Sample records for thermal stabilization process

  1. Evaluation of stabilization techniques for ion implant processing

    NASA Astrophysics Data System (ADS)

    Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across several combinations of current and energy.

  2. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers.

    PubMed

    Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

  3. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

  4. Thermal optimum design for tracking primary mirror of Space Telescope

    NASA Astrophysics Data System (ADS)

    Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei

    2011-08-01

    In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.

  5. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    PubMed Central

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  6. Evaluation of electron beam stabilization for ion implant processing

    NASA Astrophysics Data System (ADS)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  7. Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals

    DOE PAGES

    Zheng, Shijian; Carpenter, John S.; McCabe, Rodney J.; ...

    2014-02-27

    Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. In this paper, we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability ofmore » one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. As a result, we demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials.« less

  8. Low-temperature technique for thick film resist stabilization and curing

    NASA Astrophysics Data System (ADS)

    Minter, Jason P.; Wong, Selmer S.; Marlowe, Trey; Ross, Matthew F.; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    For a range of thick film photoresist applications, including MeV ion implant processing, thin film head manufacturing, and microelectromechanical systems processing, there is a need for a low-temperature method for resist stabilization and curing. Traditional methods of stabilizing or curing resist films have relied on thermal cycling, which may not be desirable due to device temperature limitations or thermally-induced distortion of the resist features.

  9. Organic Heat Stabilizers for Polyvinyl Chloride (PVC): A Synergistic Behavior of Eugenol and Uracil Derivative

    NASA Astrophysics Data System (ADS)

    Asawakosinchai, Aran; Jubsilp, Chanchira; Mora, Phattarin; Rimdusit, Sarawut

    2017-10-01

    Recycling ability, mechanical, and thermal properties of PVC stabilized with organic heat stabilizers, i.e., uracil (DAU) and eugenol were investigated to substitute PVCs stabilized with commercial lead, Ca/Zn, and organic-based stabilizer for PVC pipe production. PVC stabilized with the DAU and the eugenol can be processable at 30 °C lower than that of the PVC stabilized with commercial heat stabilizers. The most remarkable short-term thermal stability belonged to the PVC stabilized with the DAU, and its original color can be maintained at least up to 3 processing cycles. Synergistic behavior in thermal stability of the PVC mixed with DAU and eugenol at mass ratios of 1.5:1.5 was observed. Mechanical properties of DAU- and eugenol-stabilized PVC were higher than the samples with other heat stabilizers. Glass transition temperature of the PVC stabilized with all heat stabilizers was determined to be 99 °C with the exception of the value of 89 °C for eugenol-stabilized PVC. Therefore, the DAU and the eugenol showed high potential to be used as an organic heat stabilizer for PVC because of their non-toxic and good heat resistance properties.

  10. Preparation, melting behavior and thermal stability of poly(lactic acid)/poly(propylene carbonate) blends processed by vane extruder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Wei, E-mail: zw55624@163.com; Chen, Rongyuan; Zhang, Haichen

    Poly (lactic acid) (PLA)/Poly (propylene carbonate) (PPC) blends were prepared by vane extruder which is a type of novel polymer processing extruder based on elongation force field. Scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric (TG) were used respectively to analyze the compatibility, the melting behavior and thermal stability properties of PLA/PPC blends affected by the different content of PPC. The results showed that with the increase of the PPC content, the glass transition temperature of PLA was reduced, and the glass transition temperature of PPC was increased, which indicated that PLA and PPC had partial compatibility. Themore » cold crystallization temperature of PLA increased with the increase of the PPC content, which showed that PPC hindered the cold crystallization process of PLA. The addition of PPC had little impact on the melting process of PLA, and the melting temperature of PLA was almost kept the same value. Thermogravimetric analysis showed that the thermal stability of PPC was worse than that of PLA, the addition of PPC reduced the thermal stability of PLA.« less

  11. Thermal stability of poly(3-hydroxybutyrate)/vegetable fiber composites

    NASA Astrophysics Data System (ADS)

    Cipriano, Pâmela Bento; de Sá, Mayelli Dantas; Andrade, André L. Simões; de Carvalho, Laura Hecker; Canedo, Eduardo Luis

    2015-05-01

    The present work deals with the thermal stability during and after processing of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB/babassu composites with 0, 5, 10 and 20% w/w load were prepared in a laboratory internal mixer. Two fractions of the mesocarp of babassu with different particle sizes were compounded with PHB and test specimens molded by compression. The effect of loading level and processing conditions on torque, temperature and mechanical energy dissipation were studied using a new engineering model. It was found that PHB degrades during processing at temperatures slightly above the melting point. To minimize thermal degradation stabilizer and chain extender additives were incorporated, with mixed results. These findings were confirmed by the dependence of the melt flow rate on the processing temperature.

  12. Thermal stability of synthetic thyroid hormone l-thyroxine and l-thyroxine sodium salt hydrate both pure and in pharmaceutical formulations.

    PubMed

    Ledeţi, Ionuţ; Ledeţi, Adriana; Vlase, Gabriela; Vlase, Titus; Matusz, Petru; Bercean, Vasile; Şuta, Lenuţa-Maria; Piciu, Doina

    2016-06-05

    In this paper, the thermal stability of pure l-thyroxine (THY) and l-thyroxine sodium salt hydrate (THYSS) vs. two pharmaceutical solid formulations commercialized on both Romanian and European market (with a content of 100μg, respectively 200μg THYSS per tablet) were investigated. In order to determine whether the presence of excipients affects the thermal stability of the active pharmaceutical ingredient (API), the preliminary study of thermal stability in air atmosphere was completed with an in-depth solid-state kinetic study. By kinetic analysis, the non-isothermal degradation of the selected active pharmaceutical ingredients vs. the solid formulation with strength of 200μg THYSS per tablet was investigated. Isoconversional methods (Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa and Friedman) were employed for the estimation of activation energies values, at five different heating rates, β=5, 7, 10, 12 and 15°Cmin(-1). Also, a fourth method was applied in the processing of data, namely NPK, allowing an objective separation in the physical and chemical processes that contribute to the thermal degradation of the selected compounds. A discussion of thermal stability from the kinetic point of view is also presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Radiation Pressure Cooling as a Quantum Dynamical Process

    NASA Astrophysics Data System (ADS)

    He, Bing; Yang, Liu; Lin, Qing; Xiao, Min

    2017-06-01

    One of the most fundamental problems in optomechanical cooling is how small the thermal phonon number of a mechanical oscillator can be achieved under the radiation pressure of a proper cavity field. Different from previous theoretical predictions, which were based on an optomechanical system's time-independent steady states, we treat such cooling as a dynamical process of driving the mechanical oscillator from its initial thermal state, due to its thermal equilibrium with the environment, to a stabilized quantum state of higher purity. We find that the stabilized thermal phonon number left in the end actually depends on how fast the cooling process could be. The cooling speed is decided by an effective optomechanical coupling intensity, which constitutes an essential parameter for cooling, in addition to the sideband resolution parameter that has been considered in other theoretical studies. The limiting thermal phonon number that any cooling process cannot surpass exhibits a discontinuous jump across a certain value of the parameter.

  14. Application of FTIR spectroscopy to study the thermal stability of magnesium aspartate-arginine

    NASA Astrophysics Data System (ADS)

    Hacura, Andrzej; Marcoin, Wacława; Pasterny, Karol

    2012-03-01

    FTIR spectroscopy has been applied to study the thermal stability of magnesium aspartatearginine. An attempt has been made, using theoretically predicted IR spectra, to relate the changes in the experimental spectra with the decomposition process of the studied magnesium complex.

  15. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modifying Mechanical, Optical Properties and Thermal Processability of Iridescent Cellulose Nanocrystal Films Using Ionic Liquid.

    PubMed

    Liu, Ping; Guo, Xin; Nan, Fuchun; Duan, Yongxin; Zhang, Jianming

    2017-01-25

    Iridescent films formed from the self-assembly of cellulose nanocrystals (CNCs) are brittle and difficult to handle or integrate within an industrial process. Here we present a simple approach to prepare iridescent CNC films with tunable pliability and coloration through the addition of ionic liquids (ILs) of 1-allyl-3-methylimidazolium chloride (AmimCl) as plasticizers. By using the undried CNC film as a filter membrane and ILs solution as a leaching liquid, it was found that the filtration process made ILs uniformly interpenetrate into CNC film due to the strong ionic interaction between CNC and AmimCl. Unexpectedly, the filtration process also gave rise to partial desulfurization of CNC film, which is conducive to the improvement of thermal stability. Benefiting from the improved thermal stability and the dissolving capacity of AmimCl for cellulose at high temperature, the incorporated ILs enable the cholesteric CNC film to be further toughened via a hot-pressing treatment. This study demonstrates that ionic liquids have great potential to modify the mechanical, optical properties as well as the thermal stability of iridescent CNC films.

  17. Effect of natural phenolics on the thermal and processing behaviour of poly(3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Auriemma, Maria; Piscitelli, Amodio; Pasquino, Rossana; Cerruti, Pierfrancesco; Angelini, Stefania; Scarinzi, Gennaro; Malinconico, Mario; Grizzuti, Nino

    2015-12-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its relatively poor mechanical properties and narrow processing window. In this paper, different natural phenol-based additives, including tannic acid (TA), grape bagasse extract (EP), and a lignocellulosic biomass (LC) were used as thermal and processing stabilizers for PHB. The thermal stability of both neat and doped PHB samples was studied by rheology and calorimetry. The experimental results showed that neat PHB massively degrades and that the addition of phenol additives enhances the thermal stability of PHB, preserving the polymer molecular weight after processing. This finding was in agreement with the slower decay in viscosity observed through rheological tests. Physical and chemical interactions between polymer and additive were considered as key factors to interpret the experimental data. LC affected the melt crystallization kinetics of PHB enhancing crystallization upon cooling. This finding suggests that LC was a heterogeneous nucleating agent, potentially able to control the physical aging of PHB. The described results are of interest for the development of sustainable alternatives to synthetic polymer additives, by increasing the applicability of bio-based materials.

  18. Comparative study of resist stabilization techniques for metal etch processing

    NASA Astrophysics Data System (ADS)

    Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.

    1999-06-01

    This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.

  19. Synthesis and thermal stability of carborane containing phosphazenes

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Basi, R. J.; Parker, J. A.

    1983-01-01

    Carborane substituted polyphosphazenes were prepared by the thermal polymerization of phenyl-carboranyl penta chlorocyclotriphosphazene. Successive isothermal vacuum pyrolyses were conducted on the polymer and examined for structural changes by infrared spectroscopy. The degradation products were ascertained by gas chromatography-mass spectrometric analysis. It was found that the presence of the carborane group improves the thermal stability of the polymer by retarding the ring chain equilibrium processes of decomposition.

  20. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice diffusivity calculations conceptually suggested that increasing W alloying concentrations can decrease the grain growth rate. The strongest evidence of grain growth stagnation was via nanoscale oxide particle drag in highly contaminated electrodeposited alloys. Interestingly, W-segregation was also detected to the oxide phase boundaries and revealed a potential indirect mechanism of thermal stability. The phase stability of pure and contaminated Ni-W alloys was investigated with density functional theory. Primarily, the calculations suggested that the intermetallic phases NiW and NiW2 are thermodynamically unstable, meaning the binary phase diagram is incorrect, but the ternary carbides Ni 6W6C and Ni2W4C are stable. Several Ni-W binary and Ni-W-C ternary phase diagrams were constructed using a simplified CALPHAD approach to improve the understanding of Ni-W phase stability. Lastly, it was determined that the fabrication process greatly influences the impurity types and concentrations of the alloys, and therefore greatly dictate which thermal stability mechanisms are active. Mechanically alloyed samples were found to be the most resistant to grain growth. The findings of this research will hopefully guide future efforts to design more thermally stable nanocrystalline alloys. The link between phase stability and grain growth behavior of Ni-W was thoroughly discussed, as well as the dependence of bulk fabrication processing on the contamination found in the alloys. Ultimately, this research has greatly expanded the general understanding of nanocrystalline Ni-W microstructures, and it is likely that similar phenomena occur in other nanocrystalline systems.

  1. Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian

    2015-01-01

    Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.

  2. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  3. Formability and thermal stability of phase in (Fe1-y Coy)-(B, C, N) films

    NASA Astrophysics Data System (ADS)

    Sunaga, K.; Kadowaki, S.; Tsunoda, M.; Takahashi, M.

    2004-06-01

    In order to find a way to obtain stable -Fe16X2 phase, the formability and thermal stability of (bct) phase were discussed. According to a rigid sphere model, we concluded that the less formability of B for the phase is due to its large atomic radius. We elucidated the difference of thermal stability of -Fe-X, taking into account their decomposition process. While, the decomposition of -Fe-N progresses only by the migration of N, without changing the bone structure of Fe lattice, the additional energy is needed to break the original α-Fe lattice in the cases of α-Fe-B and α-Fe-C. Therefore thermal stability of α-Fe-B and α-Fe-C is higher than that of α-Fe-N.

  4. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  5. Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs

    DOE PAGES

    Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...

    2016-03-24

    Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less

  6. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution.

    PubMed

    Goedegebuur, Frits; Dankmeyer, Lydia; Gualfetti, Peter; Karkehabadi, Saeid; Hansson, Henrik; Jana, Suvamay; Huynh, Vicky; Kelemen, Bradley R; Kruithof, Paulien; Larenas, Edmund A; Teunissen, Pauline J M; Ståhlberg, Jerry; Payne, Christina M; Mitchinson, Colin; Sandgren, Mats

    2017-10-20

    Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in T m and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Cho, Won-Ju

    2017-07-01

    In this paper, we investigate a low thermal budget post-deposition-annealing (PDA) process for amorphous In-Ga-ZnO (a-IGZO) oxide semiconductor thin-film-transistors (TFTs). To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA) and rapid thermal annealing (RTA) methods were applied, and the results were compared with those of the conventional annealing (CTA) method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C) and short annealing time (2 min) because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  8. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dali; Hubbard, Kevin Mark; Devlin, David James

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in itsmore » composite form.« less

  9. Recycling of poly (lactic acid)/silk based bionanocomposites films and its influence on thermal stability, crystallization kinetics, solution and melt rheology.

    PubMed

    Tesfaye, Melakuu; Patwa, Rahul; Gupta, Arvind; Kashyap, Manash Jyoti; Katiyar, Vimal

    2017-08-01

    In this study, the effect of silk nanocrystals (SNCs) on the thermal and rheological properties of poly (lactic acid) (PLA) under repetitive extrusion process is investigated. The presence of SNCs facilitates the crystallization process and delaying the thermal degradation of PLA matrix. This leads to the reduction in cold crystallization peak temperature with lower crystallization half-time and higher growth rate. The substantial improvement in nucleation density observed through Polarized Optical Microscope (POM) proves the nucleating effect of SNC in all processing cycles. Moreover, the rheological investigation (complex viscosity, storage and loss modules values) revealed the stabilizing effect of SNC and the drastic degradation of neat PLA (NPLA) in third and fourth cycle is observed to be fortified by the presence of SNC. Cole-Cole plot and cross over frequencies have been correlated with the molar mass distribution of PLA and PLA-Silk composite during processing, which is further supported by the intrinsic viscosity measurement and acid value analysis. This investigation suggests that the melt viscosity and thermal properties of PLA can be stabilized by addition of silk nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. On the thermal stability of graphone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podlivaev, A. I.; Openov, L. A., E-mail: LAOpenov@mephi.ru

    2011-07-15

    Molecular dynamics simulation is used to study thermally activated migration of hydrogen atoms in graphone, a magnetic semiconductor formed of a graphene monolayer with one side covered with hydrogen. The temperature dependence of the characteristic time of disordering of graphone via hopping of hydrogen atoms to neighboring carbon atoms is established directly. The activation energy of this process is determined at E{sub a} = (0.05 {+-} 0.01) eV. The small value of E{sub a} is indicative of the extremely low thermal stability of graphone. The low stability presents a serious handicap for practical use of the material in nanoelectronics.

  11. Thermal stability of bioactive enzymatic papers.

    PubMed

    Khan, Mohidus Samad; Li, Xu; Shen, Wei; Garnier, Gil

    2010-01-01

    The thermal stability of two enzymes adsorbed on paper, alkaline phosphatase (ALP) and horseradish peroxidase (HRP), was measured using a colorimetric technique quantifying the intensity of the product complex. The enzymes adsorbed on paper retained their functionality and selectivity. Adsorption on paper increased the enzyme thermal stability by 2-3 orders of magnitude compared to the same enzyme in solution. ALP and HRP enzymatic papers had half-lives of 533 h and 239 h at 23 degrees C, respectively. The thermal degradation of adsorbed enzyme was found to follow two sequential first-order reactions, indication of a reaction system. A complex pattern of enzyme was printed on paper using a thermal inkjet printer. Paper and inkjet printing are ideal material and process to manufacture low-cost-high volume bioactive surfaces.

  12. 7 CFR 58.926 - Heat stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Heat stability. 58.926 Section 58.926 Agriculture... Procedures § 58.926 Heat stability. Prior to thermal processing of concentrated products and where stabilizers are allowed, tests should be made on the heat stability of the product to determine necessity for...

  13. 7 CFR 58.926 - Heat stability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Heat stability. 58.926 Section 58.926 Agriculture... Procedures § 58.926 Heat stability. Prior to thermal processing of concentrated products and where stabilizers are allowed, tests should be made on the heat stability of the product to determine necessity for...

  14. 7 CFR 58.926 - Heat stability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Heat stability. 58.926 Section 58.926 Agriculture... Procedures § 58.926 Heat stability. Prior to thermal processing of concentrated products and where stabilizers are allowed, tests should be made on the heat stability of the product to determine necessity for...

  15. 7 CFR 58.926 - Heat stability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Heat stability. 58.926 Section 58.926 Agriculture... Procedures § 58.926 Heat stability. Prior to thermal processing of concentrated products and where stabilizers are allowed, tests should be made on the heat stability of the product to determine necessity for...

  16. 7 CFR 58.926 - Heat stability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Heat stability. 58.926 Section 58.926 Agriculture... Procedures § 58.926 Heat stability. Prior to thermal processing of concentrated products and where stabilizers are allowed, tests should be made on the heat stability of the product to determine necessity for...

  17. Effective Identification on Adulteration of Polyethylene With Post-consumer Ones

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Qin, W. B.; Guo, J. F.; Liu, J.; Wang, Y. L.; Zhang, W.; Zhao, X. Y.; Wang, L.

    2018-05-01

    This paper mainly describes the effective identification of the adulteration of polyethylene with post-consumer ones. Degradation would be happened when multiple processings occurred. The melt flow index (MFI) analysis, thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC) were used to characterize the processability and thermal stabilities of virgin polyethylene and recycled polyethylene which adulterated post-consumer PE. The results indicated that MFI of PE increased with the increasing doping content. Adulterating reclaimed PE had effects on the thermal stability of PE, which led to lower thermal decomposition temperature. Melting peak of recycled LLDPE varied from merely single to double, which differently compared differently with virgin LLDPE. Besides, with the doping content of post-consumer LDPE, the melting temperature had a decreasing tendency.

  18. [THERMAL STABILITY AS A PROGNOSTIC INDICATOR OF CONSERVATION OF LIVE EMBRYONIC SMALLPOX VACCINE (TEOVAC) DURING STORAGE].

    PubMed

    Zhukov, V A; Kokorev, S V; Rogozhkina, S V; Melnikov, D G; Terentiev, A I; Kovalchuk, E A; Vakhnov, E Yu; Borisevich, S V

    2016-01-01

    Determination of values of coefficients of thermal stability of TEOVac for prognosis of conservation of the vaccine (specific biological activity) during the process of warranty period storage. TEOVac (masticatory tablets) in primary packaging was kept at increased temperature (accelerated and stress-tests) and at the conditions established by PAP for the preparation (long-term tests). Biological activity of the vaccine was determined by titration on 12-day chicken embryos. A correlation between the value of coefficients of thermal stability and conservation of the prepared series of the condition preparation at the final date of storage was experimentally established. Coefficients of thermal stability could be used as a prognostic indicator of quality of the produced pelleted formulation of the preparation for evaluation of conservation of the vaccine during warranty period storage.

  19. Comparison between mixed and spatially separated remote phosphor fabricated via a screen-printing process

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai

    2016-08-01

    We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.

  20. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    PubMed

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  1. Thermal behavior of copper processed by ECAP at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Gonda, Viktor

    2018-05-01

    Large amount of strengthening can be achieved by equal channel angular pressing (ECAP), by the applied severe plastic deformation during the processing. For pure metals, this high strength is accompanied with low thermal stability due to the large activation energy for recrystallization. In the present paper, the chosen technological route was elevated temperature single pass ECAP processing of copper, and its effect on the thermal behavior during the restoration processes of the deformed samples was studied.

  2. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    NASA Astrophysics Data System (ADS)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal stability by thermogravimetric analysis in a subsequent experiment. Overlay plots, combining individual weight loss curves, demonstrate that the experimental factors, solvent system and extraction time, produce effects on the thermal stability of the treated biomass samples. These data also indicated that the individual lignocellulosic materials had unique responses to the type of solvent used for pretreatment. Increasing extraction time had either no correlation with or a positive effect on thermal stability of the biomass samples.

  3. Enhancement of poly(3-hydroxybutyrate) thermal and processing stability using a bio-waste derived additive.

    PubMed

    Persico, Paola; Ambrogi, Veronica; Baroni, Antonio; Santagata, Gabriella; Carfagna, Cosimo; Malinconico, Mario; Cerruti, Pierfrancesco

    2012-12-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its brittleness and narrow processing window. In this study a pomace extract (EP), from the bio-waste of winery industry, was used as thermal and processing stabilizer for PHB, aimed to engineer a totally bio-based system. The results showed that EP enhanced the thermal stability of PHB, which maintained high molecular weights after processing. This evidence was in agreement with the slower decrease in viscosity over time observed by rheological tests. EP also affected the melt crystallization kinetics and the overall crystallinity extent. Finally, dynamic mechanical and tensile tests showed that EP slightly improved the polymer ductility. The results are intriguing, in view of the development of sustainable alternatives to synthetic polymer additives, thus increasing the applicability of bio-based materials. Moreover, the reported results demonstrated the feasibility of the conversion of an agro-food by-product into a bio-resource in an environmentally friendly and cost-effective way. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effect of dodecyl maltoside detergent on rhodopsin stability and function.

    PubMed

    Ramon, Eva; Marron, Jordi; del Valle, Luis; Bosch, Laia; Andrés, Anna; Manyosa, Joan; Garriga, Pere

    2003-12-01

    Detergent-solubilized bovine rhodopsin produces mixed detergent/lipid/protein micelles. The effect of dodecyl maltoside detergent on the thermal stability of dark-state rhodopsin, and upon formation of the different intermediates after rhodopsin photobleaching (metarhodopsin II and metarhodopsin III), and upon transducin activation has been studied. No significant effect is observed for the thermal stability of dark-state rhodopsin in the range of detergent concentrations studied, but a decrease in the stability of metarhodopsin II and an increase in metarhodopsin III formation is observed with decreasing detergent concentrations. The transducin activation process is also affected by the presence of detergent indicating that this process is dependent on the lipid micro-environment and membrane fluidity, and this stresses the importance of the native lipid environment in rhodopsin normal function.

  5. Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature.

    PubMed

    Ben Dkhil, Sadok; Pfannmöller, Martin; Schröder, Rasmus R; Alkarsifi, Riva; Gaceur, Meriem; Köntges, Wolfgang; Heidari, Hamed; Bals, Sara; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2018-01-31

    The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  6. Thermal stability of bubble domains in ferromagnetic discs

    NASA Astrophysics Data System (ADS)

    Hrkac, G.; Bance, S.; Goncharov, A.; Schrefl, T.; Suess, D.

    2007-05-01

    The transition and thermal stability of disc-shaped ferromagnetic particles at the temperature of T = 300 K with a uniaxial anisotropy along the symmetry axis from a bi-domain to a single domain state has been studied. The nudge elastic band method was used to map the energy landscape and to calculate the energy barrier between the transition states. For single FePt disc-shaped particles with perpendicular anisotropy three transition configurations have been found: single domain, stripe- and stable bubble domains at zero applied field. The single domain configuration along the positive anisotropy axis is reached by an annihilation process of the domain wall and the all-down state by a complex domain expansion process. Magnetization configurations in two interacting discs show an increase in thermal stability compared with single disc systems, which is attributed to the interacting magnetostatic energy between the two particles.

  7. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  8. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  9. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  10. Development of New Laser-Protective Dyes. Phase 1.

    DTIC Science & Technology

    1990-10-30

    technology to stabilize cyanine and squarylium dyes . This accomplishment will justify continued research on the synthesis and process development of...beyond. This is the subject of a proposed Phase II program. RESULTS AND DISCUSSION THERMAL STABILITY: In Phase I, dyes of the cyanine and squarylium ...Test in Appendix 1). Table 1 shows that the squarylium dyes are inherently more thermally stable than the cyanines. This observation supports

  11. Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites.

    PubMed

    Goikuria, U; Larrañaga, A; Vilas, J L; Lizundia, E

    2017-09-01

    Due to the potential of CNC-based flexible materials for novel industrial applications, the aim of this work is to improve the thermal stability of cellulose nanocrystals (CNC) films through a straightforward and scalable method. Based of nanocomposite approach, five different metallic nanoparticles (ZnO, SiO 2 , TiO 2 , Al 2 O 3 and Fe 2 O 3 ) have been co-assembled in water with CNCs to obtain free-standing nanocomposite films. Thermogravimetric analysis (TGA) reveals an increased thermal stability upon nanoparticle. This increase in the thermal stability reaches a maximum of 75°C for the nanocomposites having 10wt% of Fe 2 O 3 and ZnO. The activation energies of thermodegradation process (E a ) determined according to Kissinger and Ozawa-Flynn-Wall methods further confirm the delayed degradation of CNC nanocomposites upon heating. Finally, the changes induced in the crystalline structure during thermodegradation were followed by wide angle X-ray diffraction (WAXD). It is also observed that thermal degradation proceeds at higher temperatures for nanocomposites having metallic nanoparticles. Overall, experimental findings here showed make nanocomposite approach a simple low-cost environmentally-friendly strategy to overcome the relatively poor thermal stability of CNCs when extracted via sulfuric acid assisted hydrolysis of cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermal stability of gallium arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Papež, Nikola; Škvarenina, Ľubomír.; Tofel, Pavel; Sobola, Dinara

    2017-12-01

    This article summarizes a measurement of gallium arsenide (GaAs) solar cells during their thermal processing. These solar cells compared to standard silicon cells have better efficiency and high thermal stability. However, their use is partly limited due to high acquisition costs. For these reasons, GaAs cells are deployed only in the most demanding applications where their features are needed, such as space applications. In this work, GaAs solar cells were studied in a high temperature range within 30-650 °C where their functionality and changes in surface topology were monitored. These changes were recorded using an electron microscope which determined the position of the defects; using an atomic force microscope we determined the roughness of the surface and an infrared camera that showed us the thermal radiated places of the defected parts of the cell. The electrical characteristics of the cells during processing were determined by its current-voltage characteristics. Despite the occurrence of subtle changes on the solar cell with newly created surface features after 300 °C thermal processing, its current-voltage characteristic remained without a significant change.

  13. The thermal stability of the carbon-palladium films for hydrogen sensor applications

    NASA Astrophysics Data System (ADS)

    Rymarczyk, Joanna; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław

    2017-08-01

    The thermal stability of two types of C-Pd films prepared in PVD process were studied. These films are composed of Pd nanograins embedded in a multiphase carbonaceous matrix. These films were distinguished by Pd content. These films were annealed in a range of temperatures 50÷1000°C. The structural, topographical and molecular changes were studied by scanning electron microscopy (SEM), infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods. The results show that investigated films are thermally stable up to 200°C.

  14. Effect of thermal and high pressure processing on stability of betalain extracted from red beet stalks.

    PubMed

    Dos Santos, Cláudia Destro; Ismail, Marliya; Cassini, Aline Schilling; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Farid, Mohammed

    2018-02-01

    Red beet stalks are a potential source of betalain, but their pigments are not widely used because of their instability. In the present work, the applicability of high pressure processing (HPP) and high temperature short time (HTST) thermal treatment was investigated to improve betalain stability in extracts with low and high concentrations. The HPP was applied at 6000 bar for 10, 20 and 30 min and HTST treatment was applied at 75.7 °C for 80 s, 81.1 °C for 100 s and 85.7 °C for 120 s, HPP treatment did not show any improvement in the betalain stability. In turn, the degradation rate of the control and the HTST thermal treatment at 85.7 °C for 120 s of the sample with high initial betalain concentration were 1.2 and 0.4 mg of betanin/100 ml of extract per day respectively. Among the treatments studied, HTST was considered the most suitable to maintain betalain stability from red beet stalks.

  15. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  16. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  17. Magnetic properties and thermal stability of Ti-doped CrO2 films

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Cheng, M.; Lu, Z.; Yu, Z.; Liu, S.; Liang, R.; Liu, Y.; Shi, J.; Xiong, R.

    2018-04-01

    Chromium dioxide (CrO2) is a striking half metal material which may have important applications in the field of spintronics. However, pure CrO2 film is metastable at room temperature and the synthesis process can be only performed in a narrow temperature range of 390-410 °C with TiO2 used as substrate material. Here, we report the preparation and investigation of (1 0 0) oriented Ti-doped CrO2 films on TiO2 substrates. It is found that Ti-doped films can maintain pure rutile phase even after a 510 °C post-annealing, showing much better thermal stability than pure CrO2 films. Ti-doped films can be prepared in a wider temperature window (390-470 °C), which may be attributed to the improvement of thermal stability. The broadening of process window may be beneficial for further improvement of film quality by optimizing growth temperature in a larger range. In addition to the improvement of thermal stability, the magnetic properties of Ti-doped CrO2 are also found to be tuned by Ti doping: saturation magnetizations of Ti-doped films at room temperature are significantly lower, and magnetic anisotropy decreases as the Ti-concentration increases, which is beneficial for decreasing switching current density in STT-based spintronic devices.

  18. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.

  19. Highly transparent and thermal-stable silver nanowire conductive film covered with ZnMgO by atomic-layer-deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao

    2017-12-01

    Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.

  20. Influence of Molecular Shape on the Thermal Stability and Molecular Orientation of Vapor-Deposited Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Diane M; Antony, Lucas; de Pablo, Juan

    High thermal stability and anisotropic molecular orientation enhance the performance of vapor-deposited organic semiconductors, but controlling these properties is a challenge in amorphous materials. To understand the influence of molecular shape on these properties, vapor-deposited glasses of three disk-shaped molecules were prepared. For all three systems, enhanced thermal stability is observed for glasses prepared over a wide range of substrate temperatures and anisotropic molecular orientation is observed at lower substrate temperatures. For two of the disk-shaped molecules, atomistic simulations of thin films were also performed and anisotropic molecular orientation was observed at the equilibrium liquid surface. We find that themore » structure and thermal stability of these vapor-deposited glasses results from high surface mobility and partial equilibration toward the structure of the equilibrium liquid surface during the deposition process. For the three molecules studied, molecular shape is a dominant factor in determining the anisotropy of vapor-deposited glasses.« less

  1. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    PubMed

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  2. Simultaneous thermal stability and phase change speed improvement of Sn15Sb85 thin film through erbium doping

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Zhu, Xiaoqin; Hu, Yifeng; Sui, Yongxing; Sun, Yuemei; Zhang, Jianhao; Zheng, Long; Song, Zhitang

    2016-12-01

    In general, there is a trade off between the phase change speed and thermal stability in chalcogenide phase change materials, which leads to sacrifice the one in order to ensure the other. For improving the performance, doping is a widely applied technological process. Here, we fabricated Er doped Sn15Sb85 thin films by magnetron sputtering. Compared with the pure Sn15Sb85, we show that Er doped Sn15Sb85 thin films exhibit simultaneous improvement over the thermal stability and the phase change speed. Thus, our results suggest that Er doping provides the opportunity to solve the contradiction. The main reason for improvement of both thermal stability and crystallization speed is due to the existence of Er-Sb and Er-Sn bonds in Er doped Sn15Sb85 films. Hence, Er doped Sn15Sb85 thin films are promising candidates for the phase change memory application, and this method could be extended to other lanthanide-doped phase change materials.

  3. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    PubMed

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  4. Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2.

    PubMed

    Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang; Wei, Yi; Song, Xiaohe; Ren, Yang; Wang, Weidong; Rao, Mumin; Lin, Yuan; Chen, Zonghai; Lu, Jun; Wang, Chongmin; Amine, Khalil; Pan, Feng

    2016-10-12

    Understanding and further designing new layered Li(Ni x Mn y Co z )O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3 -O-Li 3-x' ): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states from the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the "Ni═Mn" group NMC materials but benefit the thermal stability of "Ni-rich" group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in "Ni-rich" NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.

  5. Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang

    2016-09-19

    Understanding and further designing new layered Li(Ni xMn yCo z)O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3-O-Li 3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states frommore » the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the “NiMn” group NMC materials but benefit the thermal stability of “Ni-rich” group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in “Ni-rich” NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.« less

  6. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    1999-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  7. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    2000-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  8. Feasibility and process scale-up low cost alumina fibers for advanced Re-usable Surface Insulation (RSI)

    NASA Technical Reports Server (NTRS)

    Pearson, A.

    1975-01-01

    The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.

  9. Process and formulation effects on solar thermal drum dried prune pomace

    USDA-ARS?s Scientific Manuscript database

    The processing of dried plums into prune juice and concentrate yields prune pomace as a coproduct; the pomace could potentially be utilized as a food ingredient but requires stabilization for long-term storage. Drum drying is one method that could be used to dry and stabilize prune pomace, and a dru...

  10. Thermal stability of the microstructure of silver films

    NASA Astrophysics Data System (ADS)

    Sursaeva, V. G.; Straumal, A. B.

    2017-04-01

    The thermal stability of freely suspended silver films 100 nm thick is studied during isothermal annealing at temperatures of 350-600°C for different times. At temperatures of 350-450°C, only grain growth is observed. Above 450°C, along with grain growth, the formation and growth of hillocks and holes take place; in this case, grain boundaries are essential in the processes. A continuous film transforms into a cellular one. At 500°C, the growth processes of both grains and holes have the same incubation period, during which no grain growth, hole formation, and hole growth take place.

  11. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, A.J.; Richards, J.M.

    1999-01-26

    A process is described for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process. 3 figs.

  12. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    NASA Astrophysics Data System (ADS)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  13. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    NASA Astrophysics Data System (ADS)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  14. Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena, Sharma, Annu

    2018-05-01

    This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.

  15. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    PubMed

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  16. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    PubMed Central

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan’gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089

  17. Stability of Detached Solidification

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Croell, A.

    2009-01-01

    Bridgman crystal growth can be conducted in the so-called "detached" solidification regime, where the growing crystal is detached from the crucible wall. A small gap between the growing crystal and the crucible wall, of the order of 100 micrometers or less, can be maintained during the process. A meniscus is formed at the bottom of the melt between the crystal and crucible wall. Under proper conditions, growth can proceed without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the process. Thermal and other process parameters can also affect the geometrical steady-state stability conditions of solidification. The dynamic stability theory of the shaped crystal growth process has been developed by Tatarchenko. It consists of finding a simplified autonomous set of differential equations for the radius, height, and possibly other process parameters. The problem then reduces to analyzing a system of first order linear differential equations for stability. Here we apply a modified version of this theory for a particular case of detached solidification. Approximate analytical formulas as well as accurate numerical values for the capillary stability coefficients are presented. They display an unexpected singularity as a function of pressure differential. A novel approach to study the thermal field effects on the crystal shape stability has been proposed. In essence, it rectifies the unphysical assumption of the model that utilizes a perturbation of the crystal radius along the axis as being instantaneous. It consists of introducing time delay effects into the mathematical description and leads, in general, to stability over a broader parameter range. We believe that this novel treatment can be advantageously implemented in stability analyses of other crystal growth techniques such as Czochralski and float zone methods.

  18. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE PAGES

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene; ...

    2016-02-06

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  19. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  20. Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films.

    PubMed

    Lizundia, E; Urruchi, A; Vilas, J L; León, L M

    2016-01-20

    In this work we attempt to improve the functional properties and thermal stability of cellulose nanocrystal (CNC) films by means of eco-friendly materials and processes. Mechanically flexible films of closely packed CNCs with concentrations up to 5 wt.% of zinc oxide (ZnO) nanoparticles have been prepared by a simple, standard and environmentally friendly method using solely water. Results reveal that ultraviolet light is blocked by 98.5% at 1 wt.% ZnO while good transparency is maintained. A sharp hydrophobicity increase is observed with the addition of ZnO which would enhance the durability of films by decreasing the water diffusion through the material. The thermal degradation activation energy (E) presents an increase of 141%, denoting a high thermal stability of films, which would result beneficial for their potential application in the field of flexible electronics. Mechanical results demonstrate a high structural integrity of CNC/ZnO as a result of the occurring strong cellulosic inter- and intramolecular interactions within the closely packed CNC network. In overall, this work highlights the potential for environmentally friendly processing of sustainable nanostructured functional materials based on cellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Influence of growth conditions on exchange bias of NiMn-based spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz

    2015-05-07

    As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction onmore » Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.« less

  2. A review of liquid lubricant thermal/oxidative degradation

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    The fundamental processes occurring during the thermal and oxidative degradation of hydrocarbons are reviewed. Particular emphasis is given to various classes of liquid lubricants such as mineral oils, esters, polyphenyl ethers, C-ethers, and fluorinated polyethers. Experimental techniques for determining thermal and oxidative stabilities of lubricants are discussed. The role of inhibitors and catalysis is also covered.

  3. Computational study of elements of stability of a four-helix bundle protein biosurfactant

    NASA Astrophysics Data System (ADS)

    Schaller, Andrea; Connors, Natalie K.; Dwyer, Mirjana Dimitrijev; Oelmeier, Stefan A.; Hubbuch, Jürgen; Middelberg, Anton P. J.

    2015-01-01

    Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal phase separation approaches.

  4. Wholly aromatic liquid crystalline polyetherimide (LC-PEI) resins

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); Dingemans, Theodorus J. (Inventor); St. Clair, Terry L. (Inventor); Hinkley, Jeffrey A. (Inventor)

    2011-01-01

    The benefits of liquid crystal polymers and polyetherimides are combined in an all-aromatic thermoplastic liquid crystalline polyetherimide. Because of the unique molecular structure, all-aromatic thermotropic liquid crystal polymers exhibit outstanding processing properties, excellent barrier properties, low solubilities and low coefficients of thermal expansion in the processing direction. These characteristics are combined with the strength, thermal, and radiation stability of polyetherimides.

  5. Analysis of curing process and thermal properties of phenol-urea-formaldehyde cocondensed resins

    Treesearch

    Bunchiro Tomita; Masahiko Ohyama; Atsushi Itoh; Kiyoto Doi; Chung-Yun Hse

    1994-01-01

    The curing processes of resols, urea-formaldehyde (UF) resins, their mechanical blends, and phenol-urea cocondensed resins, as well as the reaction of 2,4,6-trimethylolphenol with urea were investiiated with the torsional braid analysis method. The thermal stabilities of these resins after curing also were compared. The results were as follows: (1) In the curing...

  6. Thermodynamic analysis and purifying an amorphous phase of frozen crystallization centers

    NASA Astrophysics Data System (ADS)

    Lysov, V. I.; Tsaregradskaya, T. L.; Turkov, O. V.; Saenko, G. V.

    2017-12-01

    The possibility of dissolving frozen crystallization centers in amorphous alloys of the Fe-B system is considered by means of thermodynamic calculations. This can in turn improve the thermal stability of an amorphous alloy. The effect isothermal annealing has on the thermal stability of multicomponent amorphous alloys based on iron is investigated via the highly sensitive dilatometric technique, measurements of microsolidity, and electron microscopic investigations. The annealing temperature is determined empirically on the basis of the theses of the thermodynamic theory of the high temperature stability of multicomponent amorphous alloys, according to which there exists a range of temperatures that is characterized by a negative difference between the chemical potentials of phases in a heterogeneous amorphous matrix-frozen crystallization centers system. The thermodynamic condition of the possible dissolution of frozen crystallization centers is thus met. It is shown that introducing regimes of thermal processing allows us to expand the ranges of the thermal stability of iron-based amorphous alloys by 20-40 K through purifying an amorphous matrix of frozen crystallization centers. This conclusion is proved via electron microscopic investigations.

  7. Spin dynamics and thermal stability in L10 FePt

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Toomey, Wahida

    Increasing the data storage density of hard drives remains one of the continuing goals in magnetic recording technology. A critical challenge for increasing data density is the thermal stability of the written information, which drops rapidly as the bit size gets smaller. To maintain good thermal stability in small bits, one should consider materials with high anisotropy energy such as L10 FePt. High anisotropy energy nevertheless implies high coercivity, making it difficult to write information onto the disk. This issue can be overcome by a new technique called heat-assisted magnetic recording, where a laser is used to locally heat the recording medium to reduce its coercivity while retaining relatively good thermal stability. Many of the microscopic magnetic properties of L10 FePt, however, have not been theoretically well understood. In this poster, I will focus on a single L10 FePt grain, typically of a few nanometers. Specifically, I will discuss its critical temperature, size effect and, in particular, spin dynamics in the writing process, a key to the success of heat-assisted magnetic recording. WCU URF16.

  8. Simulation of thermally induced processes of diffusion and phase formation in layered binary metallic systems

    NASA Astrophysics Data System (ADS)

    Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.

    2010-05-01

    Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.

  9. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base.

    PubMed

    Liu, Jian; Liu, Monica Yun; Nguyen, Jennifer B; Bhagat, Aditi; Mooney, Victoria; Yan, Elsa C Y

    2009-07-01

    Although thermal stability of the G protein-coupled receptor rhodopsin is directly related to its extremely low dark noise level and has recently generated considerable interest, the chemistry behind the thermal decay process of rhodopsin has remained unclear. Using UV-vis spectroscopy and HPLC analysis, we have demonstrated that the thermal decay of rhodopsin involves both hydrolysis of the protonated Schiff base and thermal isomerization of 11-cis to all-trans retinal. Examining the unfolding of rhodopsin by circular dichroism spectroscopy and measuring the rate of thermal isomerization of 11-cis retinal in solution, we conclude that the observed thermal isomerization of 11-cis to all-trans retinal happens when 11-cis retinal is in the binding pocket of rhodopsin. Furthermore, we demonstrate that solvent deuterium isotope effects are involved in the thermal decay process by decreasing the rates of thermal isomerization and hydrolysis, suggesting that the rate-determining step of these processes involves breaking hydrogen bonds. These results provide insight into understanding the critical role of an extensive hydrogen-bonding network on stabilizing the inactive state of rhodopsin and contribute to our current understanding of the low dark noise level of rhodopsin, which enables this specialized protein to function as an extremely sensitive biological light detector. Because similar hydrogen-bonding networks have also been suggested by structural analysis of two other GPCRs, beta1 and beta2 adrenergic receptors, our results could reveal a general role of hydrogen bonds in facilitating GPCR function.

  10. Kinetics and Mechanism of in situ Simultaneous Formation of Metal Nanoparticles in Stabilizing Polymer Matrix

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Dzhardimalieva, Gulzhian I.; Rozenberg, Aleksander S.; Muraviev, Dmitri N.

    2003-12-01

    The kinetic peculiarities of the thermal transformations of unsaturated metal carboxylates (transition metal acrylates and maleates as well as their cocrystallites) and properties of metal-polymer nanocomposites formed have been studied. The composition and structure of metal-containing precursors and the products of the thermolysis were identified by X-ray analysis, optical and electron microscopy, magnetic measurements, EXAFS, IR and mass spectroscopy. The thermal transformations of metal-containing monomers studied are the complex process including dehydration, solid phase polymerization, and thermolysis process which proceed at varied temperature ranges. At 200-300°C the rate of thermal decay can be described by first-order equations. The products of decompositions are nanometer-sized particles of metal or its oxides with a narrow size distribution (the mean particle diameter of 5-10nm) stabilized by the polymer matrix.

  11. Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications

    NASA Astrophysics Data System (ADS)

    Woo, Patrick Kai Fai

    Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of copper is greatly related to changes in driving and dragging forces, which in turn, are strongly depended on parameters such as annealing temperature and time, total sulfur impurity content and the distribution of the impurities within the material. It was shown that a simple increase in the sulfur impurity level does not necessarily improve the thermal stability of nanocrystalline copper.

  12. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    DOE PAGES

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; ...

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitrymore » and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.« less

  13. Stabilization of gas turbine unit power

    NASA Astrophysics Data System (ADS)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  14. Challenges of designing and testing a highly stable sensor platform: Cesic solves MTG star sensor bracket thermoelastic requirements

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias; Zauner, Christoph

    2017-09-01

    The Meteosat Third Generation's extreme pointing requirements call for a highly stable bracket for mounting the Star Trackers. HB-Cesic®, a chopped fibre reinforced silicon carbide, was selected as a base material for the sensor bracket. The high thermal conductivity and low thermal expansion of HB-Cesic® were the key properties to fulfil the demanding thermo-elastic pointing requirements of below 1μrad/K for the Star Trackers mounting interfaces. Dominated by thermoelastic stability requirements, the design and analysis of the Bracket required a multidisciplinary approach with the focus on thermal and thermo-elastic analyses. Dedicated modal and thermal post-processing strategies have been applied in the scope of the light weighting process. The experimental verification of this thermo-elastic stable system has been a challenging task of its own. A thermo-elastic distortion measurement rig was developed with a stability of <0.1μrad/K in all three rotational degrees of freedom.

  15. Effect of gamma radiation on the stability of UV replicated composite mirrors

    NASA Astrophysics Data System (ADS)

    Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.

    2018-04-01

    Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.

  16. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    PubMed

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  17. Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products.

    PubMed

    Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2015-07-01

    The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), de-epoxy-deoxynivalenol (DOM-1) and ochratoxin A (OTA) during thermal processing has been studied. Baking temperature, time and initial mycotoxin concentration in the raw materials were assayed as factors. An improved UPLC-MS/MS method to detect DON, DON-3-glucoside, 3-ADON, 15-ADON and DOM-1 in wheat baked products was developed in the present assay. The results highlighted the importance of temperature and time in mycotoxin stability in heat treatments. OTA is more stable than DON in a baking treatment. Interestingly, the DON-3-glucoside concentrations increased (>300%) under mild baking conditions. On the other hand, it was rapidly reduced under harsh conditions. The 3-ADON decreased during the heat treatment; while DOM-1 increased after the heating process. Finally, the data followed first order kinetics for analysed mycotoxins and thermal constant rates (k) were calculated. This parameter can be a useful tool for prediction of mycotoxin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Process margin enhancement for 0.25-μm metal etch process

    NASA Astrophysics Data System (ADS)

    Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey

    2000-06-01

    This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.

  19. The thermal stability of magnetically exchange coupled MnBi/FeCo composites at electric motor working temperature

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Wang, Hongying; Li, Zhigang; Liu, Wanhui; Bao, Ilian

    2018-04-01

    The magnetically exchange coupled MnBi/FeCo composites were synthesized through a magnetic self-assembly process. The MnBi/FeCo composites were then hot pressed in a magnetic field to form magnets. The thermal stability of the magnets were tested by annealing at electric motor working temperature of 200 °C for 20, 40 and 60 h, respectively. It was found that after heating for 20 h, there was negligible change in its hysteresis loop. However, when the heating time was increased 40 and 60 h, the magnetic hysteresis loops presented two-phase magnetic behaviors, and the maximum energy products of the magnet were decreased. This research showed that the magnetically exchange coupled MnBi/FeCo composites had low thermal stability at electric motor working temperature.

  20. Thermal restraint of a bacterial exopolysaccharide of shallow vent origin.

    PubMed

    Caccamo, Maria Teresa; Zammuto, Vincenzo; Gugliandolo, Concetta; Madeleine-Perdrillat, Claire; Spanò, Antonio; Magazù, Salvatore

    2018-07-15

    To dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80°C. The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis. The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80°C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility. Our results provide novel insights into the thermal stability properties of the whole EPS1-T14 and into the role of its main monosaccharidic units. As a new biopolymer, the thermostable EPS1-T14 could be used in traditional biotechnology fields and in new biomedical areas, as nanocarriers, requiring high temperature processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Stability and thermal behavior of molybdenum disulfide nanotubes: Nonequilibrium molecular dynamics simulation using REBO potential

    NASA Astrophysics Data System (ADS)

    Ahadi, Zohreh; Shadman Lakmehsari, Muhammad; Kumar Singh, Sandeep; Davoodi, Jamal

    2017-12-01

    This study is an attempt to perform equilibrium molecular dynamics and non-equilibrium molecular dynamics (NEMD) to evaluate the stability and thermal behavior of molybdenum disulfide nanotubes (MoS2NTs) by reactive empirical bond order potential. The stability of nanotubes, cohesive energy, isobaric heat capacity, and enthalpies of fusion in armchair and zigzag structures with different radii were calculated. The observed results illustrate that SWMoS2NTs, which have larger diameters, are more stable with more negative energy than the smaller ones. Moreover, it was found that the melting point is increased with an increase in the nanotube's radius. During the melting process, the structural transformation of nanotubes was investigated using a mean-square displacement and radial distribution function diagrams. Afterwards, using a NEMD simulation, the thermal conductivity of nanotubes with various diameters was calculated at a constant nanotube length. The obtained results show that the thermal conductivity coefficient increases with increasing nanotube diameters when the nanotube length is constant.

  2. Antitumoural Sulphur and Selenium Heteroaryl Compounds: Thermal Characterization and Stability Evaluation.

    PubMed

    Alcolea, Verónica; Garnica, Pablo; Palop, Juan A; Sanmartín, Carmen; González-Peñas, Elena; Durán, Adrián; Lizarraga, Elena

    2017-08-08

    The physicochemical properties of a compound play a crucial role in the cancer development process. In this context, polymorphism can become an important obstacle for the pharmaceutical industry because it frequently leads to the loss of therapeutic effectiveness of some drugs. Stability under manufacturing conditions is also critical to ensure no undesired degradations or transformations occur. In this study, the thermal behaviour of 40 derivatives of a series of sulphur and selenium heteroaryl compounds with potential antitumoural activity were studied. In addition, the most promising cytotoxic derivatives were analysed by a combination of differential scanning calorimetry, X-ray diffraction and thermogravimetric techniques in order to investigate their polymorphism and thermal stability. Moreover, stability under acid, alkaline and oxidative media was tested. Degradation under stress conditions as well as the presence of polymorphism was found for the compounds VA6E and VA7J, which might present a hurdle to carrying on with formulation. On the contrary, these obstacles were not found for derivative VA4J.

  3. Synthesis and characterization of processable polyimides with enhanced thermal stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1987-01-01

    Many of the emerging applications of polymers on space vehicles require materials with outstanding thermal stability. These polymers must also be readily processable in order to facilitate their use. The syntheses and polymerization of a cardo dianhydride were investigated. This monomer was prepared via the reaction of N-methyl 4-nitrophthalimide with a cardo diol. Polyimides containing oxyalkylene linkages were studied. The effects of two additional structural modifications on the polymers' properties were investigated. The effects of carrying out the preparation of poly(amic acid)s under non-equilibrium conditions were examined. Approaches that were investigated included the in-situ neutralization of the generated amic acid and its in-situ esterification.

  4. Effects of thermal cycling on graphie-fiber-reinforced 6061 aluminum

    NASA Technical Reports Server (NTRS)

    Dries, G. A.; Tompkins, S. S.

    1986-01-01

    Graphite-reinforced aluminum alloy metal-matrix composites are among materials being considered for structural components in dimensionally stable space structures. This application requires materials with low values of thermal expansions and high specific stiffnesses. They must remain stable during exposures to the space environment for periods extending to 20 years. The effects of thermal cycling on the thermal expansion behavior and mechanical properties of Thornel P100 graphite 6061 aluminum composites, as fabricated and after thermal processing to eliminate thermal strain hysteresis, have been investigated. Two groups of composites were studied: one was fabricated by hot roll bonding and the other by diffusion bonding. Processing significantly reduced strain hysteresis during thermal cycling in both groups and improved the ultimate tensile strength and modulus in the diffusion-bonded composites. Thermal cycling stabilized the as-fabricated composites by reducing the residual fabrication stress and increased the matrix strength by metallurgical aging. Thermal expansion behavior of both groups after processing was insensitive to thermal cycling. Data scatter was too large to determine effects of thermal cycling on the mechanical properties. The primary effects of processing and thermal cycling can be attributed to changes in the metallurgical condition and stress state of the matrix.

  5. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  6. Blended polybenzimidazole and melamine-co-formaldehyde thermosets

    DOE PAGES

    Klaehn, John R.; Orme, Christopher J.; Peterson, Eric S.

    2016-05-11

    Polybenzimidazole [PBI; poly-2,2’(m-phenylene)-5,5’-bibenzimidazole] is known to have excellent high temperature stability (up to 450 ºC) and superb H 2/CO 2 selectivity compared to most high performance (HP) polymers. But, PBI has issues in thin-film formation compared to other HP polymers, due to challenging processing techniques. In this work, new blended thermosets were made with PBI and poly(melamine co-formaldehyde) [PMF] to produce stable thin-films after thermal processing at 220-250 ºC. PBI film formation is difficult, and the film tends to fracture and fissure due to loss of processing aids and stabilizers (salt/acid additives) that are found in PBI solutions above10 wtmore » %. The PBI-PMF blended thermosets we report do not have stabilizers, and can be made into dense thin-films. It is remarkable that these thermally processed PBI-PMF films were stable in deionized water for extended periods, whereas many PBI films that contain additives are not. The PBI-PMF films were analyzed using pure and mixed gas permeability measurement techniques. At 250 °C, the data show H 2/CO 2 gas selectivities greater than 13. Also, from the gas permeation data, the energy of activation (Ep) of a mixed gas stream for PBI-PMF shows that hydrogen permeates more easily than the other gases, while the permeabilities for the larger kinetic diameter gases are greatly diminished. The FT-IR spectra show that the PBI-PMF films have changed from parent PBI after thermal processing, and PMF dominates the spectra even in minor percent compositions. Altogether, the reported PBI-PMF thermoset films show good stability which can be used for high temperature gas separation.« less

  7. Blended polybenzimidazole and melamine-co-formaldehyde thermosets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaehn, John R.; Orme, Christopher J.; Peterson, Eric S.

    Polybenzimidazole [PBI; poly-2,2’(m-phenylene)-5,5’-bibenzimidazole] is known to have excellent high temperature stability (up to 450 ºC) and superb H 2/CO 2 selectivity compared to most high performance (HP) polymers. But, PBI has issues in thin-film formation compared to other HP polymers, due to challenging processing techniques. In this work, new blended thermosets were made with PBI and poly(melamine co-formaldehyde) [PMF] to produce stable thin-films after thermal processing at 220-250 ºC. PBI film formation is difficult, and the film tends to fracture and fissure due to loss of processing aids and stabilizers (salt/acid additives) that are found in PBI solutions above10 wtmore » %. The PBI-PMF blended thermosets we report do not have stabilizers, and can be made into dense thin-films. It is remarkable that these thermally processed PBI-PMF films were stable in deionized water for extended periods, whereas many PBI films that contain additives are not. The PBI-PMF films were analyzed using pure and mixed gas permeability measurement techniques. At 250 °C, the data show H 2/CO 2 gas selectivities greater than 13. Also, from the gas permeation data, the energy of activation (Ep) of a mixed gas stream for PBI-PMF shows that hydrogen permeates more easily than the other gases, while the permeabilities for the larger kinetic diameter gases are greatly diminished. The FT-IR spectra show that the PBI-PMF films have changed from parent PBI after thermal processing, and PMF dominates the spectra even in minor percent compositions. Altogether, the reported PBI-PMF thermoset films show good stability which can be used for high temperature gas separation.« less

  8. Mathematical modelling of thermoregulation processes for premature infants in closed convectively heated incubators.

    PubMed

    Fraguela, Andrés; Matlalcuatzi, Francisca D; Ramos, Ángel M

    2015-02-01

    The low-weight newborns and especially the premature infants have difficulty in maintaining their temperature in the range considered to be normal. Several studies revealed the importance of thermal environment and moisture to increase the survival rate of newborns. This work models the process of heat exchange and energy balance in premature newborns during the first hours of life in a closed incubator. In addition, a control problem was proposed and solved in order to maintain thermal stability of premature newborns to increase their rate of survival and weight. For this purpose, we propose an algorithm to control the temperature inside the incubator. It takes into account the measurements of the body temperature of a premature newborn which are recorded continuously. We show that using this model the temperature of a premature newborn inside the incubator can be kept in a thermal stability range. Copyright © 2014. Published by Elsevier Ltd.

  9. Evaluation on the Photosensitivity of 2,2'-Azobis(2,4-Dimethyl)Valeronitrile with UV.

    PubMed

    Yang, Yi; Tsai, Yun-Ting

    2017-12-14

    Azo compounds have high exothermic characteristics and low thermal stability, which have caused many serious thermal accidents around the world. In general, different locations (e.g., equatorial or polar regions) have different UV intensities. If the azo compound exists in an inappropriately stored or transported condition, the decrease in thermal stability may cause a thermal hazard or ageing. 2,2'-Azobis(2,4-dimethyl)valeronitrile (ADVN) is investigated with respect to the thermal stability affected by UV exposure at 0, 6, 12, and 24 h. When ADVN is exposed to 24 h of UV (100 mW/m² and 254 nm), T ₀ is not only advanced, but the mass loss is also increased during the main decomposition stage. In addition, the apparent activation energy and integral procedural decomposition temperature ( IPDT ) of ADVN exposed to 24 h of UV is calculated by kinetic models. Therefore, the prevention mechanism, thermal characteristics, and kinetic parameters are established in our study. We should isolate UV contacting ADVN under any situations, avoiding ADVN being aged or leading to thermal runaway. This study provided significant information for a safer process under changing UV exposure times for ADVN. Furthermore, the research method may serve as an important benchmark for handling potentially hazardous chemicals, such as azo compounds described herein.

  10. Precipitation of lamellar gold nanocrystals in molten polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomba, M.; Carotenuto, G., E-mail: giancaro@unina.it

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  11. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  12. Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra [On the Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra

    DOE PAGES

    Gilroy, Kyle D.; Elnabawy, Ahmed O.; Yang, Tung -Han; ...

    2017-04-27

    Despite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure. We were able to capture key structural transformations occurring during the thermal annealing process, which were mechanistically rationalized by implementing self-consistent plane-wavemore » density functional theory (DFT) calculations. Specifically, the concave icosahedron was found to evolve into a regular icosahedron via surface reconstruction in the range of 200–400 °C, and then transform into a pseudospherical crystalline structure through bulk reconstruction when further heated to 600 °C. As a result, the mechanistic understanding may lead to the development of strategies for enhancing the thermal stability of metal nanocrystals.« less

  13. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    PubMed

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen

    2017-10-01

    Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.

  15. Thermal degradation of onion quercetin glucosides under roasting conditions.

    PubMed

    Rohn, Sascha; Buchner, Nadja; Driemel, Gregor; Rauser, Morten; Kroh, Lothar W

    2007-02-21

    Flavonoids are an important constituent of the human diet. In recent years, they have gained much attention due to their physiological properties, leading to an enormous increase in research on cancer prevention and reduction of cardiovascular diseases. Unfortunately, there is limited information about the fate of flavonoid glycosides during thermal treatment such as cooking, frying, roasting, etc. Such processing techniques may have an impact on the flavonoid structure, resulting in changes of the bioavailability and activity of the flavonoids. In this study, the stability of selected model and onion quercetin glycosides under roasting conditions (180 degrees C) was determined. The influence of the kind and position of the sugar moiety was investigated. As onions contain large amounts of quercetin glycosides and are often subject to thermal processes in food production, their major glycosides were isolated using counter current chromatography and roasted. The thermal treatment led to a degradation of the quercetin glycosides. The main product is the aglycone quercetin, which remained stable during further roasting. During the roasting process of the quercetin diglucoside isolated from onion, the formation of a monoglycoside as an intermediate product was observed. This underlined that the stability of the glycosides is dependent on the kind and position of the sugar moiety.

  16. Enzyme reactor design under thermal inactivation.

    PubMed

    Illanes, Andrés; Wilson, Lorena

    2003-01-01

    Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.

  17. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.65 Process safety... data; (4) Reactivity data: (5) Corrosivity data; (6) Thermal and chemical stability data; and (7...; (ii) Process chemistry; (iii) Maximum intended inventory; (iv) Safe upper and lower limits for such...

  18. Thermal-electrical properties and resistance stability of silver coated yarns

    NASA Astrophysics Data System (ADS)

    Li, Yafang; Liu, Hao; Li, Xiaojiu

    2017-03-01

    Thermal-electrical properties and resistance stability of silver yarns was researched to evaluate the performance be a heating element. Three samples of silver coated yarns with different linear density and electrical resistivity, which obtained by market. Silver coated yarns were placed at the high temperature condition for ageing. The electrical resistances of yarns were increased with the ageing process. The infrared photography instrument was used to measurement the temperature variation of silver coated yarns by applied different current on. The result shows that the temperature rise with the power increases.

  19. Substituted Cyclohexene Endcaps for Polymers with Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly usefull in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft. The polyimides are derived from the polymerization of effective amounts of at least one tetracarboxylic dianhydride, at least one polyamine and a novel dicarboxylic endcap having the formula presented.

  20. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme.

    PubMed

    Pelay-Gimeno, Marta; Bange, Tanja; Hennig, Sven; Grossmann, Tom N

    2018-05-30

    Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. So far, macrocyclization approaches utilize a very limited structural diversity which complicates the design process. Here, we report an approach that enables cyclization via the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface exposed cysteines which are reacted with a triselectrophile resulting in the in situ cylization of the protein (INCYPRO). A bicyclic version of Sortase A was designed exhibiting increased tolerance towards thermal as well as chemical denaturation, and proved efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain resulting in up to 24 °C increased thermal stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Using ultrasound technology for the inactivation and thermal sensitization of peroxidase in green coconut water.

    PubMed

    Rojas, Meliza Lindsay; Trevilin, Júlia Hellmeister; Funcia, Eduardo Dos Santos; Gut, Jorge Andrey Wilhelms; Augusto, Pedro Esteves Duarte

    2017-05-01

    Green coconut water has unique nutritional and sensorial qualities. Despite the different technologies already studied, its enzymatic stability is still challenging. This study evaluated the use of ultrasound technology (US) for inactivating/sensitizing coconut water peroxidase (POD). The effect of both US application alone and as a pre-treatment to thermal processing was evaluated. The enzyme activity during US processing was reduced 27% after 30min (286W/L, 20kHz), demonstrating its high resistance. The thermal inactivation was described by the Weibull model under non-isothermal conditions. The enzyme became sensitized to heat after US pre-treatment. Further, the use of US resulted in more uniform heat resistance. The results suggest that US is a good technology for sensitizing enzymes before thermal processing (even for an enzyme with high thermal resistance). Therefore, the use of this technology could decrease the undesirable effects of long times and/or the high temperatures of the conventional thermal processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The role of stabilization centers in protein thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magyar, Csaba; Gromiha, M. Michael; Sávoly, Zoltán

    2016-02-26

    The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilizationmore » of proteins. - Highlights: • Stabilization centers contribute to thermal stabilization of protein structures. • Stabilization center content correlates with melting temperature of proteins. • Exposed stabilization center content correlates with stability even in hyperthermophiles. • Stability changing mutations are frequently found at stabilization centers.« less

  3. Thermal stability of Mn-Ir-based specular spin valve structure

    NASA Astrophysics Data System (ADS)

    Yoon, S. Y.; Lee, D. H.; Jeon, D. M.; Kim, J. H.; Yoon, D. H.; Suh, S. J.

    2004-05-01

    We studied the thermal properties of specular and conventional spin valves. The specular spin valve showed better thermal properties (e.g. slow MR degradation and sheet resistance increment) than those of conventional spin valve. It is considered that the Mn-Co-Fe-O is formed in the NOL at 543-578 K and this acts as a diffusion barrier for Mn during high-temperature annealing process.

  4. Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    2002-03-13

    The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analoguemore » of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.« less

  5. Thermal Analysis and Microhardness Mapping in Hybrid Laser Welds in a Structural Steel

    DTIC Science & Technology

    2003-01-01

    conditions. Via the keyhole the laser beam brings about easier ignition of the arc, stabilization of the arc welding process, and penetration of the...with respect to the conventional GMAW or GTAW processes without the need for very close fit-up. This paper will compare an autogenous laser weld to a...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP017864 TITLE: Thermal Analysis and Microhardness Mapping in Hybrid Laser

  6. Thermal Protection Materials Development

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Cox, Michael

    1998-01-01

    The main portion of this contract year was spent on the development of materials for high temperature applications. In particular, thermal protection materials were constantly tested and evaluated for thermal shock resistance, high-temperature dimensional stability, and tolerance to hostile environmental effects. The analytical laboratory at the Thermal Protection Materials Branch (TPMB), NASA-Ames played an integral part in the process of materials development of high temperature aerospace applications. The materials development focused mainly on the determination of physical and chemical characteristics of specimens from the various research programs.

  7. Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.

    PubMed

    Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias

    2015-06-15

    Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® Dispersing.

    PubMed

    Hughey, Justin R; Keen, Justin M; Brough, Chris; Saeger, Sophie; McGinity, James W

    2011-10-31

    Poorly water-soluble drug substances that exhibit high melting points are often difficult to successfully process by fusion-based techniques. The purpose of this study was to identify a suitable polymer system for meloxicam (MLX), a high melting point class II BCS compound, and investigate thermal processing techniques for the preparation of chemically stable single phase solid dispersions. Thermal and solution based screening techniques were utilized to screen hydrophilic polymers suitable for immediate release formulations. Results of the screening studies demonstrated that Soluplus(®)(SOL) provided the highest degree of miscibility and solubility enhancement. A hot-melt extrusion feasibility study demonstrated that high temperatures and extended residence times were required in order to render compositions amorphous, causing significant degradation of MLX. A design of experiments (DOE) was conducted on the KinetiSol(®) Dispersing (KSD) process to evaluate the effect of processing conditions on the chemical stability and amorphous character of MLX. The study demonstrated that ejection temperature significantly impacted MLX stability. All samples prepared by KSD were substantially amorphous. Dissolution analysis of the KSD processed solid dispersions showed increased dissolution rates and extent of supersaturation over the marketed generic MLX tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  10. RP-2 Thermal Stability and Heat Transfer Investigation for Hydrocarbon Boost Engines

    NASA Technical Reports Server (NTRS)

    VanNoord, J. L.; Stiegemeier, B. R.

    2010-01-01

    A series of electrically heated tube tests were performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the use of RP-2 as a fuel for next generation regeneratively cooled hydrocarbon boost engines. The effect that test duration, operating condition and test piece material have on the overall thermal stability and materials compatibility characteristics of RP-2 were evaluated using copper and 304 stainless steel test sections. The copper tests were run at 1000 psia, heat flux up to 6.0 Btu/in.2-sec, and wall temperatures up to 1180 F. Preliminary results, using measured wall temperature as an indirect indicator of the carbon deposition process, show that in copper test pieces above approximately 850 F, RP-2 begins to undergo thermal decomposition resulting in local carbon deposits. Wall temperature traces show significant local temperature increases followed by near instantaneous drops which have been attributed to the carbon deposition/shedding process in previous investigations. Data reduction is currently underway for the stainless steel test sections and carbon deposition measurements will be performed in the future for all test sections used in this investigation. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-2.

  11. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment

    NASA Astrophysics Data System (ADS)

    Hsu, Po-Chun; Lin, Hong-Liang; Wang, Shun-Li; Lin, Shan-Yang

    2012-08-01

    To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55±0.5 °C/40±2% RH condition to determine their stability behavior. Typical TP-CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm-1 and the stepwise appearance of several new IR peaks at 1731, 1712, 1676, 1651, 1557 and 1265 cm-1 with cogrinding time suggest that the mechanism of TP-CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O-H···O hydrogen bonding. The stability of 60-min ground mixture of TP-CA was confirmed at 55±0.5 °C/40±2% RH condition over a storage time of 60 days.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less

  13. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.65 Process safety... data; (4) Reactivity data: (5) Corrosivity data; (6) Thermal and chemical stability data; and (7... operator shall document that equipment complies with recognized and generally accepted good engineering...

  14. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation used the Heated Tube Facility at the NASA Glenn Research Center to perform a thermal stability and heat transfer characterization of RP-1 in an environment simulating that of a high chamber pressure, regenerative cooled rocket engine. The first step in the research was to investigate the carbon deposition process of previous heated tube experiments by performing scanning electron microscopic analysis in conjunction with energy dispersive spectroscopy on the tube sections. This analysis gave insight into the carbon deposition process and the effect that test conditions played in the formation of deleterious coke. Furthermore, several different formations were observed and noted. One other crucial finding of this investigation was that in sulfur containing hydrocarbon fuels, the interaction of the sulfur components with copper based wall materials presented a significant corrosion problem. This problem in many cases was more life limiting than those posed by the carbon deposition process. The results of this microscopic analysis was detailed and presented at the December 2003 JANNAF Air-Breathing Propulsion Meeting as a Materials Compatibility and Thermal Stability Analysis of common Hydrocarbon Fuels (reference 1).

  15. Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite

    NASA Astrophysics Data System (ADS)

    Kolhatkar, Gitanjali; Boucherif, Abderraouf; Rahim Boucherif, Abderrahim; Dupuy, Arthur; Fréchette, Luc G.; Arès, Richard; Ruediger, Andreas

    2018-04-01

    We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

  16. Folding thermodynamics of pseudoknotted chain conformations

    PubMed Central

    Kopeikin, Zoia; Chen, Shi-Jie

    2008-01-01

    We develop a statistical mechanical framework for the folding thermodynamics of pseudoknotted structures. As applications of the theory, we investigate the folding stability and the free energy landscapes for both the thermal and the mechanical unfolding of pseudoknotted chains. For the mechanical unfolding process, we predict the force-extension curves, from which we can obtain the information about structural transitions in the unfolding process. In general, a pseudoknotted structure unfolds through multiple structural transitions. The interplay between the helix stems and the loops plays an important role in the folding stability of pseudoknots. For instance, variations in loop sizes can lead to the destabilization of some intermediate states and change the (equilibrium) folding pathways (e.g., two helix stems unfold either cooperatively or sequentially). In both thermal and mechanical unfolding, depending on the nucleotide sequence, misfolded intermediate states can emerge in the folding process. In addition, thermal and mechanical unfoldings often have different (equilibrium) pathways. For example, for certain sequences, the misfolded intermediates, which generally have longer tails, can fold, unfold, and refold again in the pulling process, which means that these intermediates can switch between two different average end-end extensions. PMID:16674261

  17. Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels.

    PubMed

    Guimarães, Jonas T; Silva, Eric Keven; Alvarenga, Verônica O; Costa, Ana Letícia R; Cunha, Rosiane L; Sant'Ana, Anderson S; Freitas, Monica Q; Meireles, M Angela A; Cruz, Adriano G

    2018-06-01

    In this work, we investigated the effects of the ultrasonic power (0, 200, 400 and 600 W) on non-thermal processing of an inulin-enriched whey beverage. We studied the effects of high-intensity ultrasound (HIUS) on microbial inactivation (aerobic mesophilic heterotrophic bacteria (AMHB), total and thermotolerant coliforms and yeasts and molds), zeta potential, microstructure (optical microscopy, particle size distribution), rheology, kinetic stability and color. The non-thermal processing applying 600 W of ultrasonic power was comparable to high-temperature short-time (HTST) treatment (75 °C for 15 s) concerning the inactivation of AMHB and yeasts and molds (2 vs 2 log and 0.2 vs 0.4 log, respectively), although HIUS has reached a lower output temperature (53 ± 3 °C). The HIUS was better than HTST to improve beverage kinetic stability, avoiding phase separation, which was mainly attributed to the decrease of particles size, denaturation of whey proteins and gelation of polysaccharides (inulin and gellan gum). Thus, non-thermal processing by HIUS seems to be an interesting technology for prebiotic dairy beverages production. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    PubMed

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  19. Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries.

    PubMed

    Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

    2016-06-08

    Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.

  20. Stabilization of the Thermal Decomposition of Poly(Propylene Carbonate) Through Copper Ion Incorporation and Use in Self-Patterning

    NASA Astrophysics Data System (ADS)

    Spencer, Todd J.; Chen, Yu-Chun; Saha, Rajarshi; Kohl, Paul A.

    2011-06-01

    Incorporation of copper ions into poly(propylene carbonate) (PPC) films cast from γ-butyrolactone (GBL), trichloroethylene (TCE) or methylene chloride (MeCl) solutions containing a photo-acid generator is shown to stabilize the PPC from thermal decomposition. Copper ions were introduced into the PPC mixtures by bringing the polymer mixture into contact with copper metal. The metal was oxidized and dissolved into the PPC mixture. The dissolved copper interferes with the decomposition mechanism of PPC, raising its decomposition temperature. Thermogravimetric analysis shows that copper ions make PPC more stable by up to 50°C. Spectroscopic analysis indicates that copper ions may stabilize terminal carboxylic acid groups, inhibiting PPC decomposition. The change in thermal stability based on PPC exposure to patterned copper substrates was used to provide a self-aligned patterning method for PPC on copper traces without the need for an additional photopatterning registration step. Thermal decomposition of PPC is then used to create air isolation regions around the copper traces. The spatial resolution of the self-patterning PPC process is limited by the lateral diffusion of the copper ions within the PPC. The concentration profiles of copper within the PPC, patterning resolution, and temperature effects on the PPC decomposition have been studied.

  1. Thermal Stability of Oil Palm Empty Fruit Bunch (OPEFB) Nanocrystalline Cellulose: Effects of post-treatment of oven drying and solvent exchange techniques

    NASA Astrophysics Data System (ADS)

    Indarti, E.; Marwan; Wanrosli, W. D.

    2015-06-01

    Nanocrystallinecellulose (NCC) from biomass is a promising material with huge potentials in various applications. A big challenge in its utilization is the agglomeration of the NCC's during processing due to hydrogen bonding among the cellulose chains when in close proximity to each other. Obtaining NCC's in a non-agglomerated and non-aqueous condition is challenging. In the present work NCC's was isolated from oil palm empty fruit bunch (OPEFB) using TEMPO-oxidation reaction method. To obtain non-agglomerated and non-aqueous products, the NCC's underwent post-treatment using oven drying (OD) and solvent exchanged (SE) techniques. The thermal stability of all samples was determined from TGA and DTG profiles whilst FTIR was used to analyzethe chemical modifications that occurred under these conditions. NCC-SE has better thermal stability than the NCC-OD and its on-set degradation temperature and residue are also higher. FTIR analysis shows that NCC-SE has a slightly different chemical composition whereby the absorption band at 1300 cm-1 (due to C-O symmetric stretching) is absent as compared to NCC-OD indicating that in NCC-SE the carboxylate group is in acid form which contribute to its thermal stability

  2. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.

  3. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification.

    PubMed

    Hu, Weixiong; Liu, Xiaoyun; Li, Yufeng; Liu, Daling; Kuang, Zhihe; Qian, Chuiwen; Yao, Dongsheng

    2017-02-01

    β-Mannanase has been widely used in industries such as food and feed processing and thus has been a target enzyme for biotechnological development. In this study, we sought to improve the stability and protease resistance of a recombinant β-mannanase, MAN47 from Armillariella tabescens, through rationally designed N-glycosylation. Based on homology modeling, molecular docking, secondary structure analysis and glycosylation feasibility analysis, an enhanced aromatic sequon sequence was introduced into specific MAN47 loop regions to facilitate N-glycosylation. The mutant enzymes were expressed in Pichia pastoris SMD1168, and their thermal stability, pH stability, trypsin resistance and pepsin resistance were determined. Two mutant MAN47 enzymes, g-123 and g-347, were glycosylated as expected when expressed in yeast, and their thermal stability, pH stability, and protease resistance were significantly improved compared to the wild-type enzyme. An enzyme with multiple stability characterizations has broad prospects in practical applications, and the rational design N-glycosylation strategy may have applications in simultaneously improving several properties of other biotechnological targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.

    PubMed

    Yoon, Tae-Ho; Jung, Sang-Hee; Kim, Dong-Pyo

    2011-05-01

    We report the successful fabrication of preceramic polymer allylhydridopolycarbosilane (AHPCS) derived microchannels with excellent organic solvent resistance and optical transparency via economic imprinting process, followed by UV and post thermal curing process at 160 degrees C for 3 h. The microchemical performance of the fabricated microreactors was evaluated by choosing two model micro chemical reactions under organic solvent conditions; syntheses of 2-aminothiazole in DMF and dimethylpyrazole in THF, and compared with glass-based microreactor having identical dimensions and batch system with analogy. It is clear that AHPCS derived microreactor showed excellent solvent resistance and chemical stability compare with glass derived microreactor made by high cost of photolithography and thermal bonding process. The novel preceramic polymer derived microreactors showed reliable mechanical and chemical stability and conversion yields compare with that of glass derived microreactors, which is very promising for developing an integrated microfluidics by adopting available microstructuring techniques of the polymers.

  5. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2002-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  6. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2000-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  7. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation.

    PubMed

    Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S

    2017-04-01

    In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, H NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and H NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Structure Of The Gaia Deployable Sunshield Assembly

    NASA Astrophysics Data System (ADS)

    Pereira, Carlos; Urgoiti, Eduardo; Pinto, Inaki

    2012-07-01

    GAIA is an ESA mission with launch date in 2013. Its main objective is to map the stars. After launch it will unfold a 10.2 m diameter sunshield .The structure of this shield consists of twelve 3.5 meter long composite trusses which act as scaffold to two multilayer insulation blankets. Due to thermal stability constraints the planarity of the shield must be better than 1.0 mm. The trusses are therefore lightweight structures capable of withstanding the launch loads and once deployed, the thermal environment of the spacecraft with a minimum of distortion. This paper details: • The material selection for the composite structure • Validation of the chosen materials and truss layout • The modification of manufacturing process in order to lightweight the structure • The extensive structural and thermal stability testing The sunshield has been delivered to the satellite prime after successful mechanical, thermal and deployment tests.

  9. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  10. Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt

    NASA Astrophysics Data System (ADS)

    Cho, Soo-Haeng; Kim, Sung-Wook; Kim, Dae-Young; Lee, Jong-Hyeon; Hur, Jin-Mok

    2017-07-01

    The isothermal and cyclic corrosion behaviors of magnesia-stabilized zirconia in a LiCl-Li2O molten salt were investigated at 650 °C in an argon atmosphere. The weights of as-received and corroded specimens were measured and the microstructures, morphologies, and chemical compositions were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and X-ray diffraction. For processes where Li is formed at the cathode during electrolysis, the corrosion rate was about five times higher than those of isothermal and thermal cycling processes. During isothermal tests, the corrosion product Li2ZrO3 was formed after 216 h. During thermal cycling, Li2ZrO3 was not detected until after the completion of 14 cycles. There was no evidence of cracks, pores, or spallation on the corroded surfaces, except when Li was formed. We demonstrate that magnesia-stabilized zirconia is beneficial for increasing the hot corrosion resistance of structural materials subjected to high temperature molten salts containing Li2O.

  11. Low temperature superplasticity and thermal stability of a nanostructured low-carbon microalloyed steel

    PubMed Central

    Hu, J.; Du, L.-X.; Sun, G.-S.; Xie, H.; Misra, R.D.K.

    2015-01-01

    We describe here for the first time the low temperature superplasticity of nanostructured low carbon steel (microalloyed with V, N, Mn, Al, Si, and Ni). Low carbon nanograined/ultrafine-grained (NG/UFG) bulk steel was processed using a combination of cold-rolling and annealing of martensite. The complex microstructure of NG/UFG ferrite and 50–80 nm cementite exhibited high thermal stability at 500 °C with low temperature elongation exceeding 100% (at less than 0.5 of the absolute melting point) as compared to the conventional fine-grained (FG) counterpart. The low temperature superplasticity is adequate to form complex components. Moreover, the low strength during hot processing is favorable for decreasing the spring back and minimize die loss. PMID:26687012

  12. Thermally stable, highly efficient, ultraflexible organic photovoltaics

    PubMed Central

    Xu, Xiaomin; Fukuda, Kenjiro; Karki, Akchheta; Park, Sungjun; Kimura, Hiroki; Jinno, Hiroaki; Watanabe, Nobuhiro; Yamamoto, Shuhei; Shimomura, Satoru; Kitazawa, Daisuke; Yokota, Tomoyuki; Umezu, Shinjiro; Nguyen, Thuc-Quyen; Someya, Takao

    2018-01-01

    Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation. PMID:29666257

  13. Plasma Shield for In-Air and Under-Water Beam Processes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2007-11-01

    As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.

  14. Thermal behavior of extracted and delignified pine wood flour

    Treesearch

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark; Yongming Fan; Rebecca E. Ibach

    2014-01-01

    To investigate the effect of extractives and lignin on the thermal stability of wood flour (WF), thermogravimetric analysis was used to determine thermal degradation behavior of extracted and delignified mixed pine WF. The contribution of lignin to thermal stability was greater than that of extractives. Removing extractives resulted in improved thermal stability by...

  15. Copper-encapsulated vertically aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  16. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  17. Thermal Conductivity Measurement of an Electron-Beam Physical-Vapor-Deposition Coating

    PubMed Central

    Slifka, A. J.; Filla, B. J.

    2003-01-01

    An industrial ceramic thermal-barrier coating designated PWA 266, processed by electron-beam physical-vapor deposition, was measured using a steady-state thermal conductivity technique. The thermal conductivity of the mass fraction 7 % yttria-stabilized zirconia coating was measured from 100 °C to 900 °C. Measurements on three thicknesses of coatings, 170 μm, 350 μm, and 510 μm resulted in thermal conductivity in the range from 1.5 W/(m·K) to 1.7 W/(m·K) with a combined relative standard uncertainty of 20 %. The thermal conductivity is not significantly dependent on temperature. PMID:27413601

  18. Thermal Conductivity Measurement of an Electron-Beam Physical-Vapor-Deposition Coating.

    PubMed

    Slifka, A J; Filla, B J

    2003-01-01

    An industrial ceramic thermal-barrier coating designated PWA 266, processed by electron-beam physical-vapor deposition, was measured using a steady-state thermal conductivity technique. The thermal conductivity of the mass fraction 7 % yttria-stabilized zirconia coating was measured from 100 °C to 900 °C. Measurements on three thicknesses of coatings, 170 μm, 350 μm, and 510 μm resulted in thermal conductivity in the range from 1.5 W/(m·K) to 1.7 W/(m·K) with a combined relative standard uncertainty of 20 %. The thermal conductivity is not significantly dependent on temperature.

  19. The ring residue proline 8 is crucial for the thermal stability of the lasso peptide caulosegnin II.

    PubMed

    Hegemann, Julian D; Fage, Christopher D; Zhu, Shaozhou; Harms, Klaus; Di Leva, Francesco Saverio; Novellino, Ettore; Marinelli, Luciana; Marahiel, Mohamed A

    2016-04-01

    Lasso peptides are fascinating natural products with a unique structural fold that can exhibit tremendous thermal stability. Here, we investigate factors responsible for the thermal stability of caulosegnin II. By employing X-ray crystallography, mutational analysis and molecular dynamics simulations, the ring residue proline 8 was proven to be crucial for thermal stability.

  20. Study of the thermal stability of Zerodur glass ceramics suitable for a scanning probe microscope frame

    NASA Astrophysics Data System (ADS)

    Číp, Ondřej; Šmíd, Radek; Čížek, Martin; Buchta, Zdeněk; Lazar, Josef

    2012-04-01

    The work presents measurements of the length stability of Zerodur glass ceramic with temperature change. Measurement of this thermal characteristic is necessary for determination of the optimal temperature at which the Zerodur glass ceramic has a coefficient of thermal expansion close to zero. The principle of the measurement is to monitor the length changes using an optical resonator with a cavity mirror spacer made from the Zerodur material to be studied. The resonator is placed inside a vacuum chamber with a temperature control. A tunable laser diode is locked to a certain optical mode of the resonator to monitor the optical frequency of this mode. A beat-note signal from optical mixing between the laser and a stabilized femtosecond frequency comb is detected and processed. The temperature dependence of the glass ceramics was determined and analyzed. The resolution of the length measurement of the experimental set-up is on the order of 0.1 nm.

  1. Effect of EVA on thermal stability, flammability, mechanical properties of HDPE/EVA/Mg(OH)2 composites

    NASA Astrophysics Data System (ADS)

    Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.

    2017-06-01

    In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.

  2. Towards a mechanistic understanding of carbon stabilization in manganese oxides

    PubMed Central

    Johnson, Karen; Purvis, Graham; Lopez-Capel, Elisa; Peacock, Caroline; Gray, Neil; Wagner, Thomas; März, Christian; Bowen, Leon; Ojeda, Jesus; Finlay, Nina; Robertson, Steve; Worrall, Fred; Greenwell, Chris

    2015-01-01

    Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550 °C) and the other is thermally more labile (<550 °C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems. PMID:26194625

  3. Structural and physical properties of collagen extracted from moon jellyfish under neutral pH conditions.

    PubMed

    Miki, Ayako; Inaba, Satomi; Baba, Takayuki; Kihira, Koji; Fukada, Harumi; Oda, Masayuki

    2015-01-01

    We extracted collagen from moon jellyfish under neutral pH conditions and analyzed its amino acid composition, secondary structure, and thermal stability. The content of hydroxyproline was 4.3%, which is lower than that of other collagens. Secondary structure analysis using circular dichroism (CD) showed a typical collagen helix. The thermal stability of this collagen at pH 3.0 was lower than those from fish scale and pig skin, which also correlates closely with jellyfish collagen having lower hydroxyproline content. Because the solubility of jellyfish collagen used in this study at neutral pH was quite high, it was possible to analyze its structural and physical properties under physiological conditions. Thermodynamic analysis using CD and differential scanning calorimetry showed that the thermal stability at pH 7.5 was higher than at pH 3.0, possibly due to electrostatic interactions. During the process of unfolding, fibrillation would occur only at neutral pH.

  4. Turbine component casting core with high resolution region

    DOEpatents

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  5. Development program to produce mullite fiber insulation

    NASA Technical Reports Server (NTRS)

    Long, W. G.

    1975-01-01

    Processing methods were utilized to form a mullite fiber-Kaowool felt. The formation of a blended felt using the Rotoformer wet-laying method was successful. Felt products were evaluated for tensile strength, thermal stability, thermal conductivity and structural integrity at 1259 C and 1371 C. Textile processing methods failed in an attempt to form a yarn from staple and multifilament mullite fiber due to fiber damage through mechanical handling. The refractoriness of pure Kaowool ceramic fiber is improved with additions of 30% or greater mullite fiber.

  6. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  7. Room-Temperature Fluorine-Induced Decrease in the Stability of Bromine and Iodine Intercalated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.

  8. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  9. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.

    PubMed

    Lizundia, E; Vilas, J L; León, L M

    2015-06-05

    In this work, crystallization, structural relaxation and thermal degradation kinetics of neat Poly(L-lactide) (PLLA) and its nanocomposites with cellulose nanocrystals (CNC) and CNC-grafted-PLLA (CNC-g-PLLA) have been studied. Although crystallinity degree of nanocomposites remains similar to that of neat homopolymer, results reveal an increase on the crystallization rate by 1.7-5 times boosted by CNC, which act as nucleating agents during the crystallization process. In addition, structural relaxation kinetics of PLLA chains has been drastically reduced by 53% and 27% with the addition of neat and grafted CNC, respectively. The thermal degradation activation energy (E) has been determined from thermogravimetric analysis in the light of Kissinger's and Ozawa-Flynn-Wall theoretical models. Results reveal a reduction on the thermal stability when in presence of CNC-g-PLLA, while raw CNC slightly increases the thermal stability of PLLA. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy results confirm that the presence of residual catalyst in CNC-g-PLLA plays a pivotal role in the thermal degradation behavior of nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Pore size and concentration effect of mesoporous silica nanoparticles on the coefficient of thermal expansion and optical transparency of poly(ether sulfone) films.

    PubMed

    Vo, Nhat Tri; Patra, Astam K; Kim, Dukjoon

    2017-01-18

    Mesoporous silica nanoparticles (MSNs) with uniform size (<50 nm) yet with different pore diameters were synthesized, and used as fillers in poly(ether sulfone) (PES) films in order to decrease their coefficient of thermal expansion (CTE) without sacrificing optical transparency. Here, both CTE and optical transparency of the MSN/PES nanocomposite films gradually decreased with increasing MSN concentration. The PES films containing MSNs with larger pores showed the best performance in CTE and optical transparency. While the CTE decreased by 32.3% with increasing MSN content up to 0.5 wt%, the optical transparency decreased by only less than 6.9% because of the small and uniform particle size of less than 50 nm, which minimizes light scattering. This pore size effect is more clearly observed via an annealing process, which enables the polymer chains to slowly move and fill in the free volume in the pores of the MSN, and thus restricts the thermal motion. The effect of the silica nanoparticles was investigated not only on the thermal stability but also on the mechanical stability. We expect the MSNs synthesized in this study to be used as a promising filler to enhance the thermal and mechanical stability of the PES substrate without sacrificing its optical transparency.

  11. Long-lived thermal control materials for high temperature and deep space applications

    NASA Technical Reports Server (NTRS)

    Whitt, Robin; O'Donnell, Tim

    1988-01-01

    Considerable effort has been put into developing thermal-control materials for the Galileo space-craft. This paper presents a summary of these findings to date with emphasis on requirements, testing and results for the post-Challenger Galileo mission. Polyimide film (Kapton), due to its inherent stability in vacuum, UV, and radiation environments, combined with good mechanical properties over a large temperature range, has been the preferred substrate for spacecraft thermal control materials. Composite outer layers, using Kapton substrates, can be fabricated to meet the requirements of severe space environments. Included in the processing of Kapton-based composite outer layers can be the deposition of metal oxide, metallic and/or polymeric thin-film coatings to provide desirable electrical, optical and thermo-optical properties. In addition, reinforcement of Kapton substrates with fabrics and films is done to improve mechanical properties. Also these substrates can be filled with varying amounts of carbon to achieve particular electrical properties. The investigation and material development reported on here has led to improved thermo-gravimetric stability, surface conductivity, RF transparency, radiation and UV stability, flammability and handle-ability of outer layer thermal control materials for deep space and near-sun spacecraft. Designing, testing, and qualifying composite thermal-control film materials to meet the requirements of the Galileo spacecraft is the scope of this paper.

  12. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  13. Combustion process science and technology

    NASA Technical Reports Server (NTRS)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  14. Regenerator matrix physical property data

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.

    1980-01-01

    Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.

  15. Design and implementation of a micromechanical silicon resonant accelerometer.

    PubMed

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-11-19

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  16. Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme

    PubMed Central

    2004-01-01

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the haem biosynthetic pathway, catalyses the chelation of Fe(II) into the protoporphyrin IX ring. The energetics of the binding between murine ferrochelatase and mesoporphyrin were determined using isothermal titration calorimetry, which revealed a stoichiometry of one molecule of mesoporphyrin bound per protein monomer. The binding is strongly exothermic, with a large intrinsic enthalpy (ΔH=−97.1 kJ · mol−1), and is associated with the uptake of two protons from the buffer. This proton transfer suggests that hydrogen bonding between ferrochelatase and mesoporphyrin is a key factor in the thermodynamics of the binding reaction. Differential scanning calorimetry thermograms indicated a co-operative two-state denaturation process with a single transition temperature of 56 °C for wild-type murine ferrochelatase. An increase in the thermal stability of ferrochelatase is dependent upon mesoporphyrin binding. Similarly, murine ferrochelatase variants, in which the active site Glu-289 was replaced by either glutamine or alanine and, when purified, contained specifically-bound protoporphyrin, exhibited enhanced protein stability when compared with wild-type ferrochelatase. However, in contrast with the wild-type enzyme, the thermal denaturation of ferrochelatase variants was best described as a non-co-operative denaturation process. PMID:15496139

  17. Influence of shell thickness on thermal stability of bimetallic Al-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Wen, John Z.; Nguyen, Ngoc Ha; Rawlins, John; Petre, Catalin F.; Ringuette, Sophie

    2014-07-01

    Aluminum-based bimetallic core-shell nanoparticles have shown promising applications in civil and defense industries. This study addresses the thermal stability of aluminum-palladium (Al-Pd) core/shell nanoparticles with a varying shell thickness of 5, 6, and 7 Å, respectively. The classic molecular dynamics (MD) simulations are performed in order to investigate the effects of the shell thickness on the ignition mechanism and subsequent energetic processes of these nanoparticles. The histograms of temperature change and structural evolution clearly show the inhibition role of the Pd shell during ignition. While the nanoparticle with a thicker shell is more thermally stable and hence requires more excess energy, stored as the potential energy of the nanoparticle and provided through numerically heating, to initiate the thermite reaction, a higher adiabatic temperature can be produced from this nanoparticle, thanks to its greater content of Pd. The two-stage thermite reactions are discussed with their activation energy based on the energy balance processes during MD heating and production. Analyses of the simulation results reveal that the inner pressure of the core-shell nanoparticle increases with both temperature and the absorbed thermal energy during heating, which may result in a breakup of the Pd shell.

  18. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    PubMed Central

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-01-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. PMID:27877617

  19. TiO2-Nanofillers Effects on Some Properties of Highly- Impact Resin Using Different Processing Techniques.

    PubMed

    Aziz, Hawraa Khalid

    2018-01-01

    The criteria of conventional curing of polymethyl methacrylate do not match the standard properties of the denture base materials. This research was conducted to investigate the addition of TiO 2 nano practical on impact strength, thermal conductivity and color stability of acrylic resin cured by microwave in comparison to the conventional cured of heat-polymerized acrylic resin. 120 specimens made of high impact acrylic resin were divided into two main groups according to the type of curing (water bath, microwave), then each group was subdivided into two groups according to the addition of 3% TiO 2 nano-fillers and control group (without the addition of TiO 2 0%). Each group was subdivided according to the type of test into 3 groups with 10 specimens for each group. Data were statistically analyzed using Student t-test to detect the significant differences between tested and control groups at significance level ( P <0.05). According to curing type methods, the results showed that there was a significant decrease in impact strength of microwaved cured resin, but there was no significant difference in the thermal conductivity and color stability of resin. In addition, by using nanofiller, there was a significant increase in the impact strength and color stability with the addition of 3% TiO 2 nanofillers, but no significant difference was found in the thermal conductivity of the acrylic resin. The microwave curing of acrylic resin had no change in the color stability and thermal conductivity in comparison to the water bath, but the impact strength was decreased. The addition of 3% TiO 2 improved the impact and the color stability, but the thermal conductivity did not change.

  20. Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al 2O 3 dielectric

    DOE PAGES

    J. M. Rafi; Lynn, D.; Pellegrini, G.; ...

    2015-12-11

    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al 2O 3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al 2O 3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance–voltage and current–voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extractedmore » for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H 2O instead of O 3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H 2O-grown Al 2O 3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al 2O 3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O 3-grown MOS structures. Lastly, this can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.« less

  1. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    PubMed

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  2. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.

    PubMed

    Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J

    2006-07-26

    The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.

  3. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transitionmore » at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La 2Zr 2O 7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.« less

  4. Effect of unsaponifiable matter extracted from Pistacia khinjuk fruit oil on the oxidative stability of olive oil.

    PubMed

    Tavakoli, Javad; Estakhr, Parviz; Jelyani, Aniseh Zarei

    2017-08-01

    The present study was carried out to investigate the improvement of oxidative stability of refined olive oil using various concentrations of unsaponifiable matters extracted from Pistacia khinjuk fruit oil (UFO). For further elucidation of UFO antioxidative power, tertbutylhydroquinone (TBHQ) was used in an olive oil sample, too. Oxidative stability of olive oil samples without and with different levels of UFO (50, 100, 250, 500, 750 and 1000 ppm) and TBHQ (100 ppm) were studied via evaluation of conjugated diene value, carbonyl value, oil/oxidative stability index, acid value and total tocopherol (TT) contents through 8 h thermal process at 170 °C. Results obtained by oxidative stability assays revealed that the highest antioxidative activity of olive oil was obtained by 100 ppm of UFO, followed using 100, 250, 500, 750, and 1000 ppm of UFO and 100 ppm TBHQ, respectively. Evaluation of the relationship between oxidative stability indexes and TT changes indicated a strong correlation (R 2  = 0.9718) between mean relative resistance to oxidation and relative resistance to TT reduction during thermal process. By promotion of relative resistance to TT reduction, olive oil samples' relative resistance to oxidation was enhanced exponentially; implying importance of TT in promotion of oxidative stability of edible oils. The results obtained in this study showed that UFO has higher antioxidative activity compared to TBHQ; thus UFO can be considered as a natural antioxidant with ideal antioxidative activity.

  5. Effects of pH-Shift Processing and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar System

    PubMed Central

    Hong, Geun-Pyo; Chun, Ji-Yeon; Jo, Yeon-Ji

    2014-01-01

    This study investigated the effects of microbial transglutaminase (MTGase) and pH-shift processing on the functional properties of porcine myofibrillar proteins (MP). The pH-shift processing was carried out by decreasing the pH of MP suspension to 3.0, followed by re-adjustment to pH 6.2. The native (CM) and pH-shifted MP (PM) was reacted with and without MTGase, and the gelling and emulsion characteristics were compared. To compare the pH-shifted MTGase-treated MP (PT), deamidation (DM) was conducted by reacting MTGase with MP at pH 3.0. Rigid thermal gel was produced by MTGase-treated native MP (CT) and PT. PM and DM showed the lowest storage modulus (G') at the end of thermal scanning. Both MTGase and pH-shifting produced harder MP gel, and the highest gel strength was obtained in PT. All treatments yielded lower than CM, and CT showed significantly higher yield than PM and DM treatments. For emulsion characteristics, pH-shifting improved the emulsifying ability of MP-stabilized emulsion, while the treatments had lower emulsion stability. PM-stabilized emulsion exhibited the lowest creaming stability among all treatments. The emulsion stability could be improved by the usage of MTGase. The results indicated that pH-shifting combined with MTGase had a potential application to modify or improve functional properties of MP in manufacturing of meat products. PMID:26760940

  6. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    PubMed

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Predictive Thermal Control Applied to HabEx

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas E.

    2017-01-01

    Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10(exp -10) contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).

  8. Predictive thermal control applied to HabEx

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas E.

    2017-09-01

    Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10-10 contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).

  9. Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing.

    PubMed

    Xu, Liang; Liang, Hai-Wei; Yang, Yuan; Yu, Shu-Hong

    2018-04-11

    Nanoparticles exist far from the equilibrium state due to their high surface energy. Nanoparticles are therefore extremely unstable and easily change themselves or react with active substances to reach a relatively stable state in some cases. This causes desired changes or undesired changes to nanoparticles and thus makes them exhibit a high reactivity and a poor stability. Such dual nature (poor stability and high reactivity) of nanoparticles may result in both negative and positive effects for nanoparticle processing. However, the existing studies mainly focus on the high reactivity of nanoparticles, whereas their poor stability has been neglected or considered inconsequential. In fact, in some cases the unstable process, which is derived from the poor stability of nanoparticles, offers an opportunity to design and fabricate unique nanomaterials, such as by chemically transforming the "captured" intermediate nanostructures during a changing process, assembling destabilized nanoparticles into larger ordered assemblies, or shrinking/processing pristine materials into the desired size or shape via selective etching. In this review, we aim to present the stability and reactivity of nanoparticles on three levels: the foundation, concrete manifestations, and applications. We start with a brief introduction of dangling bonds and the surface chemistry of nanoparticles. Then, concrete manifestations of the poor stability and high reactivity of nanoparticles are presented from four perspectives: dispersion stability, thermal stability, structural stability, and chemical stability/reactivity. Next, we discuss some issues regarding the stability and reactivity of nanomaterials during applications. Finally, conclusions and perspectives on this field are presented.

  10. Stability of the insecticide cypermethrin during tomato processing and implications for endocrine activity.

    PubMed

    Lin, H M; Gerrard, J A; Shaw, I C

    2005-01-01

    The thermal and pH stabilities of cypermethrin during food processing were investigated using tomato as a model food system and high-performance liquid chromatography as the analytical method. Cypermethrin was thermally unstable in aqueous conditions, where the hydrolysis of the pesticide was accelerated by heat. The mean proportion remaining after heating cypermethrin in water for 10 min was 66%, falling to 27% after 1 h. Similarly, thermal processing of canned tomatoes caused cypermethrin to degrade, with remaining levels in the final product ranging from 30 to 60% of the original. Cypermethrin was unstable at extreme pHs, with acid hydrolysis occurring faster than alkaline hydrolysis in phosphate buffers. The acidity of tomato paste (pH 4.3) caused cypermethrin levels to decrease by 30% within 12 days at 5 degrees C. The studies indicate that cypermethrin residues are likely to degrade by hydrolysis during food processing, thus reducing the exposure of consumers to cypermethrin. 3-Phenoxybenzaldehyde, a hydrolysis breakdown product of cypermethrin, was detected in the tomato paste and from the heating of cypermethrin in water at 100 degrees C. There is concern that the risk of breakdown products in terms of endocrine activity is unknown since in vitro studies reported that cypermethrin breakdown products display endocrine activity.

  11. Effects of food formulation and thermal processing on flavones in celery and chamomile.

    PubMed

    Hostetler, Gregory L; Riedl, Ken M; Schwartz, Steven J

    2013-11-15

    Flavones isolated from celery varied in their stability and susceptibility to deglycosylation during thermal processing at pH 3, 5, or 7. Apigenin 7-O-apiosylglucoside was converted to apigenin 7-O-glucoside when heated at pH 3 and 100°C. Apigenin 7-O-glucoside showed little conversion or degradation at any pH after 5h at 100°C. Apigenin, luteolin, and chrysoeriol were most stable at pH 3 but progressively degraded at pH 5 or 7. Chamomile and celery were used to test the effects of glycosidase-rich foods and thermal processing on the stability of flavone glycosides. Apigenin 7-O-glucoside in chamomile extract was readily converted to apigenin aglycone after combination with almond, flax seed, or chickpea flour. Apigenin 7-O-apiosylglucoside in celery leaves was resistant to conversion by β-glucosidase-rich ingredients, but was converted to apigenin 7-O-glucoside at pH 2.7 when processed at 100°C for 90min and could then be further deglycosylated when mixed with almond or flax seed. Thus, combinations of acid hydrolysis and glycosidase enzymes in almond and flax seed were most effective for developing a flavone-rich, high aglycone food ingredient from celery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of food formulation and thermal processing on flavones in celery and chamomile

    PubMed Central

    Hostetler, Gregory L.; Riedl, Ken M.; Schwartz, Steven J.

    2013-01-01

    Flavones isolated from celery varied in their stability and susceptibility to deglycosylation during thermal processing at pH 3, 5, or 7. Apigenin 7-O-apiosylglucoside was converted to apigenin 7-O-glucoside when heated at pH 3 and 100 °C. Apigenin 7-O-glucoside showed little conversion or degradation at any pH after 5 h at 100 °C. Apigenin, luteolin, and chrysoeriol were most stable at pH 3 but progressively degraded at pH 5 or 7. Chamomile and celery were used to test the effects of glycosidase-rich foods and thermal processing on the stability of flavone glycosides. Apigenin 7-O-glucoside in chamomile extract was readily converted to apigenin aglycone after combination with almond, flax seed, or chickpea flour. Apigenin 7-O-apiosylglucoside in celery leaves was resistant to conversion by β-glucosidase-rich ingredients, but was converted to apigenin 7-O-glucoside at pH 2.7 when processed at 100 °C for 90 min and could then be further deglycosylated when mixed with almond or flax seed. Thus, combinations of acid hydrolysis and glycosidase enzymes in almond and flax seed were most effective for developing a flavone-rich, high aglycone food ingredient from celery. PMID:23790931

  13. Laser Hot Wire Process: A Novel Process for Near-Net Shape Fabrication for High-Throughput Applications

    NASA Astrophysics Data System (ADS)

    Kottman, Michael; Zhang, Shenjia; McGuffin-Cawley, James; Denney, Paul; Narayanan, Badri K.

    2015-03-01

    The laser hot wire process has gained considerable interest for additive manufacturing applications, leveraging its high deposition rate, low dilution, thermal stability, and general metallurgical control including the ability to introduce and preserve desired meta-stable phases. Recent advancements in closed-loop process control and laser technology have increased productivity, process stability, and control of deposit metallurgy. The laser hot wire process has shown success in several applications: repairing and rejuvenating casting dies, depositing a variety of alloys including abrasion wear-resistant overlays with solid and tubular wires, and producing low-dilution (<5%) nickel alloy overlays for corrosion applications. The feasibility of fabricating titanium buildups is being assessed for aerospace applications.

  14. Polyimides and Process for Preparing Polyimides Having Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2001-01-01

    Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having formula with an R1 group of either hydrogen or an alkyl radical of one to four carbons, an R2 group of either OH, NH2, F, or Cl radical, an R3 group of either H, OH, NH2, F, Cl or an alkylene radical, an R4 group of either an alkyl, aryl, aryloxy, nitro, F, or Cl radical, and/or an R5 group of either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepegs and PMR composites.

  15. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

    DOE PAGES

    Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; ...

    2014-11-11

    In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less

  16. Process for making carbon foam

    DOEpatents

    Klett, James W.

    2000-01-01

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  17. High Reynolds Number Thermal Stability Experiments

    NASA Technical Reports Server (NTRS)

    Emens, Jessica M.; Brown, Sarah P.; Frederick Robert A., Jr.; Wood, A. John

    2004-01-01

    This work represents preliminary thermal stability results for liquid hydrocarbon fuels. High Reynolds Number Thermal Stability experiments with Jet A and RP-1 resulted in a quantitative measurement of the thermal stability. Each fuel flowed through a heated capillary tube that held the outlet temperature at 290 C. An optical pyrometer measured the surface temperature of the tube at 12 locations as a function of time. The High Reynolds Number Thermal Stability number was then determined using standards published by the American Society for Testing and Materials. The results for Jet A showed lower thermal stability than similar tests conducted at another facility. The RP-1 results are the first reported using this technique. Because the temperature rise on the capillary tube during testing for the RP-1 fuels was not significant, a new standard for the testing conditions should be developed for these types of fuels.

  18. Thermal Stability of Goethite-Bound Natural Organic Matter Is Impacted by Carbon Loading.

    PubMed

    Feng, Wenting; Klaminder, Jonatan; Boily, Jean-François

    2015-12-24

    Dissolved natural organic matter (NOM) sorption at mineral surfaces can significantly affect the persistence of organic carbon in soils and sediments. Consequently, determining the mechanisms that stabilize sorbed NOM is crucial for predicting the persistence of carbon in nature. This study determined the effects of loadings and pH on the thermal stability of NOM associated with synthetic goethite (α-FeOOH) particle surfaces, as a proxy for NOM-mineral interactions taking place in nature. NOM thermal stability was investigated using temperature-programmed desorption (TPD) in the 30-700 °C range to collect vibration spectra of thermally decomposing goethite-NOM assemblages, and to concomitantly analyze evolved gases using mass spectrometry. Results showed that NOM thermal stability, indicated by the range of temperatures in which CO2 evolved during thermal decomposition, was greatest in unbound NOM and lowest when NOM was bound to goethite. NOM thermal stability was also loading dependent. It decreased when loadings were in increased the 0.01 to 0.42 mg C m(-2) range, where the upper value corresponds to a Langmuirian adsorption maximum. Concomitant Fourier transform infrared (FTIR) spectroscopy measurement showed that these lowered stabilities could be ascribed to direct NOM-goethite interactions that dominated the NOM binding environment. Mineral surface interactions at larger loadings involved, on the contrary, a smaller fraction of the sorbed NOM, thus increasing thermal stability toward that of its unbound counterpart. This study thus identifies a sorption threshold below which NOM sorption to goethite decreases NOM thermal stability, and above which no strong effects are manifested. This should likely influence the fate of organic carbon exposed to thermal gradients in natural environments.

  19. Synthesis and Characterization of Processable Polyimides with Enhanced Thermal Stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    The following is a summary report of the research carried out under NASA Grant NAG-1-448. The work was divided into four major areas: 1) Enhanced polyimide processing through the use of reactive plasticizers 2) Development of processable polyhenylquinoxalines 3) Synthesis and characterization of perfluorovinylether-terminated imide oligomers and 4) Fluorosilicones containing perfuorocyclobutane rings.

  20. Conformational and Thermal Stability Improvements for the Large-Scale Production of Yeast-Derived Rabbit Hemorrhagic Disease Virus-Like Particles as Multipurpose Vaccine

    PubMed Central

    Méndez, Lídice; González, Nemecio; Parra, Francisco; Martín-Alonso, José M.; Limonta, Miladys; Sánchez, Kosara; Cabrales, Ania; Estrada, Mario P.; Rodríguez-Mallón, Alina; Farnós, Omar

    2013-01-01

    Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans. PMID:23460801

  1. Factors Influencing Residual Stresses in Yttria Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    McGrann, Roy T. R.; Rybicki, Edmund F.; Shadley, John R.; Brindley, William J.

    1997-01-01

    To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many factors related to coating performance is the state of stress in the coating. The total stress state is composed of the stresses due to the in-service loading history and the residual stresses. Residual stresses have been shown to affect TBC life, the bond strength of thermal spray coatings, and the fatigue life of tungsten carbide coatings. Residual stresses are first introduced in TBC's by the spraying process due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica content has also been shown to affect sintering and the cyclic life of thermal barrier coatings. Thus, it is important to understand how the spraying process, the in-service thermal cycles, and the silica content can create and alter residual stresses in thermal barrier coatings.

  2. Contrast Enhanced Microscopy Digital Image Correlation: A General Method to Contact-Free Coefficient of Thermal Expansion Measurement of Polymer Films

    Treesearch

    Jairo A. Diaz; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Thermal expansion represents a vital indicator of the processing history and dimensional stability of materials. Solvent-sensitive, thin, and compliant samples are particularly challenging to test. Here we describe how textures highlighted by contrast enhanced optical microscopy modes (i.e., polarized light (PL), phase contrast (PC)) and bright field (BF) can be used...

  3. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Clear, T. D.; Weibel, R. T.

    An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.

  4. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC affords to operate the radiometer component away from the problematic temperature zone. A simple ThermXL model (10 nodes) was developed to exercise quick trade studies among various proposed control algorithms: Modified P control vs. PI control. The ThermXL results were then compared with the detailed Thermal Desktop (TD) model for corroboration. Once done, the simple ThermXL model was used to evaluate parameter effects such as temperature digitization, heater size and gain margin, time step, and voltage variation of power supply on the ATC performance. A Modified P control algorithm was implemented into the instrument flight electronics based on the ThermXL results. The thermal short-term stability margin decreased by 10 percent with ATC and a wide temperature error band (plus or minus 0.1 degrees Centigrade) compared to the original passive thermal design. However, a tighter temperature error band (plus or minus 0.1 degrees Centigrade) increased the thermal short-term stability margin by a factor of three over the passive thermal design. The current ATC design provides robust thermal control, tighter stability, and greater in-flight flexibility even though its implementation was prompted by non-thermal performance concerns.

  5. Groundwork for integration of hot water extraction as a potential pre-process in a biorefinery for downstream conversion and nano-fibrillation

    NASA Astrophysics Data System (ADS)

    Zhu, Rui

    The economic competitiveness of biofuels production is highly dependent on feedstock cost, which constitutes 35-50 % of the total biofuels production cost. Economically viable feedstock pre-process has a significant influence on all the subsequent downstream processes in the biorefinery supply chain. In this work, hot water extraction (HWE) was exploited as a pre-process to initially fractionate cell wall structure of softwood Douglas fir, which is considerably more recalcitrant compared to hardwoods and agricultural feedstocks. A response surface model was developed and the highest hemicellulose extraction yield (HEY) was obtained when the temperature is 180 °C and the time is 79 min. HWE process partially removed hemicelluloses, reduced the moisture absorption and improved the thermal stability of wood. To investigate the effects of HWE pre-process on sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL), a series of SPORL with reduced combined severity factor (CSF) were conducted using HWE treated Douglas fir. Sugar analysis after enzymatic hydrolysis indicated that SPORL can be conducted at lower temperature (145 °C), shorter time (80 min), and lower acid volume (3 %), while still maintaining considerably high enzymatic digestibility ( 55-60%). Deriving valuable co-products would increase the overall revenue and improve the economics of the biofuels supply chain. The feasibility of extracting cellulose nanofibrils (CNFs) from HWE treated Douglas fir by ultrasonication and CNFs' reinforcing potentials in nylon 6 matrix were evaluated. Morphology analysis indicated that finer fibrils can be obtained by increasing ultrasonication time and/or amplitude. CNFs was found to have higher crystallinity and maintained the thermal stability compared to untreated fiber. A method of fabricating nylon 6/CNFs as-spun nanocomposite filaments using a combination of extrusion, compounding and capillary rheometer to minimize thermal degradation of CNFs was demonstrated. It was found that the nanocomposite filaments have slightly lower thermal stability and crystallinity compared to neat nylon 6 filaments. However, the incorporation of CNFs increased the tenacity and hydrophilicity of the nanocomposite filaments, indicating a potential for their use as precursor materials for textile yarns.

  6. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  7. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method.

    PubMed

    Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X

    2016-07-03

    Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.

  8. Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosong

    2014-06-01

    Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.

  9. Thermal aggregation of human immunoglobulin G in arginine solutions: Contrasting effects of stabilizers and destabilizers.

    PubMed

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2017-11-01

    Arginine is widely used as aggregation suppressor of proteins in biotechnology and pharmaceutics. However, why the effect of arginine depends on the types of proteins and stresses, including monoclonal antibodies, is still unclear. Here we investigated the precise processes of the thermal aggregation of human immunoglobulin G (IgG) in the presence of additives. As expected, arginine was the best additive to suppress the formation of insoluble aggregates during heat treatment, though it was unable to preserve the monomer content. A systematic analysis of the additives showed that sugars and kosmotropic ion inhibit the formation of soluble oligomers. These behaviors indicate that the thermal aggregation of IgG occurs by (i) the formation of soluble oligomers, which is triggered by the unfolding process that can be stabilized by typical osmolytes, and (ii) the formation of insoluble aggregates through weak cluster-cluster interactions, which can be suppressed by arginine. Understanding the detailed mechanism of arginine will provide useful information for the rational formulation design of antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  11. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE PAGES

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    2015-09-02

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  12. A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation.

    PubMed

    Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin

    2015-03-14

    Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability.

  13. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    PubMed

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  14. Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Daanen, R. P.; Liljedahl, A. K.

    2017-12-01

    Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.

  15. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose.

    PubMed

    Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B

    2016-09-20

    Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A flexible insulator of a hollow SiO2 sphere and polyimide hybrid for flexible OLEDs.

    PubMed

    Kim, Min Kyu; Kim, Dong Won; Shin, Dong Wook; Seo, Sang Joon; Chung, Ho Kyoon; Yoo, Ji Beom

    2015-01-28

    The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) not only requires flexible materials with a low dielectric constant, but also ones that possess the electrical, thermal, chemical, and mechanical properties required for optimal device performance. Porous polymer-silica hybrid materials were prepared to satisfy these requirements. Hollow SiO2 spheres were synthesized using atomic layer deposition (ALD) and a thermal calcination process. The hybrid film, which consists of hollow SiO2 spheres and polyimide, shows a low dielectric constant of 1.98 and excellent thermal stability up to 500 °C. After the bending test for 50 000 cycles, the porous hybrid film exhibits no degradation in its dielectric constant or leakage current. These results indicate that the hybrid film made up of hollow SiO2 spheres and polyimide (PI) is useful as a flexible insulator with a low dielectric constant and high thermal stability for flexible OLEDs.

  17. Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hongguang, E-mail: chenghg7932@gmail.com; Deng, Ning

    2013-12-15

    We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor Δ of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup −9} can be achieved for the device of thermalmore » stability factor Δ of 40. Low damping factor α material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.« less

  18. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries

    PubMed Central

    Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848

  19. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    DOE PAGES

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore » of milliwatts of supply power and with a volume of 2.3 mm 3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  20. Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function.

    PubMed

    Bennett, Michael P; Mitchell, Drake C

    2008-08-01

    Purified bovine rhodopsin was reconstituted into vesicles consisting of 1-stearoyl-2-oleoyl phosphatidylcholine or 1-stearoyl-2-docosahexaenoyl phosphatidylcholine with and without 30 mol % cholesterol. Rhodopsin stability was examined using differential scanning calorimetry (DSC). The thermal unfolding transition temperature (T(m)) of rhodopsin was scan rate-dependent, demonstrating the presence of a rate-limited component of denaturation. The activation energy of this kinetically controlled process (E(a)) was determined from DSC thermograms by four separate methods. Both T(m) and E(a) varied with bilayer composition. Cholesterol increased the T(m) both the presence and absence of docosahexaenoic acid acyl chains (DHA). In contrast, cholesterol lowered E(a) in the absence of DHA, but raised E(a) in the presence of 20 mol % DHA-containing phospholipid. The relative acyl chain packing order was determined from measurements of diphenylhexatriene fluorescence anisotropy decay. The T(m) for thermal unfolding was inversely related to acyl chain packing order. Rhodopsin kinetic stability (E(a)) was reduced in highly ordered or disordered membranes. Maximal kinetic stability was found within the range of acyl chain order found in native bovine rod outer segment disk membranes. The results demonstrate that membrane composition has distinct effects on the thermal versus kinetic stabilities of membrane proteins, and suggests that a balance between membrane constituents with opposite effects on acyl chain packing, such as DHA and cholesterol, may be required for maximum protein stability.

  1. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.

  2. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Po-Chun; Lin, Hong-Liang; Wang, Shun-Li, E-mail: wangshunli@mail.ncyu.edu.tw

    To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition to determine their stability behavior. Typical TP-CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm{sup -1} and the stepwise appearance of several new IR peaks atmore » 1731, 1712, 1676, 1651, 1557 and 1265 cm{sup -1} with cogrinding time suggest that the mechanism of TP-CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. The stability of 60-min ground mixture of TP-CA was confirmed at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition over a storage time of 60 days. - Garphical abstract: Cogrinding, thermal and solvent-evaporation methods might easily induce the theophylline-citric acid cocrystal formation. Highlights: Black-Right-Pointing-Pointer Cogrinding process could gradually induce the cocrystal formation between TP and CA. Black-Right-Pointing-Pointer The TP-CA cocrystal was formed through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was similar to the solvent-evaporated cocrystal. Black-Right-Pointing-Pointer The thermal-induced TP-CA cocrystal formation was confirmed by pre-heating the physical mixture to 152 Degree-Sign C. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was stable at accelerated condition over a storage time of 60 days.« less

  3. Molecular insights into the mechanism of thermal stability of actinomycete mannanase.

    PubMed

    Kumagai, Yuya; Uraji, Misugi; Wan, Kun; Okuyama, Masayuki; Kimura, Atsuo; Hatanaka, Tadashi

    2016-09-01

    Streptomyces thermolilacinus mannanase (StMan), which requires Ca(2+) for its enhanced thermal stability and hydrolysis activity, possesses two Ca(2+) -binding sites in loop6 and loop7. We evaluated the function of the Ca(2+) -binding site in loop7 and the hydrogen bond between residues Ser247 in loop6 and Asp279 in loop7. The Ca(2+) -binding in loop7 was involved only in thermal stability. Mutations of Ser247 or Asp279 retained the Ca(2+) -binding ability; however, mutants showed less thermal stability than StMan. Phylogenetic analysis indicated that most glycoside hydrolase family 5 subfamily 8 mannanases could be stabilized by Ca(2+) ; however, the mechanism of StMan thermal stability was found to be quite specific in some actinomycete mannanases. © 2016 Federation of European Biochemical Societies.

  4. Pressure effects on the thermal stability of SiC fibers

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Dicarlo, James A.

    1986-01-01

    Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.

  5. Synthesis of polymer hybrid latex poly(methyl methacrylate-co-butyl acrylate) with organo montmorillonite via miniemulsion polymerization method for barrier paper

    NASA Astrophysics Data System (ADS)

    Chanra, J.; Budianto, E.; Soegijono, B.

    2018-03-01

    Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay’s interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.

  6. Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure

    NASA Astrophysics Data System (ADS)

    Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.

    2004-05-01

    The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.

  7. Electrical transport property, thermal stability and oxidation resistance of single crystalline β-Zn4Sb3 prepared using the Bi-Sn mixed-flux method

    NASA Astrophysics Data System (ADS)

    Deng, Shuping; Li, Decong; Chen, Zhong; Tang, Yu; Shen, Lanxian; Deng, Shukang

    2017-12-01

    Single crystal samples β-Zn4Sb3 have been prepared by using Bi-Sn mixed-flux method. The obtained crystals exhibit p-type conduction behavior with carrier concentration varying from 4.40 × 1019 to 18.12 × 1019 cm-3 as carrier mobility changes from 25.8 to 61.5 cm2 V-1 s-1 at room temperature. Electrical transport properties of the samples were optimized by Bi-Sn co-doped, which brought by Bi-Sn mixed-flux. And the maximal power factor of 1.45 × 10-3 W m-1 K-2 is achieved at 510 K for the sample with Bi flux content x = 0.5. Consequently, the oxidation resistance of the sample was determined by exploring the effects of heat treatment in air on electrical transport properties and thermal stability, which the single crystalline β-Zn4Sb3 still possess an excellent oxidation resistance and thermal stability after the heat treatment process.

  8. Continuous synthesis of peralkylated imidazoles and their transformation into ionic liquids with improved (electro)chemical stabilities.

    PubMed

    Maton, Cedric; De Vos, Nils; Roman, Bart I; Vanecht, Evert; Brooks, Neil R; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V

    2012-09-17

    A versatile and efficient method to synthesize tetrasubstituted imidazoles via a one-pot modified Debus-Radziszewski reaction and their subsequent transformation into the corresponding imidazolium ionic liquids is reported. The tetrasubstituted imidazoles were also synthesized by means of a continuous flow process. This straightforward synthetic procedure allows for a fast and selective synthesis of tetrasubstituted imidazoles on a large scale. The completely substituted imidazolium dicyanamide and bis(trifluoromethylsulfonyl)imide salts were obtained via a metathesis reaction of the imidazolium iodide salts. The melting points and viscosities are of the same order of magnitude as for their non-substituted analogues. In addition to the superior chemical stability of these novel ionic liquids, which allows them to be applied in strong alkaline media, the improved thermal and electrochemical stabilities of these compounds compared with conventional imidazolium ionic liquids is also demonstrated by thermogravimetrical analysis (TGA) and cyclic voltammetry (CV). Although increased substitution of the ionic liquids does not further increase thermal stability, a definite increase in cathodic stability is observable. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  10. New barrierless copper-alloy film for future applications

    NASA Astrophysics Data System (ADS)

    Lin, Chon-Hsin Lin

    2015-09-01

    Since Cu metallization results in a conductivity and an electromigration resistance greater than those of Al, it has become popular for making Si-based interconnects for numerous devices in the field of microelectronics. Following the current trend of miniaturization required for most electronic components, there is a greater need for further size reduction in Si-based devices. The most critical side effect of size reduction is the increase in electronic scattering and resistivity when the barrier-layer thickness is further reduced. To explore advanced Cu-metallization methods and to develop a more economical manufacturing process for Cu-alloy films, the development of Cu materials having better quality and higher thermal stability becomes imperative for the metallization and annealing processes. For this purpose, we first fabricated Cu(GeNx) films and examined their thermal stability and electrical reliability after either cyclic or isothermal annealing. The excellent thermal and electrical properties make these new Cu-alloy films highly promising for applications that require more reliable and inexpensive copper interconnects. In this study, we fabricated Cu alloy films by doping a minute amount of Ge or GeNx, respectively, into the Cu films via barrierless Cu metallization, an inexpensive manufacturing method. Using these newly fabricated alloy films, we were able to eliminate or at least substantially reduce the detrimental interaction between the alloy and the barrierless Si substrate. The Cu(GeNx) films also exhibited high thermal stability, low resistivity and leakage current, and long time-dependent dielectric breakdown (TDDB) lifetimes, making such novel films a candidate for high-quality, economical, and more reliable Cu interconnects.

  11. Deep Boreholes Seals Subjected to High P,T conditions - Proposed Experimental Studies

    NASA Astrophysics Data System (ADS)

    Caporuscio, F.

    2015-12-01

    Deep borehole experimental work will constrain the P,T conditions which "seal" material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include mafic (amphibolites) and silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries. Experiments in the system wall rock-clay-concrete-groundwater will evaluate interactions among components, including: mineral phase stability, metal corrosion rates and thermal limits. Based on engineered barrier studies, experimental investigations will move forward with three focusses. First, evaluation of interaction between "seal" materials and repository wall rock (crystalline) under fluid-saturated conditions over long-term (i.e., six-month) experiments; which reproduces the thermal pulse event of a repository. Second, perform experiments to determine the stability of zeolite minerals (analcime-wairakitess) under repository conditions. Both sets of experiments are critically important for understanding mineral paragenesis (zeolites and/or clay transformations) associated with "seals" in contact with wall rock at elevated temperatures. Third, mineral growth at the metal interface is a principal control on the survivability (i.e. corrosion) of waste canisters in a repository. The objective of this planned experimental work is to evaluate physio-chemical processes for 'seal' components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids and other barrier materials, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits.

  12. Effect of thermal processing on astaxanthin and astaxanthin esters in pacific white shrimp Litopenaeus vannamei.

    PubMed

    Yang, Shu; Zhou, Qingxin; Yang, Lu; Xue, Yong; Xu, Jie; Xue, Changhu

    2015-01-01

    The red color of processed shrimp, one of the most attractive attributes and an important criterion for consumers, is often limited by thermal processing (microwaving, boiling and frying), due to astaxanthin degradation. The effect of thermal processing on astaxanthin in Pacific white shrimp (Litopenaeus vannamei) were investigated. A High-performance liquid chromatographic - atmospheric pressure chemical ionization mass spectrometry (LC-(APCI)-MS/MS) method was used to identify and quantify all-trans- and cis-isomers of astaxanthin, and molecular species of astaxanthin esters in fresh and thermal processed shrimps. Total astaxanthin loss ranged from 7.99% to 52.01% in first 3 min under three thermal processing. All-trans-astaxanthin was most affected, with a reduction from 32.81 to 8.72 μg kg(-1), while 13-cis-astxanthin had a rise (from 2.38 to 4.58 μg kg(-1)). Esterified astaxanthin was shown to hydrolyze and degrade, furthermore astaxanthin diesters had a better thermostability compare to astaxanthin monoesters. Astaxanthin monoesters with eicosapntemacnioc acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), had a lower thermal stability than those with saturated fatty acids, however, it was the opposite of astaxanthin diesters. The findings suggested that the method of thermal processing should be carefully used in the manufacturing and domestic cooking of shrimps. The results also could be useful in calculating the dietary intake of astaxanthin and in assessing astaxanthin profiles and contents of shrimp containing products.

  13. Thermal and bias cycling stabilizes planar silicon devices

    NASA Technical Reports Server (NTRS)

    Harris, R. E.; Meinhard, J. E.

    1967-01-01

    Terminal burn-in or baking step time in the processing of planar silicon devices is extended to reduce their inversion tendencies. The collector-base junction of the device is also cyclically biased during the burn-in.

  14. Ion implantation reduces radiation sensitivity of metal oxide silicon /MOS/ devices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Implanting nitrogen ions improves hardening of silicon oxides 30 percent to 60 percent against ionizing radiation effects. Process reduces sensitivity, but retains stability normally shown by interfaces between silicon and thermally grown oxides.

  15. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  16. Ceres: predictions for near-surface water ice stability and implications for plume generating processes

    USGS Publications Warehouse

    Titus, Timothy N.

    2015-01-01

    This paper will constrain the possible sources and processes for the formation of recently observed H2O vapor plumes above the surface of the dwarf planet Ceres. Two hypotheses have been proposed: (1) cryovolcanism where the water source is the mantle and the heating source is still unknown or (2) comet-like sublimation where near-surface water ice is vaporized by seasonally increasing solar insolation. We test hypothesis #2, comet-like near-surface sublimation, by using a thermal model to examine the stability of water-ice in the near surface. For a reasonable range of physical parameters (thermal inertia, surface roughness, slopes), we find that water ice is only stable at latitudes higher than ~40-60 degrees. These results indicate that either (a) the physical properties of Ceres are unlike our expectations or (b) an alternative to comet-like sublimation, such as the cryovolcanism hypothesis, must be invoked.

  17. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coatingmore » process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.« less

  18. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    PubMed

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  19. Preparation and characterization of silica-coated ZnSe nanowires with thermal stability and photoluminescence.

    PubMed

    Xiong, Shenglin; Xi, Baojuan; Wang, Weizhi; Zhou, Hongyang; Zhang, Shuyuan; Qian, Yitai

    2007-12-01

    Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10-60 nm have been synthesized through a simple sol-gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.

  20. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  1. Key issues in the thermal design of spaceborne cryogenic infrared instruments

    NASA Astrophysics Data System (ADS)

    Schember, Helene R.; Rapp, Donald

    1992-12-01

    Thermal design and analysis play an integral role in the development of spaceborne cryogenic infrared (IR) instruments. From conceptual sketches to final testing, both direct and derived thermal requirements place significant constraints on the instrument design. Although in practice these thermal requirements are interdependent, the sources of most thermal constraints may be grouped into six distinct categories. These are: (1) Detector temperatures, (2) Optics temperatures, (3) Pointing or alignment stability, (4) Mission lifetime, (5) Orbit, and (6) Test and Integration. In this paper, we discuss these six sources of thermal requirements with particular regard to development of instrument packages for low background infrared astronomical observatories. In the end, the thermal performance of these instruments must meet a set of thermal requirements. The development of these requirements is typically an ongoing and interactive process, however, and the thermal design must maintain flexibility and robustness throughout the process. The thermal (or cryogenic) engineer must understand the constraints imposed by the science requirements, the specific hardware, the observing environment, the mission design, and the testing program. By balancing these often competing factors, the system-oriented thermal engineer can work together with the experiment team to produce an effective overall design of the instrument.

  2. High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering.

    PubMed

    Li, Wenzhe; Fan, Jiandong; Li, Jiangwei; Niu, Guangda; Mai, Yaohua; Wang, Liduo

    2016-11-09

    Currently, the potential mechanism of the solvent-assisted crystallization for mixed cations perovskite thin film (FA x MA 1-x PbI 3 ) prepared via two-step solution-process still remains obscure. Here, we clarified the molecular-competing-reacted process of NH 2 CH═NH 2 I (FAI) and CH 3 NH 3 I (MAI) with PbI 2 (DMSO) x complex in dimethyl sulfoxide (DMSO) and diethyl ether (DE) catalytic solvent system in the sequential two-step solution-process. The microscopic dynamics was characterized via the characterizations of in situ photoluminescence spectra. In addition, we found that the thermal stability of the perovskite films suffered from the residual solvent with high boiling point, for example, DMSO. The further DE treatment could promote the volatility process of DMSO and accelerate the crystallization process of perovskite films. The highest PCE over 19% with slight hysteresis effect was eventually obtained with a reproducible FA 0.88 MA 0.12 PbI 3 solar cell, which displayed a constant power output within 100 s upon light soaking and stable PCE output within 30 d in the thermal stability test.

  3. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam

    USDA-ARS?s Scientific Manuscript database

    A combined osmodehydration process and high pressure treatment (OD-HHP) was developed for grapefruit jam preservation. The inactivation kinetics of pectinmethylesterase (PME) and peroxidase (POD) in the osmodehydrated (OD) jam treated by combined thermal (45-75°C) and high pressure (550–700 MPa) pro...

  4. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  5. Thermal Unfolding Simulations of Bacterial Flagellin: Insight into its Refolding Before Assembly

    PubMed Central

    Chng, Choon-Peng; Kitao, Akio

    2008-01-01

    Flagellin is the subunit of the bacterial filament, the micrometer-long propeller of a bacterial flagellum. The protein is believed to undergo unfolding for transport through the channel of the filament and to refold in a chamber at the end of the channel before being assembled into the growing filament. We report a thermal unfolding simulation study of S. typhimurium flagellin in aqueous solution as an attempt to gain atomic-level insight into the refolding process. Each molecule comprises two filament-core domains {D0, D1} and two hypervariable-region domains {D2, D3}. D2 can be separated into subdomains D2a and D2b. We observed a similar unfolding order of the domains as reported in experimental thermal denaturation. D2a and D3 exhibited high thermal stability and contained persistent three-stranded β-sheets in the denatured state which could serve as folding cores to guide refolding. A recent mutagenesis study on flagellin stability seems to suggest the importance of the folding cores. Using crude size estimates, our data suggests that the chamber might be large enough for either denatured hypervariable-region domains or filament-core domains, but not whole flagellin; this implicates a two-staged refolding process. PMID:18263660

  6. Investigation of a ceramic vane with a metal disk thermal and mechanical contact in a gas turbine impeller

    NASA Astrophysics Data System (ADS)

    Resnick, S. V.; Prosuntsov, P. V.; Sapronov, D. V.

    2015-01-01

    Promising directions of a new generation gas turbine engines development include using in gas turbines ceramic materials blades with high strength, thermal and chemical stability. One of the serious problems in developing such motors is insufficient knowledge of contact phenomena occurring in ceramic and metal details connection nodes. This work presents the numerical modeling results of thermal processes on ceramic and metal details rough boundaries. The investigation results are used in conducting experimental researches in conditions reproducing operating.

  7. Immunoreactivity of Biochemically Purified Amandin from Thermally Processed Almonds (Prunus dulcis L.).

    PubMed

    Zaffran, Valerie D; Sathe, Shridhar K

    2018-06-15

    Almond seeds were subjected to select thermal processing and amandin was purified from processed and unprocessed (control) seeds using cryoprecipitation. Amandin immunoreactivity was assessed using two murine monoclonal antibodies (mAbs)-4C10 and 4F10 detecting human IgE-relevant conformational and linear epitopes, respectively. Overall amandin immunoreactivity following thermal treatment ranged from 64.9% to 277.8% (4C10) and 81.3% to 270.3% (4F10). Except for autoclaving (121 °C, 15 psi, 30 min) and roasting (160 °C, 30 min), the tested processing conditions resulted in increased immunoreactivity as determined by mAbs 4C10 and 4F10-based enzyme-linked immunosorbent assays (ELISAs). A significant, yet not complete, reduction in immunoreactivity was caused by autoclaving (121 °C, 15 psi, 30 min) and roasting (160 °C, 30 min). Western- and dot-blot immunoassays corroborated the ELISA results, confirming amandin thermal stability. The tested immunoassays indicated amandin to be stable, regardless of the targeted epitope and the processing method that whole almond seeds were subjected to. © 2018 Institute of Food Technologists®.

  8. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

    NASA Astrophysics Data System (ADS)

    Ye, Z. J.; Garratt, J. R.; Segal, M.; Pielke, R. A.

    1990-04-01

    The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20 200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

  9. Plasma Spraying of Ceramics with Particular Difficulties in Processing

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.

    2015-01-01

    Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.

  10. Thermal inactivation reaction rates for ricin are influenced by pH and carbohydrates.

    PubMed

    Zhang, Zhe; Triplett, Odbert A; Nguyen, Kiet T; Melchior, William B; Taylor, Kelly; Jackson, Lauren S; Tolleson, William H

    2013-08-01

    Ricin is a lethal protein toxin produced by the castor bean plant. Ricin is known to possess significant heat resistance. Therefore, we placed it in a variety of foods to study the influence of the food matrix on behavior of a thermally stable protein toxin. First order rate constants for the thermal inactivation of ricin in foods and simple buffers were measured using cytotoxicity assays. We observed greater thermal stability at 75 °C for the cytotoxic activity of ricin when it was placed in a yogurt-containing fruit drink compared to its stability when placed in the other foods tested. We found that galactose and high molecular weight exopolysaccharides present in various dairy products contributed to the thermal stability of ricin. Differential scanning calorimetry also showed enhanced thermal stability for ricin at pH 4.5. Our results demonstrate the importance of considering pH and the presence of stabilizing ligands in the thermal inactivation of protein toxins in foods. Published by Elsevier Ltd.

  11. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  12. Thermal decomposition behavior of the rare-earth ammonium sulfate R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, Tsukasa; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472; Tamura, Shinji

    2010-07-15

    Rare-earth ammonium sulfate octahydrates of R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4}.8H{sub 2}O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports. -more » Graphical abstract: Stable temperature range of anhydrous rare-earth ammonium sulfate R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Since the previous reports were based only on thermal analysis, the present work has more accurately determined the exact thermal stability of rare-earth ammonium sulfate solids.« less

  13. Application of Liquid Paraffin in Castable CL-20-Based PBX

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Guo, Xue-Yong; Zhang, Jing-Yuan; Jiao, Qing-Jie

    2014-10-01

    Hydroxy-terminated polybutadiene (HTPB)/CL-20 castable explosives plasticized with liquid paraffin were processed successfully by a cast-curing method. The compatibility of liquid paraffin with CL-20, influence of liquid paraffin on CL-20 phase transition, and viscosity of the cast mixture were tested and analyzed. The thermal decomposition characteristics, thermal stability, mechanical sensitivity, and velocity of detonation (VOD) of the HTPB/CL-20 plastic-bonded explosives (PBXs) were also measured. The experimental results showed that liquid paraffin was well compatible with CL-20, and it did not have a distinct effect on the ɛ- to γ-phase transition of CL-20. In addition, the casting mixture was free-flowing with sufficiently low viscosity. When the content of CL-20 is 90% by weight, the measured VOD reached 8,775 m/s (density of 1.78 g/cm3), and the PBXs exhibited moderate mechanical sensitivity and good thermal stability.

  14. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.

    PubMed

    Maton, Cedric; De Vos, Nils; Stevens, Christian V

    2013-07-07

    The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

  15. Long term isothermal aging and thermal analysis of N-CYCAP polyimides

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Waters, John F.; Schverman, Marla A.

    1991-01-01

    The N-CYCAP polyimides utilize a (2,2) paracyclophane endcap that polymerizes and does not generate volatile gases during the cure process. These polyimides have both high glass temperatures (390 C) and an onset of decomposition in air of 560 C. Thermal oxidative stability (TOS) weight loss studies show that replacing 25 percent by weight of the paraphenylene diamine in the polymer backbone with metaphenylene diamine improves the weight loss characteristics. N-CYCAP neat resin samples performed better than PMR-II-50 when exposed at 343 and 371 C in air for up to 1000 hours. Preliminary composite studies show that both PMR-II-50 and N-CYCAP have better thermal stability when fabricated on T-40R. Higher isothermal aging temperatures of longer aging times are needed to determine the differences in TOS between composite samples of PMR-II-50 and N-CYCAP polyimides.

  16. The effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, M.; Naeser, C.W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e. different amounts of ??-damage) has been studied by one hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon. ?? 1988.

  17. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    PubMed

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  18. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    PubMed Central

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics. PMID:29113096

  19. Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach

    NASA Astrophysics Data System (ADS)

    Draebing, D.; Krautblatter, M.; Dikau, R.

    2014-12-01

    Degradation of permafrost rock wall decreases stability and can initiate rock slope instability of all magnitudes. Rock instability is controlled by the balance of shear forces and shear resistances. The sensitivity of slope stability to warming results from a complex interplay of shear forces and resistances. Conductive, convective and advective heat transport processes act to warm, degrade and thaw permafrost in rock walls. On a seasonal scale, snow cover changes are a poorly understood key control of the timing and extent of thawing and permafrost degradation. We identified two potential critical time windows where shear forces might exceed shear resistances of the rock. In early summer combined hydrostatic and cryostatic pressure can cause a peak in shear force exceeding high frozen shear resistance and in autumn fast increasing shear forces can exceed slower increasing shear resistance. On a multiannual system scale, shear resistances change from predominantly rock-mechanically to ice-mechanically controlled. Progressive rock bridge failure results in an increase of sensitivity to warming. Climate change alters snow cover and duration and, hereby, thermal and mechanical processes in the rock wall. Amplified thawing of permafrost will result in higher rock slope instability and rock fall activity. We present a holistic conceptual approach connecting thermal and mechanical processes, validate parts of the model with geophysical and kinematic data and develop future scenarios to enhance understanding on system scale.

  20. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio Soares

    Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings with different levels of non-molten particles in the coating microstructure; from 25 to 50%. The presence of non-molten and molten phases in the coating microstructure, results in an unique mechanical behavior. The nanostructured coatings present a bimodal distribution with respect to the mechanical properties; each mode has origin from one of the phases. The phases were carefully mapped via scanning electron microscopy and microhardness measurements. These results enabled us to create a model for mechanical properties prediction. This finding is considered one of the most important achievements of this work.

  1. Plasticization effect of triacetin on structure and properties of starch ester film.

    PubMed

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2013-05-15

    The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Doping-assisted defect control in compound semiconductors

    DOEpatents

    Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell

    2006-07-11

    The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.

  3. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: a review study.

    PubMed

    Wu, Qinghua; Kuča, Kamil; Humpf, Hans-Ulrich; Klímová, Blanka; Cramer, Benedikt

    2017-02-01

    Deoxynivalenol (DON), the most commonly occurring trichothecene in nature, may affect animal and human health through causing diarrhea, vomiting, gastrointestinal inflammation, and immunomodulation. DON-3-glucoside (DON-3G) as a major plant metabolite of the mycotoxin is another "emerging" food safety issue in recent years. Humans may experience potential health risks by consuming DON-contaminated food products. Thus, it is crucial for human and animal health to study also the degradation of DON and DON-3G during thermal food processing. Baking, boiling, steaming, frying, and extrusion cooking are commonly used during thermal food processing and have promising effects on the reduction of mycotoxins in food. For DON, however, the observed effects of these methods, as reported in numerous studies, are ambiguous and do not present a clear picture with regard to reduction or transformation. This review summarized the influence of thermal processing on the stability of DON and the formation of degradation/conversion products. Besides this, also a release of DON and DON-3G from food matrix as well as the release of DON from DON-3G during processing is discussed. In addition, some conflicting findings as reported from the studies on thermal processing as well as cause-effect relationships of the different thermal procedures are explored. Finally, the potential toxic profiles of DON degradation products are discussed as well when data are available.

  4. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  5. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions.

    PubMed

    Lehrer, Paul; Eddie, David

    2013-06-01

    Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.

  6. Fabrication of a dye-doped liquid crystal light shutter by thermal curing of polymer

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Ji, Seong-Min; Kim, Jin-Hun; Huh, Jae-Won; Yoon, Tae-Hoon

    2017-07-01

    We report a thermal curing method for fabrication of a dye-doped polymer-stabilized liquid crystal (PSLC) light shutter, which can prevent the decrease in absorption and discoloration of the dye caused by the UV curing process. We found that the measured transmittance in the opaque state of a dye-doped PSLC cell fabricated by thermal curing was approximately 35% lower than that of a dye-doped PSLC cell fabricated by UV curing. Thermal curing can be an alternative approach for fabrication of a dye-doped PSLC light shutter which can be used to provide high visibility of a see-through display.

  7. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  8. SiC/SiC Composites for 1200 C and Above

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H.-M.; Morscher, G. N.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in high-temperature engine components will require the development of constituent materials and processes that can provide CMC systems with enhanced thermal capability along with the key thermostructural properties required for long-term component service. This chapter presents information concerning processes and properties for five silicon carbide (SiC) fiber-reinforced SiC matrix composite systems recently developed by NASA that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 1204, 1315, and 1427 C, temperatures well above current metal capability. This advanced capability stems in large part from specific NASA-developed processes that significantly improve the creep-rupture and environmental resistance of the SiC fiber as well as the thermal conductivity, creep resistance, and intrinsic thermal stability of the SiC matrices.

  9. Stability and thermophysical studies on deep eutectic solvent based carbon nanotube nanofluid

    NASA Astrophysics Data System (ADS)

    Chen, Yan Yao; Walvekar, Rashmi; Khalid, Mohammad; Shahbaz, Kaveh; Gupta, T. C. S. M.

    2017-07-01

    Commercial coolants such as water, ethylene glycol and triethylene glycol possess very low thermal conductivity, high vapor pressure, corrosion issues and low thermal stability thus limiting the thermal enhancement of the nanofluids. Thus, a new type of base fluid known as deep eutectic solvents (DESs) is proposed in this work as a potential substitute for the conventional base fluid due to their unique solvent properties such as low vapor pressure, high thermal stability, biodegradability and non-flammability. In this work, 33 different DESs derived from phosphonium halide salt and ammonium halide salts were synthesised. Carbon nantubes (CNTs) with different concentrations (0.01 wt%-0.08 wt%) were dispersed into DESs with the help of sonication. Stability of the nanofluids were determined using both qualitative (visual observation) and quantitative (UV spectroscopy) approach. In addition, thermo-physical properties such as thermal conductivity, specific heat, viscosity and density were investigated. The stability results indicated that phosphonium based DESs have higher stability (up to 4 d) as compared to ammonium-based DESs (up to 3 d). Thermal enhancement of 30% was observed for ammonium based DES-CNT nanofluid whereas negative thermal enhancement was observed in phosphonium based DES-CNT nanofluid.

  10. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, S.G.; Hardy, D.R.

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less

  11. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  12. Disintegration impact on sludge digestion process.

    PubMed

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  13. Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD

    PubMed Central

    Pool, Vanessa L.; Dou, Benjia; Van Campen, Douglas G.; Klein-Stockert, Talysa R.; Barnes, Frank S.; Shaheen, Sean E.; Ahmad, Md I.; van Hest, Maikel F. A. M.; Toney, Michael F.

    2017-01-01

    Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI3) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI3 and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI3 annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI3 into PbI2. PMID:28094249

  14. Thermal engineering of FAPbI 3 perovskite material via radiative thermal annealing and in situ XRD

    DOE PAGES

    Pool, Vanessa L.; Dou, Benjia; Van Campen, Douglas G.; ...

    2017-01-17

    Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI 3) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space ofmore » FAPbI 3 and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI 3 annealing time, 10 min at 170 degrees C, can be significantly reduced to 40 s at 170 degrees C without affecting the photovoltaic performance. Lastly, the Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI 3 into PbI 2.« less

  15. Fuels research: Fuel thermal stability overview

    NASA Technical Reports Server (NTRS)

    Cohen, S. M.

    1980-01-01

    Alternative fuels or crude supplies are examined with respect to satisfying aviation fuel needs for the next 50 years. The thermal stability of potential future fuels is discussed and the effects of these characteristics on aircraft fuel systems are examined. Advanced fuel system technology and design guidelines for future fuels with lower thermal stability are reported.

  16. 49 CFR 173.65 - Exceptions for Division 1.4G consumer fireworks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) The device must pass a thermal stability test. The test must be performed by maintaining the device... thermal stability test; (3) The manufacturer of the Division 1.4G consumer firework applies in writing to... thermal stability test; and (iv) Signed certification declaring that the device for which certification is...

  17. 49 CFR 173.65 - Exceptions for Division 1.4G consumer fireworks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) The device must pass a thermal stability test. The test must be performed by maintaining the device... thermal stability test; (3) The manufacturer of the Division 1.4G consumer firework applies in writing to... thermal stability test; and (iv) Signed certification declaring that the device for which certification is...

  18. Reflow process stabilization by chemical characteristics and process conditions

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  19. Ethylene-propylene-diene monomer (EPDM) and fluorocarbon (FKM) elastomers in the geothermal environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwood, H.J.

    1983-07-01

    Thermal and hydrolytic processes that are likely to occur when hydrocarbon and fluorocarbon elastomers are subjected to geothermal conditions are discussed. Polyhydrocarbon backbones have good chemical resistance, but many cross-links present in cured polyhydrocarbons can be hydrolyzed under geothermal conditions. Perfluorinated elastomers have excellent thermal and hydrolytic stability, although they are potentially susceptible to hydrolytic degradation. The cross-links present in cured perfluorocarbon elastomers are probably also susceptible to hydrolysis under severe conditions. It seems that improvements can be made in geothermal seals if they can be cured by processes that yield chemically stable cross-links.

  20. Opportunities for functional oxides in yttrium oxide-titanium oxide-zirconium oxide system: Applications for novel thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Francillon, Wesley

    This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is a single tetragonal phase. Thus, compositions are of single phase tetragonal phase, theoretically, should not undergo high temperature partitioning. Single Tetragonal phase oxides of Ti-YSZ also offer the possibility of enhanced toughness and higher temperature stability akin to those observed in yttria partially stabilized zirconia. Many pyrochlore oxides are under review because they have shown to have lower thermal conductivity than YSZ oxides. This study focused on chemically synthesizing homogeneous starting material compositions in a metastable state (preferably amorphous), following its evolution according to the phase hierarchy under conditions of kinetic constraints. The current equilibrium diagram of YO1.5-TiO2-ZrO 2 is based on theoretical calculations. One of the contributions of this work is the redefined phase fields in YO1.5-TiO2-ZrO 2 based on our experimental results. Investigated compositions were based on tie lines of Y2-xTi2ZrxO7+x/2 and Y2Ti2-yZryO7 representing substitution of Zr4+ for Y3+ and Zr4+ for Ti4+ respectively. More notably, we observed extended metastable phases in pyrochlore and fluorite oxides at low temperature. The significance of this result is that it offers a larger compositional range for investing pyrochlore oxides with associated high temperature phase stability for TBC applications. In tetragonal oxides, our results showed that Ti-YSZ results have slower partitioning kinetics in comparison to YSZ at high temperature. This study also emphasized the deposition of advanced ceramic coatings by plasma spray for tetragonal and pyrochlore systems, compositionally complex functional oxides that may potentially have lower thermal conductivity values compared to current YSZ oxides. Next generation thermal barrier coatings require powders with high chemical purity, chemical homogeneity, controlled particle size/shape and pertinent phase state. Thermal spray offers an avenue to create novel materials and deposits directly from the precursor and compositionally controlled powder feedstock. This study contributed to investigating an unexplored field that offers a variety of opportunities in materials synthesis that would not be possible by conventional methods. Understanding processing-microstructure-property correlations is of considerable importance in thermal spray of functional oxide materials. This thesis demonstrated by radio-frequency thermal spray that the complex pyrochlore oxide Y 2Ti2O7 could be deposited by directly injecting molecularly mixed precursors to form oxide coatings. Structural analysis revealed the metastable fluorite phase; however, with thermal treatments at relatively low temperature of 700°C the pyrochlore phase was obtained. For Ti-YSZ coatings, the tetragonal phase oxides were obtained with unique microstructures, however, the tetragonal prime destabilized at 1200°C. This dissertation explored novel oxide compositions through detailed structural analysis. The approach presented a comprehensive and integrated investigation as it pertains to phase evolution of oxides in powder feedstock to coating characteristics (phase/properties).

  1. Predicting the Quality of Pasteurized Vegetables Using Kinetic Models: A Review

    PubMed Central

    Aamir, Muhammad; Ovissipour, Mahmoudreza; Sablani, Shyam S.; Rasco, Barbara

    2013-01-01

    A resurgence in interest examining thermal pasteurization technologies has been driven by demands for “cleaner” labeling and the need of organic and natural foods markets for suitable preventive measures to impede microbial growth and extend shelf life of minimally processed foods and ready-to-eat foods with a concomitant reduction in the use of chemical preservatives. This review describes the effects of thermal pasteurization on vegetable quality attributes including altering flavor and texture to improve consumer acceptability, stabilizing color, improving digestibility, palatability and retaining bioavailability of important nutrients, and bioactive compounds. Here, we provide kinetic parameters for inactivation of viral and bacterial pathogens and their surrogates and marker enzymes used to monitor process effectiveness in a variety of plant food items. Data on thermal processing protocols leading to higher retention and bioactivity are also presented. Thermal inactivation of foodborne viruses and pathogenic bacteria, specifically at lower pasteurization temperatures or via new technologies such as dielectric heating, can lead to greater retention of “fresh-like” properties. PMID:26904594

  2. Thermal stability analysis and modelling of advanced perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Van Beek, Simon; Martens, Koen; Roussel, Philippe; Wu, Yueh Chang; Kim, Woojin; Rao, Siddharth; Swerts, Johan; Crotti, Davide; Linten, Dimitri; Kar, Gouri Sankar; Groeseneken, Guido

    2018-05-01

    STT-MRAM is a promising non-volatile memory for high speed applications. The thermal stability factor (Δ = Eb/kT) is a measure for the information retention time, and an accurate determination of the thermal stability is crucial. Recent studies show that a significant error is made using the conventional methods for Δ extraction. We investigate the origin of the low accuracy. To reduce the error down to 5%, 1000 cycles or multiple ramp rates are necessary. Furthermore, the thermal stabilities extracted from current switching and magnetic field switching appear to be uncorrelated and this cannot be explained by a macrospin model. Measurements at different temperatures show that self-heating together with a domain wall model can explain these uncorrelated Δ. Characterizing self-heating properties is therefore crucial to correctly determine the thermal stability.

  3. Thermal design and test results for SUNLITE ultra-stable reference cavity

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1991-01-01

    SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.

  4. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    NASA Astrophysics Data System (ADS)

    Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu

    2016-10-01

    SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  5. Vitrification of incinerated tannery sludge in silicate matrices for chromium stabilization.

    PubMed

    Varitis, S; Kavouras, P; Pavlidou, E; Pantazopoulou, E; Vourlias, G; Chrissafis, K; Zouboulis, A I; Karakostas, Th; Komninou, Ph

    2017-01-01

    The vitrification process was applied for the stabilization and solidification of a rich in chromium ash that was the by-product of incineration of tannery sludge. Six different batch compositions were produced, based on silica as the glass former and sodium and calcium oxides as flux agents. As-vitrified products (monoliths) were either composed of silicate matrices with separated from the melt Eskolaite (Cr 2 O 3 ) crystallites or were homogeneous glasses (in one case). All as-vitrified products were thermally treated in order to transform them to partially crystallized, i.e. devitrified products. Devitrification is an important part of the work since studying the transformation of the initial as-vitrified products into glass-ceramics with better properties could result to stabilized products with potential added value. The devitrified products were diversified by the effective crystallization mode and separated crystal phase composition. These variations originated from differences in: (a) batch composition of the initial as-vitrified products and (b) thermal treatment conditions. In devitrified products crystallization led to the separation of Devitrite (Na 2 Ca 3 Si 6 O 16 ), Combeite (Na 4 Ca 4 Si 6 O 18 ) and Wollastonite (CaSiO 3 ) crystalline phases, while Eskolaite crystallites were not affected by thermal treatment. Leaching test results revealed that chromium was successfully stabilized inside the as-vitrified monoliths. Devitrification impairs chromium stabilization, only in the case where the initial as-vitrified product was a homogeneous glass. In all other cases, devitrification did not affect successful chromium stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method

    PubMed Central

    Cao, X.M.; Tian, Y.; Wang, Z.Y.; Liu, Y.W.; Wang, C.X.

    2016-01-01

    ABSTRACT Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method. PMID:27459596

  7. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  8. [Native, modified, and immobilized chymotrypsin in chaotropic media. Stabilization limits].

    PubMed

    Panova, A A; Levitskiĭ, V Iu; Mozhaev, V V

    1994-07-01

    To stabilize alpha-chymotrypsin against irreversible thermal inactivation at high temperatures, methods of covalent modification and multi-point immobilization in combination with the addition of salting-in compounds were used. The upper limit of the protein stability proved to be the same for a combination of the modification and salting-in media and for each of these methods separately. The limit of stabilization reached by means of covalent immobilization is higher than the limit of stabilization reached by two other methods. The greatest stabilization of immobilized alpha-chymotrypsin by the salting-in media (a 10000 fold increase in the native enzyme's stability level) takes place only in the case of the protein with the minimum number of bonds with the support. Stabilization of the enzyme by these methods is explained in terms of the suppression of the conformational inactivation processes.

  9. NASA space materials research

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Tompkins, S. S.; Sykes, G. F.

    1985-01-01

    The effect of the space environment on: (1) thermal control coatings and thin polymer films; (2) radiation stability of 250 F and 350 F cured graphite/epoxy composites; and (3) the thermal mechanical stability of graphite/epoxy, graphite/glass composites are considered. Degradation in mechanical properties due to combined radiation and thermal cycling is highlighted. Damage mechanisms are presented and chemistry modifications to improve stability are suggested. The dimensional instabilities in graphite/epoxy composites associated with microcracking during thermal cycling is examined as well as the thermal strain hysteresis found in metal-matrix composites.

  10. Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50).

    PubMed

    Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N

    2016-12-21

    Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).

  11. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process.

    PubMed

    Gea, Saharman; Reynolds, Christopher T; Roohpour, Nima; Wirjosentono, Basuki; Soykeabkaew, Nattakan; Bilotti, Emiliano; Peijs, Ton

    2011-10-01

    Bacterial cellulose (BC) is a natural hydrogel, which is produced by Acetobacter xylinum (recently renamed Gluconacetobacter xylinum) in culture and constitutes of a three-dimensional network of ribbon-shaped bundles of cellulose microfibrils. Here, a two-step purification process is presented that significantly improves the structural, mechanical, thermal and morphological behaviour of BC sheet processed from these hydrogels produced in static culture. Alkalisation of BC using a single-step treatment of 2.5 wt.% NaOH solution produced a twofold increase in Young's modulus of processed BC sheet over untreated BC sheet. Further enhancements are achieved after a second treatment with 2.5 wt.% NaOCl (bleaching). These treatments were carefully designed in order to prevent any polymorphic crystal transformation from cellulose I to cellulose II, which can be detrimental for the mechanical properties. Scanning electron microscopy and thermogravimetric analysis reveals that with increasing chemical treatment, morphological and thermal stability of the processed films are also improved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Influence of some DNA-alkylating drugs on thermal stability, acid and osmotic resistance of the membrane of whole human erythrocytes and their ghosts.

    PubMed

    Ivanov, I T; Gadjeva, V

    2000-09-01

    Human erythrocytes and their resealed ghosts were alkylated under identical conditions using three groups of alkylating antitumor agents: mustards, triazenes and chloroethyl nitrosoureas. Osmotic fragility, acid resistance and thermal stability of membranes were changed only in alkylated ghosts in proportion to the concentration of the alkylating agent. All the alkylating agents decreased acid resistance in ghosts. The clinically used drugs sarcolysine, dacarbazine and lomustine all decreased osmotic fragility and thermal stability of ghost membranes depending on their lipophilicity. DM-COOH did not decrease osmotic fragility and thermal stability of ghost membranes, while NEM increased thermal stability of membranes. The preliminary but not subsequent treatment of ghosts with DM-COOH fully abolished the alkylation-induced thermal labilization of ghost membrane proteins while NEM had a partial effect only. The present study gives direct evidence that alkylating agents, having a high therapeutic activity against malignant growth, bind covalently to proteins of cellular membranes.

  13. Thermal decomposition of wood: influence of wood components and cellulose crystallite size.

    PubMed

    Poletto, Matheus; Zattera, Ademir J; Forte, Maria M C; Santana, Ruth M C

    2012-04-01

    The influence of wood components and cellulose crystallinity on the thermal degradation behavior of different wood species has been investigated using thermogravimetry, chemical analysis and X-ray diffraction. Four wood samples, Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP) were used in this study. The results showed that higher extractives contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the wood thermal stability. On the other hand, the thermal decomposition of wood shifted to higher temperatures with increasing wood cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of wood species. Copyright © 2012. Published by Elsevier Ltd.

  14. Pulsational stabilities of a star in thermal imbalance - Comparison between the methods

    NASA Technical Reports Server (NTRS)

    Vemury, S. K.

    1978-01-01

    The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes. For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms.

  15. Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Goldsby, John C.; Choi, Sung R.

    2004-01-01

    Tests have shown that modification of chemical compositions can increase the strengths and fracture toughnesses of solid oxide fuel-cell (SOFC) electrolytes. Heretofore, these solid electrolytes have been made of yttria-stabilized zirconia, which is highly conductive for oxygen ions at high temperatures, as needed for operation of fuel cells. Unfortunately yttria-stabilized zirconia has a high coefficient of thermal expansion, low resistance to thermal shock, low fracture toughness, and low mechanical strength. The lack of strength and toughness are especially problematic for fabrication of thin SOFC electrolyte membranes needed for contemplated aeronautical, automotive, and stationary power-generation applications. The modifications of chemical composition that lead to increased strength and fracture toughness consist in addition of alumina to the basic yttria-stabilized zirconia formulations. Techniques for processing of yttria-stabilized zirconia/alumina composites containing as much as 30 mole percent of alumina have been developed. The composite panels fabricated by these techniques have been found to be dense and free of cracks. The only material phases detected in these composites has been cubic zirconia and a alumina: this finding signifies that no undesired chemical reactions between the constituents occurred during processing at elevated temperatures. The flexural strengths and fracture toughnesses of the various zirconia-alumina composites were measured in air at room temperature as well as at a temperature of 1,000 C (a typical SOFC operating temperature). The measurements showed that both flexural strength and fracture toughness increased with increasing alumina content at both temperatures. In addition, the modulus of elasticity and the thermal conductivity were found to increase and the density to decrease with increasing alumina content. The oxygen-ion conductivity at 1,000 C was found to be unchanged by the addition of alumina.

  16. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey.

    PubMed

    André, S; Zuber, F; Remize, F

    2013-07-15

    Thermal processing of Low Acid Canned Foods (LACF), which are safe and shelf-stable at ambient temperature for several years, results in heat inactivation of all vegetative microorganisms and the partial or total inactivation of spores. Good Manufacturing Hygienic Practices include stability tests for managing the pathogen risk related to surviving mesophilic bacterial spores. LACF are also often submitted to additional incubation conditions, typically 55 °C for 7 days, to monitor spoilage by thermophiles. In this study we identified the bacterial species responsible for non-stability after prolonged at 55 °C of incubation of LACF from 455 samples collected from 122 French canneries over 10 years. Bacteria were identified by microsequencing or a recent developed tool for group-specific PCR detection (SporeTraQ™). A single species was identified for 93% of examined samples. Three genera were responsible for more than 80% of all non-stability cases: mostly Moorella (36%) and Geobacillus (35%), and less frequently Thermoanaerobacterium (10%). The other most frequent bacterial genera identified were Bacillus, Thermoanaerobacter, Caldanaerobius, Anoxybacillus, Paenibacillus and Clostridium. Species frequency was dependent on food category, i.e. vegetables, ready-made meals containing meat, seafood or other recipes, products containing fatty duck, and related to the intensity of the thermal treatment applied in these food categories. The spore heat resistance parameters (D or δ and z values) from 36 strains isolated in this study were determined. Taken together, our results single out the species most suitable for use as indicators for thermal process settings. This extensively-documented survey of the species that cause non-stability at 55 °C in LACF will help canneries to improve the management of microbial contamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fracture toughness of plasma-sprayed thermal barrier ceramics: Influence of processing, microstructure, and thermal aging

    DOE PAGES

    Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; ...

    2014-06-09

    Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levelsmore » of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd 2Zr 2O 7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.« less

  18. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    DOE PAGES

    Patel, Mogon; Pitts, Simon; Beavis, Peter; ...

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageingmore » induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.« less

  19. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  20. Tailoring characteristic thermal stability of Ni-Au binary nanocrystals via structure and composition engineering: theoretical insights into structural evolution and atomic inter-diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bangquan; Wang, Hailong; Xing, Guozhong

    We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less

  1. Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering.

    PubMed

    Gao, Yu; Li, Jian-Jun; Zheng, Lanyan; Du, Yuguang

    2017-11-01

    Versatile peroxidase (VP) from Pleurotus eryngii is a high redox potential peroxidase. It has aroused great biotechnological interest due to its ability to oxidize a wide range of substrates, but its application is still limited due to low pH and thermal stability. Since CiP (Coprinopsis cinerea peroxidase) and PNP (peanut peroxidase) exhibited higher pH and thermal stability than VP, several motifs, which might contribute to their pH and thermal stability, were identified through structure and sequence alignment. Six VP variants incorporating the beneficial motifs were designed and constructed. Most variants were nearly completely inactivated except V1 (Variant 1) and V4. V1 showed comparable activity to WT VP against ABTS, while V4 exhibited reduced activity. V1 displayed improved pH stability than WT VP, at pH 3.0 in particular, whereas the pH stability of V4 did not change a lot. The thermal stabilities of V1 and V4 were enhanced with T50 raised by 3°C. The results demonstrated that variants containing the beneficial motifs of CiP and PNP conferred VP with improved pH and thermal stability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    PubMed

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  3. Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.

    PubMed

    Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker

    2014-02-15

    Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi

    2017-12-01

    We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.

  5. AVHRR channel selection for land cover classification

    USGS Publications Warehouse

    Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.

    2002-01-01

    Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.

  6. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  7. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.

    2011-11-15

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate wasmore » more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.« less

  8. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review

    NASA Astrophysics Data System (ADS)

    Feuerstein, Albert; Knapp, James; Taylor, Thomas; Ashary, Adil; Bolcavage, Ann; Hitchman, Neil

    2008-06-01

    The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.

  9. Productivity and some properties of immunoglobulin specific against Streptococcus mutans serotype c in chicken egg yolk (IgY).

    PubMed

    Chang, H M; Ou-Yang, R F; Chen, Y T; Chen, C C

    1999-01-01

    Hens were immunized on thighs by using whole cells of Streptococcus mutans MT8148 serotype c strain as antigen through intramuscular (im) and subcutaneous (sc) routes to investigate the difference of immunization reactions and the changes in yolk antibody activities against antigen after initial immunization. Several properties of crude IgY were examined to evaluate the stability during food processing. Results showed that the specificity of IgY of im treated hens was nearly 10 times as high as those of sc treated antibody. IgY from the hens immunized with the serotype c strain showed significant cross-reactions against serotypes e and f, while minor reactions against serotypes a, b, d, and g were observed. In thermal stability tests, IgY activity in both yolk and crude IgY decreased with the increasing temperature, from 70 to 80 degrees C, but the thermal denaturation rates between those two samples were not significantly different. The addition of high levels sucrose, maltose, glycerol, or 2% glycine displayed effective protection against thermal denaturation of IgY. Lyophilized yolk-5% gum arabic powder showed better stability against proteases.

  10. Effect of the inducers veratryl alcohol, Xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor.

    PubMed

    Saraiva, Jorge A; Tavares, Ana P M; Xavier, Ana M R B

    2012-06-01

    Laccase production from Trametes versicolor was improved in the presence of the inducers ligninosulphonates, veratryl alcohol, and xylidine respectively two-, four-, and eightfold. The thermal inactivation of the produced laccase, after partial purification with ammonium sulfate was kinetically investigated at various temperatures (60-70 °C) and pH values (3.5, 4.5, and 5.5). The inactivation process followed first-order kinetics for all conditions tested, except for veratryl alcohol, for which a constant activity level was observed at the end of the inactivation, also after first-order decay. Enzyme thermostability was affected by the type of inducer used in the culture medium for the production of laccase and also by the pH of incubation mixture. Generally, laccase stability increased with pH increment, being more stable at pH 5.5, except with xylidine. At pHs 4.5 and 5.5, the three inducers significantly increased laccase thermal stability, with the higher effect being observed for pH 5.5 and ligninosulphonates, where increment of half-life times ranged from 3- to 20-fold, depending on the temperature.

  11. Effects of electron irradiation on LDPE/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Li, Xingji; Liu, Chaoming; Rui, Erming; Wang, Liqin

    2015-12-01

    In this study, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) in different concentrations (2%, 4% and 8%) using a melt blending process. Structural, thermal stability and tensile property of the unirradiated/irradiated LDPE/MWCNT composites by 110 keV electrons were investigated by means of scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), Raman spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA) and uniaxial tensile techniques. Experimental results show that the addition of MWCNTs obviously increases the ultimate tensile strength of LDPE and decreases the elongation at break, which is attributed to the homogeneous distribution of the MWCNTs in LDPE and intense interaction between MWCNTs and LDPE matrix. Also, the electron irradiation further increases the ultimate tensile strength of LDPE/MWCNT composites, which can be ascribed to the more intense interaction between MWCNTs and LDPE matrix, and the formation of crosslinking sites in LDPE matrix induced by the electron irradiation. The addition of MWCNTs significantly enhances thermal stability of the LDPE due to the hindering effect and the scavenging free radicals, while the electron irradiation decreases thermal stability of the LDPE/MWCNT composites since the structure of the MWCNTs and LDPE matrix damages.

  12. Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization

    PubMed Central

    Zdarta, Jakub; Klapiszewski, Łukasz; Wysokowski, Marcin; Norman, Małgorzata; Kołodziejczak-Radzimska, Agnieszka; Moszyński, Dariusz; Ehrlich, Hermann; Maciejewski, Hieronim; Stelling, Allison L.; Jesionowski, Teofil

    2015-01-01

    Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors. PMID:25903282

  13. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  14. Thermal Stability of Zone Melting p-Type (Bi, Sb)2Te3 Ingots and Comparison with the Corresponding Powder Metallurgy Samples

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu

    2018-04-01

    During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.

  15. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    PubMed

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  16. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  17. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  18. Dielectric Properties and Electrodynamic Process of Natural Ester-Based Insulating Nanofluid

    NASA Astrophysics Data System (ADS)

    Zou, Ping; Li, Jian; Sun, Cai-Xin; Zhang, Zhao-Tao; Liao, Rui-Jin

    Natural ester is currently used as an insulating oil and coolant for medium-power transformers. The biodegradability of insulating natural ester makes it a preferable insulation liquid to mineral oils. In this work, Fe3O4 nanoparticles were used along with oleic acid to improve the performance of insulating natural ester. The micro-morphology of Fe3O4 nanoparticles before and after surface modification was observed through transmission electron microscopy. Attenuated total reflection-Fourier transform infrared spectroscopy, thermal gravimetric analysis, and differential thermal analysis were employed to investigate functional groups and their thermal stability on the surface-modified Fe3O4 nanoparticles. Basic dielectric properties of natural ester-based insulating nanofluid were measured. The electrodynamic process in the natural ester-based insulating nanofluid is also presented.

  19. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the resultant nanocomposites' mechanical properties on the preferential alignment of the montmorillonite nano-platelet was also evaluated. Highly aligned filler platelets did not result in an additional enhancement in mechanical properties. PC/PET blends and their respective PC/PET/montmorillonite nanocomposites were synthesized and compared. The dispersion of the organically modified nano-fillers in the PC/PET blends was controlled via thermodynamic considerations, realized through proper surfactant choice: Nanocomposites in which the layered silicate was preferentially sequestered in the PET phase were designed and synthesized. This preferential dispersion of the nano-filler in the PET phase of the PC/PET blend was insensitive to processing conditions, including approaches employing a master-batch (filler concentrate); regardless of the master-batch matrix, both PC and PET were employed, thermodynamics drove the layered silicate to preferentially migrate to the PET phase of the PC/PET blend. In a second approach, the development of a nanocomposite with controlled PC/PET compatibilization near the montmorillonite platelets, in absence of appreciable transesterification reactions, led to the formation of very high performance nanocomposites. These latter systems, point to an exciting new avenue of future considerations for nanocomposite blends with selective nano-filler dispersions, where performance can be tailored via the controlled preferential dispersion of nano-fillers in one phase, or by filler-induced polymer compatibilization.

  20. Tailoring polymer films for solar-collection use, phase 1

    NASA Astrophysics Data System (ADS)

    Fouser, J. P.

    1983-09-01

    Several types of Polyacrylonitrile (PAN) polymers in film form that could meet the performance criteria with respect to thermal, ultraviolet, and tensile strength stability for use as exterior glazing in a low cost solar collector or for the internal heat exchange component were evaluated. Seven film specimens were tested. It is concluded that acrylonitrile homopolymer films when properly cast and processed have good mechanical properties, have long uv stability, and are usable for prolonged periods at 300 F.

  1. High Temperature Catalytic Combustion Suppports Final Report CRADA No. TSB-0841-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hair, Lucy; Magno, Scott

    This Small Business CRADA between LLNL and Catalytica was executed on January 25, 1995. The total estimated cost of this project was 113K. LLNL's contribution was estimated at $50K funded under the DOE/Defense Program Small Business Initiative. Catalytica's in-kind contribution was estimated at 63K. Catalytic combusion catalyst systems operate at temperatures from 600°C to above 1300°C. Catalytica has developed technology that limits the catalyst temperature to below 1000°C. At temperatures in the range of 850 to 1000°C, the thermal stability of the catalyst is an important issue. Typical supports such as stabilized aluminas, hexaluminates, zirconia and stabilized zirconia supports aremore » typically used but lack either thermal stability or other desirable properties. Catalytica had developed a new concept for thermally stable mixed oxide supports but this concept required the preparation of molecularly uniform precursors; that is, prior to high temperature treatment of these materials, the elements that make up the mixed oxide must be as nearly uniform as possible on a molecular level. The technique of sol gel processing appeared to be the preferred technique to make these molecularly uniform precursors, and a cooperative program with LLNL was established to prepare and test the proposed compounds. Catalytica proposed the composition and concentration levels for the materials to be prepared.« less

  2. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less

  3. Technology development for cryogenic deployable telescope structures and mechanisms

    NASA Astrophysics Data System (ADS)

    Atkinson, Charles B.; Gilman, Larry; Reynolds, Paul

    2003-12-01

    At 6-7 meters in diameter, the James Webb Space Telescope (JWST) will require structures that remain stable to levels that are on the order of 10 nanometers under dynamic and thermal loading while operating at cryogenic temperatures. Moreover, the JWST will be the first telescope in space that is deployed, resulting in an aperture that is not only segmented, but has hinge-lines and the associated joining systems or latches in it. In order to understand the behavior and reduce the risk associated with very large, deployed structures and the stability of the associated structure and latches, we developed and tested the largest cryogenic structure ever built and then characterized its stability. This paper presents a description of the design of the Development Optical Telescope Assembly (DOTA), the testing performed, and the results of the testing performed on it. We discuss the material selection and characterization processes, give a description of the test configurations, describe the metrology equipment and the validation process for it, provide the test results, and summarize the conclusions drawn from the results. The testing and associated results include characterization of the thermal stability of the large-scale structure, characterization of the micro-dynamic stability of the latching system, and measurements of the deployment capability of the mechanisms. We also describe how the DOTA design relates to the JWST design and how the test results relate to the JWST requirements.

  4. Dewetting Kinetics in Polymer Grafted Nanoparticle Thin Films: Impact of Architecture and Viscosity on Thermal Stability

    NASA Astrophysics Data System (ADS)

    Che, Justin; Jawaid, Ali; Grabowski, Christopher; Yi, Yoon-Jae; Vaia, Richard; AFRL Collaboration

    Rapid formation of ordered monolayers of polymer grafted nanoparticles (PGN) directly onto solid surfaces has spurred interest in using these materials for additive manufacturing of optical devices and energy storage. Herein, we discuss dewetting of polystyrene grafted Au nanoparticles (PS@Au) with an increased thermal (10-25oC) and energetic (5-15 mN/m) stability relative to linear polymer films of comparable thickness. Analogous to star macromolecules, the enhanced stability is related to the conformations of chains in the grafted canopy. Mechanistically, dewetting of PS@Au is similar to linear PS, however, the thickness transition from spinodal to heterogeneous nucleation is at least 5-6x larger. Time resolved optical microscopy during dewetting at 160oC revealed that the zero shear viscosity for linear PS scaled as η0 Mn3. 3 , consistent with reptation of entangled polymers. In contrast, PS@Au showed η0 Mn2. 2 where Mn reflects the molecular weight of the grafted chains. Overall, PS@Au exhibited significantly slower dewetting rates, consistent with a 100x increase in viscosity relative to the linear chain analogues. Quantification of the relationship between PGN architecture (e.g. nanoparticle size, graft density, polymer molecular weight) and dewetting processes is crucial to optimize the order of these assemblies via post-processing, as well as design the PGN canopy to maximize stability for devices.

  5. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Light scattering methods to test inorganic PCMs for application in buildings

    NASA Astrophysics Data System (ADS)

    De Paola, M. G.; Calabrò, V.; De Simone, M.

    2017-10-01

    Thermal performance and stability over time are key parameters for the characterization and application of PCMs in the building sector. Generally, inorganic PCMs are dispersions of hydrated salts and additives in water that counteract phase segregation phenomena and subcooling. Traditional methods or in “house” methods can be used for evaluating thermal properties, while stability can be estimated over time by using optical techniques. By considering this double approach, in this work thermal and structural analyses of Glauber salt based composite PCMs are conducted by means of non-conventional equipment: T-history method (thermal analysis) and Turbiscan (stability analysis). Three samples with the same composition (Glauber salt with additives) were prepared by using different sonication times and their thermal performances were compared by testing both the thermal cycling and the thermal properties. The stability of the mixtures was verified by the identification of destabilization phenomena, the evaluation of the migration velocities of particles and the estimation of variation of particle size.

  7. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables

    PubMed Central

    Marszałek, Krystian; Woźniak, Łukasz; Kruszewski, Bartosz; Skąpska, Sylwia

    2017-01-01

    Anthocyanins are a group of phenolic compounds responsible for red, blue and violet colouration of many fruits, vegetables and flowers. The high content of these pigments is important as it influences directly their health promoting properties as well as the sensory quality of the product; however they are prone to degradation by, inter alia, elevated temperature and tissue enzymes. The traditional thermal methods of food preservation cause significant losses of these pigments. Thus, novel non-thermal techniques such as high pressure processing, high pressure carbon dioxide and high pressure homogenization are under consideration. In this review, the authors attempted to summarize the current knowledge of the impact of high pressure techniques on the stability of anthocyanins during processing and storage of fruit and vegetable products. Furthermore, the effect of the activity of enzymes involved in the degradation of these compounds has been described. The conclusions including comparisons of pressure-based methods with high temperature preservation techniques were presented. PMID:28134807

  8. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables.

    PubMed

    Marszałek, Krystian; Woźniak, Łukasz; Kruszewski, Bartosz; Skąpska, Sylwia

    2017-01-27

    Anthocyanins are a group of phenolic compounds responsible for red, blue and violet colouration of many fruits, vegetables and flowers. The high content of these pigments is important as it influences directly their health promoting properties as well as the sensory quality of the product; however they are prone to degradation by, inter alia, elevated temperature and tissue enzymes. The traditional thermal methods of food preservation cause significant losses of these pigments. Thus, novel non-thermal techniques such as high pressure processing, high pressure carbon dioxide and high pressure homogenization are under consideration. In this review, the authors attempted to summarize the current knowledge of the impact of high pressure techniques on the stability of anthocyanins during processing and storage of fruit and vegetable products. Furthermore, the effect of the activity of enzymes involved in the degradation of these compounds has been described. The conclusions including comparisons of pressure-based methods with high temperature preservation techniques were presented.

  9. Effect of solution plasma process with bubbling gas on physicochemical properties of chitosan.

    PubMed

    Ma, Fengming; Li, Pu; Zhang, Baiqing; Zhao, Xin; Fu, Qun; Wang, Zhenyu; Gu, Cailian

    2017-05-01

    In the present work, solution plasma process (SPP) with bubbling gas was used to prepare oligochitosan. The effect of SPP irradiation with bubbling gas on the degradation of chitosan was evaluated by the intrinsic viscosity reduction rate and the degradation kinetic. The formation of OH radical was studied. Changes of the physicochemical properties of chitosan were measured by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, as well as ultraviolet-visible, Fourier-transform infrared, and 13 C nuclear magnetic resonance spectroscopy. The results indicated an obvious decrease in the intrinsic viscosity reduction rate after SPP irradiation with bubbling gas, and that the rate with bubbling was higher than that without. The main chemical structure of chitosan remained intact after irradiation, but changes in the morphology, crystallinity, and thermal stability of oligochitosan were observed. In particular, the crystallinity and thermal stability tended to decrease. The present study indicated that SPP can be effectively used for the degradation of chitosan. Copyright © 2017. Published by Elsevier B.V.

  10. Multiferroic composites for magnetic data storage beyond the super-paramagnetic limit

    NASA Astrophysics Data System (ADS)

    Vopson, M. M.; Zemaityte, E.; Spreitzer, M.; Namvar, E.

    2014-09-01

    Ultra high-density magnetic data storage requires magnetic grains of <5 nm diameters. Thermal stability of such small magnetic grain demands materials with very large magneto-crystalline anisotropy, which makes data write process almost impossible, even when Heat Assisted Magnetic Recording (HAMR) technology is deployed. Here, we propose an alternative method of strengthening the thermal stability of the magnetic grains via elasto-mechanical coupling between the magnetic data storage layer and a piezo-ferroelectric substrate. Using Stoner-Wohlfarth single domain model, we show that the correct tuning of this coupling can increase the effective magneto-crystalline anisotropy of the magnetic grains making them stable beyond the super-paramagnetic limit. However, the effective magnetic anisotropy can also be lowered or even switched off during the write process by simply altering the applied voltage to the substrate. Based on these effects, we propose two magnetic data storage protocols, one of which could potentially replace HAMR technology, with both schemes promising unprecedented increases in the data storage areal density beyond the super-paramagnetic size limit.

  11. Influence of thermal processing conditions on flavor stability in fluid milk: benzaldehyde.

    PubMed

    Potineni, R V; Peterson, D G

    2005-01-01

    Flavor loss in dairy products has been associated with enzymatic degradation by xanthine oxidase. This study was conducted to investigate the influence of milk thermal processing conditions (or xanthine oxidase inactivation) on benzaldehyde stability. Benzaldehyde was added to whole milk which had been thermally processed at 4 levels: (1) none or raw, (2) high temperature, short time (HTST) pasteurization, (3) HTST pasteurization, additionally heated to 100 degrees C (PAH), and (4) UHT sterilized. Additionally, PAH and UHT milk samples containing benzaldehyde (with and without ferrous sulfate) were spiked with xanthine oxidase. Azide was added as an antimicrobial agent (one additional pasteurized sample without) and the microbial load (total plate count) was determined on d 0, 2, and 6. The concentration of benzaldehyde and benzoic acid in all milk samples were determined at d 0, 1, 2, 4, and 6 (stored at 5 degrees C) by gas chromatography/mass spectrometry in selective ion monitory mode. Over the 6-d storage period, more than 80% of the benzaldehyde content was converted (oxidized) to benzoic acid in raw and pasteurized milk, whereas no change in the benzaldehyde concentration was found in PAH or UHT milk samples. Furthermore, the addition of xanthine oxidase or xanthine oxidase plus ferrous sulfate to PAH or UHT milk samples did not result in benzaldehyde degradation over the storage period.

  12. The effect of heat treatment on the stability of Nb 3Sn RRP-150/169 strands

    DOE PAGES

    Li, Pei; Turrioni, Daniele; Barzi, Emanuela; ...

    2017-02-17

    Here, the magnetic stability of superconductor strands and cables is a key issue in the successful building and operation of high-field accelerator magnets. In this paper, we report the study of a state-of-the-art 0.7 mm Nb 3Sn restacked-rod-process strand manufactured by Oxford Instrument Superconductor Technology. This conductor will be used in Rutherford cable for a 15-T Nb 3Sn dipole demonstrator being built at Fermi National Accelerator Laboratory. Particularly, this study focuses on the impact of varying heat treatment conditions on the stability of the strand. Both the stability against internal flux jumps and external thermal perturbations are studied.

  13. The effect of heat treatment on the stability of Nb 3Sn RRP-150/169 strands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Pei; Turrioni, Daniele; Barzi, Emanuela

    Here, the magnetic stability of superconductor strands and cables is a key issue in the successful building and operation of high-field accelerator magnets. In this paper, we report the study of a state-of-the-art 0.7 mm Nb 3Sn restacked-rod-process strand manufactured by Oxford Instrument Superconductor Technology. This conductor will be used in Rutherford cable for a 15-T Nb 3Sn dipole demonstrator being built at Fermi National Accelerator Laboratory. Particularly, this study focuses on the impact of varying heat treatment conditions on the stability of the strand. Both the stability against internal flux jumps and external thermal perturbations are studied.

  14. Autonomous magnetic float zone microgravity crystal growth application to TiC and GaAs

    NASA Astrophysics Data System (ADS)

    Chan, Tony Y.-T.; Choi, Sang-Keun

    1992-10-01

    The floating zone process is ideal for high temperature (greater than 3000 K) growth of titanium carbide because it is containerless. However, float zoning requires small melt volumes in order to maintain a stable melt configuration. The short melt columns make it difficult to achieve a controlled thermal profile, a necessity for producing crystals of high quality. Thus, an automated control strategy based upon continuous monitoring of the growth process with processing parameters adjusted to values based upon the physical transport processes of the growth process is very desirable for maintaining stability and reproducibility of the process. The present work developed a Float-zone Acquisition and Control Technology (FACT) system which uses relations derived by combining empirical relations with a knowledge data base deduced from detailed numerical analysis of fluid mechanics and thermal transport of the growth process. The FACT system was assembled, tested and employed to grow two TiC ingots. One of the ingots was characterized by x-ray diffraction at different axial locations. The x-ray rocking curves showed consistent characteristics of a manually grown ingot. It was also found that with the FACT system, the process conditions can be operated closer to the stability limits, due to fast response time and repetitive amounts of adjustment from the FACT system. The FACT system shows a major potential in growing quality TiC crystals in a cost-effective manner.

  15. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether triazine greater than polyphenylether greater than C-ether greater than fluorinated polyether.

  16. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability, and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter, and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether trizine greater than polyphenyl ether greater than C-ether greater than fluorinated polyether.

  17. Chemical and thermal studies on esterification of EDTA with raw cellulose and mercerized cellulose EFB

    NASA Astrophysics Data System (ADS)

    Azamkamal, Fatihah; Zakaria, Sarani; Gan, Sinyee; Kaco, Hatika

    2018-04-01

    Oil palm empty fruit bunch fibre (EFB) was bleached using four stages bleaching sequences (DEED) where D was a bleaching process composed of 1.7 wt% NaClO2 and buffer solution while E was composed of NaOH solution. Raw cellulose and mercerized cellulose which treated with 3.5 N sodium hydroxide were used as a raw material for esterification with ethylenediaminetetraacetic acid (EDTA) and enhancement with acetic acid. The samples of raw cellulose and mercerized cellulose were observed using optical microscope. The thermal properties of raw cellulose and mercerized cellulose esterified with EDTA were studied. The effect of mercerized cellulose on esterification process of EDTA was investigated. The studies suggested that the mercerization process affect the thermal stability of the cellulose. The transmittance of FTIR band showed that raw cellulose gave better esterification product compared to mercerized cellulose. Hence, the mercerization process of cellulose does not improve the esterification of cellulose with EDTA.

  18. Thermal hydraulic feasibility assessment of the hot conditioning system and process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heard, F.J.

    1996-10-10

    The Spent Nuclear Fuel Project was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the proposed Hot Conditioning System and process for the Spent Nuclear Fuel Project. The analyses were performed using a series of thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the Hot Conditioning System. The subject efforts focus on independently investigating, quantifying,more » and establishing the governing heat production and removal mechanisms, flow distributions within the multi-canister overpack, and performing process simulations for various purge gases under consideration for the Hot Conditioning System, as well as obtaining preliminary results for comparison with and verification of other analyses, and providing technology- based recommendations for consideration and incorporation into the Hot Conditioning System design bases.« less

  19. Thermally stable, plastic-bonded explosives

    DOEpatents

    Benziger, Theodore M.

    1979-01-01

    By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.

  20. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  1. Stabilization of metallic catalyst microstructures against high-temperature thermal coarsening

    NASA Astrophysics Data System (ADS)

    Driscoll, David Robert

    The size and shape of metal particulate at high temperature is dictated by surface energy. In systems containing very small metal particles, smaller particles shrink and disappear as they grow into larger particles in a process referred to as coarsening. Coarsening causes irreversible degradation in a number of important systems including automotive catalytic converters and solid oxide fuel cells (SOFC) through a loss of catalyst (metal) surface area. This phenomenon is exemplified by nickel metal catalyst that is supported on ytrria-stabilized zirconia (YSZ) which represents a materials system critical to the function of SOFCs. It has been demonstrated that additions of aluminum titanate (ALT) to the Ni-YSZ system with subsequent thermal treatment can act to stabilize the geometry of Ni on YSZ. In demonstration SOFCs, ALT has increased the time required for the first 10% of degradation by a factor of 115. This work has sought to elucidate the mechanisms by which ALT imparts increased stability. The work contained here demonstrates that ALT easily decomposes to Al 2O3 and TiO2. During thermal treatment, the alumina reacts with NiO to form nickel aluminate and the titania interacts with the YSZ where it can form Zr5Ti7O24--a mixed ion electron conducting phase. In this way, the Al and Ti components of ALT have been determined to act independently where alumina appears to be dominant in microstructural stabilization. During cell operation, the nickel aluminate decomposes to nickel metal decorated with alumina nano-particulate. This geometry forms the basis of "diffusion caging" as a stabilization mechanism which is the subject of Chapter 8. The role of titania appears to be less important except when processing occurs in a way that facilitates formation of the MIEC phase. However, Ni-YSZ cermets have also shown a strength enhancement when doped with ALT. This strength enhancement is likely due to the influence of titania (Chapter 7). Future work has the potential to extend concepts discussed here to a number of high temperature catalytic systems.

  2. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    NASA Astrophysics Data System (ADS)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  3. Radiolysis of lignin: Prospective mechanism of high-temperature decomposition

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.

    2017-12-01

    The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.

  4. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    NASA Astrophysics Data System (ADS)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  5. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    PubMed

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of <150 °C by solution processing. The power conversion efficiency (PCE) of the device fabricated by the novel annealing method increased from 15.5 to 17.5%. To enhance the thermal stability of CH 3 NH 3 PbI 3 (MAPbI 3 ) on the ZnO surface, a thin layer of small molecule [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) was inserted between the ZnO layer and perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  6. Nanoscale chemical state analysis of resistance random access memory device reacting with Ti

    NASA Astrophysics Data System (ADS)

    Shima, Hisashi; Nakano, Takashi; Akinaga, Hiro

    2010-05-01

    The thermal stability of the resistance random access memory material in the reducing atmosphere at the elevated temperature was improved by the addition of Ti. The unipolar resistance switching before and after the postdeposition annealing (PDA) process at 400 °C was confirmed in Pt/CoO/Ti(5 nm)/Pt device, while the severe degradation of the initial resistance occurs in the Pt/CoO/Pt and Pt/CoO/Ti(50 nm)/Pt devices. By investigating the chemical bonding states of Co, O, and Ti using electron energy loss spectroscopy combined with transmission electron microscopy, it was revealed that excess Ti induces the formation of metallic Co, while the thermal stability was improved by trace Ti. Moreover, it was indicated that the filamentary conduction path can be thermally induced after PDA in the oxide layer by analyzing electrical properties of the degraded devices. The adjustment of the reducing elements is quite essential in order to participate in their profits.

  7. Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Natalie P.; Vaughan, Ben; Williams, Evan L.

    Polymer:fullerene nanoparticles (NPs) offer two key advantages over bulk heterojunction (BHJ) films for organic photovoltaics (OPVs), water-processability and potentially superior morphological control. Once an optimal active layer morphology is reached, maintaining this morphology at OPV operating temperatures is key to the lifetime of a device. Here in this paper we study the morphology of the PDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene}):PC 71BM ([6,6]-phenyl C 71 butyric acid methyl ester) NP system and then compare the thermal stability of NP and BHJ films to the common poly(3-hexylthiophene) (P3HT): phenyl C 61 butyric acid methyl ester (PC 61BM) system. We find that material T g playsmore » a key role in the superior thermal stability of the PDPP-TNT:PC 71BM system; whereas for the P3HT:PC 61BM system, domain structure is critical.« less

  8. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

    PubMed

    Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan

    2012-06-29

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

  9. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending

    PubMed Central

    2012-01-01

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young’s modulus, and reactive blending leads to further improvement in Young’s modulus while hardly reducing the elongation at break of HDPE. PMID:22747773

  10. Research on the liquid coolant applied in the high repetition rate slab amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Bingyan; Li, Yangshuai; Zhang, Panzheng; Wang, Li; Zhang, Yanli; Feng, Tao; Zhou, Qiong; Liu, Qiang; Li, Haiyuan; Zhang, Xu; Zhou, Shenlei; Ma, Weixin; Zhu, Jian; Zhu, Jianqiang

    2018-03-01

    High repetition rate slab amplifier (HRRSA) is extraordinarily indispensable for the future fusion power plant, ultra-short laser, laser weapon, and so on. Thermal controlling is the decisive factor for the repetition rate and the output energy of the slab amplifier. For larger clear aperture HRRSA, flash-lamp pumped slab amplifier based on neodymium phosphate glass (Nd:glass) is chosen with the liquid cooling. The liquid coolant circulates across the Nd:glass and takes off the thermal induced in the pumping process. A novel liquid coolant (Series A) whose refractive index is the same with Nd:glass is proposed to alleviate the wavefront distortion induced by thermal. The chemical stability of the liquid coolant under high energy flash-lamp irradiation with 200 shots and under the irradiation of a 1053nm laser with 19 hours and 37 hours are experimented. The results show that the chemical stability of the liquid coolant is stable under irradiation.

  11. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    PubMed

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Reinforcement of dynamically vulcanized EPDM/PP elastomers using organoclay fillers

    PubMed Central

    Tsai, Yuhsin; Wu, Jyh-Horng; Wu, Yao-Tsu; Li, Chia-Hao; Leu, Ming-Tsong

    2008-01-01

    Dynamically vulcanized EPDM/PP (ethylene-propylene-diene/polypropylene) elastomers reinforced with various amounts of organoclay were prepared using octylphenol-formaldehyde resin and stannous chloride dehydrate as vulcanizing agents. The effects of organoclay on vulcanization characteristics, rheological behavior, morphology, thermal stability and thermomechanical properties were studied. Experimental results showed that organoclay affected neither the vulcanization process nor the degree of vulcanization chemically. X-ray analysis revealed that these organoclay-filled thermoplastic vulcanizates (TPVs) were intercalated. With respect to the mechanical properties, organoclay increased both the strength and degree of elongation of TPVs. The morphological observation of fractured surfaces suggested that organoclay acted as a nucleating agent in TPVs, improving their mechanical properties. However, adding organoclay reduced the thermal stability of TPVs by decomposing the swelling agents in the organoclay. PMID:27878033

  13. Aging Effects on the Properties of Imidazolium-, Quaternary Ammonium-, Pyridinium-, and Pyrrolidinium-Based Ionic Liquids Used in Fuel and Energy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Elise B.; Smith, L. Taylor; Williamson, Tyler K.

    2013-11-21

    Ionic liquids (ILs) are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long-term aging effect of the temperature on these materials. Imizadolium-, quaternary ammonium-, pyridinium-, and pyrrolidnium-based ILs with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 h (15 weeks) at 200 °C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. Finally, it was found that the minor changes in the cation chemistry could greatlymore » affect the properties of the ILs over time.« less

  14. Reinforcement of dynamically vulcanized EPDM/PP elastomers using organoclay fillers.

    PubMed

    Tsai, Yuhsin; Wu, Jyh-Horng; Wu, Yao-Tsu; Li, Chia-Hao; Leu, Ming-Tsong

    2008-12-01

    Dynamically vulcanized EPDM/PP (ethylene-propylene-diene/polypropylene) elastomers reinforced with various amounts of organoclay were prepared using octylphenol-formaldehyde resin and stannous chloride dehydrate as vulcanizing agents. The effects of organoclay on vulcanization characteristics, rheological behavior, morphology, thermal stability and thermomechanical properties were studied. Experimental results showed that organoclay affected neither the vulcanization process nor the degree of vulcanization chemically. X-ray analysis revealed that these organoclay-filled thermoplastic vulcanizates (TPVs) were intercalated. With respect to the mechanical properties, organoclay increased both the strength and degree of elongation of TPVs. The morphological observation of fractured surfaces suggested that organoclay acted as a nucleating agent in TPVs, improving their mechanical properties. However, adding organoclay reduced the thermal stability of TPVs by decomposing the swelling agents in the organoclay.

  15. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  16. Thermal Relaxation Processes and Stability in Poled Electro-Optic Polymers

    DTIC Science & Technology

    1994-06-30

    34, Gordon Research Conference on Dielectric Phenomena, Holderness School, NH July 31-August 5, 1994. 2. K.D. Singer, R. Dureiko, J. Khaydarov , and R...Fuerst, "Relaxation in Poled Electro- optic Polymers", 4th Iketani Conference, Hawaii, May 17-20, 1994. 3. J.H. Andrews, J.D.V. Khaydarov , and K.D. Singer...Dureiko, J. Khaydarov , and R. Fuerst, "Relaxation Phenomena in Poled Electro-Optic Polymers", Proc. Mat. Res. Soc. 328, 499 (1994). 5. R.A. Fuerst, "Thermal

  17. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    PubMed

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  19. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE PAGES

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie; ...

    2017-03-22

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  20. Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification.

    PubMed

    Grewal, Jasneet; Ahmad, Razi; Khare, S K

    2017-10-01

    The present work aimed to improve catalytic efficiency of Trichoderma reesei cellulase for enhanced saccharification. The cellulase was immobilized on two nanomatrices i.e. magnetic and silica nanoparticles with immobilization efficiency of 85% and 76% respectively. The nanobioconjugates exhibited increase in V max , temperature optimum, pH and thermal stability as compared with free enzyme. These could be efficiently reused for five repeated cycles and were stable in 1-ethyl-3-methylimidazoliumacetate [EMIM][Ac], an ionic liquid. Ionic liquids (IL) are used as green solvents to dissolve lignocellulosic biomass and facilitate better saccharification. The cellulase immobilized on magnetic nanoparticles was used for in situ saccharification of [EMIM][Ac] pretreated sugarcane bagasse and wheat straw for two cycles. The structural deconstruction and decrease in biomass crystallinity was confirmed by SEM, XRD and FTIR. The high hydrolysis yields (∼89%) obtained in this one-pot process coupled with IL stability and recycled use of immobilized cellulase, potentiates its usefulness in biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells

    PubMed Central

    Zhao, Jingjing; Deng, Yehao; Wei, Haotong; Zheng, Xiaopeng; Yu, Zhenhua; Shao, Yuchuan; Shield, Jeffrey E.; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane direction and in-plane tensile strain. The strain accelerates degradation of perovskite films under illumination, which can be explained by increased ion migration in strained OIHP films. This study points out an avenue to enhance the intrinsic stability of perovskite films and solar cells by reducing residual strain in perovskite films. PMID:29159287

  2. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2001-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  3. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2003-12-16

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  4. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2003-12-02

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  5. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  6. Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa

    PubMed Central

    Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.

    2013-01-01

    Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926

  7. Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings

    NASA Astrophysics Data System (ADS)

    Dwivedi, Gopal; Tan, Yang; Viswanathan, Vaishak; Sampath, Sanjay

    2015-02-01

    The continuous need of elevating operating temperature of gas turbine engines has introduced several challenges with the current state-of-the-art yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs), requiring examination of new TBC material with high temperature phase stability, lower thermal conductivity, and resistance to environmental ash particles. Gadolinium zirconate (Gd2Zr2O7) (GDZ) has been shown to meet many of these requirements, and has, in fact, been successfully implemented in to engine components. However, several fundamental issues related to the process-ability, toughness, and microstructural differences for GDZ when compared to equivalent YSZ coating. This study seeks to critically address the process-structure-property correlations for plasma-sprayed GDZ coating subjected to controlled parametric exploration. Use of in-flight diagnostics coupled with in situ and ex situ coating property monitoring allows examination and comparison of the process-property interplay and the resultant differences between the two TBC compositions. The results indicate that it is feasible to retain material chemistry and fabricate relevant microstructures of interest with GDZ with concomitant performance advantages such as low conductivity, mechanical compliance, sintering resistance, and suppression of environmentally induced damage from ash particles. This study provides a framework for optimal design and manufacturing of emergent multi-layer and multi-material TBCs.

  8. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    NASA Astrophysics Data System (ADS)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  9. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    PubMed Central

    Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente

    2017-01-01

    A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542

  10. Structure-activity relationships between sterols and their thermal stability in oil matrix.

    PubMed

    Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi

    2018-08-30

    Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Solar thermal drum drying performance of prune and tomato pomaces

    USDA-ARS?s Scientific Manuscript database

    Fruit and vegetable pomaces are co-products of the food processing industry; they are underutilized in part because their high water activity (aw) renders them unstable. Drum drying is one method that can dry/stabilize pomaces, but current drum drying methods utilize conventional, high-environmental...

  12. Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Duval, W. M.

    1991-01-01

    Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments.

  13. The oxidative stability of carbon fibre reinforced glass-matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Batt, J. A.

    1988-01-01

    The environmental stability of carbon fibre reinforced glass-matrix composites is assessed. Loss of composite strength due to oxidative exposure at elevated temperatures under no load, static load and cyclic fatigue as well as due to thermal cycling are all examined. It is determined that strength loss is gradual and predictable based on the oxidation of carbon fibres. The glass matrix was not found to prevent this degradation but simply to limit it to a gradual process progressing from the composite surfaces inward.

  14. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    PubMed

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  15. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    PubMed Central

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  16. The thermal stability and catalytic application of manganese oxide-zirconium oxide powders

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang

    MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a close relationship between the enhanced thermal stability and better catalytic performance.

  17. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next Generation Phosphor-Converted LED-based Solid State Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockstaller, Michael

    The low thermal conductivity of state-of-the-art polymer encapsulants (k ~ 0.15 Wm-1K-1) limits the efficiency and power density of current phosphor conversion light emitting diodes (pc-LEDs). The technical objective of this project was to demonstrate synthesis and processing schemes for the fabrication of polymer hybrid encapsulants with a thermal conductivity exceeding k = 0.4 Wm-1K-1 for LED applications. The ‘hybrid polymer’ approach encompasses the dispersion of high thermal conductivity particle fillers (zinc oxide, ZnO as well as the alpha-polymorph of alumina, Al2O3) within a polysiloxane matrix (poly(dimethylsiloxane), PDMS as well as poly(phenyl methyl siloxane), PPMS) to increase the thermal conductivitymore » while maintaining optical transparency and photothermal stability at levels consistent with LED applications. To accomplish this goal, a novel synthesis method for the fabrication of nanosized ZnO particles was developed and a novel surface chemistry was established to modify the surface of zinc oxide particle fillers and thus to enable their dispersion in poly(dimethyl siloxane) (PDMS) matrix polymers. Molecular dynamics and Mie simulations were used to optimize ligand structure and to enable the concurrent mixing of particles in PDMS/PPMS embedding media while also minimizing the thermal boundary resistance as well as optical scattering of particle fillers. Using this approach the synthesis of PDMS/ZnO hybrid encapsulants exhibiting a thermal conductivity of 0.64 Wm-1K-1 and optical transparency > 0.7 mm-1 was demonstrated. A forming process based on micromolding was developed to demonstrate the forming of particle filled PDMS into film and lens shapes. Photothermal stability testing revealed stability of the materials for approximately 4000 min when exposed to blue light LED (450 nm, 30 W/cm2). One postgraduate and seven graduate students were supported by the project. The research performed within this project led to fifteen publications in peer-reviewed journals and one patent application. The grant stimulated a multi-investigator research collaborations among seven investigators at Carnegie Mellon University to address the challenge of encapsulants in pc-LED applications. The grant also catalyzed the future collaboration between researchers at Carnegie Mellon University and OSRAM Sylvania to address challenges associated with the use if polymers in LED applications.« less

  18. Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage.

    PubMed

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-06-01

    Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%-18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%-74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03-0.09 and 0.06-0.22 day  - 1 , respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.

  19. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  20. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  1. Enhanced quench propagation in 2G-HTS coils co-wound with stainless steel or anodised aluminium tapes

    NASA Astrophysics Data System (ADS)

    Núñez-Chico, A. B.; Martínez, E.; Angurel, L. A.; Navarro, R.

    2016-08-01

    Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil’s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.

  2. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jose M., E-mail: joseman@sas.upenn.edu; Plaza, Cesar; Polo, Alfredo

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and providesmore » a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.« less

  3. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  4. RP-1 Thermal Stability and Copper Based Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.

    2005-01-01

    A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.

  5. Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability

    NASA Astrophysics Data System (ADS)

    Liu, Fan; Yuan, Hao; Goel, Sunkulp; Liu, Ying; Wang, Jing Tao

    2018-02-01

    A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries ( f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to 40 and 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.

  6. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.

    PubMed

    Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W

    2016-10-12

    Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

  7. Very-high thermal and electrical conductivity in overpressure-processed Bi2Sr2CaCu2O8+x wires

    NASA Astrophysics Data System (ADS)

    Bonura, M.; Avitabile, F.; Barth, C.; Jiang, J.; Larbalestier, D.; Fête, A.; Leo, A.; Bottura, L.; Senatore, C.

    2018-05-01

    The residual-resistivity ratio (RRR) of the normal-metal matrix is a key parameter for the electrical and thermal stability of technical superconductors. In Bi2Sr2CaCu2 {{{O}}}8+x (Bi-2212) round wires, the precursor powders are embedded in a Ag matrix without any diffusion barrier, and elemental diffusion from the superconducting filaments into the Ag might be expected to contaminate the matrix during the melt processing required for high critical current density development. This work shows that the overpressure processing, which is adopted to enhance the critical current performance, improves the thermal and electrical conductivities of the conductor, too. In the case of wires reacted with a standard processing performed in 1 bar O2, the RRR of the Ag matrix is about 90, in spite of the simple conductor design that does not include diffusion barriers. Increasing the total reaction pressure to 100 bar improves the RRR to about 200. The differences in RRR reflect on the thermal conductivity of the whole conductor, which has been investigated in magnetic fields up to 19 T.

  8. Thermal Stabilization of Biologics with Photoresponsive Hydrogels.

    PubMed

    Sridhar, Balaji V; Janczy, John R; Hatlevik, Øyvind; Wolfson, Gabriel; Anseth, Kristi S; Tibbitt, Mark W

    2018-03-12

    Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex biologics during storage and shipment that additionally enable on-demand release of active molecules at the point of use.

  9. In Situ Thermal Imagery of Antarctic Meteorites and Their Stability on the Ice Surface

    NASA Technical Reports Server (NTRS)

    Harvey, R. P.; Righter, M.; Karner, J. M.; Hyneck, B.; Keller, L.; Meshik, A.; Mittlefehldt, D.; Radebaugh, J.; Rougeux, B.; Schutt, J.

    2017-01-01

    The mechanisms behind Antarctic meteorite concentrations remain enigmatic nearly 5 decades after the first recoveries, and much of the research in this direction has been based on anedcotal evidence. While these observations suggest many plausible processes that help explain Antarctic meteorite concentrations, the relative importance of these various processes (which can result in either an increase or decrease of specimens) is a critical component of any more robust model of how these concentrations form. During the 2016-2017 field season of the US Antarctic Search for Meteorites program we aquired in situ thermal imagery of meteorites specimens that provide semi-quantitative assesment of the relative temperature of these specimens and the ice. These provide insight into one hypothesized loss mechanism, the downward thermal tunnelling of meteorites warmed in the sun.

  10. In-situ micro-FTIR Study of Thermal Changes of Organics in Tagish Lake Meteorite: Behavior of Aliphatic Oxygenated Functions and Effects of Minerals

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Nakamura-Messenger, Keiko; Zolensky, Michael E.

    2007-01-01

    Systematic in-situ FTIR heating experiments of Tagish Lake meteorite grains have been performed in order to study thermal stability of chondritic organics. Some aliphatic model organic substances have also been used to elucidate effects of hydrous phyllosilicate minerals on the thermal stability of organics. The experimental results indicated that organic matter in the Tagish Lake meteorite might contain oxygenated aliphatic hydrocarbons which are thermally stable carbonyls such as ester and/or C=O in ring compounds. The presence of hydrous phyllosilicate minerals has a pronounced effect on the increase of the thermal stability of aliphatic and oxygenated functions. These oxygenated aliphatic organics in Tagish Lake can be formed during the aqueous alteration in the parent body and the formation temperature condition might be less than 200 C, based especially on the thermal stability of C-O components. The hydrous phyllosilicates might provide sites for organic globule formation and protected some organic decomposition

  11. Layered Crystal Structure, Color-Tunable Photoluminescence, and Excellent Thermal Stability of MgIn2P4O14 Phosphate-Based Phosphors.

    PubMed

    Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng

    2017-11-06

    Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).

  12. Thermal stability of tagatose in solution.

    PubMed

    Luecke, Katherine J; Bell, Leonard N

    2010-05-01

    Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.

  13. Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield

    DTIC Science & Technology

    2015-11-25

    1 Dielectric coating thermal stabilization during GaAs-based laser fabrication for improved device yield 1 Michael K. Connors a, c), Jamal...side contact metal, underlying SiO2 dielectric coating, and semiconductor surface. A thermal-anneal procedure developed for the fabrication of GaAs...slab coupled optical waveguide (SCOW) ridge waveguide devices stabilizes the SiO2 dielectric coating, by means of outgassing and stress reduction

  14. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2007-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  15. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2006-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  16. Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries.

    PubMed

    Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jinlong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2015-12-18

    One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability.

  17. Natural resistance of raw cotton fiber to heat evidenced by the suppressed depolymerization of cellulose

    USDA-ARS?s Scientific Manuscript database

    Mechanically purified raw cotton fiber finds a growing range of applications in support of environmental sustainability, but its unique thermal stability, which is important in processes and utilization, is little known. This study shows that at low temperatures (< 300 'C), the accelerated dehydrati...

  18. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e.g., propane used for...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different... inventory; (D) Safe upper and lower limits for such items as temperatures, pressures, flows or compositions...

  19. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  20. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  1. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  2. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e.g., propane used for...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different... inventory; (D) Safe upper and lower limits for such items as temperatures, pressures, flows or compositions...

  3. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e.g., propane used for...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different... inventory; (D) Safe upper and lower limits for such items as temperatures, pressures, flows or compositions...

  4. Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2017-10-01

    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.

  5. Onset of fractional-order thermal convection in porous media

    NASA Astrophysics Data System (ADS)

    Karani, Hamid; Rashtbehesht, Majid; Huber, Christian; Magin, Richard L.

    2017-12-01

    The macroscopic description of buoyancy-driven thermal convection in porous media is governed by advection-diffusion processes, which in the presence of thermophysical heterogeneities fail to predict the onset of thermal convection and the average rate of heat transfer. This work extends the classical model of heat transfer in porous media by including a fractional-order advective-dispersive term to account for the role of thermophysical heterogeneities in shifting the thermal instability point. The proposed fractional-order model overcomes limitations of the common closure approaches for the thermal dispersion term by replacing the diffusive assumption with a fractional-order model. Through a linear stability analysis and Galerkin procedure, we derive an analytical formula for the critical Rayleigh number as a function of the fractional model parameters. The resulting critical Rayleigh number reduces to the classical value in the absence of thermophysical heterogeneities when solid and fluid phases have similar thermal conductivities. Numerical simulations of the coupled flow equation with the fractional-order energy model near the primary bifurcation point confirm our analytical results. Moreover, data from pore-scale simulations are used to examine the potential of the proposed fractional-order model in predicting the amount of heat transfer across the porous enclosure. The linear stability and numerical results show that, unlike the classical thermal advection-dispersion models, the fractional-order model captures the advance and delay in the onset of convection in porous media and provides correct scalings for the average heat transfer in a thermophysically heterogeneous medium.

  6. Linking measurements of biodegradability, thermal stability and chemical composition to evaluate the effects of management on soil organic matter

    NASA Astrophysics Data System (ADS)

    Gregorich, Ed; Gillespie, Adam; Beare, Mike; Curtin, Denis; Sanei, Hamed; Yanni, Sandra

    2015-04-01

    The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to accurately quantify and characterise the labile and stable forms of soil organic C. Our objectives in this study were to evaluate and describe relationships among the biodegradability, thermal stability and chemistry of SOM in soil under widely contrasting management regimes. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: < 5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. The chemical composition of SOM was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the K-edge and its thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser. The mineralization bioassay showed that whole soils and soil fractions under fallow were less susceptible to biodegradation than other managements and that sand-associated organic matter was significantly more susceptible than that in the silt or clay fractions. Analysis by XANES showed accumulation of carboxylates and strong depletion of amides (protein) and aromatics in the fallow whole soil. Moreover, protein depletion was most significant in the sand fraction of the fallow soil. Sand fractions in fallow and cropped soils were, however, enriched in plant-derived phenols, aromatics and carboxylates compared to the sand fraction of pasture soils. In contrast, ketones, which have been identified as products of microbially-processed organic matter, were slightly enriched in the silt fraction of the pasture soil. These data suggest reduced inputs and cropping restrict the decomposition of plant residues and, without supplemental N additions, protein-N in native SOM is significantly mineralized in fallow systems to meet microbial C mineralization demands. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the size fractions and management treatments; it also showed that the loss of SOM generally involved dehydrogenation. The temperature at which half of the C was pyrolyzed showed strong correlation with mineralizable C and thus provides solid evidence for a link between the biological and thermal stability of SOM.

  7. Thermal stability of DNA quadruplex-duplex hybrids.

    PubMed

    Lim, Kah Wai; Khong, Zi Jian; Phan, Anh Tuân

    2014-01-14

    DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.

  8. [Thermal stability of rhodopsins and opsins in warm- and cold-blooded vertebrates].

    PubMed

    Berman, A L; Suvorov, S A; Parnova, R G; Gracheva, O A; Rychkova, M P

    1981-01-01

    Thermal stability of rhodopsins and opsins has been studied in endothermic (sheep, cattle, pig, rat) and ectothermic (frog) animals under two different conditions -- in the intact photoreceptor membranes (PM) and after substitution of the lipid surrounding of rhodopsins by molecules of a detergent Triton X-100. Lipid composition of PM in these animals was also studied, as well as the effect of proteases (pronase and papaine) upon thermal stability of rhodopsins in PM and in 1% Triton X-100 solutions. The thermal resistance of rhodopsins in PM was found to vary in the animals used to a great extent. The maximal differences in thermal stability of rhodopsins in ecto- and endothermic animals were due to the properties of photoreceptor protein itself, whereas in ectothermic animals they resulted mainly from differences in the lipid composition of PM. PM of endothermic animals differ from those of ectothermic ones by a lower content of polyenoic fatty acids and by a higher amount of phosphatidyl ethanolamine. The thermal stability of rhodopsins is not due to rhodopsin molecule as a whole, and depends mainly on its part which is directly bound to 11-cis retinal, located in hydrophobic region of PM and inaccessible to protease attack.

  9. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator.

    PubMed

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F; Joh, Han-Ik; Jo, Seong Mu

    2016-11-11

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO 2 ) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB.

  10. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator

    PubMed Central

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F.; Joh, Han-Ik; Jo, Seong Mu

    2016-01-01

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO2) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB. PMID:27833132

  11. Comparative evaluation of the stability of seven-transmembrane microbial rhodopsins to various physicochemical stimuli

    NASA Astrophysics Data System (ADS)

    Honda, Naoya; Tsukamoto, Takashi; Sudo, Yuki

    2017-08-01

    Rhodopsins are seven-transmembrane proteins that function as photoreceptors for a variety of biological processes. Their characteristic visible colors make rhodopsins a good model for membrane-embedded proteins. In this study, by utilizing their color changes, we performed comparative studies on the stability of five microbial rhodopsins using the same instruments, procedures and media. As denaturants, we employed four physicochemical stimuli: (i) thermal perturbation, (ii) the water-soluble reagent hydroxylamine, (iii) the detergent sodium dodecyl sulfate, and (iv) the organic solvent ethanol. On the basis of the results, models for stabilization mechanisms in rhodopsins against each stimulus is proposed.

  12. The thermal stability of photoacid generators in phenolic matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barclay, G.G.; Medeiros, D.R.; Sinta, R.F.

    1993-12-31

    The thermal stability of various photolabile sulfonate esters in phenolic matrices have been investigated by differential scanning calorimetry and thermogravimetric analysis. It was observed that the thermal stability of these photoacid generators is lowered in the presence of phenolic groups. As a result acid can be thermally generated, thereby reducing the selectivity of photoacid generation. The sulfonate esters investigated in phenolic matrices included nitrobenzyl tosylates, imino sulfonates, benzoin tosylate and 1,2,3-tris(methanesulfonyloxy)benzene. Also the effect of the thermal generation of acid from these photoacid generators on the temperature and rate of deprotection of partially t-butoxycarbonate blocked poly (vinylphenol) was studied bymore » thermogravimetric analysis and FTIR.« less

  13. Structural and biophysical characterization of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2: insights into engineering thermostable enzymes for CO2 sequestration.

    PubMed

    Díaz-Torres, Natalia A; Mahon, Brian P; Boone, Christopher D; Pinard, Melissa A; Tu, Chingkuang; Ng, Robert; Agbandje-McKenna, Mavis; Silverman, David; Scott, Kathleen; McKenna, Robert

    2015-08-01

    Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.

  14. Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Prabu, D.; Srinivas, V.

    2017-05-01

    Magnesium ferrite, MgFe2O4, (MgFO) nanoparticles (NPs) have been synthesized through sol-gel process. Subsequently, as prepared particles were coated with Zinc-oxide (ZnO) layer(s) through ultrasonication process. Thermal stability, structure and magnetic properties of as-prepared (AP) and annealed samples in the temperature range of 350 °C-1200 °C have been investigated. Structural data suggests that AP MgFO NPs and samples annealed below 500 °C in air exhibit stable ferrite phase. However, α-Fe2O3 and a small fraction of MgO secondary phases appear along with ferrite phase on annealing in the temperatures range 500 °C- 1000 °C. This results in significant changes in magnetic moment for AP NPs 0.77 μB increases to 0.92 μB for 1200 °C air annealed sample. The magnetic properties decreased at intermediate temperatures due to the presence of secondary phases. On the other hand, pure ferrite phase could be stabilized with an optimum amount of ZnO coated MgFO NPs for samples annealed in the temperature range 500 °C-1000 °C with improvement in magnetic behavior compared to that of MgFO samples.

  15. Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Sun, Bo; Liu, Xingyue; Han, Jinghui; Ye, Haibo; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2018-06-01

    Metal halide perovskite solar cells (PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr3 as light absorber, accompanied by using Cu-phthalocyanine (CuPc) as hole transport material (HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.[Figure not available: see fulltext.

  16. Growth, stability and decomposition of Mg2Si ultra-thin films on Si (100)

    NASA Astrophysics Data System (ADS)

    Sarpi, B.; Zirmi, R.; Putero, M.; Bouslama, M.; Hemeryck, A.; Vizzini, S.

    2018-01-01

    Using Auger Electron Spectroscopy (AES), Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Low Energy Electron Diffraction (LEED), we report an in-situ study of amorphous magnesium silicide (Mg2Si) ultra-thin films grown by thermally enhanced solid-phase reaction of few Mg monolayers deposited at room temperature (RT) on a Si(100) surface. Silicidation of magnesium films can be achieved in the nanometric thickness range with high chemical purity and a high thermal stability after annealing at 150 °C, before reaching a regime of magnesium desorption for temperatures higher than 350 °C. The thermally enhanced reaction of one Mg monolayer (ML) results in the appearance of Mg2Si nanometric crystallites leaving the silicon surface partially uncovered. For thicker Mg deposition nevertheless, continuous 2D silicide films are formed with a volcano shape surface topography characteristic up to 4 Mg MLs. Due to high reactivity between magnesium and oxygen species, the thermal oxidation process in which a thin Mg2Si film is fully decomposed (0.75 eV band gap) into a magnesium oxide layer (6-8 eV band gap) is also reported.

  17. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.

    PubMed

    Moon, Young Kyun; Lee, Jaebeom; Lee, Jae Keun; Kim, Tae Kyu; Kim, Soo H

    2009-02-03

    A one-step method combining spray pyrolysis and thermal chemical vapor deposition (CVD) processes was developed to grow hybrid carbon nanotube (CNT)-bimetallic composite particles. Nickel, aluminum, and acetylene were used as the catalytic site, noncatalytic matrix, and hydrocarbon source, respectively. The bimetallic particles (i.e., Al-Ni) were spray pyrolized and subsequently passed through thermal CVD. During the thermal CVD, the catalytic decomposition of acetylene occurred on the free-floating bimetallic particles so that sea urchin-like CNTs were radially grown. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed the CNTs to have a uniform diameter of approximately 10 +/- 2 nm. The length of the CNTs was controlled by varying the residence time of the bimetallic nanoparticles with a length of 200-1000 nm. After nitric acid treatment, the CNTs were released by melting the bimetallic particles. The resulting CNTs were then dispersed in an aqueous solution to examine the effect of the length of CNTs on their dispersion stability, which is a critical issue for the stability and repeatability of the heat transfer performance in nanofluids. Ultraviolet-visible (UV-vis) spectrometer analysis showed that shorter CNTs were less stable than the longer CNTs due to the higher mobility-induced agglomeration of the shorter CNTs.

  18. Method of increasing the phase stability and the compressive yield strength of uranium-1 to 3 wt. % zirconium alloy

    DOEpatents

    Anderson, Robert C.

    1986-01-01

    A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  19. Aging effects on vertical graphene nanosheets and their thermal stability

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  20. Analysis of protein stability and ligand interactions by thermal shift assay.

    PubMed

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. Copyright © 2015 John Wiley & Sons, Inc.

  1. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  2. Innovative hybrid optics: combining the thermal stability of glass with low manufacturing cost of polymers

    NASA Astrophysics Data System (ADS)

    Doushkina, Valentina

    2010-08-01

    Innovative hybrid glass-polymer optical solutions on a component, module, or system level offer thermal stability of glass with low manufacturing cost of polymers reducing component weight, enhancing the safety and appeal of the products. Narrow choice of polymer materials is compensated by utilizing sophisticated optical surfaces such as refractive, reflective, and diffractive substrates with spherical, aspherical, cylindrical, and freeform prescriptions. Current advancements in polymer technology and injection molding capabilities placed polymer optics in the heart of many high tech devices and applications including Automotive Industry, Defense & Aerospace; Medical/Bio Science; Projection Displays, Sensors, Information Technology, Commercial and Industrial. This paper is about integration of polymer and glass optics for enhanced optical performance with reduced number of components, thermal stability, and low manufacturing cost. The listed advantages are not achievable when polymers or glass optics are used as stand-alone. The author demonstrates that integration of polymer and glass on component or optical system level on one hand offers high resolution and diffraction limited image quality, similar to the glass optics with stable refractive index and stable thermal performance when design is athermalized within the temperature range. On the other hand, the integrated hybrid solution significantly reduces cost, weight, and complexity, just like the polymer optics. The author will describe the design and analyzes process of combining glass and polymer optics for variety of challenging applications such as fast optics with low F/#, wide field of view lenses or systems, free form optics, etc.

  3. A method to remove intercalates from bromine and iodine intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1993-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.

  4. Effect of thermal expansion on the stability of two-reactant flames

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.

    1986-01-01

    The full problem of flame stability for the two-reactant model, which takes into account thermal expansion effects for all disturbance wave lengths, is examined. It is found that the stability problem for the class of two-reactant flames is equivalent to the stability problem for the class of one-reactant flames with an appropriate interpretation of Lewis numbers.

  5. A Physics-Based Temperature Stabilization Criterion for Thermal Testing

    NASA Technical Reports Server (NTRS)

    Rickman, Steven L.; Ungar, Eugene K.

    2009-01-01

    Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.

  6. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of these alloys during repeated actuation were investigated. Finally, the effect of quaternary alloying on the thermal stability of NiTiPdX alloys is determined via thermal cycling of the materials to increasing temperatures under load. It was found that solid solution additions of platinum and gold resulted in about a 30 C increase in upper use temperature compared to the baseline NiTiPd alloy, providing an added measure of over-temperature protection.

  7. An evaluation of technologies for the heavy metal remediation of dredged sediments.

    PubMed

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Sediments dewatering is frequently necessary after dredging to remediate and treat contaminants. Methods include draining of the water in lagoons with or without coagulants and flocculants, or using presses or centrifuges. Treatment methods are similar to those used for soil and include pretreatment, physical separation, thermal processes, biological decontamination, stabilization/solidification and washing. However, compared to soil treatment, few remediation techniques have been commercially used for sediments. In this paper, a review of the methods that have been used and an evaluation of developed and developing technologies is made. Sequential extraction technique can be a useful tool for determining metal speciation before and after washing. Solidification/stabilization techniques are successful but significant monitoring is required, since the solidification process can be reversible. In addition, the presence of organics can reduce treatment efficiency. Vitrification is applicable for sediments but expensive. Only if a useful glass product can be sold will this process be economically viable. Thermal processes are only applicable for removal of volatile metals, such as mercury and costs are high. Biological processes are under development and have the potential to be low cost. Since few low cost metal treatment processes for sediments are available, there exists significant demand for further development. Pretreatment may be one of the methods that can reduce costs by reducing the volumes of sediments that need to be treated.

  8. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs. The different thermal conduction behaviors were linked to the porosity and compositional properties of the coatings using immersion density, SEM, and synchrotron radiation characterization techniques.

  9. Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process

    PubMed Central

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2013-01-01

    Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing. PMID:28811410

  10. Optical Constants of Crystallized TiO₂ Coatings Prepared by Sol-Gel Process.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2013-07-12

    Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO₂ coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingenfelter, A. C., LLNL

    Materials for gas turbine engines are required to meet a wide range of temperature and stress application requirements. These alloys exhibit a combination of creep resistance, creep rupture strength, yield and tensile strength over a wide temperature range, resistance to environmental attack (including oxidation, nitridation, sulphidation and carburization), fatigue and thermal fatigue resistance, metallurgical stability and useful thermal expansion characteristics. These properties are exhibited by a series of solid-solution-strengthened and precipitation-hardened nickel, iron and cobalt alloys. The properties needed to meet the turbine engine requirements have been achieved by specific alloy additions, by heat treatment and by thermal mechanical processing.more » A thorough understanding of the metallurgy and metallurgical processing of these materials is imperative in order to successfully fusion weld them. This same basic understanding is required for repair of a component with the added dimension of the potential effects of thermal cycling and environmental exposure the component will have endured in service. This article will explore the potential problems in joining and repair welding these materials.« less

  12. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study.

    PubMed

    Muley, Abhijeet B; Chaudhari, Sandeep A; Singhal, Rekha S

    2017-09-01

    Cutinase, a member of α/β-fold hydrolase family possess potentially diverse applications in several industrial processes and products. The present work aims towards thermo-stabilization of cutinase from novel source Fusarium sp. ICT SAC1 via non-covalent interaction with polysaccharides. Although all six polysaccharides chosen for study enhanced the thermal stability, pectin was found to be most promising. The interaction protocol for cutinase with pectin was optimized sequentially with respect to the ratio of enzyme to pectin, solution pH, and buffer strength. Cutinase-pectin conjugate under optimized conditions (1:12, pH-6.5, 50mM) showed enhanced thermal stability as evident from lower inactivation rate constant, higher half-life and D-value within the 40-55°C. A slender rise in K m and V max values and enhanced thermodynamic parameters of cutinase-pectin conjugate were observed after non-covalent interaction. Entropy values were 1.5-fold higher for cutinase-pectin conjugate at each temperature suggesting an upsurge in number of protein molecules in a transition activated state. Positive values of entropy for both forms of cutinase suggested a rise in disordered conformation. Noticeable conformational changes in cutinase after conjugation with pectin were confirmed by FTIR as well as fluorescence emission spectra. An increment in helix to turn conversion was observed in complexed cutinase vis-à-vis free cutinase. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mechanical stability analysis on spherical sandwich sheet at low temperature loading conditions

    NASA Astrophysics Data System (ADS)

    Wang, Shanshuai; Li, Shuhui; Li, Zhimin

    2013-12-01

    The spherical sandwich sheet (S-S-S) is generally used in the aerospace industry, for example, the airplane, the rocket's fairing, the spacecraft and the satellite for the purpose of heat-insulation, weight-saving and dimension-reducing. The stability of the S-S-S is of general concern because of its particularly thin but large size. For some S-S-S used in fuel tank storing liquid oxygen of the rocket, it must be facing low temperature down to about -183 °C. Low temperature condition affects the stability of the S-S-S and then causes buckling of the structure. In this paper, a finite element (FE) model is established for evaluating the stability of the S-S-S via the sequential coupling mode. The material mechanical properties related to temperature are concerned in the FE model. The buckling modes and critical buckling loading are predicted accurately, since the FE model includes heat transfer simulating, thermal stress computing, buckling and post buckling process. It is found that the thermal stress generated from the low temperature loading reduces the critical buckling loading and changes the buckling modes of the S-S-S.

  14. Preparation and characterization of coating sodium trisilicate (Na2O.nSiO2) at calcium carbonate (CaCO3) for blowing agent in Mg alloy foam

    NASA Astrophysics Data System (ADS)

    Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika

    2018-05-01

    The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.

  15. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application.

    PubMed

    Fernández, José M; Plaza, César; Polo, Alfredo; Plante, Alain F

    2012-01-01

    The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO(2) respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The processing of aluminum gasarites via thermal decomposition of interstitial hydrides

    NASA Astrophysics Data System (ADS)

    Licavoli, Joseph J.

    Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.

  17. High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum

    PubMed Central

    Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano

    2015-01-01

    A novel membrane based on silicon dioxide (SiO2) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701

  18. Luminescence investigation and thermal stability of blue-greenish emission generated from Ca3MgSi2O8: Eu2+ phosphor

    NASA Astrophysics Data System (ADS)

    Stefańska, D.; Dereń, P. J.

    2018-06-01

    Europium-doped silicate Ca3MgSi2O8 has been successfully obtained using solid-state reaction at 1400 °C in a vacuum atmosphere. The photoluminescence study of Eu2+ in investigated host showed broad emission band with a maximum at 480 nm attributed to the allowed 5d → 4f electron transition of Eu2+ located in two different crystallographic sites. The excitation, emission spectra as well as the luminescence decays were analyzed. Thermal quenching process begins at 240 K, however, the emission stability of investigated compound is quite good, and emission intensity reached to 70% of its initial value at 100 °C. The QE of Ca3MgSi2O8: 0.5% Eu2+ excited at 365 nm equal to 47%.

  19. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  20. First-principles calculations of the thermal stability of Ti 3SiC 2(0001) surfaces

    NASA Astrophysics Data System (ADS)

    Orellana, Walter; Gutiérrez, Gonzalo

    2011-12-01

    The energetic, thermal stability and dynamical properties of the ternary layered ceramic Ti3SiC2(0001) surface are addressed by density-functional theory calculations and molecular dynamic (MD) simulations. The equilibrium surface energy at 0 K of all terminations is contrasted with thermal stability at high temperatures, which are investigated by ab initio MD simulations in the range of 800 to 1400 °C. We find that the toplayer (sublayer) surface configurations: Si(Ti2) and Ti2(Si) show the lowest surface energies with reconstruction features for Si(Ti2). However, at high temperatures they are unstable, forming disordered structures. On the contrary, Ti1(C) and Ti2(C) despite their higher surface energies, show a remarkable thermal stability at high temperatures preserving the crystalline structures up to 1400 °C. The less stable surfaces are those terminated in C atoms, C(Ti1) and C(Ti2), which at high temperatures show surface dissociation forming amorphous TiCx structures. Two possible atomic scale mechanisms involved in the thermal stability of Ti3SiC2(0001) are discussed.

  1. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-02-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Photochemical and Thermal Stability of Green and Blue Proteorhodopsins: Implications for Protein-Based Bioelectronic Devices

    PubMed Central

    Ranaghan, Matthew J.; Shima, Sumie; Ramos, Lavosier; Poulin, Daniel S.; Whited, Gregg; Rajasekaran, Sanguthevar; Stuart, Jeffery A.; Albert, Arlene D.; Birge, Robert R.

    2010-01-01

    The photochemical and thermal stability of the detergent solubilized blue- and green-absorbing proteorhodpsins, BPR and GPR respectively, are investigated to determine viability of these proteins for photonic device applications. Photochemical stability is studied by using pulsed laser excitation and differential uv-vis spectroscopy to assign the photocyclicity. GPR, with a cyclicity of 7×104 photocycles protein−1, is 4–5 times more stable than BPR (9×103 photocycles protein−1), but is less stable than native bacteriorhodopsin (9×105 photocycles protein−1) or the 4-keto-bacteriorhodopsin analog (1×105 photocycles protein−1). The thermal stabilities are assigned by using differential scanning calorimetry and thermal bleaching experiments. Both proteorhodopsins display excellent thermal stability, with melting temperatures above 85°C, and remain photochemically stable up to 75°C. The biological relevance of our results is also discussed. The lower cyclicity of BPR is found to be adequate for the long-term biological function of the host organism at ocean depths of 50 m or more. PMID:20964279

  4. Effect of Nickel Concentration on Bias Reliability and Thermal Stability of Thin-Film Transistors Fabricated by Ni-Metal-Induced Crystallization

    NASA Astrophysics Data System (ADS)

    Lai, Ming-Hui; Sermon Wu, YewChung; Huang, Jung-Jie

    2012-01-01

    Ni-metal-induced crystallization (MIC) of amorphous Si (α-Si) has been employed to fabricate low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Although the high leakage current is a major issue in the performance of conventional MIC-TFTs since Ni contamination induces deep-level state traps, it can be greatly improved by using well-known technologies to reduce Ni contamination. However, for active-matrix organic light-emitting diode (AMOLED) display applications, the bias reliability and thermal stability are major concerns especially when devices are operated under a hot carrier condition and in a high-temperature environment. It will be interesting to determine how the bias reliability and thermal stability are affected by the reduction of Ni concentration. In the study, the effect of Ni concentration on bias reliability and thermal stability was investigated. We found that a device exhibited high immunity against hot-carrier stress and elevated temperatures. These findings demonstrated that reducing the Ni concentration in MIC films was also beneficial for bias reliability and thermal stability.

  5. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  6. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Rafi; Lynn, D.; Pellegrini, G.

    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al 2O 3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al 2O 3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance–voltage and current–voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extractedmore » for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H 2O instead of O 3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H 2O-grown Al 2O 3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al 2O 3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O 3-grown MOS structures. Lastly, this can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.« less

  8. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    PubMed

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  9. Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics

    NASA Astrophysics Data System (ADS)

    Tarasi, F.; Medraj, M.; Dolatabadi, A.; Oberste-Berghaus, J.; Moreau, C.

    2008-12-01

    Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.

  10. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  11. Comparative Solid-State Stability of Perindopril Active Substance vs. Pharmaceutical Formulation

    PubMed Central

    Buda, Valentina; Andor, Minodora; Ledeti, Adriana; Ledeti, Ionut; Vlase, Gabriela; Vlase, Titus; Cristescu, Carmen; Voicu, Mirela; Suciu, Liana; Tomescu, Mirela Cleopatra

    2017-01-01

    This paper presents the results obtained after studying the thermal stability and decomposition kinetics of perindopril erbumine as a pure active pharmaceutical ingredient as well as a solid pharmaceutical formulation containing the same active pharmaceutical ingredient (API). Since no data were found in the literature regarding the spectroscopic description, thermal behavior, or decomposition kinetics of perindopril, our goal was the evaluation of the compatibility of this antihypertensive agent with the excipients in the tablet under ambient conditions and to study the effect of thermal treatment on the stability of perindopril erbumine. ATR-FTIR (Attenuated Total Reflectance Fourier Transform Infrared) spectroscopy, thermal analysis (thermogravimetric mass curve (TG—thermogravimetry), derivative thermogravimetric mass curve (DTG), and heat flow (HF)) and model-free kinetics were chosen as investigational tools. Since thermal behavior is a simplistic approach in evaluating the thermal stability of pharmaceuticals, in-depth kinetic studies were carried out by classical kinetic methods (Kissinger and ASTM E698) and later with the isoconversional methods of Friedman, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa. It was shown that the main thermal degradation step of perindopril erbumine is characterized by activation energy between 59 and 69 kJ/mol (depending on the method used), while for the tablet, the values were around 170 kJ/mol. The used excipients (anhydrous colloidal silica, microcrystalline cellulose, lactose, and magnesium stearate) should be used in newly-developed generic solid pharmaceutical formulations, since they contribute to an increased thermal stability of perindopril erbumine. PMID:28098840

  12. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis

    NASA Astrophysics Data System (ADS)

    Röttger, Max; Domenech, Trystan; van der Weegen, Rob; Breuillac, Antoine; Nicolaÿ, Renaud; Leibler, Ludwik

    2017-04-01

    Windmills, cars, and dental restoration demand polymer materials and composites that are easy to process, assemble, and recycle while exhibiting outstanding mechanical, thermal, and chemical resistance. Vitrimers, which are polymer networks able to shuffle chemical bonds through exchange reactions, could address these demands if they were prepared from existing plastics and processed with fast production rates and current equipment. We report the metathesis of dioxaborolanes, which is rapid and thermally robust, and use it to prepare vitrimers from polymers as different as poly(methyl methacrylate), polystyrene, and high-density polyethylene that, although permanently cross-linked, can be processed multiple times by means of extrusion or injection molding. They show superior chemical resistance and dimensional stability and can be efficiently assembled. The strategy is applicable to polymers with backbones made of carbon-carbon single bonds.

  13. A thermoplastic polyimidesulfone. [synthesis of processable and solvent resistant system

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Yamaki, D. A.

    1984-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composites). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  14. Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.

    Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less

  15. Generation of fatty acids from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cardiolipin liposomes that stabilize recombinant human serum albumin.

    PubMed

    Frahm, Grant E; Cameron, Brooke E; Smith, Jeffrey C; Johnston, Michael J W

    2013-06-01

    At elevated temperatures, studies have shown that serum albumin undergoes irreversible changes to its secondary structure. Anionic fatty acids and/or anionic surfactants have been shown to stabilize human serum albumin (HSA) against thermal denaturation through bridging hydrophobic domains and cationic amino acids residues of the protein. As albumin can readily interact with a variety of liposomes, this study proposes that cardiolipin delivered via 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes can improve the thermal stability of recombinant HSA produced in Saccharomyces cerevisiae (ScrHSA) in a similar manner to anionic fatty acids. Thermal stability and structure of ScrHSA in the absence and presence of DPPC/cardiolipin liposomes was assessed with U/V circular dichroism spectropolarimetry and protein thermal stability was confirmed with differential scanning calorimetry. Although freshly prepared DPPC/cardiolipin liposomes did not improve the stability of ScrHSA, DPPC/cardiolipin liposomes incubated at room temperature for 7 d (7dRT) dramatically improved the thermal stability of the protein. Mass spectrometry analysis identified the presence of fatty acids in the 7dRT liposomes, not identified in freshly prepared liposomes, to which the improved stability was attributed. The generation of fatty acids is attributed to either the chemical hydrolysis or oxidative cleavage of the unsaturated acyl chains of cardiolipin. By modulating the lipid composition through the introduction of lipids with higher acyl chain unsaturation, it may be possible to generate the stabilizing fatty acids in a more rapid manner.

  16. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.

    PubMed

    Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas

    2012-10-15

    In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.

  17. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  18. Tracking and Classification of In-Air Hand Gesture Based on Thermal Guided Joint Filter.

    PubMed

    Kim, Seongwan; Ban, Yuseok; Lee, Sangyoun

    2017-01-17

    The research on hand gestures has attracted many image processing-related studies, as it intuitively conveys the intention of a human as it pertains to motional meaning. Various sensors have been used to exploit the advantages of different modalities for the extraction of important information conveyed by the hand gesture of a user. Although many works have focused on learning the benefits of thermal information from thermal cameras, most have focused on face recognition or human body detection, rather than hand gesture recognition. Additionally, the majority of the works that take advantage of multiple modalities (e.g., the combination of a thermal sensor and a visual sensor), usually adopting simple fusion approaches between the two modalities. As both thermal sensors and visual sensors have their own shortcomings and strengths, we propose a novel joint filter-based hand gesture recognition method to simultaneously exploit the strengths and compensate the shortcomings of each. Our study is motivated by the investigation of the mutual supplementation between thermal and visual information in low feature level for the consistent representation of a hand in the presence of varying lighting conditions. Accordingly, our proposed method leverages the thermal sensor's stability against luminance and the visual sensors textural detail, while complementing the low resolution and halo effect of thermal sensors and the weakness against illumination of visual sensors. A conventional region tracking method and a deep convolutional neural network have been leveraged to track the trajectory of a hand gesture and to recognize the hand gesture, respectively. Our experimental results show stability in recognizing a hand gesture against varying lighting conditions based on the contribution of the joint kernels of spatial adjacency and thermal range similarity.

  19. Tracking and Classification of In-Air Hand Gesture Based on Thermal Guided Joint Filter

    PubMed Central

    Kim, Seongwan; Ban, Yuseok; Lee, Sangyoun

    2017-01-01

    The research on hand gestures has attracted many image processing-related studies, as it intuitively conveys the intention of a human as it pertains to motional meaning. Various sensors have been used to exploit the advantages of different modalities for the extraction of important information conveyed by the hand gesture of a user. Although many works have focused on learning the benefits of thermal information from thermal cameras, most have focused on face recognition or human body detection, rather than hand gesture recognition. Additionally, the majority of the works that take advantage of multiple modalities (e.g., the combination of a thermal sensor and a visual sensor), usually adopting simple fusion approaches between the two modalities. As both thermal sensors and visual sensors have their own shortcomings and strengths, we propose a novel joint filter-based hand gesture recognition method to simultaneously exploit the strengths and compensate the shortcomings of each. Our study is motivated by the investigation of the mutual supplementation between thermal and visual information in low feature level for the consistent representation of a hand in the presence of varying lighting conditions. Accordingly, our proposed method leverages the thermal sensor’s stability against luminance and the visual sensors textural detail, while complementing the low resolution and halo effect of thermal sensors and the weakness against illumination of visual sensors. A conventional region tracking method and a deep convolutional neural network have been leveraged to track the trajectory of a hand gesture and to recognize the hand gesture, respectively. Our experimental results show stability in recognizing a hand gesture against varying lighting conditions based on the contribution of the joint kernels of spatial adjacency and thermal range similarity. PMID:28106716

  20. Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition.

    PubMed

    Khan, Afzal; Nguyen, Viet Huong; Muñoz-Rojas, David; Aghazadehchors, Sara; Jiménez, Carmen; Nguyen, Ngoc Duy; Bellet, Daniel

    2018-06-06

    Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.

  1. A study of the dynamic flammability of radiation cross-linked flame-retardant HDPE/EPDM/silicon-elastomer compound

    NASA Astrophysics Data System (ADS)

    Jia, Shaojin; Zhang, Zhicheng; Du, Zhiwen; Teng, Renrui; Wang, Zhengzhou

    2003-04-01

    A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO 2 from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated.

  2. Thermal properties of polyethylene reinforced with recycled–poly (ethylene terephthalate) flakes.

    NASA Astrophysics Data System (ADS)

    Ruqiyah Nik Hassan, Nik; Mazni Ismail, Noor; Ghazali, Suriati; Nuruzzaman, Dewan Muhammad

    2018-04-01

    In this study, recycled plastic bottles (RPET) were used as a filler in high density polyethylene (HDPE) thermoplastic. The plastic sheet of RPET/HDPE was prepared by using hot and cold press machine. The effects of RPET addition and hot press process to the thermal properties of the composite RPET/HDPE were investigated using differential scanning calorimetry (DSC) and thermogravimetric (TGA). Results from DSC analysis show that the melting point of HDPE slightly shifted to a higher temperature for about 2°C to 4°C with the addition of RPET as a filler. The starting degradation temperature of RPET/HDPE composite examined from TGA analysis also seen to be slightly increased. It was observed that the incorporation of recycled PET flakes into HDPE is achievable using hot press process with slight improvement seen in both melting point and thermal stability of the composite compared to the neat HDPE.

  3. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    PubMed

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  4. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  5. Thermally stable and high reflectivity Al-doped silver thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Lee, Kwang; Joo, Sin Yong; Lee, Kee-Sun

    2018-03-01

    Thermally stable, high reflectance thin film coatings are indispensable in optoelectronic devices, especially as a potential back reflector for LEDs and solar cells. The silver has the drawback of agglomerating easily and poor thermal stability, which is limiting its application as a highly reflective coating in various optoelectronic applications. In this study, improved thermal stability by modification of the Ag film into an Ag/Al-doped Ag structure has been confirmed. In this paper, the surface morphology, optical reflectance, and thermal stability of the Ag/Al-doped Ag are investigated. The Ag/Al-doped Ag/sapphire films showed excellent thermal stability after annealing the films at 523 K with the highest reflectance about ∼86% as compared to the pure Ag films. The grain growth analysis results revealed that the Al-doping is effective to restrain the severe grain growth of silver films. The Auger electron spectroscopy results revealed that the outer diffusion of aluminum and the formation of Al-O bond at the outermost silver layer which is beneficial to retard the Ag grain growth.

  6. Co-evaporation of fluoropolymer additives for improved thermal stability of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Price, Jared S.; Wang, Baomin; Grede, Alex J.; Shen, Yufei; Giebink, Noel C.

    2017-08-01

    Reliability remains an ongoing challenge for organic light emitting diodes (OLEDs) as they expand in the marketplace. The ability to withstand operation and storage at elevated temperature is particularly important in this context, not only because of the inverse dependence of OLED lifetime on temperature, but also because high thermal stability is fundamentally important for high power/brightness operation as well as applications such as automotive lighting, where interior car temperatures often exceed the ambient by 50 °C or more. Here, we present a strategy to significantly increase the thermal stability of small molecule OLEDs by co-depositing an amorphous fluoropolymer, Teflon AF, to prevent catastrophic failure at elevated temperatures. Using this approach, we demonstrate that the thermal breakdown limit of common hole transport materials can be increased from typical temperatures of ˜100 °C to more than 200 °C while simultaneously improving their electrical transport properties. Similar thermal stability enhancements are demonstrated in simple bilayer OLEDs. These results point toward a general approach to engineer morphologically-stable organic electronic devices that are capable of operating or being stored in extreme thermal environments.

  7. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G.

    1994-01-01

    Soluble polybenzimidazoles (PBI's) synthesized by nucleophilic displacement reaction of di(hydroxyphenyl)-benzimidazole monomers with activated aromatic difluoride compounds in presence of anhydrous potassium carbonate. These polymers exhibit good thermal, thermo-oxidative, and chemical stability, and high mechanical properties. Using benzimidazole monomers, more economical, and new PBI's processed more easily than commercial PBI, without loss of desirable physical properties.

  8. Efficiency and design analysis of a solar thermal powered flat plate dryer (abstract)

    USDA-ARS?s Scientific Manuscript database

    Specialty crop fruit and vegetable pomaces are a common byproduct of the food processing and juicing industries. These pomaces can have high nutritional value, but are currently underutilized or treated as waste. Drum drying is one method that could be adopted to dry and stabilize fruit and vegetabl...

  9. Effect of homogenization and pasteurization on the structure and thermal stability of whey protein in milk

    USDA-ARS?s Scientific Manuscript database

    The effect of homogenization alone or in combination with high temperature, short time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a two-...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Mallow, Anne; Graham, Samuel

    Organic materials, such as paraffin wax, are sought as stable and environmentally friendly phase change materials (PCM) for thermal energy storage, but they suffer from low thermal conductivity which limits the rate at which thermal energy flows into and out of the material. A common method to improve the PCM thermal behavior is through loading with high thermal conductivity particulate fillers. However, the stability of these composites in the molten state is a concern as settling of the fillers will change the effective thermal conductivity. In this work, we investigate the stability of wax loaded with exfoliated graphite nanoplatelets eithermore » of 1 m (xGnP-1) or 15 m (xGnP-15) diameter. The effect of dispersants, oxidation of the wax, viscosity of the wax, mixing time, and hydrocarbon chain length on stability is reported. It was found that the addition of octadecylphosphonic acid (ODPA) is an effective dispersant for xGnP in paraffin and microcrystalline wax. In addition, mixing time, viscosity, and oxidation of the wax influence stability in the molten state. Overall, it was found that a mixing time of 24 hours for xGnP-15 along with ODPA mixed in a high viscosity, oxidized microcrystalline wax results in composite PCM systems with the greatest stability determined at 80 C in the molten state.« less

  11. Morphological and Crystalline Transitions in Monohydrous and Anhydrous Aripiprazole for a Long-Acting Injectable Suspension.

    PubMed

    Tan, Xinyi; Zhong, Yue; He, Luying; Zhang, Yuanyuan; Jing, Guanghui; Li, Song; Wang, Jing; He, Haibing; Tang, Xing

    2017-05-01

    Many formulation and manufacturing processes can lead to morphological and crystalline transitions in many polycrystalline drugs, changing the properties of active pharmaceutical ingredients (APIs) such as solubility and physical stability which influence their therapeutic effects and safety and so limit their usefulness. Here, we report significant changes in crystal forms and morphology, including the shape and size of particles during the manufacture of off-white aripiprazole (APZ) dry powders used for long-acting and injectable suspensions. With the optimal top-down approach, powders were prepared by recrystallizing uniform monohydrous APZ (MA) and polycrystalline anhydrous APZ (AA) form III, characterized by thermal analysis, PXRD, and FT-IR. However, powders involving MA (MAP) with a lower mean size (2.126 μm), narrower distribution (span = 1.90), and higher stability compared with AA dry powders (AAP) were found to exhibit dehydration behavior and morphological changes after completion of the preparation processes based on the results of thermal analysis. In the case of APZ powders, we wished to obtain more information to guide in the industrial production and experimental design of suspensions in the future.

  12. Development and Validation of High Precision Thermal, Mechanical, and Optical Models for the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles

    2006-01-01

    SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.

  13. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  14. Mechanical, thermal, rheological and morphological behaviour of irradiated PP/HA composites

    NASA Astrophysics Data System (ADS)

    Ramírez, C.; Albano, C.; Karam, A.; Domínguez, N.; Sánchez, Y.; González, G.

    2005-07-01

    Hydroxyapatite (HA) reinforced polypropylene (PP) composites are being developed as bone graft materials. In this research, the effect of γ irradiation on mechanical, rheological, thermal and morphological behaviour of PP-HA composites was studied. The melt flow index of polymer increased markedly when it was exposed to radiation. This is indicative of chain scission reaction as the predominant process. During the tensile testing, the composites exhibited brittle behaviour, showing no fluency point. Elongation at break showed a tendency to decrease with the increase in radiation dose while stress at break did not show significant variation with radiation dose. High HA content (>20%) and radiation dose (25 kGy) had significant influence on thermal stability.

  15. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  16. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Lacson, Jamie; Collazo, Julian

    1997-01-01

    During the period June 1, 1996 through May 31, 1997, the main effort has been in the development of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested and evaluated for thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out by using many different instruments and methods, ranging from intensive elemental analysis to testing the physical attributes of a material. The material development concentrated on two key areas: (1) development of coatings for carbon/carbon composites, and (2) development of ultra-high temperature ceramics (UHTC). This report describes the progress made in these two areas of research during this contract period.

  17. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization.

    PubMed

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk

    2017-08-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  19. Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress.

    PubMed

    Zhao, Meijuan; Tang, Dan; Lechpammer, Stanislav; Hoffman, Alexander; Asea, Alexzander; Stevenson, Mary Ann; Calderwood, Stuart K

    2002-11-15

    We have investigated the role of the double-stranded RNA-dependent protein kinase gene (pkr) in the regulation of the heat shock response. We show that the pkr gene is essential for efficient activation of the heat shock response and that pkr disruption profoundly inhibits heat shock protein 70 (HSP70) synthesis and blocks the development of thermotolerance. Despite these profound effects, pkr disruption did not markedly affect the activation of heat shock factor 1 by heat and did not reduce the rate of transcription of the HSP70 gene after heat shock. However, despite the lack of effect of pkr disruption on HSP70 gene transcription, we found a significant decrease in the expression of HSP70 mRNA in pkr-/- cells after heat shock. Kinetic studies of mRNA turnover suggested a block in the thermal stabilization of HSP70 mRNA in pkr-/- cells. As the thermal stabilization of HSP70 mRNA is thought to involve cis-acting A+U rich (ARE) elements in the 3'-untranslated region (UTR), we examined a potential role for pkr in this process. We found that a reporter beta-galactosidase mRNA destabilized by introduction of a functional ARE into the 3'-UTR became stabilized by heat but only in cells containing an intact pkr gene. Our studies suggest therefore that pkr plays a significant role in the stabilization of mRNA species containing ARE destruction sequences in the 3'-UTR and through this mechanism, contributes to the regulation of the heat shock response and other processes.

  20. Thermal-inertial ratchet effects: negative mobility, resonant activation, noise-enhanced stability, and noise-weakened stability.

    PubMed

    Li, Jing-hui; Łuczka, Jerzy

    2010-10-01

    Transport properties of a Brownian particle in thermal-inertial ratchets subject to an external time-oscillatory drive and a constant bias force are investigated. Since the phenomena of negative mobility, resonant activation and noise-enhance stability were reported before, in the present paper, we report some additional aspects of negative mobility, resonant activation and noise-enhance stability, such as the ingredients for the appearances of these phenomena, multiple resonant activation peaks, current reversals, noise-weakened stability, and so on.

  1. Dimensional Stability of Hexoloy SA® Silicon Carbide and Zerodur™ Materials for the LISA Mission

    NASA Astrophysics Data System (ADS)

    Preston, Alix; Cruz, Rachel J.; Thorpe, J. Ira; Mueller, Guido; Boothe, G. Trask; Delgadillo, Rodrigo; Guntaka, Sridhar R.

    2006-11-01

    In the LISA mission, incoming gravitational waves will modulate the distance between proof masses while laser beams monitor the optical path length changes with 20 pm/√Hz accuracy. Optical path length changes between bench components or the relative motion between the primary and secondary mirrors of the telescope need to be well below this level to result in a successful operation of LISA. The reference cavity for frequency stabilization must have a dimensional stability of a few fm/√Hz. While the effects of temperature fluctuations are well characterized in most materials at the macroscopic level (i.e. coefficients of thermal expansion), microscopic material internal processes and long term processes in the bonds between different components can dominate the dimensional stability at the pm or fm levels. Zerodur and ULE have been well studied, but the ultimate stabilities of other materials like silicon carbide or CFRP are virtually unknown. Chemical bonding techniques, like hydroxide bonding, provide significantly stronger bonds than the standard optical contacts. However, the noise levels of these bonds are also unknown. In this paper we present our latest results on the stability of silicon carbide and hydroxide bonds on Zerodur.

  2. Design of freeze-drying processes for pharmaceuticals: practical advice.

    PubMed

    Tang, Xiaolin; Pikal, Michael J

    2004-02-01

    Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented.

  3. Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides.

    PubMed

    Tachibana, Noriko; Kimura, Yukihiro; Ohno, Takashi

    2014-01-15

    Anthocyanins exhibit colour variation over wide pH range but the colour stability is relatively low at the physiological pH. To improve the stability of anthocyanins in neutral to weakly acidic pH region, effects of metal cations and polysaccharides on the colour stability of cyanidin-3-glucoside (C3G) were examined by ultraviolet-visible and resonance Raman spectroscopies. C3G was thermally stabilized by the addition of Fe(3+) but formed aggregation. However, further addition of anionic polysaccharides enhanced the thermal stability of C3G without aggregation. Similar stabilisation was confirmed for delphinidin-3-glucoside (D3G) but not for pelargonidin-3-glucoside. The stability of anthocyanins considerably varied depending on pHs and kinds of metal cations, polysaccharides and buffer molecules. The characteristic resonance Raman bands of C3G-Fe(3+) and D3G-Fe(3+) complexes were significantly affected by the addition of alginate, (18)O/(16)O-isotope substitution, and Fe(2+)/Fe(3+)-replacement. These results suggest that alginate associates with C3G through Fe(3+) to form a stable complex, which enhances the thermal stability of C3G. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends.

    PubMed

    Hosseinaei, Omid; Harper, David P; Bozell, Joseph J; Rials, Timothy G

    2017-07-01

    Lignin/lignin blends were used to improve fiber spinning, stabilization rates, and properties of lignin-based carbon fibers. Organosolv lignin from Alamo switchgrass ( Panicum virgatum ) and yellow poplar ( Liriodendron tulipifera ) were used as blends for making lignin-based carbon fibers. Different ratios of yellow poplar:switchgrass lignin blends were prepared (50:50, 75:25, and 85:15 w/w ). Chemical composition and thermal properties of lignin samples were determined. Thermal properties of lignins were analyzed using thermogravimetric analysis and differential scanning calorimetry. Thermal analysis confirmed switchgrass and yellow poplar lignin form miscible blends, as a single glass transition was observed. Lignin fibers were produced via melt-spinning by twin-screw extrusion. Lignin fibers were thermostabilized at different rates and subsequently carbonized. Spinnability of switchgrass lignin markedly improved by blending with yellow poplar lignin. On the other hand, switchgrass lignin significantly improved thermostabilization performance of yellow poplar fibers, preventing fusion of fibers during fast stabilization and improving mechanical properties of fibers. These results suggest a route towards a 100% renewable carbon fiber with significant decrease in production time and improved mechanical performance.

  5. Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends

    PubMed Central

    Hosseinaei, Omid; Bozell, Joseph J.; Rials, Timothy G.

    2017-01-01

    Lignin/lignin blends were used to improve fiber spinning, stabilization rates, and properties of lignin-based carbon fibers. Organosolv lignin from Alamo switchgrass (Panicum virgatum) and yellow poplar (Liriodendron tulipifera) were used as blends for making lignin-based carbon fibers. Different ratios of yellow poplar:switchgrass lignin blends were prepared (50:50, 75:25, and 85:15 w/w). Chemical composition and thermal properties of lignin samples were determined. Thermal properties of lignins were analyzed using thermogravimetric analysis and differential scanning calorimetry. Thermal analysis confirmed switchgrass and yellow poplar lignin form miscible blends, as a single glass transition was observed. Lignin fibers were produced via melt-spinning by twin-screw extrusion. Lignin fibers were thermostabilized at different rates and subsequently carbonized. Spinnability of switchgrass lignin markedly improved by blending with yellow poplar lignin. On the other hand, switchgrass lignin significantly improved thermostabilization performance of yellow poplar fibers, preventing fusion of fibers during fast stabilization and improving mechanical properties of fibers. These results suggest a route towards a 100% renewable carbon fiber with significant decrease in production time and improved mechanical performance. PMID:28671571

  6. Vanadium doped Sb{sub 2}Te{sub 3} material with modified crystallization mechanism for phase-change memory application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang

    2015-06-15

    In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted inmore » the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.« less

  7. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  8. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10 19 ions/m 2 at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.« less

  9. Towards ambient temperature-stable vaccines: the identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay.

    PubMed

    Schlehuber, Lisa D; McFadyen, Iain J; Shu, Yu; Carignan, James; Duprex, W Paul; Forsyth, William R; Ho, Jason H; Kitsos, Christine M; Lee, George Y; Levinson, Douglas A; Lucier, Sarah C; Moore, Christopher B; Nguyen, Niem T; Ramos, Josephine; Weinstock, B André; Zhang, Junhong; Monagle, Julie A; Gardner, Colin R; Alvarez, Juan C

    2011-07-12

    As a result of thermal instability, some live attenuated viral (LAV) vaccines lose substantial potency from the time of manufacture to the point of administration. Developing regions lacking extensive, reliable refrigeration ("cold-chain") infrastructure are particularly vulnerable to vaccine failure, which in turn increases the burden of disease. Development of a robust, infectivity-based high throughput screening process for identifying thermostable vaccine formulations offers significant promise for vaccine development across a wide variety of LAV products. Here we describe a system that incorporates thermal stability screening into formulation design using heat labile measles virus as a prototype. The screening of >11,000 unique formulations resulted in the identification of liquid formulations with marked improvement over those used in commercial monovalent measles vaccines, with <1.0 log loss of activity after incubation for 8h at 40°C. The approach was shown to be transferable to a second unrelated virus, and therefore offers significant promise towards the optimization of formulation for LAV vaccine products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.

    PubMed

    Lucky, R A; Charpentier, P A

    2009-05-13

    In this study the thermal behavior of bimetallic ZrO(2)-TiO(2) (10/90 mol/mol) nanotubes are discussed which were synthesized via a sol-gel process in supercritical carbon dioxide (scCO(2)). The effects of calcination temperature on the morphology, phase structure, mean crystallite size, specific surface area and pore volume of the nanotubes were investigated by using a variety of physiochemical techniques. We report that SEM and TEM images showed that the nanotubular structure was preserved at up to 800 degrees C calcination temperature. When exposed to higher temperatures (900-1000 degrees C) the ZrO(2)-TiO(2) tubes deformed and the crystallites fused together, forming larger crystallites, and a bimetallic ZrTiO(4) species was detected. These results were further examined using TGA, FTIR, XRD and HRTEM analysis. The BET textural properties demonstrated that the presence of a small amount of Zr in the TiO(2) matrix inhibited the grain growth, stabilized the anatase phase and increased the thermal stability.

  11. Thermal Decomposition Behavior of Hydroxytyrosol (HT) in Nitrogen Atmosphere Based on TG-FTIR Methods.

    PubMed

    Tu, Jun-Ling; Yuan, Jiao-Jiao

    2018-02-13

    The thermal decomposition behavior of olive hydroxytyrosol (HT) was first studied using thermogravimetry (TG). Cracked chemical bond and evolved gas analysis during the thermal decomposition process of HT were also investigated using thermogravimetry coupled with infrared spectroscopy (TG-FTIR). Thermogravimetry-Differential thermogravimetry (TG-DTG) curves revealed that the thermal decomposition of HT began at 262.8 °C and ended at 409.7 °C with a main mass loss. It was demonstrated that a high heating rate (over 20 K·min -1 ) restrained the thermal decomposition of HT, resulting in an obvious thermal hysteresis. Furthermore, a thermal decomposition kinetics investigation of HT indicated that the non-isothermal decomposition mechanism was one-dimensional diffusion (D1), integral form g ( x ) = x ², and differential form f ( x ) = 1/(2 x ). The four combined approaches were employed to calculate the activation energy ( E = 128.50 kJ·mol -1 ) and Arrhenius preexponential factor (ln A = 24.39 min -1 ). In addition, a tentative mechanism of HT thermal decomposition was further developed. The results provide a theoretical reference for the potential thermal stability of HT.

  12. Stabilization of lead in incineration fly ash by moderate thermal treatment with sodium hydroxide addition

    PubMed Central

    Yang, Yuanyi; He, Yong; Sun, Xiaolong; Ge, Li-Ya; Zhang, Kewei; Yang, Weizhong

    2017-01-01

    Municipal solid waste (MSW) incineration fly ash (IFA) can be potentially reused as a substitute for some raw materials, but treatment for detoxification is indispensable owing to high contents of heavy metals in fly ash. In the present work, due to excessive leaching concentration of lead (Pb), a moderate thermal treatment with sodium hydroxide (NaOH) addition was employed to stabilize Pb in IFA. The moderate thermal treatment was performed under relatively low temperature ranging from 300 to 500°C and at retention time from 1 to 3 h with NaOH addition in a range of 1 to 9%. Leaching results showed that leaching concentrations of Pb in IFA leachates decreased below the standard for hazardous waste identification (5 mg/L) in China under all treatment scenarios. With the increase of temperature, retention time and the amount of NaOH, the concentration of Pb were further suppressed in IFA leachates. Especially, at 500°C for 3 h with 9% NaOH addition, the concentration of Pb dropped to 0.18 mg/L, which was below the standard for sanitary landfill (0.25 mg/L) in China. In thermal process, needle-like crystallites melted to form granules and clumps with compacter structure and less pores. After the thermal treatment, water-soluble and exchangeable fractions of Pb significantly decreased. Therefore, the thermal treatment coupled with NaOH could be applied to realize the environmentally sound management of MSW IFA. PMID:28586368

  13. Stabilization of lead in incineration fly ash by moderate thermal treatment with sodium hydroxide addition.

    PubMed

    Gong, Bing; Deng, Yi; Yang, Yuanyi; He, Yong; Sun, Xiaolong; Ge, Li-Ya; Zhang, Kewei; Yang, Weizhong

    2017-01-01

    Municipal solid waste (MSW) incineration fly ash (IFA) can be potentially reused as a substitute for some raw materials, but treatment for detoxification is indispensable owing to high contents of heavy metals in fly ash. In the present work, due to excessive leaching concentration of lead (Pb), a moderate thermal treatment with sodium hydroxide (NaOH) addition was employed to stabilize Pb in IFA. The moderate thermal treatment was performed under relatively low temperature ranging from 300 to 500°C and at retention time from 1 to 3 h with NaOH addition in a range of 1 to 9%. Leaching results showed that leaching concentrations of Pb in IFA leachates decreased below the standard for hazardous waste identification (5 mg/L) in China under all treatment scenarios. With the increase of temperature, retention time and the amount of NaOH, the concentration of Pb were further suppressed in IFA leachates. Especially, at 500°C for 3 h with 9% NaOH addition, the concentration of Pb dropped to 0.18 mg/L, which was below the standard for sanitary landfill (0.25 mg/L) in China. In thermal process, needle-like crystallites melted to form granules and clumps with compacter structure and less pores. After the thermal treatment, water-soluble and exchangeable fractions of Pb significantly decreased. Therefore, the thermal treatment coupled with NaOH could be applied to realize the environmentally sound management of MSW IFA.

  14. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  15. The performance of thermal control coatings on LDEF and implications to future spacecraft

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  16. Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Chudasama, Bhupendra

    2018-04-01

    Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.

  17. Thermal bubble inkjet printing of water-based graphene oxide and graphene inks on heated substrate

    NASA Astrophysics Data System (ADS)

    Huang, Simin; Shen, Ruoxi; Qian, Bo; Li, Lingying; Wang, Wenhao; Lin, Guanghui; Zhang, Xiaofei; Li, Peng; Xie, Yonglin

    2018-04-01

    Stable-jetting water-based graphene oxide (GO) and graphene (GR) inks without any surfactant or stabilizer are prepared from an unstable-jetting water-based starting solvent, with many thermal bubble inkjet satellite drops, by simply increasing the material concentration. The concentration-dependent thermal bubble inkjet droplet generation process is studied in detail. To overcome the low concentration properties of water-based thermal bubble inkjet inks, the substrate temperature is tuned below 60 °C to achieve high-quality print lines. Due to the difference in hydrophilicity and hydrophobicity of the 2D materials, the printed GO lines show a different forming mechanism from that of the GR lines. The printed GO lines are reduced by thermal annealing and by ascorbic acid, respectively. The reduced GO lines exhibit electrical conductivity of the same order of magnitude as that of the GR lines.

  18. Thermal Degradation and Combustion Behavior of Polypropylene/MWCNT Composites

    NASA Astrophysics Data System (ADS)

    Zaikov, G. E.; Rakhimkulov, A. D.; Lomakin, S. M.; Dubnikova, I. L.; Shchegolikhin, A. N.; Davidov, E. Ya.

    2010-06-01

    Studies of thermal and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by means of melt intercalation are discussed. The sets of the data acquired with the aid of non-isothermal TG experiments have been treated by the model kinetic analysis. The thermal-oxidative degradation behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. The results of cone calorimetric tests lead to the conclusion that char formation plays a key role in the mechanism of flame retardation for nanocomposites. This could be explained by the specific antioxidant properties and high thermal conductivity of MWCNT which determine high-performance carbonization during thermal degradation process. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites under high-temperature tests.

  19. Thermal treatment effects imposed on solid DNA cationic lipid complex with hexadecyltrimethylammonium chloride, observed by variable angle spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Nizioł, Jacek

    2014-12-01

    DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day).

  20. Method for quick thermal tolerancing of optical systems

    NASA Astrophysics Data System (ADS)

    Werschnik, J.; Uhlendorf, K.

    2016-09-01

    Optical systems for lithography (projection lens), inspection (micro-objectives) or laser material processing usually have tight specifications regarding focus and wave-front stability. The same is true regarding the field dependent properties. Especially projection lenses have tight specifications on field curvature, magnification and distortion. Unwanted heating either from internal or external sources lead to undesired changes of the above properties. In this work we show an elegant and fast method to analyze the thermal sensitivity using ZEMAX. The key point of this method is using the thermal changes of the lens data from the multi-configuration editor as starting point for a (standard) tolerance analysis. Knowing the sensitivity we can either define requirements on the environment or use it to systematically improve the thermal behavior of the lens. We demonstrate this method for a typical projection lens for which we optimized the thermal field curvature to a minimum.

Top