Sample records for thermal shock loading

  1. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  2. Thermal research of infrared sight thermoelectric cooler control circuit under temperature environment

    NASA Astrophysics Data System (ADS)

    Gao, Youtang; Ding, Huan; Xue, Xiao; Xu, Yuan; Chang, Benkang

    2010-10-01

    Testing device TST-05B, which is suitable for adaptability test of semiconductor devices, electronic products and other military equipment under the condition of the surrounding air temperature rapidly changing, is used here for temperature shock test.Thermal stability technology of thermoelectric cooler control circuit infrared sight under temperature shock is studied in this paper. Model parameters and geometry is configured for ADI devices (ADN8830), welding material and PCB which are used in system. Thermoelectric cooler control circuit packaged by CSP32 distribution are simulated and analyzed by thermal shock and waveform through engineering finite element analysis software ANSYYS. Because solders of the whole model have much stronger stress along X direction than that of other directions, initial stress constraints along X direction are primarily considered when the partial model of single solder is imposed by thermal load. When absolute thermal loads stresses of diagonal nodes with maximum strains are separated from the whole model, interpolation is processed according to thermal loads circulation. Plastic strains and thermal stresses of nodes in both sides of partial model are obtained. The analysis results indicates that with thermal load circulation, maximum forces of each circulation along X direction are increasingly enlarged and with the accumulation of plastic strains of danger point, at the same time structural deformation and the location of maximum equivalent plastic strain in the solder joints at the first and eighth, the composition will become invalid in the end.

  3. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  4. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Image and Video Library

    1998-05-14

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  5. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the transient thermal stresses superimposed on cyclic mechanical loading results in hollow cylinder under thermal shock in heating case and down shock cooling case. The combination of stress and strain intensity factor theoretical calculations with the experimental output recorded data shows a similar behaviour with increasing temperature, and there is a fair correlation between the profiles at the beginning and then divergence with increasing the crack length. The transient influence of high temperature in case two, giving a very high thermal shock stress as a heating or cooling effects, shifting up the combined stress, when applied a cyclic mechanical load in fraction of seconds, and the reputations of these shocks, causing a fast failure under high thermal shock stress superimposed with mechanical loading.Finally, the numerical modelling analyses three cases studied were solved due to the types of loading and types of specimen geometry by using finite element models constructed through the ANSYS Workbench version 13.0. The first case is a low cyclic fatigue case for a solid cylinder specimen simulated by applying a cyclic mechanical loading. The second is an isothermal fatigue case for solid cylinder specimen simulated by supplying different constant temperatures on the outer surface with cyclic mechanical loading, where the two cases are similar to the experimental tests and the third case, is a thermo-mechanical fatigue for a hollow cylinder model by simulating a thermal up-shock generated due to transient heating on the outer surface of the model or down shock cooling on the inner surface with the cyclic mechanical loading. The results show a good agreement with the experimental data in terms of alternative stress and life in the first case. In case two results show the strain intensity factor is increases with increasing temperature similar to the theoretical solution due to the influence of the modulus of elasticity and the difference in life estimation with the experimental output record is related to the input data made of theoretical physical properties and the experimental stress-life data.

  6. Microelectronics Instrument Products Shock and Vibration Electro-Optics. Section B; Acceptance Data Package

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The motor/encoder (henceforth referred to as the UUT) test sequence began with a baseline functional evaluation, which demonstrated that the motor satisfied the operating torque, cogging torque, winding resistance, and mechanical requirements of SOW. In addition, the encoder electrical requirements were verified, as well as the alignment of the encoder outputs relative to the motor shaft position. There were no discrepancies observed in this portion of the test. The UUT was then exposed to a number of environments, including thermal vacuum, thermal cycling, random and sine vibration, and mechanical shock. During the thermal environments, the performance of the UUT under load was verified at specified points in the cycles, as described in ATP 20049. In addition, the UUT was bench tested between the two thermal environments. No anomalies were observed during the thermal tests. The vibration and shock tests were performed by East-West Technology Corporation, West Babylon, New York. The UUT was delivered to the lab in a sealed vibration fixture in order to maintain the cleanliness levels required by the SOW. In addition, a three ounce load was attached to the motor shaft. The attachment method of this load caused damage to the shaft and bearing during random vibration of S/N 0003 on April 28, 1995, and is described further in NCR 00168.

  7. High pulse number thermal shock tests on tungsten with steady state particle background

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m-2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  8. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading

    PubMed Central

    Lin, Dong; Saei, Mojib; Suslov, Sergey; Jin, Shengyu; Cheng, Gary J.

    2015-01-01

    CNTs reinforced metal composites has great potential due to their superior properties, such as light weight, high strength, low thermal expansion and high thermal conductivity. The current strengthening mechanisms of CNT/metal composite mainly rely on CNTs’ interaction with dislocations and CNT’s intrinsic high strength. Here we demonstrated that laser shock loading the CNT/metal composite results in high density nanotwins, stacking fault, dislocation around the CNT/metal interface. The composites exhibit enhanced strength with excellent stability. The results are interpreted by both molecular dynamics simulation and experiments. It is found the shock wave interaction with CNTs induces a stress field, much higher than the applied shock pressure, surrounding the CNT/metal interface. As a result, nanotwins were nucleated under a shock pressure much lower than the critical values to generate twins in metals. This hybrid unique nanostructure not only enhances the strength, but also stabilize the strength, as the nanotwin boundaries around the CNTs help pin the dislocation movement. PMID:26493533

  9. Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.

  10. Structural tests on a tile/strain isolation pad thermal protection system. [space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1980-01-01

    The aluminum skin of the space shuttle is covered by a thermal protection system (TPS) consisting of a low density ceramic tile bonded to a matted-felt material called strain insulation pad (SIP). The structural characteristics of the TPS were studied experimentally under selected extreme load conditions. Three basic types of loads were imposed: tension, eccentrically applied tension, and combined in-plane force and transverse pressure. For some tests, transverse pressure was applied rapidly to simulate a transient shock wave passing over the tile. The failure mode for all specimens involved separation of the tile from the SIP at the silicone rubber bond interface. An eccentrically applied tension load caused the tile to separate from the SIP at loads lower than experienced at failure for pure tension loading. Moderate in-plane as well as shock loading did not cause a measurable reduction in the TPS ultimate failure strength. A strong coupling, however, was exhibited between in-plane and transverse loads and displacements.

  11. Molecular dynamics studies of thermal dissipation during shock induced spalling

    NASA Astrophysics Data System (ADS)

    Xiang, Meizhen; Hu, Haibo; Chen, Jun; Liao, Yi

    2013-09-01

    Under shock loadings, the temperature of materials may vary dramatically during deformation and fracture processes. Thus, thermal effect is important for constructing dynamical failure models. Existing works on thermal dissipation effects are mostly from meso- to macro-scale levels based on phenomenological assumptions. The main purpose of the present work is to provide several atomistic scale perspectives about thermal dissipation during spall fracture by nonequilibrium molecular dynamics simulations on single-crystalline and nanocrystalline Pb. The simulations show that temperature arising starts from the vicinity of voids during spalling. The thermal dissipation rate in void nucleation stage is much higher than that in the later growth and coalescence stages. Both classical spallation and micro-spallation are taken into account. Classical spallation is corresponding to spallation phenomenon where materials keep in solid state during shock compression and release stages, while micro-spallation is corresponding to spallation phenomenon where melting occurs during shock compression and release stages. In classical spallation, whether residuary dislocations are produced in pre-spall stages has significant influences on thermal dissipation rate during void growth and coalescence. The thermal dissipation rates decrease as shock intensity increases. When the shock intensity exceeds the threshold of micro-spallation, the thermal dissipation rate in void nucleation stage drops precipitously. It is found that grain boundaries mainly influence the thermal dissipation rate in void nucleation stage in classical spallation. In micro-spallation, the grain boundary effects are insignificant.

  12. Development Of Metallic Thermal Protection System For The Expert Re-Entry Vehicle: Design Verification

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad

    2011-05-01

    The thermal protection system of the EXPERT re-entry vehicle is subjected to accelerations, vibrations, acoustic and shock loads during launch and aero-heating loads and aerodynamic forces during re-entry. To fully understand the structural and thermomechanical performances of the TPS, heat transfer analysis, thermal stress analysis, and thermal buckling analysis must be performed. This requires complex three-dimensional thermal and structural models of the entire TPS including the insulation and sensors. Finite element (FE) methods are employed to assess the thermal and structural response of the TPS to the mechanical and aerothermal loads. The FE analyses results are used for the design verification and design improvement of the EXPERT thermal protection system.

  13. Thermal shock induced oxidation of beryllium

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2017-12-01

    Beryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m-2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m-2 and a pulse duration of 1 ms, leading to a peak surface temperature of ˜800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ˜0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium.

  14. Modeling shock responses of plastic bonded explosives using material point method

    NASA Astrophysics Data System (ADS)

    Shang, Hailin; Zhao, Feng; Fu, Hua

    2017-01-01

    Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.

  15. Microelectronics Instrument Products Shock and Vibration Electro-optics: C-Qualification Test Report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In this test report all measurements made during testing are recorded in ATP 20049 DS data sheets and are included in the log. The motor/encoder (henceforth referred to as the UUT) test sequence began with a baseline functional evaluation, which demonstrated that the motor satisfied the operating torque, cogging torque, winding resistance, and mechanical requirements of SOW. In addition, the encoder electrical requirements were verified, as well as the alignment of the encoder outputs relative tc, the motor shaft position. There were no discrepancies observed in this portion of the test. The UUT was then exposed to a number of environments, including thermal vacuum, thermal cycling, random and sine vibration, and mechanical shock. During the thermal environments, the performance of the UUT under load was verified at specified points in the cycles, as described in ATP 20049. In addition, the UUT was bench tested between the two thermal environments. No anomalies were observed during the thermal tests. The load attachment method was subsequently corrected, and vibration of S/N 0002 began while 0003 was being repaired.

  16. The Reliability of Microalloyed Sn-Ag-Cu Solder Interconnections Under Cyclic Thermal and Mechanical Shock Loading

    NASA Astrophysics Data System (ADS)

    Mattila, Toni T.; Hokka, Jussi; Paulasto-Kröckel, Mervi

    2014-11-01

    In this study, the performance of three microalloyed Sn-Ag-Cu solder interconnection compositions (Sn-3.1Ag-0.52Cu, Sn-3.0Ag-0.52Cu-0.24Bi, and Sn-1.1Ag-0.52Cu-0.1Ni) was compared under mechanical shock loading (JESD22-B111 standard) and cyclic thermal loading (40 ± 125°C, 42 min cycle) conditions. In the drop tests, the component boards with the low-silver nickel-containing composition (Sn-Ag-Cu-Ni) showed the highest average number of drops-to-failure, while those with the bismuth-containing alloy (Sn-Ag-Cu-Bi) showed the lowest. Results of the thermal cycling tests showed that boards with Sn-Ag-Cu-Bi interconnections performed the best, while those with Sn-Ag-Cu-Ni performed the worst. Sn-Ag-Cu was placed in the middle in both tests. In this paper, we demonstrate that solder strength is an essential reliability factor and that higher strength can be beneficial for thermal cycling reliability but detrimental to drop reliability. We discuss these findings from the perspective of the microstructures and mechanical properties of the three solder interconnection compositions and, based on a comprehensive literature review, investigate how the differences in the solder compositions influence the mechanical properties of the interconnections and discuss how the differences are reflected in the failure mechanisms under both loading conditions.

  17. A shock isolator for diode laser operation on a closed-cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Jennings, D. F.; Hillman, J. J.

    1977-01-01

    A device developed to isolate the diode laser from impact shocks delivered during the expansion phase of the Solvay cycle of a helium refrigerator is briefly described. The device uses intermediate cold stations in the stand-off, which permit the stand-off to be short and rigid while minimizing the thermal load at the diode mount.

  18. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    NASA Astrophysics Data System (ADS)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  19. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  20. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  1. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  2. Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics and structural analyses

    NASA Astrophysics Data System (ADS)

    Katsuyama, Jinya; Uno, Shumpei; Watanabe, Tadashi; Li, Yinsheng

    2018-03-01

    The thermal hydraulic (TH) behavior of coolant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.

  3. Fiber reinforced superalloys for rocket engines

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Stephens, Joseph R.

    1989-01-01

    High pressure turbopumps for advanced reusable liquid propellant rocket engines such as that for the Space Shuttle Main Engine (SSME) require turbine blade materials that operate under extreme conditions of temperature, hydrogen environment, high-cycle fatigue loading, thermal fatigue and thermal shock. Such requirements tax the capabilities of current blade materials. Based on projections of properties for tungsten fiber reinforced superalloy (FRS) composites, it was concluded that FRS turbine blades offer the potential of a several fold increase in life and over a 200 C increase in temperature capability over the current SSME blade material. FRS composites were evaluated with respect to mechanical property requirements for SSME blade applications. Compared to the current blade material, the thermal shock resistance of FRS materials is excellent, two to nine times better, and their thermal fatigue resistance is equal to or higher than the current blade material. FRS materials had excellent low and high-cycle fatigue strengths, and thermal shock-induced surface microcracks had no influence on their fatigue strength. The material also exhibited negligible embrittlement when exposed to a hydrogen environment.

  4. Fiber reinforced superalloys for rocket engines

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Stephens, Joseph R.

    1988-01-01

    High-pressure turbopumps for advanced reusable liquid-propellant rocket engines such as that for the Space Shuttle Main Engine (SSME) require turbine blade materials that operate under extreme conditions of temperature, hydrogen environment, high-cycle fatigue loading, thermal fatigue and thermal shock. Such requirements tax the capabilities of current blade materials. Based on projections of properties for tungsten fiber reinforced superalloy (FRS) composites, it was concluded that FRS turbine blades offer the potential of a several-fold increase in life and over a 200C increase in temperature capability over current SSME blade material. FRS composites were evaluated with respect to mechanical property requirements for SSME blade applications. Compared to the current blade material, the thermal shock resistance of FRS materials is excellent, two to nine times better, and their thermal fatigue resistance is equal to or higher than the current blade material. FRS materials had excellent low and high-cycle fatigue strengths, and thermal shock-induced surface microcracks had no influence on their fatigue strength. The material also exhibited negligible embrittlement when exposed to a hydrogen environment.

  5. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    NASA Astrophysics Data System (ADS)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  6. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal

    DOE PAGES

    Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.; ...

    2015-05-14

    A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shearmore » bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.« less

  7. Shock Wave / Boundary Layer Interaction Experiment on Control Surface

    DTIC Science & Technology

    2007-06-01

    attachment points to the cold structure of the capsule (see Figure 16, left). Vibrational and acoustical loads are relevant for electronic components. Noise...thermal detector subsystems. Table 1: Summary of infrared technologies considered. Thermal Detectors Quantum Detectors Bolometer Pyrometer InGaAs...holes but a decrease in sensitivity at lower temperature results. Pyrometers are suitable for high temperature measurement, but they respond only to

  8. Shock Compression Induced Hot Spots in Energetic Material Detected by Thermal Imaging Microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wei; Dlott, Dana

    2014-06-01

    The chemical reaction of powder energetic material is of great interest in energy and pyrotechnic applications since the high reaction temperature. Under the shock compression, the chemical reaction appears in the sub-microsecond to microsecond time scale, and releases a large amount of energy. Experimental and theoretical research progresses have been made in the past decade, in order to characterize the process under the shock compression. However, the knowledge of energy release and temperature change of this procedure is still limited, due to the difficulties of detecting technologies. We have constructed a thermal imaging microscopy apparatus, and studied the temperature change in energetic materials under the long-wavelength infrared (LWIR) and ultrasound exposure. Additionally, the real-time detection of the localized heating and energy concentration in composite material is capable with our thermal imaging microscopy apparatus. Recently, this apparatus is combined with our laser driven flyer plate system to provide a lab-scale source of shock compression to energetic material. A fast temperature increase of thermite particulars induced by the shock compression is directly observed by thermal imaging with 15-20 μm spatial resolution. Temperature change during the shock loading is evaluated to be at the order of 10^9K/s, through the direct measurement of mid-wavelength infrared (MWIR) emission intensity change. We observe preliminary results to confirm the hot spots appear with shock compression on energetic crystals, and will discuss the data and analysis in further detail. M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Rev. Sci. Instr., 85, 023705 (2014) M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Appl. Phys. Lett., 104, 061907 (2014)} K. E. Brown, W. L. Shaw, X. Zheng, and D. D. Dlott, {Rev. Sci. Instr., 83, 103901 (2012)}

  9. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 2. Invited Papers, Space Shuttle Loads and Dynamics, Space Shuttle Data Systems, Shock Testing, Shock Analysis Space Shuttle Thermal Protection Systems

    DTIC Science & Technology

    1982-05-01

    discovered during posttest inspection. The unit had experienced 2 As- designed damper, 0.92-1-.14 grams 8 tests for a total of 330 seconds of opera- 3...a Modeling DAMPED STRUCTURE DESIGN USING FINITE ELEMENT ANALYSIS M. F. Klunmner and M. L. Drake, University of Dayti-n Resatch Institute, Dayton, OH...IN DYNAMICS T. E. Simkins, U.S. Army Armament Research and Development Command, Watervliet, NY Stucturd Dynamics A PROCEDURE FOR DESIGNING OVERDAMPED

  10. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980`s, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industrymore » efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology.« less

  11. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Morgan, T. W.; van Eden, G. G.; de Kruif, T.; Wirtz, M.; Matejicek, J.; Chraska, T.; Pitts, R. A.; Wright, G. M.

    2015-08-01

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (FHF) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate FHF = 19 MJ m-2 s-1/2, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  12. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.

  13. Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads

    NASA Astrophysics Data System (ADS)

    Huber, A.; Sergienko, G.; Wirtz, M.; Steudel, I.; Arakcheev, A.; Brezinsek, S.; Burdakov, A.; Dittmar, T.; Esser, H. G.; Kreter, A.; Linke, J.; Linsmeier, Ch; Mertens, Ph; Möller, S.; Philipps, V.; Pintsuk, G.; Reinhart, M.; Schweer, B.; Shoshin, A.; Terra, A.; Unterberg, B.

    2016-02-01

    The impact on the deuterium retention of simultaneous exposure of tungsten to a steady-state plasma and transient cyclic heat loads has been studied in the linear PSI-2 facility with the main objective of qualifying tungsten (W) as plasma-facing material. The transient heat loads were applied by a high-energy laser, a Nd:YAG laser (λ = 1064 nm) with an energy per pulse of up to 32 J and a duration of 1 ms. A pronounced increase in the D retention by a factor of 13 has been observed during the simultaneous transient heat loads and plasma exposure. These data indicate that the hydrogen clustering is enhanced by the thermal shock exposures, as seen on the increased blister size due to mobilization and thermal production of defects during transients. In addition, the significant increase of the D retention during the simultaneous loads could be explained by an increased diffusion of D atoms into the W material due to strong temperature gradients during the laser pulse exposure and to an increased mobility of D atoms along the shock-induced cracks. Only 24% of the retained deuterium is located inside the near-surface layer (d<4 μm). Enhanced blister formation has been observed under combined loading conditions at power densities close to the threshold for damaging. Blisters are not mainly responsible for the pronounced increase of the D retention.

  14. Temperature measurements at material interfaces with thin-foil gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike; Chapman, David; Proud, William

    2009-06-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  15. Temperature Measurements at Material Interfaces with Thin-Foil Gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike J.; Chapman, David J.; Proud, William G.

    2009-12-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  16. Development of a high force thermal latch

    NASA Technical Reports Server (NTRS)

    Nygren, William D.

    1995-01-01

    This paper describes the preliminary development of a high force thermal latch (HFTL). The HFTL has one moving part which is restrained in the latched position by a low melting temperature or fusible metal alloy. When heated the fusible alloy flows to a receiving chamber and in so doing at first releases the tension load in the latch bolt and later releases the bolt itself. The HFTL can be used in place of pyrotechnically activated spacecraft release devices in those instances where the elimination of both pyrotechnic shock-loading and rapid strain-energy release take precedence over the near instantaneous release offered by ordnance initiated devices.

  17. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming

    2017-12-01

    The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.

  18. Atomistic simulations of shock-induced alloying reactions in Ni /Al nanolaminates

    NASA Astrophysics Data System (ADS)

    Zhao, Shijin; Germann, Timothy C.; Strachan, Alejandro

    2006-10-01

    We employ molecular dynamics simulations with a first principles-based many body potential to characterize the exothermic alloying reactions of nanostructured Ni /Al multilayers induced by shock loading. We introduce a novel technique that captures both the initial shock transit as well as the subsequent longer-time-scale Ni3Al alloy formation. Initially, the softer Al layers are shock heated to a higher temperature than the harder Ni layers as a result of a series of shock reflections from the impedance-mismatched interfaces. Once initiated, the highly exothermic alloying reactions can propagate in a self-sustained manner by mass and thermal diffusion. We also characterize the role of voids on the initiation of alloying. The interaction of the shock wave with the voids leads not only to significant local heating (hot spots) but also directly aids the intermixing between Al and Ni; both of these phenomena contribute to a significant acceleration of the alloying reactions.

  19. Transient loads identification for a standoff metallic thermal protection system panel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hundhausen, R. J.; Adams, Douglas E.; Derriso, Mark

    2004-01-01

    Standoff thermal protection system (TPS) panels are critical structural components in future aerospace vehicles because they protect the vehicle from the hostile environment encountered during space launch and reentry. Consequently, the panels are exposed to a variety of loads including high temperature thermal stresses, thermal shock, acoustic pressure, and foreign object impacts. Transient impacts are especially detrimental because they can cause immediate and severe degradation of the panel in the form of, for example, debonding and buckling of the face sheet, cracking of the fasteners, or deformation of the standoffs. Loads identification methods for determining the magnitude and location ofmore » impact loads provide an indication of TPS components that may be more susceptible to failure. Furthermore, a historical database of impact loads encountered can be retained for use in the development of statistical models that relate impact loading to panel life. In this work, simulated inservice transient loads are identified experimentally using two methods: a physics-based approach and an inverse Frequency Response Function (FRF) approach. It is shown that by applying the inverse FRF method, the location and magnitude of these simulated impacts can be identified with a high degree of accuracy. The identified force levels vary significantly with impact location due to the differences in panel deformation at the impact site indicating that resultant damage due to impacts would vary with location as well.« less

  20. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  1. Experimental shock metamorphism of maximum microcline

    NASA Technical Reports Server (NTRS)

    Robertson, P. B.

    1975-01-01

    A series of recovery experiments are conducted to study the behavior of single-crystal perthitic maximum microcline shock-loaded to a peak pressure of 417 kbar. Microcline is found to deform in a manner similar to quartz and other alkali feldspars. It is observed that shock-induced cleavages occur initially at or slightly below the Hugoniot elastic limit (60-85 kbar), that shock-induced rather than thermal disordering begins above the Hugoniot elastic limit, and that all types of planar elements form parallel to crystallographic planes of low Miller indices. When increasing pressure, it is found that bulk density, refractive indices, and birefringence of the recovered material decrease and approach diaplectic glass values, whereas disappearance and weakening of reflections in Debye-Sherrer patterns are due to disordering of the feldspar lattice.

  2. Recrystallization behavior and thermal shock resistance of the W-1.0 wt% TaC alloy

    NASA Astrophysics Data System (ADS)

    Xie, Z. M.; Miao, S.; Zhang, T.; Liu, R.; Wang, X. P.; Fang, Q. F.; Hao, T.; Zhuang, Z.; Liu, C. S.; Lian, Y. Y.; Liu, X.; Cai, L. H.

    2018-04-01

    The high-temperature stability and good mechanical strength of tungsten (W) alloys are highly desirable for a wide range of fusion applications, which can be achieved by dispersion strengthening. In this paper, TaC dispersion effects on the thermal stabilities, tensile properties and thermal shock resistances have been investigated. A hot-rolled W-1.0 wt% TaC plate has been fabricated which contains the high tensile strength and elongation. Nanosized particles in the W matrix improve the recrystallization temperature to about 1400 °C and the ultimate tensile strength to 571 MPa at 500 °C through hindering grain boundary migration, pinning dislocations and refining grains. The effects of edge-localized mode like transient heat events on the rolled and recrystallized W-1.0 wt% TaC alloys were investigated systematically. The cracking threshold (100 shots) at room temperature is in the range of 0.33-0.44 GW/m2 for the rolled W-1.0 wt% TaC. Recrystallization degrades mechanical strength and makes the material more prone to thermal shock damages. Coarse Ta2O5 and Ta-Cx-Oy particles are easy to fracture and introduce a preferential crack initiation in W matrix during cyclic heat loads.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.

    A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shearmore » bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.« less

  4. Rugged microelectronic module package supports circuitry on heat sink

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  5. Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading

    NASA Astrophysics Data System (ADS)

    Settgast, C.; Abendroth, M.; Kuna, M.

    2016-11-01

    Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.

  6. Preparation of well-adhered γ-Al 2O 3 washcoat on metallic wire mesh monoliths by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhao, Yazhi

    2007-01-01

    Washcoat deposited on metallic wire mesh monoliths was prepared using γ-alumina powders by electrophoretic deposition under a relatively low electric voltage. The microstructure, phase structure and adhesion of washcoat were investigated by SEM, XRD, ultrasonic vibration and thermal shock. The results showed that the loading and adhesion of washcoat were affected obviously by the properties of suspension, such as the zeta potential and the amount of adding binders. A small quantity of aluminum isopropoxide could promote the cohesive affinity of washcoat in thermal shock. The adhesion of washcoat in ultrasonic vibration could be reinforced by increasing calcined temperature and adding a certain aluminum particles. It was also found that the washcoat immersed metal nitrate has excellent vibration-resistant ability.

  7. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold

    NASA Astrophysics Data System (ADS)

    Barua, A.; Kim, S.; Horie, Y.; Zhou, M.

    2013-02-01

    A criterion for the ignition of granular explosives (GXs) and polymer-bonded explosives (PBXs) under shock and non-shock loading is developed. The formulation is based on integration of a quantification of the distributions of the sizes and locations of hotspots in loading events using a cohesive finite element method (CFEM) developed recently and the characterization by Tarver et al. [C. M. Tarver et al., "Critical conditions for impact- and shock-induced hot spots in solid explosives," J. Phys. Chem. 100, 5794-5799 (1996)] of the critical size-temperature threshold of hotspots required for chemical ignition of solid explosives. The criterion, along with the CFEM capability to quantify the thermal-mechanical behavior of GXs and PBXs, allows the critical impact velocity for ignition, time to ignition, and critical input energy at ignition to be determined as functions of material composition, microstructure, and loading conditions. The applicability of the relation between the critical input energy (E) and impact velocity of James [H. R. James, "An extension to the critical energy criterion used to predict shock initiation thresholds," Propellants, Explos., Pyrotech. 21, 8-13 (1996)] for shock loading is examined, leading to a modified interpretation, which is sensitive to microstructure and loading condition. As an application, numerical studies are undertaken to evaluate the ignition threshold of granular high melting point eXplosive, octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) and HMX/Estane PBX under loading with impact velocities up to 350 ms-1 and strain rates up to 105 s-1. Results show that, for the GX, the time to criticality (tc) is strongly influenced by initial porosity, but is insensitive to grain size. Analyses also lead to a quantification of the differences between the responses of the GXs and PBXs in terms of critical impact velocity for ignition, time to ignition, and critical input energy at ignition. Since the framework permits explicit tracking of the influences of microstructure, loading, and mechanical constraints, the calculations also show the effects of stress wave reflection and confinement condition on the ignition behaviors of GXs and PBXs.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panait, A.; Serban, V.

    The paper presents SERB -- SITON method to control, limit and damp the shocks, vibration, impact load and seismic movements with applications in buildings, equipment and pipe networks (herein called: 'components'). The elimination or reduction of shocks, vibration, impact load and seismic movements is a difficult problem, still improperly handled theoretically and practically because many times the phenomena are random in character and the behavior of components is non-linear with variations of the properties in time, variations that lead to the increase or decrease of the energy and impulse transfer from the dynamic excitation to the components. Moreover, the existingmore » supports and dampers applied today, are not efficient enough in the reduction of the dynamic movement for all the frequency ranges met with in the technical application field. The stiffness and damping of classic supports do not allow a good isolation of components against shocks and vibrations so to eliminate their propagation to the environment and neither do they provide a satisfactory protection of the components sensitive to shocks and vibrations and seismic movements coming from the environment. In order to reduce the effects of shocks, vibrations impact and seismic movements on the components, this paper presents the results obtained by SITON on the concept, design, construction, experimental testing and application of new types of supports, devices and thin lattice structure, called 'SERB', capable to overtake large static loads, to allow displacements from impact, thermal expansions or yielding of supports and which, in any work position, can elastically overtake large dynamic loads or impact loads which they damp. The new supports and devices and thin lattice structure allow their adjustment without the occurrence of over-stressing in the components due to their non -- linear geometric behavior, and the contact pressure among the elements is limited to pre-set values to avoid blocking phenomena that generates great stresses induced by thermal expansion for example. Due to their characteristics of adjustment to the actual position and level of stress, SERB supports, devices and thin lattice structure show minimal effects on the components stress condition whenever the installation and computation errors. Herein below it is a presentation of the actual results obtained by SITON in the isolation of heavy equipment and pipe networks and others in process of application for buildings. Due to the very good results obtained in the isolation against shocks, vibrations and seismic movements at components in the conventional industry, there is the proposal to implement SERB-SITON method to the increase of the safety level at new or existing Nuclear Power Plants or to protect nuclear building against missiles and airplane crush impact. (authors)« less

  9. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  10. Fiber-Reinforced Superalloys For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lewis, Jack R.; Yuen, Jim L.; Petrasek, Donald W.; Stephens, Joseph R.

    1990-01-01

    Report discusses experimental studies of fiber-reinforced superalloy (FRS) composite materials for use in turbine blades in rocket engines. Intended to withstand extreme conditions of high temperature, thermal shock, atmospheres containing hydrogen, high cycle fatigue loading, and thermal fatigue, which tax capabilities of even most-advanced current blade material - directionally-solidified, hafnium-modified MAR M-246 {MAR M-246 (Hf) (DS)}. FRS composites attractive combination of properties for use in turbopump blades of advanced rocket engines at temperatures from 870 to 1,100 degrees C.

  11. Effects of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyeon; Park, Doo-Hwan; Lee, Chi-Seung; Park, Kwang-Jun; Lee, Jae-Myung

    2015-12-01

    The main objective of the present study is to investigate the performance degradation of the plywood used in a liquefied natural gas (LNG) cargo containment system (CCS). A plywood sheet features an odd number of thinly layered wooden plies bonded perpendicularly to the previous layer to give it a very strong and durable structure. Owing to this strong point, plywood is applied to a variety of interior and exterior applications. Above all, it is widely adopted as insulation panels in an LNG CCS owing to a high stiffness with low density and its superior mechanical capabilities. As an insulation material of an LNG CCS, plywood is constantly exposed to repeated wave-induced thermal variations caused by the loading (-163 °C) and unloading (20 °C) of LNG during general operating periods of 25 years on average. Therefore, the effects of cryogenic-level thermal loads on the material characteristics of plywood must be analyzed with respect to the design and safety aspects of LNG CCSs. In the present study, the influences of the estimated thermal load, testing temperature, and grain orientation on plywood adopted in an LNG CCS are investigated. In terms of safety and design, the repeated thermal loads in a LNG CCS must be considered because the modulus of elasticity (MOE), tensile strength (TS), and modulus of rupture (MOR) are degraded by thermal treatments, such as cyclic thermal-shock and cryogenic immersion.

  12. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.

  13. Probabilistic thermal-shock strength testing using infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, A.A.; Scheidt, R.A.; Ferber, M.K.

    1999-12-01

    A thermal-shock strength-testing technique has been developed that uses a high-resolution, high-temperature infrared camera to capture a specimen's surface temperature distribution at fracture. Aluminum nitride (AlN) substrates are thermally shocked to fracture to demonstrate the technique. The surface temperature distribution for each test and AlN's thermal expansion are used as input in a finite-element model to determine the thermal-shock strength for each specimen. An uncensored thermal-shock strength Weibull distribution is then determined. The test and analysis algorithm show promise as a means to characterize thermal shock strength of ceramic materials.

  14. Thermal mathematical modeling and system simulation of Space Shuttle less subsystem

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Battley, H. H.; Gallegos, J. J.; Curry, D. M.

    1984-01-01

    Applications, validation tests, and upgrades of the two- and three-dimensional system level thermal mathematical system simulation models (TMSSM) used for thermal protection system (TPS) analyses are described. The TMSSM were developed as an aid to predicting the performance requirements and configurations of the Shuttle wing leading edge (WLE) and nose cone (NC) TPS tiles. The WLE and its structure were subjected to acoustic, thermal/vacuum, and air loads tests to simulate launch, on-orbit, and re-entry behavior. STS-1, -2 and -5 flight data led to recalibration of on-board instruments and raised estimates of the thermal shock at the NC and WLE. Baseline heating data are now available for the design of future TPS.

  15. Investigation of the effect of different carbon film thickness on the exhaust valve

    NASA Astrophysics Data System (ADS)

    Karamangil, M. I.; Avci, A.; Bilal, H.

    2008-03-01

    Valves working under different loads and temperatures are the mostly forced engine elements. In an internal combustion engine, pressures and temperatures affecting on the valves vary with fuel type and the combustion characteristics of the fuel. Consequently, valves are exposed to different dynamic and thermal stress. In this study, stress distributions and temperature profiles on exhaust valve are obtained depending on different carbon film thickness. It is concluded that heat losses and valve temperatures decrease and valve surfaces are exposed to less thermal shocks with increasing carbon film thickness.

  16. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  17. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  18. Thermal shock testing for assuring reliability of glass-sealed microelectronic packages

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B., III; Lewis, Michael D.

    1991-01-01

    Tests were performed to determine if thermal shocking is destructive to glass-to-metal seal microelectronic packages and if thermal shock step stressing can compare package reliabilities. Thermal shocking was shown to be not destructive to highly reliable glass seals. Pin-pull tests used to compare the interfacial pin glass strengths showed no differences between thermal shocked and not-thermal shocked headers. A 'critical stress resistance temperature' was not exhibited by the 14 pin Dual In-line Package (DIP) headers evaluated. Headers manufactured in cryogenic nitrogen based and exothermically generated atmospheres showed differences in as-received leak rates, residual oxide depths and pin glass interfacial strengths; these were caused by the different manufacturing methods, in particular, by the chemically etched pins used by one manufacturer. Both header types passed thermal shock tests to temperature differentials of 646 C. The sensitivity of helium leak rate measurements was improved up to 70 percent by baking headers for two hours at 200 C after thermal shocking.

  19. Shock Pressures, Temperatures and Durations in L Chondrites: Constraints from Shock-Vein Mineralogy

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Aramovish Weaver, C.; Decarli, P. S.; Sharp, T. G.

    2003-12-01

    Shock effects in meteorites provide a record of major impact events on meteorite parent bodies. Shock veins in chondrites, which result from local melting during shock loading, are the location of all high-pressure minerals. Shock veins contain igneous assemblages, produced by the crystallization of shock-induced melt, and metamorphic assemblages, produced by solid-state transformation in entrained host-rock clasts and wall rock. The mineralogy, distribution of high-pressure minerals and microstructures in shock veins provide a record of crystallization pressures and quench histories that can be used to constrain shock pressures and pulse duration. Here we report mineralogical and microstructural studies of shock-induced melt veins in L chondrites that provide insight into the impact history of the L-chondrite parent body. Eight L6 chondrites were investigated using FESEM and TEM and Raman spectroscopy: RC 106 (S6), Tenham (S6), Umbarger (S4-S6), Roy (S3-S5), Ramsdorf (S4), Kunashak (S4), Nakhon Pathon (S4) and La Lande (S4). Igneous melt-vein assemblages, combined with published phase equilibrium data (Agee et al. 1996), indicate crystallization pressures from less than 2.5 GPa for Kunashack and LaLande to approximately 25 GPa for Tenham. Because shock veins quench primarily by thermal conduction, crystallization starts at vein edges and progresses inward. Variation in the igneous assemblage across shock veins, combined with thermal modelling, provides constraints on quench times and pressure variation during quench. Most samples appear to have crystallized prior to shock release, whereas Kunashack and LaLande apparently crystallized after pressure release. RC 106 and Tenham (both S6), which have thick melt veins with uniform igneous assemblages, crystallized under equilibrium shock pressures of approximately 22-25 GPa during shock events that lasted at least 500 ms and 50ms, respectively. The fact that S6 samples do not appear to have crystallized at a pressures greater than about 25 GPa, suggest that the impacts that produced shock veins in chondrites had low relative impact velocities.

  20. Thermoelastic Analysis of Hyper-X Camera Windows Suddenly Exposed to Mach 7 Stagnation Aerothermal Shock

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie

    2000-01-01

    To visually record the initial free flight event of the Hyper-X research flight vehicle immediately after separation from the Pegasus(registered) booster rocket, a video camera was mounted on the bulkhead of the adapter through which Hyper-X rides on Pegasus. The video camera was shielded by a protecting camera window made of heat-resistant quartz material. When Hyper-X separates from Pegasus, this camera window will be suddenly exposed to Mach 7 stagnation thermal shock and dynamic pressure loading (aerothermal loading). To examine the structural integrity, thermoelastic analysis was performed, and the stress distributions in the camera windows were calculated. The critical stress point where the tensile stress reaches a maximum value for each camera window was identified, and the maximum tensile stress level at that critical point was found to be considerably lower than the tensile failure stress of the camera window material.

  1. Dynamic Compressibility of High-Porosity Dampers of Thermal and Shock Loadings:. Modeling and Experiment

    NASA Astrophysics Data System (ADS)

    Bragov, Anatoly; Konstantinov, Alexander; Lomunov, Andrey; Sadyrin, Anatoly; Sergeichev, Ivan; Kruszka, Leopold

    High-porosity materials, such as chamotte and mullite, possess a heat of fusion. Owing to their properties, these materials can be used with success as damping materials in containers for airplane, automobile, etc. transportation of radioactive or highly toxic materials. Experimental studies of the dynamic properties have been executed with using some original modifications of the Kolsky method. These modified experiments have allowed studying the dynamic compressibility of high-porosity chamotte at deformations up to 80% and amplitudes up to 50 MPa. The equations of the mathematical model describing shock compacting of chamotte as a highly porous, fragile, collapsing material are presented. Deformation of high-porous materials at non-stationary loadings is usually accompanied by fragile destruction of interpore partitions as observed in other porous ceramic materials. Comparison of numerical and experimental results has shown their good conformity.

  2. Structural tests on space shuttle thermal protection system constructed with nondensified and densified Li 900 and LI 2200 tile

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1981-01-01

    Structural tests were conducted on thermal protection systems (TPS) LI 900 and LI 2200 tiles and .41 cm and .23 cm thick strain isolation pads. The bond surface of selected tiles was densified to obtain improved strength. Four basic types of experiments were conducted including tension tests, substrate mismatch (initial imperfection) tests, tension loads eccentrically applied, and pressure loads applied rapidly to the tile top surface. A small initial imperfection mismatch (2.29 m spherical radius on the substrate) did not influence significantly the ultimate failure strength. Densification of the tile bond region improved the strength of TPS constructed both of LI 900 tile and of LI 2200 tile. Pressure shock conditions studied did not significantly affect the TPS strength.

  3. Development of Laser-induced Grating Spectroscopy for Underwater Temperature Measurement in Shock Wave Focusing Regions

    NASA Technical Reports Server (NTRS)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2003-01-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gasdynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results may be used to empirically establish the equation of states of water, gelatin or agar cells which will work as alternatives of human tissues.

  4. Shock metamorphism of Elephant Moraine A79001: Implications for olivine-ringwoodite transformation and the complex thermal history of heavily shocked Martian meteorites

    NASA Astrophysics Data System (ADS)

    Walton, Erin L.

    2013-04-01

    Lithology A of Martian meteorite Elephant Moraine (EET) A79001 contains fragments entrained within a 100 μm-thick shear-induced shock vein. These fragments, the shock vein matrix and walls of olivine along the vein, as well as shock deformation and transformation in rock-forming minerals in the bulk rock, were investigated using scanning electron microscopy, the electron microprobe and Raman spectroscopy. The presence of ringwoodite, the spinel-structured high-pressure (Mg,Fe)2SiO4 polymorph, has been confirmed in EETA79001 for the first time. Ringwoodite occurs within and around the shock vein, exhibiting granular and lamellar textures. In both textures ringwoodite consists of ˜500 nm size distinct grains. Ringwoodite lamellae are 115 nm to 1.3 μm wide. Planar fractures in olivine provided sites for heterogeneous nucleation of ringwoodite. Analyses performed on the largest grains (⩾1 μm) show that ringwoodite is consistently higher in iron (Fa27.4-32.4) relative to surrounding olivine (Fa25.1-267.7), implying that there was Fe-Mg exchange during their transformation, and therefore their growth was diffusion-controlled. In the shock environment, diffusion takes place dynamically, i.e., with concurrent deformation and grain size reduction. This results in enhanced diffusion rates (⩾10-8 m2/s) over nm - μm distances. Shock deformation in host rock minerals including strong mosaicism, pervasive fracturing, polysynthetic twinning (pyroxene only), extensive shock melting, local transformation of olivine to ringwoodite, and complete transformation of plagioclase to maskelynite in the bulk rock, indicate that EETA79001 was strongly shocked. The short shock duration (0.01 s) combined with a complex thermal history, resulted in crystallization of the 100 μm thick shock vein in EETA79001 during the pressure release, and partial back-transformation of ringwoodite to olivine. Based on the pressure stabilities of clinopyroxene + ringwoodite, crystallization at the shock vein margin began at ˜18 GPa. Olivine and clinopyroxene crystallized at <14 GPa closer to the shock vein center. These represent a minimum limit to the shock pressure loading experienced by EETA79001.

  5. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.

  6. Shock-wave initiation of heated plastified TATB detonation

    NASA Astrophysics Data System (ADS)

    Kuzmitsky, Igor; Rudenko, Vladimir; Gatilov, Leonid; Koshelev, Alexandr

    1999-06-01

    Explosive, plastified TATB, attracts attention with its weak sensitivity to shock loads and high temperature stability ( Pthreshold ? 6.5 GPa and Tcrit ? 250 0Q). However, at its cooling to T 250 0Q plastified TATB becomes as sensitive to shock load as octogen base HE: the excitation threshold reduces down to Pthreshold 2.0 GPa. The main physical reason for the HE sensitivity change is reduction in density at heating and, hence, higher porosity of the product (approximately from 2Moreover, increasing temperature increases the growth rate of uhotf spots which additionally increases the shock sensitivity [1]. Heated TATB experiments are also conducted at VNIIEF. The detonation excitation was computed within 1D program system MAG using EOS JWL for HE and EP and LLNL kinetics [1,2,3]. Early successful results of using this kinetics to predict detonation excitation in heated plastified TATB in VNIIEF experiments with short and long loading pulses are presented. Parameters of the chemical zone of the stationary detonation wave in plastified TATB (LX-17) were computed with the data from [1]. Parameters Heated In shell Cooled Unheated ?0 , g/cm3 1.70 1.81 1.84 1.905 D , km/s 7.982 7.764 7.686 7.517 PN, GPa 45.4 45.8 35.7 32.9 PJ, GPa 27.0 27.3 27.2 26.4 ?x , mm 0.504 0.843 1.041 2.912 ?t , ns 63.1 108.6 135.5 387.4 [1] Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17 P.A. Urtiew, C.M. Tarver, J.L. Maienschein, and W.C. Tao. LLNL. Combustion and Flame 105: 43-53 (1996) [2] C.M. Tarver, P.A. Urtiew and W.C. Tao (LLNL) Effects of tandem and colliding shock waves on initiation of triaminotrinitrobenzene. J.Appl. Phys. 78(5), September 1995 [3] Craig M. Tarver, John W. Kury and R. Don Breithaupt Detonation waves in triaminotrinitrobenzene J. Appl. Phys. 82(8) , 15 October 1997.

  7. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  8. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  9. Thermal shock resistance of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Carper, D. M.; Nied, H. F.

    1993-01-01

    The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.

  10. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  11. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock initiation or first bond-breaking reactions in molecular explosives such as delta-HMX: a necessary study for the development of safer and more effective energetic materials.

  12. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianhong, E-mail: zhou-qianhong@iapcm.ac.cn; Dong, Zhiwei; Yang, Wei

    2016-07-15

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance betweenmore » the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.« less

  13. Thermal shock fracture in cross-ply fibre-reinforced ceramic-matrix composites

    NASA Astrophysics Data System (ADS)

    Kastritseas, C.; Smith, P. A.; Yeomans, J. A.

    2010-11-01

    The onset of matrix cracking due to thermal shock in a range of simple and multi-layer cross-ply laminates comprising a calcium aluminosilicate (CAS) matrix reinforced with Nicalon® fibres is investigated analytically. A comprehensive stress analysis under conditions of thermal shock, ignoring transient effects, is performed and fracture criteria based on either a recently derived model for the thermal shock resistance of unidirectional Nicalon®/glass ceramic-matrix composites or fracture mechanics considerations are formulated. The effect of material thickness on the apparent thermal shock resistance is also modelled. Comparison with experimental results reveals that the accuracy of the predictions is satisfactory and the reasons for some discrepancies are discussed. In addition, a theoretical argument based on thermal shock theory is formulated to explain the observed cracking patterns.

  14. Investigation of charge weight and shock factor effect on non-linear transient structural response of rectangular plates subjected to underwater explosion (UNDEX) shock loading

    NASA Astrophysics Data System (ADS)

    Demir, Ozgur; Sahin, Abdurrahman; Yilmaz, Tamer

    2012-09-01

    Underwater explosion induced shock loads are capable of causing considerable structural damage. Investigations of the underwater explosion (UNDEX) effects on structures have seen continuous developments because of security risks. Most of the earlier experimental investigations were performed by military since the World War I. Subsequently; Cole [1] established mathematical relations for modeling underwater explosion shock loading, which were the outcome of many experimental investigations This study predicts and establishes the transient responses of a panel structure to underwater explosion shock loads using non-linear finite element code Ls-Dyna. Accordingly, in this study a new MATLAB code has been developed for predicting shock loading profile for different weight of explosive and different shock factors. Numerical analysis was performed for various test conditions and results are compared with Ramajeyathilagam's experimental study [8].

  15. Synchronous meteorological satellite system description document, volume 3

    NASA Technical Reports Server (NTRS)

    Pipkin, F. B.

    1971-01-01

    The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.

  16. Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars

    NASA Astrophysics Data System (ADS)

    Walton, E. L.; Sharp, T. G.; Hu, J.; Filiberto, J.

    2014-09-01

    The microtexture and mineralogy of shock melts in the Tissint martian meteorite were investigated using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and synchrotron micro X-ray diffraction to understand shock conditions and duration. Distinct mineral assemblages occur within and adjacent to the shock melts as a function of the thickness and hence cooling history. The matrix of thin veins and pockets of shock melt consists of clinopyroxene + ringwoodite ± stishovite embedded in glass with minor Fe-sulfide. The margins of host rock olivine in contact with the melt, as well as entrained olivine fragments, are now amorphosed silicate perovskite + magnesiowüstite or clinopyroxene + magnesiowüstite. The pressure stabilities of these mineral assemblages are ∼15 GPa and >19 GPa, respectively. The ∼200-μm-wide margin of a thicker, mm-size (up to 1.4 mm) shock melt vein contains clinopyroxene + olivine, with central regions comprising glass + vesicles + Fe-sulfide spheres. Fragments of host rock within the melt are polycrystalline olivine (after olivine) and tissintite + glass (after plagioclase). From these mineral assemblages the crystallization pressure at the vein edge was as high as 14 GPa. The interior crystallized at ambient pressure. The shock melts in Tissint quench-crystallized during and after release from the peak shock pressure; crystallization pressures and those determined from olivine dissociation therefore represent the minimum shock loading. Shock deformation in host rock minerals and complete transformation of plagioclase to maskelynite suggest the peak shock pressure experienced by Tissint ⩾ 29-30 GPa. These pressure estimates support our assessment that the peak shock pressure in Tissint was significantly higher than the minimum 19 GPa required to transform olivine to silicate perovskite plus magnesiowüstite. Small volumes of shock melt (<100 μm) quench rapidly (0.01 s), whereas thermal equilibration will occur within 1.2 s in larger volumes of melt (1 mm2). The apparent variation in shock pressure recorded by variable mineral assemblages within and around shock melts in Tissint is consistent with a shock pulse on the order of 10-20 ms combined with a longer duration of post-shock cooling and complex thermal history. This implies that the impact on Mars that shocked and ejected Tissint at ∼1 Ma was not exceptionally large.

  17. Fourth-power law structure of the shock wave fronts in metals and ceramics

    NASA Astrophysics Data System (ADS)

    Bayandin, Yuriy; Naimark, Oleg; Saveleva, Natalia

    2017-06-01

    The plate impact experiments were performed for solids during last fifty years. It was established that the dependence between the strain rate and the shock wave amplitude for metals and ceramics expressed by a fourth-power law. Present study is focused on the theoretical investigation and numerical simulation of plane shock wave propagation in metals and ceramics. Statistically based constitutive model of solid with defects (microcracks and microshears) was developed to provide the relation between damage induced mechanisms of structural relaxation, thermally activated plastic flow and material reactions for extreme loading conditions. Original approach based on the wide range constitutive equations was proposed for the numerical simulation of multiscale damage-failure transition mechanisms and plane shock wave propagation in solids with defects in the range of strain rate 103 -108s-1 . It was shown that mechanisms of plastic relaxation and damage-failure transitions are linked to the multiscale kinetics of defects leading to the self-similar nature of shock wave fronts in metals and ceramics. The work was supported by the Russian Science Foundation (Project No. 14-19-01173).

  18. Shock-activated reaction synthesis and high pressure response of titanium-based ternary carbide and nitride ceramics

    NASA Astrophysics Data System (ADS)

    Jordan, Jennifer Lynn

    The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is indicative of the transformation of the Ti3 SiC2 ceramic to a high pressure, high density phase.

  19. The Structure of Shocks in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2018-02-01

    The Voyager 1 magnetometer has detected several shock waves in the very local interstellar medium (VLISM). Interplanetary shock waves can be transmitted across the heliopause (HP) into the VLISM. The first in situ shock observed by Voyager 1 inside the VLISM was remarkably broad and had properties different than those of shocks inside the heliosphere. We present a model of the 2012 VLISM shock, which was observed to be a weak, quasi-perpendicular, low magnetosonic Mach number, low beta, and subcritical shock. Although the heliosphere is a collisionless environment, we show that the VLISM is collisional with respect to the thermal plasma, and that the thermal collisions introduce dissipative terms such as heat conduction and viscosity. The structure of the VLISM shock is determined by thermal proton–proton collisions. VLISM pickup ions (PUIs) do not introduce a significant pressure or dissipation through the shock transition, meaning that the VLISM shock is not mediated by PUIs but only by the thermal gas and magnetic field. Therefore, VLISM shocks are controlled by particle collisions and not by wave–particle interactions. We find that the weak VLISM shock is very broad with a thickness of about 0.12 au, corresponding to the characteristic thermal heat conduction scale length.

  20. Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite

    NASA Astrophysics Data System (ADS)

    Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.

    2018-03-01

    Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.

  1. Evaluation of a cost-effective loads approach. [shock spectra/impedance method for Viking Orbiter

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads predictions is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost, a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  2. Thermal Shock Properties of a 2D-C/SiC Composite Prepared by Chemical Vapor Infiltration

    NASA Astrophysics Data System (ADS)

    Zhang, Chengyu; Wang, Xuanwei; Wang, Bo; Liu, Yongsheng; Han, Dong; Qiao, Shengru; Guo, Yong

    2013-06-01

    The thermal shock properties of a two-dimensional carbon fiber-reinforced silicon carbide composite with a multilayered self-healing coating (2D-C/SiC) were investigated in air. The composite was prepared by low-pressure chemical vapor infiltration. 2D-C/SiC specimens were thermally shocked for different cycles between 900 and 300 °C. The thermal shock resistance was characterized by residual tensile properties and mass variation. The change of the surface morphology and microstructural evolution of the composite were examined by a scanning electron microscope. In addition, the phase evolution on the surfaces was identified using an X-ray diffractometer. It is found that the composite retains its tensile strength within 20 thermal shock cycles. However, the modulus of 2D-C/SiC decreases gradually with increasing thermal shock cycles. Extensive pullout of fibers on the fractured surface and peeling off of the coating suggest that the damage caused by the thermal shock involves weakening of the bonding strength of coating/composite and fiber/matrix. In addition, the carbon fibers in the near-surface zone were oxidized through the matrix cracks, and the fiber/matrix interfaces delaminated when the composite was subjected to a larger number of thermal shock cycles.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubouchi, Masatoshi; Hojo, Hidemitsu

    The thermal shock resistance of epoxy resin specimens toughened with carboxy-terminated poly(butadiene-acrylonitrile) (CTBN) and poly-glycol were tested using a new notched disk-type specimen. The new thermal shock testing method consists of quenching a notched disk-type specimen and applying a theoretical analysis to the test results to determine crack propagation conditions. For both toughened epoxy resins, this test method evaluated improvements in thermal shock resistance. The thermal shock resistance of epoxy resin toughened with CTBN exhibited a maximum at a 35 parts per hundred resin content of CTBN. The epoxy resin toughened with polyglycol exhibited improved thermal shock resistance with increasingmore » glycol content. 7 refs., 14 figs., 1 tab.« less

  4. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    NASA Astrophysics Data System (ADS)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was utilized to simulate the shock loading and twin evolution for these loading conditions. The second part of this research ties into the modeling efforts. Within the model for predicting twin volume fraction is a twin growth equation and a constant describing the stress at which the twin nucleation will occur. By using a constant value for the twin nucleation stress modeling efforts fail to accurately predict the growth and final twin volume fraction. A second shock loading experimental study combined with high strain rate compression tests using a split Hopkinson pressure bar were completed to determine a twin nucleation stress equation as a function of dislocation density. Steel specimens were subjected to cold rolling to 3% strain and subsequently impacted using the gas gun at different pressures. The increase in dislocation density due to pre-straining substantially increased the twin nucleation stress indicating that twin nucleation stress in dependent upon prior strain history. This has been explained in terms of the velocity and generation rates of both perfect and partial dislocations. An explicit form of the critical twin nucleation stress was developed and parameters were determined through plate impact tests and low temperature (77K) SHPB compression tests. The final component in studying deformation twin mechanisms in BCC steel extends the research to the post-impact mechanical properties and how the twin volume fraction affects the dynamic flow stress. Compression tests between 293K and 923K at an average strain rate of 4700 s-1 were completed on the as-received and 3% pre-strained steels in both the initial condition and after being impacted at pressures of 6GPa and 11GPa. Results of the experimental testing were used in a thermal activation model in order to distinguish separate components in the microstructure contributing to the enhanced flow stress caused by the shock loading. It has been shown that the dislocations generated from shock loading are equivalent to those produced under lower rate straining and the addition of deformation twins in the microstructure contribute to the athermal stress by adding to the long range barriers.

  5. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  6. Design and fabrication of an infrared optical pyrometer ASIC as a diagnostic for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Gordon, Jared

    Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more often than not commercial-off-the-shelf (COTS) components are inadequate to satisfy every requirement for the diagnostic, and therefore a custom application specific design has to be considered. This thesis outlines the initial challenges with integrating the photodiode array block with multiple COTS transimpedance amplifiers onto a single chip, and offers a solution to a comparable optical pyrometer that uses the same type of photodiodes in conjunction with a re-designed transimpedance amplifier integrated onto a single chip. The final design includes a thorough analysis of the transimpedance amplifier along with modeling the circuit behavior which entails schematics, simulations, and layout. An alternative circuit is also investigated that incorporates an approach to multiplex the signals from each photodiode onto one data line and not only increases the viable real estate on the chip, but also improves the behavior of the photodiodes as they are subjected to less thermal load. The optical pyrometer application specific integrated circuit (ASIC) for shock physic experiments includes a transimpedance amplifier (TIA) with a 100 kΩ gain operating at bandwidth of 30 MHz, and an input-referred noise RMS current of 50 nA that is capable of driving a 50 Ω load.

  7. Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.

    2007-01-01

    The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.

  8. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  9. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS)samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation 'islands,' to document shear and shock loads.

  10. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Image and Video Library

    1998-05-14

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS) samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation "islands," to document shear and shock loads.

  11. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  12. 75 FR 72653 - Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ..., Criminal penalties, Fire protection, Intergovernmental relations, Nuclear power plants and reactors... Requirements for Protection Against Pressurized Thermal Shock Events; Correction AGENCY: Nuclear Regulatory... fracture toughness requirements for protection against pressurized thermal shock (PTS) events for...

  13. PAIR-DOMINATED GeV-OPTICAL FLASH IN GRB 130427A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M., E-mail: indrek.vurm@gmail.com

    2014-07-10

    We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter A = ρr {sup 2} ∼ 5 × 10{sup 10} g cm{sup –1}. The peak of the flash is emitted by copious e {sup ±} pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations, we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, andmore » the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to ∼1 day. We find that the blast wave Lorentz factor at the peak of the flash is Γ ≈ 200, and the forward shock magnetization is ε{sub B} ∼ 2 × 10{sup –4}. An additional source is required by the data in the optical and X-ray bands at times >10{sup 2} s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.« less

  14. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  15. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    NASA Astrophysics Data System (ADS)

    Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn

    2018-04-01

    Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  16. A probabilistic method to establish the reliability of carbon-carbon rocket motor nozzles. Volume 3: Stress and reliability analysis of layered composite cylinders under thermal shock

    NASA Astrophysics Data System (ADS)

    Heller, R. A.; Thangjitham, S.; Wang, X.

    1992-04-01

    The state of stress in a cylindrical structure consisting of multiple layers of carbon-carbon composite and subjected to thermal and pressure shock are analyzed using an elasticity approach. The reliability of the structure based on the weakest link concept and the Weibull distribution is also calculated. Coupled thermo-elasticity is first assumed and is shown to be unnecessary for the material considered. The effects of external and internal thermal shock as well as a superimposed pressure shock are examined. It is shown that for the geometry chosen, the structure may fail when exposed to thermal shock alone while a superimposed pressure shock can mitigate the probability of failure.

  17. Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Bardin, S.; Huber, A.; Kreter, A.; Linke, J.; Morgan, T. W.; Pintsuk, G.; Reinhart, M.; Sergienko, G.; Steudel, I.; De Temmerman, G.; Unterberg, B.

    2015-11-01

    Experiments were performed in three different facilities in order to investigate the impact of combined steady state deuterium plasma exposure and ELM-like thermal shock events on the performance of ultra high purity tungsten. The electron beam facility JUDITH 1 was used to simulate pure thermal loads. In addition the linear plasma devices PSI-2 and Pilot-PSI have been used for successive as well as simultaneous exposure where the transient heat loads were applied by a high energy laser and the pulsed plasma operation, respectively. The results show that the damage behaviour strongly depends on the loading conditions and the sequence of the particle and heat flux exposure. This is due to hydrogen embrittlement and/or a higher defect concentration in the tungsten near surface region due to supersaturation of hydrogen. The different results in terms of damage formation from both linear plasma devices indicate that also the plasma parameters such as particle energy, flux and fluence, plasma impurities and the pulse shape have a strong influence on the damage performance. In addition, the different loading methods such as the scanning with the electron beam in contrast to the homogeneous exposure by the laser leads to an faster increase of the surface roughness due to plastic deformation.

  18. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  19. Cold Shock Induction of Thermal Sensitivity in Listeria monocytogenes

    PubMed Central

    Miller, Arthur J.; Bayles, Darrell O.; Eblen, B. Shawn

    2000-01-01

    Cold shock at 0 to 15°C for 1 to 3 h increased the thermal sensitivity of Listeria monocytogenes. In a model broth system, thermal death time at 60°C was reduced by up to 45% after L. monocytogenes Scott A was cold shocked for 3 h. The duration of the cold shock affected thermal tolerance more than did the magnitude of the temperature downshift. The Z values were 8.8°C for controls and 7.7°C for cold-shocked cells. The D values of cold-shocked cells did not return to control levels after incubation for 3 h at 28°C followed by heating at 60°C. Nine L. monocytogenes strains that were cold shocked for 3 h exhibited D60 values that were reduced by 13 to 37%. The D-value reduction was greatest in cold-shocked stationary-phase cells compared to cells from cultures in either the lag or exponential phases of growth. In addition, cold-shocked cells were more likely to be inactivated by a given heat treatment than nonshocked cells, which were more likely to experience sublethal injury. The D values of chloramphenicol-treated control cells and chloramphenicol-treated cold-shocked cells were no different from those of untreated cold-shocked cells, suggesting that cold shock suppresses synthesis of proteins responsible for heat protection. In related experiments, the D values of L. monocytogenes Scott A were decreased 25% on frankfurter skins and 15% in ultra-high temperature milk if the inoculated products were first cold shocked. Induction of increased thermal sensitivity in L. monocytogenes by thermal flux shows potential to become a practical and efficacious preventative control method. PMID:11010880

  20. Shock Structure: Application to the heliospheric termination shock and an interstellar shock

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2017-12-01

    The structure of parallel and perpendicular shocks is often mediated by energetic particles. Here we describe shock structure when mediated by energetic particle heat flux and viscosity. We present a general theoretical model of shock mediation, which is then applied to Voyager 2 observations of the heliospheric termination shock (HTS) and Voyage 1 observations of a shock in very local interstellar medium (VLISM). Voyager 2 observations showed that the downstream HTS flow remained supersonic with respect to the thermal gas [Richardson et al., 2008]. Thus the thermal gas remains cold through the HTS and does not provide the dissipation to account for the deceleration of the supersonic solar wind. We show that PUIs are the primary dissipation mechanism and gain most of the solar wind kinetic energy in crossing the HTS. The interstellar shock observed by Voyager 1 [Burlaga et al., 2013] was extremely broad and so far there no theoretical explanation has been provided that describes the VLISM shock structure. Using the Chandrasekhar function, we show that the VLISM is collisional with respect to the thermal plasma and that electron and proton collisional mean free paths are very small. Thus, thermal collisionality should determine the structure of VLISM shocks. PUIs outside the heliosphere are generated by secondary charge exchange and contribute a very small pressure. Since PUIs and the dissipation associated with them cannot mediate the shock observed in the VLISM, we suggest that the thickness of the shock observed in the VLISM is due to collisional thermal gas dissipation.

  1. Thermomechanical analysis of fast-burst reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.

    1994-08-01

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  2. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  3. Molecular dynamics of shock loading of metals with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belak, J.F.

    1997-12-31

    The finite rise time of shock waves in metals is commonly attributed to dissipative or viscous behavior of the metal. This viscous or plastic behavior is commonly attributed to the motion of defects such as dislocations. Despite this intuitive understanding, the experimental observation of defect motion or nucleation during shock loading has not been possible due to the short time scales involved. Molecular dynamics modeling with realistic interatomic potentials can provide some insight into defect motion during shock loading. However, until quite recently, the length scale required to accurately represent a metal with defects has been beyond the scope ofmore » even the most powerful supercomputers. Here, the author presents simulations of the shock response of single defects and indicate how simulation might provide some insight into the shock loading of metals.« less

  4. Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart.

    PubMed

    Staib, Jessica L; Quindry, John C; French, Joel P; Criswell, David S; Powers, Scott K

    2007-01-01

    The expression of myocardial heat shock protein 72 (HSP72) postexercise is initiated by the activation of heat shock transcription factor 1 (HSF1). However, it remains unknown which physiological stimuli govern myocardial HSF1 activation during exercise. These experiments tested the hypothesis that thermal stress and mechanical load, concomitant with simulated exercise, provide independent stimuli for HSF1 activation and ensuing cardiac HSP72 gene expression. To elucidate the independent roles of increased temperature and cardiac workload in the exercise-mediated upregulation of left-ventricular HSP72, hearts from adult male Sprague-Dawley rats were randomly assigned to one of five simulated exercise conditions. Upon reaching a surgical plane of anesthesia, each experimental heart was isolated and perfused using an in vitro working heart model, while independently varying temperatures (i.e., 37 degrees C vs. 40 degrees C) and cardiac workloads (i.e., low preload and afterload vs. high preload and afterload) to mimic exercise responses. Results indicate that hyperthermia, independent of cardiac workload, promoted an increase in nuclear translocation and phosphorylation of HSF1 compared with normothermic left ventricles. Similarly, hyperthermia, independent of workload, resulted in significant increases in cardiac levels of HSP72 mRNA. Collectively, these data suggest that HSF1 activation and HSP72 gene transcriptional competence during simulated exercise are linked to elevated heart temperature and are not a direct function of increased cardiac workload.

  5. Influence of thermal anisotropy on best-fit estimates of shock normals

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.

    1971-01-01

    The influence of thermal anisotropy on the estimates of interplanetary shock parameters and the associated normals is discussed. A practical theorem is presented for quantitatively correcting for anisotropic effects by weighting the before and after magnetic fields by the same anisotropy parameter h. The quantity h depends only on the thermal anisotropies before and after the shock and on the angles between the magnetic fields and the shock normal. The theorem can be applied to most slow shocks, but in those cases h usually should be lower, and sometimes markedly lower, than unity. For the extreme values of h, little change results in the shock parameters or in the shock normal.

  6. 75 FR 10410 - Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Toughness Requirements for Protection Against Pressurized Thermal Shock Events; Correcting Amendment AGENCY... Commission (NRC) is revising its regulations to add a table that was inadvertently omitted in a correction... toughness requirements for protection against pressurized thermal shock (PTS) events for pressurized water...

  7. Behavior of Materials Under Conditions of Thermal Stress

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1954-01-01

    A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.

  8. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less

  9. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves.

    PubMed

    Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.

  10. Integrated microelectromechanical gyroscope under shock loads

    NASA Astrophysics Data System (ADS)

    Nesterenko, T. G.; Koleda, A. N.; Barbin, E. S.

    2018-01-01

    The paper presents a new design of a shock-proof two-axis microelectromechanical gyroscope. Without stoppers, the shock load enables the interaction between the silicon sensor elements. Stoppers were installed in the gyroscope to prevent the contact interaction between electrodes and spring elements with fixed part of the sensor. The contact of stoppers occurs along the plane, thereby preventing the system from serious contact stresses. The shock resistance of the gyroscope is improved by the increase in its eigenfrequency at which the contact interaction does not occur. It is shown that the shock load directed along one axis does not virtually cause the movement of sensing elements along the crosswise axes. Maximum stresses observed in the proposed gyroscope at any loading direction do not exceed the value allowable for silicon.

  11. Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Du, J.; Wirtz, M.; Luo, G.-N.; Lu, G.-H.; Liu, W.

    2016-03-01

    Surface damage and structure evolution of the full tungsten ITER divertor under transient heat loads is a key concern for component lifetime and plasma operations. Recrystallization caused by transients and steady-state heat loads can lead to degradation of the material properties and is therefore one of the most serious issues for tungsten armor. In order to investigate the thermal response of the recrystallized tungsten under edge localized mode-like transient thermal loads, fully recrystallized tungsten samples with different average grain sizes are exposed to cyclic thermal shocks in the electron beam facility JUDITH 1. The results indicate that not only does the microstructure change due to recrystallization, but that the surface residual stress induced by mechanical polishing strongly influences the surface cracking behavior. The stress-free surface prepared by electro-polishing is shown to be more resistant to cracking than the mechanically polished one. The resulting surface roughness depends largely on the loading conditions instead of the recrystallized-grain size. As the base temperature increases from room temperature to 400 °C, surface roughening mainly due to the shear bands in each grain becomes more pronounced, and sub-grains (up to 3 μm) are simultaneously formed in the sub-surface. The directions of the shear bands exhibit strong grain-orientation dependence, and they are generally aligned with the traces of {1 1 2} twin habit planes. The results suggest that twinning deformation and dynamic recrystallization represent the predominant mechanism for surface roughening and related microstructure evolution.

  12. Substructure procedure for including tile flexibility in stress analysis of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1980-01-01

    A substructure procedure to include the flexibility of the tile in the stress analysis of the shuttle thermal protection system (TPS) is described. In this procedure, the TPS is divided into substructures of (1) the tile which is modeled by linear finite elements and (2) the SIP which is modeled as a nonlinear continuum. This procedure was applied for loading cases of uniform pressure, uniform moment, and an aerodynamic shock on various tile thicknesses. The ratios of through-the-thickness stresses in the SIP which were calculated using a flexible tile compared to using a rigid tile were found to be less than 1.05 for the cases considered.

  13. Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.

    PubMed

    Yogalakshmi, K N; Joseph, Kurian

    2010-09-01

    Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  15. Electronic excitations in shocked nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Evan J.; Joannopoulos, J. D.; Fried, Laurence E.

    2000-12-15

    The nature of electronic excitations in crystalline solid nitromethane under conditions of shock loading and static compression are examined. Density-functional theory calculations are used to determine the crystal bandgap under hydrostatic stress, uniaxial strain, and shear strain. Bandgap lowering under uniaxial strain due to molecular defects and vacancies is considered. Ab initio molecular-dynamics simulations are done of all possible nearest-neighbor collisions at a shock front, and of crystal shearing along a sterically hindered slip plane. In all cases, the bandgap is not lowered enough to produce a significant population of excited states in the crystal. The nearly free rotation ofmore » the nitromethane methyl group and localized nature of the highest occupied molecular orbital and lowest unoccupied molecular orbital states play a role in this result. Dynamical effects have a more significant effect on the bandgap than static effects, but relative molecule velocities in excess of 6 km/s are required to produce a significant thermal population of excited states.« less

  16. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    DOE PAGES

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; ...

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone ofmore » only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.« less

  17. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Moselle, John R.; Lee, Jinho

    1991-01-01

    Experimental studies were conducted to examine the aerothermal characteristics of shock/shock/boundary layer interaction regions generated by single and multiple incident shocks. The presented experimental studies were conducted over a Mach number range from 6 to 19 for a range of Reynolds numbers to obtain both laminar and turbulent interaction regions. Detailed heat transfer and pressure measurements were made for a range of interaction types and incident shock strengths over a transverse cylinder, with emphasis on the 3 and 4 type interaction regions. The measurements were compared with the simple Edney, Keyes, and Hains models for a range of interaction configurations and freestream conditions. The complex flowfields and aerothermal loads generated by multiple-shock impingement, while not generating as large peak loads, provide important test cases for code prediction. The detailed heat transfer and pressure measurements proved a good basis for evaluating the accuracy of simple prediction methods and detailed numerical solutions for laminar and transitional regions or shock/shock interactions.

  18. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  19. Optical mounts for harsh environments

    NASA Astrophysics Data System (ADS)

    Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.

    2009-08-01

    Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.

  20. Evaluation of a cost-effective loads approach. [for Viking Orbiter light weight structural design

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads prediction is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  1. On magnetic field amplification and particle acceleration near non-relativistic collisionless shocks: Particles in MHD Cells simulations

    NASA Astrophysics Data System (ADS)

    Casse, F.; van Marle, A. J.; Marcowith, A.

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description of the thermal fluid with particle-in-cell techniques devoted to the dynamics of supra-thermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider non-relativistic super-Alfénic shocks with various magnetic field obliquity. We recover all the features from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell and hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger timescales than in the parallel case. We show that in our oblique shock simulations the streaming of supra-thermal particles induces a corrugation of the shock front. Such oscillations of both the shock front and the magnetic field then locally helps the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  2. Ultrafast dynamics of self-assembled monolayers under shock compression: effects of molecular and substrate structure.

    PubMed

    Lagutchev, Alexei S; Patterson, James E; Huang, Wentao; Dlott, Dana D

    2005-03-24

    Laser-driven approximately 1 GPa shock waves are used to dynamically compress self-assembled monolayers (SAMs) consisting of octadecanethiol (ODT) on Au and Ag, and pentanedecanethiol (PDT) and benzyl mercaptan (BMT) on Au. The SAM response to <4 ps shock loading and approximately 25 ps shock unloading is monitored by vibrational sum-frequency generation spectroscopy (SFG), which is sensitive to the instantaneous tilt angle of the SAM terminal group relative to the surface normal. Arrival of the shock front causes SFG signal loss in all SAMs with a material time constant <3.5 ps. Thermal desorption and shock recovery experiments show that SAMs remain adsorbed on the substrate, so signal loss is attributed to shock tilting of the methyl or phenyl groups to angles near 90 degrees. When the shock unloads, PDT/Au returns elastically to its native structure whereas ODT/Au does not. ODT evidences a complicated viscoelastic response that arises from at least two conformers, one that remains kinetically trapped in a large-tilt-angle conformation for times >250 ps and one that relaxes in approximately 30 ps to a nearly upright conformation. Although the shock responses of PDT/Au, ODT/Ag, and BMT/Au are primarily elastic, a small portion of the molecules, 10-20%, evidence viscoelastic response, either becoming kinetically trapped in large-tilt states or by relaxing in approximately 30 ps back to the native structure. The implications of the observed large-amplitude monolayer dynamics for lubrication under extreme conditions of high strain rates are discussed briefly.

  3. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    NASA Astrophysics Data System (ADS)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  4. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves

    PubMed Central

    Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459

  5. Thermal Shock Resistance of Si3N4/h -BN Composites Prepared via Catalytic Reaction-Bonding Route

    NASA Astrophysics Data System (ADS)

    Yang, Wanli; Peng, Zhigang; Dai, Lina; Shi, Zhongqi; Jin, Zhihao

    2017-09-01

    Si3N4/h-BN ceramic matrix composites were prepared via a catalytic reaction-bonding route by using ZrO2 as nitridation catalyst, and the water quenching (fast cooling) and molten aluminum quenching tests (fast heating) were carried out to evaluate the thermal shock resistance of the composites. The results showed that the thermal shock resistance was improved obviously with the increase in h-BN content, and the critical thermal shock temperature difference (Δ T c) reaches as high as 780 °C when the h-BN content was 30 wt.%. The improvement of thermal shock resistance of the composites was mainly due to the crack tending to quasi static propagating at weak bonding interface between Si3N4 and h-BN with the increase in h-BN content. For the molten aluminum quenching test, the residual strength showed no obvious decrease compared with water quenching test, which could be caused by the mild stress condition on the surface. In addition, a calculated parameter, volumetric crack density ( N f), was presented to quantitative evaluating the thermal shock resistance of the composites in contrast to the conventional R parameter.

  6. Radiation- and pair-loaded shocks

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  7. High-temperature phase transformations: The properties of the phases under shock loading

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene

    2012-03-01

    Introducing the temperature as a variable parameter in shock wave experiments extends essentially the scope of these investigations. The influence of the temperature variations on either high strain rate elastic-plastic response of solids or parameters of the shock induced phase transformations are not trivial and are not quite clear yet. The technique of VISAR-monitored planar impact experiments with the samples preheated up to 1400 K was developed and used for the studies of the effect of the preheating on the impact response and on the "dynamic" phase diagrams of pure metals (U, Ti, Fe, Co, Ag), and ionic compounds (KCl, KBr). The studies show that the increase of the shear strength of the shock-loaded metal with temperature (first reported by Kanel et al. 1996) is typical for pure FCC (Al, Ag, Cu) and some other (Sn, U) metals, and for the ionic crystals. In the metals with BCC lattice (Mo: Duffy and Ahrens 1994, Fe: Zaretsky 2009) such thermal hardening was not observed. It was found that when a pure element approaches the temperature of either a first or second order phase transition the result is a 50-100-% increase of the shear strength of the low-temperature phase. At the same time the presence of a small (~0.5 %) amount of impurities may lead to a five-fold decrease of the strength as it takes place in the vicinity of the Curie point of Ni. Applying the same technique to the study of shear stress relaxation (elastic precursor decay) near the transformation temperature may aid in understanding the mechanisms of these anomalies.

  8. Dynamic Response Assessment for the MEMS Accelerometer Under Severe Shock Loads

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Shaw, Harry C.

    2001-01-01

    NASA Goddard Space Flight Center (GSFC) has evaluated the dynamic response of a commercial-off-the-shelf (COTS) microelectromechanical systems (MEMS) device made by Analog Device, Inc. The device is designated as ADXL250 and is designed mainly for sensing dynamic acceleration. It is also used to measure the tilting angle of any system or component from its original level position. The device has been in commercial use (e.g., in automobile airbag deployment system as a dual-axial accelerometer and in the electronic game play-station as a tilting sensor) with success, but NASA needs an in-depth assessment of its performance under severe dynamic shock environments. It was realized while planning this evaluation task that two assessments would be beneficial to NASA's missions: (1) severe dynamic shock response under nominal thermal environments; and (2) general dynamic performance under cryogenic environments. The first evaluation aims at obtaining a good understanding of its micromachined structure within a framework of brittle fracture dynamics, while the second evaluation focuses on the structure integrity under cryogenic temperature conditions. The information we gathered from the manufacturer indicated that the environmental stresses under NASA's evaluation program have been far beyond what the device has experienced with commercial applications, for which the device was designed. Thus NASA needs the outcome of this evaluation in order to make the selection for possible use for its missions. This paper provides details of the first evaluation the dynamic response under severe multi-axial single-pulse shock load. It was performed using finite element tools with nonlinear dynamics procedures.

  9. Study on Subgrain Rotation Behavior at Different Interfaces of a Solder Joint During Thermal Shock

    NASA Astrophysics Data System (ADS)

    Han, Jing; Tan, Shihai; Guo, Fu

    2016-12-01

    In order to investigate subgrain rotation behavior in the recrystallized region of lead-free solder joints, a ball grid array (BGA) specimen with a cross-sectioned edge row was thermally shocked. Electron backscattered diffraction (EBSD) was used to obtain the microstructure and orientations of Sn grains or subgrains in as-reflowed and thermally shocked conditions. Orientation imaging microscopy (OIM) showed that several subgrains were formed at the tilted twin grain boundaries, near the chip side and near the printed circuit board (PCB) side after 200 thermal shocks due to a highly mismatched coefficient of thermal expansion (CTE) of twin grains. Also, subgrains formed at the chip side and PCB side in the solder joint were selected to research the grain rotation behavior in lead-free solder joints. The analysis of subgrain rotation also indicated that the rotation behavior of subgrains was different between the chip side and PCB side. It was closely related with the large different crystal orientations between the chip side and PCB side. Furthermore, electron backscattered patterns (EBSPs) at several parts of the joint were not obtained after 300 thermal shocks due to the serious deformation caused by mismatched CTE during thermal shock. But 4 subgrains were selected and compared with that of the initial state and 200-thermal shock conditions. The results showed that the subgrains at the chip side were also rotated around the Sn [101] and [001] axes and the subgrains at the PCB side were also rotated around the Sn [100] axis, which indicated a continuous process of subgrain rotation.

  10. Lateral ring metal elastic wheel absorbs shock loading

    NASA Technical Reports Server (NTRS)

    Galan, L.

    1966-01-01

    Lateral ring metal elastic wheel absorbs practically all shock loading when operated over extremely rough terrain and delivers only a negligible shock residue to associated suspension components. The wheel consists of a rigid aluminum assembly to which lateral titanium ring flexible elements with treads are attached.

  11. Development of a flyer design to perform plate impact shock-release-shock experiments on explosives

    NASA Astrophysics Data System (ADS)

    Finnegan, Simon; Ferguson, James; Millett, Jeremy; Goff, Michael

    2017-06-01

    A flyer design to generate a shock-release-shock loading history within a gas gun target was developed before being used to study the response of an HMX based explosive. The flyer consisted of two flyer plates separated by a vacuum gap. This created a rear free surface that, with correct material choice, allowed the target to release to close to ambient pressure between the initial shock and subsequent re-shock. The design was validated by impacting piezoelectric pin arrays to record the front flyer deformation. Shots were performed on PCTFE targets to record the shock states generated in an inert material prior to subjecting an HMX based explosive to the same loading. The response of the explosive to this loading history was recorded using magnetic particle velocity (PV) gauges embedded within the targets. The behavior during the run to detonation is compared with the response to sustained shocks at similar input pressures.

  12. Thermal Shock Damage and Microstructure Evolution of Thermal Barrier Coatings on Mar-M247 Superalloy in a Combustion Gas Environment

    NASA Astrophysics Data System (ADS)

    Mei, Hui

    2012-06-01

    The effect of preoxidation on the thermal shock of air plasma sprayed thermal barrier coatings (TBCs) was completely investigated in a combustion gas environment by burning jet fuel with high speed air. Results show that with increasing cycles, the as-oxidized TBCs lost more weight and enlarged larger spallation area than the as-sprayed ones. Thermally grown oxide (TGO) growth and thermal mismatch stress were proven to play critical roles on the as-oxidized TBC failure. Two types of significant cracks were identified: the type I crack was vertical to the TGO interface and the type II crack was parallel to the TGO interface. The former accelerated the TGO growth to develop the latter as long as the oxidizing gas continuously diffused inward and then oxidized the more bond coat (BC). The preoxidation treatment directly increased the TGO thickness, formed the parallel cracks earlier in the TGO during the thermal shocks, and eventually resulted in the worse thermal shock resistance.

  13. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  14. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    NASA Astrophysics Data System (ADS)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  15. Experimental and Numerical Analyses of Dynamic Deformation and Failure in Marine Structures Subjected to Underwater Impulsive Loads

    DTIC Science & Technology

    2012-08-01

    based impulsive loading ......................................... 48 4.4 Computational modeling of USLS ...56 4.5 Underwater Shock Loading Simulator ( USLS ) ...................................................... 59 4.6 Concluding...42 Figure 4.1 Schematic of Underwater Shock Loading Simulator ( USLS ). A high-velocity projectile hits the flyer-plate and creates a stress

  16. A Fracture Mechanics Approach to Thermal Shock Investigation in Alumina-Based Refractory

    NASA Astrophysics Data System (ADS)

    Volkov-Husović, T.; Heinemann, R. Jančić; Mitraković, D.

    2008-02-01

    The thermal shock behavior of large grain size, alumina-based refractories was investigated experimentally using a standard water quench test. A mathematical model was employed to simulate the thermal stability behavior. Behavior of the samples under repeated thermal shock was monitored using ultrasonic measurements of dynamic Young's modulus. Image analysis was used to observe the extent of surface degradation. Analysis of the obtained results for the behavior of large grain size samples under conditions of rapid temperature changes is given.

  17. Strain Rate Dependant Material Model for Orthotropic Metals

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade

    2016-08-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In addition the constitutive model is coupled with a vector shock equation of state which allows for modelling of shock wave propagation in orthotropic the material. Parameters for the new constitutive model are typically derived on the basis of the tensile tests (performed over a range of temperatures and strain rates), plate impact tests and Taylor anvil tests. The model was applied to simulate explosively driven fragmentation, blast loading and cold spraying impacts.

  18. Brazing copper to dispersion-strengthened copper

    NASA Astrophysics Data System (ADS)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  19. Computation of Thermally Perfect Properties of Oblique Shock Waves

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1996-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  20. A comparative analysis of reticular crack on ceramic plate driven by thermal shock

    NASA Astrophysics Data System (ADS)

    Xu, XiangHong; Sheng, ShiLong; Tian, Cheng; Yuan, WenJun

    2016-07-01

    Reticular crack is generally found on the surface of ceramic material that has been subjected to a thermal-shock condition. In the present study, a quantitative effect of thermal shock and quench temperature has been studied and investigated. Experimental tests were carried out to characterize the reticular crack that has been found in the Ge Kiln, which is a famous art of the ancient Chinese culture. After comparative analysis between thermal-shock cracks and the glaze crack patterns of the Ge Kiln porcelain, it is found that this study is expected to provide a powerful tool for recurrence of the long-lost firing and cooling process of the Ge Kiln porcelain.

  1. Factors affecting the thermal shock behavior of yttria stabilized hafnia based graphite and tungsten composites.

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.; Manning, C. R.

    1971-01-01

    Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.

  2. Mechanical Properties and Thermal Shock Resistance Analysis of BNNT/Si3N4 Composites

    NASA Astrophysics Data System (ADS)

    Wang, Shouren; Wang, Gaoqi; Wen, Daosheng; Yang, Xuefeng; Yang, Liying; Guo, Peiquan

    2018-04-01

    BNNT/Si3N4 ceramic composites with different weight amount of BNNT fabricated by hot isostatic pressing were introduced. The mechanical properties and thermal shock resistance of the composites were investigated. The results showed that BNNT-added ceramic composites have a finer and more uniform microstructure than that of BNNT-free Si3N4 ceramic because of the retarding effect of BNNT on Si3N4 grain growth. The addition of 1.5 wt.% BNNT results in simultaneous increase in flexural strength, fracture toughness, and thermal shock resistance. The analysis of the results indicates that BNNT brings many thermal transport channels in the microstructure, increasing the efficiency of thermal transport, therefore results in increase of thermal shock resistance. In addition, BNNT improves the residual flexural strength of composites by crack deflection, bridging, branching and pinning, which increase the crack propagation resistance.

  3. Dynamic plasticity and failure of high-purity alumina under shock loading.

    PubMed

    Chen, M W; McCauley, J W; Dandekar, D P; Bourne, N K

    2006-08-01

    Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.

  4. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    PubMed Central

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.

    2017-01-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples. PMID:28405383

  5. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray.

    PubMed

    Schiffer, A; Gardner, M N; Lynn, R H; Tagarielli, V L

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli ( E. coli ) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  6. Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Alexander, W., Jr.; Ivey, G. W., Jr.; Kerr, P. A.

    1984-01-01

    An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.

  7. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  8. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.

    PubMed

    Du, Ai; Liu, Mingfang; Huang, Shangming; Li, Conghang; Zhou, Bin

    2018-06-24

    Aerogel materials are recognized as promising candidates for the thermal insulator and have achieved great successes for the aerospace applications. However, the harsh environment on the exoplanet, especially for the tremendous temperature difference, tends to affect the tenuous skeleton and performances of the aerogels. In this paper, an evaluation method was proposed to simulate the environment of exoplanet and study the influence on the fiber-reinforced silica aerogels with different supercritical point drying (SPD) technology. Thermal conductivity, mechanical property and the microstructure were characterized for understanding the thermal failure mechanism. It was found that structure and thermal property were significantly influenced by the adsorbed water in the aerogels under the thermal shocks. The thermal conductivity of CO₂-SPD aerogel increased 35.5% after the first shock and kept in a high value, while that of the ethanol-SPD aerogel increased only 19.5% and kept in a relatively low value. Pore size distribution results showed that after the first shock the peak pore size of the CO₂-SPD aerogel increased from 18 nm to 25 nm due to the shrinkage of the skeleton, while the peak pore size of the ethanol-SPD aerogel kept at ~9 nm probably induced by the spring-back effect. An 80 °C treatment under vacuum was demonstrated to be an effective way for retaining the good performance of ethanol-SPD aerogels under the thermal shock. The thermal conductivity increases of the ethanol-SPD aerogels after 5 shocks decreased from ~30 to ~0% via vacuum drying, while the increase of the CO₂-SPD aerogels via the same treatments remains ~28%. The high-strain hardening and low-strain soften behaviors further demonstrated the skeleton shrinkage of the CO₂-SPD aerogel.

  9. Method and apparatus for preventing overspeed in a gas turbine

    DOEpatents

    Walker, William E.

    1976-01-01

    A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

  10. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.

  11. Energy absorption device for shock loading

    NASA Astrophysics Data System (ADS)

    Howard, C. D.; Lagrange, Donald E.; Beatty, David A.; Littman, David C.

    1995-02-01

    A shock energy absorbing device provides shock protection for the riser line employed to attach an aerodynamic deceleration device to a primary body during deployment of the system into an airstream. During deployment, for example, by dropping an unopened parachute and attached load or by rocket delivery of the unopened parachute and attached load, the parachute is made to open at a desired altitude whereupon very large shock tension forces are generated which are applied to the line. In order to protect the line from failing under these forces and to reduce the requirement for a bulky, heavy line, a shock absorber is provided in the form of a block having one or more breakable web portions formed therein and through which the riser line is threaded. Upon deployment of the system into an airstream, the shock tension forces operate to fracture some or all of the breakable web portions thereby dissipating the shock energy generated during deployment and protecting the riser line from failure.

  12. Shock wave-induced phase transition in RDX single crystals.

    PubMed

    Patterson, James E; Dreger, Zbigniew A; Gupta, Yogendra M

    2007-09-20

    The real-time, molecular-level response of oriented single crystals of hexahydro-1,3,5-trinitro-s-triazine (RDX) to shock compression was examined using Raman spectroscopy. Single crystals of [111], [210], or [100] orientation were shocked under stepwise loading to peak stresses from 3.0 to 5.5 GPa. Two types of measurements were performed: (i) high-resolution Raman spectroscopy to probe the material at peak stress and (ii) time-resolved Raman spectroscopy to monitor the evolution of molecular changes as the shock wave reverberated through the material. The frequency shift of the CH stretching modes under shock loading appeared to be similar for all three crystal orientations below 3.5 GPa. Significant spectral changes were observed in crystals shocked above 4.5 GPa. These changes were similar to those observed in static pressure measurements, indicating the occurrence of the alpha-gamma phase transition in shocked RDX crystals. No apparent orientation dependence in the molecular response of RDX to shock compression up to 5.5 GPa was observed. The phase transition had an incubation time of approximately 100 ns when RDX was shocked to 5.5 GPa peak stress. The observation of the alpha-gamma phase transition under shock wave loading is briefly discussed in connection with the onset of chemical decomposition in shocked RDX.

  13. Cosmic-ray shock acceleration in oblique MHD shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  14. Tolerance of Artemia to static and shock pressure loading

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  15. Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.

    2017-02-01

    To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.

  16. Laser surface fusion of plasma sprayed ceramic turbine seals

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.; Bill, R. C. (Inventor)

    1981-01-01

    The thermal shock resistance of a ceramic layer is improved. An improved abradable lining that is deposited on a shroud forming a gas path seal in turbomachinery is emphasized. Improved thermal shock resistance of a shroud is effective through the deliberate introduction of 'benign' cracks. These are microcracks which will not propagate appreciably upon exposure to the thermal shock environment in which a turbine seal must function. Laser surface fusion treatment is used to introduce these microcracks. The ceramic surface is laser scanned to form a continuous dense layer. As this cools and solidifies, shrinkage results in the formation of a very fine crack network. The presence of this deliberately introduced fine crack network precludes the formation of a catastrophic crack during thermal shock exposure.

  17. Structure of Energetic Particle Mediated Shocks Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute bothmore » a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.« less

  18. The Multi-Dimensional Structure of Radiative Shocks: Suppressed Thermal X-rays and Relativistic Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Metzger, Brian D.

    2018-06-01

    Radiative shocks, behind which gas cools faster than the dynamical time, play a key role in many astrophysical transients, including classical novae and young supernovae interacting with circumstellar material. The dense layer behind high Mach number M ≫ 1 radiative shocks is susceptible to thin-shell instabilities, creating a "corrugated" shock interface. We present two and three-dimensional hydrodynamical simulations of optically-thin radiative shocks to study their thermal radiation and acceleration of non-thermal relativistic ions. We employ a moving-mesh code and a specialized numerical technique to eliminate artificial heat conduction across grid cells. The fraction of the shock's luminosity Ltot radiated at X-ray temperatures kT_sh ≈ (3/16)μ m_p v_sh2 expected from a one-dimensional analysis is suppressed by a factor L(>T_sh/3)/L_tot ≈ 4.5/M^{4/3} for M ≈ 4-36. This suppression results in part from weak shocks driven into under-pressured cold filaments by hot shocked gas, which sap thermal energy from the latter faster than it is radiated. Combining particle-in-cell simulation results for diffusive shock acceleration with the inclination angle distribution across the shock (relative to an upstream magnetic field in the shock plane-the expected geometry for transient outflows), we predict the efficiency and energy spectrum of ion acceleration. Though negligible acceleration is predicted for adiabatic shocks, the corrugated shock front enables local regions to satisfy the quasi-parallel magnetic field geometry required for efficient acceleration, resulting in an average acceleration efficiency of ɛnth ˜ 0.005 - 0.02 for M ≈ 12-36, in agreement with modeling of the gamma-ray nova ASASSN-16ma.

  19. Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu

    2017-06-01

    This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.

  20. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    NASA Astrophysics Data System (ADS)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  1. Monte Carlo simulation of steady state shock structure including cosmic ray mediation and particle escape

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Jones, F. C.; Eichler, D.

    1983-01-01

    Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.

  2. Monte Carlo simulation of steady state shock structure including cosmic ray mediation and particle escape

    NASA Astrophysics Data System (ADS)

    Ellison, D. C.; Jones, F. C.; Eichler, D.

    1983-08-01

    Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.

  3. Thermophysical Properties of Matter - The TPRC Data Series. Volume 3. Thermal Conductivity - Nonmetallic Liquids and Gases

    DTIC Science & Technology

    1970-01-01

    design and experimentation. I. The Shock- Tube Method Smiley [546] introduced the use of shock waves...one of the greatest disadvantages of this technique. Both the unique adaptability of the shock tube method for high -temperature measurement of...Line-Source Flow Method H. The Hot-Wire Thermal Diffusion Column Method I. The Shock- Tube Method J. The Arc Method K. The Ultrasonic Method .

  4. Short-term effects of nanoscale Zero-Valent Iron (nZVI) and hydraulic shock during high-rate anammox wastewater treatment.

    PubMed

    Xu, Jia-Jia; Zhang, Zheng-Zhe; Ji, Zheng-Quan; Zhu, Ying-Hong; Qi, Si-Yu; Tang, Chong-Jian; Jin, Ren-Cun

    2018-06-01

    The stability and resilience of an anaerobic ammonium oxidation (anammox) system under transient nanoscale Zero-Valent Iron (nZVI) (50, 75 and 100 mg L -1 ), hydraulic shock (2-fold increase in flow rate) and their combination were studied in an up-flow anaerobic sludge blanket reactor. The response to the shock loads can be divided into three phases i.e. shock, inertial and recovery periods. The effects of the shock loads were directly proportional to the shock intensity. The effluent quality was gradually deteriorated after exposure to high nZVI level (100 mg L -1 ) for 2 h. The higher effluent sensitivity index and response caused by unit intensity of shock was observed under hydraulic and combined shocks. Notably, the specific anammox activity and the content of heme c were considerably reduced during the shock phase and the maximum loss rates were about 30.5% and 24.8%, respectively. Nevertheless, the extracellular polymeric substance amount in the shock phase was enhanced in varying degrees and variation tendency was disparate at all the tested shock loads. These results suggested that robustness of the anammox system was dependent on the magnitude shocks applied and the reactor resistance can be improved by reducing hydraulic retention time with the increase of nZVI concentration under these circumstances. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Interface characterization of Cu-Mo coating deposited on Ti-Al alloys by arc spraying

    NASA Astrophysics Data System (ADS)

    Bai, Shengqiang; Li, Fei; Wu, Ting; Yin, Xianglin; Shi, Xun; Chen, Lidong

    2015-03-01

    Cu-Mo pseudobinary alloys are promising candidates as electrode materials in CoSb3-based skutterudite thermoelectric (TE) devices for TE power generation. In this study, Cu-Mo coatings were deposited onto Ti-Al substrates by applying a dual-wire electric arc spraying coating technique. The microstructure of the surfaces, cross sections and coating interfaces were analyzed by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS). Cu-Mo coatings showed a typical banded splat with compact microstructures, and have no coarse pores nor micro-cracks. The thermal shock resistance of the Cu-Mo coating was also investigated to show good combinations with Ti-Al substrates. After 50 thermal shock cycles, there were no cracks observed at the interface. In contrast, the test of the thermal shock resistance of the Cu coating on the Ti-Al substrate was also investigated. Due to a large difference in the thermal expansion coefficients between Cu and Ti-Al alloys, the Cu coating flaked from the Ti-Al substrate completely after 10 thermal shock cycles. The contact resistivity of the Ti-Al/Cu-Mo interface was about 1.6 μΩṡcm2 and this value was unchanged after 50 thermal shock cycles, indicating the low electric resistance and high thermal stability of the Cu-Mo/Ti-Al interface.

  6. Anisotropic responses and initial decomposition of condensed-phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Song, Zhen-Fei; Chen, Xiang-Rong; Ji, Guang-Fu; Zhao, Feng; Wei, Dong-Qing

    2014-07-24

    Molecular dynamics simulations in conjunction with multiscale shock technique (MSST) are performed to study the initial chemical processes and the anisotropy of shock sensitivity of the condensed-phase HMX under shock loadings applied along the a, b, and c lattice vectors. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. Our results show that there is a difference between lattice vector a (or c) and lattice vector b in the response to a shock wave velocity of 11 km/s, which is investigated through reaction temperature and relative sliding rate between adjacent slipping planes. The response along lattice vectors a and c are similar to each other, whose reaction temperature is up to 7000 K, but quite different along lattice vector b, whose reaction temperature is only up to 4000 K. When compared with shock wave propagation along the lattice vectors a (18 Å/ps) and c (21 Å/ps), the relative sliding rate between adjacent slipping planes along lattice vector b is only 0.2 Å/ps. Thus, the small relative sliding rate between adjacent slipping planes results in the temperature and energy under shock loading increasing at a slower rate, which is the main reason leading to less sensitivity under shock wave compression along lattice vector b. In addition, the C-H bond dissociation is the primary pathway for HMX decomposition in early stages under high shock loading from various directions. Compared with the observation for shock velocities V(imp) = 10 and 11 km/s, the homolytic cleavage of N-NO2 bond was obviously suppressed with increasing pressure.

  7. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  8. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  9. Pretest predictions of surface strain and fluid pressures in mercury targets undergoing thermal shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Kim, S.H.; Haines, J.

    The authors provide a perspective overview of pretest modeling and analysis work related to thermal shock effects in spallation neutron source targets that were designed for conducting thermal shock experiments at the Los Alamos Neutron Science Center (LANSCE). Data to be derived are to be used for benchmarking computational tools as well as to assess the efficacy of optical gauges for monitoring dynamic fluid pressures and phenomena such as the onset of cavitation.

  10. Creation of a Data Base on Energetic Materials

    DTIC Science & Technology

    1987-08-10

    Examples of booster explosives are Tetryl, RDX , and HMX . Examples of bursting explosives are Amatols, TNT, Compositions A, B, & C, and Picatrol. Within...Test Thermal Shock Resistance Glass Transition Temperature Toxicity Grain Size Viscosity Hardness Volatility Heat Capacity Water Resistance Heat of...Tensile Strength Flammability Thermal Conductivity Flexural Strength Thermal Expansion Coefficient Gap Test Thermal Shock Resistance Glass Transition

  11. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  12. Re-entry simulation chamber for thermo-mechanical characterisation of space materials

    NASA Astrophysics Data System (ADS)

    Liedtke, Volker

    2003-09-01

    During re-entry, materials and components are subject to very high thermal and mechanical loads. Any failure may cause loss of mission. Therefore, materials and components have to be tested under most rigid conditions to verify the suitability of the material and to verify the design of the components. The Re-Entry Simulation Chamber (RESiC) at ARC Seibersdorf research (ARCS) allows simulating the high thermal loads as well as complex mechanical load profiles that may occur during a re-entry; additionally, the influence of chemical reactions of materials with gaseous components of the atmosphere can be studied. The high vacuum chamber (better than 1×10-6 mbar) has a diameter of 650 mm and allows a sample height of 500 mm, or 1000 mm with extension flange. The gas dosing system is designed to emulate the increasing atmospheric pressure during the re-entry trajectory of a vehicle. Heating is performed by a 30 kW induction generator that allows a sufficiently rapid heating of larger components; electrically conductive materials such as metals or carbon fibre reinforced ceramics are directly heated, while for electrical insulators, susceptor plates or tubes will be employed. The uniaxial servo-hydraulic testing machine has a maximum load of 70 kN, either static or with a frequency of up to 70 Hz, with any given load profile (sinus, rectangular, triangular, ...). Strain measurements will be done by non-contacting laser speckle system for maximum flexibility and minimum instrumentation time effort (currently under application testing), or by strain gauges. All relevant process parameters are controlled and recorded by microcomputer. The highly sophisticated control software allows a convenient and reliable multi-channel data acquisition, e.g. temperatures at various positions of the test piece, pressure, loads, strains, and any other test data according to customer specifications; the data format is suitable for any further data processing. During the set-up and operation testing, the device has successfully been employed for thermal shock testing, thermal cycling and gas cycling tests, thermomechanical tests and combinations thereof, e.g. sintering or hot-pressing. During the current final test series, the device will be completed, further optimised and shall be fully operational in summer 2003.

  13. Stress wave focusing transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visuri, S.R., LLNL

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where dmore » = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.« less

  14. Method of fabricating an abradable gas path seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W. (Inventor)

    1984-01-01

    The thermal shock resistance of a ceramic layer is improved. The invention is particularly directed to an improved abradable lining that is deposited on shroud forming a gas path in turbomachinery. Improved thermal shock resistance of a shroud is effected through the deliberate introduction of benign cracks. These are microcracks which will not propagate appreciably upon exposure to the thermal shock environment in which a turbine seal must function. Laser surface fusion treatment is used to introduce these microcracks. The ceramic surface is laser scanned to form a continuous dense layer. As this layer cools and solidifies, shrinkage results in the formation of a very fine crack network. The presence of this deliberately introduced fine crack network precludes the formation of a catastrophic crack during thermal shock exposure.

  15. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.

    PubMed

    Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  16. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  17. The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pinter, S.; Dryer, M.

    1985-01-01

    The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.

  18. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  19. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less

  20. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  1. Assessment of damage in 'green' composites

    NASA Astrophysics Data System (ADS)

    Malinowski, Paweł H.; Ostachowicz, Wiesław M.; Touchard, Fabienne; Boustie, Michel; Chocinski-Arnault, Laurence; Pascual Gonzalez, Pedro; Berthe, Laurent; de Vasconcellos, Davi; Sorrentino, Luigi

    2017-04-01

    The behaviour of eco-composites, when subjected to laser or mechanical impact loadings, is not well known yet. A research was proposed looking at the behaviour of `green' and synthetic composites under impact loading. The study was focused on composites reinforced with short, medium and long fibres. Short fibre composites were made of spruce fibres and ABS. The fibres were used both as received and after a thermal treatment. Another set of samples was made of 60 mm-long flax fibres. Two types of thermoplastic polymers were used as matrices: polypropylene and polylactide. Also a woven eco-composite was investigated. It was made of plain woven hemp fabric impregnated with epoxy resin. A fully synthetic woven composite, used as reference laminate for comparison with `green' composites, was prepared by using a plain weave woven glass fabric impregnated with epoxy resin. Mechanical impacts were performed by means of a falling dart impact testing machine. The specimens were tested at different impact energy levels (from 1J to 5J) by keeping constant the mass of the impactor and varying the drop height. Laser impact tests were performed by means of a high power laser shock facility. All the samples were tested at six different laser shock intensities, keeping constant the shock diameter and the pulse duration. Six assessment techniques were employed in order to analyse and compare impact damages: eye observation, back face relief, terahertz spectroscopy, laser vibrometry, X-ray micro-tomography and microscopic observations. Different damage detection thresholds for each material and technique were obtained.

  2. Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins.

    PubMed

    Song, Fan; Meng, Songhe; Xu, Xianghong; Shao, Yingfeng

    2010-03-26

    We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10,000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.

  3. JANNAF 19th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Kuckels, Melanie C. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 25 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 19th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 37th Combustion Subcommittee (CS) and 25th Airbreathing Propulsion Subcommittee (APS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the PSHS meeting include: impact and thermal vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction and detonation phenomena of solid energetic materials subjected to shock and impact loading; and hazard classification, and insensitive munitions testing of propellants and propulsion systems.

  4. Optical study on thermal radiation energy of diesel spray combustion in a shock tube

    NASA Astrophysics Data System (ADS)

    Tsuboi, T.; Nagaya, K.; Ishii, K.

    . A ``tailored'' interface shock tube was used to measure the thermal energy radiated from diesel-spray combustion. Experiments were performed in a steel shock tube with a seven m long low-pressure section filled with air and a six m long high-pressure section. Pre-compressed fuel was injected through a throttling nozzle into air behind a reflected shock wave. Monochromatic emissive powers and emissive powers of the whole IR-wavelengths were followed with IR-detectors set along the central axis of the tube. Time-dependent-radii, where soot particles radiate, were also determined. Results were : (1) the tailored interface shock tube could be applied to a study of diesel-spray combustion. (2) thermal radiation energy could be described well from the ignition delay of the fuel spray.

  5. Shock wave as a probe of flux-dimited thermal transport in laser-heated solids

    NASA Astrophysics Data System (ADS)

    Smith, K.; Forsman, A.; Chiu, G.

    1996-11-01

    Laser-generated shock waves in solids result from the ablation of the target material. Where radiation transport is negligible, the ablation process is dominated by electron thermal conduction. This offers an opportunity to probe the degree of transport inhibition (compared with classical heat flow) for steep temperature gradients in a dense plasma. Using a 1-dimensional hydrodynamic code, we have examined the effect of flux-limited thermal conduction on the amplitude of the resulting shock wave.

  6. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGES

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; ...

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  7. Proton Radiography of a Thermal Explosion in PBX9501

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.

  8. An Evaluation on the Smart Composite Damaged by Thermal Shock

    NASA Astrophysics Data System (ADS)

    Lee, Jin Kyung; Lee, Sang Pill; Park, Young Chul; Lee, Joon Hyun

    A shape memory alloy (SMA) as part of some products and system has been used to keep their shape at any specified temperature. By using this characteristic of the shape memory alloy it can be solved the problem of the residual stress by difference of coefficients of thermal expansion between reinforcement and matrix within composite. In this study, TiNi/Al6061 shape memory alloy composite was fabricated through hot press method, and the optimal fabrication condition was created. The bonding effect of the matrix and the reinforcement within the SMA composite was strengthened by cold rolling. The SMA composite can be applied as the part of airplane and vessel, and used under tough condition of repetitive thermal shock cycles of high and low temperatures. Therefore, the thermal shock test was performed for the SMA composite, and mechanical properties were evaluated. The tensile strength of the SMA composite showed a slight decline with the thermal shock cycles. In addition, acoustic emission (AE) technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite that underwent thermal shock cycles. The damage degree on the specimen that underwent thermal shock cycles was discussed. Actually AE parameters such as AE event, count and energy was analyzed, and these parameters was useful to evaluate the damage behavior and degree of the SMA composite. The waveform of the signal caused by debonding was pulse type, and showed the frequency range of 160 kHz, however, the signal by the fiber fracture showed the pulse type of high magnitude and frequency range of 220 kH.

  9. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  10. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    PubMed

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  11. Characterization of lithium fluoride windows at 450 K for shock wave experiments: Hugoniot curves and refractive index at 532 nm

    NASA Astrophysics Data System (ADS)

    Fraizier, E.; Antoine, P.; Godefroit, J.-L.; Lanier, G.; Roy, G.; Voltz, C.

    Lithium fluoride (LiF) windows are extensively used in traditional shock wave experiments because of their transparency beyond 100 GPa along [100] axis. A correct knowledge of the optical and mechanical properties of these windows is essential in order to analyze the experimental data and to determine the equation of state on a large variety of metals. This in mind, the windows supply is systematically characterized in order to determine the density, the thermal expansion and the crystalline orientation. Furthermore, an experimental campaign is conducted in order to characterize the windows properties under shock loading at 300 K and preheated conditions (450 K). This article describes the experiments, details the analysis and presents the results. Particle velocity measurements are carried out at the interface of a multiple windows stack using interferometer diagnostic (VISAR and IDL) at 532 nm wavelength. Shock velocity is calculated as a function of the time of flight through each window. The optical correction is calculated as the ratio of the apparent velocity gap and the particle velocity at the free surface. To go further, the Rankine-Hugoniot relations are applied to calculate the pressure and the density. Then, the results and uncertainties are presented and compared with literature data.

  12. Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load

    PubMed Central

    Feng, Cuijie; Li, Jiangwei; Qin, Dan; Chen, Lixiang; Zhao, Feng; Chen, Shaohua; Hu, Hongbo; Yu, Chang-Ping

    2014-01-01

    Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L−1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m−2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density. PMID:25412475

  13. Adapted diffusion processes for effective forging dies

    NASA Astrophysics Data System (ADS)

    Paschke, H.; Nienhaus, A.; Brunotte, K.; Petersen, T.; Siegmund, M.; Lippold, L.; Weber, M.; Mejauschek, M.; Landgraf, P.; Braeuer, G.; Behrens, B.-A.; Lampke, T.

    2018-05-01

    Hot forging is an effective production method producing safety relevant parts with excellent mechanical properties. The economic efficiency directly depends on the occurring wear of the tools, which limits service lifetime. Several approaches of the presenting research group aim at minimizing the wear caused by interacting mechanical and thermal loads by using enhanced nitriding technology. Thus, by modifying the surface zone layer it is possible to create a resistance against thermal softening provoking plastic deformation and pronounced abrasive wear. As a disadvantage, intensely nitrided surfaces may possibly include the risk of increased crack sensitivity and therefore feature the chipping of material at the treated surface. Recent projects (evaluated in several industrial applications) show the high technological potential of adapted treatments: A first approach evaluated localized treatments by preventing areas from nitrogen diffusion with applied pastes or other coverages. Now, further ideas are to use this principle to structure the surface with differently designed patterns generating smaller ductile zones beneath nitrided ones. The selection of suitable designs is subject to certain geo-metrical requirements though. The intention of this approach is to prevent the formation and propagation of cracks under thermal shock conditions. Analytical characterization methods for crack sensitivity of surface zone layers and an accurate system of testing rigs for thermal shock conditions verified the treatment concepts. Additionally, serial forging tests using adapted testing geometries and finally, tests in the industrial production field were performed. Besides stabilizing the service lifetime and decreasing specific wear mechanisms caused by thermal influences, the crack behavior was influenced positively. This leads to a higher efficiency of the industrial production process and enables higher output in forging campaigns of industrial partners.

  14. Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.

    2011-03-01

    Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.

  15. Thermal-stress fracture and fractography in UO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, C.R.; Bandyopadhyay, G.

    1976-01-01

    Pressed and sintered UO/sub 2/ pellets were thermally shocked by quenching into a water bath at room temperature. The cracking behavior and strength degradation, as measured by the diametral compression technique, in these quench tests are discussed. Fractography of the thermally shocked specimens by scanning-electron microscopy indicated predominantly intergranular fracture in UO/sub 2/ in severe thermal-shock tests. The implication of this observation is that intergranular cracking may occur during the initial heat up in a reactor. Because fission gas bubbles tend to migrate toward the grain boundary, preferential microcracking along the boundary may strongly affect subsequent fission gas release behavior.

  16. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre-Antoine; Debruyne, Michel; Bolis, Cyril

    2011-06-01

    In order to study the shock-detonation transition, it is necessary to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water has been first employed; eventually heavy water has been chosen for its better infrared spectral properties. We present the PDV results of different submerged embedded optical fibers which sense the medium with two different approaches: a non-intrusive optical observation of phenomena coming in front of them (interface, shock wave) followed by the mechanical interaction with the shock wave.

  17. The thermal and deformational history of apollo 15418, A partly shock-melted lunar breccia

    USGS Publications Warehouse

    Nord, G.L.; Christie, J.M.; Lally, J.S.; Heuer, A.H.

    1977-01-01

    A thermal and mechanical history of lunar gabbroic anorthosite 15418 (1140g) has been deduced from petrographic examination of both exterior and interior thin sections and electron microprobe analysis and transmission electron microscopy of interior thin sections. We suggest that the rock underwent two major shock events - an early brecciation and annealing that produced a recrystallized breccia, followed by a second shock event that melted the surface of the rock, vitrified the interior plagioclase and heavily deformed the mafic phases. This latter shock even was also followed by annealing which crystallized the shock-produced glass and promoted recovery and recrystallization of the deformed crystalline phases. The complex mechanical and thermal history of 15418 compared with other ANT suite rocks at Spur Crater suggests that it had a different provenance. ?? 1977 D. Reidel Publishing Company, Dordrecht-Holland.

  18. Shock Initiation of Thermally Expanded TATB

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2011-06-01

    The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.

  19. A sputtered zirconia primer for improved thermal shock resistance of plasma sprayed ceramic turbine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Sovey, J.; Allen, G. P.

    1981-01-01

    The development of plasma-sprayed yttria stabilized zirconia (YSZ) ceramic turbine blade tip seal components is discussed. The YSZ layers are quite thick (0.040 to 0.090 in.). The service potential of seal components with such thick ceramic layers is cyclic thermal shock limited. The most usual failure mode is ceramic layer delamination at or very near the interface between the plasma sprayed YSZ layer and the NiCrAlY bondcoat. Deposition of a thin RF sputtered YSZ primer to the bondcoat prior to deposition of the thick plasma sprayed YSZ layer was found to reduce laminar cracking in cyclic thermal shock testing. The cyclic thermal shock life of one ceramic seal design was increased by a factor of 5 to 6 when the sputtered YSZ primer was incorporated. A model based on thermal response of plasma sprayed YSZ particles impinging on the bondcoat surface with and without the sputtered YSZ primer provides a basis for understanding the function of the primer.

  20. Development of sensitized pick coal interface detector system

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.

    1979-01-01

    One approach for detection of the coal interface is measurement of the pick cutting hoads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telementry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder.

  1. Response of Al-Based Micro- and Nanocomposites to Rapid Fluctuations in Thermal Environments

    NASA Astrophysics Data System (ADS)

    Dash, K.; Ray, B. C.

    2018-05-01

    The focus of this work is to highlight the relative response of Al-based micro- and nanocomposites in the form of enhancement in flexural strength via induced thermal stresses at high and cryogenic temperatures in ex situ and in situ atmospheres. In this investigation, we have tried to explore the reliability, matrix-reinforcement interaction and microstructural integrity of these materials in their service period by designing appropriate heat treatment regimes. Al-Al2O3 micro- and nanocomposites had been fabricated by powder processing method. The micro- and nanocomposites were subjected to down-thermal shock (from positive to negative temperature) and up-thermal shock (from negative to positive temperature) with varying thermal gradients. For isothermal conditioning, the composites were exposed to + 80 and - 80 °C for 1 h separately. High-temperature three-point flexural tests were performed at 100 and 250 °C on the composites. All the composites subjected to thermal shock and isothermal conditioning was tested in three-point flexural mode post-treatments. Al-1 vol.% Al2O3 nanocomposite's flexural strength improved to 118 MPa post-thermal shock treatment of gradient of 160 °C. The Al-5 and 10 vol.% Al2O3 microcomposites possessed flexural strength of 200 and 99.8 MPa after thermal shock treatment of gradient of 160 and 80 °C, respectively. The observed improvement in flexural strength of micro- and nanocomposites post-thermal excursions were compared and have been discussed with the support of fractography. The microcomposites showed a higher positive scale of response to the thermal excursions as compared to that of the nanocomposites.

  2. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  3. The Shock and Vibration Bulletin. Part 3. Shock Testing, Shock Analysis

    DTIC Science & Technology

    1974-08-01

    APPROXIMATE TRANSFORMATION C.S. O’Hearne and J.W. Shipley, Martin Marietta Aerospace, Orlando, Florida LINEAR LUMPED-MASS MODELING TECHNIQUES FOR BLAST LOADED...Leppert, B.K. Wada, Jet Propulsion Laboratory, Pasadena, California, and R. Miyakawa, Martin - Marietta Aerospace, Denver, Colorado (assigned to the Jet...Wilmington, Delaware Vibration Testing and Analysis DEVELOPMENT OF SAM-D MISSILE RANDOM VIBRATION RESPONSE LOADS P.G. Hahn, Martin Marietta Aerospace

  4. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Viñas, A. F.-; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R. E.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Yu. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We 'image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  5. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  6. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  7. The Hidden Dangers of Beaches: Cardiorespiratory Arrest Induced by Thermal Shock

    PubMed Central

    Café, HM; Santos, S; Pereira, V; Chaves, S; Faria, P; Câmara, M; Nóbrega, J

    2015-01-01

    ABSTRACT Thermal shock is widely recognized by modern medicine. Its pathophysiological mechanisms are known, as are its possible consequences, but scientific reports in the literature about clinical cases with severe consequences are sparse. The authors present a case of cardiorespiratory arrest after prolonged sun exposure followed by a dive in the ocean. Other aetiological causes were ruled out, by exclusion, leading to the diagnosis of cardiorespiratory arrest caused by thermal shock. It is important to inform the public in general of the risks of negligent behaviour on the beach. PMID:26360691

  8. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  9. Smoother Turbine Blades Resist Thermal Shock Better

    NASA Technical Reports Server (NTRS)

    Czerniak, Paul; Longenecker, Kent; Paulus, Don; Ullman, Zane

    1991-01-01

    Surface treatment increases resistance of turbine blades to low-cycle fatigue. Smoothing removes small flaws where cracks start. Intended for blades in turbines subject to thermal shock of rapid starting. No recrystallization occurs at rocket-turbine operating temperatures.

  10. New data on the kinetics and governing factors of the spall fracture of metals

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.; Savinykh, A. S.

    2018-01-01

    This paper presents two examples of significant departures from usual trends of varying the resistance to spall fracture (spall strength) with changing loading history, load duration and peak shock stress. In experiments with vanadium single crystals we observed an important decrease of spall strength when increasing the shock stress. This was interpreted in terms of disruption of the matter homogeneity as a result of its twinning at shock compression. In experiments with 12Kh18N10T austenitic stainless steel we observed a sharp increase of recorded spall strength value when short load pulses of a triangular profile were replaced by shock pulses of long duration having a trapezoidal shape. This anomaly is associated with formation of the deformation-induced martensitic phase.

  11. Etude theorique et experimentale de la correlation entre la resistance aux chocs thermiques et aux chocs mecaniques des materiaux refractaires utilises dans les fours de traitement de l'aluminium

    NASA Astrophysics Data System (ADS)

    Sebbani, Mohamed Jamal Eddine

    2001-07-01

    This work is a theoretical and experimental study of the correlation between the resistance to thermal shock and mechanical shock of refractory materials. The study of thermal shock showed that the Bahr and Hasselman approaches are alike and that they can be combined into a single, more general approach. This generalisation allowed the division of the theoretical models into two groups: the Hasselman model and the Harmuth model. However, neither of these approaches can predict the behaviour of all refractory materials submitted to thermal shock. Therefore, the generalisation of the Hasselman approach is more appropriate for more dense materials while the Hartmuth approach is more appropriate for less dense materials. The influence of porosity on the energy of rupture helped to explain the behaviour of the less dense material. The absence of generalisation in this case allows those parameters that could be correlated with thermal shock resistance to be dependent on the type of refractory. The study of mechanical shock provided a better understanding of this mechanism. The work performed showed, theoretically and experimentally, that the resistance of the refractory materials could be correlated with the parameter s20 Egwof n-22 . This new parameter helped to explain the statistical correlation between the resistance to mechanical impact and the soxRst parameter established in earlier work. The sintering influence, which makes the refractories more resistant to this type of demand, notably by reducing the "n" coefficient, was shown. This part of the study allowed the establishment of equivalence between thermal fatigue and fatigue by mechanical impact. An evaluation of the correlation between the two mechanisms demonstrated, theoretically and experimentally, that the mechanical and thermal demands could only be exceptionally correlated. In the case of thermal shock, which are imposed deformation demands, it is the shorter cracks which are the most dangerous. However, in the case of mechanical shock, which is constraint imposed, it is the longer cracks that are the most harmful. (Abstract shortened by UMI.)

  12. Ejection of spalled layers from laser shock-loaded metals

    NASA Astrophysics Data System (ADS)

    Lescoute, E.; De Rességuier, T.; Chevalier, J.-M.; Loison, D.; Cuq-Lelandais, J.-P.; Boustie, M.; Breil, J.; Maire, P.-H.; Schurtz, G.

    2010-11-01

    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as inertial confinement fusion, which involves high energy laser irradiation of thin metallic shells. In this context, we present an experimental and numerical study of debris ejection in laser shock-loaded metallic targets (aluminum, gold, and iron) where fragmentation is mainly governed by spall fracture occurring upon tensile loading due to wave interactions inside the sample. Experimental results consist of time-resolved velocity measurements, transverse optical shadowgraphy of ejected debris, and postshock observations of targets and fragments recovered within a transparent gel of low density. They are compared to numerical computations performed with a hydrodynamic code. A correct overall consistency is obtained.

  13. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  14. Thermal acclimation is not induced by habitat-of-origin, maintenance temperature, or acute exposure to low or high temperatures in a pit-building wormlion (Vermileo sp.).

    PubMed

    Bar-Ziv, Michael A; Scharf, Inon

    2018-05-01

    Wormlions are sit-and-wait insect predators that construct pit-traps to capture arthropod prey. They require loose soil and shelter from direct sun, both common in Mediterranean cities, and explaining their high abundance in urban habitats. We studied different aspects of thermal acclimation in wormlions. We compared chill-coma recovery time (CCRT) and heat-shock recovery time (HSRT) of wormlions from urban, semi-urban and natural habitats, expecting those originating from the urban habitat to be more heat tolerant and less cold tolerant. However, no differences were detected among the three habitats. We then examined whether maintenance temperature affects CCRT and HSRT, and expected beneficial acclimation. However, CCRT was unaffected by maintenance temperature, while temperature affected HSRT in an opposite direction to our prediction: wormlions maintained under the higher temperatures took longer to recover. When testing with two successive thermal shocks, wormlions took longer to recover from both cold and heat shock after applying an initial cold shock. We therefore conclude that cold shock inflicts some damage rather than induces acclimation. Finally, both cold- and heat-shocked wormlions constructed smaller pits than wormlions of a control group. Smaller pits probably translate to a lower likelihood of capturing prey and also limit the size of the prey, indicating a concrete cost of thermal shock. In summary, we found no evidence for thermal acclimation related either to the habitat-of-origin or to maintenance temperatures, but, rather, negative effects of unfavorable temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Mechanism analysis of Magnetohydrodynamic heat shield system and optimization of externally applied magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-04-01

    As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.

  16. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  17. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum

    NASA Astrophysics Data System (ADS)

    Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai

    2016-04-01

    The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.

  18. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  19. Thermally conductive metal wool-silicone rubber material can be used as shock and vibration damper

    NASA Technical Reports Server (NTRS)

    Hough, W. W.

    1964-01-01

    Bronze wool pads, impregnated with silicon rubber, meet the requirement for a thermally conductive, shock and vibration absorbing material. They serve as spacers in equipment mounting and are resistant to high temperatures.

  20. The cosmic-ray shock structure problem for relativistic shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  1. Mechanical Properties of Shock Treated Aluminium Alloy Al 2024-T4

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Mukhopadhyay, A. K.; Dey, A.; Rav, Amit S.; Biswas, S.; Gupta, Satish C.

    2012-07-01

    Plate impact experiment has been carried out on Al 2024-T4 alloy using single stage gas gun. The dynamic yield strength and spall strength of Al 2024-T4 sample has been determined to be 0.35 GPa and 1.43 GPa, respectively, from free surface velocity history measured using VISAR. The sample recovered after unloading from peak shock pressure of 4.4 GPa along with an unshocked sample is analyzed for mechanical properties using nano-indentation and scanning electron microscopy (SEM). The nano-indentation measurements reveal that the hardness and Young's modulus for unshocked sample remains unchanged as a function of load (equivalently depth), however, the same for shocked sample decreases monotonically with increase of load up to ~40 mN and on further increase of load it remains unchanged, suggesting the (i) increase in hardness of shock loaded sample; (ii) the increase in hardness is limited to certain depth, which in our case is 845.12 ± 43.16 nm.

  2. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    PubMed Central

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-01-01

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056

  3. Examining the effects of microstructure and loading on the shock initiation of HMX with mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo; Tarver, Craig; Bastea, Sorin

    2015-06-01

    We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.

  4. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  5. Dynamic evolutions of electron properties: A theoretical study for condensed-phase β-HMX under shock loading

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hua; Chen, Jun; Wu, Qiang; Ji, Guang-Fu

    2017-11-01

    We present the density functional theory (DFT) calculations for microscopic electron properties of β-HMX under shock loading. The metallization pressure is determined to be within 30-55 GPa. The frontier molecular orbitals mainly localize on N-NO2 groups initially and disperse with pressure increase, while HOMO and LUMO orbitals trend to aggregate with each other. The deformation of N-NO2 groups and enhanced hydrogen-bonding interactions cause the electron delocalization and lower the band gap, inducing the reaction initiation finally. Our results show that using the electron properties can reliably predict the initial decomposition of energetic materials under shock loading.

  6. An experimental study of fluctuating pressure loads beneath swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Settles, Gary S.

    1991-01-01

    A database is established on the fluctuating pressure loads produced on aerodynamic surfaces beneath 3-D shock wave/boundary layer interactions. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 5 to 25 deg at freestream Mach numbers between 2.5 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers mounted in the flat plate were used to measure interaction-induced wall pressure fluctuations. These data will be correlated with proposed new optical data on the fluctuations of the interaction structure, especially that of the lambda-shock system and its associated high-speed jet impingement.

  7. Shock Mitigation in Open-Celled TiNi Foams

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter

    2018-05-01

    High-energy shock events generated by impacts are effectively mitigated by Nitinol materials. Initial evidence of this capability was suggested by the dramatically superior cavitation-erosion performance of Nitinol coatings made by plasma spray processes, over steels and brasses. A fast acting hysteretic stress-strain response mechanism was proposed to explain this result, transforming the shock energy into heat. Extending this work to bulk TiNi, dynamic load characterization using Split Rod Hopkinson Bar techniques on solid porous TiNi confirmed that the mechanical response to high strain rates below 4200 s-1 were indeed hysteretic. This paper reports on dynamical load characterization on TiNi foams made by Self-Propagating High-Temperature Synthesis (SHS) using Split Rod Hopkinson Bar and gas-gun impact characterization to compare these foams to alternative materials. This work verified that SHS-derived TiNi foams were indeed hysteretic at strain rates from 180 to 2300 s-1. In addition, Shock Spectrum Analysis demonstrated that TiNi foams were very effective in mitigating the shock spectrum range below 5 kHz, and that increasing porosity increased the amount of shock attenuation in that spectral range. Finally under impact loading, 55% porous TiNi foams were a factor of 7 superior to steel and a factor of 4 better than Al 6061 or Cu in mitigating peak g-loads and this attenuation improved with bilayer structures of 57 and 73% porous TiNi foam article.

  8. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-04-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  9. New R-SiC extends service life in kiln furniture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonntag, A.

    1997-11-01

    Silicon carbide kiln furniture systems are an essential part of modern high-temperature technology. SiC ceramics have exceptional high-temperature stability and thermal shock resistance., They show no plastic deformation (creep) under mechanical load and maintain their geometry after each high-temperature cycle. Therefore, various new kiln systems with light and open setting patterns can be realized where more fired goods can be produced with less kiln furniture ballast and within shorter firing cycles. The fast-firing technology of porcelain is an opportunity for new SiC kiln furniture ceramics. The new SiC ceramic systems available include: (1) recrystallized SiC (R-SiC); (2) silicon-infiltrated reaction-bonded SiCmore » (SiSiC); and (3) nitride-bonded SiC (NSiC). The new SiC ceramics have an important production criterion in common. They show practically no shrinkage during production. This is important for the manufacture of large shapes, such as beams, rollers and setter plates, as well as tailored geometries that allow light and open kiln furniture construction. Because of the extraordinarily high thermal shock resistance, high strength and high-temperature creep stability of these SiC ceramics, delicate and precise kiln furniture configurations have been introduced. One application is the fast firing of tableware with automatic setting robots.« less

  10. Discrimination of Thermal versus Mechanical Effects of Shock on Rock Magnetic Properties of Spherically Shocked up to 10-160 GPa Basalt and Diabase

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.

    2016-12-01

    Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities, consistent with shock-induced hardening. However, shock does not alter the intrinsic shape of coercivity and the shape of FORC contours (apart from field scaling) while heating does, which is seen as a significant alteration of FORC contours. Reference: [1] Swanson-Hysell N. L. et al. 2014. G3 15:2039-2047.

  11. Synthesis, Chemical and Physical Characterization of TKX-50

    NASA Astrophysics Data System (ADS)

    Klapoetke, Thomas

    2015-06-01

    TKX-50 (bis(hydroxylammonium) 5,5'-bis(tetrazolate-1 N-oxide)) is one of the most promising ionic salts as a possible replacement for RDX. The thermal behavior of TKX-50 (bis(hydroxylammonium) 5,5'-(tetrazolate-1 N-oxide)) and the kinetics of its thermal decomposition were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The calculated results of the detonation parameters and equations of state for the detonation products (EOS DP) of explosive materials TKX-50 and MAD-X1 and several of their derivatives were obtained using the computer program EXPLO5 V.6.01. These values were also calculated for standard explosive materials which are commonly used such as TNT, PETN, RDX, HMX as well as for the more powerful explosive material CL-20 to allow comparisons to be made. The determination of the detonation parameters and EOS DP was conducted both for explosive materials having the maximum crystalline density and for porous right up to 50% in volume materials. The influence of the content of plastic binder polyisobutylene used (up to 20% in volume) on all of the investigated properties was also examined. Calculated results on shock wave loading of different inert barriers in a wide range of their dynamic properties under explosion on their surfaces of concrete size charges of different explosive materials in various initial states were obtained with the use of the one-dimensional computer hydrocode EP. Barriers due to materials such as polystyrene, textolite, magnesium, aluminum, zinc, copper, tantalum or tungsten were examined (Fig. 1). Initial values of pressure and other parameters of loading on the interface explosive-barrier were determined in the process of conducted calculations. Phenomena of propagation and attenuation of shock waves in barrier materials were considered too for all possible situations. From these calculations, an essentially complete overview of the explosion properties and characteristics of shock wave action onto barriers was obtained for several new and also for several standard explosive materials as a comparison. Work done in collaboration with Golubev/Fischer/Stierstorfer/Bohanek/Dobrilovic.

  12. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Oskinova, L. M.; Ignace, R.

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations ofmore » AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.« less

  13. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.

    2017-01-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  14. Shock effects on hydrous minerals and implications for carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.; Lambert, P.

    1985-01-01

    The effect of shock loading over the pressure range of 29-59 GPa on the shock-recovered specimens of antigorite serpentine, Mg3Si2O5(OH)4, were investigated employing infrared (IR) spectroscopy, thermogravimetric analysis, and optical and scanning electron microscopy. With increasing shock pressure, there was an increase in H2O IR absorption peaks at the expense of OH peaks, while the changes in SiO bond vibration modes were identical to those seen for other, nonhydrous minerals. Thermogravimetric results on vented assembly samples showed linear relationships between the shock pressure and both the length of dehydration interval and the effective activation energy for releasing post-shock structural water. Optical and scanning electron microscopy revealed gas bubbles, which appeared to be injected into zones of partial melting, and vesicular dark veins distributed throughout the shocked samples. It is suggested that shock loading of hydrous minerals would release and redistribute free water in the regoliths of carbonaceous chondrite parent bodies, giving rise to observed hydrous alterations.

  15. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo; Smith, Scott

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  16. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE PAGES

    Sanborn, Brett; Song, Bo; Smith, Scott

    2015-12-29

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  17. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    PubMed

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  18. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    PubMed Central

    Rodriguez, George; Gilbertson, Steve M.

    2017-01-01

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819

  19. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    DOE PAGES

    Rodriguez, George; Gilbertson, Steve Michael

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  20. Electron acceleration by wave turbulence in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  1. A New Spin on an Old Technology: Piezoelectric Ejecta Diagnostics for Shock Environments

    NASA Astrophysics Data System (ADS)

    Vogan, W. S.; Anderson, W. W.; Grover, M.; King, N. S. P.; Lamoreaux, S. K.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.

    2006-07-01

    In our investigation of ejecta, or metal particulate emitted from a surface subjected to shock-loaded conditions, we have developed a shock experiment suitable for testing new ideas in piezoelectric mass and impact detectors. High-explosive (HE) shock loading of tin targets subjected to various machined and compressed finishes results in significant trends in ejecta characteristics of interest such as areal density and velocity. Our enhanced piezoelectric diagnostic, "piezo-pins" modified for shock mitigation, have proven levels of robustness and reliability suitable for effective operation in these ejecta milieux. These field tests address questions about ejecta production from surfaces of interest; experimental results are discussed and compared with those from complementary diagnostics such as x-ray and optical attenuation visualization techniques.

  2. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, George; Gilbertson, Steve Michael

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  4. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  5. Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock

    NASA Astrophysics Data System (ADS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.

    2017-06-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  6. Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Svendsen, Robert F., Jr.

    1987-01-01

    Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.

  7. Shock response of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX): The C-N bond scission studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Jiao-Nan; Wei, Yong-Kai; Zhang, Xiu-Qing; Chen, Xiang-Rong; Ji, Guang-Fu; Kotni, Meena Kumari; Wei, Dong-Qing

    2017-10-01

    The shock response has a great influence on the design, synthesis, and application of energetic materials in both industrial and military areas. Therefore, the initial decomposition mechanism of bond scission at the atomistic level of condensed-phase α-RDX under shock loading has been studied based on quantum molecular dynamics simulations in combination with a multi-scale shock technique. First, based on the frontier molecular orbital theory, our calculated result shows that the N-NO2 bond is the weakest bond in the α-RDX molecule in the ground state, which may be the initial bond for pyrolysis. Second, the changes of bonds under shock loading are investigated by the changes of structures, kinetic bond lengths, and Laplacian bond orders during the simulation. Also, the variation of thermodynamic properties with time in shocked α-RDX at 10 km/s along the lattice vector a for a timescale of up to 3.5 ps is presented. By analyzing the detailed structural changes of RDX under shock loading, we find that the shocked RDX crystal undergoes a process of compression and rotation, which leads to the C-N bond initial rupture. The time variation of dynamic bond lengths in a shocked RDX crystal is calculated, and the result indicates that the C-N bond is easier to rupture than other bonds. The Laplacian bond orders are used to predict the molecular reactivity and stability. The values of the calculated bond orders show that the C-N bonds are more sensitive than other bonds under shock loading. In a word, the C-N bond scission has been validated as the initial decomposition in a RDX crystal shocked at 10 km/s. Finally, the bond-length criterion has been used to identify individual molecules in the simulation. The distance thresholds up to which two particles are considered direct neighbors and assigned to the same cluster have been tested. The species and density numbers of the initial decomposition products are collected according to the trajectory.

  8. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  9. Shock formation and the ideal shape of ramp compression waves

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kraus, Richard G.; Loomis, Eric N.; Hicks, Damien G.; McNaney, James M.; Johnson, Randall P.

    2008-12-01

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long-duration ramps are desired.

  10. On the shock response of Pisum Sativum (a.k.a the Common Pea)

    NASA Astrophysics Data System (ADS)

    Leighs, James; Hazell, Paul; Appleby-Thomas, Gareth

    2011-06-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry (dynamic pasteurisation) to astrobiology (e.g. the theory of panspermia, which suggests that planets could be `seeded' with life `piggy-backing' of interplanetary bodies). Consequently, knowledge of the damage mechanisms and viability of shocked organic material is of paramount importance. In this study a single-stage gas-gun has been employed to subject samples of Pisum Sativum (the Common Pea) to semi-planar shock loading, corresponding to impact pressures of up to c.3 GPa. The experimental approach adopted is discussed along with results from Manganin gauges embedded in the target capsule which show the loading history. Further, the viability of the shock-loaded peas was investigated via attempts at germination. Finally, microscopic examination of the impacted specimens allowed a qualitative assessment of damage mechanisms to be made.

  11. Dynamics of the aortic arch submitted to a shock loading: Parametric study with fluid-structure models.

    PubMed

    El Baroudi, A; Razafimahery, F; Rakotomanana, L

    2012-01-01

    This work aims to present some fluid-structure models for analyzing the dynamics of the aorta during a brusque loading. Indeed, various lesions may appear at the aortic arch during car crash or other accident such as brusque falling. Aortic stresses evolution are simulated during the shock at the cross section and along the aorta. One hot question was that if a brusque deceleration can generate tissue tearing, or a shock is necessary to provoke such a damage. Different constitutive laws of blood are then tested whereas the aorta is assumed linear and elastic. The overall shock model is inspired from an experimental jig. We show that the viscosity has strong influence on the stress and parietal moments and forces. The nonlinear viscosity has no significant additional effects for healthy aorta, but modifies the stress and parietal loadings for the stenotic aorta.

  12. On the shock response of pisum sativum and lepidium sativum

    NASA Astrophysics Data System (ADS)

    Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.

  13. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  14. Identification and analysis of factors affecting thermal shock resistance of ceramic materials in solar receivers

    NASA Technical Reports Server (NTRS)

    Hasselman, D. P. H.; Singh, J. P.; Satyamurthy, K.

    1980-01-01

    An analysis was conducted of the possible modes of thermal stress failure of brittle ceramics for potential use in point-focussing solar receivers. The pertinent materials properties which control thermal stress resistance were identified for conditions of steady-state and transient heat flow, convective and radiative heat transfer, thermal buckling and thermal fatigue as well as catastrophic crack propagation. Selection rules for materials with optimum thermal stress resistance for a particular thermal environment were identified. Recommendations for materials for particular components were made. The general requirements for a thermal shock testing program quantitatively meaningful for point-focussing solar receivers were outlined. Recommendations for follow-on theoretical analyses were made.

  15. Heat-shock properties in yttrium-oxide films synthesized from metal-ethylenediamine tetraacetic acid complex through flame-spray apparatus

    NASA Astrophysics Data System (ADS)

    Xin, D. Y.; Komatsu, Keiji; Abe, Keita; Costa, Takashi; Ikeda, Yutaka; Nakamura, Atsushi; Ohshio, Shigeo; Saitoh, Hidetoshi

    2017-03-01

    Recently, a new deposition technique using a metal-ethylenediamine tetraacetic acid (EDTA) complex has been developed. In this study, the heat-shock properties of metal-oxide films synthesized from a metal-EDTA complex were investigated. Y2O3 films were synthesized on stainless-steel (SUS) substrate from EDTA•Y•H through the combustion of H2-O2 gas. A cyclic heat-shock test was conducted on the fabricated Y2O3 films through exposure to the H2-O2 flame. The existence of Y2O3 crystals was confirmed. Surface cracks or damages were not observed in the samples after the cyclic thermal test. Although the number of cross-sectional cracks, crack lengths, and cracks per unit area was increased by the heat shock, delaminations were not observed in the Y2O3 films. The results show that the prepared Y2O3 films have high thermal-shock resistance and are suitable for use as thermal barrier coatings.

  16. Thermal shock and erosion resistant tantalum carbide ceramic material

    NASA Technical Reports Server (NTRS)

    Honeycutt, L., III; Manning, C. R. (Inventor)

    1978-01-01

    Ceramic tantalum carbide artifacts with high thermal shock and mechanical erosion resistance are provided by incorporating tungsten-rhenium and carbon particles in a tantalum carbide matrix. The mix is sintered by hot pressing to form the ceramic article which has a high fracture strength relative to its elastic modulus and thus has an improved thermal shock and mechanical erosion resistance. The tantalum carbide is preferable less than minus 100 mesh, the carbon particles are preferable less than minus 100 mesh, and the tungsten-rhenium particles are preferable elongate, having a length to thickness ratio of at least 2/1. Tungsten-rhenium wire pieces are suitable as well as graphite particles.

  17. Development of sensitized pick coal interface detector system

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.

    1982-01-01

    One approach for detection of the coal interface is measurement of pick cutting loads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telemetry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder. The design of components in the test data system were finalized, the required instruments were assembled, the instrument system was evaluated in an above-ground simulation test, and an underground test series to obtain tape recorded sensor data was conducted.

  18. Direct Acceleration of Pickup Ions at The Solar Wind Termination Shock: The Production of Anomalous Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.

    1998-01-01

    We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross- field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we match the flux ratios He(+)/H(+) or O(+)/H(+) to within a factor approx. 5. If the conditions of strong scattering apply, no pre-termination-shock injection phase is required and the injection and acceleration of pickup ions at the termination shock is totally analogous to the injection and acceleration of ions at highly oblique interplanetary shocks recently observed by the Ulysses spacecraft. The fact that ACR fluxes can be modeled with standard shock assumptions suggests that the much-discussed "injection problem" for highly oblique shocks stems from incomplete (either mathematical or computer) modeling of these shocks rather than from any actual difficulty shocks may have in injecting and accelerating thermal or quasi-thermal particles.

  19. High-temperature phase transformations. The properties of the phases and their equilibrium under shock loading.

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene

    2011-06-01

    Introducing the temperature as a variable parameter in shock wave experiments extends essentially the scope of these investigations. The influence of the temperature variations on either high strain rate elastic-plastic response of solids or parameters of the shock-induces phase transformations are not trivial and are not quite clear yet. The technique of VISAR-monitored planar impact experiments with the samples preheated up to 1400 K was developed and used for the studies of the effect of the preheating on the impact response and on the ``dynamic'' phase diagrams of pure metals (U, Ti, Fe, Co, Ag), and ionic compounds (KCl, KBr). The studies show that the increase of the shear strength of the shock-loaded metal with temperature (first reported by Kanel et al. 1996) is typical for pure FCC (Al, Ag, Cu) and some other (Sn, U) metals, and for the ionic crystals. In the metals with BCC lattice (Mo: Duffy and Ahrens 1994, Fe: Zaretsky 2009) such thermal hardening was not found. The abrupt strength anomalies (either yield or spall or both) were observed in a narrow vicinity of the temperature of any, polymorphic, magnetic, or melting, phase transformation. It was found that when a pure element approaches the phase boundary (the line of either first or second order phase transition) the result is a 50-100-% increase of the shear strength of the low-temperature phase. At the same time the presence of a small (~0.5%) amount of impurities may lead to a five-fold decrease of the strength as it takes place in the vicinity of the Curie point of Ni. The same technique being applied to the study of the shear stress relaxation (elastic precursor decay) near the transformation line may be useful for understanding the mechanisms responsible of these anomalies.

  20. Simulation of interior ballistics flows in a shock tube

    NASA Astrophysics Data System (ADS)

    Seiler, F.

    1983-07-01

    The flow in front of and behind a projectile was investigated in a interior ballistics shock tube simulator. Flow patterns and heat flow were examined for flows with and without gas leakage. The boundary layers behind the piston can clearly be shown by differential interferograms. The dependence of the heat flow into the measuring tube wall on the base form is smaller than the signal perturbations. Flow patterns show no appreciable effect of gas leakage on the flow behind the piston; strong flow effects arise in front of the piston. The same effects are shown by heat flow measurements. In case of gas leakage heat flows into the tube wall before the piston reaches the wall. In the slit between piston and wall a maximum heat flow is found. High temperature gradients, due to the fact that hot gases come closer to the tube wall than in the boundary layer flow behind the piston, lead to high thermal loading of the wall materials which can cause cracks.

  1. Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Hoerz, F.; Christensen, P.; Lucey, P. G.

    2001-01-01

    We performed shock recovery experiments at JSC (17-63 GPa) on samples of Stillwater pyroxenite and anorthosite and acquired their thermal infrared spectra (3-50 micron) to investigate the degradation of spectral features at high pressures. Additional information is contained in the original extended abstract.

  2. Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading

    NASA Astrophysics Data System (ADS)

    Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.

    2018-04-01

    The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.

  3. Experimental investigation of dynamic fragmentation of laser shock-loaded by soft recovery and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu

    2017-06-01

    Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.

  4. PVDF Gauge Piezoelectric Response under Two-Stage Light Gas Gun Impact Loading

    NASA Astrophysics Data System (ADS)

    Bauer, Francois

    2002-07-01

    Stress gauges based on ferroelectric polymer (PVDF) studies under very high pressure shock compression have shown that the piezoelectric response exhibits a precise reproducible behavior up to 25 GPa. Shock pressure profiles obtained with "in situ" PVDF gauges in porous H.E. (Formex) in a detonation regime have been achieved. Observations of a fast superpressure of a few nanoseconds followed by a pressure release have raised the question of the loading path dependence of the piezoelectric response of PVDF at high shock pressure levels. Consequently, studies of the piezoelectric behavior of PVDF gauges under impact loading using a two-stage light gas gun have been conducted recently. Symmetric impact as well as non symmetric impact and reverse impact techniques have been achieved. Strong viscoplastic behavior of some materials is observed. In typical experiments, the piezoelectric response of PVDF at shock equilibrium could be determined. These results show that the PVDF response appears independent of the loading path up to 30 GPa. Accurate measurements in situ H.E. are also reported with very low inductance PVDF gauges.

  5. Ultrasonic and micromechanical study of damage and elastic properties of SiC/RBSN ceramic composites. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.

    1992-01-01

    Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.

  6. Preliminary investigation of zirconium boride ceramals for gas-turbine blade applications

    NASA Technical Reports Server (NTRS)

    Hoffman, Charles A

    1953-01-01

    Zirconium boride ZrB2 ceramals were investigated for possible gas-turbine-blade application. Included in the study were thermal shock evaluations of disks, preliminary turbine-blade operation, and observations of oxidation resistance. Thermal shock disks of the following three compositions were studied: (a) 97.5 percent ZrB2 plus 2.5 percent B by weight; (b) 92.5 percent ZrB2 plus 7.5 percent B by weight; and (c) 100 percent ZrB2. Thermal shock disks were quenched from temperatures of 1800 degrees, 2000 degrees, 2200 degrees, and 2400 degrees F. The life of turbine blades containing 93 percent ZrB2 plus 7 percent B by weight was determined in gas-turbine tests. The blades were run at approximately 1600 degrees F and 15,000 to 26,000 rpm. The thermal shock resistance of the 97.5 percent ZrB2 plus 2.5 percent boron ceramals compares favorably with that of TiC plus Co and TiC plus Ni ceramals. Oxidation of the disks during the thermal shock evaluation was slight for the comparatively short time (8.3 hr) up through 2000 degrees F. Oxidation of a specimen was severe, however, after 100 hours at 2000 degrees F. The turbine blade performance evaluation of the 93 percent ZrB2 plus 7 percent B composition was preliminary in scope ; no conclusions can be drawn.

  7. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  8. Thermal effects on the mechanical properties of SiC fiber reinforced reaction bonded silicon nitride matrix (SiC/RBSN) composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Phillips, R. E.

    1988-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  9. Turbomachinery Course

    NASA Technical Reports Server (NTRS)

    Stinson, Henry; Turner, James (Technical Monitor)

    2002-01-01

    In this viewgraph presentation, information and diagrams are provided on rocket engine turbopumps. These turbomachines are highly complex and have several unique features: (1) They are generally very high power density machines; (2) They experience high fluid dynamic loads; (3) They are exposed to severe thermal shocks in terms of rapid starts and stops and extremely high heat transfer coefficients; (4) They have stringent suction performance requirements to minimize tank weight; (5) Their working fluids significantly impact the design: oxidizers are generally explosive, they afford almost no lubrication for bearings and seals, some fuels can degrade material properties, cryogenics result in severe thermal gradients; (6) Their life requirements are short relative to other turbomachines in that there are hundreds of cycles and a few hours of operation for reusable systems. The design of rocket engine turbomachines is a systems engineering challenge because multiple engineering disciplines must be integrated to deal with issues pertaining to stress, structural dynamics, hydrodynamics, aerodynamics, thermodynamics, and materials and process selection.

  10. Molecular dynamics simulation of shock-wave loading of copper and titanium

    NASA Astrophysics Data System (ADS)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  11. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  12. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  13. Preparation and thermal shock resistance of high emissivity molybdenum disilicide- aluminoborosilicate glass hybrid coating on fiber reinforced aerogel composite

    NASA Astrophysics Data System (ADS)

    Shao, Gaofeng; Lu, Yucao; Wu, Xiaodong; Wu, Jun; Cui, Sheng; Jiao, Jian; Shen, Xiaodong

    2017-09-01

    To develop a flexible reusable surface insulation for thermal protection system, MoSi2-aluminoborosilicate glass hybrid coatings have been prepared on Al2O3 fiber reinforced Al2O3-SiO2 aerogel composite by slurry dipping and rapid sintering method. The effect of MoSi2 content on radiative property and thermal shock behavior was investigated. The total emissivity values of all the coatings exceeded 0.85 in the wavelength of 0.8-2.5 μm. The M10 and M50 coatings were up to 0.9, which was due to the highest amorphous glass content of the M10 coating and the largest surface roughness of the M50 coating. The M30 coated composite showed the best thermal shock resistance with only 0.023% weight loss after 20 thermal shock cycles between 1473 K and room temperature, which was attributed to the similar thermal expansion coefficients between the coating and the substrate and the appropriate viscosity of aluminoborosilicate glass at 1473 K. The cracks resulted from CTE mismatch stress with different sizes formed and grew on the surface of M10, M40 and M50 coated samples, leading to the failure of the composites.

  14. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen subjected to impacts in the laboratory. Analysis showed greater total von Mises stress and pore pressure in the components of the disc under transient shocks compared to static or quasi-static loading. These findings support the idea that impact shocks cause a change in mechanical response and are potentially damaging to the disc in the long term.

  15. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M <20) bow shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  16. Electron injection by whistler waves in non-relativistic shocks

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Spitkovsky, Anatoly

    2012-04-01

    Radio and X-ray observations of shocks in young supernova remnants (SNRs) reveal electron acceleration to non-thermal, ultra-relativistic energies (~ 10-100 TeV). This acceleration is usually assumed to happen via the diffusive shock acceleration (DSA) mechanism. However, the way in which electrons are initially energized or 'injected' into this acceleration process is an open question and the main focus of this work. We present our study of electron acceleration in nonrelativistic shocks using 2D and 3D particle-in-cell (PIC) plasma simulations. Our simulations show that significant non-thermal acceleration happens due to the growth of oblique whistler waves in the foot of quasi-perpendicular shocks. The obtained electron energy distributions show power law tails with spectral indices up to α ~ 3-4. Also, the maximum energies of the accelerated particles are consistent with the electron Larmor radii being comparable to that of the ions, indicating potential injection into the subsequent DSA process. This injection mechanism requires the shock waves to have fairly low Alfvénic Mach numbers, MA <20, which is consistent with the theoretical conditions for the growth of whistler waves in the shock foot (MA <(mi/me)1/2). Thus, if this mechanism is the only robust electron injection process at work in SNR shocks, then SNRs that display non-thermal emission must have significantly amplified upstream magnetic fields. Such field amplification is likely achieved by accelerated ions in these environments, so electron and ion acceleration in SNR shocks must be interconnected.

  17. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    PubMed

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  18. Modeling of plasticity and fracture of metals at shock loading

    NASA Astrophysics Data System (ADS)

    Mayer, A. E.; Khishchenko, K. V.; Levashov, P. R.; Mayer, P. N.

    2013-05-01

    In this paper, we present a model of dislocation plasticity and fracture of metals, which in combination with the wide-range equation of state and the continuum mechanics equations is a necessary component for simulation of the shock-wave loading. We take into account immobilization of dislocations and nucleation of micro-voids in weakened zones of substance; this is distinguished feature of the present version of the model. Accounting of the dislocations immobilization provides a better description of the unloading wave structure, while the detailed consideration of processes in the weakened zones expands the domain of applicability of fracture model to higher strain rates. We compare our results with the experimental data for the shock loading of aluminum, copper, and nickel samples; the comparison indicates satisfactory description of the elastic precursor, unloading wave, and spall pulse. Using the model, we investigate intently the early stage of the shock formation in solids; it is found out that the elastic precursor is formed even for a strong shock wave, and initially the precursor has very large amplitude and propagation velocity.

  19. The α–ω phase transition in shock-loaded titanium

    DOE PAGES

    Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.; ...

    2017-07-28

    Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less

  20. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  1. Shock and thermal history of iron and chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Goldstein, Joseph I.

    1994-01-01

    This research grant included a study of the shock and thermal history of iron and chondritic meteorites. The important research findings are to be found in the 20 publications that were published as a result of the research support. A complete bibliographic reference to all these papers is given.

  2. 77 FR 21594 - Duke Energy Carolinas, LLC; Environmental Assessment and Finding of No Significant Impact, Oconee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... of light-water nuclear power reactors provide adequate margins of safety during any condition of... toughness requirements for protection against pressurized thermal shock (PTS) events. The proposed action... for Protection Against Pressurized Thermal Shock Events,'' and 10 CFR part 50 Appendix G, ``Fracture...

  3. Intergranular metal phase increases thermal shock resistance of ceramic coating

    NASA Technical Reports Server (NTRS)

    Carpenter, H. W.

    1966-01-01

    Dispersed copper phase increases the thermal shock resistance of a plasma-arc-sprayed coating of zirconia used as a heat barrier on a metal substrate. A small amount of copper is deposited on the granules of the zirconia powder before arc-spraying the resultant powder composite onto the substrate.

  4. ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Basu, K.; Sommer, M.; Erler, J.; Eckert, D.; Vazza, F.; Magnelli, B.; Bertoldi, F.; Tozzi, P.

    2016-10-01

    We present ALMA measurements of a merger shock using the thermal Sunyaev-Zel’dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at z≈ 0.9. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number { M }={2.4}-0.6+1.3, which in turn suggests a high value of the magnetic field (of the order of 4-10 μ {{G}}) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.

  5. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  6. Hsp90 Orchestrates Transcriptional Regulation by Hsf1 and Cell Wall Remodelling by MAPK Signalling during Thermal Adaptation in a Pathogenic Yeast

    PubMed Central

    Leach, Michelle D.; Budge, Susan; Walker, Louise; Munro, Carol; Cowen, Leah E.; Brown, Alistair J. P.

    2012-01-01

    Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90) interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red), but not osmotic stress (NaCl). We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling. PMID:23300438

  7. U-Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites

    NASA Astrophysics Data System (ADS)

    Niihara, Takafumi; Kaiden, Hiroshi; Misawa, Keiji; Sekine, Toshimori; Mikouchi, Takashi

    2012-08-01

    Shock-recovery and annealing experiments on basalt-baddeleyite mixtures were undertaken to evaluate shock effects on U-Pb isotopic systematics of baddeleyite. Shock pressures up to 57 GPa caused fracturing of constituent phases, mosaicism of olivine, maskelynitization of plagioclase, and melting, but the phase transition from monoclinic baddeleyite structure to high-pressure/temperature polymorphs of ZrO2 was not confirmed. The U-Pb isotopic systems of the shock-loaded baddeleyite did not show a large-scale isotopic disturbance. The samples shock-recovered from 47 GPa were then employed for annealing experiments at 1000 or 1300 °C, indicating that the basalt-baddeleyite mixture was almost totally melted except olivine and baddeleyite. Fine-grained euhedral zircon crystallized from the melt was observed around the relict baddeleyite in the sample annealed at 1300 °C for 1 h. The U-Pb isotopic systems of baddeleyite showed isotopic disturbances: many data points for the samples annealed at 1000 °C plotted above the concordia. Both radiogenic lead loss/uranium gain and radiogenic lead gain/uranium loss were observed in the baddeleyite annealed at 1300 °C. Complete radiogenic lead loss due to shock metamorphism and subsequent annealing was not observed in the shock-loaded/annealed baddeleyites studied here. These results confirm that the U-Pb isotopic systematics of baddeleyite are durable for shock metamorphism. Since shergottites still preserve Fe-Mg and/or Ca zonings in major constituent phases (i.e. pyroxene and olivine), the shock effects observed in Martian baddeleyites seem to be less intense compared to that under the present experimental conditions. An implication is that the U-Pb systems of baddeleyite in shergottites will provide crystallization ages of Martian magmatic rocks.

  8. Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.

    2009-01-01

    The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock wave experiments of [17] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite and 17.8 and 54.1 GPa for calcite, respectively, a factor of 2 to 3 lower than reported earlier by [17].

  9. High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    NASA Astrophysics Data System (ADS)

    del Valle, Maria V.; Müller, A. L.; Romero, G. E.

    2018-04-01

    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.

  10. Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity

    NASA Astrophysics Data System (ADS)

    Battarbee, M.; Vainio, R.; Laitinen, T.; Hietala, H.

    2013-10-01

    Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles. This, in turn, is determined by the efficiency of particle injection into the acceleration process. Aims: We present an analysis of the injection efficiency at coronal shocks of varying obliquity. We assessed injection through reflection and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency. Methods: Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal velocity Vs were varied to assess the injection efficiency with respect to these parameters. Results: We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the cross-shock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions. Conclusions: Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with varying field-line geometry. Appendices are available in electronic form at http://www.aanda.org

  11. Experimentally Shock-loaded Anhydrite: Unit-Cell Dimensions, Microstrain and Domain Size from X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Skala, R.; Hoerz, F.

    2003-01-01

    Cretaceous Tertiary (K/T) boundary is traditionally associated with one of the most dramatic mass extinctions in the Earth history. A number of killing mechanisms have been suggested to contribute to the widespread extinctions of Cretaceous biota at this boundary, including severe, global deterioration of the atmosphere and hydrosphere from the shock-induced release of CO2 and SO(x) from carbonate- and sulfate-bearing target rocks, respectively. Recently carried out calculations revealed that the global warming caused by CO2 release was considerably less important than the cooling due to SO(x) gases release during the Chicxulub impact event. Considering apparent potential importance of the response of sulfates to the shock metamorphism, relative lack of the data on shock behavior of sulfates as well as some general difficulties encountered during thermodynamic modeling of the shock-induced CO2 loss from carbonates we subjected anhydrite to a series of shock experiments designed for complete recovery of the shocked material. We report here on the detail X-ray diffraction analysis of seven samples that were subjected to experimental shock-loading from 10 to 65 GPa.

  12. Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR) - recovery after shock loading.

    PubMed

    Bajaj, Mini; Gallert, Claudia; Winter, Josef

    2009-03-15

    An anaerobic fixed bed reactor (AFBR) was run for 550 days with a mixed microbial flora to stabilize synthetic wastewater that contained glucose and phenol as main carbon sources. The influent phenol concentration was gradually increased from 2 to 40 mmol/l within 221 days. The microbial flora was able to adapt to this high phenol concentration with an average of 94% phenol removal. Microbial adaptation at such a high phenol concentration is not reported elsewhere. The maximum phenol removal observed before the phenol shock load was 39.47 mmol/l or 3.7 g phenol/l at a hydraulic retention time (HRT) of 2.5 days and an organic loading rate (OLR) of 5.3 g/l.d which amounts to a phenol removal rate of ca. 15.8 mmol phenol/l.d. The chemical oxygen demand (COD) removal before exposing the reactor to a shock load corresponded with phenol removal. A shock load was induced in the reactor by increasing the phenol concentration from 40 to 50 mmol/l in the influent. The maximum phenol removal rate observed after shock load was 18 mmol/l.d at 5.7 g COD/l.d. But this was not a stable rate and a consistent drop in COD and phenol removal was observed for 1 week, followed by a sharp decline and production of fatty acids. Recovery of the reactor was possible only when no feed was provided to the reactor for 1 month and the phenol concentration was increased gradually. When glucose was omitted from the influent, unknown intermediates of anaerobic phenol metabolism were observed for some time.

  13. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.

    PubMed

    Mir, A H; Qamar, A

    2017-09-27

    Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.

  14. IR window design for hypersonic missile seekers: thermal shock and cooling systems

    NASA Astrophysics Data System (ADS)

    Hingst, Uwe; Koerber, Stefan

    2001-10-01

    Infra-red (IR) seekers on missiles at high Mach-numbers in the lower tier air defence often suffer from degradation in performance due to aerothermodynamic effects. The kind and rate of degradation depends on the geometric design (shape) and location of the IR-window. Optimal design may reduce those effects but still misses to totally withstand the imposed thermal stresses (thermal shock). Proper thermal protection systems and/or window cooling systems will be needed. The first part of this paper deals particularly with passive IR- window design features to reduce the thermal stresses. A series of wind-tunnel testings focused on the thermal shock behavior of different IR-window shapes under critical flight conditions. The variation of typical design parameters demonstrates the available features to reduce thermal shock by passive ways. The second part presents active thermal stress reduction devices, e.g. an active cooling system. Among others the most efficient reduction of thermal heating is based on three components: A partial coverage of the IR-dome to protect most parts against heating effects, a rotating system bearing the IR-dome and a liquid spray-cooling system in the gap between the cover and the IR-dome. The hemispherical or pyramidal dome can be located either midways in the missile nose section or sideways on the structure. The liquid spray cooling system combines both, a heat exchange by fluid evaporation and a heat transfer by fluid and gas cross flow (convection), causing a low fluid consumption. Such a cooling system along with their driving parameters and the resulting analytical performance will be presented.

  15. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre Antoine; Debruyne, Michel; Bolis, Cyril

    2012-03-01

    In order to study the shock-detonation transition, we propose to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water (H2O) has been first employed; eventually heavy water (D2O) has been chosen for its better infrared spectral properties. We present the PDV results of different embedded optical fibers which sense the medium with two different approaches: a non intrusive optical observation of phenomena coming in front of them (interface, shock wave, detonation wave) followed by their mechanical interaction with the fiber.

  16. Impact buckling of thin bars in the elastic range hinged at both ends

    NASA Technical Reports Server (NTRS)

    Koning, Carel; Taub, Josef

    1934-01-01

    Following the development of the well-known differential equations of the problem and their resolution for failure in tension, the bending (transverse) oscillations of an originally not quite straight bar hinged at both ends and subjected to a constant longitudinal force (shock load) are analyzed. To this end the course of the bar form is expanded in a sinusoidal series, after which the investigation is carried through separately for the fundamental oscillation and the (n-1)the higher oscillations. The analysis of the fundamental oscillation distinguishes three cases: shock load lower, equal to, or higher than the Eulerian load. The investigation leads to functions which are proportional to the maximum stresses in time and space due to the shock stresses in buckling.

  17. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  18. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    During the development stage, in order to design/to size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads must be defined. There are two kinds of dynamic environment, i.e. shock transients and steady-state random and sinusoidal vibration environments. Usually, the steady-state random and sinusoidal vibration environments are scalable, but the shock environments are not scalable. In other words, based on similarities only random vibration environments can be defined for a new engine. The methodology covered in this paper provides a way to predict the shock environments and the dynamic loads for new engine systems and new engine components in the early stage of new engine development or engine nozzle modifications.

  19. Design of a Sample Recovery Assembly for Magnetic Ramp-Wave Loading

    NASA Astrophysics Data System (ADS)

    Chantrenne, S.; Wise, J. L.; Asay, J. R.; Kipp, M. E.; Hall, C. A.

    2009-06-01

    Characterization of material behavior under dynamic loading requires studies at strain rates ranging from quasi-static to the limiting values of shock compression. For completeness, these studies involve complementary time-resolved data, which define the mechanical constitutive properties, and microstructural data, which reveal physical mechanisms underlying the observed mechanical response. Well-preserved specimens must be recovered for microstructural investigations. Magnetically generated ramp waves produce strain rates lower than those associated with shock waves, but recovery methods have been lacking for this type of loading. We adapted existing shock recovery techniques for application to magnetic ramp loading using 2-D and 3-D ALEGRA MHD code calculations to optimize the recovery design for mitigation of undesired late-time processing of the sample due to edge effects and secondary stress waves. To assess the validity of our simulations, measurements of sample deformation were compared to wavecode predictions.

  20. Shock wave loading of a magnetic guide

    NASA Astrophysics Data System (ADS)

    Kindt, L.

    2011-10-01

    The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.

  1. Shock Metamorphism in Northwest Africa 8159, Tissint and Elephant Moraine A79001: Implications for Thermal Histories and Geochronology

    NASA Astrophysics Data System (ADS)

    Sharp, T. G.; Hu, J.; Walton, E. L.

    2016-08-01

    Shock metamorphic effects in martian meteorites provide a record of recent impact events on Mars. We examined the textures and mineralogy associated with shock melting in three highly shocked martian basalts: NWA 8159, Tissint and EET A79001.

  2. Elevated Temperature Properties of Titanium Carbide Base Ceramals Containing Nickel or Iron

    NASA Technical Reports Server (NTRS)

    Cooper, A L; Colteryahn, L E

    1951-01-01

    Elevated-temperature properties of titanium carbide base ceramals containing nickel or iron were determined in oxidation, modulus of rupture, tensile strength, and thermal-shock resistance. These materials followed the general growth law and exhibited two stages in oxidation. The following tensile strengths were found at 2000 degrees F: 13.3 weight percent nickel, 16, 150 pounds per square inch; 11.8 weight percent iron, 12,500 pounds per square inch; unalloyed titanium carbide, 16,450 pounds per square inch. Nickel or iron additions to titanium carbide improved the thermal-shock resistance, nickel more. The path of fracture in tensile and thermal-shock specimens was found to progress approximately 50 percent intergranularly and 50 percent transgranularly.

  3. Refractive indices of CaF2 single crystals under elastic shock loading

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhou, X. M.; Liu, C. L.; Luo, S. N.

    2017-07-01

    Refractive indices and Hugoniots of CaF2 single crystals are investigated by laser displacement interferometry under shock loading below 5 GPa. Birefringence is observed for the [110] loading. We obtain the Hugoniot equation of states for [100], [110] and [111], and refractive indices for these orientations with consideration of their polarization. The measured refractive indices are in reasonable agreement with predictions based on the piezo-optic theory, and are used to refine the elasto-optic coefficients.

  4. An exploratory investigation of cumulative shock fatigue.

    NASA Technical Reports Server (NTRS)

    Simonson, D.; Byrne, J. G.

    1972-01-01

    A simple device for producing cumulative shock loading in solids is described. The device uses a ballistic-impact-driven projectile to introduce high-stress waves into a solid. The impact time and load amplitude can be varied to produce fracture in one or several impacts in PMMA rods. The wavefront approached a square wave shape. Materials other than PMMA were loaded to failure to demonstrate the versatility of the device. Fracture morphologies observed with optical and scanning-electron microscopy are described.

  5. Nondestructive evaluation of plasma-sprayed thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, D.J.; Taylor, J.A.T.

    Acoustic emission has been used as a nondestructive evaluation technique to examine the thermal shock response of thermal barrier coatings. In this study, samples of partially stabilized zirconia powder were sprayed and acoustic emission (AE) data were taken in a series of thermal shock tests in an effort to correlate AE with a given failure mechanism. Microstructural evidence was examined using parallel beam x-ray diffraction and optical microscopy. The AE data are discussed in terms of cumulative amplitude distributions and the use of this technique to characterize fracture events.

  6. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    NASA Astrophysics Data System (ADS)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  7. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.

    2017-08-01

    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  8. Development of high temperature materials for solid propellant rocket nozzle applications

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Lineback, L. D.

    1974-01-01

    Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported.

  9. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Nath, M.; Ghosh, A.

    2015-03-15

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{submore » 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.« less

  10. Thermotolerant desert lizards characteristically differ in terms of heat-shock system regulation.

    PubMed

    Zatsepina, O G; Ulmasov, K A; Beresten, S F; Molodtsov, V B; Rybtsov, S A; Evgen'ev, M B

    2000-03-01

    We compare the properties and activation of heat-shock transcription factor (HSF1) and the synthesis of a major family of heat-shock proteins (HSP70) in lizard species inhabiting ecological niches with strikingly different thermal parameters. Under normal non-heat-shock conditions, all desert-dwelling lizard species studied so far differ from a northern, non-desert species (Lacerta vivipara) in the electrophoretic mobility and content of proteins constitutively bound to the regulatory heat-shock elements in the heat-shock gene promoter. Under these conditions, levels of activated HSF1 and of both HSP70 mRNA and protein are higher in the desert species than in the non-desert species. Upon heat shock, HSF1 aggregates in all species studied, although in desert species HSF1 subsequently disaggregates more rapidly. Cells of the northern species have a lower thermal threshold for HSP expression than those of the desert species, which correlates with the relatively low constitutive level of HSPs and high basal content of HSF1 in their cells.

  11. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  12. Trajectory Control of Small Rotating Projectiles by Laser Sparks

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard

    2015-09-01

    The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.

  13. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of granitic geothermal reservoirs.

  14. Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Lucey, P.G.; Christensen, P.R.

    2002-01-01

    The feldspar and pyroxene mineralogies on Mars revealed by the Thermal Emission Spectrometer (TES) on Mars Global Surveyor likely record a variety of shock effects, as suggested by petrologic analyses of the Martian meteorites and the abundance of impact craters on the planet's surface. To study the effects of shock pressures on thermal infrared spectra of these minerals, we performed shock recovery experiments on orthopyroxenite and anorthosite samples from the Stillwater Complex (Montana) over peak pressures from 17 to 63 GPa. We acquired emissivity and hemispherical reflectance spectra (350-1400 cm-1; ???7-29 ??m) of both coherent chips and fine-grained powders of shocked and unshocked samples. These spectra are more directly comparable to remotely sensed data of Mars (e.g., TES) than previously acquired absorption or transmission spectra of shocked minerals. The spectra of experimentally shocked feldspar show systematic changes with increasing pressure due to depolymerization of the silica tetrahedra. For the spectra of chips, this includes the disappearance of small bands in the 500-650 cm-1 region and a strong band at 1115 cm-1, and changes in positions of a strong band near 940 cm-1 and the Christiansen feature near 1250 cm-1. Spectra of the shocked powders show the gradual disappearance of a transparency feature near 830 cm-1. Fewer changes are observed in the pyroxene spectra at pressures as high as 63 GPa. Spectra of experimentally shocked minerals will help identify more precisely the mineralogy of rocks and soils not only from TES but also from Mars instruments such as miniTES and THEMIS.

  15. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock.

    PubMed

    Wilson, L B; Sibeck, D G; Turner, D L; Osmane, A; Caprioli, D; Angelopoulos, V

    2016-11-18

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-large-scale (i.e., tens to thousands of thermal ion Larmor radii), transient (∼5-10  per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M>40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1≤M<20) bow shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least ∼300  keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  16. Interstellar gas and X-rays toward the Young supernova remnant RCW 86; pursuit of the origin of the thermal and non-thermal X-ray

    NASA Astrophysics Data System (ADS)

    Sano, H.; Reynoso, E. M.; Mitsuishi, I.; Nakamura, K.; Furukawa, N.; Mruganka, K.; Fukuda, T.; Yoshiike, S.; Nishimura, A.; Ohama, A.; Torii, K.; Kuwahara, T.; Okuda, T.; Yamamoto, H.; Tachihara, K.; Fukui, Y.

    2017-09-01

    We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between -46 and - 28 kms-1 toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO J = 2- 1 / 1- 0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm-3. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7-3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.

  17. Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Titus, T.N.; Becker, K.

    2006-01-01

    The extensive impact cratering record on Mars combined with evidence from SNC meteorites suggests that a significant fraction of the surface is composed of materials subjected to variable shock pressures. Pressure-induced structural changes in minerals during high-pressure shock events alter their thermal infrared spectral emission features, particularly for feldspars, in a predictable fashion. To understand the degree to which the distribution and magnitude of shock effects influence martian surface mineralogy, we used standard spectral mineral libraries supplemented by laboratory spectra of experimentally shocked bytownite feldspar [Johnson, J.R., Ho??rz, F., Christensen, P., Lucey, P.G., 2002b. J. Geophys. Res. 107 (E10), doi:10.1029/2001JE001517] to deconvolve Thermal Emission Spectrometer (TES) data from six relatively large (>50 km) impact craters on Mars. We used both TES orbital data and TES mosaics (emission phase function sequences) to study local and regional areas near the craters, and compared the differences between models using single TES detector data and 3 ?? 2 detector-averaged data. Inclusion of shocked feldspar spectra in the deconvolution models consistently improved the rms errors compared to models in which the spectra were not used, and resulted in modeled shocked feldspar abundances of >15% in some regions. However, the magnitudes of model rms error improvements were within the noise equivalent rms errors for the TES instrument [Hamilton V., personal communication]. This suggests that while shocked feldspars may be a component of the regions studied, their presence cannot be conclusively demonstrated in the TES data analyzed here. If the distributions of shocked feldspars suggested by the models are real, the lack of spatial correlation to crater materials may reflect extensive aeolian mixing of martian regolith materials composed of variably shocked impact ejecta from both local and distant sources. ?? 2005 Elsevier Inc. All rights reserved.

  18. Microstructural fingerprints of phase transitions in shock-loaded iron

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α-->ɛ (bcc-->hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α-->ɛ phase transition, even though no ɛ is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed.

  19. Response and representation of ductile damage under varying shock loading conditions in tantalum

    DOE PAGES

    Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; ...

    2016-02-25

    The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less

  20. Prefrontal inhibition of threat processing reduces working memory interference

    PubMed Central

    Clarke, Robert; Johnstone, Tom

    2013-01-01

    Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference. PMID:23750133

  1. A shock spectra and impedance method to determine a bound for spacecraft structural loads

    NASA Technical Reports Server (NTRS)

    Bamford, R.; Trubert, M.

    1974-01-01

    A method to determine a bound of structural loads for a spacecraft mounted on a launch vehicle is developed. The method utilizes the interface shock spectra and the relative impedance of the spacecraft and launch vehicle. The method is developed for single-degree-of-freedom models and then generalized to multidegree-of-freedom models.

  2. The influence of ZrO2/20%Y2O3 and Al2O3 deposited coatings to the behavior of an aluminum alloy subjected to mechanical shock

    NASA Astrophysics Data System (ADS)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Luca, D.; Istrate, B.

    2015-10-01

    Aluminum alloys are used in the aerospace industry due to their good mechanical properties and their low density compared with the density of steels. Usually the parts made of aluminum alloys contribute to the structural frame of aircrafts and they must withstand static and variable mechanical loads and also mechanical loads applied in a very short time which determine different phenomenon's in the material behavior then static or fatigue loads. This paper analysis the resilience of a 2024 aluminum alloy subjected to shock loads and the way how a coating can improve its behavior. For improving the behavior two coatings were considered: Al2O3 with 99.5% purity and ZrO2/20%Y2O3. The coatings were deposited on the base material by plasma spraying. The samples with and without coating were subject to mechanical shock to determine the resilience of the materials and the cracks propagation was investigated using SEM analysis. To highlight the physical phenomenon's that appear in the samples during the mechanical shock, explicit finite element analysis were done using Ansys 14.5 software.

  3. Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Lin, I.-C.; McKay, D. S.

    2000-01-01

    Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large meteorite impacts in platform sediments. On a smaller scale, meteorites contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). ALH84001 meteorite contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of ALH84001. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in ALH84001 can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in ALH84001. In addition, Raman spectroscopy of carbonate globules in ALH84001 indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the ALH84001 carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx. 600 C experienced by ALH84001. Here, we report thermal and compositional characterization of unshocked siderite and its transition to magnetite. Additional information is contained in the original extended abstract.

  4. Intense plasma waves at and near the solar wind termination shock.

    PubMed

    Gurnett, D A; Kurth, W S

    2008-07-03

    Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.

  5. Consistent Temperature Coupling with Thermal Fluctuations of Smooth Particle Hydrodynamics and Molecular Dynamics

    PubMed Central

    Ganzenmüller, Georg C.; Hiermaier, Stefan; Steinhauser, Martin O.

    2012-01-01

    We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain – internal energy and heat capacity versus particle velocity – are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance. PMID:23300586

  6. On the shock response of cubic metals

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Gray, G. T.; Millett, J. C. F.

    2009-11-01

    The response of four cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed; these were fcc nickel, the ordered fcc intermetallic Ni3Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl; Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first, equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through the description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures illustrating processes active during the shock-loading process. Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni3Al while showing no such effect for bcc Ta and for the intermetallic TiAl. This difference in effective shock hardening has been related, on the one hand, to the fact that bcc metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice under shock-loading conditions. These behaviors, compared between these four materials, illustrate the role of defect generation, transport, storage, and interaction in determining the response of materials to shock prestraining.

  7. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    NASA Astrophysics Data System (ADS)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  8. X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF ζ OPH AND BD+43°3654

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Guerrero, M. A.; Oskinova, L. M.

    2016-04-20

    Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars ζ Oph by Chandra and Suzaku and of BD+43°3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of ζ Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T ≈ 2 × 10{sup 6} K. The cometary shape ofmore » this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43°3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.« less

  9. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A new class of high-G and long-duration shock testing machines

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir

    2018-03-01

    Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.

  11. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  12. Shock Wave Structure Mediated by Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2016-12-01

    Energetic particles such as cosmic rays, Pick Up Ions (PUIs), and solar energetic particles can affect all facets of plasma physics and astrophysical plasma. Energetic particles play an especially significant role in the dissipative process at shocks and in determining their structure. The very interesting recent observations of shocks in the inner heliosphere found that many shocks appear to be significantly mediated by solar energetic particles which have a pressure that exceeds considerably both the thermal gas pressure and the magnetic field pressure. Energetic particles contribute an isotropic scalar pressure to the plasma system at the leading order, as well as introducing dissipation via a collisionless heat flux (diffusion) at the next order and a collisionless stress tensor (viscosity) at the second order. Cosmic-ray modified shocks were discussed by Axford et al. (1982), Drury (1983), and Webb (1983). Zank et al. (2014) investigated the incorporation of PUIs in the supersonic solar wind beyond 10AU, in the inner Heliosheath and in the Very Local Interstellar Medium. PUIs do not equilibrate collisionally with the background plasma in these regimes. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. This model is used to investigate the structure of shock waves assuming that we can neglect the magnetic field. Specifically, we consider the dissipative role that both the energetic particle collisionless heat flux and viscosity play in determining the structure of collisionless shock waves. We show that the incorporation of both energetic particle collisionless heat flux and viscosity is sufficient to completely determine the structure of a shock. Moreover, shocks with three sub-shocks converge to the weak sub-shocks. This work differs from the investigation of Jokipii and Williams (1992) who restricted their attention to a cold thermal gas. For a cold thermal non-magnetized gas, all shocks are smoothed by cosmic ray diffusion and therefore viscosity is not an important process.

  13. Shock-absorbing caster wheel is simple and compact

    NASA Technical Reports Server (NTRS)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  14. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu

    2015-06-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  15. Chemical Enhancements in Shock-Accelerated Particles: Ab initio Simulations.

    PubMed

    Caprioli, Damiano; Yi, Dennis T; Spitkovsky, Anatoly

    2017-10-27

    We study the thermalization, injection, and acceleration of ions with different mass/charge ratios, A/Z, in nonrelativistic collisionless shocks via hybrid (kinetic ions-fluid electrons) simulations. In general, ions thermalize to a postshock temperature proportional to A. When diffusive shock acceleration is efficient, ions develop a nonthermal tail whose extent scales with Z and whose normalization is enhanced as (A/Z)^{2} so that incompletely ionized heavy ions are preferentially accelerated. We discuss how these findings can explain observed heavy-ion enhancements in Galactic cosmic rays.

  16. Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Edgar, R. J.

    1982-01-01

    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.

  17. Preliminary Results on Thermal Shock Behavior of CuZnAl Shape Memory Alloy Using a Solar Concentrator as Heating Source

    NASA Astrophysics Data System (ADS)

    Tudora, C.; Abrudeanu, M.; Stanciu, S.; Anghel, D.; Plaiaşu, G. A.; Rizea, V.; Ştirbu, I.; Cimpoeşu, N.

    2018-06-01

    It is highly accepted that martensitic transformation can be induced by temperature variation and by stress solicitation. Using a solar concentrator, we manage to increase the material surface temperature (till 573 respectively 873 K) in very short periods of time in order to analyze the material behavior under thermal shocks. The heating/cooling process was registered and analyzed during the experiments. Material surface was analyzed before and after thermal shocks by microstructure point of view using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experiments follow the material behavior during fast heating and propose the possibility of activating smart materials using the sun heat for aerospace applications.

  18. A Comparative Study of the Behaviour of Five Dense Glass Materials Under Shock Loading Conditions

    NASA Astrophysics Data System (ADS)

    Radford, Darren D.; Proud, William G.; Field, John E.

    2001-06-01

    Previous work at the Cavendish Laboratory on the properties of glasses under shock loading has demonstrated that the material response is highly dependent upon the composition of the glass. The shock response of glass materials with an open structure, such as borosilicate, exhibits a ramping behaviour in the longitudinal stress histories due to structural collapse. Glass materials with a “filled” microstructure, as in the case of Type-D, Extra Dense Flint (DEDF) do not exhibit a ramping behaviour and behave in a manner similar to polycrystalline ceramics [1]. The current investigation compares the behaviour of five such glasses (SF15, DEDF, LACA, SF57 and DEDF-927210) under shock loading conditions. It is observed that slight changes in material composition can have a large affect on the inelastic behaviour. Principal Hugoniot and shear strength data are presented for all of the materials for pressures ranging from 2 to 14 GPa. Evidence of the so-called failure-front [2] is presented via lateral stress histories measured using manganin stress gauges and confirmed with high-speed photography. 1. Bourne, N.K., Millett, J.C.F., and Field, J.E., “On the strength of shocked glasses” Proc. R. Soc. Lond. A 455 (1999) 1275-1282 2. Brar, N.S., “Failure Waves in Glass and Ceramics Under Shock Compression”, in "Shock Compression of Condensed Matter 1999", ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, American Institute of Physics, Woodbury, New York, (1999) 601-606

  19. Dynamical efficiency of collisionless magnetized shocks in relativistic jets

    NASA Astrophysics Data System (ADS)

    Aloy, Miguel A.; Mimica, Petar

    2011-09-01

    The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.

  20. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband x-ray Laue diffraction.

    PubMed

    Comley, A J; Maddox, B R; Rudd, R E; Prisbrey, S T; Hawreliak, J A; Orlikowski, D A; Peterson, S C; Satcher, J H; Elsholz, A J; Park, H-S; Remington, B A; Bazin, N; Foster, J M; Graham, P; Park, N; Rosen, P A; Rothman, S R; Higginbotham, A; Suggit, M; Wark, J S

    2013-03-15

    The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

  1. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  2. Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa

    NASA Astrophysics Data System (ADS)

    Root, S.

    2005-07-01

    Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.

  3. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  4. Adaptive magnetorheological seat suspension for shock mitigation

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2013-04-01

    An adaptive magnetorheological seat suspension (AMSS) was analyzed for optimal protection of occupants from shock loads caused by the impact of a helicopter with the ground. The AMSS system consists of an adaptive linear stroke magnetorheological shock absorber (MRSA) integrated into the seat structure of a helicopter. The MRSA provides a large controllability yield force to accommodate a wide spectrum for shock mitigation. A multiple degrees-of-freedom nonlinear biodynamic model for a 50th percentile male occupant was integrated with the dynamics of MRSA and the governing equations of motion were investigated theoretically. The load-stroke profile of MRSA was optimized with the goal of minimizing the potential for injuries. The MRSA yield force and the shock absorber stroke limitations were the most crucial parameters for improved biodynamic response mitigation. An assessment of injuries based on established injury criteria for different body parts was carried out.

  5. On conductivity changes in shocked potassium chloride

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Townsend, D.; Braithwaite, M.

    2005-06-01

    A previous work has reported that shock loading of ionic crystals produces an induced polarization and changes in electrical conductivity. However, previous measurements recorded an integrated electrical signal comprising the induced electrical field and that due to current flow. For this reason a differential system was designed to separate these effects that was adapted from that used in the investigation of the conductivity of hydrogen under shock. The measurement removes voltages produced in the shock-induced electrical field, allowing determination of those resulting from resistance changes. Although the mechanical response of potassium chloride to shock has been studied extensively, the electrical response is less studied. Here, experiments are reported in which it is shocked to various stresses in order to observe conductivity changes. The range of stresses induced includes several mechanical thresholds, including the elastic-plastic transition, the B1:B2 phase transformation, and the overdriving of the shock faster than the elastic wave. The behavior observed when single crystal and targets pressed from granular material (to close to full density) are shocked around each of these thresholds is presented. The effects of loading to a particular stress in a single step or in multiple steps are discussed.

  6. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.

    2011-01-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  7. Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up-regulation of heat shock proteins and high thermotolerance.

    PubMed

    Garbuz, David G; Zatsepina, Olga G; Przhiboro, Andrey A; Yushenova, Irina; Guzhova, Irina V; Evgen'ev, Michael B

    2008-11-01

    A population of Stratiomys japonica, a species belonging to the family Stratiomyidae (Diptera), common name 'soldier flies', occurs in a hot volcanic spring, which is apparently among the most inhospitable environments for animals because of chemical and thermal conditions. Larvae of this species, which naturally often experience temperatures more than 40 degrees C, have constitutively high concentrations of the normally inducible heat-shock protein Hsp70, but very low level of corresponding mRNA. Larvae of three other species of the same family, Stratiomys singularior, Nemotelus bipunctatus and Oxycera pardalina, are confined to different type semi-aquatic habitats with contrasting thermal regime. However, all of them shared the same pattern of Hsp70 expression. Interestingly, heat-shock treatment of S. japonica larvae activates heat-shock factor and significantly induces Hsp70 synthesis, whereas larvae of O. pardalina, a species from constant cold environment, produce significantly less Hsp70 in response to heat shock. Adults of the four species also exhibit lower, but detectable levels of Hsp70 without heat shock. Larvae of all species studied have very high tolerance to temperature stress in comparison with other Diptera species investigated, probably representing an inherent adaptive feature of all Stratiomyidae enabling successful colonization of highly variable and extreme habitats.

  8. Integrated modeling/analyses of thermal-shock effects in SNS targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Haines, J.

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less

  9. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

    DOE PAGES

    Seagle, Christopher T.; Davis, Jean-Paul; Knudson, Marcus D.

    2016-10-26

    Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. We employed velocimetry measurements in order to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ~1.8 mm thick. We also performed a dual thickness Lagrangian analysis on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. Finally, we observed an elastic response on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual samplemore » analyses (up to ~1.8 mm) combined with a relative timing accuracy of ~0.2 ns resulted in an uncertainty of less than 1% on density and stress at ~200 GPa peak loading on one experiment and <4% on peak loading at ~330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.« less

  10. Monte Carlo simulations of particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.

    1994-01-01

    The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.

  11. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock...

  12. A Consistent Wave Impact Load Model for Studying Structure, Equipment Ruggedness, Shock Isolation Seats, and Human Comfort in Small High Speed Craft

    DTIC Science & Technology

    2016-11-01

    acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea

  13. Ion dynamics at supercritical quasi-parallel shocks: Hybrid simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Yanqing; Lu Quanming; Gao Xinliang

    2012-09-15

    By separating the incident ions into directly transmitted, downstream thermalized, and diffuse ions, we perform one-dimensional (1D) hybrid simulations to investigate ion dynamics at a supercritical quasi-parallel shock. In the simulations, the angle between the upstream magnetic field and shock nominal direction is {theta}{sub Bn}=30 Degree-Sign , and the Alfven Mach number is M{sub A}{approx}5.5. The shock exhibits a periodic reformation process. The ion reflection occurs at the beginning of the reformation cycle. Part of the reflected ions is trapped between the old and new shock fronts for an extended time period. These particles eventually form superthermal diffuse ions aftermore » they escape to the upstream of the new shock front at the end of the reformation cycle. The other reflected ions may return to the shock immediately or be trapped between the old and new shock fronts for a short time period. When the amplitude of the new shock front exceeds that of the old shock front and the reformation cycle is finished, these ions become thermalized ions in the downstream. No noticeable heating can be found in the directly transmitted ions. The relevance of our simulations to the satellite observations is also discussed in the paper.« less

  14. A new shock wave assisted sandalwood oil extraction technique

    NASA Astrophysics Data System (ADS)

    Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.

    A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.

  15. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  16. Dust-acoustic shock waves in a dusty plasma with non-thermal ions and super-thermal electrons

    NASA Astrophysics Data System (ADS)

    Emamuddin, M.; Mamun, A. A.

    2018-01-01

    The propagation of dust-acoustic shock waves (DASWs) in a collisionless unmagnetized dusty plasma (containing super-thermal electrons of two distinct temperatures, non-thermal ions, and a negatively charged viscous dust fluid) has been theoretically investigated by deriving and solving the nonlinear Burgers' equation. It has been observed that the viscous force acting on the dust fluid is a source of dissipation, and is responsible for the formation of DASWs, and that the basic features (viz., amplitude, polarity, width, etc.) of the DASWs are significantly modified by the presence of super-thermal electrons and non-thermal ions. The possible applications of this investigation in Earth's mesosphere, the solar atmosphere, Saturn's magnetosphere, etc., have also been briefly addressed.

  17. Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2012-03-01

    Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.

  18. Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions

    NASA Astrophysics Data System (ADS)

    Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.

    2007-05-01

    A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.

  19. Injection of κ-like suprathermal particles into diffusive shock acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hyesung; Petrosian, Vahé; Ryu, Dongsu

    2014-06-20

    We consider a phenomenological model for the thermal leakage injection in the diffusive shock acceleration (DSA) process, in which suprathermal protons and electrons near the shock transition zone are assumed to have the so-called κ-distributions produced by interactions of background thermal particles with pre-existing and/or self-excited plasma/MHD waves or turbulence. The κ-distribution has a power-law tail, instead of an exponential cutoff, well above the thermal peak momentum. So there are a larger number of potential seed particles with momentum, above that required for participation in the DSA process. As a result, the injection fraction for the κ-distribution depends on themore » shock Mach number much less severely compared to that for the Maxwellian distribution. Thus, the existence of κ-like suprathermal tails at shocks would ease the problem of extremely low injection fractions, especially for electrons and especially at weak shocks such as those found in the intracluster medium. We suggest that the injection fraction for protons ranges 10{sup –4}-10{sup –3} for a κ-distribution with 10 ≲ κ {sub p} ≲ 30 at quasi-parallel shocks, while the injection fraction for electrons becomes 10{sup –6}-10{sup –5} for a κ-distribution with κ {sub e} ≲ 2 at quasi-perpendicular shocks. For such κ values the ratio of cosmic ray (CR) electrons to protons naturally becomes K {sub e/p} ∼ 10{sup –3}-10{sup –2}, which is required to explain the observed ratio for Galactic CRs.« less

  20. ARC-1978-AC78-1071

    NASA Image and Video Library

    1978-11-24

    4' and 24' Shock Tubes - Electric Arc Shock Tube Facililty N-229 (East) The facility is used to investigate the effects of radiation and ionization during outer planetary entries as well as for air-blast simualtion which requires the strongest possible shock generation in air at loadings of 1 atm or greater.

  1. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock absorbers. Unless otherwise prescribed...

  2. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section 29.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.475 Tires and shock absorbers. Unless otherwise...

  3. The role of thermal shock in cyclic oxidation

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.

    1978-01-01

    The effect of thermal shock on the spalling of oxides from the surfaces of several commercial alloys was determined. The average cooling rate was varied from approximately 240 C per second to less than 1.0 C per second during cyclic oxidation tests in air. The tests consisted of one hundred cycles of one hour at the maximum temperature (1100 or 1200 C). The alloys were HOS-875, TD-Ni, TD-NiCrAl, IN-601, IN-702, and B-1900 plus Hf. All of these alloys exhibited partial spalling within the oxide rather than total oxide loss down to bare metal. Thermal shock resulted in deformation of the metal which in turn resulted, in most cases, in changing the oxide failure mode from compressive to tensile. Tensile failures were characterized by cracking of the oxide and little loss, while compressive failures were characterized by explosive loss of platelets of oxide. This behavior was confirmed by examination of mechanically stressed oxide scales. The thermally shocked oxides spalled less than the slow cooled samples with the exception of TD-NiCrAl. This material failed in a brittle manner rather than by plastic deformation.

  4. Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.

    1999-01-01

    Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.

  5. Microbial communities involved in biogas production exhibit high resilience to heat shocks.

    PubMed

    Abendroth, Christian; Hahnke, Sarah; Simeonov, Claudia; Klocke, Michael; Casani-Miravalls, Sonia; Ramm, Patrice; Bürger, Christoph; Luschnig, Olaf; Porcar, Manuel

    2018-02-01

    We report here the impact of heat-shock treatments (55 and 70 °C) on the biogas production within the acidification stage of a two-stage reactor system for anaerobic digestion and biomethanation of grass. The microbiome proved both taxonomically and functionally very robust, since heat shocks caused minor community shifts compared to the controls, and biogas yield was not decreased. The strongest impact on the microbial profile was observed with a combination of heat shock and low pH. Since no transient reduction of microbial diversity occured after the shock, biogas keyplayers, but also potential pathogens, survived the treatment. All along the experiment, the heat-resistant bacterial profile consisted mainly of Firmicutes, Bacteroidetes and Proteobacteria. Bacteroides and Acholeplasma were reduced after heat shocks. An increase was observed for Aminobacterium. Our results prove the stability to thermal stresses of the microbial communities involved in acidification, and the resilience in biogas production irrespectively of the thermal treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Exciting cell membranes with a blustering heat shock.

    PubMed

    Liu, Qiang; Frerck, Micah J; Holman, Holly A; Jorgensen, Erik M; Rabbitt, Richard D

    2014-04-15

    Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 μs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  8. High Temperature Equation of State of Enstatite and Forsterite: Implications for Thermal Origins and Evolution

    NASA Astrophysics Data System (ADS)

    Fratanduono, D.

    2015-12-01

    The thermal history of terrestrial planets depends upon the melt boundary as it represents the largest rheological transition a material can undergo. This change in rheological behavior with solidification corresponds to a dramatic change in the thermal and chemical transport properties. Because of this dramatic change in thermal transport, recent work by Stixrude et al.[1] suggests that the silicate melt curve sets the thermal profile within super-Earths during their early thermal evolution. Here we present recent decaying shock wave experiments studying both enstatite and forsterite. The continuously measured shock pressure and temperature in these studies ranged from 8 to 1.5 Mbar and 20,000-4,000 K, respectively. We find a point on the MgSiO3 liquidus at 6800 K and 285 GPa, which is nearly a factor of two higher pressure than previously measured and provides a strong constraint on the temperature profile within super-Earths. Our shock temperature measurements on forsterite and enstatite provide much needed equation of state information to the planetary impact modeling community since the shock temperature data can be used to constrain the initial entropy state of a growing planet. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 1. Stixrude, L., Melting in super-earths. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2014).

  9. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  10. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    NASA Technical Reports Server (NTRS)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  11. Dynamic load synthesis for shock numerical simulation in space structure design

    NASA Astrophysics Data System (ADS)

    Monti, Riccardo; Gasbarri, Paolo

    2017-08-01

    Pyroshock loads are the most stressing environments that a space equipment experiences during its operating life from a mechanical point of view. In general, the mechanical designer considers the pyroshock analysis as a very demanding constraint. Unfortunately, due to the non-linear behaviour of the structure under such loads, only the experimental tests can demonstrate if it is able to withstand these dynamic loads. By taking all the previous considerations into account, some preliminary information about the design correctness could be done by performing ;ad-hoc; numerical simulations, for example via commercial finite element software (i.e. MSC Nastran). Usually these numerical tools face the shock solution in two ways: 1) a direct mode, by using a time dependent enforcement and by evaluating the time-response and space-response as well as the internal forces; 2) a modal basis approach, by considering a frequency dependent load and of course by evaluating internal forces in the frequency domain. This paper has the main aim to develop a numerical tool to synthetize the time dependent enforcement based on deterministic and/or genetic algorithm optimisers. In particular starting from a specified spectrum in terms of SRS (Shock Response Spectrum) a time dependent discrete function, typically an acceleration profile, will be obtained to force the equipment by simulating the shock event. The synthetizing time and the interface with standards numerical codes will be two of the main topics dealt with in the paper. In addition a congruity and consistency methodology will be presented to ensure that the identified time dependent loads fully match the specified spectrum.

  12. Diagnostics of the dynamics of material damage by thermal shocks with the intensity possible in the ITER divertor

    NASA Astrophysics Data System (ADS)

    Vyacheslavov, L. N.; Arakcheev, A. S.; Bataev, I. A.; Burdakov, A. V.; Kandaurov, I. V.; Kasatov, A. A.; Kurkuchekov, V. V.; Popov, V. A.; Shoshin, A. A.; Skovorodin, D. I.; Trunev, Yu A.; Vasilyev, A. A.

    2018-03-01

    A novel BETA test facility (Beam of Electrons for materials Test Applications) was developed at the Budker Institute to study the erosion of materials directly during the impact of intense thermal shocks. A powerful (up to 7 MW) long pulse (100-300 μs) electron beam is applied for experimental simulation of fast transient heat loads with the intensity probable in the ITER divertor. The heat flux parameter on a target can be widely varied (FHF = 10-300 MW m-2 s0.5) from a value significantly below the melting threshold to a value much higher, within the area of about 1 cm2. The use of an electron beam to simulate the thermal impact on the material surface makes it possible to employ a variety of optical diagnostics for in situ observations of the dynamics of surface erosion processes during intense thermal shocks. These distinctive features make BETA a promising tool in the research of material surface erosion mechanisms and for experimental verification of various analytical and numerical models associated with these mechanisms. The first results obtained with this facility include fast (10 μs exposure) imaging of the heated target in the near-infrared range and in the reflected light of 532 nm continuous wave (CW) laser, visualization of ejected tungsten particles using fast ICCD and CCD cameras with the minimal exposure of 2 μs and 7 μs respectively. The dynamics of dust particles ejected from the heated surface is investigated using a multichannel recording of the light of 532 nm CW-laser scattered on the dust particles. The present paper describes the first results of use of two new in situ methods: continuous recording of light scattered from the tungsten surface and three-dimensional tracking of tungsten particles using three viewing angles. The first method makes it possible to observe the dynamics of development of roughness and cracking of the polished tungsten surface, which manifest themselves as two successive processes separated by a large time delay. The second method allows us to track dust particles ejected from the melt layer, and thus determine the time and place of particle ejection from the surface.

  13. Do running speed and shoe cushioning influence impact loading and tibial shock in basketball players?

    PubMed Central

    Liebenberg, Jacobus; Woo, Jeonghyun; Park, Sang-Kyoon; Yoon, Suk-Hoon; Cheung, Roy Tsz-Hei; Ryu, Jiseon

    2018-01-01

    Background Tibial stress fracture (TSF) is a common injury in basketball players. This condition has been associated with high tibial shock and impact loading, which can be affected by running speed, footwear condition, and footstrike pattern. However, these relationships were established in runners but not in basketball players, with very little research done on impact loading and speed. Hence, this study compared tibial shock, impact loading, and foot strike pattern in basketball players running at different speeds with different shoe cushioning properties/performances. Methods Eighteen male collegiate basketball players performed straight running trials with different shoe cushioning (regular-, better-, and best-cushioning) and running speed conditions (3.0 m/s vs. 6.0 m/s) on a flat instrumented runway. Tri-axial accelerometer, force plate and motion capture system were used to determine tibial accelerations, vertical ground reaction forces and footstrike patterns in each condition, respectively. Comfort perception was indicated on a 150 mm Visual Analogue Scale. A 2 (speed) × 3 (footwear) repeated measures ANOVA was used to examine the main effects of shoe cushioning and running speeds. Results Greater tibial shock (P < 0.001; η2 = 0.80) and impact loading (P < 0.001; η2 = 0.73–0.87) were experienced at faster running speeds. Interestingly, shoes with regular-cushioning or best-cushioning resulted in greater tibial shock (P = 0.03; η2 = 0.39) and impact loading (P = 0.03; η2 = 0.38–0.68) than shoes with better-cushioning. Basketball players continued using a rearfoot strike during running, regardless of running speed and footwear cushioning conditions (P > 0.14; η2 = 0.13). Discussion There may be an optimal band of shoe cushioning for better protection against TSF. These findings may provide insights to formulate rehabilitation protocols for basketball players who are recovering from TSF. PMID:29770274

  14. Behavior of graphite under heat load and in contact with a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Bohdansky, J.; Croessmann, C. D.; Linke, J.; McDonald, J. M.; Morse, D. H.; Pontau, A. E.; Watson, R. D.; Whitley, J. B.; Goebel, D. M.; Hirooka, Y.; Leung, K.; Conn, R. W.; Roth, J.; Ottenberger, W.; Kotzlowski, H. E.

    1987-05-01

    Graphite is extensively used in large tokamaks today. In these machines the material is exposed to vacuum, to intense heat loads, and to the edge plasma. The use of graphite in such machines, therefore, depends on the outgassing behavior, the heat shock resistance, and thermochemical properties in a hydrogen plasma. Investigations of these properties made at different laboratories are described here. Experiments conducted at Sandia National Laboratories (SNL), Livermore, and the Max-Planck-Institut für Plasmaphysik (IPP) in Garching showed that the outgassing behavior of fine-grain reactor-grade graphite and carbon fiber composites depends on the pretreatment (manufacturing and/or storage). However, after proper outgassing the samples tested behave similarly in the case of fine-grain graphite, but the outgassing remains high for the carbon fiber composites. Heat shock tests have been made with the Electron Beam Test System (EBTS) at SNL, Albuquerque. Directly cooled graphite samples (FE 159 graphite brazed onto Mo tubes) showed no failure at a heat load of 700 W/cm 2, 20 s; or 10 kW, 1 s. Thermal erosion due to sublimination and particle emission from the graphite surface was observed. This effect is related to the surface temperature and becomes significant at temperatures above 2500°K. Fourteen different types of graphite were tested; the main differences among these samples were the different surface temperatures obtained under the same heating conditions. Cracking due to heat shocks was observed in some of the samples, but none of the carbon fiber composites failed. Thermochemical properties have been tested in the PISCES plasma generator at UCLA for ion energies of around 100 eV. The formation of C-H compounds was observed spectroscopically at sample temperatures of around 600°C. However, this chemical reaction did not lead to erosion as observed in beam experiments but to a drastic change of the surface structure due to redeposition. Carbon-hydrogen lines were still observed at sample temperatures of around 100°C. Under these conditions the erosion yield is high and in agreement with those measured in beam experiments.

  15. Free radicals mediate postshock contractile impairment in cardiomyocytes.

    PubMed

    Tsai, Min-Shan; Sun, Shijie; Tang, Wanchun; Ristagno, Giuseppe; Chen, Wen-Jone; Weil, Max Harry

    2008-12-01

    Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. Randomized prospective animal study. University affiliated research laboratory. Sprague-Dawley rats. Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.

  16. Development of tungsten armor and bonding to copper for plasma-interactive components

    NASA Astrophysics Data System (ADS)

    Smid, I.; Akiba, M.; Vieider, G.; Plöchl, L.

    1998-10-01

    For the highest sputtering threshold of all possible candidates, tungsten will be the most likely armor material in highly loaded plasma-interactive components of commercially relevant fusion reactors. The development of new materials, as well as joining and coating techniques are needed to find the best balance in plasma compatibility, lifetime, reliability, neutron irradiation resistance, and safety. Further important issues for selection are availability, costs of machining and production, etc. Tungsten doped with lanthanum oxide is a commercially available W grade for electrodes, designed for low electron work function, higher recrystallization temperature, reduced secondary grain growth, and machinability at relatively low costs. W-Re and related tungsten base alloys are preferred for application at high temperatures, when high strength, high thermal shock and recrystallization resistance are required. Due to the high costs and limited global availability of Re, however, the amount of such alloys in a commercial reactor should be kept low. Newly measured material properties up to high temperatures are presented for lanthanated and W-Re alloys, and the impact on fusion application is discussed. Recently developed coatings of chemical vapor deposited tungsten (CVD-W) on copper substrates have proven to be resistant to repeated thermal and shock loading. Layers of more than 5 mm, as required for the International Thermonuclear Experimental Reactor (ITER), became available. Vacuum plasma sprayed tungsten (VPS-W) in particular is attractive for its lower costs, and the potential of in situ repair. However, the advantage of sacrificial plasma-interactive tungsten coatings in long-term fusion devices has yet to be demonstrated. A durable and reliable joining of bulk tungsten to copper is needed to achieve an acceptable component lifetime in a fusion environment. The material properties of the copper alloys proposed for ITER, and their impact on the quality of bonding to tungsten is discussed. Future materials R&D should concern issues such as plasma compatibility, and above all neutron irradiation damage of promising tungsten-copper joints.

  17. Rescuing the intracluster medium of NGC 5813

    NASA Astrophysics Data System (ADS)

    Soker, Noam; Hillel, Shlomi; Sternberg, Assaf

    2016-06-01

    We use recent X-ray observations of the intracluster medium (ICM) of the galaxy group NGC 5813 to confront theoretical studies of ICM thermal evolution with the newly derived ICM properties. We argue that the ICM of the cooling flow in the galaxy group NGC 5813 is more likely to be heated by mixing of post-shock gas from jets residing in hot bubbles with the ICM, than by shocks or turbulent-heating. Shocks thermalize only a small fraction of their energy in the inner regions of the cooling flow; in order to adequately heat the inner part of the ICM, they would overheat the outer regions by a large factor, leading to its ejection from the group. Heating by mixing, which was found to be much more efficient than turbulent-heating and shocks-heating, hence, rescues the outer ICM of NGC 5813 from its predestined fate according to cooling flow feedback scenarios that are based on heating by shocks.

  18. Equation of state for shock compression of distended solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis; Fenton, Gregg; Vogler, Tracy

    2014-05-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.

  19. Equation of State for Shock Compression of High Distension Solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2013-06-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.

  20. The Pneumatic Actuators As Vertical Dynamic Load Simulators On Medium Weighted Wheel Suspension Mechanism

    NASA Astrophysics Data System (ADS)

    Ka'ka, Simon; Himran, Syukri; Renreng, Ilyas; Sutresman, Onny

    2018-02-01

    Almost all of road damage can be caused by dynamic loads of vehicles that fluctuate according to the type of vehicle that passes through. This study aims to calculate the vertical dynamic load of the vehicle actually occurs on road construction by the mechanism of vehicle wheel suspension. Pneumatic cylinders driven by pressurized air directly load the spring and shock absorber installed on the wheels of the vehicle. The load fluctuations of the medium weight categorized vehicles are determined by the regulation of the amount of pressurized air that enters into the pneumatic cylinder chamber, pushing the piston and connecting rods. The displacement that occurs during compression on the spring and shock absorber, is substituted into the equation of vehicle dynamic load while taking into account the spring stiffness constant, and the fluid or damper gas coefficient. The results show that the magnitude of the displacement when the compression force works has significant influences to the amount of vertical dynamic load of the vehicle that overlies the road construction. The presence of dynamic load of vehicles that fluctuates and repeats, also affects on the reduction of road ability to receive the load. Experimental results using pneumatic actuators instead of real dynamic vehicle loads illustrate the characteristics of the relationship between work pressure and dynamic load. If the working pressure of P2 (bar) is greater, the vertical dynamic load Ft (N) that overloads the road structure is also greater. The associate graphs show that the shock absorber has a greater ability to reduce dynamic load vertically that burden the road structure when compared with the ability of screw spring.

  1. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8] reanalyzed the calcite and anhydrite shock wave experiments of Yang [9] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite GPa which is a factor of 2 to 3 lower than reported earlier by Yang [9]. These studies are not in agreement regarding the onset of sulfate decomposition and documentation of shock effects in gypsum is incomplete.

  2. Integration of regenerative shock absorber into vehicle electric system

    NASA Astrophysics Data System (ADS)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  3. A piezoelectric shock-loading response simulator for piezoelectric-based device developers

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Feng, Z.

    2017-04-01

    Pulsed loading of piezoelectric transducers occurs in many applications, such as those in munitions firing, or when a mechanical system is subjected to impact type loading. In this paper, an electronic simulator that can be programmed to generate electrical charges that a piezoelectric transducer generates as it is subjected to various shock loading profiles is presented. The piezoelectric output simulator can provide close to realistic outputs so that the circuit designer can use it to test the developed system under close to realistic conditions without the need for the costly and time consuming process of performing actual tests. The design of the electronic simulator and results of its testing are presented.

  4. Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus

    NASA Technical Reports Server (NTRS)

    Murawski, K.; Steinolfson, R. S.

    1996-01-01

    Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.

  5. DNA extraction in Echinococcus granulosus and Taenia spp. eggs in dogs stool samples applying thermal shock.

    PubMed

    Hidalgo, Alejandro; Melo, Angélica; Romero, Fernando; Hidalgo, Víctor; Villanueva, José; Fonseca-Salamanca, Flery

    2018-03-01

    The extraction of DNA in taeniid eggs shows complications attached to the composition of stool samples and the high resistance of eggs to degradation. The objective of this study was to test a method of DNA extraction in taeniid eggs by applying a thermal shock to facilitate the chemical-enzymatic degradation of these elements. A group of six tubes containing 1 ml of dog stool sample was spiked with eggs of Echinococcus granulosus and another group of six with Taenia pisiformis. Samples were floated with supersaturated sugar solution and centrifuged. The upper portion of each tube (500 μl) was aspirated and deposited in 1.5 ml tubes. Three tubes from each group were incubated at -20 °C and then at 90 °C, the remaining three from each group, incubated at room temperature. Proteinase K and lysis buffer were added to each tube and incubated for 12 h at 58 °C. The lysis effect was evaluated by microscopy at 3, 6 and 12 h and integrity by electrophoresis in 1% agarose gels. With the same experimental scheme, the thermal shock effect was evaluated in extractions of 1, 2, 3 and 4 eggs of each species and the DNA was quantified. Additionally, the protocol was applied in samples of 4 dogs diagnosed with natural infection by Taeniidae worms. Finally, all the extractions were tested by PCR amplification. Both E. granulosus and T. pisiformis eggs showed a similar response in the tests. In samples without treatment, the lysis effect was poor and showed no differences over time, but in those subjected to thermal shock, eggs degradation increased with time. In both treatments, there was no DNA loss integrity. The protocol applied to limited amounts of eggs yielded PCR products in 100% of the samples exposed to thermal shock, allowing PCR amplifications up to 1 egg. In non-exposed samples, the results were not replicable. However, DNA quantification showed low values in both treatments. In turn, DNA extractions with thermal shock in infected dog samples finally yielded PCR amplifications in 100%. It was concluded that thermal shock facilitates the DNA extraction for molecular analysis in taeniid eggs. The technique is effective extracting DNA even from a single egg and also to analyze natural infections samples with a relatively simple implementation. Published by Elsevier Inc.

  6. Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie

    2013-09-01

    Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.

  7. Resistance of fly ash-Portland cement blends to thermal shock

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  8. Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments

    NASA Astrophysics Data System (ADS)

    Jeanloz, R.

    2015-12-01

    Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.

  9. Directly susceptible, noncarbon metal ceramic composite crucible

    DOEpatents

    Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald

    1999-01-01

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  10. Analysis of the Microstructure and Thermal Shock Resistance of Laser Glazed Nanostructured Zirconia TBCs

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie

    2010-03-01

    Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.

  11. Theoretical modeling of time-dependent skin temperature and heat losses during whole-body cryotherapy: A pilot study.

    PubMed

    Polidori, G; Marreiro, A; Pron, H; Lestriez, P; Boyer, F C; Quinart, H; Tourbah, A; Taïar, R

    2016-11-01

    This article establishes the basics of a theoretical model for the constitutive law that describes the skin temperature and thermolysis heat losses undergone by a subject during a session of whole-body cryotherapy (WBC). This study focuses on the few minutes during which the human body is subjected to a thermal shock. The relationship between skin temperature and thermolysis heat losses during this period is still unknown and have not yet been studied in the context of the whole human body. The analytical approach here is based on the hypothesis that the skin thermal shock during a WBC session can be thermally modelled by the sum of both radiative and free convective heat transfer functions. The validation of this scientific approach and the derivation of temporal evolution thermal laws, both on skin temperature and dissipated thermal power during the thermal shock open many avenues of large scale studies with the aim of proposing individualized cryotherapy protocols as well as protocols intended for target populations. Furthermore, this study shows quantitatively the substantial imbalance between human metabolism and thermolysis during WBC, the explanation of which remains an open question. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Improved piston ring materials for 650 deg C service

    NASA Technical Reports Server (NTRS)

    Bjorndahl, W. D.

    1986-01-01

    A program to develop piston ring material systems which will operate at 650C was performed. In this program, two candidate high temperature piston ring substrate materials, Carpenter 709-2 and 440B, were hot formed into the piston ring shape and subsequently evaluated. In a parallel development effort ceramic and metallic piston ring coating materials were applied to cast iron rings by various processing techniques and then subjected to thermal shock and wear evaluation. Finally, promising candidate coatings were applied to the most thermally stable hot formed substrate. The results of evaluation tests of the hot formed substrate show that Carpenter 709-2 has greater thermal stability than 440B. Of the candidate coatings, plasma transferred arc (PTA) applied tungsten carbide and molybdenum based systems exhibit the greatest resistance to thermal shock. For the ceramic based systems, thermal shock resistance was improved by bond coat grading. Wear testing was conducted to 650C (1202F). For ceramic systems, the alumina/titania/zirconia/yttria composition showed highest wear resistance. For the PTA applied systems, the tungsten carbide based system showed highest wear resistance.

  13. Environmental Test Program for the Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; VanVelzer, Paul L.

    2004-01-01

    On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.

  14. Thermal history of shock-compressed solids

    NASA Technical Reports Server (NTRS)

    Svendsen, B.; Ahrens, T. J.

    1985-01-01

    An isotropic, heterogeneous, viscous thermoplastic model of the uniaxially shock-compressed state in transparent solids is examined with a view to determining the conditions under which this radiation may be nominally thermal or nonthermal. Regions of locally high temperatures producing thermal radiation may develop only where the local viscosity is low and the Maxwell time is short; alternatively, regions of low elastic moduli and long Maxwell time could experience sustained elastic deformation, leading to microfracture and triboluminescence. Attention is given to the cases of MgO and SiO2.

  15. The Shock and Vibration Bulletin. Part 3. Acoustic and Vibration Testing, Impact and Blast

    DTIC Science & Technology

    1976-08-01

    Research Institute, San Antonio, Texas DESIGN OF A BLAST LOAD GENERATOR FOR OVERPRESSURE TESTING .................................. 261I P. Lieberman...Mathews and B. W. Duggin, Sandia Laboratories, Albuquerque, New Mexico ESTIMATION OF SHIP SHOCK PARAMETERS FOR CONSISTENT DESIGN AND TEST SPECIFICATION G. C...Seattle, Washington COMPONENT TESTING OF LIQUID SHOCK ISOLATORS AND ELASTOMERS IN SUPPORT OF RECENT SHOCK ISOLATION SYSTEM DESIGNS AJ.IP. Ashley, Boeing

  16. Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing

    2012-11-26

    We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.

  17. Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander

    NASA Astrophysics Data System (ADS)

    Gülhan, Ali; Thiele, Thomas; Siebe, Frank; Kronen, Rolf

    2018-02-01

    In order to measure aerothermal parameters on the back cover of the ExoMars Schiaparelli lander the instrumentation package COMARS+ was developed by DLR. Consisting of three combined aerothermal sensors, one broadband radiometer sensor and an electronic box the payload provides important data for future missions. The aerothermal sensors called COMARS combine four discrete sensors measuring static pressure, total heat flux, temperature and radiative heat flux at two specific spectral bands. The infrared radiation in a broadband spectral range is measured by the separate broadband radiometer sensor. The electronic box of the payload is used for amplification, conditioning and multiplexing of the sensor signals. The design of the payload was mainly carried out using numerical tools including structural analyses, to simulate the main mechanical loads which occur during launch and stage separation, and thermal analyses to simulate the temperature environment during cruise phase and Mars entry. To validate the design an extensive qualification test campaign was conducted on a set of qualification models. The tests included vibration and shock tests to simulate launch loads and stage separation shocks. Thermal tests under vacuum condition were performed to simulate the thermal environment of the capsule during the different flight phases. Furthermore electromagnetic compatibility tests were conducted to check that the payload is compatible with the electromagnetic environment of the capsule and does not emit electromagnetic energy that could cause electromagnetic interference in other devices. For the sensor heads located on the ExoMars back cover radiation tests were carried out to verify their radiation hardness. Finally the bioburden reduction process was demonstrated on the qualification hardware to show the compliance with the planetary protection requirements. To test the actual heat flux, pressure and infrared radiation measurement under representative conditions, aerothermal tests were performed in an arc-heated wind tunnel facility. After all qualification tests were passed successfully, the acceptance test campaign for the flight hardware at acceptance level included the same tests than the qualification campaign except shock, radiation hardness and aerothermal tests. After passing all acceptance tests, the COMARS+ flight hardware was integrated into the Schiaparelli capsule in January 2015 at the ExoMars integration site at Thales Alenia Space in Turin. Although the landing of Schiaparelli failed, resulting in the loss of most COMARS+ flight data because they were stored on the lander, some data points were directly transmitted to the orbiter at low sampling rate during the entry phase. These data indicate that all COMARS+ sensors delivered useful data until parachute deployment with the exception of the plasma black-out phase. Since measured structure and sensor housing temperatures are far below predicted pre-flight values, a new calibration using COMARS+ spare sensors at temperatures below 0 °C is necessary.

  18. Northwest Africa 428: Impact-induced Annealing of an L6 Chondrite Breccia

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type-6, shocked to stage S4-S5, brecciated, and annealed to approximately petrologic type-4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type-6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 +/- 150 micron), troilite (100 +/- 170 micron), and plagioclase (20-60 micron) grains, and relatively homogeneous olivine (Fa(sub 24.4 +/- 0.6)), low-Ca pyroxene (FS(sub 2.5+/- 0,4) , and plagioclase (Ab(sub 84.2 +/- 0.4) compositions. The petrographic criteria that indicate shock stage S4-S5 include the presence of chromite veinlets, chromite-plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe-Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low-Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low-Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post-shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post-shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type-4 (approximately 600-700 C) during annealing, the low-Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post-metamorphic, post-shock annealing because any A1-26 that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.

  19. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    NASA Astrophysics Data System (ADS)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  20. Atomic-level deformation of CuxZr100-x metallic glasses under shock loading

    NASA Astrophysics Data System (ADS)

    Demaske, Brian J.; Wen, Peng; Phillpot, Simon R.; Spearot, Douglas E.

    2018-06-01

    Plastic deformation mechanisms in CuxZr100-x bulk metallic glasses (MGs) subjected to shock are investigated using molecular dynamics simulations. MGs with Cu compositions between 30 and 70 at. % subjected to shock waves generated via piston velocities that range from 0.125 to 2.0 km/s are considered. In agreement with prior studies, plastic deformation is initiated via formation of localized regions of high von Mises shear strain, known as shear transformation zones (STZs). At low impact velocities, but above the Hugoniot elastic limit, STZ nucleation is dispersed behind the shock front. As impact velocity is increased, STZ nucleation becomes more homogeneous, eventually leading to shock-induced melting, which is identified in this work via high atomic diffusivity. The shear stress necessary to initiate plastic deformation within the shock front is independent of composition at shock intensities near the elastic limit but increases with increasing Cu content at high shock intensities. By contrast, both the flow stress in the plastically deformed MG and the critical shock pressure associated with melting behind the shock front are found to increase with increasing Cu content over the entire range of impact velocities. The evolution of the short-range order in the MG samples during shock wave propagation is analyzed using a polydisperse Voronoi tessellation method. Cu-centered polyhedra with full icosahedral symmetry are found to be most resistant to change under shock loading independent of the MG composition. A saturation is observed in the involvement of select Cu-centered polyhedra in the plastic deformation processes at a piston velocity around 0.75 km/s.

  1. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, William B.; Graham, Robert A.; Morosin, Bruno

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  2. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  3. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  4. High-Pressure Quasi-Isentropic Loading and Unloading of Interferometer Windows on the Veloce Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul

    2007-06-01

    The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.

  5. Synergistic and Antagonistic Effects of Thermal Shock, Air Exposure, and Fishing Capture on the Physiological Stress of Squilla mantis (Stomatopoda)

    PubMed Central

    Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano

    2014-01-01

    This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593

  6. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    PubMed

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  7. Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab Paulas

    2018-04-01

    In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.

  8. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    PubMed

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  9. Shock Waves in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Raymond, J. C.

    2018-02-01

    Astrophysical shock waves are a major mechanism for dissipating energy, and by heating and ionizing the gas they produce emission spectra that provide valuable diagnostics for the shock parameters, for the physics of collisionless shocks, and for the composition of the shocked material. Shocks in SN ejecta in which H and He have been burned to heavier elements behave differently than shocks in ordinary astrophysical gas because of their very large radiative cooling rates. In particular, extreme departures from thermal equilibrium among ions and electrons and from ionization equilibrium may arise. This paper discusses the consequences of the enhanced metal abundances for the structure and emission spectra of those shocks.

  10. Cyclic behavior at quasi-parallel collisionless shocks

    NASA Technical Reports Server (NTRS)

    Burgess, D.

    1989-01-01

    Large scale one-dimensional hybrid simulations with resistive electrons have been carried out of a quasi-parallel high-Mach-number collisionless shock. The shock initially appears stable, but then exhibits cyclic behavior. For the magnetic field, the cycle consists of a period when the transition from upstream to downstream is steep and well defined, followed by a period when the shock transition is extended and perturbed. This cyclic shock solution results from upstream perturbations caused by backstreaming gyrating ions convecting into the shock. The cyclic reformation of a sharp shock transition can allow ions, at one time upstream because of reflection or leakage, to contribute to the shock thermalization.

  11. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.

  12. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE PAGES

    Arman, B.; An, Q.; Luo, S. N.; ...

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  13. Interlaminar shear strength and thermo-mechanical properties of nano-enhanced composite materials under thermal shock

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Douka, D.-D.; Barkoula, N.-M.; Paipetis, A. S.

    2013-04-01

    The introduction of nanoscaled reinforcement in otherwise conventional fiber reinforced composite materials has opened an exciting new area in composites research. The unique properties of these materials combined with the design versatility of fibrous composites may offer both enhanced mechanical properties and multiple functionalities which has been a focus area of the aerospace technology on the last decades. Due to unique properties of carbon nanofillers such as huge aspect ratio, extremely large specific surface area as well as high electrical and thermal conductivity, Carbon Nanotubes have benn investigated as multifunvtional materials for electrical, thermal and mechanical applications. In this study, MWCNTs were incorporated in a typical epoxy system using a sonicator. The volume of the nanoreinforcement was 0.5 % by weight. Two different levels of sonication amplitude were used, 50% and 100% respectively. After the sonication, the hardener was introduced in the epoxy, and the system was cured according to the recommended cycle. For comparison purposes, specimens from neat epoxy system were prepared. The thermomechanical properties of the materials manufactured were investigated using a Dynamic Mechanical Analyser. The exposed specimens were subjected to thermal shock. Thermal cycles from +30 °C to -30 °C were carried out and each cycle lasted 24 hours. The thermomechanical properties were studied after 30 cycles . Furthermore, the epoxy systems prepared during the first stage of the study were used for the manufacturing of 16 plies quasi isotropic laminates CFRPs. The modified CFRPs were subjected to thermal shock. For comparison reasons unmodified CFRPs were manufactured and subjected to the same conditions. In addition, the interlaminar shear strength of the specimens was studied using 3-point bending tests before and after the thermal shock. The effect of the nanoreinforcement on the environmental degradation is critically assessed.

  14. Release of Bacterial Spores from the Inner Walls of a Stainless Steel Cup Subjected to Thermal Stresses and Mechanical Shock

    NASA Technical Reports Server (NTRS)

    Wolochow, H.; Chatigny, M.; Hebert, J.

    1973-01-01

    The release and fallout of particulates from surfaces afforded thermal or impact stress is of concern for control of contamination of Mars from planetary landing vehicles. A metal vessel contaminated by aerosols of spores was used as a model system and the fallout of spores as affected by various mechanisms was examined. Thermal stresses simulating those expected on the Mars lander dislodged approximately .01% of the aerosol deposited surface burden as did a landing shock of 8 to 10G deceleration. Spores imprinted by finger or swab contact yielded similar results. In all cases where repeated cycling of temperature, motion, or shock were employed the majority of fallout occurred in the first cycle. Particles released from the surface were predominantly in the size range 1 to 5 microns.

  15. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    DOE PAGES

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; ...

    2015-01-14

    Here, anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D 3He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and 3He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuteriummore » density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.« less

  16. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  17. Equation of state and phase diagram of carbon

    NASA Astrophysics Data System (ADS)

    Averin, A. B.; Dremov, V. V.; Samarin, S. I.; Sapozhnikov, A. T.

    1996-05-01

    Thermodynamically consistent equation of state (EOS) for graphite and diamond is proposed. The EOS satisfactorily describes experimental data on shock compression, heat capacity, thermal expansion and phase equilibrium and can be used in mathematical models and computer codes for calculation of graphite-diamond phase transition under dynamic loading. Monte-Carlo calculations of diamond thermodynamic properties have been carried out to check correctness of the EOS in the regions of phase diagram where experimental data are absent. On the basis of the EOS and Grover's model of liquid state the EOS of liquid carbon have been constructed and carbon phase diagram (graphite and diamond melting curves and triple point) have been calculated. Comparison of calculated and experimental Hugoniots has stated a question about diamond melting curve.

  18. Deformation twinning: Influence of strain rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shockmore » wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.« less

  19. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    PubMed

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  20. Effects of heat conduction on artificial viscosity methods for shock capturing

    DOE PAGES

    Cook, Andrew W.

    2013-12-01

    Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.

  1. Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina).

    PubMed

    Narayan, Edward J; Hero, Jean-Marc

    2014-04-01

    Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings suggest that repeated exposure to extreme thermal stressor could cause chronic stress and consequently suppress the physiological endocrine sensitivity to acute stressors (e.g. pathogenic diseases) in amphibians. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Infrared Emissivity of Tin upon Release of a 25 GPa Shock into a LiF Window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turley, W. D., Holtkamp, D. B., Marshall, B. R., Stevens, G. D., Veeser, L. R.

    We measured the emissivity of a tin sample at its interface with a lithium-fluoride window upon release of a 25 GPa shock wave from the tin into the window. Measurements were made over four wavelength bands between 1.2 and 5.4 μm. Thermal emission backgrounds from the tin, glue, and lithium fluoride were successfully removed from the reflectance signals. Emissivity changes for the sample, which was initially nearly specular, were small except for the longest wavelength band, where uncertainties were high because of poor signal-to-noise ratio at that wavelength. A thin glue layer, which bonds the sample to the window, wasmore » found to heat from reverberations of the shock wave between the tin and the lithium fluoride. At approximately 3.4 μm the thermal emission from the glue was large compared to the tin, allowing a good estimate of the glue temperature from the thermal radiance. The glue appears to remain slightly colder than the tin, thereby minimizing heat conduction into or out of the tin immediately after the shock passage.« less

  3. AE AURIGAE: FIRST DETECTION OF NON-THERMAL X-RAY EMISSION FROM A BOW SHOCK PRODUCED BY A RUNAWAY STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Santiago, J.; Pereira, V.; De Castro, E.

    2012-09-20

    Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter ofmore » two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30'' northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.« less

  4. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  5. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  6. Response of shallow geothermal energy pile from laboratory model tests

    NASA Astrophysics Data System (ADS)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement occurred was greater than the limiting value when the pile was loaded with thermo-axial loads of 40°C and 200 N. It is therefore recommended that the global factor of safety to be applied for energy pile installed in firm soil should be more than 2.3 to prevent any hazard to occur in the future, should the pile also be subjected to thermal load of 40°C or greater.

  7. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation

    PubMed Central

    Shinkawa, Toyohide; Tan, Ke; Fujimoto, Mitsuaki; Hayashida, Naoki; Yamamoto, Kaoru; Takaki, Eiichi; Takii, Ryosuke; Prakasam, Ramachandran; Inouye, Sachiye; Mezger, Valerie; Nakai, Akira

    2011-01-01

    Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases. PMID:21813737

  8. Steps toward thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Jardine, A. P.

    2014-05-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by thermal evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 us, allowing temperature measurement within the duration of a plate impact experiment.

  9. On the shock response of the magnesium alloy Elektron 675

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan

    2011-06-01

    Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.

  10. On the dynamic behavior of three readily available soft tissue simulants

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Wilgeroth, J. M.; Shepherd, C. J.; Wood, D. C.; Roberts, A.

    2011-04-01

    Plate-impact experiments have been employed to investigate the dynamic response of three readily available tissue simulants for ballistic purposes: gelatin, ballistic soap (both subdermal tissue simulants), and lard (adipose layers). All three materials exhibited linear Hugoniot equations-of-state in the US-uP plane. While gelatin behaved hydrodynamically under shock, soap and lard appeared to strengthen under increased loading. Interestingly, the simulants under test appeared to strengthen in a material-independent manner on shock arrival (tentatively attributed to a rearrangement of the amorphous molecular chains under loading). However, material-specific behavior was apparent behind the shock. This behavior appeared to correlate with microstructural complexity, suggesting a steric hindrance effect.

  11. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  12. SN 1987 A: A Unique Laboratory for Shock Physics

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2012-01-01

    Supernova 1987 A has given us an unprecedented view of the evolution of the explosion debris and its interaction with circumstellar matter. The outer supernova debris, now expanding with velocities approx.8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss in the early 1990s. The shock interaction is manifested by UV-optical "hotspots", an expanding X-ray ring, an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust Recent ultraviolet observations of the emissions from the reverse shock and the ring with the HST/COS reveal new details about the shock interaction. Lyman alpha emission from the reverse shock is much stronger than H alpha and they have different emission morphologies, pointing to different emission mechanisms. The reverse shock was detected for the first time in C IV 1550. The N V to C IV brightness ratio indicates the N/C abundance ratio in the expanding debris is about 100X solar, about 3X N/C in the inner ring.

  13. A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1995-01-01

    ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules, The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface.

  14. Contact thermal shock test of ceramics

    NASA Technical Reports Server (NTRS)

    Rogers, W. P.; Emery, A. F.

    1992-01-01

    A novel quantitative thermal shock test of ceramics is described. The technique employs contact between a metal-cooling rod and hot disk-shaped specimen. In contrast with traditional techniques, the well-defined thermal boundary condition allows for accurate analyses of heat transfer, stress, and fracture. Uniform equibiaxial tensile stresses are induced in the center of the test specimen. Transient specimen temperature and acoustic emission are monitored continuously during the thermal stress cycle. The technique is demonstrated with soda-lime glass specimens. Experimental results are compared with theoretical predictions based on a finite-element method thermal stress analysis combined with a statistical model of fracture. Material strength parameters are determined using concentric ring flexure tests. Good agreement is found between experimental results and theoretical predictions of failure probability as a function of time and initial specimen temperature.

  15. Quartz-coesite-stishovite relations in shocked metaquartzites from the Vredefort impact structure, South Africa

    NASA Astrophysics Data System (ADS)

    Spray, John G.; Boonsue, Suporn

    2018-01-01

    Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of 30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast-matrix or shock vein margin-matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault ( 1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid-liquid interfaces and as anhedral crystals in the matrix. (5) With decreasing pressure-temperature, the matrix completes crystallization to yield a microcrystalline quasi-igneous texture comprising quartz-coesite-stishovite-kyanite-biotite-alkali feldspar and accessory phases. It is possible that the shock vein represents the locus of a thermal spike within the bulk shock, in which case there is no requirement for additional pressure (i.e., the bulk shock was ≃35 GPa). However, if that pressure was not realized from the main shock, then supplementary pressure excursions within the vein would have been required. These could have taken the form of localized reverberations from wave trapping, or implosion processes, including pore collapse, phase change-initiated volume reduction, and melt cavitation.

  16. High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.

    2012-05-01

    This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.

  17. Kinetic Simulations of Particle Acceleration at Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprioli, Damiano; Guo, Fan

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shockmore » drift acceleration; and electron DSA is efficient at oblique shocks.« less

  18. A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, Stephen A.

    1994-01-01

    Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.

  19. Shock-Ramp Loading of Tin and Aluminum

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher; Davis, Jean; Martin, Matthew; Hanshaw, Heath

    2013-06-01

    Equation of state properties for materials off the principle Hugoniot and isentrope are currently poorly constrained. The ability to directly probe regions of phase space between the Hugoniot and isentrope under dynamic loading will greatly improve our ability to constrain equation of state properties under a variety of conditions and study otherwise inaccessible phase transitions. We have developed a technique at Sandia's Z accelerator to send a steady shock wave through a material under test, and subsequently ramp compress from the Hugoniot state. The shock-ramp experimental platform results in a unique loading path and enables probing of equation of state properties in regions of phase space otherwise difficult to access in dynamic experiments. A two-point minimization technique has been developed for the analysis of shock-ramp velocity data. The technique correctly accounts for the ``initial'' Hugoniot density of the material under test before the ramp wave arrives. Elevated quasi-isentropes have been measured for solid aluminum up to 1.4 Mbar and liquid tin up to 1.1 Mbar using the shock ramp technique. These experiments and the analysis of the resulting velocity profiles will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  20. Design evolution of a low shock release nut

    NASA Technical Reports Server (NTRS)

    Otth, D. H.; Gordon, W.

    1976-01-01

    Design improvements and detailed functional analyses are reviewed to trace the development of a pyroactuated release device with segmented thread design from its intermediate design into one that reduces the levels of shock spectra generated during its operation by 50%. Comparisons of shock output and internal load distribution are presented, along with descriptions of mechanical operation for both designs. Results also show the potential areas where design development activity can gain further progress in lowering actuation shock levels.

  1. Use of infrared thermography in children with shock: A case series

    PubMed Central

    Ortiz-Dosal, Alejandra; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J

    2014-01-01

    Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at “Dr. Ignacio Morones Prieto” Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages. PMID:27489669

  2. Use of infrared thermography in children with shock: A case series.

    PubMed

    Ortiz-Dosal, Alejandra; Kolosovas-Machuca, Eleazar S; Rivera-Vega, Rosalina; Simón, Jorge; González, Francisco J

    2014-01-01

    Shock is a complex clinical syndrome caused by an acute failure of circulatory function resulting in inadequate tissue and organ perfusion. Digital infrared thermal imaging is a non-invasive technique that can detect changes in blood perfusion by detecting small changes in the temperature of the skin. In this preliminary study, eight pediatric patients (five boys, three girls), ages ranging from 6 to 14 years (average: 9.8 years), were admitted to the Intensive Care Unit at "Dr. Ignacio Morones Prieto" Central Hospital; here, the patients were examined using digital infrared thermal imaging. Patients in shock showed a significant decrease in distal temperature (at least 7°), compared to critically ill patients without shock. The latter group presented a skin temperature pattern very similar to the one previously reported for healthy children. The results show that infrared thermography can be used as a non-invasive method for monitoring the temperature in pediatric patients in intensive care units in order to detect shock in its early stages.

  3. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  4. Energetics of the terrestrial bow shock

    NASA Astrophysics Data System (ADS)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  5. Prediction of Shock-Induced Cavitation in Water

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  6. Behavior of the shape memory alloy NiTi during one-dimensional shock loading

    NASA Astrophysics Data System (ADS)

    Millett, J. C. F.; Bourne, N. K.; Gray, G. T., III

    2002-09-01

    The response of alloys based on the intermetallic compound NiTi to high-strain-rate and shock loading conditions has recently attracted attention. In particular, similarities between it, and other shape memory materials such as the alloy U-6%Nb in the propagation of the plastic wave in Taylor cylinders are of significant interest. In this article, the Hugoniot is measured using multiple manganin stress gauges, either embedded between plates of the NiTi alloy, or supported with blocks of polymethylmethacrylate. In this way, the shock stress, shock velocity, and details of the shock wave profile have been gathered. An inflection at lower stresses has been found in the Hugoniot curve (stress-particle velocity), and has been ascribed to the martensitic phase transformation that is characteristic of the shape memory effect in this alloy. In a similar way, the variation of shock velocity with particle velocity has been found to be nonlinear, contrary to other pure metal and alloy systems. Finally, a break in slope in the rising part of the shock profile has been identified as the Hugoniot elastic limit in NiTi. Conversion to the one-dimensional stress equivalent, and comparison to quasistatic data indicates that NiTi exhibits significant strain-rate sensitivity.

  7. Standing shocks in a two-fluid solar wind

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Hu, You Qiu; Esser, Ruth

    1994-01-01

    We present a numerical study of the formation of standing shocks in the solar wind using a two-fluid time-dependent model in the presence of Alfven waves. Included in this model is the adiabatic cooling and thermal conduction of both electrons and protons. In this study, standing shocks develop in the flow when additional critical points form as a result of either localized momentum addition or rapid expansion of the flow tube below the existing sonic point. While the flow speed and density exhibit the same characteristics as found in earlier studies of the formation of standing shocks, the inclusion of electron and proton heat conduction produces different signatures in the electron and proton temperature profiles across the shock layer. Owing to the strong heat conduction, the electron temperature is nearly continuous across the shock, but its gradient has a negative jump across it, thus producing a net heat flux out of the shock layer. The proton temperature exhibits the same characteristics for shocks produced by momentum addition but behaves differently when the shock is formed by the rapid divergence of the flow tube. The adiabatic cooling in a rapidly diverging flow tube reduces the proton temperature so substantially that the proton heat conduction becomes negligible in the vicinity of the shock. As a result, protons experience a positive jump in temperature across the shock. While Alfven waves do not affect the formation of standing shocks, they contribute to the change of the mmomentum and energy balance across them. We also find that for this solar wind model the inclusion of thermal conduction and adiabatic cooling for the elctrons and protons increases significantly the range of parameters characterizing the formation of standing shocks over those previously found for isothermal and polytropic models.

  8. Study the fragment size distribution in dynamic fragmentation of laser shock loding tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Chu, Genbai; Shui, Min; Xi, Tao; Zhao, Yongqiang; Gu, Yuqiu

    2017-06-01

    Characterizing the distribution of fragment size produced from dynamic fragmentation process is very important for fundamental science like predicting material dymanic response performance and for a variety of engineering applications. However, only a few data about fragment mass or size have been obtained due to its great challenge in its dynamic measurement. This paper would focus on investigating the fragment size distribution from the dynamic fragmentation of laser shock-loaded metal. Material ejection of tin sample with wedge shape groove in the free surface is collected with soft recovery technique. Via fine post-shot analysis techniques including X-ray micro-tomography and the improved watershed method, it is found that fragments can be well detected. To characterize their size distributions, a random geometric statistics method based on Poisson mixtures was derived for dynamic heterogeneous fragmentation problem, which leads to a linear combinational exponential distribution. Finally we examined the size distribution of laser shock-loaded tin with the derived model, and provided comparisons with other state-of-art models. The resulting comparisons prove that our proposed model can provide more reasonable fitting result for laser shock-loaded metal.

  9. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  10. The Embedded Atom Model and large-scale MD simulation of tin under shock loading

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, F. A.; Ionov, G. V.; Dremov, V. V.; Soulard, L.; Durand, O.

    2014-05-01

    The goal of the work was to develop an interatomic potential, that can be used in large-scale classical MD simulations to predict tin properties near the melting curve, the melting curve itself, and the kinetics of melting and solidification when shock and ramp loading. According to phase diagram, shocked tin melts from bcc phase, and since the main objective was to investigate melting, the EAM was parameterized for bcc phase. The EAM was optimized using isothermal compression data (experimental at T=300 K and ab-initio at T=0 K for bcc, fcc, bct structures), experimental and QMD data on the Hugoniot and on the melting at elevated pressures. The Hugoniostat calculations centred at β-tin at ambient conditions showed that the calculated Hugoniot is in good agreement with experimental and QMD data above p-bct transition pressure. Calculations of overcooled liquid in pressure range corresponding to bcc phase showed crystallization into bcc phase. Since the principal Hugoniot of tin originates from the β-tin that is not described by this EAM the special initial state of bcc samples was constructed to perform large-scale MD simulations of shock loading.

  11. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  12. An investigation of the thermal shock resistance of lunar regolith and the recovery of hydrogen from lunar soil heated using microwave radiation

    NASA Technical Reports Server (NTRS)

    Meek, T. T.

    1991-01-01

    The objective is to develop a better understanding of the thermal shock properties of lunar regolith sintered using 2.45 GHz electromagnetic radiation and to do a preliminary study into the recovery of bound hydrogen in lunar soil heated using 2.45 GHz radiation. During the first phase of this work, lunar simulant material was used to test whether or not microhardness data could be used to infer thermal shock resistance and later actual lunar regolith was used. Results are included on the lunar regolith since this is of primary concern and not the simulant results. They were similar, however. The second phase investigated the recovery of hydrogen from lunar regolith and results indicate that microwave heating of lunar regolith may be a good method for recovery of bound gases in the regolith.

  13. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  14. Modeling of skin cooling, blood flow, and optical properties in wounds created by electrical shock

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu T. A.; Shupp, Jeffrey W.; Moffatt, Lauren T.; Jordan, Marion H.; Jeng, James C.; Ramella-Roman, Jessica C.

    2012-02-01

    High voltage electrical injuries may lead to irreversible tissue damage or even death. Research on tissue injury following high voltage shock is needed and may yield stage-appropriate therapy to reduce amputation rate. One of the mechanisms by which electricity damages tissue is through Joule heating, with subsequent protein denaturation. Previous studies have shown that blood flow had a significant effect on the cooling rate of heated subcutaneous tissue. To assess the thermal damage in tissue, this study focused on monitoring changes of temperature and optical properties of skin next to high voltage wounds. The burns were created between left fore limb and right hind limb extremities of adult male Sprague-Dawley rats by a 1000VDC delivery shock system. A thermal camera was utilized to record temperature variation during the exposure. The experimental results were then validated using a thermal-electric finite element model (FEM).

  15. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    NASA Technical Reports Server (NTRS)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS configuration; 6) integrating the RANS solver with the FEAP code for coupled fluid-structure-thermal capability; and 7) integrating the existing NASA SRGULL propulsion flow path prediction software with the FEFLO software for quasi-3D propulsion flow path predictions, 8) improving and integrating into the network, an existing adjoint-based design optimization code.

  16. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development

    USDA-ARS?s Scientific Manuscript database

    Two full-length complementary DNAs (cDNAs) of heat shock protein (HSP) genes (Se-hsp90 and Se-hsp70) were cloned from the beet armyworm, Spodoptera exigua, and their expression was investigated in relation to cold shock, heat shock, and development. The open reading frames of Se-hsp90 and Sehsp70 ar...

  17. Strength and fracture of uranium, plutonium and several their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, V. K.

    2012-08-01

    Results on studying the spall fracture of uranium, plutonium and several their alloys under shock wave loading are presented in the paper. The problems of influence of initial temperature in a range of - 196 - 800∘C and loading time on the spall strength and failure character of uranium and two its alloys with molybdenum and both molybdenum and zirconium were studied. The results for plutonium and its alloy with gallium were obtained at a normal temperature and in a temperature range of 40-315∘C, respectively. The majority of tests were conducted with the samples in the form of disks 4 mm in thickness. They were loaded by the impact of aluminum plates 4 mm thick through a copper screen 12 mm thick serving as the cover or bottom part of a special container. The character of spall failure of materials and the damage degree of samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. The conditions of shock wave loading were calculated using an elastic-plastic computer program. The comparison of obtained results with the data of other researchers on the spall fracture of examined materials was conducted.

  18. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  19. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.

    2016-06-15

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wavemore » pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.« less

  20. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.

    PubMed

    Morgan, Dane V; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  1. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-20

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithmmore » that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼few× 10{sup –8} L{sub ☉}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.« less

  2. A Experimental Study of Fluctuating Pressure Loads Beneath Swept Shock Wave/boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Garg, Sanjay

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.

  3. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  4. Effects of severe stressing on tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Shakar, J. F.; Fairfield, E. H.

    1981-01-01

    The ultimate capabilities of an all tantalum capacitor were determined and evaluated. The evaluation included: 175 C life; 100 cycle thermal shock; 70 g random vibration; 3000 g shock; and 90 C ase ripple current.

  5. Sharp Refractory Composite Leading Edges on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Sullivan, Brian J.

    2003-01-01

    On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.

  6. Reliability of emerging bonded interface materials for large-area attachments

    DOE PAGES

    Paret, Paul P.; DeVoto, Douglas J.; Narumanchi, Sreekant

    2015-12-30

    In this study, conventional thermal interface materials (TIMs), such as greases, gels, and phase change materials, pose bottlenecks to heat removal and have long caused reliability issues in automotive power electronics packages. Bonded interface materials (BIMs) with superior thermal performance have the potential to be a replacement to the conventional TIMs. However, due to coefficient of thermal expansion mismatches between different components in a package and resultant thermomechanical stresses, fractures or delamination could occur, causing serious reliability concerns. These defects manifest themselves in increased thermal resistance in the package. In this paper, the results of reliability evaluation of emerging BIMsmore » for large-area attachments in power electronics packaging are reported. Thermoplastic (polyamide) adhesive with embedded near-vertical-aligned carbon fibers, sintered silver, and conventional lead solder (Sn 63Pb 37) materials were bonded between 50.8 mm x 50.8 mm cross-sectional footprint silicon nitride substrates and copper base plate samples, and were subjected to accelerated thermal cycling until failure or 2500 cycles. Damage in the BIMs was monitored every 100 cycles by scanning acoustic microscopy. Thermoplastic with embedded carbon fibers performed the best with no defects, whereas sintered silver and lead solder failed at 2300 and 1400 thermal cycles, respectively. Besides thermal cycling, additional lead solder samples were subjected to thermal shock and thermal cycling with extended dwell periods. A finite element method (FEM)-based model was developed to simulate the behavior of lead solder under thermomechanical loading. Strain energy density per cycle results were calculated from the FEM simulations. A predictive lifetime model was formulated for lead solder by correlating strain energy density results extracted from modeling with cycles-to-failure obtained from experimental accelerated tests. A power-law-based approach was used to formulate the - redictive lifetime model.« less

  7. Shock initiation of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C.S.; Holmes, N.C.

    1993-12-31

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.

  8. Strength and failure of a damaged material

    DOE PAGES

    Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.; ...

    2015-09-07

    Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less

  9. Strength and failure of a damaged material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.

    Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less

  10. Development of an Aerosol Loading Technique for Ignition Time Measurements in Shock Tubes

    DTIC Science & Technology

    2007-08-01

    authors do not follow the 200 word limit 14. SUBJECT TERMS Aerosol Shock Tube, Ignition Delay Time, n -Dodecane, Aerosol 17. SECURITY CLASSIFICATION...time measurements of n -dodecane/O2/argon mixtures. These measurements are found to be consistent with those made in our heated shock tube facility. (a...Papers published in peer-reviewed journals ( N /A for none) S. S. Vasu, D. F. Davidson, R. K. Hanson, “Shock Tube Measurements of Jet Fuel Ignition

  11. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom

    2016-01-01

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.

  12. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  13. Neutron Resonance Spectrometry Shock Temperatures in Molybdenum

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Seifter, Achim; Holtkamp, David; Yuan, Vincent; Clark, David; Buttler, William

    2007-06-01

    Neutron resonance spectrometry (NRS) has been used to measure the temperature in Mo during shock loading, giving temperatures higher than expected. The effect of plastic flow and non-ideal projectile behavior were assessed. Plastic flow was estimated to contribute a temperature rise of 55K compared with hydrodynamic flow, and 100-150K on release, consistent with pyrometry measurements. Simulations were performed of the HE flyer system used to induce the shock in the Mo sample. The simulations predicted that the flyer was slightly curved on impact. The resulting spatial variations in load, including radial components of velocity, were predicted to increase the apparent NRS temperature by 160K. These corrections are sufficient to reconcile the apparent temperatures deduced using NRS with the accepted properties of Mo.

  14. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  15. Unusual plasticity and strength of metals at ultra-short load durations

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.

    2017-08-01

    This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.

  16. Measurement and analysis of force-time outputs of pyrotechnic nuts

    NASA Technical Reports Server (NTRS)

    Neubert, V. H.

    1973-01-01

    The dynamic loadings produced by two standard pyrotechnic nuts were compared with loadings produced by four recently developed low-shock nuts. The nuts were manufactured by separate contractors. Each nut was given a number designation, the number having no special significance. The results show that the use of the Hopkinson bar to measure force-time outputs of the nuts at stud and housing sides aided greatly in understanding the events occurring in the nuts. Acceleration data appear to be dependable, for the most part, but of more limited value. The low-shock designs show considerable improvement over the standard designs above 4,000 Hz when the results are plotted in shock spectrum form. They involve some penalties with regard to weight and cost.

  17. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  18. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  19. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  20. Dynamic Electromechanical Characterization of the Ferroelectric Ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1997-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in a number of pulsed power applications. The dynamic behavior of the poled ceramic is complex, with nonlinear coupling between mechanical and electrical variables. Recent efforts to improve numerical simulations of this process have been limited by the scarcity of relevant experimental studies within the last twenty years. Consequently, we have initiated an extensive experimental study of the dynamic electromechanical behavior of this material. Samples of the poled ceramic are shocked to axial stresses from 0.5 to 5 GPa in planar impact experiments and observed with laser interferometry (VISAR) to obtain transmitted wave profiles. Current generation due to shock-induced depoling is observed using different external loads to vary electric field strengths within the samples. Experimental configurations either have the remanent polarization parallel to the direction of shock motion (axially poled) or perpendicular (normally poled). Initial experiments on unpoled samples utilized PVDF stress gauges as well as VISAR, and extended prior data on shock loading and release behavior. (Supported by the U. S. Department of Energy under contract DE-AC04-94AL85000). abstract.

  1. Molecular dynamics simulation of shock induced ejection on fused silica surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Rui; Xiang, Meizhen; Jiang, Shengli

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less

  2. Pyrotechnic shock at the orbiter/external tank forward attachment

    NASA Technical Reports Server (NTRS)

    Rogers, W. F.; Grissom, D. S.; Rhodes, L. R.

    1980-01-01

    During the initial certification test of the forward structural attachment of the space shuttle orbiter to the external tank, pyrotechnic shock from actuation of the separation device resulted in structural failure of the thermal protection tiles surrounding the attachment. Because of the high shock associated with the separation bolt, the development of alternative low shock separation designs was initiated. Two concepts that incorporate a 5.08 centimeter frangible nut as the release device were developed and tested.

  3. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  4. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  5. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  6. The fate or organic matter during planetary accretion - Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Tingle, Tracy N.; Tyburczy, James A.; Ahrens, Thomas J.; Becker, Christopher H.

    1992-01-01

    The fate of organic matter in carbonaceous meteorites during hypervelocity (1-2 km/sec) impacts is investigated using results of experiments in which three samples of the Murchison (CM2) carbonaceous chondrite were shocked to 19, 20, and 36 GPa and analyzed by highly sensitive thermal-desorption photoionization mass spectrometry (SALI). The thermal-desorptive SALI mass spectra of unshocked CM2 material revealed presence of indigenous aliphatic, aromatic, sulfur, and organosulfur compounds, and samples shocked to about 20 GPa showed little or no loss of organic matter. On the other hand, samples shocked to 36 GPa exhibited about 70 percent loss of organic material and a lower alkene/alkane ratio than did the starting material. The results suggest that it is unlikely that the indigenous organic matter in carbonaceous chondritelike planetesimals could have survived the impact on the earth in the later stages of earth's accretion.

  7. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; hide

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  8. On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD cells simulations

    NASA Astrophysics Data System (ADS)

    van Marle, Allard Jan; Casse, Fabien; Marcowith, Alexandre

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and suprathermal particles. Such interaction is depicted by combining a grid-based magnetohydrodynamics description of the thermal fluid with particle in cell techniques devoted to the dynamics of suprathermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider in this study non-relativistic shocks with various Alfvénic Mach numbers and magnetic field obliquity. We recover all the features of both magnetic field amplification and particle acceleration from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell-hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger time-scales than in the parallel case. We show that in our simulations, the suprathermal particles are experiencing acceleration thanks to a pre-heating process of the particle similar to a shock drift acceleration leading to the corrugation of the shock front. Such oscillations of the shock front and the magnetic field locally help the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  9. Thermal and Nonthermal X-ray Emission from the Forward Shock in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Decourchelle, Anne; Holt, Stephen S.; Petre, Robert; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present Chandra CCD images of Tycho's supernova remnant that delineate its outer shock, seen as a thin, smooth rim along the straight northeastern edge and most of the circular western half. The images also show that the Si and S ejecta are highly clumpy, and have reached the forward shock at numerous locations. Most of the X-ray spectra that we examine along the rim show line emission from Si and S, which in some cases must come from ejecta; the continuum is well represented by either thermal or nonthermal models. In the case that the continuum is assumed to be thermal, the temperatures at the rim are all similar at about 2 keV, and the ionization ages are very low because of the overall weakness of the line emission. Assuming shock velocities inferred from radio and X-ray expansion measurements, these temperatures are substantially below those expected for equilibration of the electron and ion temperatures; electron to mean temperature ratios of approximately less than 0.1 - 0.2 indicate at most modest collisionless heating of the electrons at the shock. The nonthermal contribution to these spectra may be important, however, and may account for as many as half of the counts in the 4-6 keV energy range, based on an extrapolation of the hard X-ray spectrum above 10 keV.

  10. Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Metzger, David C H; Healy, Timothy M; Schulte, Patricia M

    2016-10-01

    In natural environments, organisms must cope with complex combinations of abiotic stressors. Here, we use threespine stickleback (Gasterosteus aculeatus) to examine how changes in salinity affect tolerance of high temperatures. Threespine stickleback inhabit a range of environments that vary in both salinity and thermal stability making this species an excellent system for investigating interacting stressors. We examined the effects of environmental salinity on maximum thermal tolerance (CTMax) and 70 kDa heat shock protein (hsp70) gene expression using divergent stickleback ecotypes from marine and freshwater habitats. In both ecotypes, the CTMax of fish acclimated to 20 ppt was significantly higher compared to fish acclimated to 2 ppt. The effect of salinity acclimation on the expression of hsp70-1 and hsp70-2 was similar in both the marine and freshwater stickleback ecotype. There were differences in the expression profiles of hsp70-1 and hsp70-2 during heat shock, with hsp70-2 being induced earlier and to a higher level compared to hsp70-1. These data suggest that the two hsp70 isoforms may have functionally different roles in the heat shock response. Lastly, acute salinity challenge coupled with heat shock revealed that the osmoregulatory demands experienced during the heat shock response have a larger effect on the hsp70 expression profile than does the acclimation salinity.

  11. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.

    2016-07-20

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magneticmore » conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).« less

  12. Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    DOE PAGES

    Schulz, A.; Ackermann, M.; Buehler, R.; ...

    2014-05-01

    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43°3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LATmore » data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for ζ Ophiuchi by a factor ≈ 5.« less

  13. Suprathermal Electrons at Saturn's Bow Shock

    NASA Astrophysics Data System (ADS)

    Masters, A.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.

    2016-07-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ˜1 MeV).

  14. Shock initiation of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C.S.; Holmes, N.C.

    1994-07-10

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. A broad, but strong emission has been observed in a spectral range between 350 nm and 700 nm from the shocked nitromethane above 9 GPa. The temporal profile suggests that the shocked nitromethane detonates through three characteristic periods, namely an induction period, a shock initiation period, and a thermal explosion period. In this paper we will discuss the temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15more » GPa. [copyright]American Institute of Physics« less

  15. Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses.

    PubMed

    Steiner, Alexandre A; Flatow, Elizabeth A; Brito, Camila F; Fonseca, Monique T; Komegae, Evilin N

    2017-01-01

    This study introduces the respiratory exchange ratio (RER; the ratio of whole-body CO 2 production to O 2 consumption) as an aid to monitor metabolic acidosis during the early phase of endotoxic shock in unanesthetized, freely moving rats. Two serotypes of lipopolysaccharide (lipopolysaccharide [LPS] O55:B5 and O127:B8) were tested at shock-inducing doses (0.5-2 mg/kg). Phasic rises in RER were observed consistently across LPS serotypes and doses. The RER rise often exceeded the ceiling of the quotient for oxidative metabolism, and was mirrored by depletion of arterial bicarbonate and decreases in pH It occurred independently of ventilatory adjustments. These data indicate that the rise in RER results from a nonmetabolic CO 2 load produced via an acid-induced equilibrium shift in the bicarbonate buffer. Having validated this new experimental aid, we asked whether acidosis was interconnected with the metabolic and thermal responses that accompany endotoxic shock in unanesthetized rats. Contrary to this hypothesis, however, acidosis persisted regardless of whether the ambient temperature favored or prevented downregulation of mitochondrial oxidation and regulated hypothermia. We then asked whether the substrate that fuels aerobic metabolism could be a relevant factor in LPS-induced acidosis. Food deprivation was employed to divert metabolism away from glucose oxidation and toward fatty acid oxidation. Interestingly, this intervention attenuated the RER response to LPS by 58%, without suppressing other key aspects of systemic inflammation. We conclude that acid production in unanesthetized rats with endotoxic shock results from a phasic activation of glycolysis, which occurs independently of physiological changes in mitochondrial oxidation and body temperature. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.

    2008-11-01

    The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, A.; Gupta, Y. M.

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  18. In Situ Observation of High-Pressure Phase Transitions in SiO2 Under Shock Loading Using Time Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Turneaure, S.; Duffy, T. S.

    2016-12-01

    Quartz is one of the most abundant minerals in Earth's crust and serves as an archetype for silicate minerals generally. The shock metamorphism of silica is important for understanding and interpreting meteorite impact events. Shock compression of quartz is characterized by a phase transition occurring over a broad mixed-phase region ( 10-40 GPa). Despite decades of study, the nature of this transformation and the structure of the high-pressure phase remain poorly understood. In situ x-ray diffraction data on shock-compressed SiO2 was collected at the Dynamic Compression Sector at the Advanced Photon Source. The behavior both single crystal alpha-quartz and fused silica was investigated under dynamic loading through a series real-time synchrotron x-ray diffraction measurements during peak stresses up to 65 GPa. A two-stage light gas gun was used to accelerate LiF flyer plates that impacted the SiO2 samples resulting in a propagating step-like increase in pressure and temperature behind the shock front. Four consecutive x-ray frames, separated by 153 ns, were collected during the transient loading and unloading. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that both amorphous silica as well as crystalline alpha-quartz transform to stishovite above 36 GPa. These measurements reveal important information about the role of kinetics as well texture development and potential defect structures in the transformed material.

  19. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-01

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  20. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations

    PubMed Central

    Alay, Eren; Zheng, James Q.; Chandra, Namas

    2018-01-01

    We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521

Top