigation is completed, the global objective of which is to develop understanding of the role of adhesion in composite materials. The scope of this study ranges from macroscopic effects of adhesion on filled polymer composites to microscopic adhesion measurements with engineered interfaces. The surface of a filler material is systematically modified and surface characterization techniques are used to quantify the influence of the surface treatments on surface energetics and wetting properties. Filled polymer composites are prepared and composite mechanical properties determined with beam deflection tests. Filler surface treatments significantly alter the composite yield stress for composites which fail interfacially and are observed to increase or decrease mechanical strength, depending on the chemical nature of the modification. Thermodynamic adhesion mechanisms active at the filler-matrix interfaces are then explored by making direct interfacial strength measurements whereby a single spherical particle is introduced into the polymeric matrix. Interfacial strength is determined by submitting the single-particle composite (SPC) to uni-axial tension and relating the macroscopic stress at interfacial failure to that experienced at the interface. The technique provides a measurement of interfacial strength between two elastic materials, one unaffected by frictional forces, viscoelasticity, and thermal stresses. The SPC measurements are used to verify proposed adhesion mechanisms at the various filler-polymer interfaces and establish the role of adhesion in the filled polymer composites. The SPC technique is then used to investigate the adhesion promotion mechanism of organofunctional silanes, which are shown to be controlled by the compatibility and penetration of the silane organofunctional group. The effects of thermal residual stresses on interfacial strength are also investigated using the SPC technique. Processing conditions, i.e., time-temperature profiles, are used to systematically vary the thermal residual stresses within the polymeric matrix. The interfaces studied are deleteriously affected by increases in thermal residual stresses.

  3. Thermal conductance of two interface materials and their applications in space systems

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.; Clatterbuck, C. H.; Wall, J. L.

    1992-01-01

    The temperature control of spacecraft and instrument systems and subsystems requires heat transfer interface materials that possess good thermal and structural characteristics, among other properties, to respond to the vacuum environment of space. These materials must be easy to apply to, and remove from, the surfaces where they are applied, and must be able to withstand power dissipation extremes, and be used for different clamping configurations and pressures. Silicone based greases, used in the past, tend to migrate and to contaminate nearby surfaces. Bare metal to metal contact offers low thermal conductance and difficulties in estimating the actual heat transfer. Several polymeric materials containing different thermal conductive compounds and structural reinforcements were prepared to overcome grease and metal problems. Two polymeric materials were evaluated: Cho-Therm 1671 elastomer; and the CV-2946, a conductive RTV silicone. Tests were done to learn more about these products. Results indicate that the tightly bolted, torqued fixtures did not buckle or distort, and provided optimum thermal conductance. Fixtures simulating actual spacecraft configuration suffered bowing and separating.

  4. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10 nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

  5. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    NASA Astrophysics Data System (ADS)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.

  6. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    PubMed Central

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-01-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots. PMID:26880221

  7. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  8. Degradation Characterization of Thermal Interface Greases: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  9. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Major, Joshua; Narumanchi, Sreekant V; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  10. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    PubMed

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  11. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi

    2016-09-25

    We report that while Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance inmore » the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. Finally, by identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contribute towards improved thermal performance of Li-ion cells.« less

  12. New nanocomposite surfaces and thermal interface materials based on mesoscopic microspheres, polymers and graphene flakes

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alex A.; Dmitriev, Alex S.; Makarov, Petr; Mikhailova, Inna

    2018-04-01

    In recent years, there has been a great interest in the development and creation of new functional energy mate-rials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and data centers). In this paper, the technology of obtaining new nanocomposites based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphene flakes of different volumetric concentration using epoxy polymers, as well as the addition of monodisperse microspheres are described. Data are given on the measurement of the contact angle and thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  13. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.

    PubMed

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.

  14. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures

    PubMed Central

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, <100>, is better than the <111> crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials. PMID:28469733

  15. Power Electronics and Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Power Electronics and Thermal Management Power Electronics and Thermal Management This is the March Gearhart's testimony. Optical Thermal Characterization Enables High-Performance Electronics Applications New transient thermoreflectance measures the thermal performance of materials and their interfaces that cannot

  16. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces

    NASA Astrophysics Data System (ADS)

    Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; Minnich, Austin J.

    2017-05-01

    Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. However, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electron microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. Our work provides a useful perspective on the microscopic processes governing interfacial heat conduction.

  17. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces

    DOE PAGES

    Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; ...

    2017-05-17

    Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. But, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electronmore » microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. This work provides a useful perspective on the microscopic processes governing interfacial heat conduction.« less

  18. The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites

    DOE PAGES

    Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn; ...

    2017-03-15

    Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less

  19. The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites

    NASA Astrophysics Data System (ADS)

    Yeager, John D.; Watkins, Erik B.; Higginbotham Duque, Amanda L.; Majewski, Jaroslaw

    2018-01-01

    Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, the HMX-binder interface and phase transition were studied for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions-pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. This effect increased with NC content.

  20. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube.

    PubMed

    Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji

    2013-01-16

    Interfacial thermal transport via van der Waals interaction is quantitatively evaluated using an individual multi-walled carbon nanotube bonded on a platinum hot-film sensor. The thermal boundary resistance per unit contact area was obtained at the interface between the closed end or sidewall of the nanotube and platinum, gold, or a silicon dioxide surface. When taking into consideration the surface roughness, the thermal boundary resistance at the sidewall is found to coincide with that at the closed end. A new finding is that the thermal boundary resistance between a carbon nanotube and a solid surface is independent of the materials within the experimental errors, which is inconsistent with a traditional phonon mismatch model, which shows a clear material dependence of the thermal boundary resistance. Our data indicate the inapplicability of existing phonon models when weak van der Waals forces are dominant at the interfaces.

  1. Reduction of thermal conductivity in MnSi{sub 1.7} multi-layered thin films with artificially inserted Si interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Y., E-mail: yosuke.kurosaki.uy@hitachi.com; Yabuuchi, S.; Nishide, A.

    We report a lowered lattice thermal conductivity in nm-scale MnSi{sub 1.7}/Si multilayers which were fabricated by controlling thermal diffusions of Mn and Si atoms. The thickness of the constituent layers is 1.5–5.0 nm, which is comparable to the phonon mean free path of both MnSi{sub 1.7} and Si. By applying the above nanostructures, we reduced the lattice thermal conductivity down to half that of bulk MnSi{sub 1.7}/Si composite materials. The obtained value of 1.0 W/K m is the experimentally observed minimum in MnSi{sub 1.7}-based materials without any heavy element doping and close to the minimum thermal conductivity. We attribute the reduced latticemore » thermal conductivity to phonon scattering at the MnSi{sub 1.7}/Si interfaces in the multilayers.« less

  2. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes

    PubMed Central

    Buis, Arjan

    2016-01-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm – Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable. PMID:27695626

  3. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes.

    PubMed

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-06-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.

  4. Thermal conductivity of III-V semiconductor superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less

  5. Performance Evaluation of Nose Cap to Silica Tile Joint of RLV-TD under the Simulated Flight Environment using Plasma Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen

    2017-12-01

    Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.

  6. Voltage tunability of thermal conductivity in ferroelectric materials

    DOEpatents

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  7. Carbon nanotubes for thermal interface materials in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment, an in situ functionalization process has for the first time been demonstrated. The in situ functionalization renders the vertically aligned carbon nanotubes a proper chemical reactivity for forming chemical bonding with other substrate materials such as gold and silicon. 2. An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes. Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of ˜35% and ˜65%, respectively, in tensile strength (˜0.8 GPa) and modulus (˜90 GPa) during tensile testing; an ˜20% improvement in electrical conductivity (˜80000 S m-1) was also reported. The mechanism of the microwave response of CNTs was discussed. Such a microwave annealing process has been extended to the preparation of reduced graphene oxide. 3. Based on the fundamental understanding of interfacial thermal transport and surface chemistry of metals and carbon nanotubes, two major transfer/assembling processes have been developed: molecular bonding and metal bonding. Effective improvement of the interfacial thermal transport has been achieved by the interfacial bonding. 4. The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films was measured by a laser flash technique, and shown to be ˜30 mm2 s-1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT film and the individual CNTs are ˜27 and ˜540 W m-1 K-1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube-tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing density was beneficial in increasing the collective thermal conductivity of the VACNT film; however, the increased tube-tube interaction in dense VACNT films decreased the thermal conductivity of the individual CNTs. The tip-to-tip contact resistance was shown to be ˜1x10-7 m2 K W -1. The study will shed light on the potential application of VACNTs as thermal interface materials in microelectronic packaging. 5. A combined process of in situ functionalization and microwave curing has been developed to effective enhance the interface between carbon nanotubes and the epoxy matrix. Effective medium theory has been used to analyze the interfacial thermal resistance between carbon nanotubes and polymer matrix, and that between graphite nanoplatlets and polymer matrix.

  8. 3D hierarchical interface-enriched finite element method: Implementation and applications

    NASA Astrophysics Data System (ADS)

    Soghrati, Soheil; Ahmadian, Hossein

    2015-10-01

    A hierarchical interface-enriched finite element method (HIFEM) is proposed for the mesh-independent treatment of 3D problems with intricate morphologies. The HIFEM implements a recursive algorithm for creating enrichment functions that capture gradient discontinuities in nonconforming finite elements cut by arbitrary number and configuration of materials interfaces. The method enables the mesh-independent simulation of multiphase problems with materials interfaces that are in close proximity or contact while providing a straightforward general approach for evaluating the enrichments. In this manuscript, we present a detailed discussion on the implementation issues and required computational geometry considerations associated with the HIFEM approximation of thermal and mechanical responses of 3D problems. A convergence study is provided to investigate the accuracy and convergence rate of the HIFEM and compare them with standard FEM benchmark solutions. We will also demonstrate the application of this mesh-independent method for simulating the thermal and mechanical responses of two composite materials systems with complex microstructures.

  9. Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects

    DOE PAGES

    Liu, Ying; Hu, Chongze; Huang, Jingsong; ...

    2015-06-23

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less

  10. The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix

    NASA Astrophysics Data System (ADS)

    Zhong, Nan; Garcia, Santiago J.; van der Zwaag, Sybrand

    2016-08-01

    Thermal interface materials (TIMs) are widely used in all kinds of electronic devices to handle the heat dissipation and the mechanical anchoring of the heat producing component. The aging of TIMs may lead to delamination and internal crack formation causing a loss of heat transfer and mechanical integrity both leading to premature device failure. In the present work, a novel TIM system based on a self-healing organic-inorganic polymer matrix filled with spherical glass beads is presented which is capable of healing both the thermal conductivity and the mechanical properties upon thermal activation. The effect of particle volume concentration (PVC) and particle size on tensile strength and thermal conductivity healing behavior is investigated. The results show that a higher PVC increases the mechanical property but decreases mechanical healing. For the same PVC, bigger particles lead to lower mechanical properties but higher thermal conductivities and higher mechanical healing efficiencies.

  11. Experimental investigation on IXV TPS interface effects in Plasmatron

    NASA Astrophysics Data System (ADS)

    Ceglia, Giuseppe; Trifoni, Eduardo; Gouriet, Jean-Baptiste; Chazot, Olivier; Mareschi, Vincenzo; Rufolo, Giuseppe; Tumino, Giorgio

    2016-06-01

    An experimental investigation related to the thermal protection system (TPS) interfaces of the intermediate experimental vehicle has been carried out in the Plasmatron facility at the von Karman Institute for fluid dynamics. The objective of this test campaign is to qualify the thermal behaviours of two different TPS interfaces under flight representative conditions in terms of heat flux and integral heat load ( 180 kW/m2 for 700 s). Three test samples are tested in off-stagnation configuration installed on an available flat plate holder under the same test conditions. The first junction is composed of an upstream ceramic matrix composite (CMC) plate and an ablative P50 cork composite block separated by a gap of 2 mm. The second one is made of an upstream P50 block and a downstream ablative SV2A silicon elastomer block with silicon-based filler in between. A sample composed of P50 material is tested in order to obtain reference results without TPS interface effect. The overheating at the CMC-P50 interface due to the jump of the catalytic properties of the materials, and the recession/swelling behaviour of the P50-SV2A interface are under investigation. All the test samples withstand relatively well the imposed heat flux for the test duration. As expected, both the ablative materials undergo a thermal degradation. The P50 exhibits the formation of a porous char layer and its recession; on the other hand, the SV2A swells and forms a fragile char layer.

  12. Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Koh, Yee Rui; Comparan, Jonathan; Sadasivam, Sridhar; Schroeder, Jeremy L.; Garbrecht, Magnus; Mohammed, Amr; Birch, Jens; Fisher, Timothy; Shakouri, Ali; Sands, Timothy D.

    2016-01-01

    Reduction of cross-plane thermal conductivity and understanding of the mechanisms of heat transport in nanostructured metal/semiconductor superlattices are crucial for their potential applications in thermoelectric and thermionic energy conversion devices, thermal management systems, and thermal barrier coatings. We have developed epitaxial (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices with periodicity ranging from 1 nm to 240 nm that show significantly lower thermal conductivity compared to the parent TiN/(Al,Sc)N superlattice system. The (Ti,W)N/(Al,Sc)N superlattices grow with [001] orientation on the MgO(001) substrates with well-defined coherent layers and are nominally single crystalline with low densities of extended defects. Cross-plane thermal conductivity (measured by time-domain thermoreflectance) decreases with an increase in the superlattice interface density in a manner that is consistent with incoherent phonon boundary scattering. Thermal conductivity values saturate at 1.7 W m-1K-1 for short superlattice periods possibly due to a delicate balance between long-wavelength coherent phonon modes and incoherent phonon scattering from heavy tungsten atomic sites and superlattice interfaces. First-principles density functional perturbation theory based calculations are performed to model the vibrational spectrum of the individual component materials, and transport models are used to explain the interface thermal conductance across the (Ti,W)N/(Al,Sc)N interfaces as a function of periodicity. The long-wavelength coherent phonon modes are expected to play a dominant role in the thermal transport properties of the short-period superlattices. Our analysis of the thermal transport properties of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices addresses fundamental questions about heat transport in multilayer materials.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn

    Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less

  14. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  15. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  16. Nickel-Graphite Composite Compliant Interface and/or Hot Shoe Material

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Chun-Yip Li, Billy; Ravi, Vilupanur A.; Fleurial, Jean-Pierre; Caillat, Thierry; Anjunyan, Harut

    2013-01-01

    Next-generation high-temperature thermoelectric-power-generating devices will employ segmented architectures and will have to reliably withstand thermally induced mechanical stresses produced during component fabrication, device assembly, and operation. Thermoelectric materials have typically poor mechanical strength, exhibit brittle behavior, and possess a wide range of coefficient of thermal expansion (CTE) values. As a result, the direct bonding at elevated temperatures of these materials to each other to produce segmented leg components is difficult, and often results in localized microcracking at interfaces and mec hanical failure due to the stresses that arise from the CTE mismatch between the various materials. Even in the absence of full mechanical failure, degraded interfaces can lead to increased electrical and thermal resistances, which adversely impact conversion efficiency and power output. The proposed solution is the insertion of a mechanically compliant layer, with high electrical and thermal conductivity, between the low- and high-temperature segments to relieve thermomechanical stresses during device fabrication and operation. This composite material can be used as a stress-relieving layer between the thermoelectric segments and/or between a thermoelectric segment and a hot- or cold-side interconnect material. The material also can be used as a compliant hot shoe. Nickel-coated graphite powders were hot-pressed to form a nickel-graphite composite material. A freestanding thermoelectric segmented leg was fabricated by brazing the compliant pad layer between the high-temperature p- Zintl and low-temperature p-SKD TE segments using Cu-Ag braze foils. The segmented leg stack was heated in vacuum under a compressive load to achieve bonding. The novelty of the innovation is the use of composite material that re duces the thermomechanical stresses en - countered in the construction of high-efficiency, high-temperature therm - o-electric devices. The compliant pad enables the bonding of dissimilar thermoelectric materials while maintaining the desired electrical and thermal properties essential for efficient device operation. The modulus, CTE, electrical, and thermal conductances of the composite can be controlled by varying the ratio of nickel to graphite.

  17. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  18. Material recognition based on thermal cues: Mechanisms and applications.

    PubMed

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  19. Material recognition based on thermal cues: Mechanisms and applications

    PubMed Central

    Ho, Hsin-Ni

    2018-01-01

    ABSTRACT Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering. PMID:29687043

  20. Thermophysical properties of plasma sprayed coatings

    NASA Technical Reports Server (NTRS)

    Wilkes, K. E.; Lagedrost, J. F.

    1973-01-01

    Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.

  1. Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

    NASA Technical Reports Server (NTRS)

    Breeding Shawn; Khodabandeh, Julia; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The science requirements for materials processing is to provide the desired PI requirements of thermal gradient, solid/liquid interface front velocity for a given processing temperature desired by the PI. Processing is performed by translating the furnace with the sample in a stationary position to minimize any disturbances to the solid/liquid interface front during steady state processing. Typical sample materials for this metals and alloys furnace are lead-tin alloys, lead-antimony alloys, and aluminum alloys. Samples must be safe to process and therefore typically are contained with hermetically sealed cartridge tubes (gas tight) with inner ceramic liners (liquid tight) to prevent contamination and/or reaction of the sample material with the cartridge tube.

  2. Thermal analysis of a growing crystal in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya

    1980-10-01

    The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.

  3. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.

    PubMed

    Wang, Yu; Yang, Chunhui; Pei, Qing-Xiang; Zhang, Yingyan

    2016-03-01

    Owing to the superior thermal properties of graphene, graphene-reinforced polymer nanocomposites hold great potential as the thermal interface materials (TIMs) dissipating heat for electronic packages. However, this application is greatly hindered by the high thermal resistance at the interface between graphene and polymer. In this paper, some important aspects of the improvement of the thermal transport across the interface between graphene and epoxy in graphene-epoxy nanocomposites, including the effectiveness of covalent and noncovalent functionalization, isotope doping, and acetylenic linkage in graphene are systematically investigated using molecular dynamics (MD) simulations. The simulation results show that the covalent and noncovalent functionalization techniques could considerably reduce the graphene-epoxy interfacial thermal resistance in the nanocomposites. Among different covalent functional groups, butyl is more effective than carboxyl and hydroxyl in reducing the interfacial thermal resistance. Different noncovalent functional molecules, including 1-pyrenebutyl, 1-pyrenebutyric acid, and 1-pyrenebutylamine, yield a similar amount of reductions. Moreover, it is found that the graphene-epoxy interfacial thermal resistance is insensitive to the carbon isotope doping in graphene, while it can be reduced moderately by replacing the sp(2) bonds in graphene with acetylenic linkages.

  4. Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun

    2017-08-01

    Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings' performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.

  5. Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Svendsen, Robert F., Jr.

    1987-01-01

    Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.

  6. SAGE III on ISS Lessons Learned on Thermal Interface Design

    NASA Technical Reports Server (NTRS)

    Davis, Warren

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.

  7. Interface characterization of Cu-Mo coating deposited on Ti-Al alloys by arc spraying

    NASA Astrophysics Data System (ADS)

    Bai, Shengqiang; Li, Fei; Wu, Ting; Yin, Xianglin; Shi, Xun; Chen, Lidong

    2015-03-01

    Cu-Mo pseudobinary alloys are promising candidates as electrode materials in CoSb3-based skutterudite thermoelectric (TE) devices for TE power generation. In this study, Cu-Mo coatings were deposited onto Ti-Al substrates by applying a dual-wire electric arc spraying coating technique. The microstructure of the surfaces, cross sections and coating interfaces were analyzed by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS). Cu-Mo coatings showed a typical banded splat with compact microstructures, and have no coarse pores nor micro-cracks. The thermal shock resistance of the Cu-Mo coating was also investigated to show good combinations with Ti-Al substrates. After 50 thermal shock cycles, there were no cracks observed at the interface. In contrast, the test of the thermal shock resistance of the Cu coating on the Ti-Al substrate was also investigated. Due to a large difference in the thermal expansion coefficients between Cu and Ti-Al alloys, the Cu coating flaked from the Ti-Al substrate completely after 10 thermal shock cycles. The contact resistivity of the Ti-Al/Cu-Mo interface was about 1.6 μΩṡcm2 and this value was unchanged after 50 thermal shock cycles, indicating the low electric resistance and high thermal stability of the Cu-Mo/Ti-Al interface.

  8. Thermal Pyrolytic Graphite Enhanced Components

    NASA Technical Reports Server (NTRS)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  9. Hall Thruster Thermal Modeling and Test Data Correlation

    NASA Technical Reports Server (NTRS)

    Myers, James

    2016-01-01

    HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.

  10. Thermal transport in lithium ion batteries: An experimental investigation of interfaces and granular materials

    NASA Astrophysics Data System (ADS)

    Gaitonde, Aalok Jaisheela Uday

    Increasing usage and recent accidents due to lithium-ion (Li-ion) batteries exploding or catching on fire has inspired research on the characterization and thermal management of these batteries. In cylindrical 18650 cells, heat generated during the battery's charge/discharge cycle is poorly dissipated to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work presents a technique to measure the thermal conduction across the metallic case-plastic separator interface, which ultimately limits heat transfer out of the jelly roll. The polymeric separator and metallic case are harvested from discharged commercial 18650 battery cells for thermal testing. A miniaturized version of the reference bar method enables measurements of the interface resistance between the case and the separator by establishing a temperature gradient across a multilayer stack consisting of two reference layers of known thermal conductivity and the case-separator sample. The case-separator interfacial conductance is reported for a range of case temperatures and interface pressures. The mean thermal conductance across the case-separator interface is 670 +/- 275 W/(m2K) and no significant temperature or pressure dependence is observed. The effective thermal conductivity of the battery stack is measured to be 0.27 W/m/K and 0.32 W/m/K in linear and radial configurations, respectively. Many techniques for fabricating battery electrodes involve coating particles of the active materials on metallic current collectors. The impact of mechanical shearing on the resultant thermal properties of these packed particle beds during the fabrication process has not yet been studied. Thus, the final portion of this thesis designs and validates a measurement system to measure the effects of mechanical shearing on the thermal conductivity of packed granular beds. This system simultaneously shears the sample while applying a temperature gradient across the particle bed, enabling thermal conductivity measurements using a radial equivalent of the conventional reference bar method. Results of this research, which includes characterization of thermal conductance across the rate limiting separator-case interface, will help improve the design and reliability of lithium ion batteries. Cells of larger dimension and capacity could also be achieved by the improved understanding of thermal transport across the microscopic electrode stack. Better analytic models of the thermal response of the batteries could be constructed, by taking into account the interfacial conductance and thermal conductivity of the electrodes measured in this work. This is of particular importance in the current circumstances, where accidents and safety issues related to lithium ion batteries are on the increase.

  11. New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes.

    PubMed

    Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

    2014-01-01

    Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.

  12. Novel Approach to Front Contact Passivation for CdTe Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, Jason M.

    2018-02-18

    The goal of this project was to study the use of sputter-deposited oxide materials for interface passivation of CdTe-based photovoltaics. Several candidate materials were chosen based on their promise in passivating the CdTe and CdSeTe semiconductor interface, chemical and thermal stability to device processing, and ability to be deposited by sputter deposition.

  13. Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Szofran, F. R.; Volz, M. P.

    1999-01-01

    Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.

  14. Effect of the interface on the mechanical properties and thermal conductivity of bismuth telluride films

    NASA Astrophysics Data System (ADS)

    Lai, Tang-Yu; Wang, Kuan-Yu; Fang, Te-Hua; Huang, Chao-Chun

    2018-02-01

    Bismuth telluride (Bi2Te3) is a type of thermoelectric material used for energy generation that does not cause pollution. Increasing the thermoelectric conversion efficiency (ZT) is one of the most important steps in the development of thermoelectric components. In this study, we use molecular dynamics to investigate the mechanical properties and thermal conductivity of quintuple layers of Bi2Te3 nanofilms with different atomic arrangements at the interface and study the effects of varying layers, angles, and grain boundaries. The results indicate that the Bi2Te3 nanofilm perfect substrate has the ideal Young’s modulus and thermal conductivity, and the maximum yield stress is observed for a thickness of ∼90 Å. As the interface changed, the structural disorder of atomic arrangement affected the mechanical properties; moreover, the phonons encounter lattice disordered atomic region will produce scattering reduce heat conduction. The results of this investigation are helpful for the application of Bi2Te3 nanofilms as thermoelectric materials.

  15. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  16. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal conductivity. I employed FDTR to study the mean-free-paths of acoustic phonons in Si1-xGex. I experimentally demonstrate that 40% of heat is carried in Si1-xGe x alloys by phonons with mean-free-path 0.5 ≤ ℓ ≤ 5 mum, and phonons with > 2 mum do not contribute to the thermal conductivity of Si. I employed TDTR and frequency-dependent TDTR to study scattering of long- and medium-wavelength phonons in two important thermoelectric materials embedded with nanoscale precipitates. I find that the through-thickness lattice thermal conductivity of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) approaches the thermal conductivity of bulk homogenous PbTe1-x Sex alloys with the same average composition. On the other hand, I find that 3% of ErAs nanoparticles embedded in InGaAs is sufficient to scatter most of the phonons in InGaAs that have intermediate mean-free-paths, and thus reduces the thermal conductivity of InGaAs below the alloy limit. I find that scattering by nanoparticles approach the geometrical limit and can be readily accounted for by an additional boundary scattering which depends on the concentration of nanoparticles. Finally, I studied the thermal conductance of Au/Ti/Graphene/SiO 2 interfaces by TDTR. I find that heat transport across the interface is dominated by phonons. Even though graphene is only one atomic layer thick, graphene interfaces should be treated as two discrete interfaces instead of one diffuse interface in thermal analysis, suggesting that direct transmission of phonons from Au to SiO2 is negligible. My study is important for thermal management of graphene devices.

  17. Fluid-mechanic/thermal interaction of a molten material and a decomposing solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.W.; Lee, D.O.

    1976-12-01

    Bench-scale experiments of a molten material in contact with a decomposing solid were conducted to gain insight into the expected interaction of a hot, molten reactor core with a concrete base. The results indicate that either of two regimes can occur: violent agitation and splattering of the melt or a very quiescent settling of the melt when placed in contact with the solid. The two regimes appear to be governed by the interface temperature condition. A conduction heat transfer model predicts the critical interface temperature with reasonable accuracy. In addition, a film thermal resistance model correlates well with the datamore » in predicting the time for a solid skin to form on the molten material.« less

  18. Modelling of directional solidification of BSO

    NASA Astrophysics Data System (ADS)

    Lin, Chenting; Motakef, Shahryar

    1993-03-01

    A thermo-fluid model for vertical Bridgman growth of bismuth silicon oxide (BSO) as model material for semi-transparent, low thermal conductivity oxides is developed. Internal radiative heat transfer, together with convective and conductive heat transfer are considered in this model. Due to the strong internal thermal radiation within the grown crystal, the growth interface is highly convex into the melt, instead of being concave as is the case for opaque materials with the thermal conductivity of the melt larger than that of the solid. Reduction of the growth interface non-planarity through variations in the growth configuration is investigated. A furnace temperature profile consisting of a steep gradient on the melt side and shallow gradient on the solid side of the charge is found to be the most effective approach.

  19. High thermal conductivity liquid metal pad for heat dissipation in electronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Zuoye; Liu, Huiqiang; Li, Qiuguo; Liu, Han; Chu, Sheng; Yang, Yuhua; Chu, Guang

    2018-05-01

    Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.

  20. Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials.

    PubMed

    Chen, Jin; Huang, Xingyi; Sun, Bin; Wang, Yuxin; Zhu, Yingke; Jiang, Pingkai

    2017-09-13

    The continuous evolution toward semiconductor technology in the "more-than-Moore" era and rapidly increasing power density of modern electronic devices call for advanced thermal interface materials (TIMs). Here, we report a novel strategy to construct flexible polymer nanocomposite TIMs for advanced thermal management applications. First, aligned polyvinyl alcohol (PVA) supported and interconnected 2D boron nitride nanosheets (BNNSs) composite fiber membranes were fabricated by electrospinning. Then, the nanocomposite TIMs were constructed by rolling the PVA/BNNS composite fiber membranes to form cylinders and subsequently vacuum-assisted impregnation of polydimethylsiloxane (PDMS) into the porous cylinders. The nanocomposite TIMs not only exhibit a superhigh through-plane thermal conductivity enhancement of about 10 times at a low BNNS loading of 15.6 vol % in comparison with the pristine PDMS but also show excellent electrical insulating property (i.e., high volume electrical resistivity). The outstanding thermal management capability of the nanocomposite TIMs was practically confirmed by capturing the surface temperature variations of a working LED chip integrated with the nanocomposite TIMs.

  1. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  2. Thermally Generated Spin Signals in a Nondegenerate Silicon Spin Valve

    NASA Astrophysics Data System (ADS)

    Yamashita, Naoto; Ando, Yuichiro; Koike, Hayato; Miwa, Shinji; Suzuki, Yoshishige; Shiraishi, Masashi

    2018-05-01

    Thermally generated spin signals are observed in a nondegenerate Si spin valve. The spin-dependent Seebeck effect is used for thermal spin-signal generation. A thermal gradient of about 200 mK at the interface of Fe and Si enables the generation of a spin voltage of 8 μ V at room temperature. A simple expansion of the conventional spin-drift-diffusion model that takes into account the spin-dependent Seebeck effect shows that semiconductor materials are more promising for thermal spin-signal generation comparing than metallic materials, and thus enable efficient heat recycling in semiconductor spin devices.

  3. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    PubMed

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  4. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers.

    PubMed

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2009-11-01

    In recent years carbon-nanotube-based thermal interface materials have shown great potential for solving the thermal management problem of integrated circuits and nanodevices. For a long time, the exceptionally high thermal boundary resistances (TBRs) between carbon nanotubes (CNTs) and their surroundings have been suspected as a major factor to restraining their performance. But so far, there are few or no reported work to determine or compare the TBRs between CNTs and various materials. In this paper, we carefully design and carry out the TBR measurements of CNTs in contact with metal and polymer materials, and we present a conclusion that the CNT/polymer generally gives a lower TBR compared to the CNT/metal, which seems a little counterintuitive. We further suggest that the larger CNT-metal TBRs arise from the smaller phonon-mode overlapping between the CNT and the metals at low frequencies, and the low phonon transmission coefficient at the metal-CNT interface in the intermediate and high frequency range. This work may inspire deeper understanding of the TBR and shed light on related theoretical and applied research.

  5. New Class of Thermal Interface Materials Delivers Ultralow Thermal

    Science.gov Websites

    chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix functionalized with soft organic linkers and a copper matrix. Researchers selected BNNS as a filler due to its metal/organic/inorganic hybrid nanocomposites provide a promising start to a thermal management solution

  6. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Longtao, E-mail: longtaojiang@163.com; Wang, Pingping; Xiu, Ziyang

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. Themore » interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.« less

  7. Elastic energy distribution in bi-material lithosphere: implications for shear zone formation

    NASA Astrophysics Data System (ADS)

    So, B.; Yuen, D. A.

    2013-12-01

    Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.

  8. Mechanism of electromigration failure in Damascene processed copper interconnects

    NASA Astrophysics Data System (ADS)

    Michael, Nancy Lyn

    2002-11-01

    A major unresolved issue in Cu interconnect reliability is the interface role in the failure mechanism of real structures. The present study investigates failure in single-level damascene Cu interconnects with variations in interface condition, passivation and barrier, and linewidth. In the first phase, accelerated electromigration testing of 0.25mum Cu interconnects capped with SiN or SiCN, shows that lifetime and failure mode vary with capping layer. The first mode, seen primarily in SiN samples, is characterized by gradual resistance increase and extensive interface damage, believed to result from failure led by interface electromigration. The competing failure mode, found in SiCN capped samples, is characterized by abrupt resistance increase and localized voiding. The second phase fixes SiCN as the capping material and varies barrier material and line width. The three barrier materials, Ta, TaN, and Ta/TaN, produce similar lifetime statistics and failure is abrupt. Line width, however, does have a strong influence on failure time. The line width/grain size ratio ranged from 0.53 to 2.2 but does not correlate with mean time to failure (MTF). The strong dependence on interface fraction, combined with the conclusion from phase one that interface electromigration is not rate controlling, suggests another mechanism related to the interface is a controlling factor. The possibility that contamination and defects at the interface are key to this failure mode was investigated using electro-thermal fatigue (ETF). In ETF, where lines are simultaneously subjected to thermal cycling and constant current, damage caused by thermal stress is accelerated. Tests reveal that in 80 nm lines, transient failure occurs at times far below MTF in electromigration tests at higher temperatures. Failure found in ETF is clearly a result of damage growth due to thermal/mechanical stress rather than electromigration. At the stress levels created by the moderate ETF test conditions, the only place voids are likely to nucleate and grow is at pre-existing defects and impurities. In narrower lines, where smaller voids can cause catastrophic damage, defects have a greater effect on MTF. Results from this investigation suggest that impurities and defects in the Cu and at the interface, must be carefully controlled to make reliable narrow Cu interconnects.

  9. Using high pressure to study thermal transport and phonon scattering mechanisms

    NASA Astrophysics Data System (ADS)

    Hohensee, Gregory Thomas

    The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine intrinsic phonon-mediated interface conductance between dissimilar materials, I applied DAC-TDTR to measure the thermal conductance of a series of metal-diamond interfaces as a function of pressure up to 50 GPa. The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes, and the nature of heat transport between such dissimilar materials is central to the thermal design of composite materials. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. I measured the interface thermal conductances of Pb, Au0.95Pd0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils, from ambient pressure to 50 GPa. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. My results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon. The thermal conductivity and absolute electrical resistivity of metallic silicon have not been measured previously. I performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si0.991Ge 0.009 across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have a transport anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. I used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model. Not all crystalline point defects are alike in how they scatter phonons and reduce the thermal conductivity of mixed crystals. Heat-carrying phonons in iron (Fe) doped MgO, or [Mg,Fe]O ferropericlase, are known to be resonantly scattered by interaction with a 3.3 THz electronic transition in the high-spin state of the Fe impurities. At sufficiently high pressures, the Fe atoms transition from a high-spin to a low-spin state, which eliminates the resonant interaction and reduces the Fe atoms to simpler point defect phonon scatterers. To study the behavior of phonon-defect scattering with and without this resonant scattering process, I measured the thermal conductivity of Mg0.92Fe0.08 O ferropericlase up to and above the 40--60 GPa spin transition. Fe-doped MgO (ferropericlase) is also a model system relevant to geophysical modeling of the Earth's core-mantle boundary, so data on its thermal transport under pressure is valuable in itself. (Abstract shortened by UMI.).

  10. Cooling apparatus and couplings therefor

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)

    1993-01-01

    The present invention relates generally to the field of thermal transfer and, more specifically, to a direct-interface, fusible heat sink for non-venting, regenerable, and self-contained thermal regulation. A quick connect coupling includes a male and a female portion. The female portion is frozen in a container of solid-phase coolant fluid, i.e., water, so that passages in the housing are blocked by ice initially. The ice is melted by direct interface with liquid coolant fluid delivered from the male portion. The present invention has advantages in that the phase change material remains sealed at all times, including during regeneration. Also, it uses quick-disconnect couplings that allow the phase change material to completely fill the container and is easily handled in microgravity without spills, leakage, or handling of phase change material.

  11. A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2-RGO nanocomposites.

    PubMed

    Nam, Woo Hyun; Lim, Young Soo; Kim, Woochul; Seo, Hyeon Kook; Dae, Kyun Seong; Lee, Soonil; Seo, Won-Seon; Lee, Jeong Yong

    2017-06-14

    We report synergistically enhanced thermoelectric properties through the independently controlled charge and thermal transport properties in a TiO 2 -reduced graphene oxide (RGO) nanocomposite. By the consolidation of TiO 2 -RGO hybrid powder using spark plasma sintering, we prepared an interface-controlled TiO 2 -RGO nanocomposite where its grain boundaries are covered with the RGO network. Both the enhancement in electrical conductivity and the reduction in thermal conductivity were simultaneously achieved thanks to the beneficial effects of the RGO network, and detailed mechanisms are discussed. This led to the gigantic increase in the ratio of electrical to thermal conductivity by six orders of magnitude and also the synergistic enhancement in the thermoelectric figure of merit by two orders. Our results present a strategy for the realization of 'phonon-glass electron-crystals' through interface control using graphene in graphene hybrid thermoelectric materials.

  12. Techniques for Reducing Thermal Contact Resistance in Steady-State Thermal Conductivity Measurements on Polymer Composites

    NASA Astrophysics Data System (ADS)

    Stacey, C.; Simpkin, A. J.; Jarrett, R. N.

    2016-11-01

    The National Physical Laboratory (NPL) has developed a new variation on the established guarded hot plate technique for steady-state measurements of thermal conductivity. This new guarded hot plate has been specifically designed for making measurements on specimens with a thickness that is practical for advanced industrial composite materials and applications. During the development of this new guarded hot plate, NPL carried out an experimental investigation into methods for minimising the thermal contact resistance between the test specimen and the plates of the apparatus. This experimental investigation included tests on different thermal interface materials for use in another NPL facility based on a commercial guarded heat flow meter apparatus conforming to standard ASTM E1530-11. The results show the effect of applying different quantities of the type of heat transfer compound suggested in ASTM E1530-11 (clause 10.7.3) and also the effect on thermal resistance of alternative types of thermal interface products. The optimum quantities of two silicone greases were determined, and a silicone grease filled with copper was found to offer the best combination of repeatability, small hysteresis effect and a low thermal contact resistance. However, two products based on a textured indium foil and pyrolytic graphite sheet were found to offer similar or better reductions in thermal contact resistance, but with quicker, easier application and the advantages of protecting the apparatus plates from damage and being useable with specimen materials that would otherwise absorb silicone grease.

  13. Exploring Novel Spintronic Responses from Advanced Functional Organic Materials

    DTIC Science & Technology

    2015-11-12

    March 20-22, 2014 (8) Interface enhanced photovoltaic and Seebeck effects in organic solar cells and thermoelectric devices DISTRIBUTION A...on thermoelectric effects by using polymer/metal interface-controllable thermal and electric conductions. The project explored a new strategy by using...following major breakthroughs on molecular metamaterials by using spin radicals and on thermoelectric effects by using polymer/metal interface

  14. Development of interface-dominant bulk Cu/V nanolamellar composites by cross accumulative roll bonding

    PubMed Central

    Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.

    2017-01-01

    Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346

  15. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-02-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.

  16. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    PubMed Central

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-01-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting. PMID:26884123

  17. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry

    DOE PAGES

    Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.; ...

    2017-10-20

    The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less

  18. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.

    The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less

  19. Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Sun, Xin

    Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joiningmore » interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.« less

  20. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.

    PubMed

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui; King, Charles; Catalano, Massimo; Oh, Jun Kyun; Talib, Ansam J; Scholar, Ethan A; Verkhoturov, Stanislav V; Cagin, Tahir; Sokolov, Alexei V; Kim, Moon J; Matin, Kaiser; Narumanchi, Sreekant; Akbulut, Mustafa

    2017-03-22

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm 2 K/W for a typical bond-line thickness of 30-50 μm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.

  1. Vertically aligned carbon nanotube arrays as thermal interface material for vibrational structure of piezoelectric transformer

    NASA Astrophysics Data System (ADS)

    Chen, Lie; Ju, Bin; Feng, Zhihua; Zhao, Yang

    2018-07-01

    The application and characterization of thermal interface material (TIM) for vibrational structures is investigated in this paper. The vibrating feature during the operation requires unique solution for its thermal management, since the connection between the device and heat dissipater should be able to conduct heat efficiently and impose minimum constraint onto the vibration simultaneously. As a typical vibrational device, piezoelectric transformers (PTs) are discussed in this paper. The PTs have urgent demands for thermal dissipation since their power conversion efficiency decrease rapidly with the rising temperature. A novel method by applying vertically aligned carbon nanotube (VACNT) arrays to the interface between PT and heat dissipater is presented to enhance the performance of piezoelectric transformers. VACNT arrays are one of the excellent TIMs. It can directly establish thermal contact between two surfaces by van der Waals’ forces. In addition, the unique anisotropic character of CNT arrays provides enough flexibility to accommodate the vibration during the operation. Different configurations of TIMs are compared with each other in this work, including CNT arrays, tape of polypropylene (PP) membrane and without heat transfer structure (HTS). The results indicate that the temperature rise is lowest and the efficiency is highest at the same power density while CNT arrays served as the TIM. Almost no significant fretting and wearing damage occurred on PT electrode surface with CNT arrays TIM even after working continuously for 120 days. Meanwhile, the thermo-physical properties of CNT arrays at contact interface are measured by optical transient thermo-reflectance technique.

  2. Graphene nanocomposites as thermal interface materials for cooling energy devices

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. S.; Valeev, A. R.

    2017-11-01

    The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.

  3. Mesopores induced zero thermal expansion in single-crystal ferroelectrics.

    PubMed

    Ren, Zhaohui; Zhao, Ruoyu; Chen, Xing; Li, Ming; Li, Xiang; Tian, He; Zhang, Ze; Han, Gaorong

    2018-04-24

    For many decades, zero thermal expansion materials have been the focus of numerous investigations because of their intriguing physical properties and potential applications in high-precision instruments. Different strategies, such as composites, solid solution and doping, have been developed as promising approaches to obtain zero thermal expansion materials. However, microstructure controlled zero thermal expansion behavior via interface or surface has not been realized. Here we report the observation of an impressive zero thermal expansion (volumetric thermal expansion coefficient, -1.41 × 10 -6  K -1 , 293-623 K) in single-crystal ferroelectric PbTiO 3 fibers with large-scale faceted and enclosed mesopores. The zero thermal expansion behavior is attributed to a synergetic effect of positive thermal expansion near the mesopores due to the oxygen-based polarization screening and negative thermal expansion from an intrinsic ferroelectricity. Our results show that a fascinating surface construction in negative thermal expansion ferroelectric materials could be a promising strategy to realize zero thermal expansion.

  4. Thermally Conductive-Silicone Composites with Thermally Reversible Cross-links.

    PubMed

    Wertz, J T; Kuczynski, J P; Boday, D J

    2016-06-08

    Thermally conductive-silicone composites that contain thermally reversible cross-links were prepared by blending diene- and dienophile-functionalized polydimethylsiloxane (PDMS) with an aluminum oxide conductive filler. This class of thermally conductive-silicones are useful as thermal interface materials (TIMs) within Information Technology (IT) hardware applications to allow rework of valuable components. The composites were rendered reworkable via retro Diels-Alder cross-links when temperatures were elevated above 130 °C and required little mechanical force to remove, making them advantageous over other TIM materials. Results show high thermal conductivity (0.4 W/m·K) at low filler loadings (45 wt %) compared to other TIM solutions (>45 wt %). Additionally, the adhesion of the material was found to be ∼7 times greater at lower temperatures (25 °C) and ∼2 times greater at higher temperatures (120 °C) than commercially available TIMs.

  5. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM.

    PubMed

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-20

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.

  6. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    NASA Astrophysics Data System (ADS)

    Eric, Becker; Guochao, Gu; Laurent, Langlois; Raphaël, Pesci; Régis, Bigot

    2011-01-01

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  7. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE PAGES

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  8. Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing

    DOE PAGES

    Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...

    2017-06-12

    The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less

  9. Carbon-Nanotube-Based Epoxy Matrix Thermal Interface Materials for Thermal Management in Load Bearing Aerospace Structures

    DTIC Science & Technology

    2012-01-12

    fabrication of the composite indicate physical deformities and defects, including entanglement of carbon nanotubes and fused contacts, that are understood...working distance, and spot size, 2.5) of MWCNT array batch of which the composite was made and tested: (a) Entanglements of Individual Nanotubes...electron, photon and phonon) in these materials is critical to their reliable and robust performance, thus accommodating denser circuits 2 and higher

  10. In situ transmission electron microscopy He + implantation and thermal aging of nanocrystalline iron

    DOE PAGES

    Muntifering, Brittany R.; Fang, Youwu; Leff, Asher C.; ...

    2016-10-04

    Due to their high density of interfaces, nanostructured material are hypothesized to show a higher tolerance to radiation damage compared to conventional coarse-grained materials and are on interest for use in future nuclear reactors. In order to investigate the roles of vacancies, self-interstitials, and helium during defect accumulation, and the thermal evolution of such defects, a complex set of in situ TEM experiments were performed in nanocrystalline iron.

  11. Time-dependent deformation of titanium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.

    1995-01-01

    A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.

  12. Phase field modeling of rapid crystallization in the phase-change material AIST

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  13. A review of passive thermal management of LED module

    NASA Astrophysics Data System (ADS)

    Huaiyu, Ye; Koh, Sau; van Zeijl, Henk; Gielen, A. W. J.; Guoqi, Zhang

    2011-01-01

    Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.

  14. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier

    DTIC Science & Technology

    2015-09-02

    Joule heating should be restricted inside a small volume of the phase-change material and heat loss by thermal conduction to the surroundings needs to...technique (see Figure 1a). TDTR is a well-established pump− probe technique, capable of measuring the cross-plane thermal conductivity of nanometer-thin...films and thermal conductance per unit area across interfaces of particular interest27 (see Supporting Information, Section 1 and Figure S1

  15. Organophophorous Ester Degradation by Chromium(III) Terephthalate Metal-Organic Framework (MIL-101) Chelated to N,N-Dimethylaminopyridine and Related Aminopyridines

    DTIC Science & Technology

    2013-01-22

    hydrofluoric acid in the hydro- thermal synthesis of MIL-101 MOF, and employed an optimized TMAOH/Cr(NO3)3/TPA/H2O (0.25/1/1/280) alkaline medium.41 MOF...identical to those of as-synthesized, parent MIL-101. This demonstrates that the framework integrity of MIL-101 was retained after both thermal water...Materials & Interfaces Research Article dx.doi.org/10.1021/am302359b | ACS Appl. Mater. Interfaces 2013, 5, 1269−12781272 of most zeolites or silicas

  16. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    PubMed

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  17. Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances

    DOE PAGES

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui; ...

    2017-02-27

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Here in this paper, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix -- which are prepared by chemisorption-coupledmore » electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m.K), which are very high considering their relatively low elastic modulus values on the order of 21.2 to 28.5 GPa. The synergistic combination of these properties lead to the ultra-low total thermal resistivity values in the range of 0.38 to 0.56 mm 2.K/W for a typical bondline thickness of 30-50 um, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally-induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.« less

  18. Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Here in this paper, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix -- which are prepared by chemisorption-coupledmore » electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m.K), which are very high considering their relatively low elastic modulus values on the order of 21.2 to 28.5 GPa. The synergistic combination of these properties lead to the ultra-low total thermal resistivity values in the range of 0.38 to 0.56 mm 2.K/W for a typical bondline thickness of 30-50 um, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally-induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.« less

  19. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    PubMed

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  20. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    NASA Astrophysics Data System (ADS)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  1. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  2. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    NASA Astrophysics Data System (ADS)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon coupling in the metal, and electron-phonon coupling across the interface.

  3. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  4. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade.

    PubMed

    Lee, S H; Yang, B X; Collins, J T; Ramanathan, M

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  5. Picosecond laser bonding of highly dissimilar materials

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-10-01

    We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.

  6. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    NASA Astrophysics Data System (ADS)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  7. Comparing the Richtmyer-Meshkov instability of thermal and ion-species interfaces in two-fluid plasmas

    NASA Astrophysics Data System (ADS)

    Wheatley, Vincent; Bond, Daryl; Li, Yuan; Samtaney, Ravi; Pullin, Dale

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) of a shock accelerated perturbed density interface is important in both inertial confinement fusion and astrophysics, where the materials involved are typically in the plasma state. Initial density interfaces can be due to either temperature or ion-species discontinuities. If the Atwood number of the interfaces and specific heat ratios of the fluids are matched, these two cases behave similarly when modeled using the equations of either hydrodynamics or magnetohydrodynamics. In the two-fluid ion-electron plasma model, however, there is a significant difference between them: In the thermal interface case, there is a discontinuity in electron density that is also subject to the RMI, while for the ion-species interface case there is not. It will be shown via ideal two-fluid plasma simulations that this causes substantial differences in the dynamics of the flow between the two cases. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.

  8. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  9. A thermal scale modeling study for Apollo and Apollo applications, volume 2

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.

    1972-01-01

    The development and demonstration of practical thermal scale modeling techniques applicable to systems involving radiation, conduction, and convection with emphasis on cabin atmosphere/cabin wall thermal interface are discussed. The Apollo spacecraft environment is used as the model. Four possible scaling techniques were considered: (1) modified material preservation, (2) temperature preservation, (3) scaling compromises, and Nusselt number preservation. A thermal mathematical model was developed for use with the Nusselt number preservation technique.

  10. Thermal Interface Materials Selection and Application Guidelines: In Perspective of Xilinx Virtex-5QV Thermal Management

    NASA Technical Reports Server (NTRS)

    Suh, Jong-ook; Dillon, R. Peter; Tseng, Stephen

    2015-01-01

    The heat from high-power microdevices for space, such as Xilinx Virtex 4 and 5 (V4 and V5), has to be removed mainly through conduction in the space vacuum environment. The class-Y type packages are designed to remove the heat from the top of the package, and the most effective method to remove heat from the class-Y type packages is to attach a heat transfer device on the lid of the package and to transfer the heat to frame or chassis. When a heat transfer device is attached to the package lid, the surfaces roughness of the package lid and the heat transfer device reduces the effective contact area between the two. The reduced contact area results in increased thermal contact resistance, and a thermal interface material is required to reduce the thermal contact resistance by filling in the gap between the surfaces of the package lid and the heat transfer device. The current report describes JPL's FY14 NEPP task study on property requirements of TIM and impact of TIM properties on the packaging reliability. The current task also developed appratuses to investigate the performances of TIMs in the actual mission environment.

  11. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  12. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE PAGES

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-05-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  13. A review of electron bombardment thruster systems/spacecraft field and particle interfaces

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1978-01-01

    Information on the field and particle interfaces of electron bombardment ion thruster systems was summarized. Major areas discussed were the nonpropellant particles, neutral propellant, ion beam, low energy plasma, and fields. Spacecraft functions and subsystems reviewed were solar arrays, thermal control systems, optical sensors, communications, science, structures and materials, and potential control.

  14. RERTR-9 Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Perez

    2011-05-01

    The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less

  15. Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder.

    PubMed

    Gong, Wei; Li, Pengfei; Zhang, Yunheng; Feng, Xuhui; Major, Joshua; DeVoto, Douglas; Paret, Paul; King, Charles; Narumanchi, Sreekant; Shen, Sheng

    2018-06-13

    Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term "supersolder" to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional solders and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.

  16. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier.

    PubMed

    Ahn, Chiyui; Fong, Scott W; Kim, Yongsung; Lee, Seunghyun; Sood, Aditya; Neumann, Christopher M; Asheghi, Mehdi; Goodson, Kenneth E; Pop, Eric; Wong, H-S Philip

    2015-10-14

    Phase-change memory (PCM) is an important class of data storage, yet lowering the programming current of individual devices is known to be a significant challenge. Here we improve the energy-efficiency of PCM by placing a graphene layer at the interface between the phase-change material, Ge2Sb2Te5 (GST), and the bottom electrode (W) heater. Graphene-PCM (G-PCM) devices have ∼40% lower RESET current compared to control devices without the graphene. This is attributed to the graphene as an added interfacial thermal resistance which helps confine the generated heat inside the active PCM volume. The G-PCM achieves programming up to 10(5) cycles, and the graphene could further enhance the PCM endurance by limiting atomic migration or material segregation at the bottom electrode interface.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H.; Yang, B. X.; Collins, J. T.

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  18. Diamond-based heat spreaders for power electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging potential of the two heat-spreading solutions invoked was evaluated. This study was carried out within the framework of a French-American collaboration between the Electrical Engineering department of the University of Nebraska-Lincoln (United States, U.S.) and the Institute of Condensed Matter Chemistry of the University of Bordeaux (France). This study was financed by the Office of Naval Research in the U.S., and by the Region Aquitaine in France.

  19. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    NASA Astrophysics Data System (ADS)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in the finite element program ABAQUS/standard via the user element subroutine UEL. Using this numerical capability, an extensive study is conducted on the major characteristics of the proposed theories for bulk and interface such as size effect on yield and kinematic hardening, features of boundary layer formation, thermal softening and grain boundary weakening, and the effect of soft and stiff interfaces.

  20. Modeling of Interface and Internal Disorder Applied to XRD Analysis of Ag-Based Nano-Multilayers.

    PubMed

    Ariosa, Daniel; Cancellieri, Claudia; Araullo-Peters, Vicente; Chiodi, Mirco; Klyatskina, Elizaveta; Janczak-Rusch, Jolanta; Jeurgens, Lars P H

    2018-06-20

    Multilayered structures are a promising route to tailor electronic, magnetic, optical, and/or mechanical properties and durability of functional materials. Sputter deposition at room temperature, being an out-of-equilibrium process, introduces structural defects and confers to these nanosystems an intrinsic thermodynamical instability. As-deposited materials exhibit a large amount of internal atomic displacements within each constituent block as well as severe interface roughness between different layers. To access and characterize the internal multilayer disorder and its thermal evolution, X-ray diffraction investigation and analysis are performed systematically at differently grown Ag-Ge/aluminum nitride (AlN) multilayers (co-deposited, sequentially deposited with and without radio frequency (RF) bias) samples and after high-temperature annealing treatment. We report here on model calculations based on a kinematic formalism describing the displacement disorder both within the multilayer blocks and at the interfaces to reproduce the experimental X-ray diffraction intensities. Mixing and displacements at the interface are found to be considerably reduced after thermal treatment for co- and sequentially deposited Ag-Ge/AlN samples. The application of a RF bias during the deposition causes the highest interface mixing and introduces random intercalates in the AlN layers. X-ray analysis is contrasted to transmission electron microscopy pictures to validate the approach.

  1. Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Tynell, Tommi; Gaskins, John T.; Donovan, Brian F.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-03-01

    Nanomaterial interfaces and concomitant thermal resistances are generally considered as atomic-scale planes that scatter the fundamental energy carriers. Given that the nanoscale structural and chemical properties of solid interfaces can strongly influence this thermal boundary conductance, the ballistic and diffusive nature of phonon transport along with the corresponding phonon wavelengths can affect how energy is scattered and transmitted across an interfacial region between two materials. In hybrid composites composed of atomic layer building blocks of inorganic and organic constituents, the varying interaction between the phononic spectrum in the inorganic crystals and vibronic modes in the molecular films can provide a new avenue to manipulate the energy exchange between the fundamental vibrational energy carriers across interfaces. Here, we systematically study the heat transfer mechanisms in hybrid superlattices of atomic- and molecular-layer-grown zinc oxide and hydroquinone with varying thicknesses of the inorganic and organic layers in the superlattices. We demonstrate ballistic energy transfer of phonons in the zinc oxide that is limited by scattering at the zinc oxide/hydroquinone interface for superlattices with a single monolayer of hydroquinone separating the thicker inorganic layers. The concomitant thermal boundary conductance across the zinc oxide interfacial region approaches the maximal thermal boundary conductance of a zinc oxide phonon flux, indicative of the contribution of long wavelength vibrations across the aromatic molecular monolayers in transmitting energy across the interface. This transmission of energy across the molecular interface decreases considerably as the thickness of the organic layers are increased.

  2. Development of Methodologies for the Estimation of Thermal Properties Associated with Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1996-01-01

    A thermal stress analysis is an important aspect in the design of aerospace structures and vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space Administration Langley Research Center (NASA-LaRC). These structures are complex and are often composed of numerous components fabricated from a variety of different materials. The thermal loads on these structures induce temperature variations within the structure, which in turn result in the development of thermal stresses. Therefore, a thermal stress analysis requires knowledge of the temperature distributions within the structures which consequently necessitates the need for accurate knowledge of the thermal properties, boundary conditions and thermal interface conditions associated with the structural materials. The goal of this proposed multi-year research effort was to develop estimation methodologies for the determination of the thermal properties and interface conditions associated with aerospace vehicles. Specific objectives focused on the development and implementation of optimal experimental design strategies and methodologies for the estimation of thermal properties associated with simple composite and honeycomb structures. The strategy used in this multi-year research effort was to first develop methodologies for relatively simple systems and then systematically modify these methodologies to analyze complex structures. This can be thought of as a building block approach. This strategy was intended to promote maximum usability of the resulting estimation procedure by NASA-LARC researchers through the design of in-house experimentation procedures and through the use of an existing general purpose finite element software.

  3. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE PAGES

    Abdeljawad, Fadi; Foiles, Stephen M.

    2016-05-04

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less

  4. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdeljawad, Fadi; Foiles, Stephen M.

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less

  5. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.

    PubMed

    Wi, Jae-Hyung; Kim, Tae Gun; Kim, Jeong Won; Lee, Woo-Jung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck

    2015-08-12

    We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.

  6. Thermal conductance of Teflon and Polyethylene: Insight from an atomistic, single-molecule level

    PubMed Central

    Buerkle, Marius; Asai, Yoshihiro

    2017-01-01

    The thermal transport properties of teflon (polytetrafluoroethylene) and its polyethylene counterparts are, while highly desirable and widely used, only superficially understood. Here, we aim therefore to provide rigorous insight from an atomistic point of view in context of single-molecule devices. We show that for vinyl polymers adsorbed on metal-surfaces the thermal transport strongly depends on the properties of the metal-molecule interface and that the reduced thermal conductance observed for teflon derivatives originates in a reduced phonon injection life time. In asymmetric molecules phonon blocking on the intra molecular interface leads to a further reduction of thermal conductance. For hetrojunctions with different electrode materials we find that thermal conductance is suppressed due to a reduced overlap of the available phonon modes in the different electrodes. A detailed atomistic picture is thereby provided by studying the transport through perfluorooctane and octane on a single-molecule level using first principles transport calculations and nonequilibrium molecular dynamic simulations. PMID:28150738

  7. Acoustic wave generation by microwaves and applications to nondestructive evaluation.

    PubMed

    Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel

    2002-05-01

    Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented.

  8. Dominant phonon polarization conversion across dimensionally mismatched interfaces: Carbon-nanotube-graphene junction

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Lee, Jonghoon; Dong, Yalin; Roy, Ajit; Fisher, Timothy S.; Ruan, Xiulin

    2018-04-01

    Dimensionally mismatched interfaces are emerging for thermal management applications, but thermal transport physics remains poorly understood. Here we consider the carbon-nanotube-graphene junction, which is a dimensionally mismatched interface between one- and two-dimensional materials and is the building block for carbon-nanotube (CNT)-graphene three-dimensional networks. We predict the transmission function of individual phonon modes using the wave packet method; surprisingly, most incident phonon modes show predominantly polarization conversion behavior. For instance, longitudinal acoustic (LA) polarizations incident from CNTs transmit mainly into flexural transverse (ZA) polarizations in graphene. The frequency stays the same as the incident mode, indicating elastic transmission. Polarization conversion is more significant as the phonon wavelength increases. We attribute such unique phonon polarization conversion behavior to the dimensional mismatch across the interface, and it opens significantly new phonon transport channels as compared to existing theories where polarization conversion is neglected.

  9. Thermal management systems and methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingchao, E-mail: zhang@unl.edu, E-mail: yyue@whu.edu.cn; Hong, Yang; Yue, Yanan, E-mail: zhang@unl.edu, E-mail: yyue@whu.edu.cn

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulatemore » the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs.« less

  11. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    DOE PAGES

    Lee, S. H.; Yang, B. X.; Collins, J. T.; ...

    2017-02-07

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  12. Experimental Investigation on Thermal Effects in Ultrasonic Joining of Thin Poly(ethylene terephthalate) Films Using Torsional Vibrations

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Uchiyama, Kenta; Kuriyama, Takashi; Miyata, Ken; Hisamatsu, Tokuro

    2009-11-01

    The authors previously determined that thermal effects are not a dominant factor in the ultrasonic joining of very low density polyethylene (VLDPE) films using torsional vibration. Now, to confirm that the plastic materials are not “melted” by mechanically generated heat in the joining, they have conducted joining experiments for thin poly(ethylene terephthalate) (PET) films. The temperature at the interface of two PET films of 0.1 mm thickness only increased to approximately 100 °C, and no trace of liquidation of the material was observed at the interface under a polarizing microscope. Investigation using a differential scanning calorimeter (DSC) revealed that the “melting point” of PET is about 260 °C, and an ultrasonically joined specimen showed no significant difference in thermal characteristics compared with an intact PET film. It was also determined that the PET films cannot be joined even after being pressed together for a period of 30 min or longer at approximately 150 °C. From the results obtained using the microscope and the DSC, the authors conclude that melting of the materials plays essentially no role in ultrasonic plastic joining.

  13. Thermo-Mechanical Analysis for John Deere Electronics Solutions | Advanced

    Science.gov Websites

    impacts of alternative manufacturing processes Die, package, and interface material analysis for power module reliability Manufacturing process impacts versus thermal cycling impacts on power module

  14. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, Fazil

    1988-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  15. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, F.

    1989-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  16. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 3: Appendix E - N

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The design of a solar electric power plant for a small community is reported. Topics covered include: (1) control configurations and interface requirements for the baseline power system; (2) annual small power system output; (3) energy requirements for operation of the collectors and control building; (4) life cycle costs and reliability predictions; (5) thermal conductivities and costs of receiver insulation materials; (6) transient thermal modelling for the baseline receiver/thermal transport system under normal and inclement operating conditions; (7) high temperature use of sodium; (8) shading in a field of parabolic collectors; and (9) buffer storage materials.

  17. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  18. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    PubMed

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  19. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    NASA Astrophysics Data System (ADS)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  20. Reduction of thermal conductivity in phononic nanomesh structures.

    PubMed

    Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R

    2010-10-01

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

  1. Methods of forming thermal management systems and thermal management methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  2. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    NASA Astrophysics Data System (ADS)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  3. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    PubMed

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low thermal distortion parameter (TDP). Thus, this material presents a viable and efficient alternative to existing materials for thermal management in electronics.

  4. Thermal effects on transducer material for heat assisted magnetic recording application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Rong, E-mail: Ji-Rong@dsi.a-star.edu.sg; Xu, Baoxi; Cen, Zhanhong

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kindsmore » of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.« less

  5. Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Feng, Xuhui; Major, Joshua

    Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term 'supersolder' to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional soldersmore » and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.« less

  6. Role of fluttering dislocations in the thermal interface resistance between a silicon crystal and plastic solid 4He

    NASA Astrophysics Data System (ADS)

    Amrit, Jay; Ramiere, Aymeric; Volz, Sebastian

    2018-01-01

    A quantum solid (solid 4He) in contact with a classical solid defines a new class of interfaces. In addition to its quantum nature, solid 4He is indeed a very plastic medium. We examine the thermal interface resistance upon solidification of superfluid 4He in contact with a silicon crystal surface (111) and show that dislocations play a crucial role in the thermal interface transport. The growth of solid 4He and the measurements are conducted at the minimum of the melting curve of helium (0.778 K and ˜25 bar ). The results display a first-order transition in the Kapitza resistance from a value of RK ,L=(80 ±8 ) c m2K /W at a pressure of 24.5 bar to a value of RK ,S=(41.7 ±8 ) c m2K /W after the formation of solid helium at ˜25.2 bar . The drop in RK ,S is only of a factor of ˜2 , although transverse phonon modes in solid 4He now participate in heat transmission at the interface. We provide an explanation for the measured RK ,S by considering the interaction of thermal phonons with vibrating dislocations in solid 4He. We demonstrate that this mechanism, also called fluttering, induces a thermal resistance RF l∝NdT-6 , where T is the temperature and Nd is the density of dislocations. We estimate that for dislocation densities on the order of ˜107c m-2 , RF l predominates over the boundary resistance RK ,S. These fundamental findings shed light on the role of dislocations and provide a quantitative explanation for previous experiments which showed no measurable change in the Kapitza resistance between Cu and superfluid 4He upon solidification of the latter. This demonstrates the possibility of using dislocations as an additional means to tailor thermal resistances at interfaces, formed especially with a plastic material.

  7. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  8. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  9. Temperature measurements at material interfaces with thin-foil gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike; Chapman, David; Proud, William

    2009-06-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  10. Temperature Measurements at Material Interfaces with Thin-Foil Gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike J.; Chapman, David J.; Proud, William G.

    2009-12-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  11. Prediction of Thermal Transport Properties of Materials with Microstructural Complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youping

    This project aims at overcoming the major obstacle standing in the way of progress in dynamic multiscale simulation, which is the lack of a concurrent atomistic-continuum method that allows phonons, heat and defects to pass through the atomistic-continuum interface. The research has led to the development of a concurrent atomistic-continuum (CAC) methodology for multiscale simulations of materials microstructural, mechanical and thermal transport behavior. Its efficacy has been tested and demonstrated through simulations of dislocation dynamics and phonon transport coupled with microstructural evolution in a variety of materials and through providing visual evidences of the nature of phonon transport, such asmore » showing the propagation of heat pulses in single and polycrystalline solids is partially ballistic and partially diffusive. In addition to providing understanding on phonon scattering with phase interface and with grain boundaries, the research has contributed a multiscale simulation tool for understanding of the behavior of complex materials and has demonstrated the capability of the tool in simulating the dynamic, in situ experimental studies of nonequilibrium transient transport processes in material samples that are at length scales typically inaccessible by atomistically resolved methods.« less

  12. Using Laser-Induced Thermal Voxels to Pattern Diverse Materials at the Solid-Liquid Interface.

    PubMed

    Zarzar, Lauren D; Swartzentruber, B S; Donovan, Brian F; Hopkins, Patrick E; Kaehr, Bryan

    2016-08-24

    We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. This strategy expands the chemistries and materials that can be used in combination with laser direct writing.

  13. Using laser-induced thermal voxels to pattern diverse materials at the solid–liquid interface

    DOE PAGES

    Zarzar, Lauren D.; Swartzentruber, B. S.; Donovan, Brian F.; ...

    2016-08-05

    We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. In conclusion, this strategy expands the chemistries and materials that can be used in combination with laser direct writing.

  14. Direct write with microelectronic circuit fabrication

    DOEpatents

    Drummond, T.; Ginley, D.

    1988-05-31

    In a process for deposition of material onto a substrate, for example, the deposition of metals for dielectrics onto a semiconductor laser, the material is deposited by providing a colloidal suspension of the material and directly writing the suspension onto the substrate surface by ink jet printing techniques. This procedure minimizes the handling requirements of the substrate during the deposition process and also minimizes the exchange of energy between the material to be deposited and the substrate at the interface. The deposited material is then resolved into a desired pattern, preferably by subjecting the deposit to a laser annealing step. The laser annealing step provides high resolution of the resultant pattern while minimizing the overall thermal load of the substrate and permitting precise control of interface chemistry and interdiffusion between the substrate and the deposit. 3 figs.

  15. Direct write with microelectronic circuit fabrication

    DOEpatents

    Drummond, Timothy; Ginley, David

    1992-01-01

    In a process for deposition of material onto a substrate, for example, the deposition of metals or dielectrics onto a semiconductor laser, the material is deposited by providing a colloidal suspension of the material and directly writing the suspension onto the substrate surface by ink jet printing techniques. This procedure minimizes the handling requirements of the substrate during the deposition process and also minimizes the exchange of energy between the material to be deposited and the substrate at the interface. The deposited material is then resolved into a desired pattern, preferably by subjecting the deposit to a laser annealing step. The laser annealing step provides high resolution of the resultant pattern while minimizing the overall thermal load of the substrate and permitting precise control of interface chemistry and interdiffusion between the substrate and the deposit.

  16. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

    2017-09-01

    Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

  17. Flexural resonance mechanism of thermal transport across graphene-SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Ong, Zhun-Yong; Qiu, Bo; Xu, Shanglong; Ruan, Xiulin; Pop, Eric

    2018-03-01

    Understanding the microscopic mechanism of heat dissipation at the dimensionally mismatched interface between a two-dimensional (2D) crystal and its substrate is crucial for the thermal management of devices based on 2D materials. Here, we study the lattice contribution to thermal (Kapitza) transport at graphene-SiO2 interfaces using molecular dynamics (MD) simulations and non-equilibrium Green's functions (NEGF). We find that 78 percent of the Kapitza conductance is due to sub-20 THz flexural acoustic modes, and that a resonance mechanism dominates the interfacial phonon transport. MD and NEGF estimate the classical Kapitza conductance to be hK ≈ 10 to 16 MW K-1 m-2 at 300 K, respectively, consistent with existing experimental observations. Taking into account quantum mechanical corrections, this value is approximately 28% lower at 300 K. Our calculations also suggest that hK scales as T2 at low temperatures (T < 100 K) due to the linear frequency dependence of phonon transmission across the graphene-SiO2 interface at low frequencies. Our study sheds light on the role of flexural acoustic phonons in heat dissipation from graphene to its substrate.

  18. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  19. Postgrowth Microwave Treatment to Align Carbon Nanotubes

    DTIC Science & Technology

    2013-03-01

    interface material, microwave processing , metal substrate, alignment, contact area, thermal chemical vapor deposition Introduction Since their discovery, CNTs...short forests. The entangled “canopy” of a CNT forest can be removed with additional processing after growth, e.g., plasma etching, to create more...strates for CNT growth at increased manufacturing scale [34]. Studies have shown that CNT forests grown on both sides of metal foils can produce thermal

  20. Overview of CEV Thermal Protection System Seal Development

    NASA Technical Reports Server (NTRS)

    DeMange, Jeff; Taylor, Shawn; Dunlap, Patrick; Steinetz, Bruce; Delgado, Irebert; Finkbeiner, Josh; Mayer, John

    2009-01-01

    NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV: a) HS-to-BS interface. b) Compression pad. HS-to-BS Interface Seal System: a) design has evolved as a result of changes with the CEV TPS. b) Seal system is currently under development/evaluation. Coupon level tests, Arc jet tests, and Validation test development. Compression Pad: a) Finalizing design options. b) Evaluating material candidates.

  1. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1983-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  2. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  3. A 3D graphene interface (Si-doped) of Ag matrix with excellent electronic transmission and thermal conductivity via nano-assembly modification

    NASA Astrophysics Data System (ADS)

    Ye, Xianzhu; Li, Ming; Zhang, Yafei

    2018-04-01

    The wide development of electronic materials requires higher load capacity and high temperature resistance. In this study, a novel architecture was fabricated consisting of a 3D reduced graphene oxide (rGO)-Si interface using a simple nano-assembly sintering to achieve high current capacity and excellent thermal features. Via the analysis of catalytic oxidation for methanol, the loading catalytic activity of nano-Ag still remained to a certain extent for the composite with 0.8 vol.% rGO. The final Ag-rGO composite apparently possesses a higher initial oxidation temperature and lower rate of oxidation for internal passing and shielding, and the thermal conductivity is significantly enhanced from 344 to 407 W m‑1 K‑1. Importantly, with a 3D synergistic transportation network, the resistivity of the Ag-rGO composite is much lower than pure Ag, and with a longer conductive time under a stress condition of current density of 6.0  ×  104 A cm‑2. Thermal-electronic features demonstrate that the dispersed graphene interface can efficiently suppress the primary failure pathways (high temperature) in Ag matrix and make it uniquely efficient for the advancement of microscale and thermal-management electronics.

  4. The Effect of Interface Roughness and Oxide Film Thickness on the Inelastic Response of Thermal Barrier Coatings to Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob; Arnold, Steven M.

    1999-01-01

    The effects of interfacial roughness and oxide film thickness on thermally-induced stresses in plasma-sprayed thermal barrier coatings subjected to thermal cycling are investigated using the recently developed higher-order theory for functionally graded materials. The higher-order theory is shown to be a viable alternative to the finite-element approach, capable of modeling different interfacial roughness architectures in the presence of an aluminum oxide layer and capturing the high stress gradients that occur at the top coat/bond coat interface. The oxide layer thickness is demonstrated to have a substantially greater effect on the evolution of residual stresses than local variations in interfacial roughness. Further, the location of delamination initiation in the top coat is predicted to change with increasing oxide layer thickness. This result can be used to optimize the thickness of a pre-oxidized layer introduced at the top coat/bond coat interface in order to enhance TBC durability as suggested by some researchers. The results of our investigation also support a recently proposed hypothesis regarding delamination initiation and propagation in the presence of an evolving bond coat oxidation, while pointing to the importance of interfacial roughness details and specimen geometry in modeling this phenomenon.

  5. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.

    PubMed

    Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-05-23

    With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.

  6. The control of float zone interfaces by the use of selected boundary conditions

    NASA Technical Reports Server (NTRS)

    Foster, L. M.; Mcintosh, J.

    1983-01-01

    The main goal of the float zone crystal growth project of NASA's Materials Processing in Space Program is to thoroughly understand the molten zone/freezing crystal system and all the mechanisms that govern this system. The surface boundary conditions required to give flat float zone solid melt interfaces were studied and computed. The results provide float zone furnace designers with better methods for controlling solid melt interface shapes and for computing thermal profiles and gradients. Documentation and a user's guide were provided for the computer software.

  7. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    PubMed

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  8. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity

    PubMed Central

    Nakamura, Yoshiaki

    2018-01-01

    Abstract The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies. PMID:29371907

  9. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    DOE PAGES

    Nagabandi, N.; Yegin, C.; Feng, X.; ...

    2018-01-31

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less

  10. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials.

    PubMed

    Nagabandi, N; Yegin, C; Feng, X; King, C; Oh, J K; Scholar, E A; Narumanchi, S; Akbulut, M

    2018-03-09

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m -1 K and 306-321 W m -1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10 -6 m 2 K -1 s for MBCA-BNNS and 8.5 × 10 -7 m 2 K -1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  11. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    NASA Astrophysics Data System (ADS)

    Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.

    2018-03-01

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  12. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagabandi, N.; Yegin, C.; Feng, X.

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less

  13. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  14. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm{sup 2} K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasizedmore » in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.« less

  15. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  16. Thermal analysis of friction riveting of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Vignesh, N. J.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Friction riveting is a new technique which finds its applications in a variety of domains, where there is a need to join dissimilar materials for the sake of achieving weight reduction of the components produced especially in the fields of aerospace and automobile. In this present work, a numerical simulation on the heat transfer analysis has been done to predict the variation of temperature on the surface of the components being joined. Owing to the applications, Aluminum rivet is chosen for friction riveting on Poly Methyl Metha Acrylate base material. Abaqus explicit version 6.14 has been used to simulate the results of the process. Heat flux at the joint interface has been computed and thermal distribution at the work material is predicted.

  17. Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment

    NASA Astrophysics Data System (ADS)

    Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei

    2018-01-01

    Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.

  18. Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads

    NASA Technical Reports Server (NTRS)

    Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin

    2011-01-01

    The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the object. A release agent is applied to the inside surface of the mount just before the binding potting material is injected in the mount. This prevents the potting material from bonding to the mount, and thus prevents stress from being applied, at very low temperatures, to the fragile object being mounted. The potting material mixing and curing is temperature- and humidity-controlled. The mount has radial grooves cut in it that the potting material fills, thus controlling the vertical position of the mounted object. The design can easily be used for long and thin objects, short and wide objects, and any shape in between. The design s advantages are amplified for long and thin fragile objects. The general testing range was 45 to +45 C, but multiple mounts were successfully tested down to 60 and up to 50 C and the design can be adjusted for larger ranges.

  19. Simulation of radial solute segregation in vertical Bridgman growth of pyridine-doped benzene, a surrogate for binary organic nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Lee, Hanjie; Pearlstein, Arne J.

    2000-09-01

    We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.

  20. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-11-01

    Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive stresses in the veneer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Basic principles for rational design of high-performance nanostructured silicon-based thermoelectric materials.

    PubMed

    Yang, Chun Cheng; Li, Sean

    2011-12-23

    Recently, nanostructured silicon-based thermoelectric materials have drawn great attention owing to their excellent thermoelectric performance in the temperature range around 450 °C, which is eminently applicable for concentrated solar thermal technology. In this work, a unified nanothermodynamic model is developed to investigate the predominant factors that determine the lattice thermal conductivity of nanocrystalline, nanoporous, and nanostructured bulk Si. A systematic study shows that the thermoelectric performance of these materials can be substantially enhanced by the following three basic principles: 1) artificial manipulation and optimization of roughness with surface/interface patterning/engineering; 2) grain-size reduction with innovative fabrication techniques in a controllable fashion; and 3) optimization of material parameters, such as bulk solid-vapor transition entropy, bulk vibrational entropy, dimensionality, and porosity, to decrease the lattice thermal conductivity. These principles may be used to rationally design novel nanostructured Si-based thermoelectric materials for renewable energy applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of thermal interface on heat flow in carbon nanofiber composites.

    PubMed

    Gardea, F; Naraghi, M; Lagoudas, D

    2014-01-22

    The thermal transport process in carbon nanofiber (CNF)/epoxy composites is addressed through combined micromechanics and finite element modeling, guided by experiments. The heat exchange between CNF constituents and matrix is studied by explicitly accounting for interface thermal resistance between the CNFs and the epoxy matrix. The effects of nanofiber orientation and discontinuity on heat flow and thermal conductivity of nanocomposites are investigated through simulation of the laser flash experiment technique and Fourier's model of heat conduction. Our results indicate that when continuous CNFs are misoriented with respect to the average temperature gradient, the presence of interfacial resistance does not affect the thermal conductivity of the nanocomposites, as most of the heat flow will be through CNFs; however, interface thermal resistance can significantly alter the patterns of heat flow within the nanocomposite. It was found that very high interface resistance leads to heat entrapment at the interface near to the heat source, which can promote interface thermal degradation. The magnitude of heat entrapment, quantified via the peak transient temperature rise at the interface, in the case of high thermal resistance interfaces becomes an order of magnitude more intense as compared to the case of low thermal resistance interfaces. Moreover, high interface thermal resistance in the case of discontinuous fibers leads to a nearly complete thermal isolation of the fibers from the matrix, which will marginalize the contribution of the CNF thermal conductivity to the heat transfer in the composite.

  3. Carbon-doped single-crystalline SiGe/Si thermistor with high temperature coefficient of resistance and low noise level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radamson, H. H.; Kolahdouz, M.; Shayestehaminzadeh, S.

    2010-11-29

    SiGe (C)/Si(C) multiquantum wells have been studied as a thermistor material for future bolometers. A thermistor material for uncooled Si-based thermal detectors with thermal coefficient of resistance of 4.5%/K for 100x100 {mu}m{sup 2} pixel sizes and low noise constant (K{sub 1/f}) value of 4.4x10{sup -15} is presented. The outstanding performance of the devices is due to Ni-silicide contacts, smooth interfaces, and high quality multiquantum wells containing high Ge content.

  4. High heat flux composites for plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Ting, J.-M.; Lake, M. L.

    1994-09-01

    Vapor grown carbon fiber (VGCF) has been shown to have the highest thermal conductivity of all carbon fiber currently available. This property holds potential of increasing the thickness and longevity of fusion reactor plasma-facing materials. The use of VGCF as a reinforcement in carbon/carbon composites has been explored, as well as methods of joining these plasma-facing materials to copper alloy heat pipes. In extensive study of VGCF/carbon matrix composites, the influence of fiber volume fraction, density, densification method, and heat treatment on composite properties were investigated. Joining of VGCF/carbon composites to copper and beryllium to copper using a novel alloying method was studied. The joint interface was examined by RBS analysis and thermal conductance.

  5. Thermal conductivity of hydrate-bearing sediments

    USGS Publications Warehouse

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  6. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    NASA Astrophysics Data System (ADS)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  7. Interface conductance modal analysis of lattice matched InGaAs/InP

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2016-05-01

    We studied the heat conduction at InGaAs/InP interfaces and found that the total value of interface conductance was quite high ˜830 MW m-2 K-1. The modal contributions to the thermal interface conductance (TIC) were then investigated to determine the mode responsible. Using the recently developed interface conductance modal analysis method, we showed that more than 70% of the TIC arises from extended modes in the system. The lattice dynamics calculations across the interface revealed that, unlike any other interfaces previously studied, the different classes of vibration around the interface of InGaAs/InP naturally segregate into distinct regions with respect to frequency. In addition, interestingly, the entire region of frequency overlap between the sides of the interface is occupied by extended modes, whereby the two materials vibrate together with a single frequency. We also mapped the correlations between modes, which showed that the contribution by extended modes to the TIC primarily arises from coupling to the modes that have the same frequencies of vibration (i.e., autocorrelations). Moreover, interfacial modes despite their low population still contribute more than 6% to interfacial thermal transport. The analysis sheds light on the nature of heat conduction by different classes of vibration that exist in interfacial systems, which has technological relevance to applications such as thermophotovoltaics and optoelectronics.

  8. Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Ko, Hyunseok

    Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding. We used grand canonical monte carlo to optimize the interface, as a part of the stepping stone for further study using the interface.

  9. Thermal and thermoelectric properties of graphene.

    PubMed

    Xu, Yong; Li, Zuanyi; Duan, Wenhui

    2014-06-12

    The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt-ZnO nanograin Schottky barrier interfaces

    NASA Astrophysics Data System (ADS)

    Chan, Yuet Ching; Yu, Jerry; Ho, Derek

    2018-06-01

    Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.

  11. Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates

    NASA Astrophysics Data System (ADS)

    Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan

    2017-12-01

    Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.

  12. Organic Light Emitting Devices with Linearly-Graded Mixed Host Architecture

    NASA Astrophysics Data System (ADS)

    Lee, Sang Min

    Organic Light Emitting Devices (OLEDs) with a linearly-graded mixed (LGM) host architecture in the emissive layer (EML) were studied by the application of a newly-developed thermal deposition boat. A new thermal deposition boat, featuring indirect deposition control and fast rate response, was developed in order to make an evaporation coater of high space utilization and to achieve a real time linearly-graded rate control during the device fabrication process. A new design of dual-hole boat, based on the reduced wall resistance of the side hole toward the vapor flow, enabled the indirect deposition rate control with sufficient control accuracy by using the feature of the stable ratio of rates from top and side holes. Minimizing the thermal mass of the body and designing a direct heat transfer with a coil placed inside the boat resulted in the realization of the linearly-graded deposition rate within acceptable deviation range. Thanks to the feature of fast rate response, it was possible to control the linearly-graded rate of each host material during the process and to apply the architecture to some of the fluorescent and phosphorescent OLED devices. The reported efficiency improvement of a fluorescent OLED, based on step-graded junction in the literature, was well reproduced in an OLED with a LGM architecture, demonstrating that charge balance in the emissive layer can be further improved using the LGM architecture. By minimizing the internal energy barrier in the LGM device, a higher EL efficiency was well demonstrated over the uniformly-mixed (UM) host device, where residual internal interfaces were present as additional quenching sites in the EML. Similar effects were observed in blue phosphorescent OLED devices, where the mobility of the hole transport material (HTM) was usually much higher than that of the electron transport material (ETM) such that the recombination zone was more localized at the EML/ETL interface. It was found that the main effect of the LGM host was to shift the recombination zone inside of the EML and away from and ETL interface such that luminance quenching near the interface was much lower compared to the UM host, where the main recombination zone was localized near the interface and so more sensitive to the interface quenching.

  13. Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Ross, O.

    1980-01-01

    A careful analysis of an abrupt heterojunction consisting of two distinct semiconductors either intrinsic or extrinsic is presented. The calculations apply to a one-dimensional, nondegenerate structure. Taking into account all appropriate boundary conditions, it is shown that the intrinsic Fermi level shows a discontinuity at the interface between the two materials which leads to a discontinuity of the valence band edge equal to the difference in the band gap energies of the two materials. The conduction band edge stays continuous however. This result is independent of possible charged interface states and in sharp contrast to the Anderson model. The reasons for this discrepancy are discussed.

  14. Compliant Interfacial Layers in Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A. (Inventor); Li, Billy Chun-Yip (Inventor); Ravi, Vilupanur A. (Inventor); Fleurial, Jean-Pierre (Inventor); Caillat, Thierry (Inventor); Anjunyan, Harut (Inventor)

    2017-01-01

    A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.

  15. Decomposition of the Thermal Boundary Resistance across Carbon Nanotube-Graphene Junctions to Different Mechanisms.

    PubMed

    Shi, Jingjing; Zhong, Yang; Fisher, Timothy S; Ruan, Xiulin

    2018-05-02

    Three different mechanisms are identified to contribute to thermal resistances across a carbon nanotube-graphene junction: material mismatch, nonplanar junction, and defects. To isolate the contributions of each mechanism, we have designed five types of junctions and performed nonequilibrium molecular dynamics simulations. The results show that the contributions from the three mechanisms are similar, each at around 2.5 × 10 -11 m 2 K/W. The relations between thermal boundary resistance and both defect number and turning angle at the interface are also studied.

  16. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  17. Ultrasonic Attenuation Results of Thermoplastic Resin Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1998-01-01

    As part of an effort to obtain the required information about new composites for aviation use, materials and NDE researchers at NASA are jointly performing mechanical and NDE measurements on new composite materials. The materials testing laboratory at NASA is equipped with environmental chambers mounted on load frames that can expose composite materials to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This report highlights our initial ultrasonic attenuation results from thermoplastic composite samples that have undergone over 4000 flight cycles to date. Ultrasonic attenuation measurements are a standard method used to assess the effects of material degradation. Recently, researchers have shown that they could obtain adequate contrast in the evaluation of thermal degradation in thermoplastic composites by using frequencies of ultrasound on the order of 24 MHz. In this study, we address the relationship of attenuation measured at lower frequencies in thermoplastic composites undergoing both thermal and mechanical loading. We also compare these thermoplastic results with some data from thermoset composites undergoing similar protocols. The composite s attenuation is reported as the slope of attenuation with respect to frequency, defined as b = Da(f)/Df. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This latter feature is a consequence of the assumption that interface correction terms are frequency independent. Uncertainty in those correction terms can compromise the value of conventional quantitative attenuation data. Furthermore, the slope of the attenuation more directly utilizes the bandwidth information and in addition, the bandwidth can be adjusted in the post processing stage to compensate for the loss of dynamic range of the signal as the composites age.

  18. Ultrasonic Studies of Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Johnston, Patrick H.

    1997-01-01

    New composite materials possess attractive properties for use in advanced aircraft. A necessary requirement for their introduction into aeronautic use is an accurate understanding of their long term aging processes so that proper design criteria can be established. In order to understand those properties, these composites must be exposed to thermal and load cycles that are characteristic of flight conditions. Additionally, airline companies will require nondestructive evaluation (NDE) methods that can be used in the field to assess the condition of these new materials as they age. As part of an effort to obtain the required information about new composites for aviation use, we are performing ultrasonic measurements both in the NDE laboratory and in the materials testing laboratory at NASA. The materials testing laboratory is equipped with environmental chambers mounted on load frames so that composite samples can be exposed to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This study reports on our initial ultrasonic attenuation results from thermoset and thermoplastic composite samples. Ultrasonic attenuation measurements have been used reliably to assess the effects of material degradation. For example, recently, researchers have shown that by using frequencies of ultrasound on the order of 24 MHz, they could obtain adequate contrast in the evaluation of thermal degradation in these composites. This paper will present data that shows results at a lower frequency range. In addition, we report results on the frequency dependence of attenuation as the slope of attenuation with respect to frequency, beta = delta alpha (f) / delta f. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This is a consequence of the assumption that interface correction terms are frequently independent. Uncertainty in those corrections terms compromises the value of conventional quantitative attenuation data.

  19. A damage mechanics based general purpose interface/contact element

    NASA Astrophysics Data System (ADS)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against laboratory test data presented in the literature. The results demonstrate that the proposed element and the damage law perform very well. The most important scientific contribution of this dissertation is the proposed damage criterion based on second law of thermodynamic and entropy of the system. The proposed general purpose interface/contact element is another contribution of this research. Compared to the previous adhoc interface elements proposed in the literature, the new one is, much more powerful and includes creep, plastic deformations, sliding, temperature, damage, cyclic behavior and fatigue life in a unified formulation.

  20. Evaluation of using ferrofluid as an interface material for a field-reversible thermal connector

    NASA Astrophysics Data System (ADS)

    Yousif, Ahmed S.

    The electrical functionality of an avionics chassis is limited due to heat dissipation limits. The limits arise due to the fact that components in an avionic computer boxes are packed very compactly, with the components mounted onto plug-in cards, and the harsh environment experienced by the chassis limits how heat can be dissipated from the cards. Convective and radiative heat transfer to the ambient are generally not possible. Therefore it is necessary to have heat transferred from the components conducted to the edge of the plug-in cards. The heat then needs to conduct from the card edge to a cold block that not only holds the card in place, but also removes the generated heat by some heat transfer fluid that is circulated through the cold block. The interface between the plug-in card and the cold block typically has a high thermal resistance since it is necessary for the card to have the capability to be re-workable, meaning that the card can be removed and then returned to the chassis. Reducing the thermal resistance of the interface is the objective of the current study and the topic of this thesis. The current design uses a pressure interface between the card and cold block. The contact pressure is increased through the addition of a wedgelock, which is a field-reversible mechanical connector. To use a wedgelock, the cold block has channels milled on the surface with widths that are larger than the thickness of the plug-in card and the un-expanded wedgelock. The card edge is placed in the channel and placed against one of the channel walls. A wedgelock is then placed between the card and the other channel wall. The wedgelock is then expanded by using either a screw or a lever. As the wedgelock expands it fills in the remaining channel gap and bears against the other face of the plug-in card. The majority of heat generated by the components on the plug-in card is forced to conduct from the card into the wall of the cold block, effectively a single sided, dry conduction heat transfer path. Having started as a student design competition named RevCon Challenge, work was performed to evaluate the use of new field-reversible thermal connectors. The new design proposed by the University of Missouri utilized oil based iron nanoparticles, commonly known as a ferrofluid, as a thermal interface material. By using a liquid type of interface material the channel gap can be reduced to a few micrometers, within machining tolerances, and heat can be dissipated off both sides of the card. The addition of nanoparticles improves the effective thermal conductivity of base fluid. The use of iron nanoparticles allows magnets to be used to hold the fluid in place, so the electronic cards may be easily inserted and removed while keeping the ferrofluid in the cold block channel. The ferrofluid-based design which was investigated has shown lower thermal resistance than the current wedgelock design. These results open the door for further development of electronic cards by using higher heat emitting components without compromising the simplicity of attaching/detaching cards from cooling plates.

  1. Optimized Characterization of Thermoelectric Generators for Automotive Application

    NASA Astrophysics Data System (ADS)

    Tatarinov, Dimitri; Wallig, Daniel; Bastian, Georg

    2012-06-01

    New developments in the field of thermoelectric materials bring the prospect of consumer devices for recovery of some of the waste heat from internal combustion engines closer to reality. Efficiency improvements are expected due to the development of high-temperature thermoelectric generators (TEG). In contrast to already established radioisotope thermoelectric generators, the temperature difference in automotive systems is not constant, and this imposes a set of specific requirements on the TEG system components. In particular, the behavior of the TEGs and interface materials used to link the heat flow from the heat source through the TEG to the heat sink must be examined. Due to the usage patterns of automobiles, the TEG will be subject to cyclic thermal loads, which leads to module degradation. Additionally, the automotive TEG will be exposed to an inhomogeneous temperature distribution, leading to inhomogeneous mechanical loads and reduced system efficiency. Therefore, a characterization rig is required to allow determination of the electrical, thermal, and mechanical properties of such high-temperature TEG systems. This paper describes a measurement setup using controlled adjustment of cold-side and warm-side temperatures as well as controlled feed-in of electrical power for evaluation of TEGs for application in vehicles with combustion engines. The temperature profile in the setup can be varied to simulate any vehicle usage pattern, such as the European standard driving cycle, allowing the power yield of the TEGs to be evaluated for the chosen cycle. The spatially resolved temperature distribution of a TEG system can be examined by thermal imaging. Hotspots or cracks on thermocouples of the TEGs and the thermal resistance of thermal interface materials can also be examined using this technology. The construction of the setup is briefly explained, followed by detailed discussion of the experimental results.

  2. Thermal contact conductance as a method of rectification in bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Robert A.

    2016-08-01

    A thermal rectifier that utilizes thermal expansion to directionally control interfacial conductance between two contacting surfaces is presented. The device consists of two thermal reservoirs contacting a beam with one rough and one smooth end. When the temperature of reservoir in contact with the smooth surface is raised, a similar temperature rise will occur in the beam, causing it to expand, thus increasing the contact pressure at the rough interface and reducing the interfacial contact resistance. However, if the temperature of the reservoir in contact with the rough interface is raised, the large contact resistance will prevent a similar temperaturemore » rise in the beam. As a result, the contact pressure will be marginally affected and the contact resistance will not change appreciably. Owing to the decreased contact resistance of the first scenario compared to the second, thermal rectification occurs. A parametric analysis is used to determine optimal device parameters including surface roughness, contact pressure, and device length. Modeling predicts that rectification factors greater than 2 are possible at thermal biases as small as 3 K. Lastly, thin surface coatings are discussed as a method to control the temperature bias at which maximum rectification occurs.« less

  3. In situ assembly in confined spaces of coated particle scaffolds as thermal underfills with extraordinary thermal conductivity.

    PubMed

    Hong, Guo; Schutzius, Thomas M; Zimmermann, Severin; Burg, Brian R; Zürcher, Jonas; Brunschwiler, Thomas; Tagliabue, Giulia; Michel, Bruno; Poulikakos, Dimos

    2015-01-14

    In situ assembly of high thermal conductivity materials in severely confined spaces is an important problem bringing with it scientific challenges but also significant application relevance. Here we present a simple, affordable, and reproducible methodology for synthesizing such materials, composed of hierarchical diamond micro/nanoparticle scaffolds and an ethylenediamine coating. An important feature of the assembly process is the utilization of ethylenediamine as an immobilizing agent to secure the integrity of the microparticle scaffolds during and after each processing step. After other liquid components employed in the scaffolds assembly dry out, the immobilization agent solidifies forming a stable coated particle scaffold structure. Nanoparticles tend to concentrate in the shell and neck regions between adjacent microparticles. The interface between core and shell, along with the concentrated neck regions of nanoparticles, significantly enhance the thermal conductivity, making such materials an excellent candidate as thermal underfills in the electronics industry, where efficient heat removal is a major stumbling block toward increasing packing density. We show that the presented structures exhibit nearly 1 order of magnitude improvement in thermal conductivity, enhanced temperature uniformity, and reduced processing time compared to commercially available products for electronics cooling, which underpins their potential utility.

  4. Nitride Metal-Semiconductor Superlattices for Solid State Thermionic Energy Conversion

    NASA Astrophysics Data System (ADS)

    Wortman, Robert; Schroeder, Jeremy; Burmistrova, Polina; Zebarjadi, Mona; Bian, Zhixi; Shakouri, Ali; Sands, Timothy

    2009-03-01

    A new class of thermoelectric materials based off of superlattices have been proposed that show a potential for enhanced thermoelectric performance^1,2. The increase of thermoelectric figure-of-merit ZT of these materials is due to both the energy filtering effect of the Schottky barriers as well as the reduced thermal conductivity that results from increased interface density. Our work has centered on the metal-semiconductor materials system of HfN-ScN. These are both high temperature materials (Tm> 2500C). They have the same rocksalt crystal structure and similar lattice constants, allowing epitaxial growth. We have grown superlattices of these materials via DC magnetron sputtering. Results from x-ray diffraction, and electrical and thermal tests will be presented. Their potential as thermoelectric energy conversion materials will be discussed. 1 G. D. Mahan et al, Phys. Rev. Lett., 80, 4016 (1998) 2 D. Vashaee et al, Phys. Rev. Lett. 92, 106103 (2004)

  5. Thermal conductivity anisotropy in nanostructures and nanostructured materials

    NASA Astrophysics Data System (ADS)

    Termentzidis, Konstantinos

    2018-03-01

    Thermal conductivity anisotropy is a subject for both fundamental and application interests. The anisotropy can be induced either by van der Waals forces in bulk systems or by nanostructuration. Here, we will examine four cases in which thermal anisotropy has been observed: (i) Si/Ge superlattices which exhibit higher thermal anisotropy between in-plane and cross-plane directions for the case of smooth interfaces, (ii) amorphous/crystalline superlattices with much higher anisotropy than the crystalline/crystalline superlattices and which can reach a factor of six when the amorphous fraction increases, (iii) the impact of the density of edge and screw dislocations on the thermal anisotropy of defected GaN, and (iv) the influence of the growth direction of Bi2Te3 nanowires on thermal conductivity.

  6. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, C.F. Jr.; Jones, R.H.; Snead, L.L.

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies aremore » in progress to evaluate the stability of these materials.« less

  7. Understanding Nanoscale Thermal Conduction an Mechanical Strength Correlation in High Temperature Ceramics with Improved Thermal Shock Resistance for Aerospace Applications

    DTIC Science & Technology

    2012-08-08

    simulation data is available on this system. Molecular simulation , ab initio simulations , thermal conductivity, biomimetic materials, phase transformation...MOLECULAR SIMULATIONS …………….. 28 §2.2.1 THERMAL CONDUCTION ANALYSES IN SUPERLATTICES AS A FUNCTION OF STRAIN……………………………………………………………. 29 §2.2.2...analyses also focus on Si-Ge interfaces and nanocomposites, as a lot of simulation data is available on this system. In terms of modeling the required

  8. Synthesis and metrology of conducting carbon nanotube assemblies

    NASA Astrophysics Data System (ADS)

    Longson, Timothy Jay

    Since its discovery, the carbon nanotube (CNT) has been proposed as one of the ultimate materials for its electrical, thermal and mechanical properties due to its incredibly strong sp2 bonds, low defect density, and large aspect ratio. Many experimental results on individual CNTs have confirmed these outstanding theoretically predicted properties. However, scaling these properties to the macroscopic regime has proved to be challenging. This work focused on the synthesis and measurement of highly conducting, macroscopic, CNT assemblies. Scaling up the synthesis of vertically aligned multiwalled CNT (MWNT) forests was investigated through the development of a large, 100mm, wafer scale, cold wall chemical vapor deposition chamber. In addition to the synthesis, two distinct CNT assemblies have been investigated. A linear morphology where CNTs are strung in series for electrical transport (CNT wires) and a massively parallel 2D array of vertically aligned CNTs for Thermal Interface Material (TIM) applications. Poymer-CNT wire composites have been fabricated by developing a coaxial CNT core-polymer shell electrospinning technique. The core-shell interactions in this system have been studied by way of Hansen's solubility parameters. The most well defined CNT core was achieved using a core solvent that is semi-immiscible with the shell solution, yet still a solvent of the shell polymer. Electrical characterization of the resulting CNT core has shown a two orders of magnitude increase in conductivity over traditional, homogeneously mixed, electrospun CNT wires. A number of vertically aligned MWNT assemblies were studied for their thermal interface properties. Double-sided Silicon substrate (MWNT-Si-MWNT) TIM assemblies were characterized using a DC, 1D reference bar, thermal measurement technique. While attempts to control MWNT density via a micelle template technique produced only 'spaghetti like' CNTs, sputter deposited catalyst provided stark variations in array density. Relevant array morphologies such as density, height, and crystallinity were studied in conjunction with their thermal performance. A Euler buckling model was used to identify the transition between increasing and decreasing resistance with density over array height, these two regimes are explained by way of contact analysis. Self catalyzing Fecralloy substrate MWNT TIMs were studied in a similar vein to the Silicon based assemblies. This substrate was investigated because of its malleability, ease of CNT synthesis and increased CNT adhesion. The growth behavior was studied with respect to the array morphologies, i.e. array height, density, crystallinity, and diameter, while the contact resistance was evaluated using a DC, 1D reference bar technique. The best performing samples were found to have a factor of two increase over their Si counterparts. Temperature dependent thermal measurements offer insight into the interfacial phonon conduction physics and are found to agree with other temperature dependent studies, suggesting inelastic scattering at the MWNT-Cu interface. Due to the challenges associated with deliberately controlling a single array morphology, a statistical approach was used for identifying the influences of the multivariate array morphology on contact resistance. Showing the strongest correlation with array height, following a R ~ L-0.5. Several models were investigated to help explain this behavior, although little insight is gained over the empirical relations. To better characterize these MWNT TIM assemblies two experimental techniques were developed. A transient 3o thermal measurement technique was adapted to characterize the thermal performance of CNT TIMs, offering insight into the limiting resistance in a mulilayer material stack. The MWNT-growth substrate interface was found to dominate in the Si samples while the MWNT-opposing substrate interface dominated in the Fecralloy samples. These measurements strongly supported the DC thermal measurements and the qualitative observations of substrate adhesion. Additionally, a new technique for observing nano sized contacts was established by viewing contact loading through an electron transparent membrane, imaged under an SEM. The contrast mechanism is explained by a voltage contrast phenomenon developed by trapped charges at the interface. The resolution limits have been studied by way of electron beam interactions and the use of Monte Carlo simulations, showing nanometer resolution with appropriate experimental conditions. The real MWNT contact area was found to be less than 1/100th the apparent contact area even at moderate pressures and the number of contacting CNTs is approximately 1/10th the total number of CNTs. These results confirm experimental measurement values for van der Waals adhesion strengths and thermal interface resistance.

  9. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage.

    PubMed

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.

  10. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    NASA Astrophysics Data System (ADS)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  11. Passing waves from atomistic to continuum

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  12. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  13. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  14. Pseudo-transient heat transfer in vertical Bridgman crystal growth of semi-transparent materials

    NASA Astrophysics Data System (ADS)

    Barvinschi, F.; Nicoara, I.; Santailler, J. L.; Duffar, T.

    1998-11-01

    The temperature distribution and the solid-liquid interface shape during semi-transparent crystal growth have been studied by modelling a vertical Bridgman technique, using a pseudo-transient approximation in an ideal configuration. The heat transfer equation and the boundary conditions have been solved by the finite-element method. It has been pointed out that the optical absorption coefficients of the liquid and solid phases have a major effect on the thermal field, especially on the shape and location of the crystallization interface.

  15. Computing Fiber/Matrix Interfacial Effects In SiC/RBSN

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1996-01-01

    Computational study conducted to demonstrate use of boundary-element method in analyzing effects of fiber/matrix interface on elastic and thermal behaviors of representative laminated composite materials. In study, boundary-element method implemented by Boundary Element Solution Technology - Composite Modeling System (BEST-CMS) computer program.

  16. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    DTIC Science & Technology

    2015-08-17

    performance of these promising materials by 50%. Ballmilling and spark plasma sintering (SPS) processes were investigated to try to lower the thermal...samples fabricated through the spark plasma sintering ”, Mater Renew Sustain Energy, 3, 31-1 31-6 (2014). DOI: 10.1007/s40243-014-0031-8 9. O. Sologub...for doping of foreign elements (therefore no migration problems) is very striking. In further development, addition of Al as a sintering element was

  17. ISS Material Science Research Rack HWIL Interface Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  18. Control of Polymer Glass Formation Behaviour Using Molecular Diluents and Dynamic Interfaces

    NASA Astrophysics Data System (ADS)

    Mangalara, Jayachandra Hari

    The end use application of polymeric materials is mainly determined by their viscosity, thermal stability and processability. These properties are primarily determined by the segmental relaxation time (taualpha) of the polymer and its glass state modulus, which determines its glassy mechanical response. Developing design principles to obtain rational control over these properties would enable fabrication of new polymers or polymer blends with improved thermal stability, enhanced processability and better mechanical robustness of the material. Introduction of diluents and nanostructuring of the material serve as invaluable tools for altering polymers' glass transition and associated dynamic and mechanical properties. Besides providing guidelines for technologically important improvements in processability, glassy mechanical properties, and transport behavior, diluent effects and behavior of nanostructured materials can provide insights into the fundamental physics of the glass transition, for example, by elucidating the interrelation between high- and low-frequency structural relaxation processes. It has been previously suggested that there exists a similarity between how diluents and interfaces impact the glass formation behavior of the polymer, raising the possibility that the effects of these two polymer modifications may be separate manifestations of a common set of physics in glass forming polymers. Here we address several interrelated questions in the understanding of glass formation in polymer/diluent blends and nanostructured polymers. First, what is the relationship between a diluent's molecular structure and its impact on a polymer's glass formation behavior? How does this compare to the effect of interfaces? Second, how does the introduction of diluents impact the role of interfaces in modifying polymer glass formation? Third, how does the introduction of interfaces impact metrology of the polymer glass transition? Finally, we address a major open question regarding the role of interfaces in the formation of a new class of 'ultrastable' glassy materials. The major conclusions of this work are as follows. We show how the effect of diluent on polymer glass formation depends on its molecular properties like structure, backbone stiffness, interaction strength with the host polymer etc. These effects are shown to be predicted by a functional form analogous to the one shown in the literature for predicting Tg shits in nanostructure materials. We further show that these diluents when introduced in nanostructured materials, bring about Tg shifts in a manner which does not correlate completely with the bulk fragility of the material, as previously suggested. We also show that there are confounding variables other than bulk fragility of the material - such as composition gradients, variability in measurement of Tg using different experimental techniques, etc. - that need to be considered when identifying the Tg nanoconfinement effects of the material. We also address this issue of having metrological differences in measuring Tg, by establishing appropriate weighting factors to be used while using different experimental techniques to measure Tg of confined materials. Finally, we propose a three layer model of the interface in which a facilitated layer intermediate between the surface and bulk exhibits enhanced bulk like liquid density which leads to the emergence of exceptional mechanical properties in "ultrastable" glasses.

  19. Interface structure and mechanics between graphene and metal substrates: a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Buehler, Markus J.

    2010-12-01

    Graphene is a fascinating material not only for technological applications, but also as a test bed for fundamental insights into condensed matter physics due to its unique two-dimensional structure. One of the most intriguing issues is the understanding of the properties of graphene and various substrate materials. In particular, the interfaces between graphene and metal substrates are of critical importance in applications of graphene in integrated electronics, as thermal materials, and in electromechanical devices. Here we investigate the structure and mechanical interactions at a graphene-metal interface through density functional theory (DFT)-based calculations. We focus on copper (111) and nickel (111) surfaces adhered to a monolayer of graphene, and find that their cohesive energy, strength and electronic structure correlate directly with their atomic geometry. Due to the strong coupling between open d-orbitals, the nickel-graphene interface has a much stronger cohesive energy with graphene than copper. We also find that the interface cohesive energy profile features a well-and-shoulder shape that cannot be captured by simple pair-wise models such as the Lennard-Jones potential. Our results provide a detailed understanding of the interfacial properties of graphene-metal systems, and help to predict the performance of graphene-based nanoelectronics and nanocomposites. The availability of structural and energetic data of graphene-metal interfaces could also be useful for the development of empirical force fields for molecular dynamics simulations.

  20. Metallic Nanocomposites as Next-Generation Thermal Interface Materials: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Narumanchi, Sreekant V; King, Charles C

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownianmore » motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the nanocomposite is 11 ppm/K, which lies between the CTEs of aluminum (22 ppm/K) and silicon (3 ppm/K), which are common heat sink and heat source materials, respectively. The nanocomposite can also be deposited directly on to heat sink which will simplify the packaging processes by removing one possible element to assemble. These unique properties and ease of assembly makes the nanocomposite a promising next-generation TIM.« less

  1. Metallic Nanocomposites as Next-Generation Thermal Interface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Narumanchi, Sreekant V; King, Charles C

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownianmore » motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the nanocomposite is 11 ppm/K, which lies between the CTEs of aluminum (22 ppm/K) and silicon (3 ppm/K), which are common heat sink and heat source materials, respectively. The nanocomposite can also be deposited directly on to heat sink which will simplify the packaging processes by removing one possible element to assemble. These unique properties and ease of assembly makes the nanocomposite a promising next-generation TIM.« less

  2. Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials

    NASA Astrophysics Data System (ADS)

    Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi

    2015-02-01

    We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.

  3. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella

    2017-08-01

    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  4. Thermal force induced by the presence of a particle near a solidifying interface.

    PubMed

    Hadji, L

    2001-11-01

    The presence of a foreign particle in the melt, ahead of a solid-liquid interface, leads to the onset of interfacial deformations if the thermal conductivity of the particle, k(p), differs from that of the melt, k(l). In this paper, the influence of the thermal conductivity contrast on the interaction between the solidifying interface and the particle is quantified. We show that the interface distortion gives rise to a thermal force whose expression is given by F(th)=2piLGa3(1-alpha)/(2+alpha)T(m), where L is the latent heat of fusion per unit volume, T(m) is the melting point, a is the particle's radius, G the thermal gradient in the liquid phase and alpha=k(p)/k(l). The derivation makes use of the following assumptions: (i) the particle is small compared to the horizontal extent of the interface, (ii) the particle is placed in the near proximity of the deformable solid-liquid interface, and (iii) the interface is practically immobile in the calculation of the thermal field, i.e., V

  5. Assessing Reliability of Cold Spray Sputter Targets in Photovoltaic Manufacturing

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar; Vlcek, Johannes; Bheemreddy, Venkata; Juliano, Daniel

    2017-10-01

    Cold spray has been used to manufacture more than 800 Cu-In-Ga (CIG) sputter targets for deposition of high-efficiency photovoltaic thin films. It is a preferred technique since it enables high deposit purity and transfer of non-equilibrium alloy states to the target material. In this work, an integrated approach to reliability assessment of such targets with deposit weight in excess of 50 lb. is undertaken, involving thermal-mechanical characterization of the material in as-deposited condition, characterization of the interface adhesion on cylindrical substrate in as-deposited condition, and developing means to assess target integrity under thermal-mechanical loads during the physical vapor deposition (PVD) sputtering process. Mechanical characterization of cold spray deposited CIG alloy is accomplished through the use of indentation testing and adaptation of Brazilian disk test. A custom lever test was developed to characterize adhesion along the cylindrical interface between the CIG deposit and cylindrical substrate, overcoming limitations of current standards. A cohesive zone model for crack initiation and propagation at the deposit interface is developed and validated using the lever test and later used to simulate the potential catastrophic target failure in the PVD process. It is shown that this approach enables reliability assessment of sputter targets and improves robustness.

  6. Controlled assembly of jammed colloidal shells on fluid droplets.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  7. Controlled assembly of jammed colloidal shells on fluid droplets

    NASA Astrophysics Data System (ADS)

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  8. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    NASA Astrophysics Data System (ADS)

    You, J. H.; Bolt, H.

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  9. Interface bonding of SA508-3 steel under deformation and high temperature diffusion

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Shao, Chunjuan; Sun, Mingyue

    2018-05-01

    There are mainly two parameters affecting high temperature interface bonding: deformation and diffusion. To study these two parameters, interface bonding of SA508-3 bainitic steel at 1100°C are simulated by gleeble3500 thermal simulator. The results show that interface of SA508-3 steel can be bonded under deformation and high temperature. For a specimen pressed at 1100°C without further high temperature diffusion, a reduction ratio of 30% can make the interface begun to bond, but the interface is still part of the grain boundary and small grains exist near the interface. When reduction ratio reaches 50%, the interface can be completely bonded and the microstructure near the interface is the same as that of the base material. When deformation is small, long time diffusion can also help the interface bonding. The results show that when the diffusion time is long enough, the interface under small deformation can also be bonded. For a specimen holding for 24h at 1100°C, only 13% reduction ratio is enough for interface bonding.

  10. New Cu(GeNx) film in barrierless metallization for LED heat dissipation

    NASA Astrophysics Data System (ADS)

    Lin, Chon-Hsin

    2015-05-01

    In this study, we explore new Cu(Ge) and Cu(GeNx) films for LED heat dissipation. The films are Cu-alloy seed layers, fabricated by co-sputtering Cu and Ge in an Ar or N2 atmosphere on either Ta/Al2O3 or polyimide substrates. The Cu alloy films are then annealed at 600 and 730 °C, respectively, for 1 h without notable Cu oxide formation at the Cu-Ta/Al2O3 interface. No Cu oxide is formed at the Cu-polyimide interface either after annealing the films at 310 °C for 1 h. The film formed atop an Al2O3 substrate contains a trace amount of GeNx and is thermally stable up to 730 °C, and the film formed atop a polyimide substrate is thermally stable up to 310 °C, both exhibiting a low resistivity and a high thermal conductivity. Such a thermal feature makes the Cu(GeNx) film a good candidate material in barrierless metallization for many industrial applications, such as LED heat sinks.

  11. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    PubMed

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.

  12. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces.

    PubMed

    Chou, Ying-Nien; Chang, Yung; Wen, Ten-Chin

    2015-05-20

    We introduced a thermosettable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bioadhesion, as influenced by the thermosetting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200 °C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bioinert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol % showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol % was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermosettable materials in a bioinert interface for medical devices, such as the thermosettable coating on a stainless steel blood-compatible metal stent investigated in this study.

  13. Design of high strength polymer metal interfaces by laser microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Steinert, P.; Dittes, A.; Schimmelpfennig, R.; Scharf, I.; Lampke, T.; Schubert, A.

    2018-06-01

    In the areas of automotive, aeronautics and civil structures, lightweight construction is a current and a future need. Thus, multi material design has rapidly grown in importance, especially hybrid materials based on fiber reinforced plastics and aluminum offer great potential. Therefore, mechanical interlocking is a convenient way of designing the interface. Laser structuring is already used to generate a variety of surface topographies leading to high bond strengths. This paper investigates different laser structures aiming on highest joint strengths for aluminum and glass fiber reinforced polyamide 6 interfaces. Self-organizing pin structures comprised by additional micro/nano features as well as drilled hole structures, both ranging on the micrometer range, are compared to corundum blasting as a standard method for surface conditioning. For the presented surface structures, thermal joining and ultrasonic assisted joining are regarded towards their potential for an optimum joint design.

  14. Gluing interface qualification test results and gluing process development of the EUCLID near-infrared spectro-photometer optical assembly

    NASA Astrophysics Data System (ADS)

    Mottaghibonab, A.; Thiele, H.; Gubbini, E.; Dubowy, M.; Gal, C.; Mecsaci, A.; Gawlik, K.; Vongehr, M.; Grupp, F.; Penka, D.; Wimmer, C.; Bender, R.

    2016-07-01

    The Near Infrared Spectro-Photometer Optical assembly (NIOA) of EUCLID satellite requires high precision large lens holders with different lens materials, shapes and diameters. The aspherical lenses are glued into their separate CTE matched lens holder. The gluing of the lenses in their holder with 2K epoxy is selected as bonding process to minimize the stress in the lenses to achieve the required surface form error (SFE) performance (32nm) and lens position stability (+/-10μm) due to glue shrinkage. Adhesive shrinkage stress occurs during the glue curing at room temperature and operation in cryogenic temperatures, which might overstress the lens, cause performance loss, lens breakage or failure of the gluing interface. The selection of the suitable glue and required bonding parameters, design and qualification of the gluing interface, development and verification of the gluing process was a great challenge because of the low TRL and heritage of the bonding technology. The different material combinations (CaF2 to SS316L, LF5G15 and S-FTM16 to Titanium, SUPRASIL3001 to Invar M93), large diameter (168mm) and thin edge of the lenses, cryogenic nonoperational temperature (100K) and high performance accuracy of the lenses were the main design driver of the development. The different coefficients of thermal expansion (CTE) between lens and lens holder produce large local mechanical stress. As hygroscopic crystal calcium fluoride (CaF2) is very sensitive to moisture therefore an additional surface treatment of the gluing area is necessary. Extensive tests e.g glue handling and single lap shear tests are performed to select the suitable adhesive. Interface connection tests are performed to verify the feasibility of selected design (double pad design), injection channel, the roughness and treatment of the metal and lens interfaces, glue thickness, glue pad diameter and the gluing process. CTE and dynamic measurements of the glue, thermal cycling, damp- heat, connection shear and tension tests with all material combinations at RT and 100K are carried out to qualify the gluing interface. The gluing interface of the glued lenses in their mounts is also qualified with thermal cycling, 3D coordinate measurements before and after environmental tests, Polarimetry and vibration test of the lens assemblies. A multi-function double pad gluing tool and lens mounting tool is designed, manufactured and verified to meet the lens positioning and alignment performance of the lens in the holder which provides the possibility to glue lenses, filters, mirrors with different diameters, shapes and thickness with +/-10μm accuracy in plane, out of plane and +/-10 arcsec in tip/tilt with respect to the lens holder interface. The paper presents the glue interface qualification results, the qualification/verification methods, the developed ground support equipment and the gluing process of the EUCLID high precision large cryogenic lens mounts. Test results achieved in the test campaign demonstrate the suitability of the selected adhesive, glue pad design, interface parameters and the processes for the precise gluing of the lenses in lens holders for all lenses. The qualification models of the NIOA are successfully glued and qualified. The developed process can also be used for other glass materials e.g. MaF2 and optical black coated metallic surfaces.

  15. Growth of High Quality Carbon Nanotubes on Free Standing Diamond Substrates

    DTIC Science & Technology

    2010-01-01

    CNTs forming a mat of ~5 µm thickness and consisting of ~20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor...with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal interface materials were also discussed by Zhu...using a 1 inch diameter quartz tube in a horizontal furnace. Initially, the tube furnace was evacuated by using a rough pump and then purged with Ar

  16. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    DOE PAGES

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermalmore » conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.« less

  17. Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte.

    PubMed

    Jiang, Lihua; Wang, Qingsong; Sun, Jinhua

    2018-06-05

    LiNi x Co y Mn z O 2 (NCM) cathode material with high energy density is one of the best choices for power batteries. But the safety issue also becomes more prominent with higher nickel content. The improvement of thermal stability by material modification is often complex and limited. In this study, a composite safety electrolyte additive consisting of perfluoro-2-methyl-3-pentanone, N, N-Dimethylacetamide (and fluorocarbon surfactant is proved to be effective and simple in improving the thermal stability of NCM materials. Electrochemical compatibility of composite safety electrolyte with various NCM materials is investigated. Uniform interface film, lower impedance and polarization for NCM (622) cycled in composite safety electrolyte are proved to be the main reasons to ensure good cycle performance. Homemade pouch cells (NCM (622)/C) are used to verify the effectiveness for practical application, accelerating rate calorimeter and nail penetration test shows a slower temperature rise and delay of thermal runaway. For heating experiment, no fire appears for pouch cell with composite safety electrolyte. Thus, this composite safety electrolyte is effective to improve the safety of lithium ion batteries with NCM materials.(. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Apparatus for in situ prediction of the thermal conductivity of fiberglass batts using acoustic propagation constant

    NASA Astrophysics Data System (ADS)

    Tinianov, Brandon D.; Nakagawa, Masami; Muñoz, David R.

    2006-02-01

    This article describes a novel technique for the measurement of the thermal conductivity of low-density (12-18kg/m3) fiberglass insulation and other related fibrous insulation materials using a noninvasive acoustic apparatus. The experimental method is an extension of earlier acoustic methods based upon the evaluation of the propagation constant from the acoustic pressure transfer function across the test material. To accomplish this, an analytical model is employed that describes the behavior of sound waves at the outlet of a baffled waveguide. The model accounts for the behavior of the mixed impedance interface introduced by the test material. Current results show that the technique is stable for a broad range of absorber thicknesses and densities. Experimental results obtained in the laboratory show excellent correlation between the thermal conductivity and both the real and imaginary components of the propagation constant. Correlation of calculated propagation constant magnitude versus measured thermal conductivity gave an R2 of 0.94 for the bulk density range (12-18kg/m3) typical for manufactured fiberglass batt materials. As an improvement to earlier acoustic techniques, measurement is now possible in noisy manufacturing environments with a moving test material. Given the promise of such highly correlated measurements in a robust method, the acoustic technique is well suited to continuously measure the thermal conductivity of the material during its production, replacing current expensive off-line methods. Test cycle time is reduced from hours to seconds.

  19. Thermally Conductive Tape Based on Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Kashani, Ali

    2011-01-01

    To increase contact conductance between two mating surfaces, a conductive tape has been developed by growing dense arrays of carbon nanotubes (CNTs, graphite layers folded into cylinders) on both sides of a thermally conductive metallic foil. When the two mating surfaces are brought into contact with the conductive tape in between, the CNT arrays will adhere to the mating surface. The van der Waals force between the contacting tubes and the mating surface provides adhesion between the two mating surfaces. Even though the thermal contact conductance of a single tube-to-tube contact is small, the tremendous amount of CNTs on the surface leads to a very large overall contact conductance. Interface contact thermal resistance rises from the microroughness and the macroscopic non-planar quality of mating surfaces. When two surfaces come into contact with each other, the actual contact area may be much less than the total area of the surfaces. The real area of contact depends on the load, the surface roughness, and the elastic and inelastic properties of the surface. This issue is even more important at cryogenic temperatures, where materials become hard and brittle and vacuum is used, which prevents any gas conduction through the interstitial region. A typical approach to increase thermal contact conductance is to use thermally conducting epoxies or greases, which are not always compatible with vacuum conditions. In addition, the thermal conductivities of these compounds are often relatively low. The CNTs used in this approach can be metallic or semiconducting, depending on the folding angle and diameter. The electrical resistivity of multiwalled carbon nanotubes (MWCNTs) has been reported. MWCNTs can pass a current density and remain stable at high temperatures in air. The thermal conductivity of a MWCNT at room temperature is measured to be approximately 3,000 W/m-K, which is much larger than that of diamond. At room temperature, the thermal conductance of a 0.3 sq cm array of CNTs was measured to be as high as 10 W/K. The high thermal conductivity and the nanoscale size make CNTs ideal as thermal interface materials. The CNT-based thermal tape can be used for the thermal management of microelectronic packages and electronic systems. It also can be integrated with current device technology and packaging. The material would allow for an efficient method to manage excess heat generation without requiring any additional power. Lastly, the CNT tape can be used to enhance thermal contact conductance across two mating surfaces on some NASA missions.

  20. Turbomachinery Clearance Control

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.; Hendricks, Robert C.; Lattime, Scott B.; Steinetz, Bruce M.; Aksit, Mahmut F.

    2007-01-01

    Controlling interface clearances is the most cost effective method of enhancing turbomachinery performance. Seals control turbomachinery leakages, coolant flows and contribute to overall system rotordynamic stability. In many instances, sealing interfaces and coatings are sacrificial, like lubricants, giving up their integrity for the benefit of the component. They are subjected to abrasion, erosion, oxidation, incursive rubs, foreign object damage (FOD) and deposits as well as extremes in thermal, mechanical, aerodynamic and impact loadings. Tribological pairing of materials control how well and how long these interfaces will be effective in controlling flow. A variety of seal types and materials are required to satisfy turbomachinery sealing demands. These seals must be properly designed to maintain the interface clearances. In some cases, this will mean machining adjacent surfaces, yet in many other applications, coatings are employed for optimum performance. Many seals are coating composites fabricated on superstructures or substrates that are coated with sacrificial materials which can be refurbished either in situ or by removal, stripping, recoating and replacing until substrate life is exceeded. For blade and knife tip sealing an important class of materials known as abradables permit blade or knife rubbing without significant damage or wear to the rotating element while maintaining an effective sealing interface. Most such tip interfaces are passive, yet some, as for the high-pressure turbine (HPT) case or shroud, are actively controlled. This work presents an overview of turbomachinery sealing. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues.

  1. Analysis of Plasma-Sprayed Thermal Barrier Coatings With Homogeneous and Heterogeneous Bond Coats Under Spatially Uniform Cyclic Thermal Loading

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Aboudi, Jacob

    2003-01-01

    This report summarizes the results of a numerical investigation into the spallation mechanism in plasma-sprayed thermal barrier coatings observed under spatially-uniform cyclic thermal loading. The analysis focuses on the evolution of local stress and inelastic strain fields in the vicinity of the rough top/bond coat interface during thermal cycling, and how these fields are influenced by the presence of an oxide film and spatially uniform and graded distributions of alumina particles in the metallic bond coat aimed at reducing the top/bond coat thermal expansion mismatch. The impact of these factors on the potential growth of a local horizontal delamination at the rough interface's crest is included. The analysis is conducted using the Higher-Order Theory for Functionally Graded Materials with creep/relaxation constituent modeling capabilities. For two-phase bond coat microstructures, both the actual and homogenized properties are employed in the analysis. The results reveal the important contributions of both the normal and shear stress components to the delamination growth potential in the presence of an oxide film, and suggest mixed-mode crack propagation. The use of bond coats with uniform or graded microstructures is shown to increase the potential for delamination growth by increasing the magnitude of the crack-tip shear stress component.

  2. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  3. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    NASA Astrophysics Data System (ADS)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  4. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    PubMed

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  5. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries.

    PubMed

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-08

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  6. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  7. Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents.

    PubMed

    Sakkas, Konstantinos; Sofianos, Alexandros; Nomikos, Pavlos; Panias, Dimitrios

    2015-09-11

    The performance of a fire resistant coating for tunnel passive fire protection under successive severe thermal loading is presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. Its performance was assessed by subjecting a concrete slab with a five cm thick K-geopolymer coating layer into successive RijksWaterStaat (RWS) fire incidents. During the first test, the maximum measured temperature in the K-geopolymer/concrete interface was 250 °C, which is 130 °C lower than the RWS test requirement, while, during the second fire test, the maximum temperature was almost 370 °C, which is still lower than the RWS requirement proving the effectiveness of the material as a thermal barrier. In addition, the material retained its structural integrity, during and after the two tests, without showing any mechanical or thermal damages.

  8. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    PubMed Central

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-01-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575

  9. Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents

    PubMed Central

    Sakkas, Konstantinos; Sofianos, Alexandros; Nomikos, Pavlos; Panias, Dimitrios

    2015-01-01

    The performance of a fire resistant coating for tunnel passive fire protection under successive severe thermal loading is presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. Its performance was assessed by subjecting a concrete slab with a five cm thick K-geopolymer coating layer into successive RijksWaterStaat (RWS) fire incidents. During the first test, the maximum measured temperature in the K-geopolymer/concrete interface was 250 °C, which is 130 °C lower than the RWS test requirement, while, during the second fire test, the maximum temperature was almost 370 °C, which is still lower than the RWS requirement proving the effectiveness of the material as a thermal barrier. In addition, the material retained its structural integrity, during and after the two tests, without showing any mechanical or thermal damages. PMID:28793554

  10. Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition

    NASA Astrophysics Data System (ADS)

    Ganzorig, Chimed; Fujihira, Masamichi

    2004-11-01

    This study examines the possibility of thermal decomposition of Na salts of acetate, benzoate, and fluoride during vacuum vapor deposition using a quartz crystal microbalance to measure negative frequency shift (Δf) caused by increasing mass deposited from the same amount of source materials. Cs acetate is also examined. We compare the negative frequency shift-source current (Δf -I) curves of the Na salts with those of organic materials such as tris(8-hydroxyquinoline)aluminum and N ,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine. CH3COONa and C6H5COONa exhibit much lower Δf than the organic materials. CH3COOCs gives much larger Δf than CH3COONa due to the higher atomic weight of Cs. These exhibit clear evidence for alkali metal formation by thermal decomposition during vapor deposition of alkali metal carboxylates.

  11. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  12. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  13. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.

    PubMed

    Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo

    2016-08-30

    The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.

  14. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  15. Thermal conductance at atomically clean and disordered silicon/aluminum interfaces: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Ih Choi, Woon; Kim, Kwiseon; Narumanchi, Sreekant

    2012-09-01

    Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This indicates that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5-nm disordered interface between Si/Al were in-line with recent experimental data in the literature.

  16. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1994-01-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  17. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Steinetz, Bruce M.

    1994-07-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  18. Interface Shape Control Using Localized Heating during Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Aggarwal, M. D.; Croll, A.

    2008-01-01

    Numerical calculations were performed to assess the effect of localized radial heating on the melt-crystal interface shape during vertical Bridgman growth. System parameters examined include the ampoule, melt and crystal thermal conductivities, the magnitude and width of localized heating, and the latent heat of crystallization. Concave interface shapes, typical of semiconductor systems, could be flattened or made convex with localized heating. Although localized heating caused shallower thermal gradients ahead of the interface, the magnitude of the localized heating required for convexity was less than that which resulted in a thermal inversion ahead of the interface. A convex interface shape was most readily achieved with ampoules of lower thermal conductivity. Increasing melt convection tended to flatten the interface, but the amount of radial heating required to achieve a convex interface was essentially independent of the convection intensity.

  19. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering.

    PubMed

    Zou, Tianhua; Qin, Xiaoying; Zhang, Yongsheng; Li, Xiaoguang; Zeng, Zhi; Li, Di; Zhang, Jian; Xin, Hongxing; Xie, Wenjie; Weidenkaff, Anke

    2015-12-15

    It is a major challenge to elevate the thermoelectric figure of merit ZT of materials through enhancing their power factor (PF) and reducing the thermal conductivity at the same time. Experience has shown that engineering of the electronic density of states (eDOS) and the energy filtering mechanism (EFM) are two different effective approaches to improve the PF. However, the successful combination of these two methods is elusive. Here we show that the PF of β-Zn4Sb3 can greatly benefit from both effects. Simultaneous resonant distortion in eDOS via Pb-doping and energy filtering via introduction of interface potentials result in a ~40% increase of PF and an approximately twofold reduction of the lattice thermal conductivity due to interface scattering. Accordingly, the ZT of β-Pb0.02Zn3.98Sb3 with 3 vol.% of Cu3SbSe4 nanoinclusions reaches a value of 1.4 at 648 K. The combination of eDOS engineering and EFM would potentially facilitate the development of high-performance thermoelectric materials.

  20. Flight evaluation of Spacelab 1 payload thermal/ECS interfaces

    NASA Technical Reports Server (NTRS)

    Ray, C. D.; Humphries, W. R.; Patterson, W. C.

    1984-01-01

    The Spacelab (SL-1) thermal/Environmental Control Systems (ECS) are discussed. Preflight analyses and flight data are compared in order to validate payload to Spacelab interfaces as well as corroborate modeling/analysis techniques. In doing so, a brief description of the Spacelab 1 payload configuration and the interactive Spacelab thermal/ECS systems are given. In particular, these interfaces address equipment cooling air, thermal and fluid conditions, humidity levels, both freon and water loop temperatures and load states, as well as passive radiant environment interfaces.

  1. Thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity

    NASA Technical Reports Server (NTRS)

    Lan, C. W.; Kou, Sindo

    1990-01-01

    Computer simulation of steady-state axisymmetrical heat transfer and fluid flow was conducted to study thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity. The effects of key variables on the extent of thermocapillary flow in the melt zone, the shapes of melt/solid interfaces and the length of the melt zone were discussed. These variables are: (1) the temperature coefficient of surface tension (or the Marangoni number), (2) the pulling speed (or the Peclet number), (3) the feed rod radius, (4) the ambient temperature distribution, (5) the heat transfer coefficient (or the Biot number), and (6) the thermal diffusivity of the material (or the Prandtl number).

  2. Continuous fiber-reinforced titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  3. Near-Field Thermal Coupling of a Nanoscale Interface and QED Kapitza Conductance of Nano-Carbon Thermal Interconnect Materials

    DTIC Science & Technology

    2015-10-26

    Conductance  in Nanocarbon Thermal Interconnects", in Proceedings of Workshop on Innovative Nanoscale  Devices and Systems, Eds.  Koji  Ishibashi, Stephen M...Workshop on Innovative Nanoscale  Devices and Systems, Eds. Viktor Sverdlov, Berry Jonker, Siegfried Selberherr,  Koji  Ishibashi,  Stephen M. Goodnick...Proceedings of Workshop on Innovative Nanoscale Devices and Systems, Eds. Koji Ishibashi, Stephen M. Goodnick, Siegfried Selberherr, Akira Fujiwara (12/2-7

  4. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  5. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    NASA Technical Reports Server (NTRS)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  6. The thermal conductivity of chemical-vapor-deposited diamond films on silicon

    NASA Astrophysics Data System (ADS)

    Graebner, J. E.; Mucha, J. A.; Seibles, L.; Kammlott, G. W.

    1992-04-01

    The thermal conductivity of chemical-vapor-deposited diamond films on silicon is measured for the case of heat flow parallel to the plane of the film. A new technique uses thin-film heaters and thermometers on a portion of the film which is made to be free standing by etching away the substrate. Effects of thermal radiation are carefully avoided by choosing the length scale properly. Data for several films yield thermal conductivities in the range 2-6 W/cm C. This is comparable to copper (4 W/cm C) and is in a range that would be useful as a thin-film dielectric material, provided that the interface thermal resistance can be minimized. The conductivity varies inversely with the growth rate and the Raman linewidth.

  7. Ascent Heating Thermal Analysis on the Spacecraft Adaptor (SA) Fairings and the Interface with the Crew Launch Vehicle (CLV)

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Yuko, James; Motil, Brian

    2009-01-01

    When the crew exploration vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aero heating case. Heating rates from Thermal Environment (TE) 3 aero heating analysis computed by engineers at Marshall Space Flight Center (MSFC) are used in the thermal analysis. Both MSC Patran 2007r1b/Pthermal and C&R Thermal Desktop 5.1/Sinda models are built to validate each other. The numerical results are also compared with those reported by Lockheed Martin (LM) and show a reasonably good agreement.

  8. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    DOEpatents

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  9. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach atmore » the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.« less

  10. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.

    PubMed

    Wang, Linjun; Long, Run; Prezhdo, Oleg V

    2015-04-01

    Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

  11. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    DOE PAGES

    Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; ...

    2015-03-05

    The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less

  12. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage

    PubMed Central

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated. PMID:23712069

  13. The Influence of a TiN Film on the Electronic Contribution to the Thermal Conductivity of a TiC Film in a TiN-TiC Layer System

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2018-01-01

    TiC and TiN films were deposited by reactive magnetron sputtering on Si substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of the microstructure and interface structure have been carried out and the stoichiometric composition of TiC is determined. Thermal conductivity and interface thermal conductance between different layers in the films are evaluated by the transient thermo reflectance (TTR) and three-omega (3- ω) methods. The results showed that the thermal conductivity of the TiC films increased with temperature. The thermal conductivity of TiC in the absence of TiN is dominated by phonon contribution. The electronic contribution to the thermal conductivity of TiC in the presence of TiN is found to be more significant. The interface thermal conductance of the TiC/TiN interface is much larger than that of interfaces at Au/TiC, TiC/Si, or TiN/Si. The interface thermal conductance between TiC and TiN is reduced by the layer formed as a result of interdiffusion.

  14. Understanding the Reliability of Solder Joints Used in Advanced Structural and Electronics Applications: Part 2 - Reliability Performance.

    DOE PAGES

    Vianco, Paul T.

    2017-03-01

    Whether structural or electronic, all solder joints must provide the necessary level of reliability for the application. The Part 1 report examined the effects of filler metal properties and the soldering process on joint reliability. Filler metal solderability and mechanical properties, as well as the extents of base material dissolution and interface reaction that occur during the soldering process, were shown to affect reliability performance. The continuation of this discussion is presented in this Part 2 report, which highlights those factors that directly affect solder joint reliability. There is the growth of an intermetallic compound (IMC) reaction layer at themore » solder/base material interface by means of solid-state diffusion processes. In terms of mechanical response by the solder joint, fatigue remains as the foremost concern for long-term performance. Thermal mechanical fatigue (TMF), a form of low-cycle fatigue (LCF), occurs when temperature cycling is combined with mismatched values of the coefficient of thermal expansion (CTE) between materials comprising the solder joint “system.” Vibration environments give rise to high-cycle fatigue (HCF) degradation. Although accelerated aging studies provide valuable empirical data, too many variants of filler metals, base materials, joint geometries, and service environments are forcing design engineers to embrace computational modeling to predict the long-term reliability of solder joints.« less

  15. Thermal energy harvesting and solar energy conversion utilizing carbon-based nanomaterials

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick T.

    This dissertation provides details of carbon-based nanomaterial fabrication for applications in energy harvesting and generation. As energy demands increase, and concerns about mankind's environmental impact increase, alternative methods of generating energy will be widely researched. Carbon-based nanomaterials may be effective in such applications as their fabrication is often inexpensive and they have highly desirable electrical, mechanical, and thermal properties. Synthesis and characterization of carbon nanotube thermal interfaces on gadolinium foils is described herein. Total thermal interface resistances of carbon nanotube coated gadolinium were measured using a one-dimensional reference calorimeter technique, and the effect of hydrogen embrittlement on the magnetic properties of gadolinium foils is discussed. The samples generated in this study were consistently measured with reduced total thermal interface resistances of 55-70% compared to bare gadolinium. Characterization of gadolinium foils in a cooling device called a magneto thermoelectric generator was also performed. A gadolinium shuttle drives the device as it transitions between ferromagnetic and paramagnetic states. Reduced interface resistances from the carbon nanotube arrays led to increased shuttle frequency and effective heat transfer coefficients. Detailed theoretical derivations for electron emission during thermal and photo-excitation are provided for both three-dimensional and two-dimensional materials. The derived theories were fitted to experimental data from variable temperature photoemission studies of potassium-intercalated graphitic nanopetals. A work function reduction from approximately 4.5 eV to 2 -- 3 eV resulted from potassium intercalation and adsorption. While changes in the electron energy distribution shape and intensity were significant within 310 -- 680 K, potassium-intercalated graphitic petals demonstrate very high thermal stability after heating to nearly 1000 K. Boron nitride modification of the nanopetals was performed in an effort to minimize deintercalation of potassium from the nanopetal lattice and while multiple work functions were present within the electron energy distribution, massive reductions in emission intensity took place above 580 K. Finally, a device for measuring the current density during photoemission was also developed and photoemission induced by a solar simulator at room temperature produced currents on the order of 1 nA/cm 2 resulting in a quantum efficiency of approximately 8.0x10 --8 electrons emitted per photon of illumination.

  16. TOPAZ2D heat transfer code users manual and thermal property data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less

  17. Near-field thermal rectification devices using phase change periodic nanostructure.

    PubMed

    Ghanekar, Alok; Tian, Yanpei; Ricci, Matthew; Zhang, Sinong; Gregory, Otto; Zheng, Yi

    2018-01-22

    We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO 2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO 2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.

  18. Influence of Thickness and Interface on the Low-Temperature Enhancement of the Spin Seebeck Effect in YIG Films

    DOE PAGES

    Guo, Er-Jia; Cramer, Joel; Kehlberger, Andreas; ...

    2016-07-27

    The temperature-dependent longitudinal spin Seebeck effect (LSSE) in heavy metal (HM)/Y 3Fe 5O 12 (YIG) hybrid structures is investigated as a function of YIG film thickness, magnetic field strength, and different HM detection materials. The LSSE signal shows a large enhancement with reductions in temperature, leading to a pronounced peak at low temperatures. Here we find that the LSSE peak temperature strongly depends on the film thickness as well as on the magnetic field. Our result can be well explained in the framework of magnon-driven LSSE by taking into account the temperature-dependent effective propagation length of thermally excited magnons inmore » the bulk of the material. We further demonstrate that the LSSE peak is significantly shifted by changing the interface coupling to an adjacent detection layer, revealing a more complex behavior beyond the currently discussed bulk effect. By direct microscopic imaging of the interface, we correlate the observed temperature dependence with the interface structure between the YIG and the adjacent metal layer. Finally, our results highlight the role of interface effects on the temperature-dependent LSSE in HM/YIG system, suggesting that the temperature-dependent spin current transparency strikingly relies on the interface conditions.« less

  19. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira

    2015-01-01

    Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials. PMID:26434678

  20. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    PubMed Central

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  1. Thermal conductance of two interface materials and their applications in space systems

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.; Clatterbuck, C. H.; Wall, J. L.

    1992-01-01

    Two polymeric materials, the Cho-Therm 1671 elastomer and the CV-2946 conductive RTV silicone, have been evaluated. Tests were conducted in vacuum and in air, for many clamping pressures, power densities, and as a function of time. Results obtained show that the CV-2946 thermal conductance after 24 hour in vacuum is 0.62 W/sq cm C(4W/sq in C) when clamped with an average pressure of about 350 psi. The maximum conductance of Cho-Therm 1671 is 4.3 W/sq in C at the clamping pressure about 200 psi. After 72 h in vacuum, the conductance reaches a steady 3.4 W/sq in C, independent of clamping pressure. It is concluded that the tightly bolted, torqued fixtures do not buckle or distort and provide an optimum thermal conductance. The fixtures simulating an actual spacecraft configuration suffered severe bowing and separating, which caused considerable degradation of conductance values.

  2. Effects of optical design modifications on thermal performance of a highly reflective HfO2/SiO2/TiO2 three material coating

    NASA Astrophysics Data System (ADS)

    Ocak, M.; Sert, C.; Okutucu-Özyurt, T.

    2018-02-01

    Effects of layer thickness modifications on laser induced temperature distribution inside three material, highly reflective thin film coatings are studied with numerical simulations. As a base design, a 21 layer coating composed of HfO2, SiO2 and TiO2 layers of quarter wave thickness is considered. First, the laser induced temperature distribution in this base design is obtained. Then the layer thicknesses of the base design are modified and the corresponding temperature distributions in four alternative non-quarter wave coatings are evaluated. The modified thicknesses are determined using an in-house code developed to shift the electric field intensity (EFI) peak from the first high/low layer interface towards the adjacent low index layer that has a higher thermal conductivity, hence, higher laser damage resistance. Meanwhile, the induced increase in the EFI peak is kept at a user defined upper limit. The laser endurance of the base and alternative designs are compared in terms of their estimated temperature distributions. The results indicated that both the peak temperature and the highest interface temperature are decreased by at least 32%, in non-dimensional form, when alternative designs are used instead of the base design. The total reflection of the base design is only decreased from 99.8% to at most 99.4% when alternative designs are used. The study is proved to be successful in improving the laser endurance of three material thin film coatings by lowering the peak and interface temperatures.

  3. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    PubMed

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (<350 °C) showed high C-H groups and decreased OH groups on their surface, which possibly contributed towards their bacterio-phobicity. The TS-Ti nanooxide film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces.

  4. Study of the thermal properties of low k dielectric thin films

    NASA Astrophysics Data System (ADS)

    Hu, Chuan

    The integration of low k material is of great importance for the performance of an electronic device as the result of shrink in the device size. The thermal conductivity of low k materials is usually much lower than that of the traditionally used SiO2 and thus a tradeoff has to be properly evaluated. The thermal conduction in amorphous thin films is not only industrially important but also scientifically interesting. Many efforts have been done to understand the "phonon" propagation in an amorphous medium. Two experimental tools to study thermal properties are developed. The photothermal technique is an optical far field method and the 3o technique is an electrical near field method. The free standing and on-wafer photothermal techniques measure the out-of-plane thermal diffusivity directly and the 3o technique measures the out-of-plane thermal conductivity under our typical experimental configurations. The thermal diffusivities of a rigid rod like polyimide PI2611 and a flexible PI2545 are measured using the photothermal technique. The thermal anisotropy is studied by comparing our measurements with the result from in-plane measurements. The porosity dependence of thermal conductivity of Xerogel is studied by 3o technique. The fast drop in thermal conductivity is explained as the result of porosity and thermal contact in solid phase. A scaling rule of thermal conductivity as a function of porosity is proposed to the show the tradeoff between the thermal and the electrical properties. The possible impact of integrating low k materials in an interconnect structure is evaluated. The effective thermal conductivity of polymeric thin films as thin as 70 A is measured by 3o technique. The interfacial thermal resistances of Al/polymer/Si sandwich structure are found to be about 2 to 10 times larger than that of Al/SiO2/Si and the bulk thermal conductivities of polymers are found to be about 5 to 10 times smaller than that of SiO 2. The thermal conductivity of amorphous material is explained using the minimum thermal length model. The interfacial thermal resistance is explained using the acoustic and diffuse mismatch models as well as roughness and inelastic scattering at the interface.

  5. Influence of engineered interfaces on residual stresses and mechanical response in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Wilt, Thomas E.

    1992-01-01

    Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.

  6. Power and Thermal Technologies for Air and Space-Scientific Research Program. Delivery Order 0012: High-Temperature Superconductor Performance Enhancement

    DTIC Science & Technology

    2010-06-01

    house to grow CNTs. Initially the CNTs were grown at atmospheric pressure using C2H2/Ar mixtures. Prior to deposition, the quartz tube of the reactor...imaged clearly. It appears that there could be some amorphous carbon present on the surface of the tubes with the present set of conditions used and...chip cooling with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal interface materials were also

  7. Fundamentals and applications of solar energy. Part 2

    NASA Astrophysics Data System (ADS)

    Faraq, I. H.; Melsheimer, S. S.

    Applications of techniques of chemical engineering to the development of materials, production methods, and performance optimization and evaluation of solar energy systems are discussed. Solar thermal storage systems using phase change materials, liquid phase Diels-Alder reactions, aquifers, and hydrocarbon oil were examined. Solar electric systems were explored in terms of a chlorophyll solar cell, the nonequilibrium electric field effects developed at photoelectrode/electrolyte interfaces, and designs for commercial scale processing of solar cells using continuous thin-film coating production methods. Solar coal gasification processes were considered, along with multilayer absorber coatings for solar concentrator receivers, solar thermal industrial applications, the kinetics of anaerobic digestion of crop residues to produce methane, and a procedure for developing a computer simulation of a solar cooling system.

  8. Testing of felt-ceramic materials for combustor applications

    NASA Technical Reports Server (NTRS)

    Venkat, R. S.; Roffe, G.

    1983-01-01

    The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.

  9. Thermoelectric Transport in Nanocomposites

    PubMed Central

    Liu, Bin; Hu, Jizhu; Zhou, Jun; Yang, Ronggui

    2017-01-01

    Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit (ZT). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT. Nanocomposites is one kind of nanostructured material system which includes nanoconstituents in a matrix material or is a mixture of different nanoconstituents. Recently, nanocomposites have been theoretically proposed and experimentally synthesized to be high efficiency thermoelectric materials by reducing the lattice thermal conductivity due to phonon-interface scattering and enhancing the electronic performance due to manipulation of electron scattering and band structures. In this review, we summarize the latest progress in both theoretical and experimental works in the field of nanocomposite thermoelectric materials. In particular, we present various models of both phonon transport and electron transport in various nanocomposites established in the last few years. The phonon-interface scattering, low-energy electrical carrier filtering effect, and miniband formation, etc., in nanocomposites are discussed. PMID:28772777

  10. Thermoelectric Transport in Nanocomposites.

    PubMed

    Liu, Bin; Hu, Jizhu; Zhou, Jun; Yang, Ronggui

    2017-04-15

    Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit ( ZT ). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT . Nanocomposites is one kind of nanostructured material system which includes nanoconstituents in a matrix material or is a mixture of different nanoconstituents. Recently, nanocomposites have been theoretically proposed and experimentally synthesized to be high efficiency thermoelectric materials by reducing the lattice thermal conductivity due to phonon-interface scattering and enhancing the electronic performance due to manipulation of electron scattering and band structures. In this review, we summarize the latest progress in both theoretical and experimental works in the field of nanocomposite thermoelectric materials. In particular, we present various models of both phonon transport and electron transport in various nanocomposites established in the last few years. The phonon-interface scattering, low-energy electrical carrier filtering effect, and miniband formation, etc., in nanocomposites are discussed.

  11. Electric Motor Thermal Management R&D. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less

  12. Bridgman Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.

    1997-01-01

    The high-magnetic-field crystal growth facility at the Marshall Space Flight Center will be briefly described. This facility has been used to grow bulk germanium by the Bridgman technique in magnetic fields up to 5 Tesla. The results of investigations of ampoule material on the interface shape and thermal field applied to the melt on stability against convection will be discussed.

  13. Geopolymers for Structural Ceramic Applications

    DTIC Science & Technology

    2006-08-31

    Applications of geopolymers have included ceramic matrix composites ,ŕ, 3 waste encapsulation 9-11and alternative cements.7,12,14 As adhesives... compositions of the geopolymer adhesive interfaces were studied with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Durable...after thermal shock testing. In response, chopped-fiber reinforced geopolymer composites were processed as possible candidate mold materials for casting

  14. Physics-based Entry, Descent and Landing Risk Model

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  15. Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ying; Hong, Guo; Raja, Shyamprasad N.

    2015-03-02

    Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction canmore » be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.« less

  16. Reflector surface distortion analysis techniques (thermal distortion analysis of antennas in space)

    NASA Technical Reports Server (NTRS)

    Sharp, R.; Liao, M.; Giriunas, J.; Heighway, J.; Lagin, A.; Steinbach, R.

    1989-01-01

    A group of large computer programs are used to predict the farfield antenna pattern of reflector antennas in the thermal environment of space. Thermal Radiation Analysis Systems (TRASYS) is a thermal radiation analyzer that interfaces with Systems Improved Numerical Differencing Analyzer (SINDA), a finite difference thermal analysis program. The programs linked together for this analysis can now be used to predict antenna performance in the constantly changing space environment. They can be used for very complex spacecraft and antenna geometries. Performance degradation caused by methods of antenna reflector construction and materials selection are also taken into consideration. However, the principal advantage of using this program linkage is to account for distortions caused by the thermal environment of space and the hygroscopic effects of the dry-out of graphite/epoxy materials after the antenna is placed into orbit. The results of this type of analysis could ultimately be used to predict antenna reflector shape versus orbital position. A phased array antenna distortion compensation system could then use this data to make RF phase front corrections. That is, the phase front could be adjusted to account for the distortions in the antenna feed and reflector geometry for a particular orbital position.

  17. Thermal residual stresses in silicon-carbide/titanium (0/90) laminate

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1992-01-01

    The current work formulated a micromechanical analysis of a cross-ply laminate and calculated the thermal residual stress in a very thick (0/90)(sub 2n) silicon-carbide/titanium laminate. Results were also shown for a unidirectional laminate of the same material. Discrete fiber-matrix models assuming a rectangular array of fibers with a fiber volume fraction of 32.5 percent and a three-dimensional, finite-element analysis were used. Significant differences in the trends and magnitudes for the fiber, matrix, and interface stresses were calculated for unidirectional and (0/90) models. Larger hoop stresses calculated for the (0/90) model indicate that it may be more susceptible to radial cracking when subjected to mechanical loading than the unidirectional model. The axial stresses in the matrix were calculated to be slightly larger for the (0/90) model. The compressive axial stresses in the fiber were significantly larger in the (0/90) model. The presence of the cross-ply in the (0/90) model reduced the constraint on the fiber, producing radial interface stresses that were less compressive, which could lead to earlier failure of the fiber-matrix interface.

  18. First-Principles Study on the Thermal Stability of LiNiO2 Materials Coated by Amorphous Al2O3 with Atomic Layer Thickness.

    PubMed

    Kang, Joonhee; Han, Byungchan

    2015-06-03

    Using first-principles calculations, we study how to enhance thermal stability of high Ni compositional cathodes in Li-ion battery application. Using the archetype material LiNiO2 (LNO), we identify that ultrathin coating of Al2O3 (0001) on LNO(012) surface, which is the Li de-/intercalation channel, substantially improves the instability problem. Density functional theory calculations indicate that the Al2O3 deposits show phase transition from the corundum-type crystalline (c-Al2O3) to amorphous (a-Al2O3) structures as the number of coating layers reaches three. Ab initio molecular dynamic simulations on the LNO(012) surface coated by a-Al2O3 (about 0.88 nm) with three atomic layers oxygen gas evolution is strongly suppressed at T=400 K. We find that the underlying mechanism is the strong contacting force at the interface between LNO(012) and Al2O3 deposits, which, in turn, originated from highly ionic chemical bonding of Al and O at the interface. Furthermore, we identify that thermodynamic stability of the a-Al2O3 is even more enhanced with Li in the layer, implying that the protection for the LNO(012) surface by the coating layer is meaningful over the charging process. Our approach contributes to the design of innovative cathode materials with not only high-energy capacity but also long-term thermal and electrochemical stability applicable for a variety of electrochemical energy devices including Li-ion batteries.

  19. Composite Laser Ceramics by Advanced Bonding Technology

    PubMed Central

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  20. Estimation of Thermoelectric Generator Performance by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Ziolkowski, P.; Poinas, P.; Leszczynski, J.; Karpinski, G.; Müller, E.

    2010-09-01

    Prediction of thermoelectric performance parameters by numerical methods is an inherent part of thermoelectric generator (TEG) development and allows for time- and cost-saving assessment of material combinations and variations of crucial design parameters (e.g., shape, pellet length, and thermal coupling). Considering the complexity of a TEG system and its numerous affecting factors, the clarity and the flexibility of a mathematical treatment comes to the fore. Comfortable tools are provided by commercial finite element modeling (FEM) software offering powerful geometry interfaces, mesh generators, solvers, and postprocessing options. We describe the level of development and the simulation results of a three dimensional (3D) TEG FEM. Using ANSYS 11.0, we implemented and simulated a TEG module geometry under various conditions. Comparative analytical one dimensional (1D) results and a direct comparison with inhouse-developed TEG simulation software show the consistency of results. Several pellet aspect ratios and contact property configurations (thermal/electrical interface resistance) were evaluated for their impact on the TEG performance as well as parasitic effects such as convection, radiation, and conductive heat bypass. The scenarios considered revealed the highest efficiency decay for convectionally loaded setups (up to 4.8%pts), followed by the impacts of contact resistances (up to 4.8%pts), by radiation (up to 0.56%pts), and by thermal conduction of a solid filling material within the voids of the module construction (up to 0.14%pts).

  1. Degradation of thermally-cured silicone encapsulant under terrestrial UV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Can; Miller, David C.; Tappan, Ian A.

    Concentrator photovoltaic (CPV) modules operate in extreme conditions, including enhanced solar flux, elevated operating temperature, and frequent thermal cycling. Coupled with active environmental species such as oxygen and moisture, the operating conditions pose a unique materials challenge for guaranteeing operational lifetimes of greater than 25 years. Specifically, the encapsulants used in the optical elements are susceptible to environmental degradation during operation. For example, the interfaces must remain in contact to prevent optical attenuation and thermal runaway. We developed fracture mechanics based metrologies to characterize the adhesion of the silicone encapsulant and its adjacent surfaces, as well as the cohesion ofmore » the encapsulant. Further, we studied the effects of weathering on adhesion using an outdoor concentrator operating in excess of 1100 times the AM1.5 direct irradiance and in indoor environmental chambers with broadband ultraviolet (UV) irradiation combined with controlled temperature and humidity. We observed a sharp initial increase in adhesion energy followed by a gradual decrease in adhesion as a result of both outdoor concentrator exposure and indoor UV weathering. We characterized changes in mechanical properties and chemical structures using XPS, FTIR, and DMA to understand the fundamental connection between mechanical strength and the degradation of the silicone encapsulant. We developed physics based models to explain the change in adhesion and to predict operational lifetimes of the materials and their interfaces.« less

  2. Effect of Embedding Cu-Graphene Hybrid Powder into 2-Phase In-Cu Solders on Its Suitability as Metallic Thermal Interface Material

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Jain, Aman; Somaiah, Nalla; Narayanan, P. Ramesh; Kumar, Praveen

    2018-05-01

    The effect of embedding Cu-graphene hybrid powder, namely "graphene nano-sheet Cu" (GNS-Cu) powder, into In-40 vol.% Cu solder alloy on the electrical and mechanical properties of In-Cu solder is investigated. GNS-Cu hybrid powders were prepared by mixing reduced graphene oxide powders and CuSO4·5H2O, followed by reduction of the mixture with hydrazine. Subsequently, In-Cu solders with GNS-Cu powders were prepared using a 2-step process, comprising liquid phase sintering (LPS) of In and Cu powders followed by accumulative roll bonding (ARB). During ARB, the GNS-Cu powders were embedded as distinct layers into In-Cu composite solders. Electrical conductivity of the GNS-Cu embedded solders increased by > 20% as compared to pure In-Cu solders processed through the same combination of LPS-ARB steps. The yield strength of In-Cu solder increased by only 10% with the addition of GNS-Cu powders and thus retained the moderate strength often associated with pure In-Cu composite solders. Moreover, the thermal conductivity of GNS-Cu-embedded solders was estimated theoretically to increase by > 60%. These promising findings suggest that GNS-Cu-embedded In-Cu solders can be suitable for next-generation metallic thermal interface material and package-level interconnect applications.

  3. The transient divided bar method for laboratory measurements of thermal properties

    NASA Astrophysics Data System (ADS)

    Bording, Thue S.; Nielsen, Søren B.; Balling, Niels

    2016-12-01

    Accurate information on thermal conductivity and thermal diffusivity of materials is of central importance in relation to geoscience and engineering problems involving the transfer of heat. Several methods, including the classical divided bar technique, are available for laboratory measurements of thermal conductivity, but much fewer for thermal diffusivity. We have generalized the divided bar technique to the transient case in which thermal conductivity, volumetric heat capacity and thereby also thermal diffusivity are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity can also be determined. The finite element formulation provides a flexible forward solution for heat transfer across the bar, and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties and information on their origin. The developed methodology was applied to various materials, including a standard ceramic material and different rock samples, and measuring results were compared with results applying traditional steady-state divided bar and an independent line-source method. All measurements show highly consistent results and with excellent reproducibility and high accuracy. For conductivity the obtained uncertainty is typically 1-3 per cent, and for diffusivity uncertainty may be reduced to about 3-5 per cent. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces in the bar. These are not resolved during inversion and it is imperative that they are minimized. The proposed procedure is simple and may quite easily be implemented to the many steady-state divided bar systems in operation. A thermally controlled bath, as applied here, may not be needed. Simpler systems, such as applying temperature-controlled water directly from a tap, may also be applied.

  4. Spatial Manipulation of Heat Flow by Surface Boundaries at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Malhotra, Abhinav; Maldovan, Martin

    The precise manipulation of phonon transport properties is central to controlling thermal transport in semiconductor nanostructures. The physical understanding, prediction, and control of thermal phonon heat spectra and thermal conductivity accumulation functions - which establish the proportion of heat transported by phonons with different frequencies and mean-free-paths - has attracted significant attention in recent years. In this talk, we advance the possibilities of manipulating heat by spatially modulating thermal transport in nanostructures. We show that phonon scattering at interfaces impacts the most preferred physical pathway used by heat energy flow in thermal transport in nanostructures. The role of introducing boundaries with different surface conditions on resultant thermal flux is presented and methodologies to enhance these spatial modulations are discussed. This talk aims to advance the fundamental understanding on the nature of heat transport at nanoscale with potential applications in multiple research areas ranging from energy materials to optoelectronics.

  5. Thermal transport across metal–insulator interface via electron–phonon interaction.

    PubMed

    Zhang, Lifa; Lü, Jing-Tao; Wang, Jian-Sheng; Li, Baowen

    2013-11-06

    The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green's function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling.

  6. Electrical switching of antiferromagnets via strongly spin-orbit coupled materials

    NASA Astrophysics Data System (ADS)

    Li, Xi-Lai; Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook

    2017-01-01

    Electrically controlled ultra-fast switching of an antiferromagnet (AFM) is shown to be realizable by interfacing it with a material of strong spin-orbit coupling. The proximity interaction between the sublattice magnetic moments of a layered AFM and the spin-polarized free electrons at the interface offers an efficient way to manipulate antiferromagnetic states. A quantitative analysis, using the combination with a topological insulator as an example, demonstrates highly reliable 90° and 180° rotations of AFM magnetic states under two different mechanisms of effective torque generation at the interface. The estimated switching speed and energy requirement are in the ps and aJ ranges, respectively, which are about two-three orders of magnitude better than the ferromagnetic counterparts. The observed differences in the magnetization dynamics may explain the disparate characteristic responses. Unlike the usual precessional/chiral motions in the ferromagnets, those of the AFMs can essentially be described as a damped oscillator with a more direct path. The impact of random thermal fluctuations is also examined.

  7. ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry.

    PubMed

    Lohbauer, Ulrich; Scherrer, Susanne S; Della Bona, Alvaro; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, J Robert; Cesar, Paulo F

    2017-06-01

    This guidance document describes the specific issues involved in dental multilayer ceramic systems. The material interactions with regard to specific thermal and mechanical properties are reviewed and the characteristics of dental tooth-shaped processing parameters (sintering, geometry, thickness ratio, etc.) are discussed. Several techniques for the measurement of bond quality and residual stresses are presented with a detailed discussion of advantages and disadvantages. In essence no single technique is able to describe adequately the all-ceramic interface. Invasive or semi-invasive methods have been shown to distort the information regarding the residual stress state while non-invasive methods are limited due to resolution, field of focus or working depth. This guidance document has endeavored to provide a scientific basis for future research aimed at characterizing the ceramic interface of dental restorations. Along with the methodological discussion it is seeking to provide an introduction and guidance to relatively inexperienced researchers. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity

    PubMed Central

    Wang, Ning; Chen, Haijun; He, Hongcai; Norimatsu, Wataru; Kusunoki, Michiko; Koumoto, Kunihito

    2013-01-01

    Authors reported an effective path to increase the electrical conductivity while to decrease the thermal conductivity, and thus to enhance the ZT value by nano-inclusions. By this method, the ZT value of Nb-doped SrTiO3 was enhanced 9-fold by yttria stabilized zirconia (YSZ) nano-inclusions. YSZ inclusions, located inside grain and in triple junction, can reduce the thermal conductivity by effective interface phonon scattering, enhance the electrical conductivity by promoting the abnormal grain growth, and thus lead to the obvious enhancement of ZT value, which strongly suggests that, it is possible to not only reduce the thermal conductivity, but also increase the electrical conductivity by nano-inclusions with low thermal conductivity. This study will give some useful enlightenment to the preparation of high-performance oxide thermoelectric materials. PMID:24316665

  9. Oxidation of SiC

    NASA Astrophysics Data System (ADS)

    Cooper, James A.

    1997-03-01

    SiC is a wide band gap hexagonal anisotropic semiconductor which is attractive for use in high voltage, high temperature, or high power applications. SiC is also the only compound semiconductor that can be thermally oxidized to form SiO_2, making it possible to construct many conventional MOS devices in this material. The electrical quality of the SiO_2/SiC interface is far from ideal, however, and considerable research is presently directed to understanding and improving this interface. Electrical characterization of the SiC MOS interface is complicated by the wide band gap, since most interface states are energetically too far removed from the conduction or valence bands to respond to electrical stimulation at room temperature. Moreover, very little information is yet available on the properties of the MOS interface on the 4H polytype of SiC (preferred because of it's higher bulk electron mobility) or on interfaces on crystalline surfaces perpendicular to the basal plane (where an equal number of Si and C atoms are present). Finally, electron mobilities in inversion layers on 4H-SiC reported to date are anomolously low, especially in consideration of the relatively high bulk mobilities in this polytype. In this talk we will discuss MOS characterization techniques for wide band gap semiconductors and review the current understanding of the physics of the MOS interface on thermally oxidized SiC.

  10. Thermal-structural design study of an airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.

    1978-01-01

    Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.

  11. Thermally-Conductive Metallic Coatings and Applications for Heat Removal on In-Space Cryogenic Vehicles

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Hervol, David; Waters, Deborah

    2017-01-01

    For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.

  12. Oxidation- and Creep-Enhanced Fatigue of Haynes 188 Alloy-Oxide Scale System Under Simulated Pulse Detonation Engine Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.

    2002-01-01

    The development of the pulse detonation engine (PDE) requires robust design of the engine components that are capable of enduring harsh detonation environments. In this study, a high cycle thermal fatigue test rig was developed for evaluating candidate PDE combustor materials using a CO2 laser. The high cycle thermal fatigue behavior of Haynes 188 alloy was investigated under an enhanced pulsed laser test condition of 30 Hz cycle frequency (33 ms pulse period, and 10 ms pulse width including 0.2 ms pulse spike). The temperature swings generated by the laser pulses near the specimen surface were characterized by using one-dimensional finite difference modeling combined with experimental measurements. The temperature swings resulted in significant thermal cyclic stresses in the oxide scale/alloy system, and induced extensive surface cracking. Striations of various sizes were observed at the cracked surfaces and oxide/alloy interfaces under the cyclic stresses. The test results indicated that oxidation and creep-enhanced fatigue at the oxide scale/alloy interface was an important mechanism for the surface crack initiation and propagation under the simulated PDE condition.

  13. Head flying characteristics in heat assisted magnetic recording considering various nanoscale heat transfer models

    NASA Astrophysics Data System (ADS)

    Hu, Yueqiang; Wu, Haoyu; Meng, Yonggang; Wang, Yu; Bogy, David

    2018-01-01

    The thermal issues in heat-assisted magnetic recording (HAMR) technology have drawn much attention in the recent literature. In this paper, the head flying characteristics and thermal performance of a HAMR system during the touch-down process considering different nanoscale heat transfer models across the head-disk interface are numerically studied. An optical-thermal-mechanical coupled model is first described. The coupling efficiency of the near field transducer is found to be dependent on the head disk clearance. The shortcomings of a constant disk-temperature model are investigated, which reveals the importance of considering the disk temperature as a variable. A study of the head flying on the disk is carried out using an air conduction model and additional near-field heat transfer models. It is shown that when the head disk interface is filled with a solid material caused by the laser-induced accumulation, the heat transfer coefficient can become unexpectedly large and the head's temperature can rise beyond desirable levels. Finally, the additional head protrusion due to the laser heating is investigated.

  14. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    PubMed Central

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-01-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987

  15. High-performance thermoelectric nanocomposites from nanocrystal building blocks.

    PubMed

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu

    2016-03-07

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  16. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  17. Superior Thermal Interface via Vertically Aligned Carbon Nanotubes Grown on Graphite Foils

    DTIC Science & Technology

    2012-01-01

    accepted 12 November 2012) In an attempt to study the thermal transport at the interface between nanotubes and graphene, vertically aligned multiwalled...tually increases the thermal barrier in a significant manner. On the other hand, thermal transport properties of thermal tapes and thermally conductive...aforementioned study achieved superior thermal transport properties, the processing and scale-up of the developed process would be prohibitively

  18. Interfacial Thermal Conductance Limit and Thermal Rectification Across Vertical Carbon Nanotube/Graphene Nanoribbon-Silicon Interfaces

    DTIC Science & Technology

    2013-01-01

    Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene nanoribbon-silicon interfaces Ajit K...054308 (2013) Investigation on interfacial thermal resistance and phonon scattering at twist boundary of silicon J. Appl. Phys. 113, 053513 (2013...2013 to 00-00-2013 4. TITLE AND SUBTITLE Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene

  19. Quantifying the limits of through-plane thermal dissipation in 2D-material-based systems

    NASA Astrophysics Data System (ADS)

    Yasaei, Poya; Behranginia, Amirhossein; Hemmat, Zahra; El-Ghandour, Ahmed I.; Foster, Craig D.; Salehi-Khojin, Amin

    2017-09-01

    Through-plane thermal transport accounts for a major fraction of heat dissipation from hot-spots in many existing devices made of two-dimensional (2D) materials. In this report, we performed a set of electrical thermometry measurements and 3D finite element analyses to quantify the limits of power dissipation in monolayer graphene, a representative of 2D materials, fabricated on various technologically viable substrates such as chemical vapor deposited (CVD) diamond, tape-casted (sintered) aluminum nitride (AlN), and single crystalline c-plane sapphire as well as silicon with different oxide layers. We demonstrate that the heat dissipation through graphene on AlN substrate near room temperature outperforms those of CVD diamond and other studied substrates, owing to its superior thermal boundary conductance (TBC). At room temperature, our measurements reveal a TBC of 33.5 MW · m-2 · K-1 for graphene on AlN compared to 6.2 MW · m-2 · K-1 on diamond. This study highlights the importance of simultaneous optimization of the interfaces and the substrate and provides a route to maximize the heat removal capability of 2D-material-based devices.

  20. Studies of material and process compatibility in developing compact silicon vapor chambers

    NASA Astrophysics Data System (ADS)

    Cai, Qingjun; Bhunia, Avijit; Tsai, Chialun; Kendig, Martin W.; DeNatale, Jeffrey F.

    2013-06-01

    The performance and long-term reliability of a silicon vapor chamber (SVC) developed for thermal management of high-power electronics critically depend on compatibility of the component materials. A hermetically sealed SVC presented in this paper is composed of bulk silicon, glass-frit as a bonding agent, lead/tin solder as an interface sealant and a copper charging tube. These materials, in the presence of a water/vapor environment, may chemically react and release noncondensable gas (NCG), which can weaken structural strength and degrade the heat transfer performance with time. The present work reports detailed studies on chemical compatibility of the components and potential solutions to avoid the resulting thermal performance degradation. Silicon surface oxidation and purification of operating liquid are necessary steps to reduce performance degradation in the transient period. A lead-based solder with its low reflow temperature is found to be electrochemically stable in water/vapor environment. High glazing temperature solidifies molecular bonding in glass-frit and mitigates PbO precipitation. Numerous liquid flushes guarantee removal of chemical residual after the charging tube is soldered to SVC. With these improvements on the SVC material and process compatibility, high effective thermal conductivity and steady heat transfer performance are obtained.

  1. Techniques for Embedding Instrumentation in Pressure Vessel Test Articles

    NASA Technical Reports Server (NTRS)

    Cornelius, Michael

    2006-01-01

    Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.

  2. Understanding Thermal Transport in Graded, Layered and Hybrid Materials

    DTIC Science & Technology

    2014-04-01

    interfacial chemistries, including metallic and carbide layers, and; (iv) mimic the observed interface structure on a TDTR specimen by manipulating the...surface carbides , which were extracted from several different composites via acid dissolution of Cu, continued throughout the last 12 months of the...effort. The previously-reported electron probe microanalysis (EPMA) based techniques were employed to estimate the interfacial carbide layer thickness

  3. Crack barriers improve the mechanical and thermal properties of non-metallic sinter materials

    NASA Technical Reports Server (NTRS)

    Gruenthaler, K. H.; Heinrich, W.; Janes, S.; Nixdorf, J.

    1979-01-01

    Means of improving the tensile strength of ceramic composites by introducing ductile intermediate layers capable of absorbing the elastic energy at the rupture front are studied. Tests with an Al203 laminate with niobium inclusions showed that crack propagation could be successfully precluded by dissipation of the energy by deformation and/or delamination at the inclusion/matrix interface.

  4. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  5. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  6. Chemical Synthesis of Porous Barium Titanate Thin Film and Thermal Stabilization of Ferroelectric Phase by Porosity-Induced Strain.

    PubMed

    Suzuki, Norihiro; Osada, Minoru; Billah, Motasim; Bando, Yoshio; Yamauchi, Yusuke; Hossain, Shahriar A

    2018-03-27

    Barium titanate (BaTiO3, hereafter BT) is an established ferroelectric material first discovered in the 1940s and still widely used because of its well-balanced ferroelectricity, piezoelectricity, and dielectric constant. In addition, BT does not contain any toxic elements. Therefore, it is considered to be an eco-friendly material, which has attracted considerable interest as a replacement for lead zirconate titanate (PZT). However, bulk BT loses its ferroelectricity at approximately 130 °C, thus, it cannot be used at high temperatures. Because of the growing demand for high-temperature ferroelectric materials, it is important to enhance the thermal stability of ferroelectricity in BT. In previous studies, strain originating from the lattice mismatch at hetero-interfaces has been used. However, the sample preparation in this approach requires complicated and expensive physical processes, which are undesirable for practical applications. In this study, we propose a chemical synthesis of a porous material as an alternative means of introducing strain. We synthesized a porous BT thin film using a surfactant-assisted sol-gel method, in which self-assembled amphipathic surfactant micelles were used as an organic template. Through a series of studies, we clarified that the introduction of pores had a similar effect on distorting the BT crystal lattice, to that of a hetero-interface, leading to the enhancement and stabilization of ferroelectricity. Owing to its simplicity and cost effectiveness, this fabrication process has considerable advantages over conventional methods.

  7. Chemical Synthesis of Porous Barium Titanate Thin Film and Thermal Stabilization of Ferroelectric Phase by Porosity-Induced Strain

    PubMed Central

    Suzuki, Norihiro; Osada, Minoru; Billah, Motasim; Bando, Yoshio; Yamauchi, Yusuke; Hossain, Shahriar A.

    2018-01-01

    Barium titanate (BaTiO3, hereafter BT) is an established ferroelectric material first discovered in the 1940s and still widely used because of its well-balanced ferroelectricity, piezoelectricity, and dielectric constant. In addition, BT does not contain any toxic elements. Therefore, it is considered to be an eco-friendly material, which has attracted considerable interest as a replacement for lead zirconate titanate (PZT). However, bulk BT loses its ferroelectricity at approximately 130 °C, thus, it cannot be used at high temperatures. Because of the growing demand for high-temperature ferroelectric materials, it is important to enhance the thermal stability of ferroelectricity in BT. In previous studies, strain originating from the lattice mismatch at hetero-interfaces has been used. However, the sample preparation in this approach requires complicated and expensive physical processes, which are undesirable for practical applications. In this study, we propose a chemical synthesis of a porous material as an alternative means of introducing strain. We synthesized a porous BT thin film using a surfactant-assisted sol-gel method, in which self-assembled amphipathic surfactant micelles were used as an organic template. Through a series of studies, we clarified that the introduction of pores had a similar effect on distorting the BT crystal lattice, to that of a hetero-interface, leading to the enhancement and stabilization of ferroelectricity. Owing to its simplicity and cost effectiveness, this fabrication process has considerable advantages over conventional methods. PMID:29658917

  8. Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management

    NASA Astrophysics Data System (ADS)

    Permal, Anithambigai; Devarajan, Mutharasu; Hung, Huong Ling; Zahner, Thomas; Lacey, David; Ibrahim, Kamarulazizi

    2018-03-01

    Thermal management in light-emitting diode (LED) has been extensively researched recently. This study is intended to develop an effective thermally conductive epoxy composite as thermal interface material (TIM) for headlamp LEDs. Silane-functionalized aluminum oxide (Al2O3) powder of different average particle sizes (44 and 10 µm) was studied for its feasibility as filler at its maximum loading. A detailed comparison of three different methods of particle dispersions, hand-mix, speed-mix and calendaring process (3-roll mill), has been reported. The dispersion of Al2O3 particles, the thermal conductivity and thermal degradation characteristics of the composites were investigated and explained in detail. At 75 wt.% filler loading, 10 and 44 µm Al2O3 achieved composite thermal conductivities of 1.13 and 2.08 W/mK, respectively, which is approximately 528 and 1055% of enhancement with respect to neat epoxy. The package-level thermal performance of the LED employing the Al2O3-filled TIMs was carried out using thermal transient analysis. The experimental junction-to-ambient thermal resistances ( R thJ-A) achieved were 6.65, 7.24, and 8.63 K/W for Al2O3_44µm, Al2O3_10µm and neat epoxy, respectively. The results revealed that the Al2O3_44µm fillers-filled composite performed better in both material-level and package-level thermal characteristics.

  9. Oxide Thermoelectric Materials: A Structure-Property Relationship

    NASA Astrophysics Data System (ADS)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  10. Mechanical Design of Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  11. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    NASA Astrophysics Data System (ADS)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified epoxy resin has been characterized for hardness and modulus using nanoindentation technique. A significant reduction of oxidation, which is anticipated to eventually translate into improvement in mechanical properties, has been observed as the nanoclay particles have worked as a retarding agent for the oxidation propagation. Carbon nanotube sheet scrolled carbon fiber tows embedded in epoxy matrix have been investigated for interfacial properties using nanoindentation (push-out test), in micro scale, and using tensile testing (pull-out test), in macro scale. A significant increase in interfacial shear strength has been achieved by this unique materials combination.

  12. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

  13. Characterization of adhesion at carbon fiber-fluorinated epoxy interface and effect of environmental degradation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Suman

    2011-12-01

    Carbon fiber reinforced polymers are excellent candidates for aerospace, automobile and other mobile applications due to their high specific strength and modulus. The most prominent aerospace application of carbon fiber composites in recent times is the Boeing 787 Dreamliner, which is the world's first major commercial airliner to extensively use composite materials. The critical issue, which needs to be addressed hereby, is long-term safety. Hence, long-term durability of composite materials in such applications becomes a point of concern. Conventional polymer matrices, such as thermosetting resins, which are used as matrix material in carbon fiber composites, are susceptible to degradation in the form of chemical corrosion, UV degradation and moisture, in severe environmental conditions. Fluorinated polymers offer a viable alternative as matrix material, due to their reduced susceptibility to environmental degradation. The epoxy system used in this study is fluorinated Tetra-glycidyl methylene di-aniline (6F-TGMDA), which was developed by polymer scientists at NASA Langley Research Center. The hydrophobic nature of this epoxy makes it a potential matrix material in aerospace applications. However, its compatibility in carbon fiber-reinforced composites remains to be investigated. This study aims to characterize the interfacial properties in carbon fiber reinforced fluorinated epoxy composites. Typical interfacial characterization parameters, like interfacial shear strength, estimated from the microbond test, proved to be inadequate in accurately estimating adhesion since it assumes a uniform distribution of stresses along the embedded fiber length. Also, it does not account for any residual stresses present at the interface, which might arise due to thermal expansion differences and Poisson's ratio differences of the fiber and matrix. Hence, an analytical approach, which calculates adhesion pressure at the interface, was adopted. This required determination of the unknown mechanical and physical properties of the resin, the relaxation modulus (determined using nano-indentation) and coefficient of thermal expansion (determined using coherent gradient sensing). The adhesional pressure for 6F TGMDA-carbon fiber interface was found to be 135.48 MPa compared to 138.47 MPa for the Diamino diphenyl sulphone (DDS) cured TGMDA-carbon fiber interface. The fact that the adhesional pressure does not show significant decrease upon fluorination of the epoxy system is an advantage. The hydrophobicity of fluorine can be utilized to manufacture environmentally resistant composites while keeping the level of interfacial adhesion the same as in the case of conventional epoxy system, DDS cured TGMDA.

  14. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-01-13

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  15. Unusual exciton–phonon interactions at van der Waals engineered interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.

    Raman scattering is a ubiquitous phenomenon in light–matter interactions, which reveals a material’s electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe 2 monolayer with materials such as SiO 2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified bymore » nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe 2 directly or via an A 1' optical phonon from WSe 2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe 2 sample geometries. Finally, this cross-platform electron–phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.« less

  16. Micromechanical combined stress analysis: MICSTRAN, a user manual

    NASA Technical Reports Server (NTRS)

    Naik, R. A.

    1992-01-01

    Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.

  17. Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar

    Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heatmore » transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.« less

  18. Buckling of graded coatings: A continuum model

    NASA Astrophysics Data System (ADS)

    Chiu, Tz-Cheng

    2000-12-01

    Requirements for the protection of hot section components in many high temperature applications such as earth-to-orbit winged planes and advanced turbine systems have led to the application of thermal barrier coatings (TBCs) that utilize ceramic coatings on metal substrates. An alternative concept to homogeneous ceramic coatings is the functionally graded materials (FGM) in which the composition of the coating is intentionally graded to improve the bonding strength and to reduce the magnitude of the residual and thermal stresses. A widely observed failure mode in such layered systems is known to be interface cracking that leads to spallation fracture. In most cases, the final stage of the failure process for a thin coating appears to be due to buckling instability under thermally or mechanically induced compressive stress. The objective of this study is to develop a solution to the buckling instability problem by using continuum elasticity rather than a structural mechanics approach. The emphasis in the solution will be on the investigation of the effect of material inhomogeneity in graded coatings on the instability load, the postbuckling behavior, and fracture mechanics parameters such as the stress intensity factors and strain energy release rate. In this analysis, a nonlinear continuum theory is employed to examine the interface crack problem. The analytical solution of the instability problem permits the study of the effect of material inhomogeneity upon the inception of buckling and establishes benchmark results for the numerical solutions of related problems. To study the postbuckling behavior and to calculate the stress intensity factors and strain energy release rate a geometrically nonlinear finite element procedure with enriched crack-tip element is developed. Both plane strain and axisymmetric interface crack problems in TBCs with either homogeneous or graded coating are then considered by using the finite element procedure. It is assumed that the applied load is a uniform temperature drop. Comparison of the results with that obtained from the plate approximation shows that because of the higher constraints the plate theory predicts greater instability strains and lower strain energy release rates. It is also observed that compared with a homogeneous coating the graded coating gives lower strain energy release rate because of the lower thermal residual stress and higher bending stiffness. (Abstract shortened by UMI.)

  19. Unveiling the hybrid interface in polymer nanocomposites enclosing silsesquioxanes with tunable molecular structure: Spectroscopic, thermal and mechanical properties.

    PubMed

    D'Arienzo, Massimiliano; Diré, Sandra; Redaelli, Matteo; Borovin, Evgeny; Callone, Emanuela; Di Credico, Barbara; Morazzoni, Franca; Pegoretti, Alessandro; Scotti, Roberto

    2018-02-15

    Organic-inorganic nanobuilding blocks (NBBs) based on silsesquioxanes (SSQs) have potential applications as nanofillers, thermal stabilizers, and rheological modifiers, which can improve thermomechanical properties of polymer hosts. The possibility to tune both siloxane structure and pendant groups can promote compatibilization and peculiar interactions with a plethora of polymers. However, the control on SSQs molecular architecture and functionalities is usually delicate and requires careful synthetic details. Moreover, investigating the influence of NBBs loading and structure on the hybrid interface and, in turn, on the polymer chains mobility and mechanical properties, may be challenging, especially for low-loaded materials. Herein, we describe the preparation and characterization of polybutadiene (PB) nanocomposites using as innovative fillers thiol-functionalized SSQs nanobuilding blocks (SH-NBBs), with both tailorable functionality and structure. Swelling experiments and, more clearly, solid-state NMR, enlightened a remarkable effect of SH-NBBs on the molecular structure and mobility of the polymeric chains, envisaging the occurrence of chemical interactions at the hybrid interface. Finally, thermal and DMTA analyses revealed that nanocomposites, even containing very low filler loadings (i.e. 1, 3 wt%), exhibited enhanced thermomechanical properties, which seem to be connected not only to the loading, but also to the peculiar cage or ladder-like architecture of SH-NBBs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).

  1. Nanoelectrical investigation and electrochemical performance of nickel-oxide/carbon sphere hybrids through interface manipulation.

    PubMed

    Yang, Xiaogang; Zhang, Yan'ge; Wu, Guodong; Zhu, Congxu; Zou, Wei; Gao, Yuanhao; Tian, Jie; Zheng, Zhi

    2016-05-01

    Advanced hetero-nanostructured materials for electrochemical devices, such as Li-ion batteries (LiBs), dramatically depend on each functional component and their interfaces to transport and storage charges, where the bottleneck is the sluggish one in series. In this work, we prepare Ni(OH)2@C hybrids through a continuous feeding in reflux and followed by a hydrothermal treatment. The as-prepared Ni(OH)2@C can be further converted into NiO@C hybrids after thermal annealing. As a control, Ni(OH)2&C and NiO&C nanocomposites have also been prepared. Peakforce Tuna measurement shows the conductivity of the NiO@C hybrids is higher than that of NiO&C composites in nanoscale. To further investigate the quality of the interface, 100 charge/discharge cycles of the hybrids are performed in LiBs. The capacity retention of hybrid materials has significantly improved than the simple carbon composites. The enhancement of the electrochemical performance is attributed to the better electric conductivity and smaller charge transfer impedance and strong covalent interface between nickel species and carbon spheres obtained through the controlled seeded deposition. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or silicon-carbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which consideres process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  3. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    NASA Astrophysics Data System (ADS)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or siliconcarbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which considers process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  4. Magnon Mode Selective Spin Transport in Compensated Ferrimagnets.

    PubMed

    Cramer, Joel; Guo, Er-Jia; Geprägs, Stephan; Kehlberger, Andreas; Ivanov, Yurii P; Ganzhorn, Kathrin; Della Coletta, Francesco; Althammer, Matthias; Huebl, Hans; Gross, Rudolf; Kosel, Jürgen; Kläui, Mathias; Goennenwein, Sebastian T B

    2017-06-14

    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify the magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. The comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.

  5. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    PubMed

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  6. Performance evaluation of an automotive thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  7. Phonon conduction in GaN-diamond composite substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.

    2017-02-01

    The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.

  8. Effects of interfaces on the thermal conductivity in Si/Si0.75Ge0.25 multilayer with varying Au layers

    NASA Astrophysics Data System (ADS)

    Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu

    2018-02-01

    The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.

  9. Thermal abuse performance of high-power 18650 Li-ion cells

    NASA Astrophysics Data System (ADS)

    Roth, E. P.; Doughty, D. H.

    High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.

  10. Ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several aerospace materials

    NASA Astrophysics Data System (ADS)

    Xu, Weichao; Shen, Jingling; Zhang, Cunlin; Tao, Ning; Feng, Lichun

    2008-03-01

    The applications of ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several materials, which often used in aviation alloy. For instance, steel and carbon fiber. It is difficult to test cracks interfacial or vertical with structure's surface by the traditional nondestructive testing methods. Ultrasonic infrared thermal wave nondestructive testing technology uses high-power and low-frequency ultrasonic as heat source to excite the sample and an infrared video camera as a detector to detect the surface temperature. The ultrasonic emitter launch pulses of ultrasonic into the skin of the sample, which causes the crack interfaces to rub and dissipate energy as heat, and then caused local increase in temperature at one of the specimen surfaces. The infrared camera images the returning thermal wave reflections from subsurface cracks. A computer collects and processes the thermal images according to different properties of samples to get the satisfied effect. In this paper, a steel plate with fatigue crack we designed and a juncture of carbon fiber composite that has been used in a space probe were tested and get satisfying results. The ultrasonic infrared thermal wave nondestructive detection is fast, sensitive for cracks, especially cracks that vertical with structure's surface. It is significative for nondestructive testing in manufacture produce and application of aviation, cosmography and optoelectronics.

  11. The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Ye, Ning

    Understanding heat transport at nanometer and sub-nanometer lengthscales is critical to solving a wide range of technological challenges related to thermal management and energy conversion. In particular, finite Interfacial Thermal Conductance (ITC) often dominates transport whenever multiple interfaces are closely spaced together or when heat originates from sources that are highly confined by interfaces. Examples of the former include superlattices, thin films, quantum cascade lasers, and high density nanocomposites. Examples of the latter include FinFET transistors, phase-change memory, and the plasmonic transducer of a heat-assisted magnetic recording head. An understanding of the physics of such interfaces is still lacking, in part because experimental investigations to-date have not bothered to carefully control the structure of interfaces studied, and also because the most advanced theories have not been compared to the most robust experimental data. This thesis aims to resolve this by investigating ITC between a range of clean and structurally well-characterized metal-semiconductor interfaces using the Time-Domain Thermoreflectance (TDTR) experimental technique, and by providing theoretical/computational comparisons to the experimental data where possible. By studying the interfaces between a variety of materials systems, each with unique aspects to their tunability, I have been able to answer a number of outstanding questions regarding the importance of interfacial quality (epitaxial/non-epitaxial interfaces), semiconductor doping, matching of acoustic and optical phonon band structure, and the role of phonon transport mechanisms apart from direct elastic transmission on ITC. In particular, we are able to comment on the suitability of the diffuse mismatch model (DMM) to describe the transport across epitaxial interfaces. To accomplish this goal, I studied interfacial thermal transport across CoSi2, TiSi2, NiSi and PtSi - Si(100) and Si(111), (silicides-silicon), interfaces with varying levels of disorder (epitaxial and non-epitaxial). The ITC values of silicides-silicon interfaces observed in this study are higher than those of other metallic interfaces to Si found in literature. Most surprisingly, it is experimentally found that ITC values are independent of interfacial quality and substrate orientation. Computationally, it is found that the non-equilibrium atomistic Green's Function technique (NEGF), which is specically designed to simulate coherent elastic phonon transport across interfaces, significantly underpredicts ITC values for CoSi2-Si interfaces, suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. In contrast, the Diffuse Mismatch Model closely mimics the experimentally observed ITC values for CoSi 2-Si, NiSi-Si and TiSi2-Si interfaces, and only slightly overestimating the same for PtSi-Si interfaces. Furthermore, the results also show that ITC is independent of degenerate doping up to doping levels of ≈1 x 1019 cm-3, indicating there is no significant direct electronic transport or transport effects which depend on long-range metal-semiconductor band alignment. Then, I study the effect of phonon band structure on ITC through measurements of epitaxial NiAl1-xGax-GaAs interfaces for varying levels of alloy composition, which independently tunes the mass of the metal's heavy atom without much affect on the lattice structure or interatomic force constants. The ITC values are found to linearly increase with increasing Ga content, consistent with the disappearance of a phonon band gap in NiAl 1-xGax films with increasing Ga content, which enhances the phonon transmission coefficients due to a better density of states overlap between the two (NiAl1-xGax, GaAs) materials. Finally, I study a unique subset of epitaxial rocksalt interfaces between the Group IV metal nitrides (TiN, ZrN, and HfN) to MgO substrates as well as ScN layers. Prior to the currrent study, TiN-MgO was the only measured interface of this type, and maintained the record for the highest reported ITC for a metal-semiconductor interface. By varying the Group IV metal, the mass of the metal's light atom was independently tuned, allowing the ability to tune the acoustic phonon frequencies in the metal without significant effect to optical phonon band structure. We find that the ITC of all the studied interfaces are quite high, significantly exceeding the DMM predictions, and in the case of XN-ScN interfaces even exceed the radiative limit for elastic phonon transport. The results imply that mechanisms such as anharmonic phonon transmission, strong cross-interfacial electron phonon coupling, or direct electric transmission are required to explain the transport. The TiN-ScN interface conductance is the highest room temperature metal-dielectric conductance ever reported.

  12. Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Lindsay, Lucas; Huang, Xi; Koh, Yee Kan

    2018-05-01

    Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. To better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1-10 μm and a temperature range of 100-300 K. The Si /SiO2 interface roughness was determined to be 0.11 ±0.04 nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. We derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.

  13. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  14. Computational Materials Research

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A. (Editor); Gates, Thomas S. (Editor)

    1996-01-01

    Computational Materials aims to model and predict thermodynamic, mechanical, and transport properties of polymer matrix composites. This workshop, the second coordinated by NASA Langley, reports progress in measurements and modeling at a number of length scales: atomic, molecular, nano, and continuum. Assembled here are presentations on quantum calculations for force field development, molecular mechanics of interfaces, molecular weight effects on mechanical properties, molecular dynamics applied to poling of polymers for electrets, Monte Carlo simulation of aromatic thermoplastics, thermal pressure coefficients of liquids, ultrasonic elastic constants, group additivity predictions, bulk constitutive models, and viscoplasticity characterization.

  15. Performance and Reliability of Bonded Interfaces for High-temperature Packaging: Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J.

    2017-10-19

    As maximum device temperatures approach 200 °Celsius, continuous operation, sintered silver materials promise to maintain bonds at these high temperatures without excessive degradation rates. A detailed characterization of the thermal performance and reliability of sintered silver materials and processes has been initiated for the next year. Future steps in crack modeling include efforts to simulate crack propagation directly using the extended finite element method (X-FEM), a numerical technique that uses the partition of unity method for modeling discontinuities such as cracks in a system.

  16. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  17. Novel polymer composite having diamond particles and boron nitride platelets for thermal management of electric vehicle motors

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Shoji, Atsushi; Yonemori, Kei; Seo, Nobuhide

    2016-02-01

    Thermal conductivities of silicone matrix polymers including fillers of diamond particles and/or hexagonal boron nitride (h-BN) platelets were systematically investigated in an attempt to find a thermal interface material (TIM) having high isotropic thermal conductivity and high electrical insulating ability to enable efficient heat dissipation from the motor coil ends of electric vehicles. The TIM with mixed fillers of diamond particles and h-BN platelets had a maximum thermal conductivity of 6.1 W m-1 K-1 that was almost isotropic. This is the highest value among the thermal conductivities of TIMs with silicone matrix polymer reported to date. The mechanism behind the thermal conductivity of the TIMs was also examined from the viewpoint of the change in the number of thermally conductive networks and/or a decrease in the thermal resistivity of junctions of neighboring diamond particles through the incorporation of h-BN platelets. The TIMs developed in this study will make it possible to manage the heat of electric motors and will help to popularize electric vehicles.

  18. Energy Storage Requirements & Challenges for Ground Vehicles

    DTIC Science & Technology

    2010-03-18

    Titinate Evaluation Cell Evaluation Battery Aging Phenomenon Battery SOC/SOH Determination Modeling ARM 100 LiIon APU Lion Cell Evaluation Cell...Advanced Batteries Fuels Th er m al Ma na ge m en t Radiators Heat Recovery Thermal Interface Materials Phase Change Cooling Advanced Electronics...in all energy storage Energy Storage Team Mission Battery Technology Evaluation Lab Module Test & Eval Cell Test & Eval 6UNCLASSIFIED Pacing Vehicle

  19. ROMPS critical design review. Volume 1: Hardware

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    Topics concerning the Robot-Operated Material Processing in Space (ROMPS) Program are presented in viewgraph form and include the following: a systems overview; servocontrol and servomechanisms; testbed and simulation results; system V controller; robot module; furnace module; SCL experiment supervisor; SCL script sample processing control; SCL experiment supervisor fault handling; block diagrams; hitchhiker interfaces; battery systems; watchdog timers; mechanical/thermal systems; and fault conditions and recovery.

  20. Characteristics of AFB interfaces of dissimilar crystal composites as components for solid state lasers

    NASA Astrophysics Data System (ADS)

    Lee, H. C.; Meissner, O. R.; Meissner, H. E.

    2005-06-01

    Adhesive-free bonded (AFB®) composite crystals have proven to be useful components in diode-pumped solid-state lasers (DPSSL). The combination of a lasing medium of higher index of refraction with laser-inactive cladding layers of lower index results in light- or wave-guided slab architectures. The cladding layers also serve to provide mechanical support, thermal uniformity and a heat sink during laser operation. Therefore, the optical and mechanical properties of these components are of interest for the design of DPSSL, especially at high laser fluencies and output power. We report on process parameters and material attributes that result in stress-free AFB® composites that are resistant to thermally induced failure. Formation of stress-free and durable bonds between two dissimilar materials requires heat-treatment of composites to a temperature high enough to ensure durable bonds and low enough to prevent forming of permanent chemical bonds. The onset temperature for forming permanent bonds at the interface sets the upper limit for heat treatment. This limiting temperature is dependent on the chemical composition, crystallographic orientation, and surface characteristics. We have determined the upper temperature limits for forming stress-free bonds between YAG and sapphire, YAG and GGG, YAG and spinel, spinel and sapphire, spinel and GGG, and sapphire and GGG composites. We also deduce the relative magnitude of thermal expansion coefficients amongst the respective single crystals as αGGG > αsapp_c > αspinel > αYAG > αsapp_a from interferometric analysis.

  1. Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties.

    PubMed

    Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi

    2017-07-06

    We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

  2. Effect of graphene nanofillers on the enhanced thermoelectric properties of Bi2Te3 nanosheets: elucidating the role of interface in de-coupling the electrical and thermal characteristics

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Singh, Simrjit; Dhawan, Punit Kumar; Yadav, R. R.; Khare, Neeraj

    2018-04-01

    In this report, we investigate the effect of graphene nanofillers on the thermoelectric properties of Bi2Te3 nanosheets and demonstrate the role of interface for enhancing the overall figure of merit (ZT) ∼ 53%. The enhancement in the ZT is obtained due to an increase in the electrical conductivity (∼111%) and decrease in the thermal conductivity (∼12%) resulting from increased conducting channels and phonon scattering, respectively at the interfaces between graphene and Bi2Te3 nanosheets. A detailed analysis of the thermal conductivity reveals ∼4 times decrease in the lattice thermal conductivity in contrast to ∼2 times increase in the electronic thermal conductivity after the addition of graphene. Kelvin probe measurements have also been carried which reveals presence of low potential barrier at the interface between graphene and Bi2Te3 nanosheets which assist the flow of charge carriers thereby, increasing the mobility of the carriers. Thus, our results reveals a significant decrease in the lattice thermal conductivity (due to the formation of interfaces) and increase in the electron mobility (due to conducting paths at the interfaces) strongly participate in deciding observed enhancement in the thermoelectric figure of merit.

  3. Effect of graphene nanofillers on the enhanced thermoelectric properties of Bi2Te3 nanosheets: elucidating the role of interface in de-coupling the electrical and thermal characteristics.

    PubMed

    Kumar, Sunil; Singh, Simrjit; Dhawan, Punit Kumar; Yadav, R R; Khare, Neeraj

    2018-04-03

    In this report, we investigate the effect of graphene nanofillers on the thermoelectric properties of Bi 2 Te 3 nanosheets and demonstrate the role of interface for enhancing the overall figure of merit (ZT) ∼ 53%. The enhancement in the ZT is obtained due to an increase in the electrical conductivity (∼111%) and decrease in the thermal conductivity (∼12%) resulting from increased conducting channels and phonon scattering, respectively at the interfaces between graphene and Bi 2 Te 3 nanosheets. A detailed analysis of the thermal conductivity reveals ∼4 times decrease in the lattice thermal conductivity in contrast to ∼2 times increase in the electronic thermal conductivity after the addition of graphene. Kelvin probe measurements have also been carried which reveals presence of low potential barrier at the interface between graphene and Bi 2 Te 3 nanosheets which assist the flow of charge carriers thereby, increasing the mobility of the carriers. Thus, our results reveals a significant decrease in the lattice thermal conductivity (due to the formation of interfaces) and increase in the electron mobility (due to conducting paths at the interfaces) strongly participate in deciding observed enhancement in the thermoelectric figure of merit.

  4. General theories and features of interfacial thermal transport

    NASA Astrophysics Data System (ADS)

    Zhou, Hangbo; Zhang, Gang

    2018-03-01

    A clear understanding and proper control of interfacial thermal transport is important in nanoscale device. In this review, we first discuss the theoretical methods to handle the interfacial thermal transport problem, such as the macroscopic model, molecular dynamics, lattice dynamics and modern quantum transport theories. Then we discuss various effects that can significantly affect the interfacial thermal transport, such as the formation of chemical bonds at interface, defects and interface roughness, strain and substrates, atomic species and mass ratios, structural orientations. Then importantly, we analyze the role of inelastic scatterings at the interface, and discuss its application in thermal rectifications. Finally, the challenges and promising directions are discussed.

  5. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.

    PubMed

    Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  6. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    NASA Astrophysics Data System (ADS)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  7. Slow neutron mapping technique for level interface measurement

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.

    2017-01-01

    Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.

  8. Characterization of the interface between the bulk glass forming alloy Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} with pure metals and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroers, Jan; Samwer, Konrad; Szuecs, Frigyes

    The reaction of the bulk glass forming alloy Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} (Vit 1) with W, Ta, Mo, AlN, Al{sub 2}O{sub 3}, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structuremore » and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials. (c) 2000 Materials Research Society.« less

  9. High-Throughput Fabrication Method for Producing a Silver-Nanoparticles-Doped Nanoclay Polymer Composite with Novel Synergistic Antibacterial Effects at the Material Interface.

    PubMed

    Cai, Shaobo; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2017-06-28

    In this study, we report a high-throughput fabrication method at industrial pilot scale to produce a silver-nanoparticles-doped nanoclay-polylactic acid composite with a novel synergistic antibacterial effect. The obtained nanocomposite has a significantly lower affinity for bacterial adhesion, allowing the loading amount of silver nanoparticles to be tremendously reduced while maintaining satisfactory antibacterial efficacy at the material interface. This is a great advantage for many antibacterial applications in which cost is a consideration. Furthermore, unlike previously reported methods that require additional chemical reduction processes to produce the silver-nanoparticles-doped nanoclay, an in situ preparation method was developed in which silver nanoparticles were created simultaneously during the composite fabrication process by thermal reduction. This is the first report to show that altered material surface submicron structures created with the loading of nanoclay enables the creation of a nanocomposite with significantly lower affinity for bacterial adhesion. This study provides a promising scalable approach to produce antibacterial polymeric products with minimal changes to industry standard equipment, fabrication processes, or raw material input cost.

  10. Thermal conductance of metal–diamond interfaces at high pressure

    DOE PAGES

    Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au 0.95Pd 0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils. Inmore » all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Lastly, our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.« less

  11. A Thermally Re-mendable Cross-Linked Polymeric Material

    NASA Astrophysics Data System (ADS)

    Chen, Xiangxu; Dam, Matheus A.; Ono, Kanji; Mal, Ajit; Shen, Hongbin; Nutt, Steven R.; Sheran, Kevin; Wudl, Fred

    2002-03-01

    We have developed a transparent organic polymeric material that can repeatedly mend or ``re-mend'' itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120°C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of ``intermonomer'' linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.

  12. Enhanced energy transport owing to nonlinear interface interaction

    PubMed Central

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-01-01

    It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363

  13. Burner liner thermal-structural load modeling

    NASA Technical Reports Server (NTRS)

    Maffeo, R.

    1986-01-01

    The software package Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) was developed. The TRANCITS code is used to interface temperature data between thermal and structural analytical models. The use of this transfer module allows the heat transfer analyst to select the thermal mesh density and thermal analysis code best suited to solve the thermal problem and gives the same freedoms to the stress analyst, without the efficiency penalties associated with common meshes and the accuracy penalties associated with the manual transfer of thermal data.

  14. Parallel Fin ORU Thermal Interface for space applications. [Orbital Replaceable Unit

    NASA Technical Reports Server (NTRS)

    Stobb, C. A.; Limardo, Jose G.

    1992-01-01

    The Parallel Fin Thermal Interface has been developed as an Orbital Replaceable Unit (ORU) interface. The interface transfers heat from an ORU baseplate to a Heat Acquisition Plate (HAP) through pairs of fins sandwiched between insert plates that press against the fins with uniform pressure. The insert plates are spread apart for ORU baseplate separation and replacement. Two prototype interfaces with different fin dimensions were built (Model 140 and 380). Interfacing surface samples were found to have roughnesses of 56 to 89 nm. Conductance values of 267 to 420 W/sq m C were obtained for the 140 model in vacuum with interface pressures of 131 to 262 kPa (19 to 38 psi). Vacuum conductances ranging from 176 to 267 W/sq m F were obtained for the 380 model at interface pressures of 97 to 152 kPa (14 and 22 psi). Correlations from several sources were found to agree with test data within 20 percent using thermal math models of the interfaces.

  15. A review on the effects of different parameters on contact heat transfer

    NASA Astrophysics Data System (ADS)

    Abdollahi, H.; Shahraki, S.; Motahari-Nezhad, M.

    2017-07-01

    In this paper, a complete literature review for thermal contact between fixed and periodic contacting surfaces and also thermal contact between exhaust valve and its seat in internal combustion engines is presented. Furthermore, the effects of some parameters such as contact pressure, contact frequency, the contacting surfaces topography and roughness, curvature radius of surfaces, loading-unloading cycles, gas gap conductance and properties, interface interstitial material properties, surfaces coatings and surfaces temperature on thermal contact conductance are investigated according to the papers presented in this field. The reviewed papers and studies included theoretical/ analytical/experimental and numerical studies on thermal contact conductance. In studying the thermal contact between exhaust valve and its seat, most of the experimental studies include two axial rods as the exhaust valve, and seat and the one ends of both rods are considered at constant and different temperatures. In the experimental methods, the temperatures of multi-points on rods are measured in different conditions, and thermal contact conductance is estimated using them.

  16. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    This paper is concerned with the problem of the calculation of stress-intensity factors at the tips of radial matrix cracks (r-cracks) in fiber-reinforced composites under thermal and/or transverse uniaxial or biaxial mechanical loading. The crack is either located in the immediate vicinity of a single fiber or it terminates at the interface between the fiber and the matrix. The problem is stated and solved numerically within the framework of linear elasticity using Erdogan's integral equation technique. It is shown that the solutions for purely thermal and purely mechanical loading can simply be superimposed in order to obtain the results of the combined loading case. Stress-intensity factors (SIFs) are calculated for various lengths and distances of the crack from the interface for each of these loading conditions. The behavior of the SIFs for cracks growing towards or away from the interface is examined. The role of the elastic mismatch between the fibers and the matrix is emphasized and studied extensively using the so-called Dundurs' parameters. It is shown that an r-crack, which is remotely located from the fiber, can either be stabilized or destabilized depending on both the elastic as well as the thermal mismatch of the fibrous composite. Furthermore, Dundurs' parameters are used to predict the exponent of the singularity of the crack tip elastic field and the behavior of the corresponding SIFs for cracks which terminate at the interface. An analytical solution for the SIFs is derived for all three loading conditions under the assumption that the elastic constants of the matrix and the fiber are equal. It is shown that the analytical solution is in good agreement with the corresponding numerical results. Moreover, another analytical solution from the literature, which is based upon Paris' equation for the calculation of stress-intensity factors, is compared with the numerical results and it is shown to be valid only for extremely short r-cracks touching the interface. The numerical results presented are valid for practical fiber composites with r-cracks close to or terminating at the interface provided the matrix material is brittle and the crack does not interact with other neighboring fibers. They may be applied to predict the transverse mechanical behavior of high strength fiber composites.

  17. Multiscale Modeling of Novel Carbon Nanotube/Copper-Composite Material Used in Microelectronics

    NASA Astrophysics Data System (ADS)

    Awad, Ibrahim; Ladani, Leila

    2016-06-01

    Current carrying capacity is one of the elements that hinders further miniaturization of Copper (Cu) interconnects. Therefore, there is a need to propose new materials with higher ampacity (current carrying capacity) that have the potential to replace Cu. Experimental observations have shown that Carbon Nanotube (CNT)/Cu-composite material has a hundredfold ampacity of Cu, which makes it a good candidate to replace Cu. However, sufficient information about the mechanical behavior of the novel CNT/Cu-composite is not available. In the current paper, the CNT/Cu-composite is utilized to construct Through Silicon Via (TSV). The mechanical behavior, specifically the fatigue life, of the CNT/Cu-TSV is evaluated by applying a multiscale modeling approach. Molecular Dynamics (MD) simulations are conducted to evaluate the tensile strength and the coefficient of thermal expansion of CNTs. MD simulation is also used to determine the interface behavior between CNTs and Cu. MD simulation results are integrated into Finite Element analysis at the micro-level to estimate the fatigue life of the CNT/Cu-TSV. A comparison is made with base material; Cu. CNTs addition has redistributed the plastic deformation in Cu to occur at two different locations (Si/Cu interface and Cu/CNT interface) instead of only one location (Si/Cu interface) in the case of Cu-only-TSV. Thus, the maximum equivalent plastic strain has been alleviated in the CNT/Cu-TSV. Accordingly, CNT/Cu-TSV has shown a threefold increase in the fatigue life. This is a solid indication of the improvement in the fatigue life that is attributed to the addition of CNTs.

  18. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less

  19. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    DOE PAGES

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; ...

    2016-05-26

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less

  20. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A.; Hammel, B. A.; Sepke, S. M.; Leatherland, A.; Gales, S.

    2016-05-01

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. We propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT “clean” and DT “mix” gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. An experiment to observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λii∼T2/Z2ρ at the gas/shell interface. Since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.

  1. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Zhu, Jie; Tang, Dawei

    2014-12-01

    Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  2. Ulysses, one year after the launch

    NASA Astrophysics Data System (ADS)

    Petersen, H.

    1991-12-01

    Ulysses is currently one year underway in a huge heliocentric orbit. A late change in some of the blankets' external material was required to prevent electrical charging due to contamination by nozzle outgassing products. Test results are shown, governing various ranges of plasma parameters and sample temperatures. Even clean materials show a few volts charging due to imperfections in the conductive film. Thermal environment in the Shuttle cargo bay proved to be slightly different from prelaunch predictions: less warm with doors closed, and less cold with doors opened. Temperatures experienced in orbit are nominal. A problem was caused by a complex interaction of a Sun induced thermal gradient in a sensitive boom on the dynamic stability of the spacecraft. A user interface program was an invaluable tool to ease computations with the mathematical models, eliminate error risk and provide configuration control.

  3. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less

  4. Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes

    NASA Astrophysics Data System (ADS)

    Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  5. Ultrasensitive molecular detection using thermal conductance of a hydrophobic gold-water interface.

    PubMed

    Green, Andrew J; Alaulamie, Arwa A; Baral, Susil; Richardson, Hugh H

    2013-09-11

    The thermal conductance from a hydrophobic gold aqueous interface is measured with increasing solute concentration. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.

  6. Thermal transport across metal silicide-silicon interfaces: An experimental comparison between epitaxial and nonepitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Ye, Ning; Feser, Joseph P.; Sadasivam, Sridhar; Fisher, Timothy S.; Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-02-01

    Silicides are used extensively in nano- and microdevices due to their low electrical resistivity, low contact resistance to silicon, and their process compatibility. In this work, the thermal interface conductance of TiSi2, CoSi2, NiSi, and PtSi are studied using time-domain thermoreflectance. Exploiting the fact that most silicides formed on Si(111) substrates grow epitaxially, while most silicides on Si(100) do not, we study the effect of epitaxy, and show that for a wide variety of interfaces there is no dependence of interface conductance on the detailed structure of the interface. In particular, there is no difference in the thermal interface conductance between epitaxial and nonepitaxial silicide/silicon interfaces, nor between epitaxial interfaces with different interface orientations. While these silicide-based interfaces yield the highest reported interface conductances of any known interface with silicon, none of the interfaces studied are found to operate close to the phonon radiation limit, indicating that phonon transmission coefficients are nonunity in all cases and yet remain insensitive to interfacial structure. In the case of CoSi2, a comparison is made with detailed computational models using (1) full-dispersion diffuse mismatch modeling (DMM) including the effect of near-interfacial strain, and (2) an atomistic Green' function (AGF) approach that integrates near-interface changes in the interatomic force constants obtained through density functional perturbation theory. Above 100 K, the AGF approach significantly underpredicts interface conductance suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. The full-dispersion DMM closely predicts the experimentally observed interface conductances for CoSi2, NiSi, and TiSi2 interfaces, while it remains an open question whether inelastic scattering, cross-interfacial electron-phonon coupling, or other mechanisms could also account for the high-temperature behavior. The effect of degenerate semiconductor dopant concentration on metal-semiconductor thermal interface conductance was also investigated with the result that we have found no dependencies of the thermal interface conductances up to (n or p type) ≈1 ×1019 cm-3, indicating that there is no significant direct electronic transport and no transport effects that depend on long-range metal-semiconductor band alignment.

  7. 3-D Modeling of Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe Growth Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    A numerical calculation for a non-dilute alloy solidification was performed using the FIDAP finite element code. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. Estimates of convection contributions for various gravity conditions was performed parametrically. For gravity levels higher then 1 0 -7 of earth's gravity it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by factor of 50% for precise orientation of the ampoule in the microgravity environment. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D modeling are compared with previous 2-D finding. A video film featuring melt convection will be presented.

  8. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    PubMed

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  9. Effect of metallic coating on the properties of copper-silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  10. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor); Chen, Gang (Inventor)

    2008-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  11. Nanocomposites with High Thermoelectric Figures of Merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Ren, Zhifeng (Inventor); Dresselhaus, Mildred (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  12. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor)

    2012-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  13. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    NASA Astrophysics Data System (ADS)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.

    2018-02-01

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.

  14. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    DOE PAGES

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...

    2017-12-15

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here in this paper, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K tomore » 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/ 30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ~2200 K is inferred (1σ uncertainty of ~200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.« less

  15. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here in this paper, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K tomore » 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/ 30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ~2200 K is inferred (1σ uncertainty of ~200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.« less

  16. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, F. S.

    1974-01-01

    Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated.

  17. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.

  18. Micromechanics and Piezo Enhancements of HyperSizer

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.

    2006-01-01

    The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.

  19. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  20. A thermal scale modeling study for Apollo and Apollo applications, volume 1

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.

    1972-01-01

    The program is reported for developing and demonstrating the capabilities of thermal scale modeling as a thermal design and verification tool for Apollo and Apollo Applications Projects. The work performed for thermal scale modeling of STB; cabin atmosphere/spacecraft cabin wall thermal interface; closed loop heat rejection radiator; and docked module/spacecraft thermal interface are discussed along with the test facility requirements for thermal scale model testing of AAP spacecraft. It is concluded that thermal scale modeling can be used as an effective thermal design and verification tool to provide data early in a spacecraft development program.

  1. An analytical approach to thermal modeling of Bridgman-type crystal growth. I - One-dimensional analysis

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1982-01-01

    A relatively simple one-dimensional thermal model of the Bridgman growth process has been developed which is applicable to the growth of small diameter samples with conductivities similar to those of metallic alloys. The heat flow in a translating rod is analyzed in a way that is applicable to Biot numbers less than unity. The model accommodates an adiabatic zone, different heat transfer coefficients in the hot and cold zones, and changes in sample material properties associated with phase change. The analysis is applied to several simplified cases. The effect of the rod's motion is studied in a three-zone furnace for a rod sufficiently long that end effects can be neglected; end effects are then investigated for a motionless rod. Finally, the addition of a fourth zone, an independently controlled booster heater between the main heater and the adiabatic zone, is evaluated for its ability to increase the gradient in the sample at the melt interface and to control the position of the interface.

  2. Finite-Element Analysis of Current-Induced Thermal Stress in a Conducting Sphere

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yang, Fuqian

    2012-02-01

    Understanding the electrothermal-mechanical behavior of electronic interconnects is of practical importance in improving the structural reliability of electronic devices. In this work, we use the finite-element method to analyze the Joule-heating-induced thermomechanical deformation of a metallic sphere that is sandwiched between two rigid plates. The deformation behavior of the sphere is elastic-perfectly plastic with Young's modulus and yield stress decreasing with temperature. The mechanical stresses created by Joule heating are found to depend on the thermal and mechanical contact conditions between the sphere and the plates. The temperature rise in the sphere for the diathermal condition between the sphere and the plates deviates from the square relation between Joule heat and electric current, due to the temperature dependence of the electrothermal properties of the material. For large electric currents, the simulations reveal the decrease of von Mises stress near the contact interfaces, which suggests that current-induced structural damage will likely occur near the contact interfaces.

  3. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous?

    NASA Astrophysics Data System (ADS)

    Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi

    2018-06-01

    Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

  4. Deep Boreholes Seals Subjected to High P,T conditions - Proposed Experimental Studies

    NASA Astrophysics Data System (ADS)

    Caporuscio, F.

    2015-12-01

    Deep borehole experimental work will constrain the P,T conditions which "seal" material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include mafic (amphibolites) and silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries. Experiments in the system wall rock-clay-concrete-groundwater will evaluate interactions among components, including: mineral phase stability, metal corrosion rates and thermal limits. Based on engineered barrier studies, experimental investigations will move forward with three focusses. First, evaluation of interaction between "seal" materials and repository wall rock (crystalline) under fluid-saturated conditions over long-term (i.e., six-month) experiments; which reproduces the thermal pulse event of a repository. Second, perform experiments to determine the stability of zeolite minerals (analcime-wairakitess) under repository conditions. Both sets of experiments are critically important for understanding mineral paragenesis (zeolites and/or clay transformations) associated with "seals" in contact with wall rock at elevated temperatures. Third, mineral growth at the metal interface is a principal control on the survivability (i.e. corrosion) of waste canisters in a repository. The objective of this planned experimental work is to evaluate physio-chemical processes for 'seal' components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids and other barrier materials, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits.

  5. Effective conductivity of a periodic dilute composite with perfect contact and its series expansion

    NASA Astrophysics Data System (ADS)

    Pukhtaievych, Roman

    2018-06-01

    We study the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute composite obtained by introducing into an infinite homogeneous matrix a periodic set of inclusions of a different material, each of them of size proportional to a positive parameter ɛ . We assume a perfect thermal contact at constituent interfaces, i.e., a continuity of the normal component of the heat flux and of the temperature. For ɛ small, we prove that the effective conductivity can be represented as a convergent power series in ɛ and we determine the coefficients in terms of the solutions of explicit systems of integral equations.

  6. Significantly reduced c-axis thermal diffusivity of graphene-based papers

    NASA Astrophysics Data System (ADS)

    Han, Meng; Xie, Yangsu; Liu, Jing; Zhang, Jingchao; Wang, Xinwei

    2018-06-01

    Owing to their very high thermal conductivity as well as large surface-to-volume ratio, graphene-based films/papers have been proposed as promising candidates of lightweight thermal interface materials and lateral heat spreaders. In this work, we study the cross-plane (c-axis) thermal conductivity (k c ) and diffusivity (α c ) of two typical graphene-based papers, which are partially reduced graphene paper (PRGP) and graphene oxide paper (GOP), and compare their thermal properties with highly-reduced graphene paper and graphite. The determined α c of PRGP varies from (1.02 ± 0.09) × 10‑7 m2 s‑1 at 295 K to (2.31 ± 0.18) × 10‑7 m2 s‑1 at 12 K. This low α c is mainly attributed to the strong phonon scattering at the grain boundaries and defect centers due to the small grain sizes and high-level defects. For GOP, α c varies from (1.52 ± 0.05) × 10‑7 m2 s‑1 at 295 K to (2.28 ± 0.08) × 10‑7 m2 s‑1 at 12.5 K. The cross-plane thermal transport of GOP is attributed to the high density of functional groups between carbon layers which provide weak thermal transport tunnels across the layers in the absence of direct energy coupling among layers. This work sheds light on the understanding and optimizing of nanostructure of graphene-based paper-like materials for desired thermal performance.

  7. Molecular organic crystalline matrix for hybrid organic-inorganic (nano) composite materials

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Tugulea, L.; Alexandru, H. V.; Stanculescu, F.; Socol, M.

    2005-02-01

    Metal-doped benzil crystals have been grown by thermal gradient solidification in a vertical transparent growth configuration to investigate the effect of metallic guest on the ordered organic host. We have identified the conditions for growing homogeneous, optically good crystals of benzil doped with sodium and silver, limiting the effect of supercooling, low thermal conductivity and anisotropy of the growth speed (temperature gradient at the liquid-solid interface: 10-25 °C, moving speed of the growth interface 2.0 mm/h). The nature and concentration of the dopant are parameters affecting, through the growth process, the crystalline perfection and the optical properties of the organic matrix. Bulk optical characterisation, by spectrophotometrical methods, has offered details on some intrinsic properties of the system metal particles/benzil crystalline matrix. Analytical processing of the experimental data emphasised that benzil is a wide optical band gap organic semiconductor Eg=2.65 eV. We also have investigated the effect of sodium and silver on the properties of benzil crystal as potential transparent semiconductor matrix for (nano)composite metal/molecular organic material. With the increase of sodium concentration from c=1 to 6 wt%, a small narrowing of the band gap has been remarked. The same behaviour has been found for benzil doped with silver (c=2 wt%) compared to pure benzil.

  8. Material Properties of Three Candidate Elastomers for Space Seals Applications

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  9. A library of protein cage architectures as nanomaterials.

    PubMed

    Flenniken, M L; Uchida, M; Liepold, L O; Kang, S; Young, M J; Douglas, T

    2009-01-01

    Virus capsids and other structurally related cage-like proteins such as ferritins, dps, and heat shock proteins have three distinct surfaces (inside, outside, interface) that can be exploited to generate nanomaterials with multiple functionality by design. Protein cages are biological in origin and each cage exhibits extremely homogeneous size distribution. This homogeneity can be used to attain a high degree of homogeneity of the templated material and its associated property. A series of protein cages exhibiting diversity in size, functionality, and chemical and thermal stabilities can be utilized for materials synthesis under a variety of conditions. Since synthetic approaches to materials science often use harsh temperature and pH, it is an advantage to utilize protein cages from extreme environments. In this chapter, we review recent studies on discovering novel protein cages from harsh natural environments such as the acidic thermal hot springs at Yellowstone National Park (YNP) and on utilizing protein cages as nano-scale platforms for developing nanomaterials with wide range of applications from electronics to biomedicine.

  10. Local conductivity enhancement due to the tetragonal domain structure in LaAlO3- SrTiO3 heterointerfaces

    NASA Astrophysics Data System (ADS)

    Moler, Kathryn

    2014-03-01

    Progress in the difficult task of growing oxide heterostructures has enabled the field of oxide interface engineering. The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001}interface of the band insulators LaAlO3 (LAO) and TiO2-terminated SrTiO3 (STO). The prevailing explanation of conduction at the interface is electronic reconstruction due to a `polar catastrophe' in which charge migrates from the top LAO layer to the interface. Transport and other measurements in this system display a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device (SQUID) microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed upon thermal cycling above the STO cubic to tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. In this talk, I will summarize these results and also report on measurements of conductivity and diamagnetism in related materials that firmly establish the influence of the STO tetragonal domains on electronic properties. Coauthors C. Bell, H.K. Sato, M. Hosoda, Y. Xie, Y. Hikita, & H.Y. Hwang (SIMES); R. Jany & C. Richter (Augsburg); C. Woltmann, G. Pfanzelt, & J. Mannhart (MP Stuttgart); B. Kalisky, E.M. Spanton, H. Noad, K.C. Nowack, A. Rosenberg, & J.R. Kirtley.

  11. Effects of interface morphology and TGO thickness on residual stress of EB-PVD thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei; Zhao, Yang; Ma, Jian

    2015-04-01

    The residual stress of electron beam-physical vapor deposition (EB-PVD) thermal barrier coatings (TBC) is complex and difficult to be obtained. In this paper, the interface morphology of TBCs subjected to cyclic heating and cooling was observed by SEM. Based on the thermal elastic-plastic finite method, corresponding interface model of TBCs was established. The residual stress of EB-PVD TBCs with different interface morphologies and TGO thicknesses was calculated using the FE method without regard to the presence of cracks and defects. The result shows that the distribution of residual stress is significantly affected by the interface morphology, and the growth of TGO also has influence on the residual stress of TC and TGO.

  12. Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs

    DOE PAGES

    Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...

    2016-03-24

    Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less

  13. Preparation and application of silver nanopaste as thermal interface materials

    NASA Astrophysics Data System (ADS)

    Zou, Lianfeng

    The power densities in electronic devices have increased dramatically; heat dissipation has become a major challenge in high performance electronics applications. We have investigated a new type of resin-free hybrid silver nanopastes, which contain silver micro-flakes with particle sizes of 1 - 10 um and silver nanoparticles with diameters of 3 - 8 nm. The assemble temperature can be as low as 150oC due to the low sintering temperature of silver nanoparticles. The fused silver micro-and nanoparticles in TIM form continuous metallic networks, resulting in good thermal, electrical and mechanical bonding. The steady-state thermal gradient measurement show the bulk thermal conductivity between 20W/ (m*K) and 100 W/ (m*K), which is higher than commercial product in the market. The application specific performance of the nanopaste has been using LED lamp on heat sinks as model test vehicle.

  14. Thermal trim for luminaire

    DOEpatents

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  15. Thermal trim for a luminaire

    DOEpatents

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  16. Dynamic fracture and hot-spot modeling in energetic composites

    NASA Astrophysics Data System (ADS)

    Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol

    2018-02-01

    Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.

  17. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lechman, Jeremy B.; Battaile, Corbett Chandler.; Bolintineanu, Dan

    This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity ofmore » pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In both cases much more remains to be accomplished.« less

  19. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems.

    PubMed

    Duan, Zheng; Liu, Danyang; Zhang, Guang; Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2017-03-02

    Thermal rectification occurring at interfaces is an important research area, which contains deep fundamental physics and has extensive application prospects. In general, the measurement of interfacial thermal rectification is based on measuring interfacial thermal resistance (ITR). However, ITRs measured via conventional methods cannot avoid extra thermal resistance asymmetry due to the contact between the sample and the thermometer. In this study, we employed a non-contact infrared thermal imager to monitor the temperature of super-aligned carbon nanotube (CNT) films and obtain the ITRs between the CNT films and copper. The ITRs along the CNT-copper direction and the reverse direction are in the ranges of 2.2-3.6 cm 2 K W -1 and 9.6-11.9 cm 2 K W -1 , respectively. The obvious difference in the ITRs of the two directions shows a significant thermal rectification effect, and the rectifying coefficient ranges between 0.57 and 0.68. The remarkable rectification factor is extremely promising for the manufacture of thermal transistors with a copper/CNT/copper structure and further thermal logic devices. Moreover, our method could be extended to other 2-dimensional materials, such as graphene and MoS 2 , for further explorations.

  20. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori

    2015-02-01

    In recent years, it has been determined that Inconel X-750 CANDU spacers have lost strength and material ductility following irradiation in reactor. The irradiated fracture behaviour of ex-service material was also found to be entirely intergranular. The heavily thermalized flux spectrum in a CANDU reactor results in transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n,α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Metallographicmore » examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. He bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips give direct evidence linking crack propagation with grain boundary He bubbles.« less

  1. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field.

    PubMed

    Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S

    2013-02-12

    The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and nanomechanics. Limitations and opportunities for further development are also described.

  2. Synthesis and innovation of PLA/clay nanocomposite characterization againts to mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Salim, S.; Agusnar, H.; Wirjosentono, B.; Tamrin; Marpaung, H.; Rihayat, T.; Nurhanifa; Adriana

    2018-03-01

    Plastic polymer is one of the most dominant materials of daily human activities because of its multifunctional nature, light and strong and anti-corrosion so it is easy to apply in various equipment. Plastic is generally derived from petroleum material so it is nonbiodegradable. Therefore, this study aims to create a breakthrough of natural and biodegradable biodegradable plastic materials from plant starch (pisok kepok starch) with the help of 3 types of acid (HNO3, HCl and H2SO4) called Poly Lactid Acid (PLA). PLA is enhanced by mixing with a clay material with a variation of 1, 3 and 5% composition to form a PLA / Clay Nanocomposite material which is expected to have superior properties and resemble conventional plastics in general. Several types of characterization were performed to see the quality of the resulting material including tensile strength test with UTM tool, thermal endurance test with TGA tool, morphological structure test using SEM tool and additional test to see filler clay quality through X-RD tool. Based on the characterization of tensile and thermal test, 5B nanocomposite with addition of 5% clay and HCl acid aid showed the best tensile strength of 36 Mpa and the highest stability was 446,63 oC. Based on the results of morphological analysis of the best samples (5B) showed good interface ties. Meanwhile, based on the results of filler analysis, the opening of clay layer d-spacing occurred at 0.355 nm.

  3. Next Generation Ceramic Substrate Fabricated at Room Temperature.

    PubMed

    Kim, Yuna; Ahn, Cheol-Woo; Choi, Jong-Jin; Ryu, Jungho; Kim, Jong-Woo; Yoon, Woon-Ha; Park, Dong-Soo; Yoon, Seog-Young; Ma, Byungjin; Hahn, Byung-Dong

    2017-07-26

    A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process. For the thin ceramic substrates, AlN GSV films are deposited on Al substrates and their electric/thermal properties are compared to those of the commercial ceramic substrates. The thermal resistance is significantly reduced by using AlN GSV films instead of AlN bulk-ceramics in thermal management systems. It is due to the removal of a thermal interface material which has low thermal conductivity. In particular, the dielectric strengths of AlN GSV films are much higher than those of AlN bulk-ceramics which are commercialized, approximately 5 times. Therefore, it can be expected that this GSV film is a next generation substrate in thermal management systems for the high power application.

  4. Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of light-emitting diode modules

    NASA Astrophysics Data System (ADS)

    Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu

    2018-05-01

    This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.

  5. Thermal stability and adhesion of low-emissivity electroplated Au coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.

    We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnarmore » grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.« less

  6. Refractive Index Effects on Radiation in an Absorbing, Emitting, and Scattering Laminated Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting temperature radiative energy flow in a two-region semitransparent laminated layer in the limit of zero heat conduction. The composite is heated on its two sides by unequal amounts of incident radiation. The two layers of the composite have different refractive indices, and each material absorbs, emits, and isotropically scatters radiation. The interfaces are diffuse, and all interface reflections are included. To illustrate the thermal behavior that is readily calculated from the equations, typical results an given for various optical thicknesses and refractive indices of the layers. Internal reflections have a substantial effect on the temperature distribution and radiative heat flow.

  7. Growth Behavior of Intermetallic Compounds at SnAgCu/Ni and Cu Interfaces

    NASA Astrophysics Data System (ADS)

    Qi, Lihua; Huang, Jihua; Zhang, Hua; Zhao, Xingke; Wang, Haitao; Cheng, Donghai

    2010-02-01

    The growth behavior of reaction-formed intermetallic compounds (IMCs) at Sn3.5Ag0.5Cu/Ni and Cu interfaces under thermal-shear cycling conditions was investigated. The results show that the morphology of (Cu x Ni1- x )6Sn5 and Cu6Sn5 IMCs formed both at Sn3.5Ag0.5Cu/Ni and Cu interfaces gradually changed from scallop-like to chunk-like, and different IMC thicknesses developed with increasing thermal-shear cycling time. Furthermore, Cu6Sn5 IMC growth rate at the Sn3.5Ag0.5Cu/Cu interface was higher than that of (Cu x Ni1- x )6Sn5 IMC under thermal-shear cycling. Compared to isothermal aging, thermal-shear cycling led to only one Cu6Sn5 layer at the interface between SnAgCu solder and Cu substrate after 720 cycles. Moreover, Ag3Sn IMC was dispersed uniformly in the solder after reflow. The planar Ag3Sn formed near the interface changed remarkably and merged together to large platelets with increasing cycles. The mechanism of formation of Cu6Sn5, (Cu x Ni1- x )6Sn5 and Ag3Sn IMCs during thermal-shear cycling process was investigated.

  8. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  9. Review of progress in quantitative NDE

    NASA Astrophysics Data System (ADS)

    s of 386 papers and plenary presentations are included. The plenary sessions are related to the national technology initiative. The other sessions covered the following NDE topics: corrosion, electromagnetic arrays, elastic wave scattering and backscattering/noise, civil structures, material properties, holography, shearography, UT wave propagation, eddy currents, coatings, signal processing, radiography, computed tomography, EM imaging, adhesive bonds, NMR, laser ultrasonics, composites, thermal techniques, magnetic measurements, nonlinear acoustics, interface modeling and characterization, UT transducers, new techniques, joined materials, probes and systems, fatigue cracks and fracture, imaging and sizing, NDE in engineering and process control, acoustics of cracks, and sensors. An author index is included.

  10. [Interface bond and compatibility between Mark II machining ceramic and vita VM9 veneering porcelain].

    PubMed

    Liu, Tian-Shuang; Li, Zhen-Chun; Chen, Xiao-Dong

    2009-04-01

    To investigate the interface bond and thermal compatibility between Mark II machining ceramic and Vita VM9 veneering porcelain. A bar shaped specimen (30 mm x 15 mm x 1 mm in size) of Mark II block was prepared, with 0.5 mm-deep notch (vertical to the long axis of specimen) at the middle of the bottom surface. The upper surface was veneered with 0.3 mm VM9 dentin base porcelain. Then the specimen was fractured from the notching site and the fracture surface was examined under scanning electron microscope (SEM) and electron microprobe analyzer (EMPA) with electron beam of 1 microm in diameter. Another ten specimens (30 mm x 15 mm x 1.5 mm in size) were fabricated and the temperature of thermal shock resistance were tested. SEM observation showed tight bond between these two materials and EMPA results showed penetration of Al element from Mark II block into veneering porcelain and Ca element from veneering porcelain into Mark II block occurred after sintering baking. The average temperature of thermal shock resistance for specimens in this study was (194.0+/-10.3) degrees C. Cracks were mainly distributed in veneering porcelain. Chemical bond exists between the Mark II machining ceramic and Vita VM9 veneering porcelain, and there is good thermal compatibility between them.

  11. Magnon mode selective spin transport in compensated ferrimagnets

    DOE PAGES

    Cramer, Joel; Guo, Er -Jia; Geprags, Stephan; ...

    2017-04-13

    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify themore » magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. As a result, the comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.« less

  12. Magnon mode selective spin transport in compensated ferrimagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Joel; Guo, Er -Jia; Geprags, Stephan

    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify themore » magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. As a result, the comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.« less

  13. Arc Jet Testing of the TIRS Cover Thermal Protection System for Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Szalai, Christine E.; Chen, Y.-K.; Loomis, Mark; Hui, Frank; Scrivens, Larry

    2002-01-01

    This paper summarizes the arc jet test results of the Mars Exploration Rover (MER) Silicone Impregnated Reusable Ceramic Ablator (SIRCA) Transverse Impulse Rocket System (TIRS) Cover test series in the Panel Test Facility (PTF) at NASA Ames Research Center (ARC). NASA ARC performed aerothermal environment analyses, TPS sizing and thermal response analyses, and arc jet testing to evaluate the MER SIRCA TIRS Cover design and interface to the aeroshell structure. The primary objective of this arc jet test series was to evaluate specific design details of the SIRCA TIRS Cover interface to the MER aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with various sea] configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell TPS material, SLA-561S, and resulted in an over-test (with respect to heat flux and heat load) for the apex region of the SIRCA TIRS Cover. The resulting pressure differential was as much as twenty times that predicted for the flight case, depending on the location, and there was no post-test visual evidence of over-heating or damage to the seal, bracket, or backshell structure. The exposed titanium bolts were in good condition at post-test and showed only a small amount of oxidation at the leading edge locations. Repeatable thermocouple data were obtained and SIRCA thermal response analyses were compared to applicable thermocouple data. For the apex region of the SIRCA TIRS Cover, a one-dimensional thermal response prediction proved overly conservative, as there were strong multi-dimensional conduction effects evident from the thermocouple data. The one-dimensional thermal response prediction compared well with the thermocouple data for the leading edge "lip" region at the bolt location. In general, the test results yield confidence in the baseline seal design to prevent hot gas ingestion at the bracket and composite aeroshell structure interface.

  14. Thermal boundary resistance between the end of an individual carbon nanotube and a Au surface.

    PubMed

    Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji

    2011-08-05

    The thermal boundary resistance between an individual carbon nanotube and a Au surface was measured using a microfabricated hot-film sensor. We used both closed and open-ended multi-walled carbon nanotubes and obtained thermal boundary resistance values of 0.947-1.22 × 10(7) K W(-1) and 1.43-1.76 × 10(7) K W(-1), respectively. Considering all uncertainties, including the contact area, the thermal boundary conductances per unit area were calculated to be 8.6 × 10(7)-2.2 × 10(8) W m(-2) K(-1) for c-axis orientation and 4.2 × 10(8)-1.2 × 10(9) W m(-2) K(-1) for the a-axis. The trend in these values agrees with the predicted conductance dependence on the interface orientation of anisotropic carbon-based materials. However, the measured thermal boundary conductances are found to be much larger than the reported results.

  15. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seungmin, E-mail: lim76@illinois.edu; Mondal, Paramita

    2014-06-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis.more » Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.« less

  16. Thermal transport study across interface “nanostructured solid surface / fluid” by photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Voitenko, K.; Isaiev, M.; Pastushenko, A.; Andrusenko, D.; Kuzmich, A.; Lysenko, V.; Burbelo, R.

    2017-01-01

    In the paper the experimental study of heat transport across the interface “porous silicon/liquid” by photoacoustic technique is reported. Two cases with and without liquid covering of porous silicon surface were considered. Thermal perturbations were excited at the surface of porous silicon as a result of absorption of the light with modulated intensity. The resulting thermal-elastic stresses arising in the system were registered with piezoelectric transducer. The amplitude-frequency dependencies of the voltage on the piezoelectric electrodes were measured. The presence of the liquid film leads to decreasing of the amplitude of photoacoustic signal as a result of the thermal energy evacuation from the porous silicon into the liquid. The experimental dependencies were fitted with the results of simulation that takes into account heat fluxes separation at the porous silicon/liquid interface. With the presented method one can precisely measure heat fluxes transferred from the solid into contacting fluid. Moreover, the presented approach can be easily adopted for the thermal conductivity study of the different nanofluids as well as thermal resistance at the interface nanostructured solid/fluid.

  17. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaki, Hirokazu; Kobayashi, Kazuaki; Shimono, Masato

    We present the thermoelectric properties of TiN/MgO superlattices employing first-principles calculation techniques. The Seebeck coefficients, the electrical conductances, the thermal conductances, and the figure of merit are investigated employing electrical and thermal transport calculations based on density functional theory combined with the nonequilibrium Green's function and nonequilibrium molecular dynamics simulation methods. The TiN/MgO superlattices with a small lattice mismatch at the interfaces are ideal systems to study the way for an enhancement of thermoelectric properties in artificial nanostructures. We find that the interfacial scattering between the two materials in the metal/insulator superlattices causes the electrical conductance to change rapidly, whichmore » enhances the Seebeck coefficient significantly. We show that the figure of merit for the artificial superlattice nanostructures has a much larger value compared with that of the bulk material and changes drastically with the superlattice configurations at the atomistic level.« less

  19. Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan

    2007-12-01

    Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.

  20. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul P

    2017-08-02

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (>200 degrees C). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. Mechanical characterization tests that result in stress-strain curves and accelerated tests that produce cycles-to-failure result will be conducted. Also, we present a finite element method (FEM) modeling methodologymore » that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed.« less

  1. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  2. Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE

    NASA Astrophysics Data System (ADS)

    Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.

    2015-08-01

    High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.

  3. Surface separation investigation of ultrafast pulsed laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Carter, Richard M.; Thomson, Robert R.; Hand, Duncan P.

    2016-03-01

    Techniques for joining materials, especially optical materials such as glass to structural materials such as metals, or to other optical materials, while maintaining their surface and optical properties are essential for a wide range of industrial applications. Adhesive bonding is commonly used but leads to many issues including optical surface contamination and outgassing. It is possible to generate welds using an ultra-short pulsed laser process, whereby two flat material surfaces are brought into close contact and the laser is focused through the optical material onto the interface. Highly localised melting and rapid resolidification form a strong bond between the two surfaces whilst avoiding significant heating of the surrounding material, which is important for joining materials with different thermal expansion coefficients. Previous reports on ultrafast laser welding have identified a requirement for the surface separation gap to be less than 500nm in order to avoid cracking or ablation at the interface. We have investigated techniques for increasing this gap (to reduce weld fit-up problems), and tested by bonding two surfaces with a weld-controlled gap. These gaps were generated either by a series of etched grooves on the surface of one of the substrates, or by using a cylindrical lens as a substrate. By careful optimisation of parameters such as laser power, process speed and focal position, we were able to demonstrate successful welding with a gap of up to 3μm.

  4. Radiative heat transport during the vertical Bridgman growth of oxide single crystals: slabs versus cylinders

    NASA Astrophysics Data System (ADS)

    Virozub, Alexander; Brandon, Simon

    1998-10-01

    Internal radiative heat transport in oxide crystals during their growth via the vertical Bridgman technique is known to promote severely deflected melt/crystal interface shapes. These highly curved interfaces are likely to encourage unwanted phenomena such as inhomogeneous distribution of impurities in the solidified crystalline material. Past computational analyses of oxide growth systems have mostly been confined to cylindrical geometries. In this letter a two-dimensional finite-element model, describing the growth of slab-shaped oxide crystals via the vertical Bridgman technique, is presented; internal radiative heat transport through the transparent crystalline phase is accounted for in the formulation. Comparison with calculations of cylindrical-shaped crystal growth systems shows a strong dependence of thermal fields and of melt/crystal interface shapes on the crystal geometry. Specifically, the interface position is strongly shifted toward the hot zone and its curvature dramatically increases in slab-shaped systems compared to what is observed in cylindrical geometries. This significant qualitative difference in interface shapes is shown to be linked to large quantitative differences in values of the viewing angle between the hot melt/crystal interface and the cold part of the crucible.

  5. Daytime Detection of Space Objects

    DTIC Science & Technology

    2005-03-01

    photon flux is much larger than the signal flux and is the dominant noise source, we are operating in Background Limited Infrared Photodector (BLIP...electromagnetic radiation (visible, infrared , radar, etc.) strikes a material interface of a body, it can scatter off the top or first surface, as well as...nighttime, daytime and infrared flares respectively. The thermal emission of space objects at 353K, 900K and 1300K with 2 to 20 m2 emitting areas

  6. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.

    2018-01-01

    In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.

  7. Velocity of the high-spin low-spin interface inside the thermal hysteresis loop of a spin-crossover crystal, via photothermal control of the interface motion.

    PubMed

    Slimani, Ahmed; Varret, François; Boukheddaden, Kamel; Garrot, Damien; Oubouchou, Hassane; Kaizaki, Sumio

    2013-02-22

    We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single macroscopic domain with a straight LS and HS interface. The interface orientation was almost constant and its propagation velocity was close to ~6 and 26 μ m s(-1) for the on-cooling and on-heating processes, respectively. We found that the motion of the interface was sensitive to the intensity of the irradiation beam of the microscope, through a photothermal effect. By fine-tuning the intensity we could stop and even reverse the interface motion. This way we stabilized a biphasic state of the crystal, and we followed the spontaneous motion of the interface at different temperatures inside the thermal hysteresis loop. This experiment gives access for the first time to an accurate determination of the equilibrium temperature in the case of thermal hysteresis--which was not accessible by the usual quasistatic investigations. The temperature dependence of the propagation velocity inside the hysteretic interval was revealed to be highly nonlinear, and it was quantitatively reproduced by a dynamical mean-field theory, which made possible an estimate of the macroscopic energy barrier.

  8. Interface thermal conductance of van der Waals monolayers on amorphous substrates

    NASA Astrophysics Data System (ADS)

    Correa, Gabriela C.; Foss, Cameron J.; Aksamija, Zlatan

    2017-03-01

    Heterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate. Graphene on SiO2 is initially used in our model and contrasted against available experimental data; the model is then applied to monolayer molybdenum disulfide (MoS2) on SiO2 substrate. Our findings show the dominant carrier of heat in both graphene and MoS2 in the cross-plane direction is the flexural (ZA) phonon mode, owing to the large overlap between graphene ZA and substrate vibrational density of states. The rate of phonon transfer across the interface depends quadratically on the substrate coupling constant K a , but this interaction also causes a lifting of the lowest flexural phonon modes. As a result, ITC depends roughly linearly on the strength of the coupling between a monolayer and its substrate. We conclude that, in both graphene and MoS2 on SiO2, substrate adhesion plays a strong role in determining ITC, requiring further study of substrate coupling in TMDCs.

  9. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  10. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an engineering analysis program which contains a general purpose library of over 600 subroutin

  11. Motion of Optically Heated Spheres at the Water-Air Interface.

    PubMed

    Girot, A; Danné, N; Würger, A; Bickel, T; Ren, F; Loudet, J C; Pouligny, B

    2016-03-22

    A micrometer-sized spherical particle classically equilibrates at the water-air interface in partial wetting configuration, causing about no deformation to the interface. In condition of thermal equilibrium, the particle just undergoes faint Brownian motion, well visible under a microscope. We report experimental observations when the particle is made of a light-absorbing material and is heated up by a vertical laser beam. We show that, at small laser power, the particle is trapped in on-axis configuration, similarly to 2-dimensional trapping of a transparent sphere by optical forces. Conversely, on-axis trapping becomes unstable at higher power. The particle escapes off the laser axis and starts orbiting around the axis. We show that the laser-heated particle behaves as a microswimmer with velocities on the order of several 100 μm/s with just a few milliwatts of laser power.

  12. Flat-lying semiconductor-insulator interfacial layer in DNTT thin films.

    PubMed

    Jung, Min-Cherl; Leyden, Matthew R; Nikiforov, Gueorgui O; Lee, Michael V; Lee, Han-Koo; Shin, Tae Joo; Takimiya, Kazuo; Qi, Yabing

    2015-01-28

    The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.

  13. In-volume structuring of a bilayered polymer foil using direct laser interference patterning

    NASA Astrophysics Data System (ADS)

    Rößler, Florian; Günther, Katja; Lasagni, Andrés F.

    2018-05-01

    Periodic surface patterns can provide materials with special optical properties, which are usable in decorative or security applications. However, they can be sensitive to contact wear and thus their lifetime and functionality are limited. This study describes the use of direct laser interference patterning for structuring a multilayered polymer film at its interface creating periodic in-volume structures which are resistant to contact wear. The spatial period of the structures are varied in the range of 1.0 μm to 2.0 μm in order to produce decorative elements. The pattern formation at the interface is explained using cross sectional observations and a thermal simulation of the temperature evolution during the laser treatment at the interface. Both, the diffraction efficiency and direct transmission are characterized by light intensity measurements to describe the optical behavior of the produced periodic structures and a decorative application example is presented.

  14. Enhancement of the interface in poly(L-lactide) and poly(propylidene carbonate) blends by introducing of poly(L-lactide)-grafted graphene oxide to improve mechanical properties

    NASA Astrophysics Data System (ADS)

    Li, Qi; Qin, Shengxue; Tian, Xiujuan; Chen, Xueyang; Chen, Yunlei; Niu, Yanhua; Zhao, Lifen

    2018-03-01

    Enhancement of the interfacial structure has great significances in achieving polymer blends with high mechanical performance. To improve the mechanical properties of poly(L-lactide) (PLLA)/poly(propylidene carbonate) (PPC) blends, the covalent functionalized graphene oxide by PLLA chains (PLLA-g-GO) was synthesized by a two-step strategy. It could migrate from the thermally preferred PPC phase to the interfaces of PLLA and PPC and promote the formation of a network-like structure. As a consequence, the tensile strength and elongation at break were both improved. Furthermore, the PLLA-g-GO located at the interface could induce the crystallization at the boundary, which brought the significant improvement of the tensile strength and elongation at break. This result may be beneficial for designing high-performance PLLA materials.

  15. Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance.

    PubMed

    Liang, Zhimin; Su, Mingze; Zhou, Yangyang; Gong, Li; Zhao, Chuanxi; Chen, Keqiu; Xie, Fangyan; Zhang, Weihong; Chen, Jian; Liu, Pengyi; Xie, Weiguang

    2015-11-07

    The interfacial reaction and energy level alignment at the Si/transition metal oxide (TMO, including MoO3-x, V2O5-x, WO3-x) heterojunction are systematically investigated. We confirm that the interfacial reaction appears during the thermal deposition of TMO, with the reaction extent increasing from MoO3-x, to V2O5-x, and to WO3-x. The reaction causes the surface oxidation of silicon for faster electron/hole recombination, and the reduction of TMO for effective hole collection. The photovoltaic performance of the Si/TMO heterojunction devices is affected by the interface reaction. MoO3-x are the best hole selecting materials that induce least surface oxidation but strongest reduction. Compared with H-passivation, methyl group passivation is an effective way to reduce the interface reaction and improve the interfacial energy level alignment for better electron and hole collection.

  16. ICC Type II large-format FPA detector assemblies

    NASA Astrophysics Data System (ADS)

    Clynne, Thomas H.; Powers, Thomas P.

    1997-08-01

    ICC presents a new addition to their integrated detector assembly product line with the announcement of their type II large format staring class FPA units. A result of internally funded research and development, the ICC type II detector assembly can accommodate all existing large format staring class PtSi, InSb and MCT focal planes, up to 640 by 480. Proprietary methodologies completely eliminate all FPA stresses to allow for maximum FPA survivability. Standard optical and cryocooler interfaces allow for the use of BEI, AEG, TI SADA Hughes/Magnavox and Joule Thompson coolers. This unit has been qualified to the current SADA II thermal environmental specifications and was tailored around ICC's worldwide industry standard type IV product. Assembled in a real world flexible manufacturing environment, this unit features a wide degree of adaptability and can be easily modified to a user's specifications via standard options and add-ons that include optical interfaces, electrical interfaces and window/filter material selections.

  17. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  18. Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System

    NASA Technical Reports Server (NTRS)

    Klimcak, C.; Jaduszliwer, B.

    1995-01-01

    We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.

  19. Recent advances in chemical synthesis methodology of inorganic materials and theoretical computations of metal nanoparticles/carbon interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Andrew G.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  20. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan

    2018-01-01

    In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.

Top